linux/drivers/gpu/drm/i915/i915_perf.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2015-2016 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *   Robert Bragg <robert@sixbynine.org>
  25 */
  26
  27
  28/**
  29 * DOC: i915 Perf Overview
  30 *
  31 * Gen graphics supports a large number of performance counters that can help
  32 * driver and application developers understand and optimize their use of the
  33 * GPU.
  34 *
  35 * This i915 perf interface enables userspace to configure and open a file
  36 * descriptor representing a stream of GPU metrics which can then be read() as
  37 * a stream of sample records.
  38 *
  39 * The interface is particularly suited to exposing buffered metrics that are
  40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
  41 *
  42 * Streams representing a single context are accessible to applications with a
  43 * corresponding drm file descriptor, such that OpenGL can use the interface
  44 * without special privileges. Access to system-wide metrics requires root
  45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid
  46 * sysctl option.
  47 *
  48 */
  49
  50/**
  51 * DOC: i915 Perf History and Comparison with Core Perf
  52 *
  53 * The interface was initially inspired by the core Perf infrastructure but
  54 * some notable differences are:
  55 *
  56 * i915 perf file descriptors represent a "stream" instead of an "event"; where
  57 * a perf event primarily corresponds to a single 64bit value, while a stream
  58 * might sample sets of tightly-coupled counters, depending on the
  59 * configuration.  For example the Gen OA unit isn't designed to support
  60 * orthogonal configurations of individual counters; it's configured for a set
  61 * of related counters. Samples for an i915 perf stream capturing OA metrics
  62 * will include a set of counter values packed in a compact HW specific format.
  63 * The OA unit supports a number of different packing formats which can be
  64 * selected by the user opening the stream. Perf has support for grouping
  65 * events, but each event in the group is configured, validated and
  66 * authenticated individually with separate system calls.
  67 *
  68 * i915 perf stream configurations are provided as an array of u64 (key,value)
  69 * pairs, instead of a fixed struct with multiple miscellaneous config members,
  70 * interleaved with event-type specific members.
  71 *
  72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
  73 * The supported metrics are being written to memory by the GPU unsynchronized
  74 * with the CPU, using HW specific packing formats for counter sets. Sometimes
  75 * the constraints on HW configuration require reports to be filtered before it
  76 * would be acceptable to expose them to unprivileged applications - to hide
  77 * the metrics of other processes/contexts. For these use cases a read() based
  78 * interface is a good fit, and provides an opportunity to filter data as it
  79 * gets copied from the GPU mapped buffers to userspace buffers.
  80 *
  81 *
  82 * Issues hit with first prototype based on Core Perf
  83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  84 *
  85 * The first prototype of this driver was based on the core perf
  86 * infrastructure, and while we did make that mostly work, with some changes to
  87 * perf, we found we were breaking or working around too many assumptions baked
  88 * into perf's currently cpu centric design.
  89 *
  90 * In the end we didn't see a clear benefit to making perf's implementation and
  91 * interface more complex by changing design assumptions while we knew we still
  92 * wouldn't be able to use any existing perf based userspace tools.
  93 *
  94 * Also considering the Gen specific nature of the Observability hardware and
  95 * how userspace will sometimes need to combine i915 perf OA metrics with
  96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
  97 * expecting the interface to be used by a platform specific userspace such as
  98 * OpenGL or tools. This is to say; we aren't inherently missing out on having
  99 * a standard vendor/architecture agnostic interface by not using perf.
 100 *
 101 *
 102 * For posterity, in case we might re-visit trying to adapt core perf to be
 103 * better suited to exposing i915 metrics these were the main pain points we
 104 * hit:
 105 *
 106 * - The perf based OA PMU driver broke some significant design assumptions:
 107 *
 108 *   Existing perf pmus are used for profiling work on a cpu and we were
 109 *   introducing the idea of _IS_DEVICE pmus with different security
 110 *   implications, the need to fake cpu-related data (such as user/kernel
 111 *   registers) to fit with perf's current design, and adding _DEVICE records
 112 *   as a way to forward device-specific status records.
 113 *
 114 *   The OA unit writes reports of counters into a circular buffer, without
 115 *   involvement from the CPU, making our PMU driver the first of a kind.
 116 *
 117 *   Given the way we were periodically forward data from the GPU-mapped, OA
 118 *   buffer to perf's buffer, those bursts of sample writes looked to perf like
 119 *   we were sampling too fast and so we had to subvert its throttling checks.
 120 *
 121 *   Perf supports groups of counters and allows those to be read via
 122 *   transactions internally but transactions currently seem designed to be
 123 *   explicitly initiated from the cpu (say in response to a userspace read())
 124 *   and while we could pull a report out of the OA buffer we can't
 125 *   trigger a report from the cpu on demand.
 126 *
 127 *   Related to being report based; the OA counters are configured in HW as a
 128 *   set while perf generally expects counter configurations to be orthogonal.
 129 *   Although counters can be associated with a group leader as they are
 130 *   opened, there's no clear precedent for being able to provide group-wide
 131 *   configuration attributes (for example we want to let userspace choose the
 132 *   OA unit report format used to capture all counters in a set, or specify a
 133 *   GPU context to filter metrics on). We avoided using perf's grouping
 134 *   feature and forwarded OA reports to userspace via perf's 'raw' sample
 135 *   field. This suited our userspace well considering how coupled the counters
 136 *   are when dealing with normalizing. It would be inconvenient to split
 137 *   counters up into separate events, only to require userspace to recombine
 138 *   them. For Mesa it's also convenient to be forwarded raw, periodic reports
 139 *   for combining with the side-band raw reports it captures using
 140 *   MI_REPORT_PERF_COUNT commands.
 141 *
 142 *   - As a side note on perf's grouping feature; there was also some concern
 143 *     that using PERF_FORMAT_GROUP as a way to pack together counter values
 144 *     would quite drastically inflate our sample sizes, which would likely
 145 *     lower the effective sampling resolutions we could use when the available
 146 *     memory bandwidth is limited.
 147 *
 148 *     With the OA unit's report formats, counters are packed together as 32
 149 *     or 40bit values, with the largest report size being 256 bytes.
 150 *
 151 *     PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
 152 *     documented ordering to the values, implying PERF_FORMAT_ID must also be
 153 *     used to add a 64bit ID before each value; giving 16 bytes per counter.
 154 *
 155 *   Related to counter orthogonality; we can't time share the OA unit, while
 156 *   event scheduling is a central design idea within perf for allowing
 157 *   userspace to open + enable more events than can be configured in HW at any
 158 *   one time.  The OA unit is not designed to allow re-configuration while in
 159 *   use. We can't reconfigure the OA unit without losing internal OA unit
 160 *   state which we can't access explicitly to save and restore. Reconfiguring
 161 *   the OA unit is also relatively slow, involving ~100 register writes. From
 162 *   userspace Mesa also depends on a stable OA configuration when emitting
 163 *   MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
 164 *   disabled while there are outstanding MI_RPC commands lest we hang the
 165 *   command streamer.
 166 *
 167 *   The contents of sample records aren't extensible by device drivers (i.e.
 168 *   the sample_type bits). As an example; Sourab Gupta had been looking to
 169 *   attach GPU timestamps to our OA samples. We were shoehorning OA reports
 170 *   into sample records by using the 'raw' field, but it's tricky to pack more
 171 *   than one thing into this field because events/core.c currently only lets a
 172 *   pmu give a single raw data pointer plus len which will be copied into the
 173 *   ring buffer. To include more than the OA report we'd have to copy the
 174 *   report into an intermediate larger buffer. I'd been considering allowing a
 175 *   vector of data+len values to be specified for copying the raw data, but
 176 *   it felt like a kludge to being using the raw field for this purpose.
 177 *
 178 * - It felt like our perf based PMU was making some technical compromises
 179 *   just for the sake of using perf:
 180 *
 181 *   perf_event_open() requires events to either relate to a pid or a specific
 182 *   cpu core, while our device pmu related to neither.  Events opened with a
 183 *   pid will be automatically enabled/disabled according to the scheduling of
 184 *   that process - so not appropriate for us. When an event is related to a
 185 *   cpu id, perf ensures pmu methods will be invoked via an inter process
 186 *   interrupt on that core. To avoid invasive changes our userspace opened OA
 187 *   perf events for a specific cpu. This was workable but it meant the
 188 *   majority of the OA driver ran in atomic context, including all OA report
 189 *   forwarding, which wasn't really necessary in our case and seems to make
 190 *   our locking requirements somewhat complex as we handled the interaction
 191 *   with the rest of the i915 driver.
 192 */
 193
 194#include <linux/anon_inodes.h>
 195#include <linux/sizes.h>
 196#include <linux/uuid.h>
 197
 198#include "gem/i915_gem_context.h"
 199#include "gt/intel_engine_pm.h"
 200#include "gt/intel_engine_user.h"
 201#include "gt/intel_gt.h"
 202#include "gt/intel_lrc_reg.h"
 203#include "gt/intel_ring.h"
 204
 205#include "i915_drv.h"
 206#include "i915_perf.h"
 207
 208/* HW requires this to be a power of two, between 128k and 16M, though driver
 209 * is currently generally designed assuming the largest 16M size is used such
 210 * that the overflow cases are unlikely in normal operation.
 211 */
 212#define OA_BUFFER_SIZE          SZ_16M
 213
 214#define OA_TAKEN(tail, head)    ((tail - head) & (OA_BUFFER_SIZE - 1))
 215
 216/**
 217 * DOC: OA Tail Pointer Race
 218 *
 219 * There's a HW race condition between OA unit tail pointer register updates and
 220 * writes to memory whereby the tail pointer can sometimes get ahead of what's
 221 * been written out to the OA buffer so far (in terms of what's visible to the
 222 * CPU).
 223 *
 224 * Although this can be observed explicitly while copying reports to userspace
 225 * by checking for a zeroed report-id field in tail reports, we want to account
 226 * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of
 227 * redundant read() attempts.
 228 *
 229 * We workaround this issue in oa_buffer_check_unlocked() by reading the reports
 230 * in the OA buffer, starting from the tail reported by the HW until we find a
 231 * report with its first 2 dwords not 0 meaning its previous report is
 232 * completely in memory and ready to be read. Those dwords are also set to 0
 233 * once read and the whole buffer is cleared upon OA buffer initialization. The
 234 * first dword is the reason for this report while the second is the timestamp,
 235 * making the chances of having those 2 fields at 0 fairly unlikely. A more
 236 * detailed explanation is available in oa_buffer_check_unlocked().
 237 *
 238 * Most of the implementation details for this workaround are in
 239 * oa_buffer_check_unlocked() and _append_oa_reports()
 240 *
 241 * Note for posterity: previously the driver used to define an effective tail
 242 * pointer that lagged the real pointer by a 'tail margin' measured in bytes
 243 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
 244 * This was flawed considering that the OA unit may also automatically generate
 245 * non-periodic reports (such as on context switch) or the OA unit may be
 246 * enabled without any periodic sampling.
 247 */
 248#define OA_TAIL_MARGIN_NSEC     100000ULL
 249#define INVALID_TAIL_PTR        0xffffffff
 250
 251/* The default frequency for checking whether the OA unit has written new
 252 * reports to the circular OA buffer...
 253 */
 254#define DEFAULT_POLL_FREQUENCY_HZ 200
 255#define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ)
 256
 257/* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
 258static u32 i915_perf_stream_paranoid = true;
 259
 260/* The maximum exponent the hardware accepts is 63 (essentially it selects one
 261 * of the 64bit timestamp bits to trigger reports from) but there's currently
 262 * no known use case for sampling as infrequently as once per 47 thousand years.
 263 *
 264 * Since the timestamps included in OA reports are only 32bits it seems
 265 * reasonable to limit the OA exponent where it's still possible to account for
 266 * overflow in OA report timestamps.
 267 */
 268#define OA_EXPONENT_MAX 31
 269
 270#define INVALID_CTX_ID 0xffffffff
 271
 272/* On Gen8+ automatically triggered OA reports include a 'reason' field... */
 273#define OAREPORT_REASON_MASK           0x3f
 274#define OAREPORT_REASON_MASK_EXTENDED  0x7f
 275#define OAREPORT_REASON_SHIFT          19
 276#define OAREPORT_REASON_TIMER          (1<<0)
 277#define OAREPORT_REASON_CTX_SWITCH     (1<<3)
 278#define OAREPORT_REASON_CLK_RATIO      (1<<5)
 279
 280
 281/* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
 282 *
 283 * The highest sampling frequency we can theoretically program the OA unit
 284 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
 285 *
 286 * Initialized just before we register the sysctl parameter.
 287 */
 288static int oa_sample_rate_hard_limit;
 289
 290/* Theoretically we can program the OA unit to sample every 160ns but don't
 291 * allow that by default unless root...
 292 *
 293 * The default threshold of 100000Hz is based on perf's similar
 294 * kernel.perf_event_max_sample_rate sysctl parameter.
 295 */
 296static u32 i915_oa_max_sample_rate = 100000;
 297
 298/* XXX: beware if future OA HW adds new report formats that the current
 299 * code assumes all reports have a power-of-two size and ~(size - 1) can
 300 * be used as a mask to align the OA tail pointer.
 301 */
 302static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
 303        [I915_OA_FORMAT_A13]        = { 0, 64 },
 304        [I915_OA_FORMAT_A29]        = { 1, 128 },
 305        [I915_OA_FORMAT_A13_B8_C8]  = { 2, 128 },
 306        /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
 307        [I915_OA_FORMAT_B4_C8]      = { 4, 64 },
 308        [I915_OA_FORMAT_A45_B8_C8]  = { 5, 256 },
 309        [I915_OA_FORMAT_B4_C8_A16]  = { 6, 128 },
 310        [I915_OA_FORMAT_C4_B8]      = { 7, 64 },
 311};
 312
 313static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
 314        [I915_OA_FORMAT_A12]                = { 0, 64 },
 315        [I915_OA_FORMAT_A12_B8_C8]          = { 2, 128 },
 316        [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
 317        [I915_OA_FORMAT_C4_B8]              = { 7, 64 },
 318};
 319
 320static const struct i915_oa_format gen12_oa_formats[I915_OA_FORMAT_MAX] = {
 321        [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
 322};
 323
 324#define SAMPLE_OA_REPORT      (1<<0)
 325
 326/**
 327 * struct perf_open_properties - for validated properties given to open a stream
 328 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
 329 * @single_context: Whether a single or all gpu contexts should be monitored
 330 * @hold_preemption: Whether the preemption is disabled for the filtered
 331 *                   context
 332 * @ctx_handle: A gem ctx handle for use with @single_context
 333 * @metrics_set: An ID for an OA unit metric set advertised via sysfs
 334 * @oa_format: An OA unit HW report format
 335 * @oa_periodic: Whether to enable periodic OA unit sampling
 336 * @oa_period_exponent: The OA unit sampling period is derived from this
 337 * @engine: The engine (typically rcs0) being monitored by the OA unit
 338 * @has_sseu: Whether @sseu was specified by userspace
 339 * @sseu: internal SSEU configuration computed either from the userspace
 340 *        specified configuration in the opening parameters or a default value
 341 *        (see get_default_sseu_config())
 342 * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA
 343 * data availability
 344 *
 345 * As read_properties_unlocked() enumerates and validates the properties given
 346 * to open a stream of metrics the configuration is built up in the structure
 347 * which starts out zero initialized.
 348 */
 349struct perf_open_properties {
 350        u32 sample_flags;
 351
 352        u64 single_context:1;
 353        u64 hold_preemption:1;
 354        u64 ctx_handle;
 355
 356        /* OA sampling state */
 357        int metrics_set;
 358        int oa_format;
 359        bool oa_periodic;
 360        int oa_period_exponent;
 361
 362        struct intel_engine_cs *engine;
 363
 364        bool has_sseu;
 365        struct intel_sseu sseu;
 366
 367        u64 poll_oa_period;
 368};
 369
 370struct i915_oa_config_bo {
 371        struct llist_node node;
 372
 373        struct i915_oa_config *oa_config;
 374        struct i915_vma *vma;
 375};
 376
 377static struct ctl_table_header *sysctl_header;
 378
 379static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
 380
 381void i915_oa_config_release(struct kref *ref)
 382{
 383        struct i915_oa_config *oa_config =
 384                container_of(ref, typeof(*oa_config), ref);
 385
 386        kfree(oa_config->flex_regs);
 387        kfree(oa_config->b_counter_regs);
 388        kfree(oa_config->mux_regs);
 389
 390        kfree_rcu(oa_config, rcu);
 391}
 392
 393struct i915_oa_config *
 394i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set)
 395{
 396        struct i915_oa_config *oa_config;
 397
 398        rcu_read_lock();
 399        oa_config = idr_find(&perf->metrics_idr, metrics_set);
 400        if (oa_config)
 401                oa_config = i915_oa_config_get(oa_config);
 402        rcu_read_unlock();
 403
 404        return oa_config;
 405}
 406
 407static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo)
 408{
 409        i915_oa_config_put(oa_bo->oa_config);
 410        i915_vma_put(oa_bo->vma);
 411        kfree(oa_bo);
 412}
 413
 414static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream)
 415{
 416        struct intel_uncore *uncore = stream->uncore;
 417
 418        return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) &
 419               GEN12_OAG_OATAILPTR_MASK;
 420}
 421
 422static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
 423{
 424        struct intel_uncore *uncore = stream->uncore;
 425
 426        return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
 427}
 428
 429static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
 430{
 431        struct intel_uncore *uncore = stream->uncore;
 432        u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
 433
 434        return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
 435}
 436
 437/**
 438 * oa_buffer_check_unlocked - check for data and update tail ptr state
 439 * @stream: i915 stream instance
 440 *
 441 * This is either called via fops (for blocking reads in user ctx) or the poll
 442 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
 443 * if there is data available for userspace to read.
 444 *
 445 * This function is central to providing a workaround for the OA unit tail
 446 * pointer having a race with respect to what data is visible to the CPU.
 447 * It is responsible for reading tail pointers from the hardware and giving
 448 * the pointers time to 'age' before they are made available for reading.
 449 * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
 450 *
 451 * Besides returning true when there is data available to read() this function
 452 * also updates the tail, aging_tail and aging_timestamp in the oa_buffer
 453 * object.
 454 *
 455 * Note: It's safe to read OA config state here unlocked, assuming that this is
 456 * only called while the stream is enabled, while the global OA configuration
 457 * can't be modified.
 458 *
 459 * Returns: %true if the OA buffer contains data, else %false
 460 */
 461static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
 462{
 463        u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
 464        int report_size = stream->oa_buffer.format_size;
 465        unsigned long flags;
 466        bool pollin;
 467        u32 hw_tail;
 468        u64 now;
 469
 470        /* We have to consider the (unlikely) possibility that read() errors
 471         * could result in an OA buffer reset which might reset the head and
 472         * tail state.
 473         */
 474        spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
 475
 476        hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
 477
 478        /* The tail pointer increases in 64 byte increments,
 479         * not in report_size steps...
 480         */
 481        hw_tail &= ~(report_size - 1);
 482
 483        now = ktime_get_mono_fast_ns();
 484
 485        if (hw_tail == stream->oa_buffer.aging_tail &&
 486            (now - stream->oa_buffer.aging_timestamp) > OA_TAIL_MARGIN_NSEC) {
 487                /* If the HW tail hasn't move since the last check and the HW
 488                 * tail has been aging for long enough, declare it the new
 489                 * tail.
 490                 */
 491                stream->oa_buffer.tail = stream->oa_buffer.aging_tail;
 492        } else {
 493                u32 head, tail, aged_tail;
 494
 495                /* NB: The head we observe here might effectively be a little
 496                 * out of date. If a read() is in progress, the head could be
 497                 * anywhere between this head and stream->oa_buffer.tail.
 498                 */
 499                head = stream->oa_buffer.head - gtt_offset;
 500                aged_tail = stream->oa_buffer.tail - gtt_offset;
 501
 502                hw_tail -= gtt_offset;
 503                tail = hw_tail;
 504
 505                /* Walk the stream backward until we find a report with dword 0
 506                 * & 1 not at 0. Since the circular buffer pointers progress by
 507                 * increments of 64 bytes and that reports can be up to 256
 508                 * bytes long, we can't tell whether a report has fully landed
 509                 * in memory before the first 2 dwords of the following report
 510                 * have effectively landed.
 511                 *
 512                 * This is assuming that the writes of the OA unit land in
 513                 * memory in the order they were written to.
 514                 * If not : (╯°□°)╯︵ ┻━┻
 515                 */
 516                while (OA_TAKEN(tail, aged_tail) >= report_size) {
 517                        u32 *report32 = (void *)(stream->oa_buffer.vaddr + tail);
 518
 519                        if (report32[0] != 0 || report32[1] != 0)
 520                                break;
 521
 522                        tail = (tail - report_size) & (OA_BUFFER_SIZE - 1);
 523                }
 524
 525                if (OA_TAKEN(hw_tail, tail) > report_size &&
 526                    __ratelimit(&stream->perf->tail_pointer_race))
 527                        DRM_NOTE("unlanded report(s) head=0x%x "
 528                                 "tail=0x%x hw_tail=0x%x\n",
 529                                 head, tail, hw_tail);
 530
 531                stream->oa_buffer.tail = gtt_offset + tail;
 532                stream->oa_buffer.aging_tail = gtt_offset + hw_tail;
 533                stream->oa_buffer.aging_timestamp = now;
 534        }
 535
 536        pollin = OA_TAKEN(stream->oa_buffer.tail - gtt_offset,
 537                          stream->oa_buffer.head - gtt_offset) >= report_size;
 538
 539        spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
 540
 541        return pollin;
 542}
 543
 544/**
 545 * append_oa_status - Appends a status record to a userspace read() buffer.
 546 * @stream: An i915-perf stream opened for OA metrics
 547 * @buf: destination buffer given by userspace
 548 * @count: the number of bytes userspace wants to read
 549 * @offset: (inout): the current position for writing into @buf
 550 * @type: The kind of status to report to userspace
 551 *
 552 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
 553 * into the userspace read() buffer.
 554 *
 555 * The @buf @offset will only be updated on success.
 556 *
 557 * Returns: 0 on success, negative error code on failure.
 558 */
 559static int append_oa_status(struct i915_perf_stream *stream,
 560                            char __user *buf,
 561                            size_t count,
 562                            size_t *offset,
 563                            enum drm_i915_perf_record_type type)
 564{
 565        struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
 566
 567        if ((count - *offset) < header.size)
 568                return -ENOSPC;
 569
 570        if (copy_to_user(buf + *offset, &header, sizeof(header)))
 571                return -EFAULT;
 572
 573        (*offset) += header.size;
 574
 575        return 0;
 576}
 577
 578/**
 579 * append_oa_sample - Copies single OA report into userspace read() buffer.
 580 * @stream: An i915-perf stream opened for OA metrics
 581 * @buf: destination buffer given by userspace
 582 * @count: the number of bytes userspace wants to read
 583 * @offset: (inout): the current position for writing into @buf
 584 * @report: A single OA report to (optionally) include as part of the sample
 585 *
 586 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
 587 * properties when opening a stream, tracked as `stream->sample_flags`. This
 588 * function copies the requested components of a single sample to the given
 589 * read() @buf.
 590 *
 591 * The @buf @offset will only be updated on success.
 592 *
 593 * Returns: 0 on success, negative error code on failure.
 594 */
 595static int append_oa_sample(struct i915_perf_stream *stream,
 596                            char __user *buf,
 597                            size_t count,
 598                            size_t *offset,
 599                            const u8 *report)
 600{
 601        int report_size = stream->oa_buffer.format_size;
 602        struct drm_i915_perf_record_header header;
 603        u32 sample_flags = stream->sample_flags;
 604
 605        header.type = DRM_I915_PERF_RECORD_SAMPLE;
 606        header.pad = 0;
 607        header.size = stream->sample_size;
 608
 609        if ((count - *offset) < header.size)
 610                return -ENOSPC;
 611
 612        buf += *offset;
 613        if (copy_to_user(buf, &header, sizeof(header)))
 614                return -EFAULT;
 615        buf += sizeof(header);
 616
 617        if (sample_flags & SAMPLE_OA_REPORT) {
 618                if (copy_to_user(buf, report, report_size))
 619                        return -EFAULT;
 620        }
 621
 622        (*offset) += header.size;
 623
 624        return 0;
 625}
 626
 627/**
 628 * Copies all buffered OA reports into userspace read() buffer.
 629 * @stream: An i915-perf stream opened for OA metrics
 630 * @buf: destination buffer given by userspace
 631 * @count: the number of bytes userspace wants to read
 632 * @offset: (inout): the current position for writing into @buf
 633 *
 634 * Notably any error condition resulting in a short read (-%ENOSPC or
 635 * -%EFAULT) will be returned even though one or more records may
 636 * have been successfully copied. In this case it's up to the caller
 637 * to decide if the error should be squashed before returning to
 638 * userspace.
 639 *
 640 * Note: reports are consumed from the head, and appended to the
 641 * tail, so the tail chases the head?... If you think that's mad
 642 * and back-to-front you're not alone, but this follows the
 643 * Gen PRM naming convention.
 644 *
 645 * Returns: 0 on success, negative error code on failure.
 646 */
 647static int gen8_append_oa_reports(struct i915_perf_stream *stream,
 648                                  char __user *buf,
 649                                  size_t count,
 650                                  size_t *offset)
 651{
 652        struct intel_uncore *uncore = stream->uncore;
 653        int report_size = stream->oa_buffer.format_size;
 654        u8 *oa_buf_base = stream->oa_buffer.vaddr;
 655        u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
 656        u32 mask = (OA_BUFFER_SIZE - 1);
 657        size_t start_offset = *offset;
 658        unsigned long flags;
 659        u32 head, tail;
 660        u32 taken;
 661        int ret = 0;
 662
 663        if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
 664                return -EIO;
 665
 666        spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
 667
 668        head = stream->oa_buffer.head;
 669        tail = stream->oa_buffer.tail;
 670
 671        spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
 672
 673        /*
 674         * NB: oa_buffer.head/tail include the gtt_offset which we don't want
 675         * while indexing relative to oa_buf_base.
 676         */
 677        head -= gtt_offset;
 678        tail -= gtt_offset;
 679
 680        /*
 681         * An out of bounds or misaligned head or tail pointer implies a driver
 682         * bug since we validate + align the tail pointers we read from the
 683         * hardware and we are in full control of the head pointer which should
 684         * only be incremented by multiples of the report size (notably also
 685         * all a power of two).
 686         */
 687        if (drm_WARN_ONCE(&uncore->i915->drm,
 688                          head > OA_BUFFER_SIZE || head % report_size ||
 689                          tail > OA_BUFFER_SIZE || tail % report_size,
 690                          "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
 691                          head, tail))
 692                return -EIO;
 693
 694
 695        for (/* none */;
 696             (taken = OA_TAKEN(tail, head));
 697             head = (head + report_size) & mask) {
 698                u8 *report = oa_buf_base + head;
 699                u32 *report32 = (void *)report;
 700                u32 ctx_id;
 701                u32 reason;
 702
 703                /*
 704                 * All the report sizes factor neatly into the buffer
 705                 * size so we never expect to see a report split
 706                 * between the beginning and end of the buffer.
 707                 *
 708                 * Given the initial alignment check a misalignment
 709                 * here would imply a driver bug that would result
 710                 * in an overrun.
 711                 */
 712                if (drm_WARN_ON(&uncore->i915->drm,
 713                                (OA_BUFFER_SIZE - head) < report_size)) {
 714                        drm_err(&uncore->i915->drm,
 715                                "Spurious OA head ptr: non-integral report offset\n");
 716                        break;
 717                }
 718
 719                /*
 720                 * The reason field includes flags identifying what
 721                 * triggered this specific report (mostly timer
 722                 * triggered or e.g. due to a context switch).
 723                 *
 724                 * This field is never expected to be zero so we can
 725                 * check that the report isn't invalid before copying
 726                 * it to userspace...
 727                 */
 728                reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
 729                          (IS_GEN(stream->perf->i915, 12) ?
 730                           OAREPORT_REASON_MASK_EXTENDED :
 731                           OAREPORT_REASON_MASK));
 732                if (reason == 0) {
 733                        if (__ratelimit(&stream->perf->spurious_report_rs))
 734                                DRM_NOTE("Skipping spurious, invalid OA report\n");
 735                        continue;
 736                }
 737
 738                ctx_id = report32[2] & stream->specific_ctx_id_mask;
 739
 740                /*
 741                 * Squash whatever is in the CTX_ID field if it's marked as
 742                 * invalid to be sure we avoid false-positive, single-context
 743                 * filtering below...
 744                 *
 745                 * Note: that we don't clear the valid_ctx_bit so userspace can
 746                 * understand that the ID has been squashed by the kernel.
 747                 */
 748                if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) &&
 749                    INTEL_GEN(stream->perf->i915) <= 11)
 750                        ctx_id = report32[2] = INVALID_CTX_ID;
 751
 752                /*
 753                 * NB: For Gen 8 the OA unit no longer supports clock gating
 754                 * off for a specific context and the kernel can't securely
 755                 * stop the counters from updating as system-wide / global
 756                 * values.
 757                 *
 758                 * Automatic reports now include a context ID so reports can be
 759                 * filtered on the cpu but it's not worth trying to
 760                 * automatically subtract/hide counter progress for other
 761                 * contexts while filtering since we can't stop userspace
 762                 * issuing MI_REPORT_PERF_COUNT commands which would still
 763                 * provide a side-band view of the real values.
 764                 *
 765                 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
 766                 * to normalize counters for a single filtered context then it
 767                 * needs be forwarded bookend context-switch reports so that it
 768                 * can track switches in between MI_REPORT_PERF_COUNT commands
 769                 * and can itself subtract/ignore the progress of counters
 770                 * associated with other contexts. Note that the hardware
 771                 * automatically triggers reports when switching to a new
 772                 * context which are tagged with the ID of the newly active
 773                 * context. To avoid the complexity (and likely fragility) of
 774                 * reading ahead while parsing reports to try and minimize
 775                 * forwarding redundant context switch reports (i.e. between
 776                 * other, unrelated contexts) we simply elect to forward them
 777                 * all.
 778                 *
 779                 * We don't rely solely on the reason field to identify context
 780                 * switches since it's not-uncommon for periodic samples to
 781                 * identify a switch before any 'context switch' report.
 782                 */
 783                if (!stream->perf->exclusive_stream->ctx ||
 784                    stream->specific_ctx_id == ctx_id ||
 785                    stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
 786                    reason & OAREPORT_REASON_CTX_SWITCH) {
 787
 788                        /*
 789                         * While filtering for a single context we avoid
 790                         * leaking the IDs of other contexts.
 791                         */
 792                        if (stream->perf->exclusive_stream->ctx &&
 793                            stream->specific_ctx_id != ctx_id) {
 794                                report32[2] = INVALID_CTX_ID;
 795                        }
 796
 797                        ret = append_oa_sample(stream, buf, count, offset,
 798                                               report);
 799                        if (ret)
 800                                break;
 801
 802                        stream->oa_buffer.last_ctx_id = ctx_id;
 803                }
 804
 805                /*
 806                 * Clear out the first 2 dword as a mean to detect unlanded
 807                 * reports.
 808                 */
 809                report32[0] = 0;
 810                report32[1] = 0;
 811        }
 812
 813        if (start_offset != *offset) {
 814                i915_reg_t oaheadptr;
 815
 816                oaheadptr = IS_GEN(stream->perf->i915, 12) ?
 817                            GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR;
 818
 819                spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
 820
 821                /*
 822                 * We removed the gtt_offset for the copy loop above, indexing
 823                 * relative to oa_buf_base so put back here...
 824                 */
 825                head += gtt_offset;
 826                intel_uncore_write(uncore, oaheadptr,
 827                                   head & GEN12_OAG_OAHEADPTR_MASK);
 828                stream->oa_buffer.head = head;
 829
 830                spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
 831        }
 832
 833        return ret;
 834}
 835
 836/**
 837 * gen8_oa_read - copy status records then buffered OA reports
 838 * @stream: An i915-perf stream opened for OA metrics
 839 * @buf: destination buffer given by userspace
 840 * @count: the number of bytes userspace wants to read
 841 * @offset: (inout): the current position for writing into @buf
 842 *
 843 * Checks OA unit status registers and if necessary appends corresponding
 844 * status records for userspace (such as for a buffer full condition) and then
 845 * initiate appending any buffered OA reports.
 846 *
 847 * Updates @offset according to the number of bytes successfully copied into
 848 * the userspace buffer.
 849 *
 850 * NB: some data may be successfully copied to the userspace buffer
 851 * even if an error is returned, and this is reflected in the
 852 * updated @offset.
 853 *
 854 * Returns: zero on success or a negative error code
 855 */
 856static int gen8_oa_read(struct i915_perf_stream *stream,
 857                        char __user *buf,
 858                        size_t count,
 859                        size_t *offset)
 860{
 861        struct intel_uncore *uncore = stream->uncore;
 862        u32 oastatus;
 863        i915_reg_t oastatus_reg;
 864        int ret;
 865
 866        if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
 867                return -EIO;
 868
 869        oastatus_reg = IS_GEN(stream->perf->i915, 12) ?
 870                       GEN12_OAG_OASTATUS : GEN8_OASTATUS;
 871
 872        oastatus = intel_uncore_read(uncore, oastatus_reg);
 873
 874        /*
 875         * We treat OABUFFER_OVERFLOW as a significant error:
 876         *
 877         * Although theoretically we could handle this more gracefully
 878         * sometimes, some Gens don't correctly suppress certain
 879         * automatically triggered reports in this condition and so we
 880         * have to assume that old reports are now being trampled
 881         * over.
 882         *
 883         * Considering how we don't currently give userspace control
 884         * over the OA buffer size and always configure a large 16MB
 885         * buffer, then a buffer overflow does anyway likely indicate
 886         * that something has gone quite badly wrong.
 887         */
 888        if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
 889                ret = append_oa_status(stream, buf, count, offset,
 890                                       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
 891                if (ret)
 892                        return ret;
 893
 894                DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
 895                          stream->period_exponent);
 896
 897                stream->perf->ops.oa_disable(stream);
 898                stream->perf->ops.oa_enable(stream);
 899
 900                /*
 901                 * Note: .oa_enable() is expected to re-init the oabuffer and
 902                 * reset GEN8_OASTATUS for us
 903                 */
 904                oastatus = intel_uncore_read(uncore, oastatus_reg);
 905        }
 906
 907        if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
 908                ret = append_oa_status(stream, buf, count, offset,
 909                                       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
 910                if (ret)
 911                        return ret;
 912                intel_uncore_write(uncore, oastatus_reg,
 913                                   oastatus & ~GEN8_OASTATUS_REPORT_LOST);
 914        }
 915
 916        return gen8_append_oa_reports(stream, buf, count, offset);
 917}
 918
 919/**
 920 * Copies all buffered OA reports into userspace read() buffer.
 921 * @stream: An i915-perf stream opened for OA metrics
 922 * @buf: destination buffer given by userspace
 923 * @count: the number of bytes userspace wants to read
 924 * @offset: (inout): the current position for writing into @buf
 925 *
 926 * Notably any error condition resulting in a short read (-%ENOSPC or
 927 * -%EFAULT) will be returned even though one or more records may
 928 * have been successfully copied. In this case it's up to the caller
 929 * to decide if the error should be squashed before returning to
 930 * userspace.
 931 *
 932 * Note: reports are consumed from the head, and appended to the
 933 * tail, so the tail chases the head?... If you think that's mad
 934 * and back-to-front you're not alone, but this follows the
 935 * Gen PRM naming convention.
 936 *
 937 * Returns: 0 on success, negative error code on failure.
 938 */
 939static int gen7_append_oa_reports(struct i915_perf_stream *stream,
 940                                  char __user *buf,
 941                                  size_t count,
 942                                  size_t *offset)
 943{
 944        struct intel_uncore *uncore = stream->uncore;
 945        int report_size = stream->oa_buffer.format_size;
 946        u8 *oa_buf_base = stream->oa_buffer.vaddr;
 947        u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
 948        u32 mask = (OA_BUFFER_SIZE - 1);
 949        size_t start_offset = *offset;
 950        unsigned long flags;
 951        u32 head, tail;
 952        u32 taken;
 953        int ret = 0;
 954
 955        if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
 956                return -EIO;
 957
 958        spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
 959
 960        head = stream->oa_buffer.head;
 961        tail = stream->oa_buffer.tail;
 962
 963        spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
 964
 965        /* NB: oa_buffer.head/tail include the gtt_offset which we don't want
 966         * while indexing relative to oa_buf_base.
 967         */
 968        head -= gtt_offset;
 969        tail -= gtt_offset;
 970
 971        /* An out of bounds or misaligned head or tail pointer implies a driver
 972         * bug since we validate + align the tail pointers we read from the
 973         * hardware and we are in full control of the head pointer which should
 974         * only be incremented by multiples of the report size (notably also
 975         * all a power of two).
 976         */
 977        if (drm_WARN_ONCE(&uncore->i915->drm,
 978                          head > OA_BUFFER_SIZE || head % report_size ||
 979                          tail > OA_BUFFER_SIZE || tail % report_size,
 980                          "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
 981                          head, tail))
 982                return -EIO;
 983
 984
 985        for (/* none */;
 986             (taken = OA_TAKEN(tail, head));
 987             head = (head + report_size) & mask) {
 988                u8 *report = oa_buf_base + head;
 989                u32 *report32 = (void *)report;
 990
 991                /* All the report sizes factor neatly into the buffer
 992                 * size so we never expect to see a report split
 993                 * between the beginning and end of the buffer.
 994                 *
 995                 * Given the initial alignment check a misalignment
 996                 * here would imply a driver bug that would result
 997                 * in an overrun.
 998                 */
 999                if (drm_WARN_ON(&uncore->i915->drm,
1000                                (OA_BUFFER_SIZE - head) < report_size)) {
1001                        drm_err(&uncore->i915->drm,
1002                                "Spurious OA head ptr: non-integral report offset\n");
1003                        break;
1004                }
1005
1006                /* The report-ID field for periodic samples includes
1007                 * some undocumented flags related to what triggered
1008                 * the report and is never expected to be zero so we
1009                 * can check that the report isn't invalid before
1010                 * copying it to userspace...
1011                 */
1012                if (report32[0] == 0) {
1013                        if (__ratelimit(&stream->perf->spurious_report_rs))
1014                                DRM_NOTE("Skipping spurious, invalid OA report\n");
1015                        continue;
1016                }
1017
1018                ret = append_oa_sample(stream, buf, count, offset, report);
1019                if (ret)
1020                        break;
1021
1022                /* Clear out the first 2 dwords as a mean to detect unlanded
1023                 * reports.
1024                 */
1025                report32[0] = 0;
1026                report32[1] = 0;
1027        }
1028
1029        if (start_offset != *offset) {
1030                spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1031
1032                /* We removed the gtt_offset for the copy loop above, indexing
1033                 * relative to oa_buf_base so put back here...
1034                 */
1035                head += gtt_offset;
1036
1037                intel_uncore_write(uncore, GEN7_OASTATUS2,
1038                                   (head & GEN7_OASTATUS2_HEAD_MASK) |
1039                                   GEN7_OASTATUS2_MEM_SELECT_GGTT);
1040                stream->oa_buffer.head = head;
1041
1042                spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1043        }
1044
1045        return ret;
1046}
1047
1048/**
1049 * gen7_oa_read - copy status records then buffered OA reports
1050 * @stream: An i915-perf stream opened for OA metrics
1051 * @buf: destination buffer given by userspace
1052 * @count: the number of bytes userspace wants to read
1053 * @offset: (inout): the current position for writing into @buf
1054 *
1055 * Checks Gen 7 specific OA unit status registers and if necessary appends
1056 * corresponding status records for userspace (such as for a buffer full
1057 * condition) and then initiate appending any buffered OA reports.
1058 *
1059 * Updates @offset according to the number of bytes successfully copied into
1060 * the userspace buffer.
1061 *
1062 * Returns: zero on success or a negative error code
1063 */
1064static int gen7_oa_read(struct i915_perf_stream *stream,
1065                        char __user *buf,
1066                        size_t count,
1067                        size_t *offset)
1068{
1069        struct intel_uncore *uncore = stream->uncore;
1070        u32 oastatus1;
1071        int ret;
1072
1073        if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
1074                return -EIO;
1075
1076        oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1077
1078        /* XXX: On Haswell we don't have a safe way to clear oastatus1
1079         * bits while the OA unit is enabled (while the tail pointer
1080         * may be updated asynchronously) so we ignore status bits
1081         * that have already been reported to userspace.
1082         */
1083        oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
1084
1085        /* We treat OABUFFER_OVERFLOW as a significant error:
1086         *
1087         * - The status can be interpreted to mean that the buffer is
1088         *   currently full (with a higher precedence than OA_TAKEN()
1089         *   which will start to report a near-empty buffer after an
1090         *   overflow) but it's awkward that we can't clear the status
1091         *   on Haswell, so without a reset we won't be able to catch
1092         *   the state again.
1093         *
1094         * - Since it also implies the HW has started overwriting old
1095         *   reports it may also affect our sanity checks for invalid
1096         *   reports when copying to userspace that assume new reports
1097         *   are being written to cleared memory.
1098         *
1099         * - In the future we may want to introduce a flight recorder
1100         *   mode where the driver will automatically maintain a safe
1101         *   guard band between head/tail, avoiding this overflow
1102         *   condition, but we avoid the added driver complexity for
1103         *   now.
1104         */
1105        if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1106                ret = append_oa_status(stream, buf, count, offset,
1107                                       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1108                if (ret)
1109                        return ret;
1110
1111                DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1112                          stream->period_exponent);
1113
1114                stream->perf->ops.oa_disable(stream);
1115                stream->perf->ops.oa_enable(stream);
1116
1117                oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1118        }
1119
1120        if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1121                ret = append_oa_status(stream, buf, count, offset,
1122                                       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1123                if (ret)
1124                        return ret;
1125                stream->perf->gen7_latched_oastatus1 |=
1126                        GEN7_OASTATUS1_REPORT_LOST;
1127        }
1128
1129        return gen7_append_oa_reports(stream, buf, count, offset);
1130}
1131
1132/**
1133 * i915_oa_wait_unlocked - handles blocking IO until OA data available
1134 * @stream: An i915-perf stream opened for OA metrics
1135 *
1136 * Called when userspace tries to read() from a blocking stream FD opened
1137 * for OA metrics. It waits until the hrtimer callback finds a non-empty
1138 * OA buffer and wakes us.
1139 *
1140 * Note: it's acceptable to have this return with some false positives
1141 * since any subsequent read handling will return -EAGAIN if there isn't
1142 * really data ready for userspace yet.
1143 *
1144 * Returns: zero on success or a negative error code
1145 */
1146static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1147{
1148        /* We would wait indefinitely if periodic sampling is not enabled */
1149        if (!stream->periodic)
1150                return -EIO;
1151
1152        return wait_event_interruptible(stream->poll_wq,
1153                                        oa_buffer_check_unlocked(stream));
1154}
1155
1156/**
1157 * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1158 * @stream: An i915-perf stream opened for OA metrics
1159 * @file: An i915 perf stream file
1160 * @wait: poll() state table
1161 *
1162 * For handling userspace polling on an i915 perf stream opened for OA metrics,
1163 * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1164 * when it sees data ready to read in the circular OA buffer.
1165 */
1166static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1167                              struct file *file,
1168                              poll_table *wait)
1169{
1170        poll_wait(file, &stream->poll_wq, wait);
1171}
1172
1173/**
1174 * i915_oa_read - just calls through to &i915_oa_ops->read
1175 * @stream: An i915-perf stream opened for OA metrics
1176 * @buf: destination buffer given by userspace
1177 * @count: the number of bytes userspace wants to read
1178 * @offset: (inout): the current position for writing into @buf
1179 *
1180 * Updates @offset according to the number of bytes successfully copied into
1181 * the userspace buffer.
1182 *
1183 * Returns: zero on success or a negative error code
1184 */
1185static int i915_oa_read(struct i915_perf_stream *stream,
1186                        char __user *buf,
1187                        size_t count,
1188                        size_t *offset)
1189{
1190        return stream->perf->ops.read(stream, buf, count, offset);
1191}
1192
1193static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1194{
1195        struct i915_gem_engines_iter it;
1196        struct i915_gem_context *ctx = stream->ctx;
1197        struct intel_context *ce;
1198        int err;
1199
1200        for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1201                if (ce->engine != stream->engine) /* first match! */
1202                        continue;
1203
1204                /*
1205                 * As the ID is the gtt offset of the context's vma we
1206                 * pin the vma to ensure the ID remains fixed.
1207                 */
1208                err = intel_context_pin(ce);
1209                if (err == 0) {
1210                        stream->pinned_ctx = ce;
1211                        break;
1212                }
1213        }
1214        i915_gem_context_unlock_engines(ctx);
1215
1216        return stream->pinned_ctx;
1217}
1218
1219/**
1220 * oa_get_render_ctx_id - determine and hold ctx hw id
1221 * @stream: An i915-perf stream opened for OA metrics
1222 *
1223 * Determine the render context hw id, and ensure it remains fixed for the
1224 * lifetime of the stream. This ensures that we don't have to worry about
1225 * updating the context ID in OACONTROL on the fly.
1226 *
1227 * Returns: zero on success or a negative error code
1228 */
1229static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1230{
1231        struct intel_context *ce;
1232
1233        ce = oa_pin_context(stream);
1234        if (IS_ERR(ce))
1235                return PTR_ERR(ce);
1236
1237        switch (INTEL_GEN(ce->engine->i915)) {
1238        case 7: {
1239                /*
1240                 * On Haswell we don't do any post processing of the reports
1241                 * and don't need to use the mask.
1242                 */
1243                stream->specific_ctx_id = i915_ggtt_offset(ce->state);
1244                stream->specific_ctx_id_mask = 0;
1245                break;
1246        }
1247
1248        case 8:
1249        case 9:
1250        case 10:
1251                if (intel_engine_in_execlists_submission_mode(ce->engine)) {
1252                        stream->specific_ctx_id_mask =
1253                                (1U << GEN8_CTX_ID_WIDTH) - 1;
1254                        stream->specific_ctx_id = stream->specific_ctx_id_mask;
1255                } else {
1256                        /*
1257                         * When using GuC, the context descriptor we write in
1258                         * i915 is read by GuC and rewritten before it's
1259                         * actually written into the hardware. The LRCA is
1260                         * what is put into the context id field of the
1261                         * context descriptor by GuC. Because it's aligned to
1262                         * a page, the lower 12bits are always at 0 and
1263                         * dropped by GuC. They won't be part of the context
1264                         * ID in the OA reports, so squash those lower bits.
1265                         */
1266                        stream->specific_ctx_id = ce->lrc.lrca >> 12;
1267
1268                        /*
1269                         * GuC uses the top bit to signal proxy submission, so
1270                         * ignore that bit.
1271                         */
1272                        stream->specific_ctx_id_mask =
1273                                (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1274                }
1275                break;
1276
1277        case 11:
1278        case 12: {
1279                stream->specific_ctx_id_mask =
1280                        ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1281                /*
1282                 * Pick an unused context id
1283                 * 0 - BITS_PER_LONG are used by other contexts
1284                 * GEN12_MAX_CONTEXT_HW_ID (0x7ff) is used by idle context
1285                 */
1286                stream->specific_ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1287                break;
1288        }
1289
1290        default:
1291                MISSING_CASE(INTEL_GEN(ce->engine->i915));
1292        }
1293
1294        ce->tag = stream->specific_ctx_id;
1295
1296        drm_dbg(&stream->perf->i915->drm,
1297                "filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1298                stream->specific_ctx_id,
1299                stream->specific_ctx_id_mask);
1300
1301        return 0;
1302}
1303
1304/**
1305 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1306 * @stream: An i915-perf stream opened for OA metrics
1307 *
1308 * In case anything needed doing to ensure the context HW ID would remain valid
1309 * for the lifetime of the stream, then that can be undone here.
1310 */
1311static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1312{
1313        struct intel_context *ce;
1314
1315        ce = fetch_and_zero(&stream->pinned_ctx);
1316        if (ce) {
1317                ce->tag = 0; /* recomputed on next submission after parking */
1318                intel_context_unpin(ce);
1319        }
1320
1321        stream->specific_ctx_id = INVALID_CTX_ID;
1322        stream->specific_ctx_id_mask = 0;
1323}
1324
1325static void
1326free_oa_buffer(struct i915_perf_stream *stream)
1327{
1328        i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1329                                   I915_VMA_RELEASE_MAP);
1330
1331        stream->oa_buffer.vaddr = NULL;
1332}
1333
1334static void
1335free_oa_configs(struct i915_perf_stream *stream)
1336{
1337        struct i915_oa_config_bo *oa_bo, *tmp;
1338
1339        i915_oa_config_put(stream->oa_config);
1340        llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node)
1341                free_oa_config_bo(oa_bo);
1342}
1343
1344static void
1345free_noa_wait(struct i915_perf_stream *stream)
1346{
1347        i915_vma_unpin_and_release(&stream->noa_wait, 0);
1348}
1349
1350static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1351{
1352        struct i915_perf *perf = stream->perf;
1353
1354        BUG_ON(stream != perf->exclusive_stream);
1355
1356        /*
1357         * Unset exclusive_stream first, it will be checked while disabling
1358         * the metric set on gen8+.
1359         *
1360         * See i915_oa_init_reg_state() and lrc_configure_all_contexts()
1361         */
1362        WRITE_ONCE(perf->exclusive_stream, NULL);
1363        perf->ops.disable_metric_set(stream);
1364
1365        free_oa_buffer(stream);
1366
1367        intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
1368        intel_engine_pm_put(stream->engine);
1369
1370        if (stream->ctx)
1371                oa_put_render_ctx_id(stream);
1372
1373        free_oa_configs(stream);
1374        free_noa_wait(stream);
1375
1376        if (perf->spurious_report_rs.missed) {
1377                DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1378                         perf->spurious_report_rs.missed);
1379        }
1380}
1381
1382static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1383{
1384        struct intel_uncore *uncore = stream->uncore;
1385        u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1386        unsigned long flags;
1387
1388        spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1389
1390        /* Pre-DevBDW: OABUFFER must be set with counters off,
1391         * before OASTATUS1, but after OASTATUS2
1392         */
1393        intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
1394                           gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
1395        stream->oa_buffer.head = gtt_offset;
1396
1397        intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset);
1398
1399        intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
1400                           gtt_offset | OABUFFER_SIZE_16M);
1401
1402        /* Mark that we need updated tail pointers to read from... */
1403        stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1404        stream->oa_buffer.tail = gtt_offset;
1405
1406        spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1407
1408        /* On Haswell we have to track which OASTATUS1 flags we've
1409         * already seen since they can't be cleared while periodic
1410         * sampling is enabled.
1411         */
1412        stream->perf->gen7_latched_oastatus1 = 0;
1413
1414        /* NB: although the OA buffer will initially be allocated
1415         * zeroed via shmfs (and so this memset is redundant when
1416         * first allocating), we may re-init the OA buffer, either
1417         * when re-enabling a stream or in error/reset paths.
1418         *
1419         * The reason we clear the buffer for each re-init is for the
1420         * sanity check in gen7_append_oa_reports() that looks at the
1421         * report-id field to make sure it's non-zero which relies on
1422         * the assumption that new reports are being written to zeroed
1423         * memory...
1424         */
1425        memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1426}
1427
1428static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1429{
1430        struct intel_uncore *uncore = stream->uncore;
1431        u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1432        unsigned long flags;
1433
1434        spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1435
1436        intel_uncore_write(uncore, GEN8_OASTATUS, 0);
1437        intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset);
1438        stream->oa_buffer.head = gtt_offset;
1439
1440        intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0);
1441
1442        /*
1443         * PRM says:
1444         *
1445         *  "This MMIO must be set before the OATAILPTR
1446         *  register and after the OAHEADPTR register. This is
1447         *  to enable proper functionality of the overflow
1448         *  bit."
1449         */
1450        intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset |
1451                   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1452        intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1453
1454        /* Mark that we need updated tail pointers to read from... */
1455        stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1456        stream->oa_buffer.tail = gtt_offset;
1457
1458        /*
1459         * Reset state used to recognise context switches, affecting which
1460         * reports we will forward to userspace while filtering for a single
1461         * context.
1462         */
1463        stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1464
1465        spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1466
1467        /*
1468         * NB: although the OA buffer will initially be allocated
1469         * zeroed via shmfs (and so this memset is redundant when
1470         * first allocating), we may re-init the OA buffer, either
1471         * when re-enabling a stream or in error/reset paths.
1472         *
1473         * The reason we clear the buffer for each re-init is for the
1474         * sanity check in gen8_append_oa_reports() that looks at the
1475         * reason field to make sure it's non-zero which relies on
1476         * the assumption that new reports are being written to zeroed
1477         * memory...
1478         */
1479        memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1480}
1481
1482static void gen12_init_oa_buffer(struct i915_perf_stream *stream)
1483{
1484        struct intel_uncore *uncore = stream->uncore;
1485        u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1486        unsigned long flags;
1487
1488        spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1489
1490        intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0);
1491        intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR,
1492                           gtt_offset & GEN12_OAG_OAHEADPTR_MASK);
1493        stream->oa_buffer.head = gtt_offset;
1494
1495        /*
1496         * PRM says:
1497         *
1498         *  "This MMIO must be set before the OATAILPTR
1499         *  register and after the OAHEADPTR register. This is
1500         *  to enable proper functionality of the overflow
1501         *  bit."
1502         */
1503        intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset |
1504                           OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1505        intel_uncore_write(uncore, GEN12_OAG_OATAILPTR,
1506                           gtt_offset & GEN12_OAG_OATAILPTR_MASK);
1507
1508        /* Mark that we need updated tail pointers to read from... */
1509        stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1510        stream->oa_buffer.tail = gtt_offset;
1511
1512        /*
1513         * Reset state used to recognise context switches, affecting which
1514         * reports we will forward to userspace while filtering for a single
1515         * context.
1516         */
1517        stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1518
1519        spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1520
1521        /*
1522         * NB: although the OA buffer will initially be allocated
1523         * zeroed via shmfs (and so this memset is redundant when
1524         * first allocating), we may re-init the OA buffer, either
1525         * when re-enabling a stream or in error/reset paths.
1526         *
1527         * The reason we clear the buffer for each re-init is for the
1528         * sanity check in gen8_append_oa_reports() that looks at the
1529         * reason field to make sure it's non-zero which relies on
1530         * the assumption that new reports are being written to zeroed
1531         * memory...
1532         */
1533        memset(stream->oa_buffer.vaddr, 0,
1534               stream->oa_buffer.vma->size);
1535}
1536
1537static int alloc_oa_buffer(struct i915_perf_stream *stream)
1538{
1539        struct drm_i915_private *i915 = stream->perf->i915;
1540        struct drm_i915_gem_object *bo;
1541        struct i915_vma *vma;
1542        int ret;
1543
1544        if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma))
1545                return -ENODEV;
1546
1547        BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1548        BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1549
1550        bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE);
1551        if (IS_ERR(bo)) {
1552                drm_err(&i915->drm, "Failed to allocate OA buffer\n");
1553                return PTR_ERR(bo);
1554        }
1555
1556        i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1557
1558        /* PreHSW required 512K alignment, HSW requires 16M */
1559        vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1560        if (IS_ERR(vma)) {
1561                ret = PTR_ERR(vma);
1562                goto err_unref;
1563        }
1564        stream->oa_buffer.vma = vma;
1565
1566        stream->oa_buffer.vaddr =
1567                i915_gem_object_pin_map(bo, I915_MAP_WB);
1568        if (IS_ERR(stream->oa_buffer.vaddr)) {
1569                ret = PTR_ERR(stream->oa_buffer.vaddr);
1570                goto err_unpin;
1571        }
1572
1573        return 0;
1574
1575err_unpin:
1576        __i915_vma_unpin(vma);
1577
1578err_unref:
1579        i915_gem_object_put(bo);
1580
1581        stream->oa_buffer.vaddr = NULL;
1582        stream->oa_buffer.vma = NULL;
1583
1584        return ret;
1585}
1586
1587static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs,
1588                                  bool save, i915_reg_t reg, u32 offset,
1589                                  u32 dword_count)
1590{
1591        u32 cmd;
1592        u32 d;
1593
1594        cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM;
1595        cmd |= MI_SRM_LRM_GLOBAL_GTT;
1596        if (INTEL_GEN(stream->perf->i915) >= 8)
1597                cmd++;
1598
1599        for (d = 0; d < dword_count; d++) {
1600                *cs++ = cmd;
1601                *cs++ = i915_mmio_reg_offset(reg) + 4 * d;
1602                *cs++ = intel_gt_scratch_offset(stream->engine->gt,
1603                                                offset) + 4 * d;
1604                *cs++ = 0;
1605        }
1606
1607        return cs;
1608}
1609
1610static int alloc_noa_wait(struct i915_perf_stream *stream)
1611{
1612        struct drm_i915_private *i915 = stream->perf->i915;
1613        struct drm_i915_gem_object *bo;
1614        struct i915_vma *vma;
1615        const u64 delay_ticks = 0xffffffffffffffff -
1616                i915_cs_timestamp_ns_to_ticks(i915, atomic64_read(&stream->perf->noa_programming_delay));
1617        const u32 base = stream->engine->mmio_base;
1618#define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
1619        u32 *batch, *ts0, *cs, *jump;
1620        int ret, i;
1621        enum {
1622                START_TS,
1623                NOW_TS,
1624                DELTA_TS,
1625                JUMP_PREDICATE,
1626                DELTA_TARGET,
1627                N_CS_GPR
1628        };
1629
1630        bo = i915_gem_object_create_internal(i915, 4096);
1631        if (IS_ERR(bo)) {
1632                drm_err(&i915->drm,
1633                        "Failed to allocate NOA wait batchbuffer\n");
1634                return PTR_ERR(bo);
1635        }
1636
1637        /*
1638         * We pin in GGTT because we jump into this buffer now because
1639         * multiple OA config BOs will have a jump to this address and it
1640         * needs to be fixed during the lifetime of the i915/perf stream.
1641         */
1642        vma = i915_gem_object_ggtt_pin(bo, NULL, 0, 0, PIN_HIGH);
1643        if (IS_ERR(vma)) {
1644                ret = PTR_ERR(vma);
1645                goto err_unref;
1646        }
1647
1648        batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB);
1649        if (IS_ERR(batch)) {
1650                ret = PTR_ERR(batch);
1651                goto err_unpin;
1652        }
1653
1654        /* Save registers. */
1655        for (i = 0; i < N_CS_GPR; i++)
1656                cs = save_restore_register(
1657                        stream, cs, true /* save */, CS_GPR(i),
1658                        INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1659        cs = save_restore_register(
1660                stream, cs, true /* save */, MI_PREDICATE_RESULT_1,
1661                INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1662
1663        /* First timestamp snapshot location. */
1664        ts0 = cs;
1665
1666        /*
1667         * Initial snapshot of the timestamp register to implement the wait.
1668         * We work with 32b values, so clear out the top 32b bits of the
1669         * register because the ALU works 64bits.
1670         */
1671        *cs++ = MI_LOAD_REGISTER_IMM(1);
1672        *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4;
1673        *cs++ = 0;
1674        *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1675        *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1676        *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS));
1677
1678        /*
1679         * This is the location we're going to jump back into until the
1680         * required amount of time has passed.
1681         */
1682        jump = cs;
1683
1684        /*
1685         * Take another snapshot of the timestamp register. Take care to clear
1686         * up the top 32bits of CS_GPR(1) as we're using it for other
1687         * operations below.
1688         */
1689        *cs++ = MI_LOAD_REGISTER_IMM(1);
1690        *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4;
1691        *cs++ = 0;
1692        *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1693        *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1694        *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS));
1695
1696        /*
1697         * Do a diff between the 2 timestamps and store the result back into
1698         * CS_GPR(1).
1699         */
1700        *cs++ = MI_MATH(5);
1701        *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
1702        *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
1703        *cs++ = MI_MATH_SUB;
1704        *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU);
1705        *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1706
1707        /*
1708         * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
1709         * timestamp have rolled over the 32bits) into the predicate register
1710         * to be used for the predicated jump.
1711         */
1712        *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1713        *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1714        *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);
1715
1716        /* Restart from the beginning if we had timestamps roll over. */
1717        *cs++ = (INTEL_GEN(i915) < 8 ?
1718                 MI_BATCH_BUFFER_START :
1719                 MI_BATCH_BUFFER_START_GEN8) |
1720                MI_BATCH_PREDICATE;
1721        *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4;
1722        *cs++ = 0;
1723
1724        /*
1725         * Now add the diff between to previous timestamps and add it to :
1726         *      (((1 * << 64) - 1) - delay_ns)
1727         *
1728         * When the Carry Flag contains 1 this means the elapsed time is
1729         * longer than the expected delay, and we can exit the wait loop.
1730         */
1731        *cs++ = MI_LOAD_REGISTER_IMM(2);
1732        *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET));
1733        *cs++ = lower_32_bits(delay_ticks);
1734        *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4;
1735        *cs++ = upper_32_bits(delay_ticks);
1736
1737        *cs++ = MI_MATH(4);
1738        *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS));
1739        *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET));
1740        *cs++ = MI_MATH_ADD;
1741        *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1742
1743        *cs++ = MI_ARB_CHECK;
1744
1745        /*
1746         * Transfer the result into the predicate register to be used for the
1747         * predicated jump.
1748         */
1749        *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1750        *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1751        *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);
1752
1753        /* Predicate the jump.  */
1754        *cs++ = (INTEL_GEN(i915) < 8 ?
1755                 MI_BATCH_BUFFER_START :
1756                 MI_BATCH_BUFFER_START_GEN8) |
1757                MI_BATCH_PREDICATE;
1758        *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4;
1759        *cs++ = 0;
1760
1761        /* Restore registers. */
1762        for (i = 0; i < N_CS_GPR; i++)
1763                cs = save_restore_register(
1764                        stream, cs, false /* restore */, CS_GPR(i),
1765                        INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1766        cs = save_restore_register(
1767                stream, cs, false /* restore */, MI_PREDICATE_RESULT_1,
1768                INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1769
1770        /* And return to the ring. */
1771        *cs++ = MI_BATCH_BUFFER_END;
1772
1773        GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch));
1774
1775        i915_gem_object_flush_map(bo);
1776        __i915_gem_object_release_map(bo);
1777
1778        stream->noa_wait = vma;
1779        return 0;
1780
1781err_unpin:
1782        i915_vma_unpin_and_release(&vma, 0);
1783err_unref:
1784        i915_gem_object_put(bo);
1785        return ret;
1786}
1787
1788static u32 *write_cs_mi_lri(u32 *cs,
1789                            const struct i915_oa_reg *reg_data,
1790                            u32 n_regs)
1791{
1792        u32 i;
1793
1794        for (i = 0; i < n_regs; i++) {
1795                if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) {
1796                        u32 n_lri = min_t(u32,
1797                                          n_regs - i,
1798                                          MI_LOAD_REGISTER_IMM_MAX_REGS);
1799
1800                        *cs++ = MI_LOAD_REGISTER_IMM(n_lri);
1801                }
1802                *cs++ = i915_mmio_reg_offset(reg_data[i].addr);
1803                *cs++ = reg_data[i].value;
1804        }
1805
1806        return cs;
1807}
1808
1809static int num_lri_dwords(int num_regs)
1810{
1811        int count = 0;
1812
1813        if (num_regs > 0) {
1814                count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS);
1815                count += num_regs * 2;
1816        }
1817
1818        return count;
1819}
1820
1821static struct i915_oa_config_bo *
1822alloc_oa_config_buffer(struct i915_perf_stream *stream,
1823                       struct i915_oa_config *oa_config)
1824{
1825        struct drm_i915_gem_object *obj;
1826        struct i915_oa_config_bo *oa_bo;
1827        size_t config_length = 0;
1828        u32 *cs;
1829        int err;
1830
1831        oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL);
1832        if (!oa_bo)
1833                return ERR_PTR(-ENOMEM);
1834
1835        config_length += num_lri_dwords(oa_config->mux_regs_len);
1836        config_length += num_lri_dwords(oa_config->b_counter_regs_len);
1837        config_length += num_lri_dwords(oa_config->flex_regs_len);
1838        config_length += 3; /* MI_BATCH_BUFFER_START */
1839        config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE);
1840
1841        obj = i915_gem_object_create_shmem(stream->perf->i915, config_length);
1842        if (IS_ERR(obj)) {
1843                err = PTR_ERR(obj);
1844                goto err_free;
1845        }
1846
1847        cs = i915_gem_object_pin_map(obj, I915_MAP_WB);
1848        if (IS_ERR(cs)) {
1849                err = PTR_ERR(cs);
1850                goto err_oa_bo;
1851        }
1852
1853        cs = write_cs_mi_lri(cs,
1854                             oa_config->mux_regs,
1855                             oa_config->mux_regs_len);
1856        cs = write_cs_mi_lri(cs,
1857                             oa_config->b_counter_regs,
1858                             oa_config->b_counter_regs_len);
1859        cs = write_cs_mi_lri(cs,
1860                             oa_config->flex_regs,
1861                             oa_config->flex_regs_len);
1862
1863        /* Jump into the active wait. */
1864        *cs++ = (INTEL_GEN(stream->perf->i915) < 8 ?
1865                 MI_BATCH_BUFFER_START :
1866                 MI_BATCH_BUFFER_START_GEN8);
1867        *cs++ = i915_ggtt_offset(stream->noa_wait);
1868        *cs++ = 0;
1869
1870        i915_gem_object_flush_map(obj);
1871        __i915_gem_object_release_map(obj);
1872
1873        oa_bo->vma = i915_vma_instance(obj,
1874                                       &stream->engine->gt->ggtt->vm,
1875                                       NULL);
1876        if (IS_ERR(oa_bo->vma)) {
1877                err = PTR_ERR(oa_bo->vma);
1878                goto err_oa_bo;
1879        }
1880
1881        oa_bo->oa_config = i915_oa_config_get(oa_config);
1882        llist_add(&oa_bo->node, &stream->oa_config_bos);
1883
1884        return oa_bo;
1885
1886err_oa_bo:
1887        i915_gem_object_put(obj);
1888err_free:
1889        kfree(oa_bo);
1890        return ERR_PTR(err);
1891}
1892
1893static struct i915_vma *
1894get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config)
1895{
1896        struct i915_oa_config_bo *oa_bo;
1897
1898        /*
1899         * Look for the buffer in the already allocated BOs attached
1900         * to the stream.
1901         */
1902        llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) {
1903                if (oa_bo->oa_config == oa_config &&
1904                    memcmp(oa_bo->oa_config->uuid,
1905                           oa_config->uuid,
1906                           sizeof(oa_config->uuid)) == 0)
1907                        goto out;
1908        }
1909
1910        oa_bo = alloc_oa_config_buffer(stream, oa_config);
1911        if (IS_ERR(oa_bo))
1912                return ERR_CAST(oa_bo);
1913
1914out:
1915        return i915_vma_get(oa_bo->vma);
1916}
1917
1918static int
1919emit_oa_config(struct i915_perf_stream *stream,
1920               struct i915_oa_config *oa_config,
1921               struct intel_context *ce,
1922               struct i915_active *active)
1923{
1924        struct i915_request *rq;
1925        struct i915_vma *vma;
1926        int err;
1927
1928        vma = get_oa_vma(stream, oa_config);
1929        if (IS_ERR(vma))
1930                return PTR_ERR(vma);
1931
1932        err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1933        if (err)
1934                goto err_vma_put;
1935
1936        intel_engine_pm_get(ce->engine);
1937        rq = i915_request_create(ce);
1938        intel_engine_pm_put(ce->engine);
1939        if (IS_ERR(rq)) {
1940                err = PTR_ERR(rq);
1941                goto err_vma_unpin;
1942        }
1943
1944        if (!IS_ERR_OR_NULL(active)) {
1945                /* After all individual context modifications */
1946                err = i915_request_await_active(rq, active,
1947                                                I915_ACTIVE_AWAIT_ACTIVE);
1948                if (err)
1949                        goto err_add_request;
1950
1951                err = i915_active_add_request(active, rq);
1952                if (err)
1953                        goto err_add_request;
1954        }
1955
1956        i915_vma_lock(vma);
1957        err = i915_request_await_object(rq, vma->obj, 0);
1958        if (!err)
1959                err = i915_vma_move_to_active(vma, rq, 0);
1960        i915_vma_unlock(vma);
1961        if (err)
1962                goto err_add_request;
1963
1964        err = rq->engine->emit_bb_start(rq,
1965                                        vma->node.start, 0,
1966                                        I915_DISPATCH_SECURE);
1967        if (err)
1968                goto err_add_request;
1969
1970err_add_request:
1971        i915_request_add(rq);
1972err_vma_unpin:
1973        i915_vma_unpin(vma);
1974err_vma_put:
1975        i915_vma_put(vma);
1976        return err;
1977}
1978
1979static struct intel_context *oa_context(struct i915_perf_stream *stream)
1980{
1981        return stream->pinned_ctx ?: stream->engine->kernel_context;
1982}
1983
1984static int
1985hsw_enable_metric_set(struct i915_perf_stream *stream,
1986                      struct i915_active *active)
1987{
1988        struct intel_uncore *uncore = stream->uncore;
1989
1990        /*
1991         * PRM:
1992         *
1993         * OA unit is using “crclk” for its functionality. When trunk
1994         * level clock gating takes place, OA clock would be gated,
1995         * unable to count the events from non-render clock domain.
1996         * Render clock gating must be disabled when OA is enabled to
1997         * count the events from non-render domain. Unit level clock
1998         * gating for RCS should also be disabled.
1999         */
2000        intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2001                         GEN7_DOP_CLOCK_GATE_ENABLE, 0);
2002        intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2003                         0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
2004
2005        return emit_oa_config(stream,
2006                              stream->oa_config, oa_context(stream),
2007                              active);
2008}
2009
2010static void hsw_disable_metric_set(struct i915_perf_stream *stream)
2011{
2012        struct intel_uncore *uncore = stream->uncore;
2013
2014        intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2015                         GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0);
2016        intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2017                         0, GEN7_DOP_CLOCK_GATE_ENABLE);
2018
2019        intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2020}
2021
2022static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
2023                              i915_reg_t reg)
2024{
2025        u32 mmio = i915_mmio_reg_offset(reg);
2026        int i;
2027
2028        /*
2029         * This arbitrary default will select the 'EU FPU0 Pipeline
2030         * Active' event. In the future it's anticipated that there
2031         * will be an explicit 'No Event' we can select, but not yet...
2032         */
2033        if (!oa_config)
2034                return 0;
2035
2036        for (i = 0; i < oa_config->flex_regs_len; i++) {
2037                if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
2038                        return oa_config->flex_regs[i].value;
2039        }
2040
2041        return 0;
2042}
2043/*
2044 * NB: It must always remain pointer safe to run this even if the OA unit
2045 * has been disabled.
2046 *
2047 * It's fine to put out-of-date values into these per-context registers
2048 * in the case that the OA unit has been disabled.
2049 */
2050static void
2051gen8_update_reg_state_unlocked(const struct intel_context *ce,
2052                               const struct i915_perf_stream *stream)
2053{
2054        u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2055        u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2056        /* The MMIO offsets for Flex EU registers aren't contiguous */
2057        i915_reg_t flex_regs[] = {
2058                EU_PERF_CNTL0,
2059                EU_PERF_CNTL1,
2060                EU_PERF_CNTL2,
2061                EU_PERF_CNTL3,
2062                EU_PERF_CNTL4,
2063                EU_PERF_CNTL5,
2064                EU_PERF_CNTL6,
2065        };
2066        u32 *reg_state = ce->lrc_reg_state;
2067        int i;
2068
2069        reg_state[ctx_oactxctrl + 1] =
2070                (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2071                (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2072                GEN8_OA_COUNTER_RESUME;
2073
2074        for (i = 0; i < ARRAY_SIZE(flex_regs); i++)
2075                reg_state[ctx_flexeu0 + i * 2 + 1] =
2076                        oa_config_flex_reg(stream->oa_config, flex_regs[i]);
2077}
2078
2079struct flex {
2080        i915_reg_t reg;
2081        u32 offset;
2082        u32 value;
2083};
2084
2085static int
2086gen8_store_flex(struct i915_request *rq,
2087                struct intel_context *ce,
2088                const struct flex *flex, unsigned int count)
2089{
2090        u32 offset;
2091        u32 *cs;
2092
2093        cs = intel_ring_begin(rq, 4 * count);
2094        if (IS_ERR(cs))
2095                return PTR_ERR(cs);
2096
2097        offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET;
2098        do {
2099                *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
2100                *cs++ = offset + flex->offset * sizeof(u32);
2101                *cs++ = 0;
2102                *cs++ = flex->value;
2103        } while (flex++, --count);
2104
2105        intel_ring_advance(rq, cs);
2106
2107        return 0;
2108}
2109
2110static int
2111gen8_load_flex(struct i915_request *rq,
2112               struct intel_context *ce,
2113               const struct flex *flex, unsigned int count)
2114{
2115        u32 *cs;
2116
2117        GEM_BUG_ON(!count || count > 63);
2118
2119        cs = intel_ring_begin(rq, 2 * count + 2);
2120        if (IS_ERR(cs))
2121                return PTR_ERR(cs);
2122
2123        *cs++ = MI_LOAD_REGISTER_IMM(count);
2124        do {
2125                *cs++ = i915_mmio_reg_offset(flex->reg);
2126                *cs++ = flex->value;
2127        } while (flex++, --count);
2128        *cs++ = MI_NOOP;
2129
2130        intel_ring_advance(rq, cs);
2131
2132        return 0;
2133}
2134
2135static int gen8_modify_context(struct intel_context *ce,
2136                               const struct flex *flex, unsigned int count)
2137{
2138        struct i915_request *rq;
2139        int err;
2140
2141        rq = intel_engine_create_kernel_request(ce->engine);
2142        if (IS_ERR(rq))
2143                return PTR_ERR(rq);
2144
2145        /* Serialise with the remote context */
2146        err = intel_context_prepare_remote_request(ce, rq);
2147        if (err == 0)
2148                err = gen8_store_flex(rq, ce, flex, count);
2149
2150        i915_request_add(rq);
2151        return err;
2152}
2153
2154static int
2155gen8_modify_self(struct intel_context *ce,
2156                 const struct flex *flex, unsigned int count,
2157                 struct i915_active *active)
2158{
2159        struct i915_request *rq;
2160        int err;
2161
2162        intel_engine_pm_get(ce->engine);
2163        rq = i915_request_create(ce);
2164        intel_engine_pm_put(ce->engine);
2165        if (IS_ERR(rq))
2166                return PTR_ERR(rq);
2167
2168        if (!IS_ERR_OR_NULL(active)) {
2169                err = i915_active_add_request(active, rq);
2170                if (err)
2171                        goto err_add_request;
2172        }
2173
2174        err = gen8_load_flex(rq, ce, flex, count);
2175        if (err)
2176                goto err_add_request;
2177
2178err_add_request:
2179        i915_request_add(rq);
2180        return err;
2181}
2182
2183static int gen8_configure_context(struct i915_gem_context *ctx,
2184                                  struct flex *flex, unsigned int count)
2185{
2186        struct i915_gem_engines_iter it;
2187        struct intel_context *ce;
2188        int err = 0;
2189
2190        for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
2191                GEM_BUG_ON(ce == ce->engine->kernel_context);
2192
2193                if (ce->engine->class != RENDER_CLASS)
2194                        continue;
2195
2196                /* Otherwise OA settings will be set upon first use */
2197                if (!intel_context_pin_if_active(ce))
2198                        continue;
2199
2200                flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu);
2201                err = gen8_modify_context(ce, flex, count);
2202
2203                intel_context_unpin(ce);
2204                if (err)
2205                        break;
2206        }
2207        i915_gem_context_unlock_engines(ctx);
2208
2209        return err;
2210}
2211
2212static int gen12_configure_oar_context(struct i915_perf_stream *stream,
2213                                       struct i915_active *active)
2214{
2215        int err;
2216        struct intel_context *ce = stream->pinned_ctx;
2217        u32 format = stream->oa_buffer.format;
2218        struct flex regs_context[] = {
2219                {
2220                        GEN8_OACTXCONTROL,
2221                        stream->perf->ctx_oactxctrl_offset + 1,
2222                        active ? GEN8_OA_COUNTER_RESUME : 0,
2223                },
2224        };
2225        /* Offsets in regs_lri are not used since this configuration is only
2226         * applied using LRI. Initialize the correct offsets for posterity.
2227         */
2228#define GEN12_OAR_OACONTROL_OFFSET 0x5B0
2229        struct flex regs_lri[] = {
2230                {
2231                        GEN12_OAR_OACONTROL,
2232                        GEN12_OAR_OACONTROL_OFFSET + 1,
2233                        (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
2234                        (active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0)
2235                },
2236                {
2237                        RING_CONTEXT_CONTROL(ce->engine->mmio_base),
2238                        CTX_CONTEXT_CONTROL,
2239                        _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE,
2240                                      active ?
2241                                      GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE :
2242                                      0)
2243                },
2244        };
2245
2246        /* Modify the context image of pinned context with regs_context*/
2247        err = intel_context_lock_pinned(ce);
2248        if (err)
2249                return err;
2250
2251        err = gen8_modify_context(ce, regs_context, ARRAY_SIZE(regs_context));
2252        intel_context_unlock_pinned(ce);
2253        if (err)
2254                return err;
2255
2256        /* Apply regs_lri using LRI with pinned context */
2257        return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active);
2258}
2259
2260/*
2261 * Manages updating the per-context aspects of the OA stream
2262 * configuration across all contexts.
2263 *
2264 * The awkward consideration here is that OACTXCONTROL controls the
2265 * exponent for periodic sampling which is primarily used for system
2266 * wide profiling where we'd like a consistent sampling period even in
2267 * the face of context switches.
2268 *
2269 * Our approach of updating the register state context (as opposed to
2270 * say using a workaround batch buffer) ensures that the hardware
2271 * won't automatically reload an out-of-date timer exponent even
2272 * transiently before a WA BB could be parsed.
2273 *
2274 * This function needs to:
2275 * - Ensure the currently running context's per-context OA state is
2276 *   updated
2277 * - Ensure that all existing contexts will have the correct per-context
2278 *   OA state if they are scheduled for use.
2279 * - Ensure any new contexts will be initialized with the correct
2280 *   per-context OA state.
2281 *
2282 * Note: it's only the RCS/Render context that has any OA state.
2283 * Note: the first flex register passed must always be R_PWR_CLK_STATE
2284 */
2285static int
2286oa_configure_all_contexts(struct i915_perf_stream *stream,
2287                          struct flex *regs,
2288                          size_t num_regs,
2289                          struct i915_active *active)
2290{
2291        struct drm_i915_private *i915 = stream->perf->i915;
2292        struct intel_engine_cs *engine;
2293        struct i915_gem_context *ctx, *cn;
2294        int err;
2295
2296        lockdep_assert_held(&stream->perf->lock);
2297
2298        /*
2299         * The OA register config is setup through the context image. This image
2300         * might be written to by the GPU on context switch (in particular on
2301         * lite-restore). This means we can't safely update a context's image,
2302         * if this context is scheduled/submitted to run on the GPU.
2303         *
2304         * We could emit the OA register config through the batch buffer but
2305         * this might leave small interval of time where the OA unit is
2306         * configured at an invalid sampling period.
2307         *
2308         * Note that since we emit all requests from a single ring, there
2309         * is still an implicit global barrier here that may cause a high
2310         * priority context to wait for an otherwise independent low priority
2311         * context. Contexts idle at the time of reconfiguration are not
2312         * trapped behind the barrier.
2313         */
2314        spin_lock(&i915->gem.contexts.lock);
2315        list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
2316                if (!kref_get_unless_zero(&ctx->ref))
2317                        continue;
2318
2319                spin_unlock(&i915->gem.contexts.lock);
2320
2321                err = gen8_configure_context(ctx, regs, num_regs);
2322                if (err) {
2323                        i915_gem_context_put(ctx);
2324                        return err;
2325                }
2326
2327                spin_lock(&i915->gem.contexts.lock);
2328                list_safe_reset_next(ctx, cn, link);
2329                i915_gem_context_put(ctx);
2330        }
2331        spin_unlock(&i915->gem.contexts.lock);
2332
2333        /*
2334         * After updating all other contexts, we need to modify ourselves.
2335         * If we don't modify the kernel_context, we do not get events while
2336         * idle.
2337         */
2338        for_each_uabi_engine(engine, i915) {
2339                struct intel_context *ce = engine->kernel_context;
2340
2341                if (engine->class != RENDER_CLASS)
2342                        continue;
2343
2344                regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu);
2345
2346                err = gen8_modify_self(ce, regs, num_regs, active);
2347                if (err)
2348                        return err;
2349        }
2350
2351        return 0;
2352}
2353
2354static int
2355gen12_configure_all_contexts(struct i915_perf_stream *stream,
2356                             const struct i915_oa_config *oa_config,
2357                             struct i915_active *active)
2358{
2359        struct flex regs[] = {
2360                {
2361                        GEN8_R_PWR_CLK_STATE,
2362                        CTX_R_PWR_CLK_STATE,
2363                },
2364        };
2365
2366        return oa_configure_all_contexts(stream,
2367                                         regs, ARRAY_SIZE(regs),
2368                                         active);
2369}
2370
2371static int
2372lrc_configure_all_contexts(struct i915_perf_stream *stream,
2373                           const struct i915_oa_config *oa_config,
2374                           struct i915_active *active)
2375{
2376        /* The MMIO offsets for Flex EU registers aren't contiguous */
2377        const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2378#define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
2379        struct flex regs[] = {
2380                {
2381                        GEN8_R_PWR_CLK_STATE,
2382                        CTX_R_PWR_CLK_STATE,
2383                },
2384                {
2385                        GEN8_OACTXCONTROL,
2386                        stream->perf->ctx_oactxctrl_offset + 1,
2387                },
2388                { EU_PERF_CNTL0, ctx_flexeuN(0) },
2389                { EU_PERF_CNTL1, ctx_flexeuN(1) },
2390                { EU_PERF_CNTL2, ctx_flexeuN(2) },
2391                { EU_PERF_CNTL3, ctx_flexeuN(3) },
2392                { EU_PERF_CNTL4, ctx_flexeuN(4) },
2393                { EU_PERF_CNTL5, ctx_flexeuN(5) },
2394                { EU_PERF_CNTL6, ctx_flexeuN(6) },
2395        };
2396#undef ctx_flexeuN
2397        int i;
2398
2399        regs[1].value =
2400                (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2401                (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2402                GEN8_OA_COUNTER_RESUME;
2403
2404        for (i = 2; i < ARRAY_SIZE(regs); i++)
2405                regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);
2406
2407        return oa_configure_all_contexts(stream,
2408                                         regs, ARRAY_SIZE(regs),
2409                                         active);
2410}
2411
2412static int
2413gen8_enable_metric_set(struct i915_perf_stream *stream,
2414                       struct i915_active *active)
2415{
2416        struct intel_uncore *uncore = stream->uncore;
2417        struct i915_oa_config *oa_config = stream->oa_config;
2418        int ret;
2419
2420        /*
2421         * We disable slice/unslice clock ratio change reports on SKL since
2422         * they are too noisy. The HW generates a lot of redundant reports
2423         * where the ratio hasn't really changed causing a lot of redundant
2424         * work to processes and increasing the chances we'll hit buffer
2425         * overruns.
2426         *
2427         * Although we don't currently use the 'disable overrun' OABUFFER
2428         * feature it's worth noting that clock ratio reports have to be
2429         * disabled before considering to use that feature since the HW doesn't
2430         * correctly block these reports.
2431         *
2432         * Currently none of the high-level metrics we have depend on knowing
2433         * this ratio to normalize.
2434         *
2435         * Note: This register is not power context saved and restored, but
2436         * that's OK considering that we disable RC6 while the OA unit is
2437         * enabled.
2438         *
2439         * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
2440         * be read back from automatically triggered reports, as part of the
2441         * RPT_ID field.
2442         */
2443        if (IS_GEN_RANGE(stream->perf->i915, 9, 11)) {
2444                intel_uncore_write(uncore, GEN8_OA_DEBUG,
2445                                   _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2446                                                      GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
2447        }
2448
2449        /*
2450         * Update all contexts prior writing the mux configurations as we need
2451         * to make sure all slices/subslices are ON before writing to NOA
2452         * registers.
2453         */
2454        ret = lrc_configure_all_contexts(stream, oa_config, active);
2455        if (ret)
2456                return ret;
2457
2458        return emit_oa_config(stream,
2459                              stream->oa_config, oa_context(stream),
2460                              active);
2461}
2462
2463static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream)
2464{
2465        return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS,
2466                             (stream->sample_flags & SAMPLE_OA_REPORT) ?
2467                             0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS);
2468}
2469
2470static int
2471gen12_enable_metric_set(struct i915_perf_stream *stream,
2472                        struct i915_active *active)
2473{
2474        struct intel_uncore *uncore = stream->uncore;
2475        struct i915_oa_config *oa_config = stream->oa_config;
2476        bool periodic = stream->periodic;
2477        u32 period_exponent = stream->period_exponent;
2478        int ret;
2479
2480        intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG,
2481                           /* Disable clk ratio reports, like previous Gens. */
2482                           _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2483                                              GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) |
2484                           /*
2485                            * If the user didn't require OA reports, instruct
2486                            * the hardware not to emit ctx switch reports.
2487                            */
2488                           oag_report_ctx_switches(stream));
2489
2490        intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ?
2491                           (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME |
2492                            GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE |
2493                            (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT))
2494                            : 0);
2495
2496        /*
2497         * Update all contexts prior writing the mux configurations as we need
2498         * to make sure all slices/subslices are ON before writing to NOA
2499         * registers.
2500         */
2501        ret = gen12_configure_all_contexts(stream, oa_config, active);
2502        if (ret)
2503                return ret;
2504
2505        /*
2506         * For Gen12, performance counters are context
2507         * saved/restored. Only enable it for the context that
2508         * requested this.
2509         */
2510        if (stream->ctx) {
2511                ret = gen12_configure_oar_context(stream, active);
2512                if (ret)
2513                        return ret;
2514        }
2515
2516        return emit_oa_config(stream,
2517                              stream->oa_config, oa_context(stream),
2518                              active);
2519}
2520
2521static void gen8_disable_metric_set(struct i915_perf_stream *stream)
2522{
2523        struct intel_uncore *uncore = stream->uncore;
2524
2525        /* Reset all contexts' slices/subslices configurations. */
2526        lrc_configure_all_contexts(stream, NULL, NULL);
2527
2528        intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2529}
2530
2531static void gen10_disable_metric_set(struct i915_perf_stream *stream)
2532{
2533        struct intel_uncore *uncore = stream->uncore;
2534
2535        /* Reset all contexts' slices/subslices configurations. */
2536        lrc_configure_all_contexts(stream, NULL, NULL);
2537
2538        /* Make sure we disable noa to save power. */
2539        intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2540}
2541
2542static void gen12_disable_metric_set(struct i915_perf_stream *stream)
2543{
2544        struct intel_uncore *uncore = stream->uncore;
2545
2546        /* Reset all contexts' slices/subslices configurations. */
2547        gen12_configure_all_contexts(stream, NULL, NULL);
2548
2549        /* disable the context save/restore or OAR counters */
2550        if (stream->ctx)
2551                gen12_configure_oar_context(stream, NULL);
2552
2553        /* Make sure we disable noa to save power. */
2554        intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2555}
2556
2557static void gen7_oa_enable(struct i915_perf_stream *stream)
2558{
2559        struct intel_uncore *uncore = stream->uncore;
2560        struct i915_gem_context *ctx = stream->ctx;
2561        u32 ctx_id = stream->specific_ctx_id;
2562        bool periodic = stream->periodic;
2563        u32 period_exponent = stream->period_exponent;
2564        u32 report_format = stream->oa_buffer.format;
2565
2566        /*
2567         * Reset buf pointers so we don't forward reports from before now.
2568         *
2569         * Think carefully if considering trying to avoid this, since it
2570         * also ensures status flags and the buffer itself are cleared
2571         * in error paths, and we have checks for invalid reports based
2572         * on the assumption that certain fields are written to zeroed
2573         * memory which this helps maintains.
2574         */
2575        gen7_init_oa_buffer(stream);
2576
2577        intel_uncore_write(uncore, GEN7_OACONTROL,
2578                           (ctx_id & GEN7_OACONTROL_CTX_MASK) |
2579                           (period_exponent <<
2580                            GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
2581                           (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
2582                           (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
2583                           (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
2584                           GEN7_OACONTROL_ENABLE);
2585}
2586
2587static void gen8_oa_enable(struct i915_perf_stream *stream)
2588{
2589        struct intel_uncore *uncore = stream->uncore;
2590        u32 report_format = stream->oa_buffer.format;
2591
2592        /*
2593         * Reset buf pointers so we don't forward reports from before now.
2594         *
2595         * Think carefully if considering trying to avoid this, since it
2596         * also ensures status flags and the buffer itself are cleared
2597         * in error paths, and we have checks for invalid reports based
2598         * on the assumption that certain fields are written to zeroed
2599         * memory which this helps maintains.
2600         */
2601        gen8_init_oa_buffer(stream);
2602
2603        /*
2604         * Note: we don't rely on the hardware to perform single context
2605         * filtering and instead filter on the cpu based on the context-id
2606         * field of reports
2607         */
2608        intel_uncore_write(uncore, GEN8_OACONTROL,
2609                           (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
2610                           GEN8_OA_COUNTER_ENABLE);
2611}
2612
2613static void gen12_oa_enable(struct i915_perf_stream *stream)
2614{
2615        struct intel_uncore *uncore = stream->uncore;
2616        u32 report_format = stream->oa_buffer.format;
2617
2618        /*
2619         * If we don't want OA reports from the OA buffer, then we don't even
2620         * need to program the OAG unit.
2621         */
2622        if (!(stream->sample_flags & SAMPLE_OA_REPORT))
2623                return;
2624
2625        gen12_init_oa_buffer(stream);
2626
2627        intel_uncore_write(uncore, GEN12_OAG_OACONTROL,
2628                           (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) |
2629                           GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE);
2630}
2631
2632/**
2633 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
2634 * @stream: An i915 perf stream opened for OA metrics
2635 *
2636 * [Re]enables hardware periodic sampling according to the period configured
2637 * when opening the stream. This also starts a hrtimer that will periodically
2638 * check for data in the circular OA buffer for notifying userspace (e.g.
2639 * during a read() or poll()).
2640 */
2641static void i915_oa_stream_enable(struct i915_perf_stream *stream)
2642{
2643        stream->pollin = false;
2644
2645        stream->perf->ops.oa_enable(stream);
2646
2647        if (stream->periodic)
2648                hrtimer_start(&stream->poll_check_timer,
2649                              ns_to_ktime(stream->poll_oa_period),
2650                              HRTIMER_MODE_REL_PINNED);
2651}
2652
2653static void gen7_oa_disable(struct i915_perf_stream *stream)
2654{
2655        struct intel_uncore *uncore = stream->uncore;
2656
2657        intel_uncore_write(uncore, GEN7_OACONTROL, 0);
2658        if (intel_wait_for_register(uncore,
2659                                    GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
2660                                    50))
2661                drm_err(&stream->perf->i915->drm,
2662                        "wait for OA to be disabled timed out\n");
2663}
2664
2665static void gen8_oa_disable(struct i915_perf_stream *stream)
2666{
2667        struct intel_uncore *uncore = stream->uncore;
2668
2669        intel_uncore_write(uncore, GEN8_OACONTROL, 0);
2670        if (intel_wait_for_register(uncore,
2671                                    GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
2672                                    50))
2673                drm_err(&stream->perf->i915->drm,
2674                        "wait for OA to be disabled timed out\n");
2675}
2676
2677static void gen12_oa_disable(struct i915_perf_stream *stream)
2678{
2679        struct intel_uncore *uncore = stream->uncore;
2680
2681        intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0);
2682        if (intel_wait_for_register(uncore,
2683                                    GEN12_OAG_OACONTROL,
2684                                    GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0,
2685                                    50))
2686                drm_err(&stream->perf->i915->drm,
2687                        "wait for OA to be disabled timed out\n");
2688
2689        intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1);
2690        if (intel_wait_for_register(uncore,
2691                                    GEN12_OA_TLB_INV_CR,
2692                                    1, 0,
2693                                    50))
2694                drm_err(&stream->perf->i915->drm,
2695                        "wait for OA tlb invalidate timed out\n");
2696}
2697
2698/**
2699 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
2700 * @stream: An i915 perf stream opened for OA metrics
2701 *
2702 * Stops the OA unit from periodically writing counter reports into the
2703 * circular OA buffer. This also stops the hrtimer that periodically checks for
2704 * data in the circular OA buffer, for notifying userspace.
2705 */
2706static void i915_oa_stream_disable(struct i915_perf_stream *stream)
2707{
2708        stream->perf->ops.oa_disable(stream);
2709
2710        if (stream->periodic)
2711                hrtimer_cancel(&stream->poll_check_timer);
2712}
2713
2714static const struct i915_perf_stream_ops i915_oa_stream_ops = {
2715        .destroy = i915_oa_stream_destroy,
2716        .enable = i915_oa_stream_enable,
2717        .disable = i915_oa_stream_disable,
2718        .wait_unlocked = i915_oa_wait_unlocked,
2719        .poll_wait = i915_oa_poll_wait,
2720        .read = i915_oa_read,
2721};
2722
2723static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream)
2724{
2725        struct i915_active *active;
2726        int err;
2727
2728        active = i915_active_create();
2729        if (!active)
2730                return -ENOMEM;
2731
2732        err = stream->perf->ops.enable_metric_set(stream, active);
2733        if (err == 0)
2734                __i915_active_wait(active, TASK_UNINTERRUPTIBLE);
2735
2736        i915_active_put(active);
2737        return err;
2738}
2739
2740static void
2741get_default_sseu_config(struct intel_sseu *out_sseu,
2742                        struct intel_engine_cs *engine)
2743{
2744        const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu;
2745
2746        *out_sseu = intel_sseu_from_device_info(devinfo_sseu);
2747
2748        if (IS_GEN(engine->i915, 11)) {
2749                /*
2750                 * We only need subslice count so it doesn't matter which ones
2751                 * we select - just turn off low bits in the amount of half of
2752                 * all available subslices per slice.
2753                 */
2754                out_sseu->subslice_mask =
2755                        ~(~0 << (hweight8(out_sseu->subslice_mask) / 2));
2756                out_sseu->slice_mask = 0x1;
2757        }
2758}
2759
2760static int
2761get_sseu_config(struct intel_sseu *out_sseu,
2762                struct intel_engine_cs *engine,
2763                const struct drm_i915_gem_context_param_sseu *drm_sseu)
2764{
2765        if (drm_sseu->engine.engine_class != engine->uabi_class ||
2766            drm_sseu->engine.engine_instance != engine->uabi_instance)
2767                return -EINVAL;
2768
2769        return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu);
2770}
2771
2772/**
2773 * i915_oa_stream_init - validate combined props for OA stream and init
2774 * @stream: An i915 perf stream
2775 * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
2776 * @props: The property state that configures stream (individually validated)
2777 *
2778 * While read_properties_unlocked() validates properties in isolation it
2779 * doesn't ensure that the combination necessarily makes sense.
2780 *
2781 * At this point it has been determined that userspace wants a stream of
2782 * OA metrics, but still we need to further validate the combined
2783 * properties are OK.
2784 *
2785 * If the configuration makes sense then we can allocate memory for
2786 * a circular OA buffer and apply the requested metric set configuration.
2787 *
2788 * Returns: zero on success or a negative error code.
2789 */
2790static int i915_oa_stream_init(struct i915_perf_stream *stream,
2791                               struct drm_i915_perf_open_param *param,
2792                               struct perf_open_properties *props)
2793{
2794        struct drm_i915_private *i915 = stream->perf->i915;
2795        struct i915_perf *perf = stream->perf;
2796        int format_size;
2797        int ret;
2798
2799        if (!props->engine) {
2800                DRM_DEBUG("OA engine not specified\n");
2801                return -EINVAL;
2802        }
2803
2804        /*
2805         * If the sysfs metrics/ directory wasn't registered for some
2806         * reason then don't let userspace try their luck with config
2807         * IDs
2808         */
2809        if (!perf->metrics_kobj) {
2810                DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
2811                return -EINVAL;
2812        }
2813
2814        if (!(props->sample_flags & SAMPLE_OA_REPORT) &&
2815            (INTEL_GEN(perf->i915) < 12 || !stream->ctx)) {
2816                DRM_DEBUG("Only OA report sampling supported\n");
2817                return -EINVAL;
2818        }
2819
2820        if (!perf->ops.enable_metric_set) {
2821                DRM_DEBUG("OA unit not supported\n");
2822                return -ENODEV;
2823        }
2824
2825        /*
2826         * To avoid the complexity of having to accurately filter
2827         * counter reports and marshal to the appropriate client
2828         * we currently only allow exclusive access
2829         */
2830        if (perf->exclusive_stream) {
2831                DRM_DEBUG("OA unit already in use\n");
2832                return -EBUSY;
2833        }
2834
2835        if (!props->oa_format) {
2836                DRM_DEBUG("OA report format not specified\n");
2837                return -EINVAL;
2838        }
2839
2840        stream->engine = props->engine;
2841        stream->uncore = stream->engine->gt->uncore;
2842
2843        stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2844
2845        format_size = perf->oa_formats[props->oa_format].size;
2846
2847        stream->sample_flags = props->sample_flags;
2848        stream->sample_size += format_size;
2849
2850        stream->oa_buffer.format_size = format_size;
2851        if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format_size == 0))
2852                return -EINVAL;
2853
2854        stream->hold_preemption = props->hold_preemption;
2855
2856        stream->oa_buffer.format =
2857                perf->oa_formats[props->oa_format].format;
2858
2859        stream->periodic = props->oa_periodic;
2860        if (stream->periodic)
2861                stream->period_exponent = props->oa_period_exponent;
2862
2863        if (stream->ctx) {
2864                ret = oa_get_render_ctx_id(stream);
2865                if (ret) {
2866                        DRM_DEBUG("Invalid context id to filter with\n");
2867                        return ret;
2868                }
2869        }
2870
2871        ret = alloc_noa_wait(stream);
2872        if (ret) {
2873                DRM_DEBUG("Unable to allocate NOA wait batch buffer\n");
2874                goto err_noa_wait_alloc;
2875        }
2876
2877        stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set);
2878        if (!stream->oa_config) {
2879                DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set);
2880                ret = -EINVAL;
2881                goto err_config;
2882        }
2883
2884        /* PRM - observability performance counters:
2885         *
2886         *   OACONTROL, performance counter enable, note:
2887         *
2888         *   "When this bit is set, in order to have coherent counts,
2889         *   RC6 power state and trunk clock gating must be disabled.
2890         *   This can be achieved by programming MMIO registers as
2891         *   0xA094=0 and 0xA090[31]=1"
2892         *
2893         *   In our case we are expecting that taking pm + FORCEWAKE
2894         *   references will effectively disable RC6.
2895         */
2896        intel_engine_pm_get(stream->engine);
2897        intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL);
2898
2899        ret = alloc_oa_buffer(stream);
2900        if (ret)
2901                goto err_oa_buf_alloc;
2902
2903        stream->ops = &i915_oa_stream_ops;
2904
2905        perf->sseu = props->sseu;
2906        WRITE_ONCE(perf->exclusive_stream, stream);
2907
2908        ret = i915_perf_stream_enable_sync(stream);
2909        if (ret) {
2910                DRM_DEBUG("Unable to enable metric set\n");
2911                goto err_enable;
2912        }
2913
2914        DRM_DEBUG("opening stream oa config uuid=%s\n",
2915                  stream->oa_config->uuid);
2916
2917        hrtimer_init(&stream->poll_check_timer,
2918                     CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2919        stream->poll_check_timer.function = oa_poll_check_timer_cb;
2920        init_waitqueue_head(&stream->poll_wq);
2921        spin_lock_init(&stream->oa_buffer.ptr_lock);
2922
2923        return 0;
2924
2925err_enable:
2926        WRITE_ONCE(perf->exclusive_stream, NULL);
2927        perf->ops.disable_metric_set(stream);
2928
2929        free_oa_buffer(stream);
2930
2931err_oa_buf_alloc:
2932        free_oa_configs(stream);
2933
2934        intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
2935        intel_engine_pm_put(stream->engine);
2936
2937err_config:
2938        free_noa_wait(stream);
2939
2940err_noa_wait_alloc:
2941        if (stream->ctx)
2942                oa_put_render_ctx_id(stream);
2943
2944        return ret;
2945}
2946
2947void i915_oa_init_reg_state(const struct intel_context *ce,
2948                            const struct intel_engine_cs *engine)
2949{
2950        struct i915_perf_stream *stream;
2951
2952        if (engine->class != RENDER_CLASS)
2953                return;
2954
2955        /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
2956        stream = READ_ONCE(engine->i915->perf.exclusive_stream);
2957        if (stream && INTEL_GEN(stream->perf->i915) < 12)
2958                gen8_update_reg_state_unlocked(ce, stream);
2959}
2960
2961/**
2962 * i915_perf_read - handles read() FOP for i915 perf stream FDs
2963 * @file: An i915 perf stream file
2964 * @buf: destination buffer given by userspace
2965 * @count: the number of bytes userspace wants to read
2966 * @ppos: (inout) file seek position (unused)
2967 *
2968 * The entry point for handling a read() on a stream file descriptor from
2969 * userspace. Most of the work is left to the i915_perf_read_locked() and
2970 * &i915_perf_stream_ops->read but to save having stream implementations (of
2971 * which we might have multiple later) we handle blocking read here.
2972 *
2973 * We can also consistently treat trying to read from a disabled stream
2974 * as an IO error so implementations can assume the stream is enabled
2975 * while reading.
2976 *
2977 * Returns: The number of bytes copied or a negative error code on failure.
2978 */
2979static ssize_t i915_perf_read(struct file *file,
2980                              char __user *buf,
2981                              size_t count,
2982                              loff_t *ppos)
2983{
2984        struct i915_perf_stream *stream = file->private_data;
2985        struct i915_perf *perf = stream->perf;
2986        size_t offset = 0;
2987        int ret;
2988
2989        /* To ensure it's handled consistently we simply treat all reads of a
2990         * disabled stream as an error. In particular it might otherwise lead
2991         * to a deadlock for blocking file descriptors...
2992         */
2993        if (!stream->enabled)
2994                return -EIO;
2995
2996        if (!(file->f_flags & O_NONBLOCK)) {
2997                /* There's the small chance of false positives from
2998                 * stream->ops->wait_unlocked.
2999                 *
3000                 * E.g. with single context filtering since we only wait until
3001                 * oabuffer has >= 1 report we don't immediately know whether
3002                 * any reports really belong to the current context
3003                 */
3004                do {
3005                        ret = stream->ops->wait_unlocked(stream);
3006                        if (ret)
3007                                return ret;
3008
3009                        mutex_lock(&perf->lock);
3010                        ret = stream->ops->read(stream, buf, count, &offset);
3011                        mutex_unlock(&perf->lock);
3012                } while (!offset && !ret);
3013        } else {
3014                mutex_lock(&perf->lock);
3015                ret = stream->ops->read(stream, buf, count, &offset);
3016                mutex_unlock(&perf->lock);
3017        }
3018
3019        /* We allow the poll checking to sometimes report false positive EPOLLIN
3020         * events where we might actually report EAGAIN on read() if there's
3021         * not really any data available. In this situation though we don't
3022         * want to enter a busy loop between poll() reporting a EPOLLIN event
3023         * and read() returning -EAGAIN. Clearing the oa.pollin state here
3024         * effectively ensures we back off until the next hrtimer callback
3025         * before reporting another EPOLLIN event.
3026         * The exception to this is if ops->read() returned -ENOSPC which means
3027         * that more OA data is available than could fit in the user provided
3028         * buffer. In this case we want the next poll() call to not block.
3029         */
3030        if (ret != -ENOSPC)
3031                stream->pollin = false;
3032
3033        /* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */
3034        return offset ?: (ret ?: -EAGAIN);
3035}
3036
3037static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
3038{
3039        struct i915_perf_stream *stream =
3040                container_of(hrtimer, typeof(*stream), poll_check_timer);
3041
3042        if (oa_buffer_check_unlocked(stream)) {
3043                stream->pollin = true;
3044                wake_up(&stream->poll_wq);
3045        }
3046
3047        hrtimer_forward_now(hrtimer,
3048                            ns_to_ktime(stream->poll_oa_period));
3049
3050        return HRTIMER_RESTART;
3051}
3052
3053/**
3054 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
3055 * @stream: An i915 perf stream
3056 * @file: An i915 perf stream file
3057 * @wait: poll() state table
3058 *
3059 * For handling userspace polling on an i915 perf stream, this calls through to
3060 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
3061 * will be woken for new stream data.
3062 *
3063 * Note: The &perf->lock mutex has been taken to serialize
3064 * with any non-file-operation driver hooks.
3065 *
3066 * Returns: any poll events that are ready without sleeping
3067 */
3068static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
3069                                      struct file *file,
3070                                      poll_table *wait)
3071{
3072        __poll_t events = 0;
3073
3074        stream->ops->poll_wait(stream, file, wait);
3075
3076        /* Note: we don't explicitly check whether there's something to read
3077         * here since this path may be very hot depending on what else
3078         * userspace is polling, or on the timeout in use. We rely solely on
3079         * the hrtimer/oa_poll_check_timer_cb to notify us when there are
3080         * samples to read.
3081         */
3082        if (stream->pollin)
3083                events |= EPOLLIN;
3084
3085        return events;
3086}
3087
3088/**
3089 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
3090 * @file: An i915 perf stream file
3091 * @wait: poll() state table
3092 *
3093 * For handling userspace polling on an i915 perf stream, this ensures
3094 * poll_wait() gets called with a wait queue that will be woken for new stream
3095 * data.
3096 *
3097 * Note: Implementation deferred to i915_perf_poll_locked()
3098 *
3099 * Returns: any poll events that are ready without sleeping
3100 */
3101static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
3102{
3103        struct i915_perf_stream *stream = file->private_data;
3104        struct i915_perf *perf = stream->perf;
3105        __poll_t ret;
3106
3107        mutex_lock(&perf->lock);
3108        ret = i915_perf_poll_locked(stream, file, wait);
3109        mutex_unlock(&perf->lock);
3110
3111        return ret;
3112}
3113
3114/**
3115 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
3116 * @stream: A disabled i915 perf stream
3117 *
3118 * [Re]enables the associated capture of data for this stream.
3119 *
3120 * If a stream was previously enabled then there's currently no intention
3121 * to provide userspace any guarantee about the preservation of previously
3122 * buffered data.
3123 */
3124static void i915_perf_enable_locked(struct i915_perf_stream *stream)
3125{
3126        if (stream->enabled)
3127                return;
3128
3129        /* Allow stream->ops->enable() to refer to this */
3130        stream->enabled = true;
3131
3132        if (stream->ops->enable)
3133                stream->ops->enable(stream);
3134
3135        if (stream->hold_preemption)
3136                intel_context_set_nopreempt(stream->pinned_ctx);
3137}
3138
3139/**
3140 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
3141 * @stream: An enabled i915 perf stream
3142 *
3143 * Disables the associated capture of data for this stream.
3144 *
3145 * The intention is that disabling an re-enabling a stream will ideally be
3146 * cheaper than destroying and re-opening a stream with the same configuration,
3147 * though there are no formal guarantees about what state or buffered data
3148 * must be retained between disabling and re-enabling a stream.
3149 *
3150 * Note: while a stream is disabled it's considered an error for userspace
3151 * to attempt to read from the stream (-EIO).
3152 */
3153static void i915_perf_disable_locked(struct i915_perf_stream *stream)
3154{
3155        if (!stream->enabled)
3156                return;
3157
3158        /* Allow stream->ops->disable() to refer to this */
3159        stream->enabled = false;
3160
3161        if (stream->hold_preemption)
3162                intel_context_clear_nopreempt(stream->pinned_ctx);
3163
3164        if (stream->ops->disable)
3165                stream->ops->disable(stream);
3166}
3167
3168static long i915_perf_config_locked(struct i915_perf_stream *stream,
3169                                    unsigned long metrics_set)
3170{
3171        struct i915_oa_config *config;
3172        long ret = stream->oa_config->id;
3173
3174        config = i915_perf_get_oa_config(stream->perf, metrics_set);
3175        if (!config)
3176                return -EINVAL;
3177
3178        if (config != stream->oa_config) {
3179                int err;
3180
3181                /*
3182                 * If OA is bound to a specific context, emit the
3183                 * reconfiguration inline from that context. The update
3184                 * will then be ordered with respect to submission on that
3185                 * context.
3186                 *
3187                 * When set globally, we use a low priority kernel context,
3188                 * so it will effectively take effect when idle.
3189                 */
3190                err = emit_oa_config(stream, config, oa_context(stream), NULL);
3191                if (!err)
3192                        config = xchg(&stream->oa_config, config);
3193                else
3194                        ret = err;
3195        }
3196
3197        i915_oa_config_put(config);
3198
3199        return ret;
3200}
3201
3202/**
3203 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3204 * @stream: An i915 perf stream
3205 * @cmd: the ioctl request
3206 * @arg: the ioctl data
3207 *
3208 * Note: The &perf->lock mutex has been taken to serialize
3209 * with any non-file-operation driver hooks.
3210 *
3211 * Returns: zero on success or a negative error code. Returns -EINVAL for
3212 * an unknown ioctl request.
3213 */
3214static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
3215                                   unsigned int cmd,
3216                                   unsigned long arg)
3217{
3218        switch (cmd) {
3219        case I915_PERF_IOCTL_ENABLE:
3220                i915_perf_enable_locked(stream);
3221                return 0;
3222        case I915_PERF_IOCTL_DISABLE:
3223                i915_perf_disable_locked(stream);
3224                return 0;
3225        case I915_PERF_IOCTL_CONFIG:
3226                return i915_perf_config_locked(stream, arg);
3227        }
3228
3229        return -EINVAL;
3230}
3231
3232/**
3233 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3234 * @file: An i915 perf stream file
3235 * @cmd: the ioctl request
3236 * @arg: the ioctl data
3237 *
3238 * Implementation deferred to i915_perf_ioctl_locked().
3239 *
3240 * Returns: zero on success or a negative error code. Returns -EINVAL for
3241 * an unknown ioctl request.
3242 */
3243static long i915_perf_ioctl(struct file *file,
3244                            unsigned int cmd,
3245                            unsigned long arg)
3246{
3247        struct i915_perf_stream *stream = file->private_data;
3248        struct i915_perf *perf = stream->perf;
3249        long ret;
3250
3251        mutex_lock(&perf->lock);
3252        ret = i915_perf_ioctl_locked(stream, cmd, arg);
3253        mutex_unlock(&perf->lock);
3254
3255        return ret;
3256}
3257
3258/**
3259 * i915_perf_destroy_locked - destroy an i915 perf stream
3260 * @stream: An i915 perf stream
3261 *
3262 * Frees all resources associated with the given i915 perf @stream, disabling
3263 * any associated data capture in the process.
3264 *
3265 * Note: The &perf->lock mutex has been taken to serialize
3266 * with any non-file-operation driver hooks.
3267 */
3268static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
3269{
3270        if (stream->enabled)
3271                i915_perf_disable_locked(stream);
3272
3273        if (stream->ops->destroy)
3274                stream->ops->destroy(stream);
3275
3276        if (stream->ctx)
3277                i915_gem_context_put(stream->ctx);
3278
3279        kfree(stream);
3280}
3281
3282/**
3283 * i915_perf_release - handles userspace close() of a stream file
3284 * @inode: anonymous inode associated with file
3285 * @file: An i915 perf stream file
3286 *
3287 * Cleans up any resources associated with an open i915 perf stream file.
3288 *
3289 * NB: close() can't really fail from the userspace point of view.
3290 *
3291 * Returns: zero on success or a negative error code.
3292 */
3293static int i915_perf_release(struct inode *inode, struct file *file)
3294{
3295        struct i915_perf_stream *stream = file->private_data;
3296        struct i915_perf *perf = stream->perf;
3297
3298        mutex_lock(&perf->lock);
3299        i915_perf_destroy_locked(stream);
3300        mutex_unlock(&perf->lock);
3301
3302        /* Release the reference the perf stream kept on the driver. */
3303        drm_dev_put(&perf->i915->drm);
3304
3305        return 0;
3306}
3307
3308
3309static const struct file_operations fops = {
3310        .owner          = THIS_MODULE,
3311        .llseek         = no_llseek,
3312        .release        = i915_perf_release,
3313        .poll           = i915_perf_poll,
3314        .read           = i915_perf_read,
3315        .unlocked_ioctl = i915_perf_ioctl,
3316        /* Our ioctl have no arguments, so it's safe to use the same function
3317         * to handle 32bits compatibility.
3318         */
3319        .compat_ioctl   = i915_perf_ioctl,
3320};
3321
3322
3323/**
3324 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
3325 * @perf: i915 perf instance
3326 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
3327 * @props: individually validated u64 property value pairs
3328 * @file: drm file
3329 *
3330 * See i915_perf_ioctl_open() for interface details.
3331 *
3332 * Implements further stream config validation and stream initialization on
3333 * behalf of i915_perf_open_ioctl() with the &perf->lock mutex
3334 * taken to serialize with any non-file-operation driver hooks.
3335 *
3336 * Note: at this point the @props have only been validated in isolation and
3337 * it's still necessary to validate that the combination of properties makes
3338 * sense.
3339 *
3340 * In the case where userspace is interested in OA unit metrics then further
3341 * config validation and stream initialization details will be handled by
3342 * i915_oa_stream_init(). The code here should only validate config state that
3343 * will be relevant to all stream types / backends.
3344 *
3345 * Returns: zero on success or a negative error code.
3346 */
3347static int
3348i915_perf_open_ioctl_locked(struct i915_perf *perf,
3349                            struct drm_i915_perf_open_param *param,
3350                            struct perf_open_properties *props,
3351                            struct drm_file *file)
3352{
3353        struct i915_gem_context *specific_ctx = NULL;
3354        struct i915_perf_stream *stream = NULL;
3355        unsigned long f_flags = 0;
3356        bool privileged_op = true;
3357        int stream_fd;
3358        int ret;
3359
3360        if (props->single_context) {
3361                u32 ctx_handle = props->ctx_handle;
3362                struct drm_i915_file_private *file_priv = file->driver_priv;
3363
3364                specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
3365                if (!specific_ctx) {
3366                        DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
3367                                  ctx_handle);
3368                        ret = -ENOENT;
3369                        goto err;
3370                }
3371        }
3372
3373        /*
3374         * On Haswell the OA unit supports clock gating off for a specific
3375         * context and in this mode there's no visibility of metrics for the
3376         * rest of the system, which we consider acceptable for a
3377         * non-privileged client.
3378         *
3379         * For Gen8->11 the OA unit no longer supports clock gating off for a
3380         * specific context and the kernel can't securely stop the counters
3381         * from updating as system-wide / global values. Even though we can
3382         * filter reports based on the included context ID we can't block
3383         * clients from seeing the raw / global counter values via
3384         * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
3385         * enable the OA unit by default.
3386         *
3387         * For Gen12+ we gain a new OAR unit that only monitors the RCS on a
3388         * per context basis. So we can relax requirements there if the user
3389         * doesn't request global stream access (i.e. query based sampling
3390         * using MI_RECORD_PERF_COUNT.
3391         */
3392        if (IS_HASWELL(perf->i915) && specific_ctx)
3393                privileged_op = false;
3394        else if (IS_GEN(perf->i915, 12) && specific_ctx &&
3395                 (props->sample_flags & SAMPLE_OA_REPORT) == 0)
3396                privileged_op = false;
3397
3398        if (props->hold_preemption) {
3399                if (!props->single_context) {
3400                        DRM_DEBUG("preemption disable with no context\n");
3401                        ret = -EINVAL;
3402                        goto err;
3403                }
3404                privileged_op = true;
3405        }
3406
3407        /*
3408         * Asking for SSEU configuration is a priviliged operation.
3409         */
3410        if (props->has_sseu)
3411                privileged_op = true;
3412        else
3413                get_default_sseu_config(&props->sseu, props->engine);
3414
3415        /* Similar to perf's kernel.perf_paranoid_cpu sysctl option
3416         * we check a dev.i915.perf_stream_paranoid sysctl option
3417         * to determine if it's ok to access system wide OA counters
3418         * without CAP_PERFMON or CAP_SYS_ADMIN privileges.
3419         */
3420        if (privileged_op &&
3421            i915_perf_stream_paranoid && !perfmon_capable()) {
3422                DRM_DEBUG("Insufficient privileges to open i915 perf stream\n");
3423                ret = -EACCES;
3424                goto err_ctx;
3425        }
3426
3427        stream = kzalloc(sizeof(*stream), GFP_KERNEL);
3428        if (!stream) {
3429                ret = -ENOMEM;
3430                goto err_ctx;
3431        }
3432
3433        stream->perf = perf;
3434        stream->ctx = specific_ctx;
3435        stream->poll_oa_period = props->poll_oa_period;
3436
3437        ret = i915_oa_stream_init(stream, param, props);
3438        if (ret)
3439                goto err_alloc;
3440
3441        /* we avoid simply assigning stream->sample_flags = props->sample_flags
3442         * to have _stream_init check the combination of sample flags more
3443         * thoroughly, but still this is the expected result at this point.
3444         */
3445        if (WARN_ON(stream->sample_flags != props->sample_flags)) {
3446                ret = -ENODEV;
3447                goto err_flags;
3448        }
3449
3450        if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
3451                f_flags |= O_CLOEXEC;
3452        if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
3453                f_flags |= O_NONBLOCK;
3454
3455        stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
3456        if (stream_fd < 0) {
3457                ret = stream_fd;
3458                goto err_flags;
3459        }
3460
3461        if (!(param->flags & I915_PERF_FLAG_DISABLED))
3462                i915_perf_enable_locked(stream);
3463
3464        /* Take a reference on the driver that will be kept with stream_fd
3465         * until its release.
3466         */
3467        drm_dev_get(&perf->i915->drm);
3468
3469        return stream_fd;
3470
3471err_flags:
3472        if (stream->ops->destroy)
3473                stream->ops->destroy(stream);
3474err_alloc:
3475        kfree(stream);
3476err_ctx:
3477        if (specific_ctx)
3478                i915_gem_context_put(specific_ctx);
3479err:
3480        return ret;
3481}
3482
3483static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
3484{
3485        return i915_cs_timestamp_ticks_to_ns(perf->i915, 2ULL << exponent);
3486}
3487
3488/**
3489 * read_properties_unlocked - validate + copy userspace stream open properties
3490 * @perf: i915 perf instance
3491 * @uprops: The array of u64 key value pairs given by userspace
3492 * @n_props: The number of key value pairs expected in @uprops
3493 * @props: The stream configuration built up while validating properties
3494 *
3495 * Note this function only validates properties in isolation it doesn't
3496 * validate that the combination of properties makes sense or that all
3497 * properties necessary for a particular kind of stream have been set.
3498 *
3499 * Note that there currently aren't any ordering requirements for properties so
3500 * we shouldn't validate or assume anything about ordering here. This doesn't
3501 * rule out defining new properties with ordering requirements in the future.
3502 */
3503static int read_properties_unlocked(struct i915_perf *perf,
3504                                    u64 __user *uprops,
3505                                    u32 n_props,
3506                                    struct perf_open_properties *props)
3507{
3508        u64 __user *uprop = uprops;
3509        u32 i;
3510        int ret;
3511
3512        memset(props, 0, sizeof(struct perf_open_properties));
3513        props->poll_oa_period = DEFAULT_POLL_PERIOD_NS;
3514
3515        if (!n_props) {
3516                DRM_DEBUG("No i915 perf properties given\n");
3517                return -EINVAL;
3518        }
3519
3520        /* At the moment we only support using i915-perf on the RCS. */
3521        props->engine = intel_engine_lookup_user(perf->i915,
3522                                                 I915_ENGINE_CLASS_RENDER,
3523                                                 0);
3524        if (!props->engine) {
3525                DRM_DEBUG("No RENDER-capable engines\n");
3526                return -EINVAL;
3527        }
3528
3529        /* Considering that ID = 0 is reserved and assuming that we don't
3530         * (currently) expect any configurations to ever specify duplicate
3531         * values for a particular property ID then the last _PROP_MAX value is
3532         * one greater than the maximum number of properties we expect to get
3533         * from userspace.
3534         */
3535        if (n_props >= DRM_I915_PERF_PROP_MAX) {
3536                DRM_DEBUG("More i915 perf properties specified than exist\n");
3537                return -EINVAL;
3538        }
3539
3540        for (i = 0; i < n_props; i++) {
3541                u64 oa_period, oa_freq_hz;
3542                u64 id, value;
3543
3544                ret = get_user(id, uprop);
3545                if (ret)
3546                        return ret;
3547
3548                ret = get_user(value, uprop + 1);
3549                if (ret)
3550                        return ret;
3551
3552                if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
3553                        DRM_DEBUG("Unknown i915 perf property ID\n");
3554                        return -EINVAL;
3555                }
3556
3557                switch ((enum drm_i915_perf_property_id)id) {
3558                case DRM_I915_PERF_PROP_CTX_HANDLE:
3559                        props->single_context = 1;
3560                        props->ctx_handle = value;
3561                        break;
3562                case DRM_I915_PERF_PROP_SAMPLE_OA:
3563                        if (value)
3564                                props->sample_flags |= SAMPLE_OA_REPORT;
3565                        break;
3566                case DRM_I915_PERF_PROP_OA_METRICS_SET:
3567                        if (value == 0) {
3568                                DRM_DEBUG("Unknown OA metric set ID\n");
3569                                return -EINVAL;
3570                        }
3571                        props->metrics_set = value;
3572                        break;
3573                case DRM_I915_PERF_PROP_OA_FORMAT:
3574                        if (value == 0 || value >= I915_OA_FORMAT_MAX) {
3575                                DRM_DEBUG("Out-of-range OA report format %llu\n",
3576                                          value);
3577                                return -EINVAL;
3578                        }
3579                        if (!perf->oa_formats[value].size) {
3580                                DRM_DEBUG("Unsupported OA report format %llu\n",
3581                                          value);
3582                                return -EINVAL;
3583                        }
3584                        props->oa_format = value;
3585                        break;
3586                case DRM_I915_PERF_PROP_OA_EXPONENT:
3587                        if (value > OA_EXPONENT_MAX) {
3588                                DRM_DEBUG("OA timer exponent too high (> %u)\n",
3589                                         OA_EXPONENT_MAX);
3590                                return -EINVAL;
3591                        }
3592
3593                        /* Theoretically we can program the OA unit to sample
3594                         * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
3595                         * for BXT. We don't allow such high sampling
3596                         * frequencies by default unless root.
3597                         */
3598
3599                        BUILD_BUG_ON(sizeof(oa_period) != 8);
3600                        oa_period = oa_exponent_to_ns(perf, value);
3601
3602                        /* This check is primarily to ensure that oa_period <=
3603                         * UINT32_MAX (before passing to do_div which only
3604                         * accepts a u32 denominator), but we can also skip
3605                         * checking anything < 1Hz which implicitly can't be
3606                         * limited via an integer oa_max_sample_rate.
3607                         */
3608                        if (oa_period <= NSEC_PER_SEC) {
3609                                u64 tmp = NSEC_PER_SEC;
3610                                do_div(tmp, oa_period);
3611                                oa_freq_hz = tmp;
3612                        } else
3613                                oa_freq_hz = 0;
3614
3615                        if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) {
3616                                DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n",
3617                                          i915_oa_max_sample_rate);
3618                                return -EACCES;
3619                        }
3620
3621                        props->oa_periodic = true;
3622                        props->oa_period_exponent = value;
3623                        break;
3624                case DRM_I915_PERF_PROP_HOLD_PREEMPTION:
3625                        props->hold_preemption = !!value;
3626                        break;
3627                case DRM_I915_PERF_PROP_GLOBAL_SSEU: {
3628                        struct drm_i915_gem_context_param_sseu user_sseu;
3629
3630                        if (copy_from_user(&user_sseu,
3631                                           u64_to_user_ptr(value),
3632                                           sizeof(user_sseu))) {
3633                                DRM_DEBUG("Unable to copy global sseu parameter\n");
3634                                return -EFAULT;
3635                        }
3636
3637                        ret = get_sseu_config(&props->sseu, props->engine, &user_sseu);
3638                        if (ret) {
3639                                DRM_DEBUG("Invalid SSEU configuration\n");
3640                                return ret;
3641                        }
3642                        props->has_sseu = true;
3643                        break;
3644                }
3645                case DRM_I915_PERF_PROP_POLL_OA_PERIOD:
3646                        if (value < 100000 /* 100us */) {
3647                                DRM_DEBUG("OA availability timer too small (%lluns < 100us)\n",
3648                                          value);
3649                                return -EINVAL;
3650                        }
3651                        props->poll_oa_period = value;
3652                        break;
3653                case DRM_I915_PERF_PROP_MAX:
3654                        MISSING_CASE(id);
3655                        return -EINVAL;
3656                }
3657
3658                uprop += 2;
3659        }
3660
3661        return 0;
3662}
3663
3664/**
3665 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
3666 * @dev: drm device
3667 * @data: ioctl data copied from userspace (unvalidated)
3668 * @file: drm file
3669 *
3670 * Validates the stream open parameters given by userspace including flags
3671 * and an array of u64 key, value pair properties.
3672 *
3673 * Very little is assumed up front about the nature of the stream being
3674 * opened (for instance we don't assume it's for periodic OA unit metrics). An
3675 * i915-perf stream is expected to be a suitable interface for other forms of
3676 * buffered data written by the GPU besides periodic OA metrics.
3677 *
3678 * Note we copy the properties from userspace outside of the i915 perf
3679 * mutex to avoid an awkward lockdep with mmap_lock.
3680 *
3681 * Most of the implementation details are handled by
3682 * i915_perf_open_ioctl_locked() after taking the &perf->lock
3683 * mutex for serializing with any non-file-operation driver hooks.
3684 *
3685 * Return: A newly opened i915 Perf stream file descriptor or negative
3686 * error code on failure.
3687 */
3688int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3689                         struct drm_file *file)
3690{
3691        struct i915_perf *perf = &to_i915(dev)->perf;
3692        struct drm_i915_perf_open_param *param = data;
3693        struct perf_open_properties props;
3694        u32 known_open_flags;
3695        int ret;
3696
3697        if (!perf->i915) {
3698                DRM_DEBUG("i915 perf interface not available for this system\n");
3699                return -ENOTSUPP;
3700        }
3701
3702        known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
3703                           I915_PERF_FLAG_FD_NONBLOCK |
3704                           I915_PERF_FLAG_DISABLED;
3705        if (param->flags & ~known_open_flags) {
3706                DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
3707                return -EINVAL;
3708        }
3709
3710        ret = read_properties_unlocked(perf,
3711                                       u64_to_user_ptr(param->properties_ptr),
3712                                       param->num_properties,
3713                                       &props);
3714        if (ret)
3715                return ret;
3716
3717        mutex_lock(&perf->lock);
3718        ret = i915_perf_open_ioctl_locked(perf, param, &props, file);
3719        mutex_unlock(&perf->lock);
3720
3721        return ret;
3722}
3723
3724/**
3725 * i915_perf_register - exposes i915-perf to userspace
3726 * @i915: i915 device instance
3727 *
3728 * In particular OA metric sets are advertised under a sysfs metrics/
3729 * directory allowing userspace to enumerate valid IDs that can be
3730 * used to open an i915-perf stream.
3731 */
3732void i915_perf_register(struct drm_i915_private *i915)
3733{
3734        struct i915_perf *perf = &i915->perf;
3735
3736        if (!perf->i915)
3737                return;
3738
3739        /* To be sure we're synchronized with an attempted
3740         * i915_perf_open_ioctl(); considering that we register after
3741         * being exposed to userspace.
3742         */
3743        mutex_lock(&perf->lock);
3744
3745        perf->metrics_kobj =
3746                kobject_create_and_add("metrics",
3747                                       &i915->drm.primary->kdev->kobj);
3748
3749        mutex_unlock(&perf->lock);
3750}
3751
3752/**
3753 * i915_perf_unregister - hide i915-perf from userspace
3754 * @i915: i915 device instance
3755 *
3756 * i915-perf state cleanup is split up into an 'unregister' and
3757 * 'deinit' phase where the interface is first hidden from
3758 * userspace by i915_perf_unregister() before cleaning up
3759 * remaining state in i915_perf_fini().
3760 */
3761void i915_perf_unregister(struct drm_i915_private *i915)
3762{
3763        struct i915_perf *perf = &i915->perf;
3764
3765        if (!perf->metrics_kobj)
3766                return;
3767
3768        kobject_put(perf->metrics_kobj);
3769        perf->metrics_kobj = NULL;
3770}
3771
3772static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
3773{
3774        static const i915_reg_t flex_eu_regs[] = {
3775                EU_PERF_CNTL0,
3776                EU_PERF_CNTL1,
3777                EU_PERF_CNTL2,
3778                EU_PERF_CNTL3,
3779                EU_PERF_CNTL4,
3780                EU_PERF_CNTL5,
3781                EU_PERF_CNTL6,
3782        };
3783        int i;
3784
3785        for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
3786                if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
3787                        return true;
3788        }
3789        return false;
3790}
3791
3792#define ADDR_IN_RANGE(addr, start, end) \
3793        ((addr) >= (start) && \
3794         (addr) <= (end))
3795
3796#define REG_IN_RANGE(addr, start, end) \
3797        ((addr) >= i915_mmio_reg_offset(start) && \
3798         (addr) <= i915_mmio_reg_offset(end))
3799
3800#define REG_EQUAL(addr, mmio) \
3801        ((addr) == i915_mmio_reg_offset(mmio))
3802
3803static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3804{
3805        return REG_IN_RANGE(addr, OASTARTTRIG1, OASTARTTRIG8) ||
3806               REG_IN_RANGE(addr, OAREPORTTRIG1, OAREPORTTRIG8) ||
3807               REG_IN_RANGE(addr, OACEC0_0, OACEC7_1);
3808}
3809
3810static bool gen7_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3811{
3812        return REG_EQUAL(addr, HALF_SLICE_CHICKEN2) ||
3813               REG_IN_RANGE(addr, MICRO_BP0_0, NOA_WRITE) ||
3814               REG_IN_RANGE(addr, OA_PERFCNT1_LO, OA_PERFCNT2_HI) ||
3815               REG_IN_RANGE(addr, OA_PERFMATRIX_LO, OA_PERFMATRIX_HI);
3816}
3817
3818static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3819{
3820        return gen7_is_valid_mux_addr(perf, addr) ||
3821               REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
3822               REG_IN_RANGE(addr, RPM_CONFIG0, NOA_CONFIG(8));
3823}
3824
3825static bool gen10_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3826{
3827        return gen8_is_valid_mux_addr(perf, addr) ||
3828               REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
3829               REG_IN_RANGE(addr, OA_PERFCNT3_LO, OA_PERFCNT4_HI);
3830}
3831
3832static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3833{
3834        return gen7_is_valid_mux_addr(perf, addr) ||
3835               ADDR_IN_RANGE(addr, 0x25100, 0x2FF90) ||
3836               REG_IN_RANGE(addr, HSW_MBVID2_NOA0, HSW_MBVID2_NOA9) ||
3837               REG_EQUAL(addr, HSW_MBVID2_MISR0);
3838}
3839
3840static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3841{
3842        return gen7_is_valid_mux_addr(perf, addr) ||
3843               ADDR_IN_RANGE(addr, 0x182300, 0x1823A4);
3844}
3845
3846static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3847{
3848        return REG_IN_RANGE(addr, GEN12_OAG_OASTARTTRIG1, GEN12_OAG_OASTARTTRIG8) ||
3849               REG_IN_RANGE(addr, GEN12_OAG_OAREPORTTRIG1, GEN12_OAG_OAREPORTTRIG8) ||
3850               REG_IN_RANGE(addr, GEN12_OAG_CEC0_0, GEN12_OAG_CEC7_1) ||
3851               REG_IN_RANGE(addr, GEN12_OAG_SCEC0_0, GEN12_OAG_SCEC7_1) ||
3852               REG_EQUAL(addr, GEN12_OAA_DBG_REG) ||
3853               REG_EQUAL(addr, GEN12_OAG_OA_PESS) ||
3854               REG_EQUAL(addr, GEN12_OAG_SPCTR_CNF);
3855}
3856
3857static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3858{
3859        return REG_EQUAL(addr, NOA_WRITE) ||
3860               REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
3861               REG_EQUAL(addr, GDT_CHICKEN_BITS) ||
3862               REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
3863               REG_EQUAL(addr, RPM_CONFIG0) ||
3864               REG_EQUAL(addr, RPM_CONFIG1) ||
3865               REG_IN_RANGE(addr, NOA_CONFIG(0), NOA_CONFIG(8));
3866}
3867
3868static u32 mask_reg_value(u32 reg, u32 val)
3869{
3870        /* HALF_SLICE_CHICKEN2 is programmed with a the
3871         * WaDisableSTUnitPowerOptimization workaround. Make sure the value
3872         * programmed by userspace doesn't change this.
3873         */
3874        if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2))
3875                val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
3876
3877        /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
3878         * indicated by its name and a bunch of selection fields used by OA
3879         * configs.
3880         */
3881        if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT))
3882                val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
3883
3884        return val;
3885}
3886
3887static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
3888                                         bool (*is_valid)(struct i915_perf *perf, u32 addr),
3889                                         u32 __user *regs,
3890                                         u32 n_regs)
3891{
3892        struct i915_oa_reg *oa_regs;
3893        int err;
3894        u32 i;
3895
3896        if (!n_regs)
3897                return NULL;
3898
3899        /* No is_valid function means we're not allowing any register to be programmed. */
3900        GEM_BUG_ON(!is_valid);
3901        if (!is_valid)
3902                return ERR_PTR(-EINVAL);
3903
3904        oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
3905        if (!oa_regs)
3906                return ERR_PTR(-ENOMEM);
3907
3908        for (i = 0; i < n_regs; i++) {
3909                u32 addr, value;
3910
3911                err = get_user(addr, regs);
3912                if (err)
3913                        goto addr_err;
3914
3915                if (!is_valid(perf, addr)) {
3916                        DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
3917                        err = -EINVAL;
3918                        goto addr_err;
3919                }
3920
3921                err = get_user(value, regs + 1);
3922                if (err)
3923                        goto addr_err;
3924
3925                oa_regs[i].addr = _MMIO(addr);
3926                oa_regs[i].value = mask_reg_value(addr, value);
3927
3928                regs += 2;
3929        }
3930
3931        return oa_regs;
3932
3933addr_err:
3934        kfree(oa_regs);
3935        return ERR_PTR(err);
3936}
3937
3938static ssize_t show_dynamic_id(struct device *dev,
3939                               struct device_attribute *attr,
3940                               char *buf)
3941{
3942        struct i915_oa_config *oa_config =
3943                container_of(attr, typeof(*oa_config), sysfs_metric_id);
3944
3945        return sprintf(buf, "%d\n", oa_config->id);
3946}
3947
3948static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
3949                                         struct i915_oa_config *oa_config)
3950{
3951        sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
3952        oa_config->sysfs_metric_id.attr.name = "id";
3953        oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
3954        oa_config->sysfs_metric_id.show = show_dynamic_id;
3955        oa_config->sysfs_metric_id.store = NULL;
3956
3957        oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
3958        oa_config->attrs[1] = NULL;
3959
3960        oa_config->sysfs_metric.name = oa_config->uuid;
3961        oa_config->sysfs_metric.attrs = oa_config->attrs;
3962
3963        return sysfs_create_group(perf->metrics_kobj,
3964                                  &oa_config->sysfs_metric);
3965}
3966
3967/**
3968 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
3969 * @dev: drm device
3970 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
3971 *        userspace (unvalidated)
3972 * @file: drm file
3973 *
3974 * Validates the submitted OA register to be saved into a new OA config that
3975 * can then be used for programming the OA unit and its NOA network.
3976 *
3977 * Returns: A new allocated config number to be used with the perf open ioctl
3978 * or a negative error code on failure.
3979 */
3980int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3981                               struct drm_file *file)
3982{
3983        struct i915_perf *perf = &to_i915(dev)->perf;
3984        struct drm_i915_perf_oa_config *args = data;
3985        struct i915_oa_config *oa_config, *tmp;
3986        struct i915_oa_reg *regs;
3987        int err, id;
3988
3989        if (!perf->i915) {
3990                DRM_DEBUG("i915 perf interface not available for this system\n");
3991                return -ENOTSUPP;
3992        }
3993
3994        if (!perf->metrics_kobj) {
3995                DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
3996                return -EINVAL;
3997        }
3998
3999        if (i915_perf_stream_paranoid && !perfmon_capable()) {
4000                DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
4001                return -EACCES;
4002        }
4003
4004        if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
4005            (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
4006            (!args->flex_regs_ptr || !args->n_flex_regs)) {
4007                DRM_DEBUG("No OA registers given\n");
4008                return -EINVAL;
4009        }
4010
4011        oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
4012        if (!oa_config) {
4013                DRM_DEBUG("Failed to allocate memory for the OA config\n");
4014                return -ENOMEM;
4015        }
4016
4017        oa_config->perf = perf;
4018        kref_init(&oa_config->ref);
4019
4020        if (!uuid_is_valid(args->uuid)) {
4021                DRM_DEBUG("Invalid uuid format for OA config\n");
4022                err = -EINVAL;
4023                goto reg_err;
4024        }
4025
4026        /* Last character in oa_config->uuid will be 0 because oa_config is
4027         * kzalloc.
4028         */
4029        memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
4030
4031        oa_config->mux_regs_len = args->n_mux_regs;
4032        regs = alloc_oa_regs(perf,
4033                             perf->ops.is_valid_mux_reg,
4034                             u64_to_user_ptr(args->mux_regs_ptr),
4035                             args->n_mux_regs);
4036
4037        if (IS_ERR(regs)) {
4038                DRM_DEBUG("Failed to create OA config for mux_regs\n");
4039                err = PTR_ERR(regs);
4040                goto reg_err;
4041        }
4042        oa_config->mux_regs = regs;
4043
4044        oa_config->b_counter_regs_len = args->n_boolean_regs;
4045        regs = alloc_oa_regs(perf,
4046                             perf->ops.is_valid_b_counter_reg,
4047                             u64_to_user_ptr(args->boolean_regs_ptr),
4048                             args->n_boolean_regs);
4049
4050        if (IS_ERR(regs)) {
4051                DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
4052                err = PTR_ERR(regs);
4053                goto reg_err;
4054        }
4055        oa_config->b_counter_regs = regs;
4056
4057        if (INTEL_GEN(perf->i915) < 8) {
4058                if (args->n_flex_regs != 0) {
4059                        err = -EINVAL;
4060                        goto reg_err;
4061                }
4062        } else {
4063                oa_config->flex_regs_len = args->n_flex_regs;
4064                regs = alloc_oa_regs(perf,
4065                                     perf->ops.is_valid_flex_reg,
4066                                     u64_to_user_ptr(args->flex_regs_ptr),
4067                                     args->n_flex_regs);
4068
4069                if (IS_ERR(regs)) {
4070                        DRM_DEBUG("Failed to create OA config for flex_regs\n");
4071                        err = PTR_ERR(regs);
4072                        goto reg_err;
4073                }
4074                oa_config->flex_regs = regs;
4075        }
4076
4077        err = mutex_lock_interruptible(&perf->metrics_lock);
4078        if (err)
4079                goto reg_err;
4080
4081        /* We shouldn't have too many configs, so this iteration shouldn't be
4082         * too costly.
4083         */
4084        idr_for_each_entry(&perf->metrics_idr, tmp, id) {
4085                if (!strcmp(tmp->uuid, oa_config->uuid)) {
4086                        DRM_DEBUG("OA config already exists with this uuid\n");
4087                        err = -EADDRINUSE;
4088                        goto sysfs_err;
4089                }
4090        }
4091
4092        err = create_dynamic_oa_sysfs_entry(perf, oa_config);
4093        if (err) {
4094                DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4095                goto sysfs_err;
4096        }
4097
4098        /* Config id 0 is invalid, id 1 for kernel stored test config. */
4099        oa_config->id = idr_alloc(&perf->metrics_idr,
4100                                  oa_config, 2,
4101                                  0, GFP_KERNEL);
4102        if (oa_config->id < 0) {
4103                DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4104                err = oa_config->id;
4105                goto sysfs_err;
4106        }
4107
4108        mutex_unlock(&perf->metrics_lock);
4109
4110        DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id);
4111
4112        return oa_config->id;
4113
4114sysfs_err:
4115        mutex_unlock(&perf->metrics_lock);
4116reg_err:
4117        i915_oa_config_put(oa_config);
4118        DRM_DEBUG("Failed to add new OA config\n");
4119        return err;
4120}
4121
4122/**
4123 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
4124 * @dev: drm device
4125 * @data: ioctl data (pointer to u64 integer) copied from userspace
4126 * @file: drm file
4127 *
4128 * Configs can be removed while being used, the will stop appearing in sysfs
4129 * and their content will be freed when the stream using the config is closed.
4130 *
4131 * Returns: 0 on success or a negative error code on failure.
4132 */
4133int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
4134                                  struct drm_file *file)
4135{
4136        struct i915_perf *perf = &to_i915(dev)->perf;
4137        u64 *arg = data;
4138        struct i915_oa_config *oa_config;
4139        int ret;
4140
4141        if (!perf->i915) {
4142                DRM_DEBUG("i915 perf interface not available for this system\n");
4143                return -ENOTSUPP;
4144        }
4145
4146        if (i915_perf_stream_paranoid && !perfmon_capable()) {
4147                DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
4148                return -EACCES;
4149        }
4150
4151        ret = mutex_lock_interruptible(&perf->metrics_lock);
4152        if (ret)
4153                return ret;
4154
4155        oa_config = idr_find(&perf->metrics_idr, *arg);
4156        if (!oa_config) {
4157                DRM_DEBUG("Failed to remove unknown OA config\n");
4158                ret = -ENOENT;
4159                goto err_unlock;
4160        }
4161
4162        GEM_BUG_ON(*arg != oa_config->id);
4163
4164        sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric);
4165
4166        idr_remove(&perf->metrics_idr, *arg);
4167
4168        mutex_unlock(&perf->metrics_lock);
4169
4170        DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
4171
4172        i915_oa_config_put(oa_config);
4173
4174        return 0;
4175
4176err_unlock:
4177        mutex_unlock(&perf->metrics_lock);
4178        return ret;
4179}
4180
4181static struct ctl_table oa_table[] = {
4182        {
4183         .procname = "perf_stream_paranoid",
4184         .data = &i915_perf_stream_paranoid,
4185         .maxlen = sizeof(i915_perf_stream_paranoid),
4186         .mode = 0644,
4187         .proc_handler = proc_dointvec_minmax,
4188         .extra1 = SYSCTL_ZERO,
4189         .extra2 = SYSCTL_ONE,
4190         },
4191        {
4192         .procname = "oa_max_sample_rate",
4193         .data = &i915_oa_max_sample_rate,
4194         .maxlen = sizeof(i915_oa_max_sample_rate),
4195         .mode = 0644,
4196         .proc_handler = proc_dointvec_minmax,
4197         .extra1 = SYSCTL_ZERO,
4198         .extra2 = &oa_sample_rate_hard_limit,
4199         },
4200        {}
4201};
4202
4203static struct ctl_table i915_root[] = {
4204        {
4205         .procname = "i915",
4206         .maxlen = 0,
4207         .mode = 0555,
4208         .child = oa_table,
4209         },
4210        {}
4211};
4212
4213static struct ctl_table dev_root[] = {
4214        {
4215         .procname = "dev",
4216         .maxlen = 0,
4217         .mode = 0555,
4218         .child = i915_root,
4219         },
4220        {}
4221};
4222
4223/**
4224 * i915_perf_init - initialize i915-perf state on module bind
4225 * @i915: i915 device instance
4226 *
4227 * Initializes i915-perf state without exposing anything to userspace.
4228 *
4229 * Note: i915-perf initialization is split into an 'init' and 'register'
4230 * phase with the i915_perf_register() exposing state to userspace.
4231 */
4232void i915_perf_init(struct drm_i915_private *i915)
4233{
4234        struct i915_perf *perf = &i915->perf;
4235
4236        /* XXX const struct i915_perf_ops! */
4237
4238        if (IS_HASWELL(i915)) {
4239                perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
4240                perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
4241                perf->ops.is_valid_flex_reg = NULL;
4242                perf->ops.enable_metric_set = hsw_enable_metric_set;
4243                perf->ops.disable_metric_set = hsw_disable_metric_set;
4244                perf->ops.oa_enable = gen7_oa_enable;
4245                perf->ops.oa_disable = gen7_oa_disable;
4246                perf->ops.read = gen7_oa_read;
4247                perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;
4248
4249                perf->oa_formats = hsw_oa_formats;
4250        } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
4251                /* Note: that although we could theoretically also support the
4252                 * legacy ringbuffer mode on BDW (and earlier iterations of
4253                 * this driver, before upstreaming did this) it didn't seem
4254                 * worth the complexity to maintain now that BDW+ enable
4255                 * execlist mode by default.
4256                 */
4257                perf->ops.read = gen8_oa_read;
4258
4259                if (IS_GEN_RANGE(i915, 8, 9)) {
4260                        perf->oa_formats = gen8_plus_oa_formats;
4261
4262                        perf->ops.is_valid_b_counter_reg =
4263                                gen7_is_valid_b_counter_addr;
4264                        perf->ops.is_valid_mux_reg =
4265                                gen8_is_valid_mux_addr;
4266                        perf->ops.is_valid_flex_reg =
4267                                gen8_is_valid_flex_addr;
4268
4269                        if (IS_CHERRYVIEW(i915)) {
4270                                perf->ops.is_valid_mux_reg =
4271                                        chv_is_valid_mux_addr;
4272                        }
4273
4274                        perf->ops.oa_enable = gen8_oa_enable;
4275                        perf->ops.oa_disable = gen8_oa_disable;
4276                        perf->ops.enable_metric_set = gen8_enable_metric_set;
4277                        perf->ops.disable_metric_set = gen8_disable_metric_set;
4278                        perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4279
4280                        if (IS_GEN(i915, 8)) {
4281                                perf->ctx_oactxctrl_offset = 0x120;
4282                                perf->ctx_flexeu0_offset = 0x2ce;
4283
4284                                perf->gen8_valid_ctx_bit = BIT(25);
4285                        } else {
4286                                perf->ctx_oactxctrl_offset = 0x128;
4287                                perf->ctx_flexeu0_offset = 0x3de;
4288
4289                                perf->gen8_valid_ctx_bit = BIT(16);
4290                        }
4291                } else if (IS_GEN_RANGE(i915, 10, 11)) {
4292                        perf->oa_formats = gen8_plus_oa_formats;
4293
4294                        perf->ops.is_valid_b_counter_reg =
4295                                gen7_is_valid_b_counter_addr;
4296                        perf->ops.is_valid_mux_reg =
4297                                gen10_is_valid_mux_addr;
4298                        perf->ops.is_valid_flex_reg =
4299                                gen8_is_valid_flex_addr;
4300
4301                        perf->ops.oa_enable = gen8_oa_enable;
4302                        perf->ops.oa_disable = gen8_oa_disable;
4303                        perf->ops.enable_metric_set = gen8_enable_metric_set;
4304                        perf->ops.disable_metric_set = gen10_disable_metric_set;
4305                        perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4306
4307                        if (IS_GEN(i915, 10)) {
4308                                perf->ctx_oactxctrl_offset = 0x128;
4309                                perf->ctx_flexeu0_offset = 0x3de;
4310                        } else {
4311                                perf->ctx_oactxctrl_offset = 0x124;
4312                                perf->ctx_flexeu0_offset = 0x78e;
4313                        }
4314                        perf->gen8_valid_ctx_bit = BIT(16);
4315                } else if (IS_GEN(i915, 12)) {
4316                        perf->oa_formats = gen12_oa_formats;
4317
4318                        perf->ops.is_valid_b_counter_reg =
4319                                gen12_is_valid_b_counter_addr;
4320                        perf->ops.is_valid_mux_reg =
4321                                gen12_is_valid_mux_addr;
4322                        perf->ops.is_valid_flex_reg =
4323                                gen8_is_valid_flex_addr;
4324
4325                        perf->ops.oa_enable = gen12_oa_enable;
4326                        perf->ops.oa_disable = gen12_oa_disable;
4327                        perf->ops.enable_metric_set = gen12_enable_metric_set;
4328                        perf->ops.disable_metric_set = gen12_disable_metric_set;
4329                        perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read;
4330
4331                        perf->ctx_flexeu0_offset = 0;
4332                        perf->ctx_oactxctrl_offset = 0x144;
4333                }
4334        }
4335
4336        if (perf->ops.enable_metric_set) {
4337                mutex_init(&perf->lock);
4338
4339                oa_sample_rate_hard_limit =
4340                        RUNTIME_INFO(i915)->cs_timestamp_frequency_hz / 2;
4341
4342                mutex_init(&perf->metrics_lock);
4343                idr_init(&perf->metrics_idr);
4344
4345                /* We set up some ratelimit state to potentially throttle any
4346                 * _NOTES about spurious, invalid OA reports which we don't
4347                 * forward to userspace.
4348                 *
4349                 * We print a _NOTE about any throttling when closing the
4350                 * stream instead of waiting until driver _fini which no one
4351                 * would ever see.
4352                 *
4353                 * Using the same limiting factors as printk_ratelimit()
4354                 */
4355                ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10);
4356                /* Since we use a DRM_NOTE for spurious reports it would be
4357                 * inconsistent to let __ratelimit() automatically print a
4358                 * warning for throttling.
4359                 */
4360                ratelimit_set_flags(&perf->spurious_report_rs,
4361                                    RATELIMIT_MSG_ON_RELEASE);
4362
4363                ratelimit_state_init(&perf->tail_pointer_race,
4364                                     5 * HZ, 10);
4365                ratelimit_set_flags(&perf->tail_pointer_race,
4366                                    RATELIMIT_MSG_ON_RELEASE);
4367
4368                atomic64_set(&perf->noa_programming_delay,
4369                             500 * 1000 /* 500us */);
4370
4371                perf->i915 = i915;
4372        }
4373}
4374
4375static int destroy_config(int id, void *p, void *data)
4376{
4377        i915_oa_config_put(p);
4378        return 0;
4379}
4380
4381void i915_perf_sysctl_register(void)
4382{
4383        sysctl_header = register_sysctl_table(dev_root);
4384}
4385
4386void i915_perf_sysctl_unregister(void)
4387{
4388        unregister_sysctl_table(sysctl_header);
4389}
4390
4391/**
4392 * i915_perf_fini - Counter part to i915_perf_init()
4393 * @i915: i915 device instance
4394 */
4395void i915_perf_fini(struct drm_i915_private *i915)
4396{
4397        struct i915_perf *perf = &i915->perf;
4398
4399        if (!perf->i915)
4400                return;
4401
4402        idr_for_each(&perf->metrics_idr, destroy_config, perf);
4403        idr_destroy(&perf->metrics_idr);
4404
4405        memset(&perf->ops, 0, sizeof(perf->ops));
4406        perf->i915 = NULL;
4407}
4408
4409/**
4410 * i915_perf_ioctl_version - Version of the i915-perf subsystem
4411 *
4412 * This version number is used by userspace to detect available features.
4413 */
4414int i915_perf_ioctl_version(void)
4415{
4416        /*
4417         * 1: Initial version
4418         *   I915_PERF_IOCTL_ENABLE
4419         *   I915_PERF_IOCTL_DISABLE
4420         *
4421         * 2: Added runtime modification of OA config.
4422         *   I915_PERF_IOCTL_CONFIG
4423         *
4424         * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
4425         *    preemption on a particular context so that performance data is
4426         *    accessible from a delta of MI_RPC reports without looking at the
4427         *    OA buffer.
4428         *
4429         * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can
4430         *    be run for the duration of the performance recording based on
4431         *    their SSEU configuration.
4432         *
4433         * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the
4434         *    interval for the hrtimer used to check for OA data.
4435         */
4436        return 5;
4437}
4438
4439#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4440#include "selftests/i915_perf.c"
4441#endif
4442