linux/drivers/gpu/drm/i915/gvt/gtt.c
<<
>>
Prefs
   1/*
   2 * GTT virtualization
   3 *
   4 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a
   7 * copy of this software and associated documentation files (the "Software"),
   8 * to deal in the Software without restriction, including without limitation
   9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  10 * and/or sell copies of the Software, and to permit persons to whom the
  11 * Software is furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice (including the next
  14 * paragraph) shall be included in all copies or substantial portions of the
  15 * Software.
  16 *
  17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  23 * SOFTWARE.
  24 *
  25 * Authors:
  26 *    Zhi Wang <zhi.a.wang@intel.com>
  27 *    Zhenyu Wang <zhenyuw@linux.intel.com>
  28 *    Xiao Zheng <xiao.zheng@intel.com>
  29 *
  30 * Contributors:
  31 *    Min He <min.he@intel.com>
  32 *    Bing Niu <bing.niu@intel.com>
  33 *
  34 */
  35
  36#include "i915_drv.h"
  37#include "gvt.h"
  38#include "i915_pvinfo.h"
  39#include "trace.h"
  40
  41#if defined(VERBOSE_DEBUG)
  42#define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
  43#else
  44#define gvt_vdbg_mm(fmt, args...)
  45#endif
  46
  47static bool enable_out_of_sync = false;
  48static int preallocated_oos_pages = 8192;
  49
  50/*
  51 * validate a gm address and related range size,
  52 * translate it to host gm address
  53 */
  54bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
  55{
  56        if (size == 0)
  57                return vgpu_gmadr_is_valid(vgpu, addr);
  58
  59        if (vgpu_gmadr_is_aperture(vgpu, addr) &&
  60            vgpu_gmadr_is_aperture(vgpu, addr + size - 1))
  61                return true;
  62        else if (vgpu_gmadr_is_hidden(vgpu, addr) &&
  63                 vgpu_gmadr_is_hidden(vgpu, addr + size - 1))
  64                return true;
  65
  66        gvt_dbg_mm("Invalid ggtt range at 0x%llx, size: 0x%x\n",
  67                     addr, size);
  68        return false;
  69}
  70
  71/* translate a guest gmadr to host gmadr */
  72int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
  73{
  74        struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
  75
  76        if (drm_WARN(&i915->drm, !vgpu_gmadr_is_valid(vgpu, g_addr),
  77                     "invalid guest gmadr %llx\n", g_addr))
  78                return -EACCES;
  79
  80        if (vgpu_gmadr_is_aperture(vgpu, g_addr))
  81                *h_addr = vgpu_aperture_gmadr_base(vgpu)
  82                          + (g_addr - vgpu_aperture_offset(vgpu));
  83        else
  84                *h_addr = vgpu_hidden_gmadr_base(vgpu)
  85                          + (g_addr - vgpu_hidden_offset(vgpu));
  86        return 0;
  87}
  88
  89/* translate a host gmadr to guest gmadr */
  90int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
  91{
  92        struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
  93
  94        if (drm_WARN(&i915->drm, !gvt_gmadr_is_valid(vgpu->gvt, h_addr),
  95                     "invalid host gmadr %llx\n", h_addr))
  96                return -EACCES;
  97
  98        if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
  99                *g_addr = vgpu_aperture_gmadr_base(vgpu)
 100                        + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
 101        else
 102                *g_addr = vgpu_hidden_gmadr_base(vgpu)
 103                        + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
 104        return 0;
 105}
 106
 107int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
 108                             unsigned long *h_index)
 109{
 110        u64 h_addr;
 111        int ret;
 112
 113        ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
 114                                       &h_addr);
 115        if (ret)
 116                return ret;
 117
 118        *h_index = h_addr >> I915_GTT_PAGE_SHIFT;
 119        return 0;
 120}
 121
 122int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
 123                             unsigned long *g_index)
 124{
 125        u64 g_addr;
 126        int ret;
 127
 128        ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
 129                                       &g_addr);
 130        if (ret)
 131                return ret;
 132
 133        *g_index = g_addr >> I915_GTT_PAGE_SHIFT;
 134        return 0;
 135}
 136
 137#define gtt_type_is_entry(type) \
 138        (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
 139         && type != GTT_TYPE_PPGTT_PTE_ENTRY \
 140         && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
 141
 142#define gtt_type_is_pt(type) \
 143        (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
 144
 145#define gtt_type_is_pte_pt(type) \
 146        (type == GTT_TYPE_PPGTT_PTE_PT)
 147
 148#define gtt_type_is_root_pointer(type) \
 149        (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
 150
 151#define gtt_init_entry(e, t, p, v) do { \
 152        (e)->type = t; \
 153        (e)->pdev = p; \
 154        memcpy(&(e)->val64, &v, sizeof(v)); \
 155} while (0)
 156
 157/*
 158 * Mappings between GTT_TYPE* enumerations.
 159 * Following information can be found according to the given type:
 160 * - type of next level page table
 161 * - type of entry inside this level page table
 162 * - type of entry with PSE set
 163 *
 164 * If the given type doesn't have such a kind of information,
 165 * e.g. give a l4 root entry type, then request to get its PSE type,
 166 * give a PTE page table type, then request to get its next level page
 167 * table type, as we know l4 root entry doesn't have a PSE bit,
 168 * and a PTE page table doesn't have a next level page table type,
 169 * GTT_TYPE_INVALID will be returned. This is useful when traversing a
 170 * page table.
 171 */
 172
 173struct gtt_type_table_entry {
 174        int entry_type;
 175        int pt_type;
 176        int next_pt_type;
 177        int pse_entry_type;
 178};
 179
 180#define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
 181        [type] = { \
 182                .entry_type = e_type, \
 183                .pt_type = cpt_type, \
 184                .next_pt_type = npt_type, \
 185                .pse_entry_type = pse_type, \
 186        }
 187
 188static struct gtt_type_table_entry gtt_type_table[] = {
 189        GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
 190                        GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
 191                        GTT_TYPE_INVALID,
 192                        GTT_TYPE_PPGTT_PML4_PT,
 193                        GTT_TYPE_INVALID),
 194        GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
 195                        GTT_TYPE_PPGTT_PML4_ENTRY,
 196                        GTT_TYPE_PPGTT_PML4_PT,
 197                        GTT_TYPE_PPGTT_PDP_PT,
 198                        GTT_TYPE_INVALID),
 199        GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
 200                        GTT_TYPE_PPGTT_PML4_ENTRY,
 201                        GTT_TYPE_PPGTT_PML4_PT,
 202                        GTT_TYPE_PPGTT_PDP_PT,
 203                        GTT_TYPE_INVALID),
 204        GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
 205                        GTT_TYPE_PPGTT_PDP_ENTRY,
 206                        GTT_TYPE_PPGTT_PDP_PT,
 207                        GTT_TYPE_PPGTT_PDE_PT,
 208                        GTT_TYPE_PPGTT_PTE_1G_ENTRY),
 209        GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
 210                        GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
 211                        GTT_TYPE_INVALID,
 212                        GTT_TYPE_PPGTT_PDE_PT,
 213                        GTT_TYPE_PPGTT_PTE_1G_ENTRY),
 214        GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
 215                        GTT_TYPE_PPGTT_PDP_ENTRY,
 216                        GTT_TYPE_PPGTT_PDP_PT,
 217                        GTT_TYPE_PPGTT_PDE_PT,
 218                        GTT_TYPE_PPGTT_PTE_1G_ENTRY),
 219        GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
 220                        GTT_TYPE_PPGTT_PDE_ENTRY,
 221                        GTT_TYPE_PPGTT_PDE_PT,
 222                        GTT_TYPE_PPGTT_PTE_PT,
 223                        GTT_TYPE_PPGTT_PTE_2M_ENTRY),
 224        GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
 225                        GTT_TYPE_PPGTT_PDE_ENTRY,
 226                        GTT_TYPE_PPGTT_PDE_PT,
 227                        GTT_TYPE_PPGTT_PTE_PT,
 228                        GTT_TYPE_PPGTT_PTE_2M_ENTRY),
 229        /* We take IPS bit as 'PSE' for PTE level. */
 230        GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
 231                        GTT_TYPE_PPGTT_PTE_4K_ENTRY,
 232                        GTT_TYPE_PPGTT_PTE_PT,
 233                        GTT_TYPE_INVALID,
 234                        GTT_TYPE_PPGTT_PTE_64K_ENTRY),
 235        GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
 236                        GTT_TYPE_PPGTT_PTE_4K_ENTRY,
 237                        GTT_TYPE_PPGTT_PTE_PT,
 238                        GTT_TYPE_INVALID,
 239                        GTT_TYPE_PPGTT_PTE_64K_ENTRY),
 240        GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY,
 241                        GTT_TYPE_PPGTT_PTE_4K_ENTRY,
 242                        GTT_TYPE_PPGTT_PTE_PT,
 243                        GTT_TYPE_INVALID,
 244                        GTT_TYPE_PPGTT_PTE_64K_ENTRY),
 245        GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
 246                        GTT_TYPE_PPGTT_PDE_ENTRY,
 247                        GTT_TYPE_PPGTT_PDE_PT,
 248                        GTT_TYPE_INVALID,
 249                        GTT_TYPE_PPGTT_PTE_2M_ENTRY),
 250        GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
 251                        GTT_TYPE_PPGTT_PDP_ENTRY,
 252                        GTT_TYPE_PPGTT_PDP_PT,
 253                        GTT_TYPE_INVALID,
 254                        GTT_TYPE_PPGTT_PTE_1G_ENTRY),
 255        GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
 256                        GTT_TYPE_GGTT_PTE,
 257                        GTT_TYPE_INVALID,
 258                        GTT_TYPE_INVALID,
 259                        GTT_TYPE_INVALID),
 260};
 261
 262static inline int get_next_pt_type(int type)
 263{
 264        return gtt_type_table[type].next_pt_type;
 265}
 266
 267static inline int get_pt_type(int type)
 268{
 269        return gtt_type_table[type].pt_type;
 270}
 271
 272static inline int get_entry_type(int type)
 273{
 274        return gtt_type_table[type].entry_type;
 275}
 276
 277static inline int get_pse_type(int type)
 278{
 279        return gtt_type_table[type].pse_entry_type;
 280}
 281
 282static u64 read_pte64(struct i915_ggtt *ggtt, unsigned long index)
 283{
 284        void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
 285
 286        return readq(addr);
 287}
 288
 289static void ggtt_invalidate(struct intel_gt *gt)
 290{
 291        mmio_hw_access_pre(gt);
 292        intel_uncore_write(gt->uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
 293        mmio_hw_access_post(gt);
 294}
 295
 296static void write_pte64(struct i915_ggtt *ggtt, unsigned long index, u64 pte)
 297{
 298        void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
 299
 300        writeq(pte, addr);
 301}
 302
 303static inline int gtt_get_entry64(void *pt,
 304                struct intel_gvt_gtt_entry *e,
 305                unsigned long index, bool hypervisor_access, unsigned long gpa,
 306                struct intel_vgpu *vgpu)
 307{
 308        const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
 309        int ret;
 310
 311        if (WARN_ON(info->gtt_entry_size != 8))
 312                return -EINVAL;
 313
 314        if (hypervisor_access) {
 315                ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
 316                                (index << info->gtt_entry_size_shift),
 317                                &e->val64, 8);
 318                if (WARN_ON(ret))
 319                        return ret;
 320        } else if (!pt) {
 321                e->val64 = read_pte64(vgpu->gvt->gt->ggtt, index);
 322        } else {
 323                e->val64 = *((u64 *)pt + index);
 324        }
 325        return 0;
 326}
 327
 328static inline int gtt_set_entry64(void *pt,
 329                struct intel_gvt_gtt_entry *e,
 330                unsigned long index, bool hypervisor_access, unsigned long gpa,
 331                struct intel_vgpu *vgpu)
 332{
 333        const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
 334        int ret;
 335
 336        if (WARN_ON(info->gtt_entry_size != 8))
 337                return -EINVAL;
 338
 339        if (hypervisor_access) {
 340                ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
 341                                (index << info->gtt_entry_size_shift),
 342                                &e->val64, 8);
 343                if (WARN_ON(ret))
 344                        return ret;
 345        } else if (!pt) {
 346                write_pte64(vgpu->gvt->gt->ggtt, index, e->val64);
 347        } else {
 348                *((u64 *)pt + index) = e->val64;
 349        }
 350        return 0;
 351}
 352
 353#define GTT_HAW 46
 354
 355#define ADDR_1G_MASK    GENMASK_ULL(GTT_HAW - 1, 30)
 356#define ADDR_2M_MASK    GENMASK_ULL(GTT_HAW - 1, 21)
 357#define ADDR_64K_MASK   GENMASK_ULL(GTT_HAW - 1, 16)
 358#define ADDR_4K_MASK    GENMASK_ULL(GTT_HAW - 1, 12)
 359
 360#define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52)
 361#define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */
 362
 363#define GTT_64K_PTE_STRIDE 16
 364
 365static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
 366{
 367        unsigned long pfn;
 368
 369        if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
 370                pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
 371        else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
 372                pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
 373        else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY)
 374                pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT;
 375        else
 376                pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
 377        return pfn;
 378}
 379
 380static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
 381{
 382        if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
 383                e->val64 &= ~ADDR_1G_MASK;
 384                pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
 385        } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
 386                e->val64 &= ~ADDR_2M_MASK;
 387                pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
 388        } else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) {
 389                e->val64 &= ~ADDR_64K_MASK;
 390                pfn &= (ADDR_64K_MASK >> PAGE_SHIFT);
 391        } else {
 392                e->val64 &= ~ADDR_4K_MASK;
 393                pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
 394        }
 395
 396        e->val64 |= (pfn << PAGE_SHIFT);
 397}
 398
 399static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
 400{
 401        return !!(e->val64 & _PAGE_PSE);
 402}
 403
 404static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e)
 405{
 406        if (gen8_gtt_test_pse(e)) {
 407                switch (e->type) {
 408                case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
 409                        e->val64 &= ~_PAGE_PSE;
 410                        e->type = GTT_TYPE_PPGTT_PDE_ENTRY;
 411                        break;
 412                case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
 413                        e->type = GTT_TYPE_PPGTT_PDP_ENTRY;
 414                        e->val64 &= ~_PAGE_PSE;
 415                        break;
 416                default:
 417                        WARN_ON(1);
 418                }
 419        }
 420}
 421
 422static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e)
 423{
 424        if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
 425                return false;
 426
 427        return !!(e->val64 & GEN8_PDE_IPS_64K);
 428}
 429
 430static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e)
 431{
 432        if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
 433                return;
 434
 435        e->val64 &= ~GEN8_PDE_IPS_64K;
 436}
 437
 438static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
 439{
 440        /*
 441         * i915 writes PDP root pointer registers without present bit,
 442         * it also works, so we need to treat root pointer entry
 443         * specifically.
 444         */
 445        if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
 446                        || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
 447                return (e->val64 != 0);
 448        else
 449                return (e->val64 & _PAGE_PRESENT);
 450}
 451
 452static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
 453{
 454        e->val64 &= ~_PAGE_PRESENT;
 455}
 456
 457static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
 458{
 459        e->val64 |= _PAGE_PRESENT;
 460}
 461
 462static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e)
 463{
 464        return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED);
 465}
 466
 467static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e)
 468{
 469        e->val64 |= GTT_SPTE_FLAG_64K_SPLITED;
 470}
 471
 472static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e)
 473{
 474        e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED;
 475}
 476
 477/*
 478 * Per-platform GMA routines.
 479 */
 480static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
 481{
 482        unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
 483
 484        trace_gma_index(__func__, gma, x);
 485        return x;
 486}
 487
 488#define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
 489static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
 490{ \
 491        unsigned long x = (exp); \
 492        trace_gma_index(__func__, gma, x); \
 493        return x; \
 494}
 495
 496DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
 497DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
 498DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
 499DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
 500DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
 501
 502static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
 503        .get_entry = gtt_get_entry64,
 504        .set_entry = gtt_set_entry64,
 505        .clear_present = gtt_entry_clear_present,
 506        .set_present = gtt_entry_set_present,
 507        .test_present = gen8_gtt_test_present,
 508        .test_pse = gen8_gtt_test_pse,
 509        .clear_pse = gen8_gtt_clear_pse,
 510        .clear_ips = gen8_gtt_clear_ips,
 511        .test_ips = gen8_gtt_test_ips,
 512        .clear_64k_splited = gen8_gtt_clear_64k_splited,
 513        .set_64k_splited = gen8_gtt_set_64k_splited,
 514        .test_64k_splited = gen8_gtt_test_64k_splited,
 515        .get_pfn = gen8_gtt_get_pfn,
 516        .set_pfn = gen8_gtt_set_pfn,
 517};
 518
 519static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
 520        .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
 521        .gma_to_pte_index = gen8_gma_to_pte_index,
 522        .gma_to_pde_index = gen8_gma_to_pde_index,
 523        .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
 524        .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
 525        .gma_to_pml4_index = gen8_gma_to_pml4_index,
 526};
 527
 528/* Update entry type per pse and ips bit. */
 529static void update_entry_type_for_real(struct intel_gvt_gtt_pte_ops *pte_ops,
 530        struct intel_gvt_gtt_entry *entry, bool ips)
 531{
 532        switch (entry->type) {
 533        case GTT_TYPE_PPGTT_PDE_ENTRY:
 534        case GTT_TYPE_PPGTT_PDP_ENTRY:
 535                if (pte_ops->test_pse(entry))
 536                        entry->type = get_pse_type(entry->type);
 537                break;
 538        case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
 539                if (ips)
 540                        entry->type = get_pse_type(entry->type);
 541                break;
 542        default:
 543                GEM_BUG_ON(!gtt_type_is_entry(entry->type));
 544        }
 545
 546        GEM_BUG_ON(entry->type == GTT_TYPE_INVALID);
 547}
 548
 549/*
 550 * MM helpers.
 551 */
 552static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
 553                struct intel_gvt_gtt_entry *entry, unsigned long index,
 554                bool guest)
 555{
 556        struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
 557
 558        GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
 559
 560        entry->type = mm->ppgtt_mm.root_entry_type;
 561        pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
 562                           mm->ppgtt_mm.shadow_pdps,
 563                           entry, index, false, 0, mm->vgpu);
 564        update_entry_type_for_real(pte_ops, entry, false);
 565}
 566
 567static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
 568                struct intel_gvt_gtt_entry *entry, unsigned long index)
 569{
 570        _ppgtt_get_root_entry(mm, entry, index, true);
 571}
 572
 573static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
 574                struct intel_gvt_gtt_entry *entry, unsigned long index)
 575{
 576        _ppgtt_get_root_entry(mm, entry, index, false);
 577}
 578
 579static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
 580                struct intel_gvt_gtt_entry *entry, unsigned long index,
 581                bool guest)
 582{
 583        struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
 584
 585        pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
 586                           mm->ppgtt_mm.shadow_pdps,
 587                           entry, index, false, 0, mm->vgpu);
 588}
 589
 590static inline void ppgtt_set_guest_root_entry(struct intel_vgpu_mm *mm,
 591                struct intel_gvt_gtt_entry *entry, unsigned long index)
 592{
 593        _ppgtt_set_root_entry(mm, entry, index, true);
 594}
 595
 596static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
 597                struct intel_gvt_gtt_entry *entry, unsigned long index)
 598{
 599        _ppgtt_set_root_entry(mm, entry, index, false);
 600}
 601
 602static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
 603                struct intel_gvt_gtt_entry *entry, unsigned long index)
 604{
 605        struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
 606
 607        GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
 608
 609        entry->type = GTT_TYPE_GGTT_PTE;
 610        pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
 611                           false, 0, mm->vgpu);
 612}
 613
 614static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
 615                struct intel_gvt_gtt_entry *entry, unsigned long index)
 616{
 617        struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
 618
 619        GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
 620
 621        pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
 622                           false, 0, mm->vgpu);
 623}
 624
 625static void ggtt_get_host_entry(struct intel_vgpu_mm *mm,
 626                struct intel_gvt_gtt_entry *entry, unsigned long index)
 627{
 628        struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
 629
 630        GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
 631
 632        pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu);
 633}
 634
 635static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
 636                struct intel_gvt_gtt_entry *entry, unsigned long index)
 637{
 638        struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
 639
 640        GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
 641
 642        pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
 643}
 644
 645/*
 646 * PPGTT shadow page table helpers.
 647 */
 648static inline int ppgtt_spt_get_entry(
 649                struct intel_vgpu_ppgtt_spt *spt,
 650                void *page_table, int type,
 651                struct intel_gvt_gtt_entry *e, unsigned long index,
 652                bool guest)
 653{
 654        struct intel_gvt *gvt = spt->vgpu->gvt;
 655        struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
 656        int ret;
 657
 658        e->type = get_entry_type(type);
 659
 660        if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
 661                return -EINVAL;
 662
 663        ret = ops->get_entry(page_table, e, index, guest,
 664                        spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
 665                        spt->vgpu);
 666        if (ret)
 667                return ret;
 668
 669        update_entry_type_for_real(ops, e, guest ?
 670                                   spt->guest_page.pde_ips : false);
 671
 672        gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
 673                    type, e->type, index, e->val64);
 674        return 0;
 675}
 676
 677static inline int ppgtt_spt_set_entry(
 678                struct intel_vgpu_ppgtt_spt *spt,
 679                void *page_table, int type,
 680                struct intel_gvt_gtt_entry *e, unsigned long index,
 681                bool guest)
 682{
 683        struct intel_gvt *gvt = spt->vgpu->gvt;
 684        struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
 685
 686        if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
 687                return -EINVAL;
 688
 689        gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
 690                    type, e->type, index, e->val64);
 691
 692        return ops->set_entry(page_table, e, index, guest,
 693                        spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
 694                        spt->vgpu);
 695}
 696
 697#define ppgtt_get_guest_entry(spt, e, index) \
 698        ppgtt_spt_get_entry(spt, NULL, \
 699                spt->guest_page.type, e, index, true)
 700
 701#define ppgtt_set_guest_entry(spt, e, index) \
 702        ppgtt_spt_set_entry(spt, NULL, \
 703                spt->guest_page.type, e, index, true)
 704
 705#define ppgtt_get_shadow_entry(spt, e, index) \
 706        ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
 707                spt->shadow_page.type, e, index, false)
 708
 709#define ppgtt_set_shadow_entry(spt, e, index) \
 710        ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
 711                spt->shadow_page.type, e, index, false)
 712
 713static void *alloc_spt(gfp_t gfp_mask)
 714{
 715        struct intel_vgpu_ppgtt_spt *spt;
 716
 717        spt = kzalloc(sizeof(*spt), gfp_mask);
 718        if (!spt)
 719                return NULL;
 720
 721        spt->shadow_page.page = alloc_page(gfp_mask);
 722        if (!spt->shadow_page.page) {
 723                kfree(spt);
 724                return NULL;
 725        }
 726        return spt;
 727}
 728
 729static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
 730{
 731        __free_page(spt->shadow_page.page);
 732        kfree(spt);
 733}
 734
 735static int detach_oos_page(struct intel_vgpu *vgpu,
 736                struct intel_vgpu_oos_page *oos_page);
 737
 738static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
 739{
 740        struct device *kdev = &spt->vgpu->gvt->gt->i915->drm.pdev->dev;
 741
 742        trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type);
 743
 744        dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
 745                       PCI_DMA_BIDIRECTIONAL);
 746
 747        radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
 748
 749        if (spt->guest_page.gfn) {
 750                if (spt->guest_page.oos_page)
 751                        detach_oos_page(spt->vgpu, spt->guest_page.oos_page);
 752
 753                intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn);
 754        }
 755
 756        list_del_init(&spt->post_shadow_list);
 757        free_spt(spt);
 758}
 759
 760static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
 761{
 762        struct intel_vgpu_ppgtt_spt *spt, *spn;
 763        struct radix_tree_iter iter;
 764        LIST_HEAD(all_spt);
 765        void __rcu **slot;
 766
 767        rcu_read_lock();
 768        radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
 769                spt = radix_tree_deref_slot(slot);
 770                list_move(&spt->post_shadow_list, &all_spt);
 771        }
 772        rcu_read_unlock();
 773
 774        list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list)
 775                ppgtt_free_spt(spt);
 776}
 777
 778static int ppgtt_handle_guest_write_page_table_bytes(
 779                struct intel_vgpu_ppgtt_spt *spt,
 780                u64 pa, void *p_data, int bytes);
 781
 782static int ppgtt_write_protection_handler(
 783                struct intel_vgpu_page_track *page_track,
 784                u64 gpa, void *data, int bytes)
 785{
 786        struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
 787
 788        int ret;
 789
 790        if (bytes != 4 && bytes != 8)
 791                return -EINVAL;
 792
 793        ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes);
 794        if (ret)
 795                return ret;
 796        return ret;
 797}
 798
 799/* Find a spt by guest gfn. */
 800static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
 801                struct intel_vgpu *vgpu, unsigned long gfn)
 802{
 803        struct intel_vgpu_page_track *track;
 804
 805        track = intel_vgpu_find_page_track(vgpu, gfn);
 806        if (track && track->handler == ppgtt_write_protection_handler)
 807                return track->priv_data;
 808
 809        return NULL;
 810}
 811
 812/* Find the spt by shadow page mfn. */
 813static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
 814                struct intel_vgpu *vgpu, unsigned long mfn)
 815{
 816        return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
 817}
 818
 819static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
 820
 821/* Allocate shadow page table without guest page. */
 822static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
 823                struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type)
 824{
 825        struct device *kdev = &vgpu->gvt->gt->i915->drm.pdev->dev;
 826        struct intel_vgpu_ppgtt_spt *spt = NULL;
 827        dma_addr_t daddr;
 828        int ret;
 829
 830retry:
 831        spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
 832        if (!spt) {
 833                if (reclaim_one_ppgtt_mm(vgpu->gvt))
 834                        goto retry;
 835
 836                gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
 837                return ERR_PTR(-ENOMEM);
 838        }
 839
 840        spt->vgpu = vgpu;
 841        atomic_set(&spt->refcount, 1);
 842        INIT_LIST_HEAD(&spt->post_shadow_list);
 843
 844        /*
 845         * Init shadow_page.
 846         */
 847        spt->shadow_page.type = type;
 848        daddr = dma_map_page(kdev, spt->shadow_page.page,
 849                             0, 4096, PCI_DMA_BIDIRECTIONAL);
 850        if (dma_mapping_error(kdev, daddr)) {
 851                gvt_vgpu_err("fail to map dma addr\n");
 852                ret = -EINVAL;
 853                goto err_free_spt;
 854        }
 855        spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
 856        spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
 857
 858        ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt);
 859        if (ret)
 860                goto err_unmap_dma;
 861
 862        return spt;
 863
 864err_unmap_dma:
 865        dma_unmap_page(kdev, daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
 866err_free_spt:
 867        free_spt(spt);
 868        return ERR_PTR(ret);
 869}
 870
 871/* Allocate shadow page table associated with specific gfn. */
 872static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn(
 873                struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type,
 874                unsigned long gfn, bool guest_pde_ips)
 875{
 876        struct intel_vgpu_ppgtt_spt *spt;
 877        int ret;
 878
 879        spt = ppgtt_alloc_spt(vgpu, type);
 880        if (IS_ERR(spt))
 881                return spt;
 882
 883        /*
 884         * Init guest_page.
 885         */
 886        ret = intel_vgpu_register_page_track(vgpu, gfn,
 887                        ppgtt_write_protection_handler, spt);
 888        if (ret) {
 889                ppgtt_free_spt(spt);
 890                return ERR_PTR(ret);
 891        }
 892
 893        spt->guest_page.type = type;
 894        spt->guest_page.gfn = gfn;
 895        spt->guest_page.pde_ips = guest_pde_ips;
 896
 897        trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
 898
 899        return spt;
 900}
 901
 902#define pt_entry_size_shift(spt) \
 903        ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
 904
 905#define pt_entries(spt) \
 906        (I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
 907
 908#define for_each_present_guest_entry(spt, e, i) \
 909        for (i = 0; i < pt_entries(spt); \
 910             i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
 911                if (!ppgtt_get_guest_entry(spt, e, i) && \
 912                    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
 913
 914#define for_each_present_shadow_entry(spt, e, i) \
 915        for (i = 0; i < pt_entries(spt); \
 916             i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
 917                if (!ppgtt_get_shadow_entry(spt, e, i) && \
 918                    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
 919
 920#define for_each_shadow_entry(spt, e, i) \
 921        for (i = 0; i < pt_entries(spt); \
 922             i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \
 923                if (!ppgtt_get_shadow_entry(spt, e, i))
 924
 925static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
 926{
 927        int v = atomic_read(&spt->refcount);
 928
 929        trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
 930        atomic_inc(&spt->refcount);
 931}
 932
 933static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt)
 934{
 935        int v = atomic_read(&spt->refcount);
 936
 937        trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
 938        return atomic_dec_return(&spt->refcount);
 939}
 940
 941static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
 942
 943static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
 944                struct intel_gvt_gtt_entry *e)
 945{
 946        struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
 947        struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
 948        struct intel_vgpu_ppgtt_spt *s;
 949        enum intel_gvt_gtt_type cur_pt_type;
 950
 951        GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
 952
 953        if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
 954                && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
 955                cur_pt_type = get_next_pt_type(e->type);
 956
 957                if (!gtt_type_is_pt(cur_pt_type) ||
 958                                !gtt_type_is_pt(cur_pt_type + 1)) {
 959                        drm_WARN(&i915->drm, 1,
 960                                 "Invalid page table type, cur_pt_type is: %d\n",
 961                                 cur_pt_type);
 962                        return -EINVAL;
 963                }
 964
 965                cur_pt_type += 1;
 966
 967                if (ops->get_pfn(e) ==
 968                        vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
 969                        return 0;
 970        }
 971        s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
 972        if (!s) {
 973                gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
 974                                ops->get_pfn(e));
 975                return -ENXIO;
 976        }
 977        return ppgtt_invalidate_spt(s);
 978}
 979
 980static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
 981                struct intel_gvt_gtt_entry *entry)
 982{
 983        struct intel_vgpu *vgpu = spt->vgpu;
 984        struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
 985        unsigned long pfn;
 986        int type;
 987
 988        pfn = ops->get_pfn(entry);
 989        type = spt->shadow_page.type;
 990
 991        /* Uninitialized spte or unshadowed spte. */
 992        if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn)
 993                return;
 994
 995        intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
 996}
 997
 998static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
 999{
1000        struct intel_vgpu *vgpu = spt->vgpu;
1001        struct intel_gvt_gtt_entry e;
1002        unsigned long index;
1003        int ret;
1004
1005        trace_spt_change(spt->vgpu->id, "die", spt,
1006                        spt->guest_page.gfn, spt->shadow_page.type);
1007
1008        if (ppgtt_put_spt(spt) > 0)
1009                return 0;
1010
1011        for_each_present_shadow_entry(spt, &e, index) {
1012                switch (e.type) {
1013                case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1014                        gvt_vdbg_mm("invalidate 4K entry\n");
1015                        ppgtt_invalidate_pte(spt, &e);
1016                        break;
1017                case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1018                        /* We don't setup 64K shadow entry so far. */
1019                        WARN(1, "suspicious 64K gtt entry\n");
1020                        continue;
1021                case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1022                        gvt_vdbg_mm("invalidate 2M entry\n");
1023                        continue;
1024                case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1025                        WARN(1, "GVT doesn't support 1GB page\n");
1026                        continue;
1027                case GTT_TYPE_PPGTT_PML4_ENTRY:
1028                case GTT_TYPE_PPGTT_PDP_ENTRY:
1029                case GTT_TYPE_PPGTT_PDE_ENTRY:
1030                        gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
1031                        ret = ppgtt_invalidate_spt_by_shadow_entry(
1032                                        spt->vgpu, &e);
1033                        if (ret)
1034                                goto fail;
1035                        break;
1036                default:
1037                        GEM_BUG_ON(1);
1038                }
1039        }
1040
1041        trace_spt_change(spt->vgpu->id, "release", spt,
1042                         spt->guest_page.gfn, spt->shadow_page.type);
1043        ppgtt_free_spt(spt);
1044        return 0;
1045fail:
1046        gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
1047                        spt, e.val64, e.type);
1048        return ret;
1049}
1050
1051static bool vgpu_ips_enabled(struct intel_vgpu *vgpu)
1052{
1053        struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1054
1055        if (INTEL_GEN(dev_priv) == 9 || INTEL_GEN(dev_priv) == 10) {
1056                u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) &
1057                        GAMW_ECO_ENABLE_64K_IPS_FIELD;
1058
1059                return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD;
1060        } else if (INTEL_GEN(dev_priv) >= 11) {
1061                /* 64K paging only controlled by IPS bit in PTE now. */
1062                return true;
1063        } else
1064                return false;
1065}
1066
1067static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
1068
1069static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
1070                struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
1071{
1072        struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1073        struct intel_vgpu_ppgtt_spt *spt = NULL;
1074        bool ips = false;
1075        int ret;
1076
1077        GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
1078
1079        if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1080                ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we);
1081
1082        spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we));
1083        if (spt) {
1084                ppgtt_get_spt(spt);
1085
1086                if (ips != spt->guest_page.pde_ips) {
1087                        spt->guest_page.pde_ips = ips;
1088
1089                        gvt_dbg_mm("reshadow PDE since ips changed\n");
1090                        clear_page(spt->shadow_page.vaddr);
1091                        ret = ppgtt_populate_spt(spt);
1092                        if (ret) {
1093                                ppgtt_put_spt(spt);
1094                                goto err;
1095                        }
1096                }
1097        } else {
1098                int type = get_next_pt_type(we->type);
1099
1100                if (!gtt_type_is_pt(type)) {
1101                        ret = -EINVAL;
1102                        goto err;
1103                }
1104
1105                spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips);
1106                if (IS_ERR(spt)) {
1107                        ret = PTR_ERR(spt);
1108                        goto err;
1109                }
1110
1111                ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn);
1112                if (ret)
1113                        goto err_free_spt;
1114
1115                ret = ppgtt_populate_spt(spt);
1116                if (ret)
1117                        goto err_free_spt;
1118
1119                trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn,
1120                                 spt->shadow_page.type);
1121        }
1122        return spt;
1123
1124err_free_spt:
1125        ppgtt_free_spt(spt);
1126        spt = NULL;
1127err:
1128        gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1129                     spt, we->val64, we->type);
1130        return ERR_PTR(ret);
1131}
1132
1133static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
1134                struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
1135{
1136        struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
1137
1138        se->type = ge->type;
1139        se->val64 = ge->val64;
1140
1141        /* Because we always split 64KB pages, so clear IPS in shadow PDE. */
1142        if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1143                ops->clear_ips(se);
1144
1145        ops->set_pfn(se, s->shadow_page.mfn);
1146}
1147
1148/**
1149 * Check if can do 2M page
1150 * @vgpu: target vgpu
1151 * @entry: target pfn's gtt entry
1152 *
1153 * Return 1 if 2MB huge gtt shadowing is possilbe, 0 if miscondition,
1154 * negtive if found err.
1155 */
1156static int is_2MB_gtt_possible(struct intel_vgpu *vgpu,
1157        struct intel_gvt_gtt_entry *entry)
1158{
1159        struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1160        unsigned long pfn;
1161
1162        if (!HAS_PAGE_SIZES(vgpu->gvt->gt->i915, I915_GTT_PAGE_SIZE_2M))
1163                return 0;
1164
1165        pfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, ops->get_pfn(entry));
1166        if (pfn == INTEL_GVT_INVALID_ADDR)
1167                return -EINVAL;
1168
1169        return PageTransHuge(pfn_to_page(pfn));
1170}
1171
1172static int split_2MB_gtt_entry(struct intel_vgpu *vgpu,
1173        struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1174        struct intel_gvt_gtt_entry *se)
1175{
1176        struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1177        struct intel_vgpu_ppgtt_spt *sub_spt;
1178        struct intel_gvt_gtt_entry sub_se;
1179        unsigned long start_gfn;
1180        dma_addr_t dma_addr;
1181        unsigned long sub_index;
1182        int ret;
1183
1184        gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index);
1185
1186        start_gfn = ops->get_pfn(se);
1187
1188        sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT);
1189        if (IS_ERR(sub_spt))
1190                return PTR_ERR(sub_spt);
1191
1192        for_each_shadow_entry(sub_spt, &sub_se, sub_index) {
1193                ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1194                                start_gfn + sub_index, PAGE_SIZE, &dma_addr);
1195                if (ret) {
1196                        ppgtt_invalidate_spt(spt);
1197                        return ret;
1198                }
1199                sub_se.val64 = se->val64;
1200
1201                /* Copy the PAT field from PDE. */
1202                sub_se.val64 &= ~_PAGE_PAT;
1203                sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5;
1204
1205                ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT);
1206                ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index);
1207        }
1208
1209        /* Clear dirty field. */
1210        se->val64 &= ~_PAGE_DIRTY;
1211
1212        ops->clear_pse(se);
1213        ops->clear_ips(se);
1214        ops->set_pfn(se, sub_spt->shadow_page.mfn);
1215        ppgtt_set_shadow_entry(spt, se, index);
1216        return 0;
1217}
1218
1219static int split_64KB_gtt_entry(struct intel_vgpu *vgpu,
1220        struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1221        struct intel_gvt_gtt_entry *se)
1222{
1223        struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1224        struct intel_gvt_gtt_entry entry = *se;
1225        unsigned long start_gfn;
1226        dma_addr_t dma_addr;
1227        int i, ret;
1228
1229        gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index);
1230
1231        GEM_BUG_ON(index % GTT_64K_PTE_STRIDE);
1232
1233        start_gfn = ops->get_pfn(se);
1234
1235        entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY;
1236        ops->set_64k_splited(&entry);
1237
1238        for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1239                ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1240                                        start_gfn + i, PAGE_SIZE, &dma_addr);
1241                if (ret)
1242                        return ret;
1243
1244                ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT);
1245                ppgtt_set_shadow_entry(spt, &entry, index + i);
1246        }
1247        return 0;
1248}
1249
1250static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
1251        struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1252        struct intel_gvt_gtt_entry *ge)
1253{
1254        struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
1255        struct intel_gvt_gtt_entry se = *ge;
1256        unsigned long gfn, page_size = PAGE_SIZE;
1257        dma_addr_t dma_addr;
1258        int ret;
1259
1260        if (!pte_ops->test_present(ge))
1261                return 0;
1262
1263        gfn = pte_ops->get_pfn(ge);
1264
1265        switch (ge->type) {
1266        case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1267                gvt_vdbg_mm("shadow 4K gtt entry\n");
1268                break;
1269        case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1270                gvt_vdbg_mm("shadow 64K gtt entry\n");
1271                /*
1272                 * The layout of 64K page is special, the page size is
1273                 * controlled by uper PDE. To be simple, we always split
1274                 * 64K page to smaller 4K pages in shadow PT.
1275                 */
1276                return split_64KB_gtt_entry(vgpu, spt, index, &se);
1277        case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1278                gvt_vdbg_mm("shadow 2M gtt entry\n");
1279                ret = is_2MB_gtt_possible(vgpu, ge);
1280                if (ret == 0)
1281                        return split_2MB_gtt_entry(vgpu, spt, index, &se);
1282                else if (ret < 0)
1283                        return ret;
1284                page_size = I915_GTT_PAGE_SIZE_2M;
1285                break;
1286        case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1287                gvt_vgpu_err("GVT doesn't support 1GB entry\n");
1288                return -EINVAL;
1289        default:
1290                GEM_BUG_ON(1);
1291        }
1292
1293        /* direct shadow */
1294        ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, page_size,
1295                                                      &dma_addr);
1296        if (ret)
1297                return -ENXIO;
1298
1299        pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
1300        ppgtt_set_shadow_entry(spt, &se, index);
1301        return 0;
1302}
1303
1304static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
1305{
1306        struct intel_vgpu *vgpu = spt->vgpu;
1307        struct intel_gvt *gvt = vgpu->gvt;
1308        struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1309        struct intel_vgpu_ppgtt_spt *s;
1310        struct intel_gvt_gtt_entry se, ge;
1311        unsigned long gfn, i;
1312        int ret;
1313
1314        trace_spt_change(spt->vgpu->id, "born", spt,
1315                         spt->guest_page.gfn, spt->shadow_page.type);
1316
1317        for_each_present_guest_entry(spt, &ge, i) {
1318                if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
1319                        s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1320                        if (IS_ERR(s)) {
1321                                ret = PTR_ERR(s);
1322                                goto fail;
1323                        }
1324                        ppgtt_get_shadow_entry(spt, &se, i);
1325                        ppgtt_generate_shadow_entry(&se, s, &ge);
1326                        ppgtt_set_shadow_entry(spt, &se, i);
1327                } else {
1328                        gfn = ops->get_pfn(&ge);
1329                        if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
1330                                ops->set_pfn(&se, gvt->gtt.scratch_mfn);
1331                                ppgtt_set_shadow_entry(spt, &se, i);
1332                                continue;
1333                        }
1334
1335                        ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge);
1336                        if (ret)
1337                                goto fail;
1338                }
1339        }
1340        return 0;
1341fail:
1342        gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1343                        spt, ge.val64, ge.type);
1344        return ret;
1345}
1346
1347static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
1348                struct intel_gvt_gtt_entry *se, unsigned long index)
1349{
1350        struct intel_vgpu *vgpu = spt->vgpu;
1351        struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1352        int ret;
1353
1354        trace_spt_guest_change(spt->vgpu->id, "remove", spt,
1355                               spt->shadow_page.type, se->val64, index);
1356
1357        gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
1358                    se->type, index, se->val64);
1359
1360        if (!ops->test_present(se))
1361                return 0;
1362
1363        if (ops->get_pfn(se) ==
1364            vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
1365                return 0;
1366
1367        if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1368                struct intel_vgpu_ppgtt_spt *s =
1369                        intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se));
1370                if (!s) {
1371                        gvt_vgpu_err("fail to find guest page\n");
1372                        ret = -ENXIO;
1373                        goto fail;
1374                }
1375                ret = ppgtt_invalidate_spt(s);
1376                if (ret)
1377                        goto fail;
1378        } else {
1379                /* We don't setup 64K shadow entry so far. */
1380                WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY,
1381                     "suspicious 64K entry\n");
1382                ppgtt_invalidate_pte(spt, se);
1383        }
1384
1385        return 0;
1386fail:
1387        gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1388                        spt, se->val64, se->type);
1389        return ret;
1390}
1391
1392static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
1393                struct intel_gvt_gtt_entry *we, unsigned long index)
1394{
1395        struct intel_vgpu *vgpu = spt->vgpu;
1396        struct intel_gvt_gtt_entry m;
1397        struct intel_vgpu_ppgtt_spt *s;
1398        int ret;
1399
1400        trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type,
1401                               we->val64, index);
1402
1403        gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
1404                    we->type, index, we->val64);
1405
1406        if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1407                s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
1408                if (IS_ERR(s)) {
1409                        ret = PTR_ERR(s);
1410                        goto fail;
1411                }
1412                ppgtt_get_shadow_entry(spt, &m, index);
1413                ppgtt_generate_shadow_entry(&m, s, we);
1414                ppgtt_set_shadow_entry(spt, &m, index);
1415        } else {
1416                ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we);
1417                if (ret)
1418                        goto fail;
1419        }
1420        return 0;
1421fail:
1422        gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1423                spt, we->val64, we->type);
1424        return ret;
1425}
1426
1427static int sync_oos_page(struct intel_vgpu *vgpu,
1428                struct intel_vgpu_oos_page *oos_page)
1429{
1430        const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1431        struct intel_gvt *gvt = vgpu->gvt;
1432        struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1433        struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1434        struct intel_gvt_gtt_entry old, new;
1435        int index;
1436        int ret;
1437
1438        trace_oos_change(vgpu->id, "sync", oos_page->id,
1439                         spt, spt->guest_page.type);
1440
1441        old.type = new.type = get_entry_type(spt->guest_page.type);
1442        old.val64 = new.val64 = 0;
1443
1444        for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1445                                info->gtt_entry_size_shift); index++) {
1446                ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1447                ops->get_entry(NULL, &new, index, true,
1448                               spt->guest_page.gfn << PAGE_SHIFT, vgpu);
1449
1450                if (old.val64 == new.val64
1451                        && !test_and_clear_bit(index, spt->post_shadow_bitmap))
1452                        continue;
1453
1454                trace_oos_sync(vgpu->id, oos_page->id,
1455                                spt, spt->guest_page.type,
1456                                new.val64, index);
1457
1458                ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new);
1459                if (ret)
1460                        return ret;
1461
1462                ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1463        }
1464
1465        spt->guest_page.write_cnt = 0;
1466        list_del_init(&spt->post_shadow_list);
1467        return 0;
1468}
1469
1470static int detach_oos_page(struct intel_vgpu *vgpu,
1471                struct intel_vgpu_oos_page *oos_page)
1472{
1473        struct intel_gvt *gvt = vgpu->gvt;
1474        struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1475
1476        trace_oos_change(vgpu->id, "detach", oos_page->id,
1477                         spt, spt->guest_page.type);
1478
1479        spt->guest_page.write_cnt = 0;
1480        spt->guest_page.oos_page = NULL;
1481        oos_page->spt = NULL;
1482
1483        list_del_init(&oos_page->vm_list);
1484        list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1485
1486        return 0;
1487}
1488
1489static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
1490                struct intel_vgpu_ppgtt_spt *spt)
1491{
1492        struct intel_gvt *gvt = spt->vgpu->gvt;
1493        int ret;
1494
1495        ret = intel_gvt_hypervisor_read_gpa(spt->vgpu,
1496                        spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
1497                        oos_page->mem, I915_GTT_PAGE_SIZE);
1498        if (ret)
1499                return ret;
1500
1501        oos_page->spt = spt;
1502        spt->guest_page.oos_page = oos_page;
1503
1504        list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1505
1506        trace_oos_change(spt->vgpu->id, "attach", oos_page->id,
1507                         spt, spt->guest_page.type);
1508        return 0;
1509}
1510
1511static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
1512{
1513        struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1514        int ret;
1515
1516        ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn);
1517        if (ret)
1518                return ret;
1519
1520        trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id,
1521                         spt, spt->guest_page.type);
1522
1523        list_del_init(&oos_page->vm_list);
1524        return sync_oos_page(spt->vgpu, oos_page);
1525}
1526
1527static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
1528{
1529        struct intel_gvt *gvt = spt->vgpu->gvt;
1530        struct intel_gvt_gtt *gtt = &gvt->gtt;
1531        struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1532        int ret;
1533
1534        WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1535
1536        if (list_empty(&gtt->oos_page_free_list_head)) {
1537                oos_page = container_of(gtt->oos_page_use_list_head.next,
1538                        struct intel_vgpu_oos_page, list);
1539                ret = ppgtt_set_guest_page_sync(oos_page->spt);
1540                if (ret)
1541                        return ret;
1542                ret = detach_oos_page(spt->vgpu, oos_page);
1543                if (ret)
1544                        return ret;
1545        } else
1546                oos_page = container_of(gtt->oos_page_free_list_head.next,
1547                        struct intel_vgpu_oos_page, list);
1548        return attach_oos_page(oos_page, spt);
1549}
1550
1551static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
1552{
1553        struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1554
1555        if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1556                return -EINVAL;
1557
1558        trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id,
1559                         spt, spt->guest_page.type);
1560
1561        list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head);
1562        return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn);
1563}
1564
1565/**
1566 * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1567 * @vgpu: a vGPU
1568 *
1569 * This function is called before submitting a guest workload to host,
1570 * to sync all the out-of-synced shadow for vGPU
1571 *
1572 * Returns:
1573 * Zero on success, negative error code if failed.
1574 */
1575int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1576{
1577        struct list_head *pos, *n;
1578        struct intel_vgpu_oos_page *oos_page;
1579        int ret;
1580
1581        if (!enable_out_of_sync)
1582                return 0;
1583
1584        list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1585                oos_page = container_of(pos,
1586                                struct intel_vgpu_oos_page, vm_list);
1587                ret = ppgtt_set_guest_page_sync(oos_page->spt);
1588                if (ret)
1589                        return ret;
1590        }
1591        return 0;
1592}
1593
1594/*
1595 * The heart of PPGTT shadow page table.
1596 */
1597static int ppgtt_handle_guest_write_page_table(
1598                struct intel_vgpu_ppgtt_spt *spt,
1599                struct intel_gvt_gtt_entry *we, unsigned long index)
1600{
1601        struct intel_vgpu *vgpu = spt->vgpu;
1602        int type = spt->shadow_page.type;
1603        struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1604        struct intel_gvt_gtt_entry old_se;
1605        int new_present;
1606        int i, ret;
1607
1608        new_present = ops->test_present(we);
1609
1610        /*
1611         * Adding the new entry first and then removing the old one, that can
1612         * guarantee the ppgtt table is validated during the window between
1613         * adding and removal.
1614         */
1615        ppgtt_get_shadow_entry(spt, &old_se, index);
1616
1617        if (new_present) {
1618                ret = ppgtt_handle_guest_entry_add(spt, we, index);
1619                if (ret)
1620                        goto fail;
1621        }
1622
1623        ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index);
1624        if (ret)
1625                goto fail;
1626
1627        if (!new_present) {
1628                /* For 64KB splited entries, we need clear them all. */
1629                if (ops->test_64k_splited(&old_se) &&
1630                    !(index % GTT_64K_PTE_STRIDE)) {
1631                        gvt_vdbg_mm("remove splited 64K shadow entries\n");
1632                        for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1633                                ops->clear_64k_splited(&old_se);
1634                                ops->set_pfn(&old_se,
1635                                        vgpu->gtt.scratch_pt[type].page_mfn);
1636                                ppgtt_set_shadow_entry(spt, &old_se, index + i);
1637                        }
1638                } else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY ||
1639                           old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
1640                        ops->clear_pse(&old_se);
1641                        ops->set_pfn(&old_se,
1642                                     vgpu->gtt.scratch_pt[type].page_mfn);
1643                        ppgtt_set_shadow_entry(spt, &old_se, index);
1644                } else {
1645                        ops->set_pfn(&old_se,
1646                                     vgpu->gtt.scratch_pt[type].page_mfn);
1647                        ppgtt_set_shadow_entry(spt, &old_se, index);
1648                }
1649        }
1650
1651        return 0;
1652fail:
1653        gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1654                        spt, we->val64, we->type);
1655        return ret;
1656}
1657
1658
1659
1660static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
1661{
1662        return enable_out_of_sync
1663                && gtt_type_is_pte_pt(spt->guest_page.type)
1664                && spt->guest_page.write_cnt >= 2;
1665}
1666
1667static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1668                unsigned long index)
1669{
1670        set_bit(index, spt->post_shadow_bitmap);
1671        if (!list_empty(&spt->post_shadow_list))
1672                return;
1673
1674        list_add_tail(&spt->post_shadow_list,
1675                        &spt->vgpu->gtt.post_shadow_list_head);
1676}
1677
1678/**
1679 * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1680 * @vgpu: a vGPU
1681 *
1682 * This function is called before submitting a guest workload to host,
1683 * to flush all the post shadows for a vGPU.
1684 *
1685 * Returns:
1686 * Zero on success, negative error code if failed.
1687 */
1688int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1689{
1690        struct list_head *pos, *n;
1691        struct intel_vgpu_ppgtt_spt *spt;
1692        struct intel_gvt_gtt_entry ge;
1693        unsigned long index;
1694        int ret;
1695
1696        list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1697                spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1698                                post_shadow_list);
1699
1700                for_each_set_bit(index, spt->post_shadow_bitmap,
1701                                GTT_ENTRY_NUM_IN_ONE_PAGE) {
1702                        ppgtt_get_guest_entry(spt, &ge, index);
1703
1704                        ret = ppgtt_handle_guest_write_page_table(spt,
1705                                                        &ge, index);
1706                        if (ret)
1707                                return ret;
1708                        clear_bit(index, spt->post_shadow_bitmap);
1709                }
1710                list_del_init(&spt->post_shadow_list);
1711        }
1712        return 0;
1713}
1714
1715static int ppgtt_handle_guest_write_page_table_bytes(
1716                struct intel_vgpu_ppgtt_spt *spt,
1717                u64 pa, void *p_data, int bytes)
1718{
1719        struct intel_vgpu *vgpu = spt->vgpu;
1720        struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1721        const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1722        struct intel_gvt_gtt_entry we, se;
1723        unsigned long index;
1724        int ret;
1725
1726        index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1727
1728        ppgtt_get_guest_entry(spt, &we, index);
1729
1730        /*
1731         * For page table which has 64K gtt entry, only PTE#0, PTE#16,
1732         * PTE#32, ... PTE#496 are used. Unused PTEs update should be
1733         * ignored.
1734         */
1735        if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY &&
1736            (index % GTT_64K_PTE_STRIDE)) {
1737                gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n",
1738                            index);
1739                return 0;
1740        }
1741
1742        if (bytes == info->gtt_entry_size) {
1743                ret = ppgtt_handle_guest_write_page_table(spt, &we, index);
1744                if (ret)
1745                        return ret;
1746        } else {
1747                if (!test_bit(index, spt->post_shadow_bitmap)) {
1748                        int type = spt->shadow_page.type;
1749
1750                        ppgtt_get_shadow_entry(spt, &se, index);
1751                        ret = ppgtt_handle_guest_entry_removal(spt, &se, index);
1752                        if (ret)
1753                                return ret;
1754                        ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1755                        ppgtt_set_shadow_entry(spt, &se, index);
1756                }
1757                ppgtt_set_post_shadow(spt, index);
1758        }
1759
1760        if (!enable_out_of_sync)
1761                return 0;
1762
1763        spt->guest_page.write_cnt++;
1764
1765        if (spt->guest_page.oos_page)
1766                ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
1767                                false, 0, vgpu);
1768
1769        if (can_do_out_of_sync(spt)) {
1770                if (!spt->guest_page.oos_page)
1771                        ppgtt_allocate_oos_page(spt);
1772
1773                ret = ppgtt_set_guest_page_oos(spt);
1774                if (ret < 0)
1775                        return ret;
1776        }
1777        return 0;
1778}
1779
1780static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
1781{
1782        struct intel_vgpu *vgpu = mm->vgpu;
1783        struct intel_gvt *gvt = vgpu->gvt;
1784        struct intel_gvt_gtt *gtt = &gvt->gtt;
1785        struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1786        struct intel_gvt_gtt_entry se;
1787        int index;
1788
1789        if (!mm->ppgtt_mm.shadowed)
1790                return;
1791
1792        for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
1793                ppgtt_get_shadow_root_entry(mm, &se, index);
1794
1795                if (!ops->test_present(&se))
1796                        continue;
1797
1798                ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se);
1799                se.val64 = 0;
1800                ppgtt_set_shadow_root_entry(mm, &se, index);
1801
1802                trace_spt_guest_change(vgpu->id, "destroy root pointer",
1803                                       NULL, se.type, se.val64, index);
1804        }
1805
1806        mm->ppgtt_mm.shadowed = false;
1807}
1808
1809
1810static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
1811{
1812        struct intel_vgpu *vgpu = mm->vgpu;
1813        struct intel_gvt *gvt = vgpu->gvt;
1814        struct intel_gvt_gtt *gtt = &gvt->gtt;
1815        struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1816        struct intel_vgpu_ppgtt_spt *spt;
1817        struct intel_gvt_gtt_entry ge, se;
1818        int index, ret;
1819
1820        if (mm->ppgtt_mm.shadowed)
1821                return 0;
1822
1823        mm->ppgtt_mm.shadowed = true;
1824
1825        for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
1826                ppgtt_get_guest_root_entry(mm, &ge, index);
1827
1828                if (!ops->test_present(&ge))
1829                        continue;
1830
1831                trace_spt_guest_change(vgpu->id, __func__, NULL,
1832                                       ge.type, ge.val64, index);
1833
1834                spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1835                if (IS_ERR(spt)) {
1836                        gvt_vgpu_err("fail to populate guest root pointer\n");
1837                        ret = PTR_ERR(spt);
1838                        goto fail;
1839                }
1840                ppgtt_generate_shadow_entry(&se, spt, &ge);
1841                ppgtt_set_shadow_root_entry(mm, &se, index);
1842
1843                trace_spt_guest_change(vgpu->id, "populate root pointer",
1844                                       NULL, se.type, se.val64, index);
1845        }
1846
1847        return 0;
1848fail:
1849        invalidate_ppgtt_mm(mm);
1850        return ret;
1851}
1852
1853static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
1854{
1855        struct intel_vgpu_mm *mm;
1856
1857        mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1858        if (!mm)
1859                return NULL;
1860
1861        mm->vgpu = vgpu;
1862        kref_init(&mm->ref);
1863        atomic_set(&mm->pincount, 0);
1864
1865        return mm;
1866}
1867
1868static void vgpu_free_mm(struct intel_vgpu_mm *mm)
1869{
1870        kfree(mm);
1871}
1872
1873/**
1874 * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
1875 * @vgpu: a vGPU
1876 * @root_entry_type: ppgtt root entry type
1877 * @pdps: guest pdps.
1878 *
1879 * This function is used to create a ppgtt mm object for a vGPU.
1880 *
1881 * Returns:
1882 * Zero on success, negative error code in pointer if failed.
1883 */
1884struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
1885                enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
1886{
1887        struct intel_gvt *gvt = vgpu->gvt;
1888        struct intel_vgpu_mm *mm;
1889        int ret;
1890
1891        mm = vgpu_alloc_mm(vgpu);
1892        if (!mm)
1893                return ERR_PTR(-ENOMEM);
1894
1895        mm->type = INTEL_GVT_MM_PPGTT;
1896
1897        GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
1898                   root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
1899        mm->ppgtt_mm.root_entry_type = root_entry_type;
1900
1901        INIT_LIST_HEAD(&mm->ppgtt_mm.list);
1902        INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list);
1903        INIT_LIST_HEAD(&mm->ppgtt_mm.link);
1904
1905        if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
1906                mm->ppgtt_mm.guest_pdps[0] = pdps[0];
1907        else
1908                memcpy(mm->ppgtt_mm.guest_pdps, pdps,
1909                       sizeof(mm->ppgtt_mm.guest_pdps));
1910
1911        ret = shadow_ppgtt_mm(mm);
1912        if (ret) {
1913                gvt_vgpu_err("failed to shadow ppgtt mm\n");
1914                vgpu_free_mm(mm);
1915                return ERR_PTR(ret);
1916        }
1917
1918        list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head);
1919
1920        mutex_lock(&gvt->gtt.ppgtt_mm_lock);
1921        list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head);
1922        mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
1923
1924        return mm;
1925}
1926
1927static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
1928{
1929        struct intel_vgpu_mm *mm;
1930        unsigned long nr_entries;
1931
1932        mm = vgpu_alloc_mm(vgpu);
1933        if (!mm)
1934                return ERR_PTR(-ENOMEM);
1935
1936        mm->type = INTEL_GVT_MM_GGTT;
1937
1938        nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
1939        mm->ggtt_mm.virtual_ggtt =
1940                vzalloc(array_size(nr_entries,
1941                                   vgpu->gvt->device_info.gtt_entry_size));
1942        if (!mm->ggtt_mm.virtual_ggtt) {
1943                vgpu_free_mm(mm);
1944                return ERR_PTR(-ENOMEM);
1945        }
1946
1947        return mm;
1948}
1949
1950/**
1951 * _intel_vgpu_mm_release - destroy a mm object
1952 * @mm_ref: a kref object
1953 *
1954 * This function is used to destroy a mm object for vGPU
1955 *
1956 */
1957void _intel_vgpu_mm_release(struct kref *mm_ref)
1958{
1959        struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1960
1961        if (GEM_WARN_ON(atomic_read(&mm->pincount)))
1962                gvt_err("vgpu mm pin count bug detected\n");
1963
1964        if (mm->type == INTEL_GVT_MM_PPGTT) {
1965                list_del(&mm->ppgtt_mm.list);
1966
1967                mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1968                list_del(&mm->ppgtt_mm.lru_list);
1969                mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1970
1971                invalidate_ppgtt_mm(mm);
1972        } else {
1973                vfree(mm->ggtt_mm.virtual_ggtt);
1974        }
1975
1976        vgpu_free_mm(mm);
1977}
1978
1979/**
1980 * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1981 * @mm: a vGPU mm object
1982 *
1983 * This function is called when user doesn't want to use a vGPU mm object
1984 */
1985void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1986{
1987        atomic_dec_if_positive(&mm->pincount);
1988}
1989
1990/**
1991 * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1992 * @mm: target vgpu mm
1993 *
1994 * This function is called when user wants to use a vGPU mm object. If this
1995 * mm object hasn't been shadowed yet, the shadow will be populated at this
1996 * time.
1997 *
1998 * Returns:
1999 * Zero on success, negative error code if failed.
2000 */
2001int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
2002{
2003        int ret;
2004
2005        atomic_inc(&mm->pincount);
2006
2007        if (mm->type == INTEL_GVT_MM_PPGTT) {
2008                ret = shadow_ppgtt_mm(mm);
2009                if (ret)
2010                        return ret;
2011
2012                mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2013                list_move_tail(&mm->ppgtt_mm.lru_list,
2014                               &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
2015                mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2016        }
2017
2018        return 0;
2019}
2020
2021static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
2022{
2023        struct intel_vgpu_mm *mm;
2024        struct list_head *pos, *n;
2025
2026        mutex_lock(&gvt->gtt.ppgtt_mm_lock);
2027
2028        list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
2029                mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
2030
2031                if (atomic_read(&mm->pincount))
2032                        continue;
2033
2034                list_del_init(&mm->ppgtt_mm.lru_list);
2035                mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2036                invalidate_ppgtt_mm(mm);
2037                return 1;
2038        }
2039        mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2040        return 0;
2041}
2042
2043/*
2044 * GMA translation APIs.
2045 */
2046static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
2047                struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
2048{
2049        struct intel_vgpu *vgpu = mm->vgpu;
2050        struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2051        struct intel_vgpu_ppgtt_spt *s;
2052
2053        s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
2054        if (!s)
2055                return -ENXIO;
2056
2057        if (!guest)
2058                ppgtt_get_shadow_entry(s, e, index);
2059        else
2060                ppgtt_get_guest_entry(s, e, index);
2061        return 0;
2062}
2063
2064/**
2065 * intel_vgpu_gma_to_gpa - translate a gma to GPA
2066 * @mm: mm object. could be a PPGTT or GGTT mm object
2067 * @gma: graphics memory address in this mm object
2068 *
2069 * This function is used to translate a graphics memory address in specific
2070 * graphics memory space to guest physical address.
2071 *
2072 * Returns:
2073 * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
2074 */
2075unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
2076{
2077        struct intel_vgpu *vgpu = mm->vgpu;
2078        struct intel_gvt *gvt = vgpu->gvt;
2079        struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
2080        struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
2081        unsigned long gpa = INTEL_GVT_INVALID_ADDR;
2082        unsigned long gma_index[4];
2083        struct intel_gvt_gtt_entry e;
2084        int i, levels = 0;
2085        int ret;
2086
2087        GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
2088                   mm->type != INTEL_GVT_MM_PPGTT);
2089
2090        if (mm->type == INTEL_GVT_MM_GGTT) {
2091                if (!vgpu_gmadr_is_valid(vgpu, gma))
2092                        goto err;
2093
2094                ggtt_get_guest_entry(mm, &e,
2095                        gma_ops->gma_to_ggtt_pte_index(gma));
2096
2097                gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
2098                        + (gma & ~I915_GTT_PAGE_MASK);
2099
2100                trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
2101        } else {
2102                switch (mm->ppgtt_mm.root_entry_type) {
2103                case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2104                        ppgtt_get_shadow_root_entry(mm, &e, 0);
2105
2106                        gma_index[0] = gma_ops->gma_to_pml4_index(gma);
2107                        gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
2108                        gma_index[2] = gma_ops->gma_to_pde_index(gma);
2109                        gma_index[3] = gma_ops->gma_to_pte_index(gma);
2110                        levels = 4;
2111                        break;
2112                case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2113                        ppgtt_get_shadow_root_entry(mm, &e,
2114                                        gma_ops->gma_to_l3_pdp_index(gma));
2115
2116                        gma_index[0] = gma_ops->gma_to_pde_index(gma);
2117                        gma_index[1] = gma_ops->gma_to_pte_index(gma);
2118                        levels = 2;
2119                        break;
2120                default:
2121                        GEM_BUG_ON(1);
2122                }
2123
2124                /* walk the shadow page table and get gpa from guest entry */
2125                for (i = 0; i < levels; i++) {
2126                        ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
2127                                (i == levels - 1));
2128                        if (ret)
2129                                goto err;
2130
2131                        if (!pte_ops->test_present(&e)) {
2132                                gvt_dbg_core("GMA 0x%lx is not present\n", gma);
2133                                goto err;
2134                        }
2135                }
2136
2137                gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
2138                                        (gma & ~I915_GTT_PAGE_MASK);
2139                trace_gma_translate(vgpu->id, "ppgtt", 0,
2140                                    mm->ppgtt_mm.root_entry_type, gma, gpa);
2141        }
2142
2143        return gpa;
2144err:
2145        gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
2146        return INTEL_GVT_INVALID_ADDR;
2147}
2148
2149static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
2150        unsigned int off, void *p_data, unsigned int bytes)
2151{
2152        struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2153        const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2154        unsigned long index = off >> info->gtt_entry_size_shift;
2155        unsigned long gma;
2156        struct intel_gvt_gtt_entry e;
2157
2158        if (bytes != 4 && bytes != 8)
2159                return -EINVAL;
2160
2161        gma = index << I915_GTT_PAGE_SHIFT;
2162        if (!intel_gvt_ggtt_validate_range(vgpu,
2163                                           gma, 1 << I915_GTT_PAGE_SHIFT)) {
2164                gvt_dbg_mm("read invalid ggtt at 0x%lx\n", gma);
2165                memset(p_data, 0, bytes);
2166                return 0;
2167        }
2168
2169        ggtt_get_guest_entry(ggtt_mm, &e, index);
2170        memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
2171                        bytes);
2172        return 0;
2173}
2174
2175/**
2176 * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
2177 * @vgpu: a vGPU
2178 * @off: register offset
2179 * @p_data: data will be returned to guest
2180 * @bytes: data length
2181 *
2182 * This function is used to emulate the GTT MMIO register read
2183 *
2184 * Returns:
2185 * Zero on success, error code if failed.
2186 */
2187int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
2188        void *p_data, unsigned int bytes)
2189{
2190        const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2191        int ret;
2192
2193        if (bytes != 4 && bytes != 8)
2194                return -EINVAL;
2195
2196        off -= info->gtt_start_offset;
2197        ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
2198        return ret;
2199}
2200
2201static void ggtt_invalidate_pte(struct intel_vgpu *vgpu,
2202                struct intel_gvt_gtt_entry *entry)
2203{
2204        struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2205        unsigned long pfn;
2206
2207        pfn = pte_ops->get_pfn(entry);
2208        if (pfn != vgpu->gvt->gtt.scratch_mfn)
2209                intel_gvt_hypervisor_dma_unmap_guest_page(vgpu,
2210                                                pfn << PAGE_SHIFT);
2211}
2212
2213static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
2214        void *p_data, unsigned int bytes)
2215{
2216        struct intel_gvt *gvt = vgpu->gvt;
2217        const struct intel_gvt_device_info *info = &gvt->device_info;
2218        struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2219        struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
2220        unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
2221        unsigned long gma, gfn;
2222        struct intel_gvt_gtt_entry e = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2223        struct intel_gvt_gtt_entry m = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2224        dma_addr_t dma_addr;
2225        int ret;
2226        struct intel_gvt_partial_pte *partial_pte, *pos, *n;
2227        bool partial_update = false;
2228
2229        if (bytes != 4 && bytes != 8)
2230                return -EINVAL;
2231
2232        gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
2233
2234        /* the VM may configure the whole GM space when ballooning is used */
2235        if (!vgpu_gmadr_is_valid(vgpu, gma))
2236                return 0;
2237
2238        e.type = GTT_TYPE_GGTT_PTE;
2239        memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
2240                        bytes);
2241
2242        /* If ggtt entry size is 8 bytes, and it's split into two 4 bytes
2243         * write, save the first 4 bytes in a list and update virtual
2244         * PTE. Only update shadow PTE when the second 4 bytes comes.
2245         */
2246        if (bytes < info->gtt_entry_size) {
2247                bool found = false;
2248
2249                list_for_each_entry_safe(pos, n,
2250                                &ggtt_mm->ggtt_mm.partial_pte_list, list) {
2251                        if (g_gtt_index == pos->offset >>
2252                                        info->gtt_entry_size_shift) {
2253                                if (off != pos->offset) {
2254                                        /* the second partial part*/
2255                                        int last_off = pos->offset &
2256                                                (info->gtt_entry_size - 1);
2257
2258                                        memcpy((void *)&e.val64 + last_off,
2259                                                (void *)&pos->data + last_off,
2260                                                bytes);
2261
2262                                        list_del(&pos->list);
2263                                        kfree(pos);
2264                                        found = true;
2265                                        break;
2266                                }
2267
2268                                /* update of the first partial part */
2269                                pos->data = e.val64;
2270                                ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2271                                return 0;
2272                        }
2273                }
2274
2275                if (!found) {
2276                        /* the first partial part */
2277                        partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL);
2278                        if (!partial_pte)
2279                                return -ENOMEM;
2280                        partial_pte->offset = off;
2281                        partial_pte->data = e.val64;
2282                        list_add_tail(&partial_pte->list,
2283                                &ggtt_mm->ggtt_mm.partial_pte_list);
2284                        partial_update = true;
2285                }
2286        }
2287
2288        if (!partial_update && (ops->test_present(&e))) {
2289                gfn = ops->get_pfn(&e);
2290                m.val64 = e.val64;
2291                m.type = e.type;
2292
2293                /* one PTE update may be issued in multiple writes and the
2294                 * first write may not construct a valid gfn
2295                 */
2296                if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
2297                        ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2298                        goto out;
2299                }
2300
2301                ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn,
2302                                                        PAGE_SIZE, &dma_addr);
2303                if (ret) {
2304                        gvt_vgpu_err("fail to populate guest ggtt entry\n");
2305                        /* guest driver may read/write the entry when partial
2306                         * update the entry in this situation p2m will fail
2307                         * settting the shadow entry to point to a scratch page
2308                         */
2309                        ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2310                } else
2311                        ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
2312        } else {
2313                ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2314                ops->clear_present(&m);
2315        }
2316
2317out:
2318        ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2319
2320        ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index);
2321        ggtt_invalidate_pte(vgpu, &e);
2322
2323        ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index);
2324        ggtt_invalidate(gvt->gt);
2325        return 0;
2326}
2327
2328/*
2329 * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
2330 * @vgpu: a vGPU
2331 * @off: register offset
2332 * @p_data: data from guest write
2333 * @bytes: data length
2334 *
2335 * This function is used to emulate the GTT MMIO register write
2336 *
2337 * Returns:
2338 * Zero on success, error code if failed.
2339 */
2340int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
2341                unsigned int off, void *p_data, unsigned int bytes)
2342{
2343        const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2344        int ret;
2345        struct intel_vgpu_submission *s = &vgpu->submission;
2346        struct intel_engine_cs *engine;
2347        int i;
2348
2349        if (bytes != 4 && bytes != 8)
2350                return -EINVAL;
2351
2352        off -= info->gtt_start_offset;
2353        ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
2354
2355        /* if ggtt of last submitted context is written,
2356         * that context is probably got unpinned.
2357         * Set last shadowed ctx to invalid.
2358         */
2359        for_each_engine(engine, vgpu->gvt->gt, i) {
2360                if (!s->last_ctx[i].valid)
2361                        continue;
2362
2363                if (s->last_ctx[i].lrca == (off >> info->gtt_entry_size_shift))
2364                        s->last_ctx[i].valid = false;
2365        }
2366        return ret;
2367}
2368
2369static int alloc_scratch_pages(struct intel_vgpu *vgpu,
2370                enum intel_gvt_gtt_type type)
2371{
2372        struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
2373        struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2374        struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2375        int page_entry_num = I915_GTT_PAGE_SIZE >>
2376                                vgpu->gvt->device_info.gtt_entry_size_shift;
2377        void *scratch_pt;
2378        int i;
2379        struct device *dev = &vgpu->gvt->gt->i915->drm.pdev->dev;
2380        dma_addr_t daddr;
2381
2382        if (drm_WARN_ON(&i915->drm,
2383                        type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
2384                return -EINVAL;
2385
2386        scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
2387        if (!scratch_pt) {
2388                gvt_vgpu_err("fail to allocate scratch page\n");
2389                return -ENOMEM;
2390        }
2391
2392        daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
2393                        4096, PCI_DMA_BIDIRECTIONAL);
2394        if (dma_mapping_error(dev, daddr)) {
2395                gvt_vgpu_err("fail to dmamap scratch_pt\n");
2396                __free_page(virt_to_page(scratch_pt));
2397                return -ENOMEM;
2398        }
2399        gtt->scratch_pt[type].page_mfn =
2400                (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2401        gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
2402        gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
2403                        vgpu->id, type, gtt->scratch_pt[type].page_mfn);
2404
2405        /* Build the tree by full filled the scratch pt with the entries which
2406         * point to the next level scratch pt or scratch page. The
2407         * scratch_pt[type] indicate the scratch pt/scratch page used by the
2408         * 'type' pt.
2409         * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
2410         * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
2411         * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
2412         */
2413        if (type > GTT_TYPE_PPGTT_PTE_PT) {
2414                struct intel_gvt_gtt_entry se;
2415
2416                memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
2417                se.type = get_entry_type(type - 1);
2418                ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
2419
2420                /* The entry parameters like present/writeable/cache type
2421                 * set to the same as i915's scratch page tree.
2422                 */
2423                se.val64 |= _PAGE_PRESENT | _PAGE_RW;
2424                if (type == GTT_TYPE_PPGTT_PDE_PT)
2425                        se.val64 |= PPAT_CACHED;
2426
2427                for (i = 0; i < page_entry_num; i++)
2428                        ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
2429        }
2430
2431        return 0;
2432}
2433
2434static int release_scratch_page_tree(struct intel_vgpu *vgpu)
2435{
2436        int i;
2437        struct device *dev = &vgpu->gvt->gt->i915->drm.pdev->dev;
2438        dma_addr_t daddr;
2439
2440        for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2441                if (vgpu->gtt.scratch_pt[i].page != NULL) {
2442                        daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
2443                                        I915_GTT_PAGE_SHIFT);
2444                        dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2445                        __free_page(vgpu->gtt.scratch_pt[i].page);
2446                        vgpu->gtt.scratch_pt[i].page = NULL;
2447                        vgpu->gtt.scratch_pt[i].page_mfn = 0;
2448                }
2449        }
2450
2451        return 0;
2452}
2453
2454static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2455{
2456        int i, ret;
2457
2458        for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2459                ret = alloc_scratch_pages(vgpu, i);
2460                if (ret)
2461                        goto err;
2462        }
2463
2464        return 0;
2465
2466err:
2467        release_scratch_page_tree(vgpu);
2468        return ret;
2469}
2470
2471/**
2472 * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2473 * @vgpu: a vGPU
2474 *
2475 * This function is used to initialize per-vGPU graphics memory virtualization
2476 * components.
2477 *
2478 * Returns:
2479 * Zero on success, error code if failed.
2480 */
2481int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2482{
2483        struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2484
2485        INIT_RADIX_TREE(&gtt->spt_tree, GFP_KERNEL);
2486
2487        INIT_LIST_HEAD(&gtt->ppgtt_mm_list_head);
2488        INIT_LIST_HEAD(&gtt->oos_page_list_head);
2489        INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2490
2491        gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
2492        if (IS_ERR(gtt->ggtt_mm)) {
2493                gvt_vgpu_err("fail to create mm for ggtt.\n");
2494                return PTR_ERR(gtt->ggtt_mm);
2495        }
2496
2497        intel_vgpu_reset_ggtt(vgpu, false);
2498
2499        INIT_LIST_HEAD(&gtt->ggtt_mm->ggtt_mm.partial_pte_list);
2500
2501        return create_scratch_page_tree(vgpu);
2502}
2503
2504void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
2505{
2506        struct list_head *pos, *n;
2507        struct intel_vgpu_mm *mm;
2508
2509        list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2510                mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2511                intel_vgpu_destroy_mm(mm);
2512        }
2513
2514        if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
2515                gvt_err("vgpu ppgtt mm is not fully destroyed\n");
2516
2517        if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
2518                gvt_err("Why we still has spt not freed?\n");
2519                ppgtt_free_all_spt(vgpu);
2520        }
2521}
2522
2523static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
2524{
2525        struct intel_gvt_partial_pte *pos, *next;
2526
2527        list_for_each_entry_safe(pos, next,
2528                                 &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list,
2529                                 list) {
2530                gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n",
2531                        pos->offset, pos->data);
2532                kfree(pos);
2533        }
2534        intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm);
2535        vgpu->gtt.ggtt_mm = NULL;
2536}
2537
2538/**
2539 * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2540 * @vgpu: a vGPU
2541 *
2542 * This function is used to clean up per-vGPU graphics memory virtualization
2543 * components.
2544 *
2545 * Returns:
2546 * Zero on success, error code if failed.
2547 */
2548void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2549{
2550        intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2551        intel_vgpu_destroy_ggtt_mm(vgpu);
2552        release_scratch_page_tree(vgpu);
2553}
2554
2555static void clean_spt_oos(struct intel_gvt *gvt)
2556{
2557        struct intel_gvt_gtt *gtt = &gvt->gtt;
2558        struct list_head *pos, *n;
2559        struct intel_vgpu_oos_page *oos_page;
2560
2561        WARN(!list_empty(&gtt->oos_page_use_list_head),
2562                "someone is still using oos page\n");
2563
2564        list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2565                oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2566                list_del(&oos_page->list);
2567                free_page((unsigned long)oos_page->mem);
2568                kfree(oos_page);
2569        }
2570}
2571
2572static int setup_spt_oos(struct intel_gvt *gvt)
2573{
2574        struct intel_gvt_gtt *gtt = &gvt->gtt;
2575        struct intel_vgpu_oos_page *oos_page;
2576        int i;
2577        int ret;
2578
2579        INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2580        INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2581
2582        for (i = 0; i < preallocated_oos_pages; i++) {
2583                oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2584                if (!oos_page) {
2585                        ret = -ENOMEM;
2586                        goto fail;
2587                }
2588                oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0);
2589                if (!oos_page->mem) {
2590                        ret = -ENOMEM;
2591                        kfree(oos_page);
2592                        goto fail;
2593                }
2594
2595                INIT_LIST_HEAD(&oos_page->list);
2596                INIT_LIST_HEAD(&oos_page->vm_list);
2597                oos_page->id = i;
2598                list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2599        }
2600
2601        gvt_dbg_mm("%d oos pages preallocated\n", i);
2602
2603        return 0;
2604fail:
2605        clean_spt_oos(gvt);
2606        return ret;
2607}
2608
2609/**
2610 * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2611 * @vgpu: a vGPU
2612 * @pdps: pdp root array
2613 *
2614 * This function is used to find a PPGTT mm object from mm object pool
2615 *
2616 * Returns:
2617 * pointer to mm object on success, NULL if failed.
2618 */
2619struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2620                u64 pdps[])
2621{
2622        struct intel_vgpu_mm *mm;
2623        struct list_head *pos;
2624
2625        list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
2626                mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2627
2628                switch (mm->ppgtt_mm.root_entry_type) {
2629                case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2630                        if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
2631                                return mm;
2632                        break;
2633                case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2634                        if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps,
2635                                    sizeof(mm->ppgtt_mm.guest_pdps)))
2636                                return mm;
2637                        break;
2638                default:
2639                        GEM_BUG_ON(1);
2640                }
2641        }
2642        return NULL;
2643}
2644
2645/**
2646 * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
2647 * @vgpu: a vGPU
2648 * @root_entry_type: ppgtt root entry type
2649 * @pdps: guest pdps
2650 *
2651 * This function is used to find or create a PPGTT mm object from a guest.
2652 *
2653 * Returns:
2654 * Zero on success, negative error code if failed.
2655 */
2656struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
2657                enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
2658{
2659        struct intel_vgpu_mm *mm;
2660
2661        mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2662        if (mm) {
2663                intel_vgpu_mm_get(mm);
2664        } else {
2665                mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
2666                if (IS_ERR(mm))
2667                        gvt_vgpu_err("fail to create mm\n");
2668        }
2669        return mm;
2670}
2671
2672/**
2673 * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
2674 * @vgpu: a vGPU
2675 * @pdps: guest pdps
2676 *
2677 * This function is used to find a PPGTT mm object from a guest and destroy it.
2678 *
2679 * Returns:
2680 * Zero on success, negative error code if failed.
2681 */
2682int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
2683{
2684        struct intel_vgpu_mm *mm;
2685
2686        mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2687        if (!mm) {
2688                gvt_vgpu_err("fail to find ppgtt instance.\n");
2689                return -EINVAL;
2690        }
2691        intel_vgpu_mm_put(mm);
2692        return 0;
2693}
2694
2695/**
2696 * intel_gvt_init_gtt - initialize mm components of a GVT device
2697 * @gvt: GVT device
2698 *
2699 * This function is called at the initialization stage, to initialize
2700 * the mm components of a GVT device.
2701 *
2702 * Returns:
2703 * zero on success, negative error code if failed.
2704 */
2705int intel_gvt_init_gtt(struct intel_gvt *gvt)
2706{
2707        int ret;
2708        void *page;
2709        struct device *dev = &gvt->gt->i915->drm.pdev->dev;
2710        dma_addr_t daddr;
2711
2712        gvt_dbg_core("init gtt\n");
2713
2714        gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2715        gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2716
2717        page = (void *)get_zeroed_page(GFP_KERNEL);
2718        if (!page) {
2719                gvt_err("fail to allocate scratch ggtt page\n");
2720                return -ENOMEM;
2721        }
2722
2723        daddr = dma_map_page(dev, virt_to_page(page), 0,
2724                        4096, PCI_DMA_BIDIRECTIONAL);
2725        if (dma_mapping_error(dev, daddr)) {
2726                gvt_err("fail to dmamap scratch ggtt page\n");
2727                __free_page(virt_to_page(page));
2728                return -ENOMEM;
2729        }
2730
2731        gvt->gtt.scratch_page = virt_to_page(page);
2732        gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2733
2734        if (enable_out_of_sync) {
2735                ret = setup_spt_oos(gvt);
2736                if (ret) {
2737                        gvt_err("fail to initialize SPT oos\n");
2738                        dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2739                        __free_page(gvt->gtt.scratch_page);
2740                        return ret;
2741                }
2742        }
2743        INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head);
2744        mutex_init(&gvt->gtt.ppgtt_mm_lock);
2745        return 0;
2746}
2747
2748/**
2749 * intel_gvt_clean_gtt - clean up mm components of a GVT device
2750 * @gvt: GVT device
2751 *
2752 * This function is called at the driver unloading stage, to clean up the
2753 * the mm components of a GVT device.
2754 *
2755 */
2756void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2757{
2758        struct device *dev = &gvt->gt->i915->drm.pdev->dev;
2759        dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2760                                        I915_GTT_PAGE_SHIFT);
2761
2762        dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2763
2764        __free_page(gvt->gtt.scratch_page);
2765
2766        if (enable_out_of_sync)
2767                clean_spt_oos(gvt);
2768}
2769
2770/**
2771 * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
2772 * @vgpu: a vGPU
2773 *
2774 * This function is called when invalidate all PPGTT instances of a vGPU.
2775 *
2776 */
2777void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
2778{
2779        struct list_head *pos, *n;
2780        struct intel_vgpu_mm *mm;
2781
2782        list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2783                mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2784                if (mm->type == INTEL_GVT_MM_PPGTT) {
2785                        mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2786                        list_del_init(&mm->ppgtt_mm.lru_list);
2787                        mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2788                        if (mm->ppgtt_mm.shadowed)
2789                                invalidate_ppgtt_mm(mm);
2790                }
2791        }
2792}
2793
2794/**
2795 * intel_vgpu_reset_ggtt - reset the GGTT entry
2796 * @vgpu: a vGPU
2797 * @invalidate_old: invalidate old entries
2798 *
2799 * This function is called at the vGPU create stage
2800 * to reset all the GGTT entries.
2801 *
2802 */
2803void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old)
2804{
2805        struct intel_gvt *gvt = vgpu->gvt;
2806        struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2807        struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
2808        struct intel_gvt_gtt_entry old_entry;
2809        u32 index;
2810        u32 num_entries;
2811
2812        pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
2813        pte_ops->set_present(&entry);
2814
2815        index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2816        num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2817        while (num_entries--) {
2818                if (invalidate_old) {
2819                        ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2820                        ggtt_invalidate_pte(vgpu, &old_entry);
2821                }
2822                ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2823        }
2824
2825        index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2826        num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2827        while (num_entries--) {
2828                if (invalidate_old) {
2829                        ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2830                        ggtt_invalidate_pte(vgpu, &old_entry);
2831                }
2832                ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2833        }
2834
2835        ggtt_invalidate(gvt->gt);
2836}
2837
2838/**
2839 * intel_vgpu_reset_gtt - reset the all GTT related status
2840 * @vgpu: a vGPU
2841 *
2842 * This function is called from vfio core to reset reset all
2843 * GTT related status, including GGTT, PPGTT, scratch page.
2844 *
2845 */
2846void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu)
2847{
2848        /* Shadow pages are only created when there is no page
2849         * table tracking data, so remove page tracking data after
2850         * removing the shadow pages.
2851         */
2852        intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2853        intel_vgpu_reset_ggtt(vgpu, true);
2854}
2855