linux/drivers/gpu/drm/rcar-du/rcar_du_crtc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * rcar_du_crtc.c  --  R-Car Display Unit CRTCs
   4 *
   5 * Copyright (C) 2013-2015 Renesas Electronics Corporation
   6 *
   7 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
   8 */
   9
  10#include <linux/clk.h>
  11#include <linux/mutex.h>
  12#include <linux/platform_device.h>
  13#include <linux/sys_soc.h>
  14
  15#include <drm/drm_atomic.h>
  16#include <drm/drm_atomic_helper.h>
  17#include <drm/drm_bridge.h>
  18#include <drm/drm_crtc.h>
  19#include <drm/drm_device.h>
  20#include <drm/drm_fb_cma_helper.h>
  21#include <drm/drm_gem_cma_helper.h>
  22#include <drm/drm_plane_helper.h>
  23#include <drm/drm_vblank.h>
  24
  25#include "rcar_cmm.h"
  26#include "rcar_du_crtc.h"
  27#include "rcar_du_drv.h"
  28#include "rcar_du_encoder.h"
  29#include "rcar_du_kms.h"
  30#include "rcar_du_plane.h"
  31#include "rcar_du_regs.h"
  32#include "rcar_du_vsp.h"
  33#include "rcar_lvds.h"
  34
  35static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg)
  36{
  37        struct rcar_du_device *rcdu = rcrtc->dev;
  38
  39        return rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
  40}
  41
  42static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data)
  43{
  44        struct rcar_du_device *rcdu = rcrtc->dev;
  45
  46        rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data);
  47}
  48
  49static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr)
  50{
  51        struct rcar_du_device *rcdu = rcrtc->dev;
  52
  53        rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
  54                      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr);
  55}
  56
  57static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set)
  58{
  59        struct rcar_du_device *rcdu = rcrtc->dev;
  60
  61        rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
  62                      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set);
  63}
  64
  65void rcar_du_crtc_dsysr_clr_set(struct rcar_du_crtc *rcrtc, u32 clr, u32 set)
  66{
  67        struct rcar_du_device *rcdu = rcrtc->dev;
  68
  69        rcrtc->dsysr = (rcrtc->dsysr & ~clr) | set;
  70        rcar_du_write(rcdu, rcrtc->mmio_offset + DSYSR, rcrtc->dsysr);
  71}
  72
  73/* -----------------------------------------------------------------------------
  74 * Hardware Setup
  75 */
  76
  77struct dpll_info {
  78        unsigned int output;
  79        unsigned int fdpll;
  80        unsigned int n;
  81        unsigned int m;
  82};
  83
  84static void rcar_du_dpll_divider(struct rcar_du_crtc *rcrtc,
  85                                 struct dpll_info *dpll,
  86                                 unsigned long input,
  87                                 unsigned long target)
  88{
  89        unsigned long best_diff = (unsigned long)-1;
  90        unsigned long diff;
  91        unsigned int fdpll;
  92        unsigned int m;
  93        unsigned int n;
  94
  95        /*
  96         *   fin                                 fvco        fout       fclkout
  97         * in --> [1/M] --> |PD| -> [LPF] -> [VCO] -> [1/P] -+-> [1/FDPLL] -> out
  98         *              +-> |  |                             |
  99         *              |                                    |
 100         *              +---------------- [1/N] <------------+
 101         *
 102         *      fclkout = fvco / P / FDPLL -- (1)
 103         *
 104         * fin/M = fvco/P/N
 105         *
 106         *      fvco = fin * P *  N / M -- (2)
 107         *
 108         * (1) + (2) indicates
 109         *
 110         *      fclkout = fin * N / M / FDPLL
 111         *
 112         * NOTES
 113         *      N       : (n + 1)
 114         *      M       : (m + 1)
 115         *      FDPLL   : (fdpll + 1)
 116         *      P       : 2
 117         *      2kHz < fvco < 4096MHz
 118         *
 119         * To minimize the jitter,
 120         * N : as large as possible
 121         * M : as small as possible
 122         */
 123        for (m = 0; m < 4; m++) {
 124                for (n = 119; n > 38; n--) {
 125                        /*
 126                         * This code only runs on 64-bit architectures, the
 127                         * unsigned long type can thus be used for 64-bit
 128                         * computation. It will still compile without any
 129                         * warning on 32-bit architectures.
 130                         *
 131                         * To optimize calculations, use fout instead of fvco
 132                         * to verify the VCO frequency constraint.
 133                         */
 134                        unsigned long fout = input * (n + 1) / (m + 1);
 135
 136                        if (fout < 1000 || fout > 2048 * 1000 * 1000U)
 137                                continue;
 138
 139                        for (fdpll = 1; fdpll < 32; fdpll++) {
 140                                unsigned long output;
 141
 142                                output = fout / (fdpll + 1);
 143                                if (output >= 400 * 1000 * 1000)
 144                                        continue;
 145
 146                                diff = abs((long)output - (long)target);
 147                                if (best_diff > diff) {
 148                                        best_diff = diff;
 149                                        dpll->n = n;
 150                                        dpll->m = m;
 151                                        dpll->fdpll = fdpll;
 152                                        dpll->output = output;
 153                                }
 154
 155                                if (diff == 0)
 156                                        goto done;
 157                        }
 158                }
 159        }
 160
 161done:
 162        dev_dbg(rcrtc->dev->dev,
 163                "output:%u, fdpll:%u, n:%u, m:%u, diff:%lu\n",
 164                 dpll->output, dpll->fdpll, dpll->n, dpll->m, best_diff);
 165}
 166
 167struct du_clk_params {
 168        struct clk *clk;
 169        unsigned long rate;
 170        unsigned long diff;
 171        u32 escr;
 172};
 173
 174static void rcar_du_escr_divider(struct clk *clk, unsigned long target,
 175                                 u32 escr, struct du_clk_params *params)
 176{
 177        unsigned long rate;
 178        unsigned long diff;
 179        u32 div;
 180
 181        /*
 182         * If the target rate has already been achieved perfectly we can't do
 183         * better.
 184         */
 185        if (params->diff == 0)
 186                return;
 187
 188        /*
 189         * Compute the input clock rate and internal divisor values to obtain
 190         * the clock rate closest to the target frequency.
 191         */
 192        rate = clk_round_rate(clk, target);
 193        div = clamp(DIV_ROUND_CLOSEST(rate, target), 1UL, 64UL) - 1;
 194        diff = abs(rate / (div + 1) - target);
 195
 196        /*
 197         * Store the parameters if the resulting frequency is better than any
 198         * previously calculated value.
 199         */
 200        if (diff < params->diff) {
 201                params->clk = clk;
 202                params->rate = rate;
 203                params->diff = diff;
 204                params->escr = escr | div;
 205        }
 206}
 207
 208static const struct soc_device_attribute rcar_du_r8a7795_es1[] = {
 209        { .soc_id = "r8a7795", .revision = "ES1.*" },
 210        { /* sentinel */ }
 211};
 212
 213static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc)
 214{
 215        const struct drm_display_mode *mode = &rcrtc->crtc.state->adjusted_mode;
 216        struct rcar_du_device *rcdu = rcrtc->dev;
 217        unsigned long mode_clock = mode->clock * 1000;
 218        u32 dsmr;
 219        u32 escr;
 220
 221        if (rcdu->info->dpll_mask & (1 << rcrtc->index)) {
 222                unsigned long target = mode_clock;
 223                struct dpll_info dpll = { 0 };
 224                unsigned long extclk;
 225                u32 dpllcr;
 226                u32 div = 0;
 227
 228                /*
 229                 * DU channels that have a display PLL can't use the internal
 230                 * system clock, and have no internal clock divider.
 231                 */
 232
 233                /*
 234                 * The H3 ES1.x exhibits dot clock duty cycle stability issues.
 235                 * We can work around them by configuring the DPLL to twice the
 236                 * desired frequency, coupled with a /2 post-divider. Restrict
 237                 * the workaround to H3 ES1.x as ES2.0 and all other SoCs have
 238                 * no post-divider when a display PLL is present (as shown by
 239                 * the workaround breaking HDMI output on M3-W during testing).
 240                 */
 241                if (soc_device_match(rcar_du_r8a7795_es1)) {
 242                        target *= 2;
 243                        div = 1;
 244                }
 245
 246                extclk = clk_get_rate(rcrtc->extclock);
 247                rcar_du_dpll_divider(rcrtc, &dpll, extclk, target);
 248
 249                dpllcr = DPLLCR_CODE | DPLLCR_CLKE
 250                       | DPLLCR_FDPLL(dpll.fdpll)
 251                       | DPLLCR_N(dpll.n) | DPLLCR_M(dpll.m)
 252                       | DPLLCR_STBY;
 253
 254                if (rcrtc->index == 1)
 255                        dpllcr |= DPLLCR_PLCS1
 256                               |  DPLLCR_INCS_DOTCLKIN1;
 257                else
 258                        dpllcr |= DPLLCR_PLCS0
 259                               |  DPLLCR_INCS_DOTCLKIN0;
 260
 261                rcar_du_group_write(rcrtc->group, DPLLCR, dpllcr);
 262
 263                escr = ESCR_DCLKSEL_DCLKIN | div;
 264        } else if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index)) {
 265                /*
 266                 * Use the LVDS PLL output as the dot clock when outputting to
 267                 * the LVDS encoder on an SoC that supports this clock routing
 268                 * option. We use the clock directly in that case, without any
 269                 * additional divider.
 270                 */
 271                escr = ESCR_DCLKSEL_DCLKIN;
 272        } else {
 273                struct du_clk_params params = { .diff = (unsigned long)-1 };
 274
 275                rcar_du_escr_divider(rcrtc->clock, mode_clock,
 276                                     ESCR_DCLKSEL_CLKS, &params);
 277                if (rcrtc->extclock)
 278                        rcar_du_escr_divider(rcrtc->extclock, mode_clock,
 279                                             ESCR_DCLKSEL_DCLKIN, &params);
 280
 281                dev_dbg(rcrtc->dev->dev, "mode clock %lu %s rate %lu\n",
 282                        mode_clock, params.clk == rcrtc->clock ? "cpg" : "ext",
 283                        params.rate);
 284
 285                clk_set_rate(params.clk, params.rate);
 286                escr = params.escr;
 287        }
 288
 289        dev_dbg(rcrtc->dev->dev, "%s: ESCR 0x%08x\n", __func__, escr);
 290
 291        rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? ESCR13 : ESCR02, escr);
 292        rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? OTAR13 : OTAR02, 0);
 293
 294        /* Signal polarities */
 295        dsmr = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? DSMR_VSL : 0)
 296             | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? DSMR_HSL : 0)
 297             | ((mode->flags & DRM_MODE_FLAG_INTERLACE) ? DSMR_ODEV : 0)
 298             | DSMR_DIPM_DISP | DSMR_CSPM;
 299        rcar_du_crtc_write(rcrtc, DSMR, dsmr);
 300
 301        /* Display timings */
 302        rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start - 19);
 303        rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start +
 304                                        mode->hdisplay - 19);
 305        rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end -
 306                                        mode->hsync_start - 1);
 307        rcar_du_crtc_write(rcrtc, HCR,  mode->htotal - 1);
 308
 309        rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal -
 310                                        mode->crtc_vsync_end - 2);
 311        rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal -
 312                                        mode->crtc_vsync_end +
 313                                        mode->crtc_vdisplay - 2);
 314        rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal -
 315                                        mode->crtc_vsync_end +
 316                                        mode->crtc_vsync_start - 1);
 317        rcar_du_crtc_write(rcrtc, VCR,  mode->crtc_vtotal - 1);
 318
 319        rcar_du_crtc_write(rcrtc, DESR,  mode->htotal - mode->hsync_start - 1);
 320        rcar_du_crtc_write(rcrtc, DEWR,  mode->hdisplay);
 321}
 322
 323static unsigned int plane_zpos(struct rcar_du_plane *plane)
 324{
 325        return plane->plane.state->normalized_zpos;
 326}
 327
 328static const struct rcar_du_format_info *
 329plane_format(struct rcar_du_plane *plane)
 330{
 331        return to_rcar_plane_state(plane->plane.state)->format;
 332}
 333
 334static void rcar_du_crtc_update_planes(struct rcar_du_crtc *rcrtc)
 335{
 336        struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES];
 337        struct rcar_du_device *rcdu = rcrtc->dev;
 338        unsigned int num_planes = 0;
 339        unsigned int dptsr_planes;
 340        unsigned int hwplanes = 0;
 341        unsigned int prio = 0;
 342        unsigned int i;
 343        u32 dspr = 0;
 344
 345        for (i = 0; i < rcrtc->group->num_planes; ++i) {
 346                struct rcar_du_plane *plane = &rcrtc->group->planes[i];
 347                unsigned int j;
 348
 349                if (plane->plane.state->crtc != &rcrtc->crtc ||
 350                    !plane->plane.state->visible)
 351                        continue;
 352
 353                /* Insert the plane in the sorted planes array. */
 354                for (j = num_planes++; j > 0; --j) {
 355                        if (plane_zpos(planes[j-1]) <= plane_zpos(plane))
 356                                break;
 357                        planes[j] = planes[j-1];
 358                }
 359
 360                planes[j] = plane;
 361                prio += plane_format(plane)->planes * 4;
 362        }
 363
 364        for (i = 0; i < num_planes; ++i) {
 365                struct rcar_du_plane *plane = planes[i];
 366                struct drm_plane_state *state = plane->plane.state;
 367                unsigned int index = to_rcar_plane_state(state)->hwindex;
 368
 369                prio -= 4;
 370                dspr |= (index + 1) << prio;
 371                hwplanes |= 1 << index;
 372
 373                if (plane_format(plane)->planes == 2) {
 374                        index = (index + 1) % 8;
 375
 376                        prio -= 4;
 377                        dspr |= (index + 1) << prio;
 378                        hwplanes |= 1 << index;
 379                }
 380        }
 381
 382        /* If VSP+DU integration is enabled the plane assignment is fixed. */
 383        if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE)) {
 384                if (rcdu->info->gen < 3) {
 385                        dspr = (rcrtc->index % 2) + 1;
 386                        hwplanes = 1 << (rcrtc->index % 2);
 387                } else {
 388                        dspr = (rcrtc->index % 2) ? 3 : 1;
 389                        hwplanes = 1 << ((rcrtc->index % 2) ? 2 : 0);
 390                }
 391        }
 392
 393        /*
 394         * Update the planes to display timing and dot clock generator
 395         * associations.
 396         *
 397         * Updating the DPTSR register requires restarting the CRTC group,
 398         * resulting in visible flicker. To mitigate the issue only update the
 399         * association if needed by enabled planes. Planes being disabled will
 400         * keep their current association.
 401         */
 402        mutex_lock(&rcrtc->group->lock);
 403
 404        dptsr_planes = rcrtc->index % 2 ? rcrtc->group->dptsr_planes | hwplanes
 405                     : rcrtc->group->dptsr_planes & ~hwplanes;
 406
 407        if (dptsr_planes != rcrtc->group->dptsr_planes) {
 408                rcar_du_group_write(rcrtc->group, DPTSR,
 409                                    (dptsr_planes << 16) | dptsr_planes);
 410                rcrtc->group->dptsr_planes = dptsr_planes;
 411
 412                if (rcrtc->group->used_crtcs)
 413                        rcar_du_group_restart(rcrtc->group);
 414        }
 415
 416        /* Restart the group if plane sources have changed. */
 417        if (rcrtc->group->need_restart)
 418                rcar_du_group_restart(rcrtc->group);
 419
 420        mutex_unlock(&rcrtc->group->lock);
 421
 422        rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR,
 423                            dspr);
 424}
 425
 426/* -----------------------------------------------------------------------------
 427 * Page Flip
 428 */
 429
 430void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc)
 431{
 432        struct drm_pending_vblank_event *event;
 433        struct drm_device *dev = rcrtc->crtc.dev;
 434        unsigned long flags;
 435
 436        spin_lock_irqsave(&dev->event_lock, flags);
 437        event = rcrtc->event;
 438        rcrtc->event = NULL;
 439        spin_unlock_irqrestore(&dev->event_lock, flags);
 440
 441        if (event == NULL)
 442                return;
 443
 444        spin_lock_irqsave(&dev->event_lock, flags);
 445        drm_crtc_send_vblank_event(&rcrtc->crtc, event);
 446        wake_up(&rcrtc->flip_wait);
 447        spin_unlock_irqrestore(&dev->event_lock, flags);
 448
 449        drm_crtc_vblank_put(&rcrtc->crtc);
 450}
 451
 452static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc)
 453{
 454        struct drm_device *dev = rcrtc->crtc.dev;
 455        unsigned long flags;
 456        bool pending;
 457
 458        spin_lock_irqsave(&dev->event_lock, flags);
 459        pending = rcrtc->event != NULL;
 460        spin_unlock_irqrestore(&dev->event_lock, flags);
 461
 462        return pending;
 463}
 464
 465static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc)
 466{
 467        struct rcar_du_device *rcdu = rcrtc->dev;
 468
 469        if (wait_event_timeout(rcrtc->flip_wait,
 470                               !rcar_du_crtc_page_flip_pending(rcrtc),
 471                               msecs_to_jiffies(50)))
 472                return;
 473
 474        dev_warn(rcdu->dev, "page flip timeout\n");
 475
 476        rcar_du_crtc_finish_page_flip(rcrtc);
 477}
 478
 479/* -----------------------------------------------------------------------------
 480 * Color Management Module (CMM)
 481 */
 482
 483static int rcar_du_cmm_check(struct drm_crtc *crtc,
 484                             struct drm_crtc_state *state)
 485{
 486        struct drm_property_blob *drm_lut = state->gamma_lut;
 487        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 488        struct device *dev = rcrtc->dev->dev;
 489
 490        if (!drm_lut)
 491                return 0;
 492
 493        /* We only accept fully populated LUT tables. */
 494        if (drm_color_lut_size(drm_lut) != CM2_LUT_SIZE) {
 495                dev_err(dev, "invalid gamma lut size: %zu bytes\n",
 496                        drm_lut->length);
 497                return -EINVAL;
 498        }
 499
 500        return 0;
 501}
 502
 503static void rcar_du_cmm_setup(struct drm_crtc *crtc)
 504{
 505        struct drm_property_blob *drm_lut = crtc->state->gamma_lut;
 506        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 507        struct rcar_cmm_config cmm_config = {};
 508
 509        if (!rcrtc->cmm)
 510                return;
 511
 512        if (drm_lut)
 513                cmm_config.lut.table = (struct drm_color_lut *)drm_lut->data;
 514
 515        rcar_cmm_setup(rcrtc->cmm, &cmm_config);
 516}
 517
 518/* -----------------------------------------------------------------------------
 519 * Start/Stop and Suspend/Resume
 520 */
 521
 522static void rcar_du_crtc_setup(struct rcar_du_crtc *rcrtc)
 523{
 524        /* Set display off and background to black */
 525        rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0));
 526        rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0));
 527
 528        /* Configure display timings and output routing */
 529        rcar_du_crtc_set_display_timing(rcrtc);
 530        rcar_du_group_set_routing(rcrtc->group);
 531
 532        /* Start with all planes disabled. */
 533        rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
 534
 535        /* Enable the VSP compositor. */
 536        if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
 537                rcar_du_vsp_enable(rcrtc);
 538
 539        /* Turn vertical blanking interrupt reporting on. */
 540        drm_crtc_vblank_on(&rcrtc->crtc);
 541}
 542
 543static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc)
 544{
 545        int ret;
 546
 547        /*
 548         * Guard against double-get, as the function is called from both the
 549         * .atomic_enable() and .atomic_begin() handlers.
 550         */
 551        if (rcrtc->initialized)
 552                return 0;
 553
 554        ret = clk_prepare_enable(rcrtc->clock);
 555        if (ret < 0)
 556                return ret;
 557
 558        ret = clk_prepare_enable(rcrtc->extclock);
 559        if (ret < 0)
 560                goto error_clock;
 561
 562        ret = rcar_du_group_get(rcrtc->group);
 563        if (ret < 0)
 564                goto error_group;
 565
 566        rcar_du_crtc_setup(rcrtc);
 567        rcrtc->initialized = true;
 568
 569        return 0;
 570
 571error_group:
 572        clk_disable_unprepare(rcrtc->extclock);
 573error_clock:
 574        clk_disable_unprepare(rcrtc->clock);
 575        return ret;
 576}
 577
 578static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc)
 579{
 580        rcar_du_group_put(rcrtc->group);
 581
 582        clk_disable_unprepare(rcrtc->extclock);
 583        clk_disable_unprepare(rcrtc->clock);
 584
 585        rcrtc->initialized = false;
 586}
 587
 588static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc)
 589{
 590        bool interlaced;
 591
 592        /*
 593         * Select master sync mode. This enables display operation in master
 594         * sync mode (with the HSYNC and VSYNC signals configured as outputs and
 595         * actively driven).
 596         */
 597        interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE;
 598        rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK | DSYSR_SCM_MASK,
 599                                   (interlaced ? DSYSR_SCM_INT_VIDEO : 0) |
 600                                   DSYSR_TVM_MASTER);
 601
 602        rcar_du_group_start_stop(rcrtc->group, true);
 603}
 604
 605static void rcar_du_crtc_disable_planes(struct rcar_du_crtc *rcrtc)
 606{
 607        struct rcar_du_device *rcdu = rcrtc->dev;
 608        struct drm_crtc *crtc = &rcrtc->crtc;
 609        u32 status;
 610
 611        /* Make sure vblank interrupts are enabled. */
 612        drm_crtc_vblank_get(crtc);
 613
 614        /*
 615         * Disable planes and calculate how many vertical blanking interrupts we
 616         * have to wait for. If a vertical blanking interrupt has been triggered
 617         * but not processed yet, we don't know whether it occurred before or
 618         * after the planes got disabled. We thus have to wait for two vblank
 619         * interrupts in that case.
 620         */
 621        spin_lock_irq(&rcrtc->vblank_lock);
 622        rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
 623        status = rcar_du_crtc_read(rcrtc, DSSR);
 624        rcrtc->vblank_count = status & DSSR_VBK ? 2 : 1;
 625        spin_unlock_irq(&rcrtc->vblank_lock);
 626
 627        if (!wait_event_timeout(rcrtc->vblank_wait, rcrtc->vblank_count == 0,
 628                                msecs_to_jiffies(100)))
 629                dev_warn(rcdu->dev, "vertical blanking timeout\n");
 630
 631        drm_crtc_vblank_put(crtc);
 632}
 633
 634static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc)
 635{
 636        struct drm_crtc *crtc = &rcrtc->crtc;
 637
 638        /*
 639         * Disable all planes and wait for the change to take effect. This is
 640         * required as the plane enable registers are updated on vblank, and no
 641         * vblank will occur once the CRTC is stopped. Disabling planes when
 642         * starting the CRTC thus wouldn't be enough as it would start scanning
 643         * out immediately from old frame buffers until the next vblank.
 644         *
 645         * This increases the CRTC stop delay, especially when multiple CRTCs
 646         * are stopped in one operation as we now wait for one vblank per CRTC.
 647         * Whether this can be improved needs to be researched.
 648         */
 649        rcar_du_crtc_disable_planes(rcrtc);
 650
 651        /*
 652         * Disable vertical blanking interrupt reporting. We first need to wait
 653         * for page flip completion before stopping the CRTC as userspace
 654         * expects page flips to eventually complete.
 655         */
 656        rcar_du_crtc_wait_page_flip(rcrtc);
 657        drm_crtc_vblank_off(crtc);
 658
 659        /* Disable the VSP compositor. */
 660        if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
 661                rcar_du_vsp_disable(rcrtc);
 662
 663        if (rcrtc->cmm)
 664                rcar_cmm_disable(rcrtc->cmm);
 665
 666        /*
 667         * Select switch sync mode. This stops display operation and configures
 668         * the HSYNC and VSYNC signals as inputs.
 669         *
 670         * TODO: Find another way to stop the display for DUs that don't support
 671         * TVM sync.
 672         */
 673        if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_TVM_SYNC))
 674                rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK,
 675                                           DSYSR_TVM_SWITCH);
 676
 677        rcar_du_group_start_stop(rcrtc->group, false);
 678}
 679
 680/* -----------------------------------------------------------------------------
 681 * CRTC Functions
 682 */
 683
 684static int rcar_du_crtc_atomic_check(struct drm_crtc *crtc,
 685                                     struct drm_crtc_state *state)
 686{
 687        struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(state);
 688        struct drm_encoder *encoder;
 689        int ret;
 690
 691        ret = rcar_du_cmm_check(crtc, state);
 692        if (ret)
 693                return ret;
 694
 695        /* Store the routes from the CRTC output to the DU outputs. */
 696        rstate->outputs = 0;
 697
 698        drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask) {
 699                struct rcar_du_encoder *renc;
 700
 701                /* Skip the writeback encoder. */
 702                if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
 703                        continue;
 704
 705                renc = to_rcar_encoder(encoder);
 706                rstate->outputs |= BIT(renc->output);
 707        }
 708
 709        return 0;
 710}
 711
 712static void rcar_du_crtc_atomic_enable(struct drm_crtc *crtc,
 713                                       struct drm_crtc_state *old_state)
 714{
 715        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 716        struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(crtc->state);
 717        struct rcar_du_device *rcdu = rcrtc->dev;
 718
 719        if (rcrtc->cmm)
 720                rcar_cmm_enable(rcrtc->cmm);
 721        rcar_du_crtc_get(rcrtc);
 722
 723        /*
 724         * On D3/E3 the dot clock is provided by the LVDS encoder attached to
 725         * the DU channel. We need to enable its clock output explicitly if
 726         * the LVDS output is disabled.
 727         */
 728        if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) &&
 729            rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0)) {
 730                struct rcar_du_encoder *encoder =
 731                        rcdu->encoders[RCAR_DU_OUTPUT_LVDS0 + rcrtc->index];
 732                const struct drm_display_mode *mode =
 733                        &crtc->state->adjusted_mode;
 734                struct drm_bridge *bridge;
 735
 736                bridge = drm_bridge_chain_get_first_bridge(&encoder->base);
 737                rcar_lvds_clk_enable(bridge, mode->clock * 1000);
 738        }
 739
 740        rcar_du_crtc_start(rcrtc);
 741
 742        /*
 743         * TODO: The chip manual indicates that CMM tables should be written
 744         * after the DU channel has been activated. Investigate the impact
 745         * of this restriction on the first displayed frame.
 746         */
 747        rcar_du_cmm_setup(crtc);
 748}
 749
 750static void rcar_du_crtc_atomic_disable(struct drm_crtc *crtc,
 751                                        struct drm_crtc_state *old_state)
 752{
 753        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 754        struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(old_state);
 755        struct rcar_du_device *rcdu = rcrtc->dev;
 756
 757        rcar_du_crtc_stop(rcrtc);
 758        rcar_du_crtc_put(rcrtc);
 759
 760        if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) &&
 761            rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0)) {
 762                struct rcar_du_encoder *encoder =
 763                        rcdu->encoders[RCAR_DU_OUTPUT_LVDS0 + rcrtc->index];
 764                struct drm_bridge *bridge;
 765
 766                /*
 767                 * Disable the LVDS clock output, see
 768                 * rcar_du_crtc_atomic_enable().
 769                 */
 770                bridge = drm_bridge_chain_get_first_bridge(&encoder->base);
 771                rcar_lvds_clk_disable(bridge);
 772        }
 773
 774        spin_lock_irq(&crtc->dev->event_lock);
 775        if (crtc->state->event) {
 776                drm_crtc_send_vblank_event(crtc, crtc->state->event);
 777                crtc->state->event = NULL;
 778        }
 779        spin_unlock_irq(&crtc->dev->event_lock);
 780}
 781
 782static void rcar_du_crtc_atomic_begin(struct drm_crtc *crtc,
 783                                      struct drm_crtc_state *old_crtc_state)
 784{
 785        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 786
 787        WARN_ON(!crtc->state->enable);
 788
 789        /*
 790         * If a mode set is in progress we can be called with the CRTC disabled.
 791         * We thus need to first get and setup the CRTC in order to configure
 792         * planes. We must *not* put the CRTC in .atomic_flush(), as it must be
 793         * kept awake until the .atomic_enable() call that will follow. The get
 794         * operation in .atomic_enable() will in that case be a no-op, and the
 795         * CRTC will be put later in .atomic_disable().
 796         *
 797         * If a mode set is not in progress the CRTC is enabled, and the
 798         * following get call will be a no-op. There is thus no need to balance
 799         * it in .atomic_flush() either.
 800         */
 801        rcar_du_crtc_get(rcrtc);
 802
 803        /* If the active state changed, we let .atomic_enable handle CMM. */
 804        if (crtc->state->color_mgmt_changed && !crtc->state->active_changed)
 805                rcar_du_cmm_setup(crtc);
 806
 807        if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
 808                rcar_du_vsp_atomic_begin(rcrtc);
 809}
 810
 811static void rcar_du_crtc_atomic_flush(struct drm_crtc *crtc,
 812                                      struct drm_crtc_state *old_crtc_state)
 813{
 814        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 815        struct drm_device *dev = rcrtc->crtc.dev;
 816        unsigned long flags;
 817
 818        rcar_du_crtc_update_planes(rcrtc);
 819
 820        if (crtc->state->event) {
 821                WARN_ON(drm_crtc_vblank_get(crtc) != 0);
 822
 823                spin_lock_irqsave(&dev->event_lock, flags);
 824                rcrtc->event = crtc->state->event;
 825                crtc->state->event = NULL;
 826                spin_unlock_irqrestore(&dev->event_lock, flags);
 827        }
 828
 829        if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
 830                rcar_du_vsp_atomic_flush(rcrtc);
 831}
 832
 833static enum drm_mode_status
 834rcar_du_crtc_mode_valid(struct drm_crtc *crtc,
 835                        const struct drm_display_mode *mode)
 836{
 837        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 838        struct rcar_du_device *rcdu = rcrtc->dev;
 839        bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
 840        unsigned int vbp;
 841
 842        if (interlaced && !rcar_du_has(rcdu, RCAR_DU_FEATURE_INTERLACED))
 843                return MODE_NO_INTERLACE;
 844
 845        /*
 846         * The hardware requires a minimum combined horizontal sync and back
 847         * porch of 20 pixels and a minimum vertical back porch of 3 lines.
 848         */
 849        if (mode->htotal - mode->hsync_start < 20)
 850                return MODE_HBLANK_NARROW;
 851
 852        vbp = (mode->vtotal - mode->vsync_end) / (interlaced ? 2 : 1);
 853        if (vbp < 3)
 854                return MODE_VBLANK_NARROW;
 855
 856        return MODE_OK;
 857}
 858
 859static const struct drm_crtc_helper_funcs crtc_helper_funcs = {
 860        .atomic_check = rcar_du_crtc_atomic_check,
 861        .atomic_begin = rcar_du_crtc_atomic_begin,
 862        .atomic_flush = rcar_du_crtc_atomic_flush,
 863        .atomic_enable = rcar_du_crtc_atomic_enable,
 864        .atomic_disable = rcar_du_crtc_atomic_disable,
 865        .mode_valid = rcar_du_crtc_mode_valid,
 866};
 867
 868static void rcar_du_crtc_crc_init(struct rcar_du_crtc *rcrtc)
 869{
 870        struct rcar_du_device *rcdu = rcrtc->dev;
 871        const char **sources;
 872        unsigned int count;
 873        int i = -1;
 874
 875        /* CRC available only on Gen3 HW. */
 876        if (rcdu->info->gen < 3)
 877                return;
 878
 879        /* Reserve 1 for "auto" source. */
 880        count = rcrtc->vsp->num_planes + 1;
 881
 882        sources = kmalloc_array(count, sizeof(*sources), GFP_KERNEL);
 883        if (!sources)
 884                return;
 885
 886        sources[0] = kstrdup("auto", GFP_KERNEL);
 887        if (!sources[0])
 888                goto error;
 889
 890        for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
 891                struct drm_plane *plane = &rcrtc->vsp->planes[i].plane;
 892                char name[16];
 893
 894                sprintf(name, "plane%u", plane->base.id);
 895                sources[i + 1] = kstrdup(name, GFP_KERNEL);
 896                if (!sources[i + 1])
 897                        goto error;
 898        }
 899
 900        rcrtc->sources = sources;
 901        rcrtc->sources_count = count;
 902        return;
 903
 904error:
 905        while (i >= 0) {
 906                kfree(sources[i]);
 907                i--;
 908        }
 909        kfree(sources);
 910}
 911
 912static void rcar_du_crtc_crc_cleanup(struct rcar_du_crtc *rcrtc)
 913{
 914        unsigned int i;
 915
 916        if (!rcrtc->sources)
 917                return;
 918
 919        for (i = 0; i < rcrtc->sources_count; i++)
 920                kfree(rcrtc->sources[i]);
 921        kfree(rcrtc->sources);
 922
 923        rcrtc->sources = NULL;
 924        rcrtc->sources_count = 0;
 925}
 926
 927static struct drm_crtc_state *
 928rcar_du_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
 929{
 930        struct rcar_du_crtc_state *state;
 931        struct rcar_du_crtc_state *copy;
 932
 933        if (WARN_ON(!crtc->state))
 934                return NULL;
 935
 936        state = to_rcar_crtc_state(crtc->state);
 937        copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
 938        if (copy == NULL)
 939                return NULL;
 940
 941        __drm_atomic_helper_crtc_duplicate_state(crtc, &copy->state);
 942
 943        return &copy->state;
 944}
 945
 946static void rcar_du_crtc_atomic_destroy_state(struct drm_crtc *crtc,
 947                                              struct drm_crtc_state *state)
 948{
 949        __drm_atomic_helper_crtc_destroy_state(state);
 950        kfree(to_rcar_crtc_state(state));
 951}
 952
 953static void rcar_du_crtc_cleanup(struct drm_crtc *crtc)
 954{
 955        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 956
 957        rcar_du_crtc_crc_cleanup(rcrtc);
 958
 959        return drm_crtc_cleanup(crtc);
 960}
 961
 962static void rcar_du_crtc_reset(struct drm_crtc *crtc)
 963{
 964        struct rcar_du_crtc_state *state;
 965
 966        if (crtc->state) {
 967                rcar_du_crtc_atomic_destroy_state(crtc, crtc->state);
 968                crtc->state = NULL;
 969        }
 970
 971        state = kzalloc(sizeof(*state), GFP_KERNEL);
 972        if (state == NULL)
 973                return;
 974
 975        state->crc.source = VSP1_DU_CRC_NONE;
 976        state->crc.index = 0;
 977
 978        __drm_atomic_helper_crtc_reset(crtc, &state->state);
 979}
 980
 981static int rcar_du_crtc_enable_vblank(struct drm_crtc *crtc)
 982{
 983        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 984
 985        rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL);
 986        rcar_du_crtc_set(rcrtc, DIER, DIER_VBE);
 987        rcrtc->vblank_enable = true;
 988
 989        return 0;
 990}
 991
 992static void rcar_du_crtc_disable_vblank(struct drm_crtc *crtc)
 993{
 994        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 995
 996        rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE);
 997        rcrtc->vblank_enable = false;
 998}
 999
1000static int rcar_du_crtc_parse_crc_source(struct rcar_du_crtc *rcrtc,
1001                                         const char *source_name,
1002                                         enum vsp1_du_crc_source *source)
1003{
1004        unsigned int index;
1005        int ret;
1006
1007        /*
1008         * Parse the source name. Supported values are "plane%u" to compute the
1009         * CRC on an input plane (%u is the plane ID), and "auto" to compute the
1010         * CRC on the composer (VSP) output.
1011         */
1012
1013        if (!source_name) {
1014                *source = VSP1_DU_CRC_NONE;
1015                return 0;
1016        } else if (!strcmp(source_name, "auto")) {
1017                *source = VSP1_DU_CRC_OUTPUT;
1018                return 0;
1019        } else if (strstarts(source_name, "plane")) {
1020                unsigned int i;
1021
1022                *source = VSP1_DU_CRC_PLANE;
1023
1024                ret = kstrtouint(source_name + strlen("plane"), 10, &index);
1025                if (ret < 0)
1026                        return ret;
1027
1028                for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
1029                        if (index == rcrtc->vsp->planes[i].plane.base.id)
1030                                return i;
1031                }
1032        }
1033
1034        return -EINVAL;
1035}
1036
1037static int rcar_du_crtc_verify_crc_source(struct drm_crtc *crtc,
1038                                          const char *source_name,
1039                                          size_t *values_cnt)
1040{
1041        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1042        enum vsp1_du_crc_source source;
1043
1044        if (rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source) < 0) {
1045                DRM_DEBUG_DRIVER("unknown source %s\n", source_name);
1046                return -EINVAL;
1047        }
1048
1049        *values_cnt = 1;
1050        return 0;
1051}
1052
1053static const char *const *
1054rcar_du_crtc_get_crc_sources(struct drm_crtc *crtc, size_t *count)
1055{
1056        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1057
1058        *count = rcrtc->sources_count;
1059        return rcrtc->sources;
1060}
1061
1062static int rcar_du_crtc_set_crc_source(struct drm_crtc *crtc,
1063                                       const char *source_name)
1064{
1065        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1066        struct drm_modeset_acquire_ctx ctx;
1067        struct drm_crtc_state *crtc_state;
1068        struct drm_atomic_state *state;
1069        enum vsp1_du_crc_source source;
1070        unsigned int index;
1071        int ret;
1072
1073        ret = rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source);
1074        if (ret < 0)
1075                return ret;
1076
1077        index = ret;
1078
1079        /* Perform an atomic commit to set the CRC source. */
1080        drm_modeset_acquire_init(&ctx, 0);
1081
1082        state = drm_atomic_state_alloc(crtc->dev);
1083        if (!state) {
1084                ret = -ENOMEM;
1085                goto unlock;
1086        }
1087
1088        state->acquire_ctx = &ctx;
1089
1090retry:
1091        crtc_state = drm_atomic_get_crtc_state(state, crtc);
1092        if (!IS_ERR(crtc_state)) {
1093                struct rcar_du_crtc_state *rcrtc_state;
1094
1095                rcrtc_state = to_rcar_crtc_state(crtc_state);
1096                rcrtc_state->crc.source = source;
1097                rcrtc_state->crc.index = index;
1098
1099                ret = drm_atomic_commit(state);
1100        } else {
1101                ret = PTR_ERR(crtc_state);
1102        }
1103
1104        if (ret == -EDEADLK) {
1105                drm_atomic_state_clear(state);
1106                drm_modeset_backoff(&ctx);
1107                goto retry;
1108        }
1109
1110        drm_atomic_state_put(state);
1111
1112unlock:
1113        drm_modeset_drop_locks(&ctx);
1114        drm_modeset_acquire_fini(&ctx);
1115
1116        return ret;
1117}
1118
1119static const struct drm_crtc_funcs crtc_funcs_gen2 = {
1120        .reset = rcar_du_crtc_reset,
1121        .destroy = drm_crtc_cleanup,
1122        .set_config = drm_atomic_helper_set_config,
1123        .page_flip = drm_atomic_helper_page_flip,
1124        .atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
1125        .atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
1126        .enable_vblank = rcar_du_crtc_enable_vblank,
1127        .disable_vblank = rcar_du_crtc_disable_vblank,
1128};
1129
1130static const struct drm_crtc_funcs crtc_funcs_gen3 = {
1131        .reset = rcar_du_crtc_reset,
1132        .destroy = rcar_du_crtc_cleanup,
1133        .set_config = drm_atomic_helper_set_config,
1134        .page_flip = drm_atomic_helper_page_flip,
1135        .atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
1136        .atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
1137        .enable_vblank = rcar_du_crtc_enable_vblank,
1138        .disable_vblank = rcar_du_crtc_disable_vblank,
1139        .set_crc_source = rcar_du_crtc_set_crc_source,
1140        .verify_crc_source = rcar_du_crtc_verify_crc_source,
1141        .get_crc_sources = rcar_du_crtc_get_crc_sources,
1142        .gamma_set = drm_atomic_helper_legacy_gamma_set,
1143};
1144
1145/* -----------------------------------------------------------------------------
1146 * Interrupt Handling
1147 */
1148
1149static irqreturn_t rcar_du_crtc_irq(int irq, void *arg)
1150{
1151        struct rcar_du_crtc *rcrtc = arg;
1152        struct rcar_du_device *rcdu = rcrtc->dev;
1153        irqreturn_t ret = IRQ_NONE;
1154        u32 status;
1155
1156        spin_lock(&rcrtc->vblank_lock);
1157
1158        status = rcar_du_crtc_read(rcrtc, DSSR);
1159        rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK);
1160
1161        if (status & DSSR_VBK) {
1162                /*
1163                 * Wake up the vblank wait if the counter reaches 0. This must
1164                 * be protected by the vblank_lock to avoid races in
1165                 * rcar_du_crtc_disable_planes().
1166                 */
1167                if (rcrtc->vblank_count) {
1168                        if (--rcrtc->vblank_count == 0)
1169                                wake_up(&rcrtc->vblank_wait);
1170                }
1171        }
1172
1173        spin_unlock(&rcrtc->vblank_lock);
1174
1175        if (status & DSSR_VBK) {
1176                if (rcdu->info->gen < 3) {
1177                        drm_crtc_handle_vblank(&rcrtc->crtc);
1178                        rcar_du_crtc_finish_page_flip(rcrtc);
1179                }
1180
1181                ret = IRQ_HANDLED;
1182        }
1183
1184        return ret;
1185}
1186
1187/* -----------------------------------------------------------------------------
1188 * Initialization
1189 */
1190
1191int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int swindex,
1192                        unsigned int hwindex)
1193{
1194        static const unsigned int mmio_offsets[] = {
1195                DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET, DU3_REG_OFFSET
1196        };
1197
1198        struct rcar_du_device *rcdu = rgrp->dev;
1199        struct platform_device *pdev = to_platform_device(rcdu->dev);
1200        struct rcar_du_crtc *rcrtc = &rcdu->crtcs[swindex];
1201        struct drm_crtc *crtc = &rcrtc->crtc;
1202        struct drm_plane *primary;
1203        unsigned int irqflags;
1204        struct clk *clk;
1205        char clk_name[9];
1206        char *name;
1207        int irq;
1208        int ret;
1209
1210        /* Get the CRTC clock and the optional external clock. */
1211        if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
1212                sprintf(clk_name, "du.%u", hwindex);
1213                name = clk_name;
1214        } else {
1215                name = NULL;
1216        }
1217
1218        rcrtc->clock = devm_clk_get(rcdu->dev, name);
1219        if (IS_ERR(rcrtc->clock)) {
1220                dev_err(rcdu->dev, "no clock for DU channel %u\n", hwindex);
1221                return PTR_ERR(rcrtc->clock);
1222        }
1223
1224        sprintf(clk_name, "dclkin.%u", hwindex);
1225        clk = devm_clk_get(rcdu->dev, clk_name);
1226        if (!IS_ERR(clk)) {
1227                rcrtc->extclock = clk;
1228        } else if (PTR_ERR(clk) == -EPROBE_DEFER) {
1229                return -EPROBE_DEFER;
1230        } else if (rcdu->info->dpll_mask & BIT(hwindex)) {
1231                /*
1232                 * DU channels that have a display PLL can't use the internal
1233                 * system clock and thus require an external clock.
1234                 */
1235                ret = PTR_ERR(clk);
1236                dev_err(rcdu->dev, "can't get dclkin.%u: %d\n", hwindex, ret);
1237                return ret;
1238        }
1239
1240        init_waitqueue_head(&rcrtc->flip_wait);
1241        init_waitqueue_head(&rcrtc->vblank_wait);
1242        spin_lock_init(&rcrtc->vblank_lock);
1243
1244        rcrtc->dev = rcdu;
1245        rcrtc->group = rgrp;
1246        rcrtc->mmio_offset = mmio_offsets[hwindex];
1247        rcrtc->index = hwindex;
1248        rcrtc->dsysr = (rcrtc->index % 2 ? 0 : DSYSR_DRES) | DSYSR_TVM_TVSYNC;
1249
1250        if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE))
1251                primary = &rcrtc->vsp->planes[rcrtc->vsp_pipe].plane;
1252        else
1253                primary = &rgrp->planes[swindex % 2].plane;
1254
1255        ret = drm_crtc_init_with_planes(rcdu->ddev, crtc, primary, NULL,
1256                                        rcdu->info->gen <= 2 ?
1257                                        &crtc_funcs_gen2 : &crtc_funcs_gen3,
1258                                        NULL);
1259        if (ret < 0)
1260                return ret;
1261
1262        /* CMM might be disabled for this CRTC. */
1263        if (rcdu->cmms[swindex]) {
1264                rcrtc->cmm = rcdu->cmms[swindex];
1265                rgrp->cmms_mask |= BIT(hwindex % 2);
1266
1267                drm_mode_crtc_set_gamma_size(crtc, CM2_LUT_SIZE);
1268                drm_crtc_enable_color_mgmt(crtc, 0, false, CM2_LUT_SIZE);
1269        }
1270
1271        drm_crtc_helper_add(crtc, &crtc_helper_funcs);
1272
1273        /* Register the interrupt handler. */
1274        if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
1275                /* The IRQ's are associated with the CRTC (sw)index. */
1276                irq = platform_get_irq(pdev, swindex);
1277                irqflags = 0;
1278        } else {
1279                irq = platform_get_irq(pdev, 0);
1280                irqflags = IRQF_SHARED;
1281        }
1282
1283        if (irq < 0) {
1284                dev_err(rcdu->dev, "no IRQ for CRTC %u\n", swindex);
1285                return irq;
1286        }
1287
1288        ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags,
1289                               dev_name(rcdu->dev), rcrtc);
1290        if (ret < 0) {
1291                dev_err(rcdu->dev,
1292                        "failed to register IRQ for CRTC %u\n", swindex);
1293                return ret;
1294        }
1295
1296        rcar_du_crtc_crc_init(rcrtc);
1297
1298        return 0;
1299}
1300