linux/drivers/gpu/drm/i915/i915_gem.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2008-2015 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eric Anholt <eric@anholt.net>
  25 *
  26 */
  27
  28#include <drm/drm_vma_manager.h>
  29#include <linux/dma-fence-array.h>
  30#include <linux/kthread.h>
  31#include <linux/dma-resv.h>
  32#include <linux/shmem_fs.h>
  33#include <linux/slab.h>
  34#include <linux/stop_machine.h>
  35#include <linux/swap.h>
  36#include <linux/pci.h>
  37#include <linux/dma-buf.h>
  38#include <linux/mman.h>
  39
  40#include "display/intel_display.h"
  41#include "display/intel_frontbuffer.h"
  42
  43#include "gem/i915_gem_clflush.h"
  44#include "gem/i915_gem_context.h"
  45#include "gem/i915_gem_ioctls.h"
  46#include "gem/i915_gem_mman.h"
  47#include "gem/i915_gem_region.h"
  48#include "gt/intel_engine_user.h"
  49#include "gt/intel_gt.h"
  50#include "gt/intel_gt_pm.h"
  51#include "gt/intel_workarounds.h"
  52
  53#include "i915_drv.h"
  54#include "i915_trace.h"
  55#include "i915_vgpu.h"
  56
  57#include "intel_pm.h"
  58
  59static int
  60insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size)
  61{
  62        int err;
  63
  64        err = mutex_lock_interruptible(&ggtt->vm.mutex);
  65        if (err)
  66                return err;
  67
  68        memset(node, 0, sizeof(*node));
  69        err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
  70                                          size, 0, I915_COLOR_UNEVICTABLE,
  71                                          0, ggtt->mappable_end,
  72                                          DRM_MM_INSERT_LOW);
  73
  74        mutex_unlock(&ggtt->vm.mutex);
  75
  76        return err;
  77}
  78
  79static void
  80remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node)
  81{
  82        mutex_lock(&ggtt->vm.mutex);
  83        drm_mm_remove_node(node);
  84        mutex_unlock(&ggtt->vm.mutex);
  85}
  86
  87int
  88i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  89                            struct drm_file *file)
  90{
  91        struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
  92        struct drm_i915_gem_get_aperture *args = data;
  93        struct i915_vma *vma;
  94        u64 pinned;
  95
  96        if (mutex_lock_interruptible(&ggtt->vm.mutex))
  97                return -EINTR;
  98
  99        pinned = ggtt->vm.reserved;
 100        list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
 101                if (i915_vma_is_pinned(vma))
 102                        pinned += vma->node.size;
 103
 104        mutex_unlock(&ggtt->vm.mutex);
 105
 106        args->aper_size = ggtt->vm.total;
 107        args->aper_available_size = args->aper_size - pinned;
 108
 109        return 0;
 110}
 111
 112int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
 113                           unsigned long flags)
 114{
 115        struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm;
 116        LIST_HEAD(still_in_list);
 117        intel_wakeref_t wakeref;
 118        struct i915_vma *vma;
 119        int ret;
 120
 121        if (list_empty(&obj->vma.list))
 122                return 0;
 123
 124        /*
 125         * As some machines use ACPI to handle runtime-resume callbacks, and
 126         * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex
 127         * as they are required by the shrinker. Ergo, we wake the device up
 128         * first just in case.
 129         */
 130        wakeref = intel_runtime_pm_get(rpm);
 131
 132try_again:
 133        ret = 0;
 134        spin_lock(&obj->vma.lock);
 135        while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
 136                                                       struct i915_vma,
 137                                                       obj_link))) {
 138                struct i915_address_space *vm = vma->vm;
 139
 140                list_move_tail(&vma->obj_link, &still_in_list);
 141                if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK))
 142                        continue;
 143
 144                if (flags & I915_GEM_OBJECT_UNBIND_TEST) {
 145                        ret = -EBUSY;
 146                        break;
 147                }
 148
 149                ret = -EAGAIN;
 150                if (!i915_vm_tryopen(vm))
 151                        break;
 152
 153                /* Prevent vma being freed by i915_vma_parked as we unbind */
 154                vma = __i915_vma_get(vma);
 155                spin_unlock(&obj->vma.lock);
 156
 157                if (vma) {
 158                        ret = -EBUSY;
 159                        if (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
 160                            !i915_vma_is_active(vma))
 161                                ret = i915_vma_unbind(vma);
 162
 163                        __i915_vma_put(vma);
 164                }
 165
 166                i915_vm_close(vm);
 167                spin_lock(&obj->vma.lock);
 168        }
 169        list_splice_init(&still_in_list, &obj->vma.list);
 170        spin_unlock(&obj->vma.lock);
 171
 172        if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) {
 173                rcu_barrier(); /* flush the i915_vm_release() */
 174                goto try_again;
 175        }
 176
 177        intel_runtime_pm_put(rpm, wakeref);
 178
 179        return ret;
 180}
 181
 182static int
 183i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
 184                     struct drm_i915_gem_pwrite *args,
 185                     struct drm_file *file)
 186{
 187        void *vaddr = sg_page(obj->mm.pages->sgl) + args->offset;
 188        char __user *user_data = u64_to_user_ptr(args->data_ptr);
 189
 190        /*
 191         * We manually control the domain here and pretend that it
 192         * remains coherent i.e. in the GTT domain, like shmem_pwrite.
 193         */
 194        i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
 195
 196        if (copy_from_user(vaddr, user_data, args->size))
 197                return -EFAULT;
 198
 199        drm_clflush_virt_range(vaddr, args->size);
 200        intel_gt_chipset_flush(&to_i915(obj->base.dev)->gt);
 201
 202        i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
 203        return 0;
 204}
 205
 206static int
 207i915_gem_create(struct drm_file *file,
 208                struct intel_memory_region *mr,
 209                u64 *size_p,
 210                u32 *handle_p)
 211{
 212        struct drm_i915_gem_object *obj;
 213        u32 handle;
 214        u64 size;
 215        int ret;
 216
 217        GEM_BUG_ON(!is_power_of_2(mr->min_page_size));
 218        size = round_up(*size_p, mr->min_page_size);
 219        if (size == 0)
 220                return -EINVAL;
 221
 222        /* For most of the ABI (e.g. mmap) we think in system pages */
 223        GEM_BUG_ON(!IS_ALIGNED(size, PAGE_SIZE));
 224
 225        /* Allocate the new object */
 226        obj = i915_gem_object_create_region(mr, size, 0);
 227        if (IS_ERR(obj))
 228                return PTR_ERR(obj);
 229
 230        ret = drm_gem_handle_create(file, &obj->base, &handle);
 231        /* drop reference from allocate - handle holds it now */
 232        i915_gem_object_put(obj);
 233        if (ret)
 234                return ret;
 235
 236        *handle_p = handle;
 237        *size_p = size;
 238        return 0;
 239}
 240
 241int
 242i915_gem_dumb_create(struct drm_file *file,
 243                     struct drm_device *dev,
 244                     struct drm_mode_create_dumb *args)
 245{
 246        enum intel_memory_type mem_type;
 247        int cpp = DIV_ROUND_UP(args->bpp, 8);
 248        u32 format;
 249
 250        switch (cpp) {
 251        case 1:
 252                format = DRM_FORMAT_C8;
 253                break;
 254        case 2:
 255                format = DRM_FORMAT_RGB565;
 256                break;
 257        case 4:
 258                format = DRM_FORMAT_XRGB8888;
 259                break;
 260        default:
 261                return -EINVAL;
 262        }
 263
 264        /* have to work out size/pitch and return them */
 265        args->pitch = ALIGN(args->width * cpp, 64);
 266
 267        /* align stride to page size so that we can remap */
 268        if (args->pitch > intel_plane_fb_max_stride(to_i915(dev), format,
 269                                                    DRM_FORMAT_MOD_LINEAR))
 270                args->pitch = ALIGN(args->pitch, 4096);
 271
 272        if (args->pitch < args->width)
 273                return -EINVAL;
 274
 275        args->size = mul_u32_u32(args->pitch, args->height);
 276
 277        mem_type = INTEL_MEMORY_SYSTEM;
 278        if (HAS_LMEM(to_i915(dev)))
 279                mem_type = INTEL_MEMORY_LOCAL;
 280
 281        return i915_gem_create(file,
 282                               intel_memory_region_by_type(to_i915(dev),
 283                                                           mem_type),
 284                               &args->size, &args->handle);
 285}
 286
 287/**
 288 * Creates a new mm object and returns a handle to it.
 289 * @dev: drm device pointer
 290 * @data: ioctl data blob
 291 * @file: drm file pointer
 292 */
 293int
 294i915_gem_create_ioctl(struct drm_device *dev, void *data,
 295                      struct drm_file *file)
 296{
 297        struct drm_i915_private *i915 = to_i915(dev);
 298        struct drm_i915_gem_create *args = data;
 299
 300        i915_gem_flush_free_objects(i915);
 301
 302        return i915_gem_create(file,
 303                               intel_memory_region_by_type(i915,
 304                                                           INTEL_MEMORY_SYSTEM),
 305                               &args->size, &args->handle);
 306}
 307
 308static int
 309shmem_pread(struct page *page, int offset, int len, char __user *user_data,
 310            bool needs_clflush)
 311{
 312        char *vaddr;
 313        int ret;
 314
 315        vaddr = kmap(page);
 316
 317        if (needs_clflush)
 318                drm_clflush_virt_range(vaddr + offset, len);
 319
 320        ret = __copy_to_user(user_data, vaddr + offset, len);
 321
 322        kunmap(page);
 323
 324        return ret ? -EFAULT : 0;
 325}
 326
 327static int
 328i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
 329                     struct drm_i915_gem_pread *args)
 330{
 331        unsigned int needs_clflush;
 332        unsigned int idx, offset;
 333        struct dma_fence *fence;
 334        char __user *user_data;
 335        u64 remain;
 336        int ret;
 337
 338        ret = i915_gem_object_prepare_read(obj, &needs_clflush);
 339        if (ret)
 340                return ret;
 341
 342        fence = i915_gem_object_lock_fence(obj);
 343        i915_gem_object_finish_access(obj);
 344        if (!fence)
 345                return -ENOMEM;
 346
 347        remain = args->size;
 348        user_data = u64_to_user_ptr(args->data_ptr);
 349        offset = offset_in_page(args->offset);
 350        for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
 351                struct page *page = i915_gem_object_get_page(obj, idx);
 352                unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
 353
 354                ret = shmem_pread(page, offset, length, user_data,
 355                                  needs_clflush);
 356                if (ret)
 357                        break;
 358
 359                remain -= length;
 360                user_data += length;
 361                offset = 0;
 362        }
 363
 364        i915_gem_object_unlock_fence(obj, fence);
 365        return ret;
 366}
 367
 368static inline bool
 369gtt_user_read(struct io_mapping *mapping,
 370              loff_t base, int offset,
 371              char __user *user_data, int length)
 372{
 373        void __iomem *vaddr;
 374        unsigned long unwritten;
 375
 376        /* We can use the cpu mem copy function because this is X86. */
 377        vaddr = io_mapping_map_atomic_wc(mapping, base);
 378        unwritten = __copy_to_user_inatomic(user_data,
 379                                            (void __force *)vaddr + offset,
 380                                            length);
 381        io_mapping_unmap_atomic(vaddr);
 382        if (unwritten) {
 383                vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
 384                unwritten = copy_to_user(user_data,
 385                                         (void __force *)vaddr + offset,
 386                                         length);
 387                io_mapping_unmap(vaddr);
 388        }
 389        return unwritten;
 390}
 391
 392static int
 393i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
 394                   const struct drm_i915_gem_pread *args)
 395{
 396        struct drm_i915_private *i915 = to_i915(obj->base.dev);
 397        struct i915_ggtt *ggtt = &i915->ggtt;
 398        intel_wakeref_t wakeref;
 399        struct drm_mm_node node;
 400        struct dma_fence *fence;
 401        void __user *user_data;
 402        struct i915_vma *vma;
 403        u64 remain, offset;
 404        int ret;
 405
 406        wakeref = intel_runtime_pm_get(&i915->runtime_pm);
 407        vma = ERR_PTR(-ENODEV);
 408        if (!i915_gem_object_is_tiled(obj))
 409                vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
 410                                               PIN_MAPPABLE |
 411                                               PIN_NONBLOCK /* NOWARN */ |
 412                                               PIN_NOEVICT);
 413        if (!IS_ERR(vma)) {
 414                node.start = i915_ggtt_offset(vma);
 415                node.flags = 0;
 416        } else {
 417                ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
 418                if (ret)
 419                        goto out_rpm;
 420                GEM_BUG_ON(!drm_mm_node_allocated(&node));
 421        }
 422
 423        ret = i915_gem_object_lock_interruptible(obj);
 424        if (ret)
 425                goto out_unpin;
 426
 427        ret = i915_gem_object_set_to_gtt_domain(obj, false);
 428        if (ret) {
 429                i915_gem_object_unlock(obj);
 430                goto out_unpin;
 431        }
 432
 433        fence = i915_gem_object_lock_fence(obj);
 434        i915_gem_object_unlock(obj);
 435        if (!fence) {
 436                ret = -ENOMEM;
 437                goto out_unpin;
 438        }
 439
 440        user_data = u64_to_user_ptr(args->data_ptr);
 441        remain = args->size;
 442        offset = args->offset;
 443
 444        while (remain > 0) {
 445                /* Operation in this page
 446                 *
 447                 * page_base = page offset within aperture
 448                 * page_offset = offset within page
 449                 * page_length = bytes to copy for this page
 450                 */
 451                u32 page_base = node.start;
 452                unsigned page_offset = offset_in_page(offset);
 453                unsigned page_length = PAGE_SIZE - page_offset;
 454                page_length = remain < page_length ? remain : page_length;
 455                if (drm_mm_node_allocated(&node)) {
 456                        ggtt->vm.insert_page(&ggtt->vm,
 457                                             i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
 458                                             node.start, I915_CACHE_NONE, 0);
 459                } else {
 460                        page_base += offset & PAGE_MASK;
 461                }
 462
 463                if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
 464                                  user_data, page_length)) {
 465                        ret = -EFAULT;
 466                        break;
 467                }
 468
 469                remain -= page_length;
 470                user_data += page_length;
 471                offset += page_length;
 472        }
 473
 474        i915_gem_object_unlock_fence(obj, fence);
 475out_unpin:
 476        if (drm_mm_node_allocated(&node)) {
 477                ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
 478                remove_mappable_node(ggtt, &node);
 479        } else {
 480                i915_vma_unpin(vma);
 481        }
 482out_rpm:
 483        intel_runtime_pm_put(&i915->runtime_pm, wakeref);
 484        return ret;
 485}
 486
 487/**
 488 * Reads data from the object referenced by handle.
 489 * @dev: drm device pointer
 490 * @data: ioctl data blob
 491 * @file: drm file pointer
 492 *
 493 * On error, the contents of *data are undefined.
 494 */
 495int
 496i915_gem_pread_ioctl(struct drm_device *dev, void *data,
 497                     struct drm_file *file)
 498{
 499        struct drm_i915_gem_pread *args = data;
 500        struct drm_i915_gem_object *obj;
 501        int ret;
 502
 503        if (args->size == 0)
 504                return 0;
 505
 506        if (!access_ok(u64_to_user_ptr(args->data_ptr),
 507                       args->size))
 508                return -EFAULT;
 509
 510        obj = i915_gem_object_lookup(file, args->handle);
 511        if (!obj)
 512                return -ENOENT;
 513
 514        /* Bounds check source.  */
 515        if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
 516                ret = -EINVAL;
 517                goto out;
 518        }
 519
 520        trace_i915_gem_object_pread(obj, args->offset, args->size);
 521
 522        ret = i915_gem_object_wait(obj,
 523                                   I915_WAIT_INTERRUPTIBLE,
 524                                   MAX_SCHEDULE_TIMEOUT);
 525        if (ret)
 526                goto out;
 527
 528        ret = i915_gem_object_pin_pages(obj);
 529        if (ret)
 530                goto out;
 531
 532        ret = i915_gem_shmem_pread(obj, args);
 533        if (ret == -EFAULT || ret == -ENODEV)
 534                ret = i915_gem_gtt_pread(obj, args);
 535
 536        i915_gem_object_unpin_pages(obj);
 537out:
 538        i915_gem_object_put(obj);
 539        return ret;
 540}
 541
 542/* This is the fast write path which cannot handle
 543 * page faults in the source data
 544 */
 545
 546static inline bool
 547ggtt_write(struct io_mapping *mapping,
 548           loff_t base, int offset,
 549           char __user *user_data, int length)
 550{
 551        void __iomem *vaddr;
 552        unsigned long unwritten;
 553
 554        /* We can use the cpu mem copy function because this is X86. */
 555        vaddr = io_mapping_map_atomic_wc(mapping, base);
 556        unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
 557                                                      user_data, length);
 558        io_mapping_unmap_atomic(vaddr);
 559        if (unwritten) {
 560                vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
 561                unwritten = copy_from_user((void __force *)vaddr + offset,
 562                                           user_data, length);
 563                io_mapping_unmap(vaddr);
 564        }
 565
 566        return unwritten;
 567}
 568
 569/**
 570 * This is the fast pwrite path, where we copy the data directly from the
 571 * user into the GTT, uncached.
 572 * @obj: i915 GEM object
 573 * @args: pwrite arguments structure
 574 */
 575static int
 576i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
 577                         const struct drm_i915_gem_pwrite *args)
 578{
 579        struct drm_i915_private *i915 = to_i915(obj->base.dev);
 580        struct i915_ggtt *ggtt = &i915->ggtt;
 581        struct intel_runtime_pm *rpm = &i915->runtime_pm;
 582        intel_wakeref_t wakeref;
 583        struct drm_mm_node node;
 584        struct dma_fence *fence;
 585        struct i915_vma *vma;
 586        u64 remain, offset;
 587        void __user *user_data;
 588        int ret;
 589
 590        if (i915_gem_object_has_struct_page(obj)) {
 591                /*
 592                 * Avoid waking the device up if we can fallback, as
 593                 * waking/resuming is very slow (worst-case 10-100 ms
 594                 * depending on PCI sleeps and our own resume time).
 595                 * This easily dwarfs any performance advantage from
 596                 * using the cache bypass of indirect GGTT access.
 597                 */
 598                wakeref = intel_runtime_pm_get_if_in_use(rpm);
 599                if (!wakeref)
 600                        return -EFAULT;
 601        } else {
 602                /* No backing pages, no fallback, we must force GGTT access */
 603                wakeref = intel_runtime_pm_get(rpm);
 604        }
 605
 606        vma = ERR_PTR(-ENODEV);
 607        if (!i915_gem_object_is_tiled(obj))
 608                vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
 609                                               PIN_MAPPABLE |
 610                                               PIN_NONBLOCK /* NOWARN */ |
 611                                               PIN_NOEVICT);
 612        if (!IS_ERR(vma)) {
 613                node.start = i915_ggtt_offset(vma);
 614                node.flags = 0;
 615        } else {
 616                ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
 617                if (ret)
 618                        goto out_rpm;
 619                GEM_BUG_ON(!drm_mm_node_allocated(&node));
 620        }
 621
 622        ret = i915_gem_object_lock_interruptible(obj);
 623        if (ret)
 624                goto out_unpin;
 625
 626        ret = i915_gem_object_set_to_gtt_domain(obj, true);
 627        if (ret) {
 628                i915_gem_object_unlock(obj);
 629                goto out_unpin;
 630        }
 631
 632        fence = i915_gem_object_lock_fence(obj);
 633        i915_gem_object_unlock(obj);
 634        if (!fence) {
 635                ret = -ENOMEM;
 636                goto out_unpin;
 637        }
 638
 639        i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
 640
 641        user_data = u64_to_user_ptr(args->data_ptr);
 642        offset = args->offset;
 643        remain = args->size;
 644        while (remain) {
 645                /* Operation in this page
 646                 *
 647                 * page_base = page offset within aperture
 648                 * page_offset = offset within page
 649                 * page_length = bytes to copy for this page
 650                 */
 651                u32 page_base = node.start;
 652                unsigned int page_offset = offset_in_page(offset);
 653                unsigned int page_length = PAGE_SIZE - page_offset;
 654                page_length = remain < page_length ? remain : page_length;
 655                if (drm_mm_node_allocated(&node)) {
 656                        /* flush the write before we modify the GGTT */
 657                        intel_gt_flush_ggtt_writes(ggtt->vm.gt);
 658                        ggtt->vm.insert_page(&ggtt->vm,
 659                                             i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
 660                                             node.start, I915_CACHE_NONE, 0);
 661                        wmb(); /* flush modifications to the GGTT (insert_page) */
 662                } else {
 663                        page_base += offset & PAGE_MASK;
 664                }
 665                /* If we get a fault while copying data, then (presumably) our
 666                 * source page isn't available.  Return the error and we'll
 667                 * retry in the slow path.
 668                 * If the object is non-shmem backed, we retry again with the
 669                 * path that handles page fault.
 670                 */
 671                if (ggtt_write(&ggtt->iomap, page_base, page_offset,
 672                               user_data, page_length)) {
 673                        ret = -EFAULT;
 674                        break;
 675                }
 676
 677                remain -= page_length;
 678                user_data += page_length;
 679                offset += page_length;
 680        }
 681
 682        intel_gt_flush_ggtt_writes(ggtt->vm.gt);
 683        i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
 684
 685        i915_gem_object_unlock_fence(obj, fence);
 686out_unpin:
 687        if (drm_mm_node_allocated(&node)) {
 688                ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
 689                remove_mappable_node(ggtt, &node);
 690        } else {
 691                i915_vma_unpin(vma);
 692        }
 693out_rpm:
 694        intel_runtime_pm_put(rpm, wakeref);
 695        return ret;
 696}
 697
 698/* Per-page copy function for the shmem pwrite fastpath.
 699 * Flushes invalid cachelines before writing to the target if
 700 * needs_clflush_before is set and flushes out any written cachelines after
 701 * writing if needs_clflush is set.
 702 */
 703static int
 704shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
 705             bool needs_clflush_before,
 706             bool needs_clflush_after)
 707{
 708        char *vaddr;
 709        int ret;
 710
 711        vaddr = kmap(page);
 712
 713        if (needs_clflush_before)
 714                drm_clflush_virt_range(vaddr + offset, len);
 715
 716        ret = __copy_from_user(vaddr + offset, user_data, len);
 717        if (!ret && needs_clflush_after)
 718                drm_clflush_virt_range(vaddr + offset, len);
 719
 720        kunmap(page);
 721
 722        return ret ? -EFAULT : 0;
 723}
 724
 725static int
 726i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
 727                      const struct drm_i915_gem_pwrite *args)
 728{
 729        unsigned int partial_cacheline_write;
 730        unsigned int needs_clflush;
 731        unsigned int offset, idx;
 732        struct dma_fence *fence;
 733        void __user *user_data;
 734        u64 remain;
 735        int ret;
 736
 737        ret = i915_gem_object_prepare_write(obj, &needs_clflush);
 738        if (ret)
 739                return ret;
 740
 741        fence = i915_gem_object_lock_fence(obj);
 742        i915_gem_object_finish_access(obj);
 743        if (!fence)
 744                return -ENOMEM;
 745
 746        /* If we don't overwrite a cacheline completely we need to be
 747         * careful to have up-to-date data by first clflushing. Don't
 748         * overcomplicate things and flush the entire patch.
 749         */
 750        partial_cacheline_write = 0;
 751        if (needs_clflush & CLFLUSH_BEFORE)
 752                partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
 753
 754        user_data = u64_to_user_ptr(args->data_ptr);
 755        remain = args->size;
 756        offset = offset_in_page(args->offset);
 757        for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
 758                struct page *page = i915_gem_object_get_page(obj, idx);
 759                unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
 760
 761                ret = shmem_pwrite(page, offset, length, user_data,
 762                                   (offset | length) & partial_cacheline_write,
 763                                   needs_clflush & CLFLUSH_AFTER);
 764                if (ret)
 765                        break;
 766
 767                remain -= length;
 768                user_data += length;
 769                offset = 0;
 770        }
 771
 772        i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
 773        i915_gem_object_unlock_fence(obj, fence);
 774
 775        return ret;
 776}
 777
 778/**
 779 * Writes data to the object referenced by handle.
 780 * @dev: drm device
 781 * @data: ioctl data blob
 782 * @file: drm file
 783 *
 784 * On error, the contents of the buffer that were to be modified are undefined.
 785 */
 786int
 787i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
 788                      struct drm_file *file)
 789{
 790        struct drm_i915_gem_pwrite *args = data;
 791        struct drm_i915_gem_object *obj;
 792        int ret;
 793
 794        if (args->size == 0)
 795                return 0;
 796
 797        if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
 798                return -EFAULT;
 799
 800        obj = i915_gem_object_lookup(file, args->handle);
 801        if (!obj)
 802                return -ENOENT;
 803
 804        /* Bounds check destination. */
 805        if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
 806                ret = -EINVAL;
 807                goto err;
 808        }
 809
 810        /* Writes not allowed into this read-only object */
 811        if (i915_gem_object_is_readonly(obj)) {
 812                ret = -EINVAL;
 813                goto err;
 814        }
 815
 816        trace_i915_gem_object_pwrite(obj, args->offset, args->size);
 817
 818        ret = -ENODEV;
 819        if (obj->ops->pwrite)
 820                ret = obj->ops->pwrite(obj, args);
 821        if (ret != -ENODEV)
 822                goto err;
 823
 824        ret = i915_gem_object_wait(obj,
 825                                   I915_WAIT_INTERRUPTIBLE |
 826                                   I915_WAIT_ALL,
 827                                   MAX_SCHEDULE_TIMEOUT);
 828        if (ret)
 829                goto err;
 830
 831        ret = i915_gem_object_pin_pages(obj);
 832        if (ret)
 833                goto err;
 834
 835        ret = -EFAULT;
 836        /* We can only do the GTT pwrite on untiled buffers, as otherwise
 837         * it would end up going through the fenced access, and we'll get
 838         * different detiling behavior between reading and writing.
 839         * pread/pwrite currently are reading and writing from the CPU
 840         * perspective, requiring manual detiling by the client.
 841         */
 842        if (!i915_gem_object_has_struct_page(obj) ||
 843            cpu_write_needs_clflush(obj))
 844                /* Note that the gtt paths might fail with non-page-backed user
 845                 * pointers (e.g. gtt mappings when moving data between
 846                 * textures). Fallback to the shmem path in that case.
 847                 */
 848                ret = i915_gem_gtt_pwrite_fast(obj, args);
 849
 850        if (ret == -EFAULT || ret == -ENOSPC) {
 851                if (i915_gem_object_has_struct_page(obj))
 852                        ret = i915_gem_shmem_pwrite(obj, args);
 853                else
 854                        ret = i915_gem_phys_pwrite(obj, args, file);
 855        }
 856
 857        i915_gem_object_unpin_pages(obj);
 858err:
 859        i915_gem_object_put(obj);
 860        return ret;
 861}
 862
 863/**
 864 * Called when user space has done writes to this buffer
 865 * @dev: drm device
 866 * @data: ioctl data blob
 867 * @file: drm file
 868 */
 869int
 870i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
 871                         struct drm_file *file)
 872{
 873        struct drm_i915_gem_sw_finish *args = data;
 874        struct drm_i915_gem_object *obj;
 875
 876        obj = i915_gem_object_lookup(file, args->handle);
 877        if (!obj)
 878                return -ENOENT;
 879
 880        /*
 881         * Proxy objects are barred from CPU access, so there is no
 882         * need to ban sw_finish as it is a nop.
 883         */
 884
 885        /* Pinned buffers may be scanout, so flush the cache */
 886        i915_gem_object_flush_if_display(obj);
 887        i915_gem_object_put(obj);
 888
 889        return 0;
 890}
 891
 892void i915_gem_runtime_suspend(struct drm_i915_private *i915)
 893{
 894        struct drm_i915_gem_object *obj, *on;
 895        int i;
 896
 897        /*
 898         * Only called during RPM suspend. All users of the userfault_list
 899         * must be holding an RPM wakeref to ensure that this can not
 900         * run concurrently with themselves (and use the struct_mutex for
 901         * protection between themselves).
 902         */
 903
 904        list_for_each_entry_safe(obj, on,
 905                                 &i915->ggtt.userfault_list, userfault_link)
 906                __i915_gem_object_release_mmap_gtt(obj);
 907
 908        /*
 909         * The fence will be lost when the device powers down. If any were
 910         * in use by hardware (i.e. they are pinned), we should not be powering
 911         * down! All other fences will be reacquired by the user upon waking.
 912         */
 913        for (i = 0; i < i915->ggtt.num_fences; i++) {
 914                struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i];
 915
 916                /*
 917                 * Ideally we want to assert that the fence register is not
 918                 * live at this point (i.e. that no piece of code will be
 919                 * trying to write through fence + GTT, as that both violates
 920                 * our tracking of activity and associated locking/barriers,
 921                 * but also is illegal given that the hw is powered down).
 922                 *
 923                 * Previously we used reg->pin_count as a "liveness" indicator.
 924                 * That is not sufficient, and we need a more fine-grained
 925                 * tool if we want to have a sanity check here.
 926                 */
 927
 928                if (!reg->vma)
 929                        continue;
 930
 931                GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
 932                reg->dirty = true;
 933        }
 934}
 935
 936static void discard_ggtt_vma(struct i915_vma *vma)
 937{
 938        struct drm_i915_gem_object *obj = vma->obj;
 939
 940        spin_lock(&obj->vma.lock);
 941        if (!RB_EMPTY_NODE(&vma->obj_node)) {
 942                rb_erase(&vma->obj_node, &obj->vma.tree);
 943                RB_CLEAR_NODE(&vma->obj_node);
 944        }
 945        spin_unlock(&obj->vma.lock);
 946}
 947
 948struct i915_vma *
 949i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
 950                         const struct i915_ggtt_view *view,
 951                         u64 size,
 952                         u64 alignment,
 953                         u64 flags)
 954{
 955        struct drm_i915_private *i915 = to_i915(obj->base.dev);
 956        struct i915_ggtt *ggtt = &i915->ggtt;
 957        struct i915_vma *vma;
 958        int ret;
 959
 960        if (flags & PIN_MAPPABLE &&
 961            (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
 962                /*
 963                 * If the required space is larger than the available
 964                 * aperture, we will not able to find a slot for the
 965                 * object and unbinding the object now will be in
 966                 * vain. Worse, doing so may cause us to ping-pong
 967                 * the object in and out of the Global GTT and
 968                 * waste a lot of cycles under the mutex.
 969                 */
 970                if (obj->base.size > ggtt->mappable_end)
 971                        return ERR_PTR(-E2BIG);
 972
 973                /*
 974                 * If NONBLOCK is set the caller is optimistically
 975                 * trying to cache the full object within the mappable
 976                 * aperture, and *must* have a fallback in place for
 977                 * situations where we cannot bind the object. We
 978                 * can be a little more lax here and use the fallback
 979                 * more often to avoid costly migrations of ourselves
 980                 * and other objects within the aperture.
 981                 *
 982                 * Half-the-aperture is used as a simple heuristic.
 983                 * More interesting would to do search for a free
 984                 * block prior to making the commitment to unbind.
 985                 * That caters for the self-harm case, and with a
 986                 * little more heuristics (e.g. NOFAULT, NOEVICT)
 987                 * we could try to minimise harm to others.
 988                 */
 989                if (flags & PIN_NONBLOCK &&
 990                    obj->base.size > ggtt->mappable_end / 2)
 991                        return ERR_PTR(-ENOSPC);
 992        }
 993
 994new_vma:
 995        vma = i915_vma_instance(obj, &ggtt->vm, view);
 996        if (IS_ERR(vma))
 997                return vma;
 998
 999        if (i915_vma_misplaced(vma, size, alignment, flags)) {
1000                if (flags & PIN_NONBLOCK) {
1001                        if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
1002                                return ERR_PTR(-ENOSPC);
1003
1004                        if (flags & PIN_MAPPABLE &&
1005                            vma->fence_size > ggtt->mappable_end / 2)
1006                                return ERR_PTR(-ENOSPC);
1007                }
1008
1009                if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) {
1010                        discard_ggtt_vma(vma);
1011                        goto new_vma;
1012                }
1013
1014                ret = i915_vma_unbind(vma);
1015                if (ret)
1016                        return ERR_PTR(ret);
1017        }
1018
1019        ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
1020        if (ret)
1021                return ERR_PTR(ret);
1022
1023        if (vma->fence && !i915_gem_object_is_tiled(obj)) {
1024                mutex_lock(&ggtt->vm.mutex);
1025                i915_vma_revoke_fence(vma);
1026                mutex_unlock(&ggtt->vm.mutex);
1027        }
1028
1029        ret = i915_vma_wait_for_bind(vma);
1030        if (ret) {
1031                i915_vma_unpin(vma);
1032                return ERR_PTR(ret);
1033        }
1034
1035        return vma;
1036}
1037
1038int
1039i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
1040                       struct drm_file *file_priv)
1041{
1042        struct drm_i915_private *i915 = to_i915(dev);
1043        struct drm_i915_gem_madvise *args = data;
1044        struct drm_i915_gem_object *obj;
1045        int err;
1046
1047        switch (args->madv) {
1048        case I915_MADV_DONTNEED:
1049        case I915_MADV_WILLNEED:
1050            break;
1051        default:
1052            return -EINVAL;
1053        }
1054
1055        obj = i915_gem_object_lookup(file_priv, args->handle);
1056        if (!obj)
1057                return -ENOENT;
1058
1059        err = mutex_lock_interruptible(&obj->mm.lock);
1060        if (err)
1061                goto out;
1062
1063        if (i915_gem_object_has_pages(obj) &&
1064            i915_gem_object_is_tiled(obj) &&
1065            i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
1066                if (obj->mm.madv == I915_MADV_WILLNEED) {
1067                        GEM_BUG_ON(!obj->mm.quirked);
1068                        __i915_gem_object_unpin_pages(obj);
1069                        obj->mm.quirked = false;
1070                }
1071                if (args->madv == I915_MADV_WILLNEED) {
1072                        GEM_BUG_ON(obj->mm.quirked);
1073                        __i915_gem_object_pin_pages(obj);
1074                        obj->mm.quirked = true;
1075                }
1076        }
1077
1078        if (obj->mm.madv != __I915_MADV_PURGED)
1079                obj->mm.madv = args->madv;
1080
1081        if (i915_gem_object_has_pages(obj)) {
1082                struct list_head *list;
1083
1084                if (i915_gem_object_is_shrinkable(obj)) {
1085                        unsigned long flags;
1086
1087                        spin_lock_irqsave(&i915->mm.obj_lock, flags);
1088
1089                        if (obj->mm.madv != I915_MADV_WILLNEED)
1090                                list = &i915->mm.purge_list;
1091                        else
1092                                list = &i915->mm.shrink_list;
1093                        list_move_tail(&obj->mm.link, list);
1094
1095                        spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1096                }
1097        }
1098
1099        /* if the object is no longer attached, discard its backing storage */
1100        if (obj->mm.madv == I915_MADV_DONTNEED &&
1101            !i915_gem_object_has_pages(obj))
1102                i915_gem_object_truncate(obj);
1103
1104        args->retained = obj->mm.madv != __I915_MADV_PURGED;
1105        mutex_unlock(&obj->mm.lock);
1106
1107out:
1108        i915_gem_object_put(obj);
1109        return err;
1110}
1111
1112int i915_gem_init(struct drm_i915_private *dev_priv)
1113{
1114        int ret;
1115
1116        /* We need to fallback to 4K pages if host doesn't support huge gtt. */
1117        if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1118                mkwrite_device_info(dev_priv)->page_sizes =
1119                        I915_GTT_PAGE_SIZE_4K;
1120
1121        ret = i915_gem_init_userptr(dev_priv);
1122        if (ret)
1123                return ret;
1124
1125        intel_uc_fetch_firmwares(&dev_priv->gt.uc);
1126        intel_wopcm_init(&dev_priv->wopcm);
1127
1128        ret = i915_init_ggtt(dev_priv);
1129        if (ret) {
1130                GEM_BUG_ON(ret == -EIO);
1131                goto err_unlock;
1132        }
1133
1134        /*
1135         * Despite its name intel_init_clock_gating applies both display
1136         * clock gating workarounds; GT mmio workarounds and the occasional
1137         * GT power context workaround. Worse, sometimes it includes a context
1138         * register workaround which we need to apply before we record the
1139         * default HW state for all contexts.
1140         *
1141         * FIXME: break up the workarounds and apply them at the right time!
1142         */
1143        intel_init_clock_gating(dev_priv);
1144
1145        ret = intel_gt_init(&dev_priv->gt);
1146        if (ret)
1147                goto err_unlock;
1148
1149        return 0;
1150
1151        /*
1152         * Unwinding is complicated by that we want to handle -EIO to mean
1153         * disable GPU submission but keep KMS alive. We want to mark the
1154         * HW as irrevisibly wedged, but keep enough state around that the
1155         * driver doesn't explode during runtime.
1156         */
1157err_unlock:
1158        i915_gem_drain_workqueue(dev_priv);
1159
1160        if (ret != -EIO) {
1161                intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1162                i915_gem_cleanup_userptr(dev_priv);
1163        }
1164
1165        if (ret == -EIO) {
1166                /*
1167                 * Allow engines or uC initialisation to fail by marking the GPU
1168                 * as wedged. But we only want to do this when the GPU is angry,
1169                 * for all other failure, such as an allocation failure, bail.
1170                 */
1171                if (!intel_gt_is_wedged(&dev_priv->gt)) {
1172                        i915_probe_error(dev_priv,
1173                                         "Failed to initialize GPU, declaring it wedged!\n");
1174                        intel_gt_set_wedged(&dev_priv->gt);
1175                }
1176
1177                /* Minimal basic recovery for KMS */
1178                ret = i915_ggtt_enable_hw(dev_priv);
1179                i915_ggtt_resume(&dev_priv->ggtt);
1180                intel_init_clock_gating(dev_priv);
1181        }
1182
1183        i915_gem_drain_freed_objects(dev_priv);
1184        return ret;
1185}
1186
1187void i915_gem_driver_register(struct drm_i915_private *i915)
1188{
1189        i915_gem_driver_register__shrinker(i915);
1190
1191        intel_engines_driver_register(i915);
1192}
1193
1194void i915_gem_driver_unregister(struct drm_i915_private *i915)
1195{
1196        i915_gem_driver_unregister__shrinker(i915);
1197}
1198
1199void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1200{
1201        intel_wakeref_auto_fini(&dev_priv->ggtt.userfault_wakeref);
1202
1203        i915_gem_suspend_late(dev_priv);
1204        intel_gt_driver_remove(&dev_priv->gt);
1205        dev_priv->uabi_engines = RB_ROOT;
1206
1207        /* Flush any outstanding unpin_work. */
1208        i915_gem_drain_workqueue(dev_priv);
1209
1210        i915_gem_drain_freed_objects(dev_priv);
1211}
1212
1213void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1214{
1215        i915_gem_driver_release__contexts(dev_priv);
1216
1217        intel_gt_driver_release(&dev_priv->gt);
1218
1219        intel_wa_list_free(&dev_priv->gt_wa_list);
1220
1221        intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1222        i915_gem_cleanup_userptr(dev_priv);
1223
1224        i915_gem_drain_freed_objects(dev_priv);
1225
1226        drm_WARN_ON(&dev_priv->drm, !list_empty(&dev_priv->gem.contexts.list));
1227}
1228
1229static void i915_gem_init__mm(struct drm_i915_private *i915)
1230{
1231        spin_lock_init(&i915->mm.obj_lock);
1232
1233        init_llist_head(&i915->mm.free_list);
1234
1235        INIT_LIST_HEAD(&i915->mm.purge_list);
1236        INIT_LIST_HEAD(&i915->mm.shrink_list);
1237
1238        i915_gem_init__objects(i915);
1239}
1240
1241void i915_gem_init_early(struct drm_i915_private *dev_priv)
1242{
1243        i915_gem_init__mm(dev_priv);
1244        i915_gem_init__contexts(dev_priv);
1245
1246        spin_lock_init(&dev_priv->fb_tracking.lock);
1247}
1248
1249void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1250{
1251        i915_gem_drain_freed_objects(dev_priv);
1252        GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
1253        GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1254        drm_WARN_ON(&dev_priv->drm, dev_priv->mm.shrink_count);
1255}
1256
1257int i915_gem_freeze(struct drm_i915_private *dev_priv)
1258{
1259        /* Discard all purgeable objects, let userspace recover those as
1260         * required after resuming.
1261         */
1262        i915_gem_shrink_all(dev_priv);
1263
1264        return 0;
1265}
1266
1267int i915_gem_freeze_late(struct drm_i915_private *i915)
1268{
1269        struct drm_i915_gem_object *obj;
1270        intel_wakeref_t wakeref;
1271
1272        /*
1273         * Called just before we write the hibernation image.
1274         *
1275         * We need to update the domain tracking to reflect that the CPU
1276         * will be accessing all the pages to create and restore from the
1277         * hibernation, and so upon restoration those pages will be in the
1278         * CPU domain.
1279         *
1280         * To make sure the hibernation image contains the latest state,
1281         * we update that state just before writing out the image.
1282         *
1283         * To try and reduce the hibernation image, we manually shrink
1284         * the objects as well, see i915_gem_freeze()
1285         */
1286
1287        wakeref = intel_runtime_pm_get(&i915->runtime_pm);
1288
1289        i915_gem_shrink(i915, -1UL, NULL, ~0);
1290        i915_gem_drain_freed_objects(i915);
1291
1292        list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) {
1293                i915_gem_object_lock(obj);
1294                drm_WARN_ON(&i915->drm,
1295                            i915_gem_object_set_to_cpu_domain(obj, true));
1296                i915_gem_object_unlock(obj);
1297        }
1298
1299        intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1300
1301        return 0;
1302}
1303
1304void i915_gem_release(struct drm_device *dev, struct drm_file *file)
1305{
1306        struct drm_i915_file_private *file_priv = file->driver_priv;
1307        struct i915_request *request;
1308
1309        /* Clean up our request list when the client is going away, so that
1310         * later retire_requests won't dereference our soon-to-be-gone
1311         * file_priv.
1312         */
1313        spin_lock(&file_priv->mm.lock);
1314        list_for_each_entry(request, &file_priv->mm.request_list, client_link)
1315                request->file_priv = NULL;
1316        spin_unlock(&file_priv->mm.lock);
1317}
1318
1319int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1320{
1321        struct drm_i915_file_private *file_priv;
1322        int ret;
1323
1324        DRM_DEBUG("\n");
1325
1326        file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
1327        if (!file_priv)
1328                return -ENOMEM;
1329
1330        file->driver_priv = file_priv;
1331        file_priv->dev_priv = i915;
1332        file_priv->file = file;
1333
1334        spin_lock_init(&file_priv->mm.lock);
1335        INIT_LIST_HEAD(&file_priv->mm.request_list);
1336
1337        file_priv->bsd_engine = -1;
1338        file_priv->hang_timestamp = jiffies;
1339
1340        ret = i915_gem_context_open(i915, file);
1341        if (ret)
1342                kfree(file_priv);
1343
1344        return ret;
1345}
1346
1347#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1348#include "selftests/mock_gem_device.c"
1349#include "selftests/i915_gem.c"
1350#endif
1351