linux/drivers/gpu/drm/ttm/ttm_page_alloc_dma.c
<<
>>
Prefs
   1/*
   2 * Copyright 2011 (c) Oracle Corp.
   3
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sub license,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the
  12 * next paragraph) shall be included in all copies or substantial portions
  13 * of the Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21 * DEALINGS IN THE SOFTWARE.
  22 *
  23 * Author: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
  24 */
  25
  26/*
  27 * A simple DMA pool losely based on dmapool.c. It has certain advantages
  28 * over the DMA pools:
  29 * - Pool collects resently freed pages for reuse (and hooks up to
  30 *   the shrinker).
  31 * - Tracks currently in use pages
  32 * - Tracks whether the page is UC, WB or cached (and reverts to WB
  33 *   when freed).
  34 */
  35
  36#define pr_fmt(fmt) "[TTM] " fmt
  37
  38#include <linux/dma-mapping.h>
  39#include <linux/list.h>
  40#include <linux/seq_file.h> /* for seq_printf */
  41#include <linux/slab.h>
  42#include <linux/spinlock.h>
  43#include <linux/highmem.h>
  44#include <linux/mm_types.h>
  45#include <linux/module.h>
  46#include <linux/mm.h>
  47#include <linux/atomic.h>
  48#include <linux/device.h>
  49#include <linux/kthread.h>
  50#include <drm/ttm/ttm_bo_driver.h>
  51#include <drm/ttm/ttm_page_alloc.h>
  52#include <drm/ttm/ttm_set_memory.h>
  53
  54#define NUM_PAGES_TO_ALLOC              (PAGE_SIZE/sizeof(struct page *))
  55#define SMALL_ALLOCATION                4
  56#define FREE_ALL_PAGES                  (~0U)
  57#define VADDR_FLAG_HUGE_POOL            1UL
  58#define VADDR_FLAG_UPDATED_COUNT        2UL
  59
  60enum pool_type {
  61        IS_UNDEFINED    = 0,
  62        IS_WC           = 1 << 1,
  63        IS_UC           = 1 << 2,
  64        IS_CACHED       = 1 << 3,
  65        IS_DMA32        = 1 << 4,
  66        IS_HUGE         = 1 << 5
  67};
  68
  69/*
  70 * The pool structure. There are up to nine pools:
  71 *  - generic (not restricted to DMA32):
  72 *      - write combined, uncached, cached.
  73 *  - dma32 (up to 2^32 - so up 4GB):
  74 *      - write combined, uncached, cached.
  75 *  - huge (not restricted to DMA32):
  76 *      - write combined, uncached, cached.
  77 * for each 'struct device'. The 'cached' is for pages that are actively used.
  78 * The other ones can be shrunk by the shrinker API if neccessary.
  79 * @pools: The 'struct device->dma_pools' link.
  80 * @type: Type of the pool
  81 * @lock: Protects the free_list from concurrnet access. Must be
  82 * used with irqsave/irqrestore variants because pool allocator maybe called
  83 * from delayed work.
  84 * @free_list: Pool of pages that are free to be used. No order requirements.
  85 * @dev: The device that is associated with these pools.
  86 * @size: Size used during DMA allocation.
  87 * @npages_free: Count of available pages for re-use.
  88 * @npages_in_use: Count of pages that are in use.
  89 * @nfrees: Stats when pool is shrinking.
  90 * @nrefills: Stats when the pool is grown.
  91 * @gfp_flags: Flags to pass for alloc_page.
  92 * @name: Name of the pool.
  93 * @dev_name: Name derieved from dev - similar to how dev_info works.
  94 *   Used during shutdown as the dev_info during release is unavailable.
  95 */
  96struct dma_pool {
  97        struct list_head pools; /* The 'struct device->dma_pools link */
  98        enum pool_type type;
  99        spinlock_t lock;
 100        struct list_head free_list;
 101        struct device *dev;
 102        unsigned size;
 103        unsigned npages_free;
 104        unsigned npages_in_use;
 105        unsigned long nfrees; /* Stats when shrunk. */
 106        unsigned long nrefills; /* Stats when grown. */
 107        gfp_t gfp_flags;
 108        char name[13]; /* "cached dma32" */
 109        char dev_name[64]; /* Constructed from dev */
 110};
 111
 112/*
 113 * The accounting page keeping track of the allocated page along with
 114 * the DMA address.
 115 * @page_list: The link to the 'page_list' in 'struct dma_pool'.
 116 * @vaddr: The virtual address of the page and a flag if the page belongs to a
 117 * huge pool
 118 * @dma: The bus address of the page. If the page is not allocated
 119 *   via the DMA API, it will be -1.
 120 */
 121struct dma_page {
 122        struct list_head page_list;
 123        unsigned long vaddr;
 124        struct page *p;
 125        dma_addr_t dma;
 126};
 127
 128/*
 129 * Limits for the pool. They are handled without locks because only place where
 130 * they may change is in sysfs store. They won't have immediate effect anyway
 131 * so forcing serialization to access them is pointless.
 132 */
 133
 134struct ttm_pool_opts {
 135        unsigned        alloc_size;
 136        unsigned        max_size;
 137        unsigned        small;
 138};
 139
 140/*
 141 * Contains the list of all of the 'struct device' and their corresponding
 142 * DMA pools. Guarded by _mutex->lock.
 143 * @pools: The link to 'struct ttm_pool_manager->pools'
 144 * @dev: The 'struct device' associated with the 'pool'
 145 * @pool: The 'struct dma_pool' associated with the 'dev'
 146 */
 147struct device_pools {
 148        struct list_head pools;
 149        struct device *dev;
 150        struct dma_pool *pool;
 151};
 152
 153/*
 154 * struct ttm_pool_manager - Holds memory pools for fast allocation
 155 *
 156 * @lock: Lock used when adding/removing from pools
 157 * @pools: List of 'struct device' and 'struct dma_pool' tuples.
 158 * @options: Limits for the pool.
 159 * @npools: Total amount of pools in existence.
 160 * @shrinker: The structure used by [un|]register_shrinker
 161 */
 162struct ttm_pool_manager {
 163        struct mutex            lock;
 164        struct list_head        pools;
 165        struct ttm_pool_opts    options;
 166        unsigned                npools;
 167        struct shrinker         mm_shrink;
 168        struct kobject          kobj;
 169};
 170
 171static struct ttm_pool_manager *_manager;
 172
 173static struct attribute ttm_page_pool_max = {
 174        .name = "pool_max_size",
 175        .mode = S_IRUGO | S_IWUSR
 176};
 177static struct attribute ttm_page_pool_small = {
 178        .name = "pool_small_allocation",
 179        .mode = S_IRUGO | S_IWUSR
 180};
 181static struct attribute ttm_page_pool_alloc_size = {
 182        .name = "pool_allocation_size",
 183        .mode = S_IRUGO | S_IWUSR
 184};
 185
 186static struct attribute *ttm_pool_attrs[] = {
 187        &ttm_page_pool_max,
 188        &ttm_page_pool_small,
 189        &ttm_page_pool_alloc_size,
 190        NULL
 191};
 192
 193static void ttm_pool_kobj_release(struct kobject *kobj)
 194{
 195        struct ttm_pool_manager *m =
 196                container_of(kobj, struct ttm_pool_manager, kobj);
 197        kfree(m);
 198}
 199
 200static ssize_t ttm_pool_store(struct kobject *kobj, struct attribute *attr,
 201                              const char *buffer, size_t size)
 202{
 203        struct ttm_pool_manager *m =
 204                container_of(kobj, struct ttm_pool_manager, kobj);
 205        int chars;
 206        unsigned val;
 207
 208        chars = sscanf(buffer, "%u", &val);
 209        if (chars == 0)
 210                return size;
 211
 212        /* Convert kb to number of pages */
 213        val = val / (PAGE_SIZE >> 10);
 214
 215        if (attr == &ttm_page_pool_max) {
 216                m->options.max_size = val;
 217        } else if (attr == &ttm_page_pool_small) {
 218                m->options.small = val;
 219        } else if (attr == &ttm_page_pool_alloc_size) {
 220                if (val > NUM_PAGES_TO_ALLOC*8) {
 221                        pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
 222                               NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
 223                               NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
 224                        return size;
 225                } else if (val > NUM_PAGES_TO_ALLOC) {
 226                        pr_warn("Setting allocation size to larger than %lu is not recommended\n",
 227                                NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
 228                }
 229                m->options.alloc_size = val;
 230        }
 231
 232        return size;
 233}
 234
 235static ssize_t ttm_pool_show(struct kobject *kobj, struct attribute *attr,
 236                             char *buffer)
 237{
 238        struct ttm_pool_manager *m =
 239                container_of(kobj, struct ttm_pool_manager, kobj);
 240        unsigned val = 0;
 241
 242        if (attr == &ttm_page_pool_max)
 243                val = m->options.max_size;
 244        else if (attr == &ttm_page_pool_small)
 245                val = m->options.small;
 246        else if (attr == &ttm_page_pool_alloc_size)
 247                val = m->options.alloc_size;
 248
 249        val = val * (PAGE_SIZE >> 10);
 250
 251        return snprintf(buffer, PAGE_SIZE, "%u\n", val);
 252}
 253
 254static const struct sysfs_ops ttm_pool_sysfs_ops = {
 255        .show = &ttm_pool_show,
 256        .store = &ttm_pool_store,
 257};
 258
 259static struct kobj_type ttm_pool_kobj_type = {
 260        .release = &ttm_pool_kobj_release,
 261        .sysfs_ops = &ttm_pool_sysfs_ops,
 262        .default_attrs = ttm_pool_attrs,
 263};
 264
 265static int ttm_set_pages_caching(struct dma_pool *pool,
 266                                 struct page **pages, unsigned cpages)
 267{
 268        int r = 0;
 269        /* Set page caching */
 270        if (pool->type & IS_UC) {
 271                r = ttm_set_pages_array_uc(pages, cpages);
 272                if (r)
 273                        pr_err("%s: Failed to set %d pages to uc!\n",
 274                               pool->dev_name, cpages);
 275        }
 276        if (pool->type & IS_WC) {
 277                r = ttm_set_pages_array_wc(pages, cpages);
 278                if (r)
 279                        pr_err("%s: Failed to set %d pages to wc!\n",
 280                               pool->dev_name, cpages);
 281        }
 282        return r;
 283}
 284
 285static void __ttm_dma_free_page(struct dma_pool *pool, struct dma_page *d_page)
 286{
 287        unsigned long attrs = 0;
 288        dma_addr_t dma = d_page->dma;
 289        d_page->vaddr &= ~VADDR_FLAG_HUGE_POOL;
 290        if (pool->type & IS_HUGE)
 291                attrs = DMA_ATTR_NO_WARN;
 292
 293        dma_free_attrs(pool->dev, pool->size, (void *)d_page->vaddr, dma, attrs);
 294
 295        kfree(d_page);
 296        d_page = NULL;
 297}
 298static struct dma_page *__ttm_dma_alloc_page(struct dma_pool *pool)
 299{
 300        struct dma_page *d_page;
 301        unsigned long attrs = 0;
 302        void *vaddr;
 303
 304        d_page = kmalloc(sizeof(struct dma_page), GFP_KERNEL);
 305        if (!d_page)
 306                return NULL;
 307
 308        if (pool->type & IS_HUGE)
 309                attrs = DMA_ATTR_NO_WARN;
 310
 311        vaddr = dma_alloc_attrs(pool->dev, pool->size, &d_page->dma,
 312                                pool->gfp_flags, attrs);
 313        if (vaddr) {
 314                if (is_vmalloc_addr(vaddr))
 315                        d_page->p = vmalloc_to_page(vaddr);
 316                else
 317                        d_page->p = virt_to_page(vaddr);
 318                d_page->vaddr = (unsigned long)vaddr;
 319                if (pool->type & IS_HUGE)
 320                        d_page->vaddr |= VADDR_FLAG_HUGE_POOL;
 321        } else {
 322                kfree(d_page);
 323                d_page = NULL;
 324        }
 325        return d_page;
 326}
 327static enum pool_type ttm_to_type(int flags, enum ttm_caching_state cstate)
 328{
 329        enum pool_type type = IS_UNDEFINED;
 330
 331        if (flags & TTM_PAGE_FLAG_DMA32)
 332                type |= IS_DMA32;
 333        if (cstate == tt_cached)
 334                type |= IS_CACHED;
 335        else if (cstate == tt_uncached)
 336                type |= IS_UC;
 337        else
 338                type |= IS_WC;
 339
 340        return type;
 341}
 342
 343static void ttm_pool_update_free_locked(struct dma_pool *pool,
 344                                        unsigned freed_pages)
 345{
 346        pool->npages_free -= freed_pages;
 347        pool->nfrees += freed_pages;
 348
 349}
 350
 351/* set memory back to wb and free the pages. */
 352static void ttm_dma_page_put(struct dma_pool *pool, struct dma_page *d_page)
 353{
 354        struct page *page = d_page->p;
 355        unsigned num_pages;
 356
 357        /* Don't set WB on WB page pool. */
 358        if (!(pool->type & IS_CACHED)) {
 359                num_pages = pool->size / PAGE_SIZE;
 360                if (ttm_set_pages_wb(page, num_pages))
 361                        pr_err("%s: Failed to set %d pages to wb!\n",
 362                               pool->dev_name, num_pages);
 363        }
 364
 365        list_del(&d_page->page_list);
 366        __ttm_dma_free_page(pool, d_page);
 367}
 368
 369static void ttm_dma_pages_put(struct dma_pool *pool, struct list_head *d_pages,
 370                              struct page *pages[], unsigned npages)
 371{
 372        struct dma_page *d_page, *tmp;
 373
 374        if (pool->type & IS_HUGE) {
 375                list_for_each_entry_safe(d_page, tmp, d_pages, page_list)
 376                        ttm_dma_page_put(pool, d_page);
 377
 378                return;
 379        }
 380
 381        /* Don't set WB on WB page pool. */
 382        if (npages && !(pool->type & IS_CACHED) &&
 383            ttm_set_pages_array_wb(pages, npages))
 384                pr_err("%s: Failed to set %d pages to wb!\n",
 385                       pool->dev_name, npages);
 386
 387        list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
 388                list_del(&d_page->page_list);
 389                __ttm_dma_free_page(pool, d_page);
 390        }
 391}
 392
 393/*
 394 * Free pages from pool.
 395 *
 396 * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
 397 * number of pages in one go.
 398 *
 399 * @pool: to free the pages from
 400 * @nr_free: If set to true will free all pages in pool
 401 * @use_static: Safe to use static buffer
 402 **/
 403static unsigned ttm_dma_page_pool_free(struct dma_pool *pool, unsigned nr_free,
 404                                       bool use_static)
 405{
 406        static struct page *static_buf[NUM_PAGES_TO_ALLOC];
 407        unsigned long irq_flags;
 408        struct dma_page *dma_p, *tmp;
 409        struct page **pages_to_free;
 410        struct list_head d_pages;
 411        unsigned freed_pages = 0,
 412                 npages_to_free = nr_free;
 413
 414        if (NUM_PAGES_TO_ALLOC < nr_free)
 415                npages_to_free = NUM_PAGES_TO_ALLOC;
 416
 417        if (use_static)
 418                pages_to_free = static_buf;
 419        else
 420                pages_to_free = kmalloc_array(npages_to_free,
 421                                              sizeof(struct page *),
 422                                              GFP_KERNEL);
 423
 424        if (!pages_to_free) {
 425                pr_debug("%s: Failed to allocate memory for pool free operation\n",
 426                       pool->dev_name);
 427                return 0;
 428        }
 429        INIT_LIST_HEAD(&d_pages);
 430restart:
 431        spin_lock_irqsave(&pool->lock, irq_flags);
 432
 433        /* We picking the oldest ones off the list */
 434        list_for_each_entry_safe_reverse(dma_p, tmp, &pool->free_list,
 435                                         page_list) {
 436                if (freed_pages >= npages_to_free)
 437                        break;
 438
 439                /* Move the dma_page from one list to another. */
 440                list_move(&dma_p->page_list, &d_pages);
 441
 442                pages_to_free[freed_pages++] = dma_p->p;
 443                /* We can only remove NUM_PAGES_TO_ALLOC at a time. */
 444                if (freed_pages >= NUM_PAGES_TO_ALLOC) {
 445
 446                        ttm_pool_update_free_locked(pool, freed_pages);
 447                        /**
 448                         * Because changing page caching is costly
 449                         * we unlock the pool to prevent stalling.
 450                         */
 451                        spin_unlock_irqrestore(&pool->lock, irq_flags);
 452
 453                        ttm_dma_pages_put(pool, &d_pages, pages_to_free,
 454                                          freed_pages);
 455
 456                        INIT_LIST_HEAD(&d_pages);
 457
 458                        if (likely(nr_free != FREE_ALL_PAGES))
 459                                nr_free -= freed_pages;
 460
 461                        if (NUM_PAGES_TO_ALLOC >= nr_free)
 462                                npages_to_free = nr_free;
 463                        else
 464                                npages_to_free = NUM_PAGES_TO_ALLOC;
 465
 466                        freed_pages = 0;
 467
 468                        /* free all so restart the processing */
 469                        if (nr_free)
 470                                goto restart;
 471
 472                        /* Not allowed to fall through or break because
 473                         * following context is inside spinlock while we are
 474                         * outside here.
 475                         */
 476                        goto out;
 477
 478                }
 479        }
 480
 481        /* remove range of pages from the pool */
 482        if (freed_pages) {
 483                ttm_pool_update_free_locked(pool, freed_pages);
 484                nr_free -= freed_pages;
 485        }
 486
 487        spin_unlock_irqrestore(&pool->lock, irq_flags);
 488
 489        if (freed_pages)
 490                ttm_dma_pages_put(pool, &d_pages, pages_to_free, freed_pages);
 491out:
 492        if (pages_to_free != static_buf)
 493                kfree(pages_to_free);
 494        return nr_free;
 495}
 496
 497static void ttm_dma_free_pool(struct device *dev, enum pool_type type)
 498{
 499        struct device_pools *p;
 500        struct dma_pool *pool;
 501
 502        if (!dev)
 503                return;
 504
 505        mutex_lock(&_manager->lock);
 506        list_for_each_entry_reverse(p, &_manager->pools, pools) {
 507                if (p->dev != dev)
 508                        continue;
 509                pool = p->pool;
 510                if (pool->type != type)
 511                        continue;
 512
 513                list_del(&p->pools);
 514                kfree(p);
 515                _manager->npools--;
 516                break;
 517        }
 518        list_for_each_entry_reverse(pool, &dev->dma_pools, pools) {
 519                if (pool->type != type)
 520                        continue;
 521                /* Takes a spinlock.. */
 522                /* OK to use static buffer since global mutex is held. */
 523                ttm_dma_page_pool_free(pool, FREE_ALL_PAGES, true);
 524                WARN_ON(((pool->npages_in_use + pool->npages_free) != 0));
 525                /* This code path is called after _all_ references to the
 526                 * struct device has been dropped - so nobody should be
 527                 * touching it. In case somebody is trying to _add_ we are
 528                 * guarded by the mutex. */
 529                list_del(&pool->pools);
 530                kfree(pool);
 531                break;
 532        }
 533        mutex_unlock(&_manager->lock);
 534}
 535
 536/*
 537 * On free-ing of the 'struct device' this deconstructor is run.
 538 * Albeit the pool might have already been freed earlier.
 539 */
 540static void ttm_dma_pool_release(struct device *dev, void *res)
 541{
 542        struct dma_pool *pool = *(struct dma_pool **)res;
 543
 544        if (pool)
 545                ttm_dma_free_pool(dev, pool->type);
 546}
 547
 548static int ttm_dma_pool_match(struct device *dev, void *res, void *match_data)
 549{
 550        return *(struct dma_pool **)res == match_data;
 551}
 552
 553static struct dma_pool *ttm_dma_pool_init(struct device *dev, gfp_t flags,
 554                                          enum pool_type type)
 555{
 556        const char *n[] = {"wc", "uc", "cached", " dma32", "huge"};
 557        enum pool_type t[] = {IS_WC, IS_UC, IS_CACHED, IS_DMA32, IS_HUGE};
 558        struct device_pools *sec_pool = NULL;
 559        struct dma_pool *pool = NULL, **ptr;
 560        unsigned i;
 561        int ret = -ENODEV;
 562        char *p;
 563
 564        if (!dev)
 565                return NULL;
 566
 567        ptr = devres_alloc(ttm_dma_pool_release, sizeof(*ptr), GFP_KERNEL);
 568        if (!ptr)
 569                return NULL;
 570
 571        ret = -ENOMEM;
 572
 573        pool = kmalloc_node(sizeof(struct dma_pool), GFP_KERNEL,
 574                            dev_to_node(dev));
 575        if (!pool)
 576                goto err_mem;
 577
 578        sec_pool = kmalloc_node(sizeof(struct device_pools), GFP_KERNEL,
 579                                dev_to_node(dev));
 580        if (!sec_pool)
 581                goto err_mem;
 582
 583        INIT_LIST_HEAD(&sec_pool->pools);
 584        sec_pool->dev = dev;
 585        sec_pool->pool =  pool;
 586
 587        INIT_LIST_HEAD(&pool->free_list);
 588        INIT_LIST_HEAD(&pool->pools);
 589        spin_lock_init(&pool->lock);
 590        pool->dev = dev;
 591        pool->npages_free = pool->npages_in_use = 0;
 592        pool->nfrees = 0;
 593        pool->gfp_flags = flags;
 594        if (type & IS_HUGE)
 595#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 596                pool->size = HPAGE_PMD_SIZE;
 597#else
 598                BUG();
 599#endif
 600        else
 601                pool->size = PAGE_SIZE;
 602        pool->type = type;
 603        pool->nrefills = 0;
 604        p = pool->name;
 605        for (i = 0; i < ARRAY_SIZE(t); i++) {
 606                if (type & t[i]) {
 607                        p += scnprintf(p, sizeof(pool->name) - (p - pool->name),
 608                                      "%s", n[i]);
 609                }
 610        }
 611        *p = 0;
 612        /* We copy the name for pr_ calls b/c when dma_pool_destroy is called
 613         * - the kobj->name has already been deallocated.*/
 614        snprintf(pool->dev_name, sizeof(pool->dev_name), "%s %s",
 615                 dev_driver_string(dev), dev_name(dev));
 616        mutex_lock(&_manager->lock);
 617        /* You can get the dma_pool from either the global: */
 618        list_add(&sec_pool->pools, &_manager->pools);
 619        _manager->npools++;
 620        /* or from 'struct device': */
 621        list_add(&pool->pools, &dev->dma_pools);
 622        mutex_unlock(&_manager->lock);
 623
 624        *ptr = pool;
 625        devres_add(dev, ptr);
 626
 627        return pool;
 628err_mem:
 629        devres_free(ptr);
 630        kfree(sec_pool);
 631        kfree(pool);
 632        return ERR_PTR(ret);
 633}
 634
 635static struct dma_pool *ttm_dma_find_pool(struct device *dev,
 636                                          enum pool_type type)
 637{
 638        struct dma_pool *pool, *tmp;
 639
 640        if (type == IS_UNDEFINED)
 641                return NULL;
 642
 643        /* NB: We iterate on the 'struct dev' which has no spinlock, but
 644         * it does have a kref which we have taken. The kref is taken during
 645         * graphic driver loading - in the drm_pci_init it calls either
 646         * pci_dev_get or pci_register_driver which both end up taking a kref
 647         * on 'struct device'.
 648         *
 649         * On teardown, the graphic drivers end up quiescing the TTM (put_pages)
 650         * and calls the dev_res deconstructors: ttm_dma_pool_release. The nice
 651         * thing is at that point of time there are no pages associated with the
 652         * driver so this function will not be called.
 653         */
 654        list_for_each_entry_safe(pool, tmp, &dev->dma_pools, pools)
 655                if (pool->type == type)
 656                        return pool;
 657        return NULL;
 658}
 659
 660/*
 661 * Free pages the pages that failed to change the caching state. If there
 662 * are pages that have changed their caching state already put them to the
 663 * pool.
 664 */
 665static void ttm_dma_handle_caching_state_failure(struct dma_pool *pool,
 666                                                 struct list_head *d_pages,
 667                                                 struct page **failed_pages,
 668                                                 unsigned cpages)
 669{
 670        struct dma_page *d_page, *tmp;
 671        struct page *p;
 672        unsigned i = 0;
 673
 674        p = failed_pages[0];
 675        if (!p)
 676                return;
 677        /* Find the failed page. */
 678        list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
 679                if (d_page->p != p)
 680                        continue;
 681                /* .. and then progress over the full list. */
 682                list_del(&d_page->page_list);
 683                __ttm_dma_free_page(pool, d_page);
 684                if (++i < cpages)
 685                        p = failed_pages[i];
 686                else
 687                        break;
 688        }
 689
 690}
 691
 692/*
 693 * Allocate 'count' pages, and put 'need' number of them on the
 694 * 'pages' and as well on the 'dma_address' starting at 'dma_offset' offset.
 695 * The full list of pages should also be on 'd_pages'.
 696 * We return zero for success, and negative numbers as errors.
 697 */
 698static int ttm_dma_pool_alloc_new_pages(struct dma_pool *pool,
 699                                        struct list_head *d_pages,
 700                                        unsigned count)
 701{
 702        struct page **caching_array;
 703        struct dma_page *dma_p;
 704        struct page *p;
 705        int r = 0;
 706        unsigned i, j, npages, cpages;
 707        unsigned max_cpages = min(count,
 708                        (unsigned)(PAGE_SIZE/sizeof(struct page *)));
 709
 710        /* allocate array for page caching change */
 711        caching_array = kmalloc_array(max_cpages, sizeof(struct page *),
 712                                      GFP_KERNEL);
 713
 714        if (!caching_array) {
 715                pr_debug("%s: Unable to allocate table for new pages\n",
 716                       pool->dev_name);
 717                return -ENOMEM;
 718        }
 719
 720        if (count > 1)
 721                pr_debug("%s: (%s:%d) Getting %d pages\n",
 722                         pool->dev_name, pool->name, current->pid, count);
 723
 724        for (i = 0, cpages = 0; i < count; ++i) {
 725                dma_p = __ttm_dma_alloc_page(pool);
 726                if (!dma_p) {
 727                        pr_debug("%s: Unable to get page %u\n",
 728                                 pool->dev_name, i);
 729
 730                        /* store already allocated pages in the pool after
 731                         * setting the caching state */
 732                        if (cpages) {
 733                                r = ttm_set_pages_caching(pool, caching_array,
 734                                                          cpages);
 735                                if (r)
 736                                        ttm_dma_handle_caching_state_failure(
 737                                                pool, d_pages, caching_array,
 738                                                cpages);
 739                        }
 740                        r = -ENOMEM;
 741                        goto out;
 742                }
 743                p = dma_p->p;
 744                list_add(&dma_p->page_list, d_pages);
 745
 746#ifdef CONFIG_HIGHMEM
 747                /* gfp flags of highmem page should never be dma32 so we
 748                 * we should be fine in such case
 749                 */
 750                if (PageHighMem(p))
 751                        continue;
 752#endif
 753
 754                npages = pool->size / PAGE_SIZE;
 755                for (j = 0; j < npages; ++j) {
 756                        caching_array[cpages++] = p + j;
 757                        if (cpages == max_cpages) {
 758                                /* Note: Cannot hold the spinlock */
 759                                r = ttm_set_pages_caching(pool, caching_array,
 760                                                          cpages);
 761                                if (r) {
 762                                        ttm_dma_handle_caching_state_failure(
 763                                             pool, d_pages, caching_array,
 764                                             cpages);
 765                                        goto out;
 766                                }
 767                                cpages = 0;
 768                        }
 769                }
 770        }
 771
 772        if (cpages) {
 773                r = ttm_set_pages_caching(pool, caching_array, cpages);
 774                if (r)
 775                        ttm_dma_handle_caching_state_failure(pool, d_pages,
 776                                        caching_array, cpages);
 777        }
 778out:
 779        kfree(caching_array);
 780        return r;
 781}
 782
 783/*
 784 * @return count of pages still required to fulfill the request.
 785 */
 786static int ttm_dma_page_pool_fill_locked(struct dma_pool *pool,
 787                                         unsigned long *irq_flags)
 788{
 789        unsigned count = _manager->options.small;
 790        int r = pool->npages_free;
 791
 792        if (count > pool->npages_free) {
 793                struct list_head d_pages;
 794
 795                INIT_LIST_HEAD(&d_pages);
 796
 797                spin_unlock_irqrestore(&pool->lock, *irq_flags);
 798
 799                /* Returns how many more are neccessary to fulfill the
 800                 * request. */
 801                r = ttm_dma_pool_alloc_new_pages(pool, &d_pages, count);
 802
 803                spin_lock_irqsave(&pool->lock, *irq_flags);
 804                if (!r) {
 805                        /* Add the fresh to the end.. */
 806                        list_splice(&d_pages, &pool->free_list);
 807                        ++pool->nrefills;
 808                        pool->npages_free += count;
 809                        r = count;
 810                } else {
 811                        struct dma_page *d_page;
 812                        unsigned cpages = 0;
 813
 814                        pr_debug("%s: Failed to fill %s pool (r:%d)!\n",
 815                                 pool->dev_name, pool->name, r);
 816
 817                        list_for_each_entry(d_page, &d_pages, page_list) {
 818                                cpages++;
 819                        }
 820                        list_splice_tail(&d_pages, &pool->free_list);
 821                        pool->npages_free += cpages;
 822                        r = cpages;
 823                }
 824        }
 825        return r;
 826}
 827
 828/*
 829 * The populate list is actually a stack (not that is matters as TTM
 830 * allocates one page at a time.
 831 * return dma_page pointer if success, otherwise NULL.
 832 */
 833static struct dma_page *ttm_dma_pool_get_pages(struct dma_pool *pool,
 834                                  struct ttm_dma_tt *ttm_dma,
 835                                  unsigned index)
 836{
 837        struct dma_page *d_page = NULL;
 838        struct ttm_tt *ttm = &ttm_dma->ttm;
 839        unsigned long irq_flags;
 840        int count;
 841
 842        spin_lock_irqsave(&pool->lock, irq_flags);
 843        count = ttm_dma_page_pool_fill_locked(pool, &irq_flags);
 844        if (count) {
 845                d_page = list_first_entry(&pool->free_list, struct dma_page, page_list);
 846                ttm->pages[index] = d_page->p;
 847                ttm_dma->dma_address[index] = d_page->dma;
 848                list_move_tail(&d_page->page_list, &ttm_dma->pages_list);
 849                pool->npages_in_use += 1;
 850                pool->npages_free -= 1;
 851        }
 852        spin_unlock_irqrestore(&pool->lock, irq_flags);
 853        return d_page;
 854}
 855
 856static gfp_t ttm_dma_pool_gfp_flags(struct ttm_dma_tt *ttm_dma, bool huge)
 857{
 858        struct ttm_tt *ttm = &ttm_dma->ttm;
 859        gfp_t gfp_flags;
 860
 861        if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
 862                gfp_flags = GFP_USER | GFP_DMA32;
 863        else
 864                gfp_flags = GFP_HIGHUSER;
 865        if (ttm->page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
 866                gfp_flags |= __GFP_ZERO;
 867
 868        if (huge) {
 869                gfp_flags |= GFP_TRANSHUGE_LIGHT | __GFP_NORETRY |
 870                        __GFP_KSWAPD_RECLAIM;
 871                gfp_flags &= ~__GFP_MOVABLE;
 872                gfp_flags &= ~__GFP_COMP;
 873        }
 874
 875        if (ttm->page_flags & TTM_PAGE_FLAG_NO_RETRY)
 876                gfp_flags |= __GFP_RETRY_MAYFAIL;
 877
 878        return gfp_flags;
 879}
 880
 881/*
 882 * On success pages list will hold count number of correctly
 883 * cached pages. On failure will hold the negative return value (-ENOMEM, etc).
 884 */
 885int ttm_dma_populate(struct ttm_dma_tt *ttm_dma, struct device *dev,
 886                        struct ttm_operation_ctx *ctx)
 887{
 888        struct ttm_mem_global *mem_glob = &ttm_mem_glob;
 889        struct ttm_tt *ttm = &ttm_dma->ttm;
 890        unsigned long num_pages = ttm->num_pages;
 891        struct dma_pool *pool;
 892        struct dma_page *d_page;
 893        enum pool_type type;
 894        unsigned i;
 895        int ret;
 896
 897        if (ttm->state != tt_unpopulated)
 898                return 0;
 899
 900        if (ttm_check_under_lowerlimit(mem_glob, num_pages, ctx))
 901                return -ENOMEM;
 902
 903        INIT_LIST_HEAD(&ttm_dma->pages_list);
 904        i = 0;
 905
 906        type = ttm_to_type(ttm->page_flags, ttm->caching_state);
 907
 908#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 909        if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
 910                goto skip_huge;
 911
 912        pool = ttm_dma_find_pool(dev, type | IS_HUGE);
 913        if (!pool) {
 914                gfp_t gfp_flags = ttm_dma_pool_gfp_flags(ttm_dma, true);
 915
 916                pool = ttm_dma_pool_init(dev, gfp_flags, type | IS_HUGE);
 917                if (IS_ERR_OR_NULL(pool))
 918                        goto skip_huge;
 919        }
 920
 921        while (num_pages >= HPAGE_PMD_NR) {
 922                unsigned j;
 923
 924                d_page = ttm_dma_pool_get_pages(pool, ttm_dma, i);
 925                if (!d_page)
 926                        break;
 927
 928                ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
 929                                                pool->size, ctx);
 930                if (unlikely(ret != 0)) {
 931                        ttm_dma_unpopulate(ttm_dma, dev);
 932                        return -ENOMEM;
 933                }
 934
 935                d_page->vaddr |= VADDR_FLAG_UPDATED_COUNT;
 936                for (j = i + 1; j < (i + HPAGE_PMD_NR); ++j) {
 937                        ttm->pages[j] = ttm->pages[j - 1] + 1;
 938                        ttm_dma->dma_address[j] = ttm_dma->dma_address[j - 1] +
 939                                PAGE_SIZE;
 940                }
 941
 942                i += HPAGE_PMD_NR;
 943                num_pages -= HPAGE_PMD_NR;
 944        }
 945
 946skip_huge:
 947#endif
 948
 949        pool = ttm_dma_find_pool(dev, type);
 950        if (!pool) {
 951                gfp_t gfp_flags = ttm_dma_pool_gfp_flags(ttm_dma, false);
 952
 953                pool = ttm_dma_pool_init(dev, gfp_flags, type);
 954                if (IS_ERR_OR_NULL(pool))
 955                        return -ENOMEM;
 956        }
 957
 958        while (num_pages) {
 959                d_page = ttm_dma_pool_get_pages(pool, ttm_dma, i);
 960                if (!d_page) {
 961                        ttm_dma_unpopulate(ttm_dma, dev);
 962                        return -ENOMEM;
 963                }
 964
 965                ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
 966                                                pool->size, ctx);
 967                if (unlikely(ret != 0)) {
 968                        ttm_dma_unpopulate(ttm_dma, dev);
 969                        return -ENOMEM;
 970                }
 971
 972                d_page->vaddr |= VADDR_FLAG_UPDATED_COUNT;
 973                ++i;
 974                --num_pages;
 975        }
 976
 977        if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
 978                ret = ttm_tt_swapin(ttm);
 979                if (unlikely(ret != 0)) {
 980                        ttm_dma_unpopulate(ttm_dma, dev);
 981                        return ret;
 982                }
 983        }
 984
 985        ttm->state = tt_unbound;
 986        return 0;
 987}
 988EXPORT_SYMBOL_GPL(ttm_dma_populate);
 989
 990/* Put all pages in pages list to correct pool to wait for reuse */
 991void ttm_dma_unpopulate(struct ttm_dma_tt *ttm_dma, struct device *dev)
 992{
 993        struct ttm_mem_global *mem_glob = &ttm_mem_glob;
 994        struct ttm_tt *ttm = &ttm_dma->ttm;
 995        struct dma_pool *pool;
 996        struct dma_page *d_page, *next;
 997        enum pool_type type;
 998        bool is_cached = false;
 999        unsigned count, i, npages = 0;
1000        unsigned long irq_flags;
1001
1002        type = ttm_to_type(ttm->page_flags, ttm->caching_state);
1003
1004#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1005        pool = ttm_dma_find_pool(dev, type | IS_HUGE);
1006        if (pool) {
1007                count = 0;
1008                list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list,
1009                                         page_list) {
1010                        if (!(d_page->vaddr & VADDR_FLAG_HUGE_POOL))
1011                                continue;
1012
1013                        count++;
1014                        if (d_page->vaddr & VADDR_FLAG_UPDATED_COUNT) {
1015                                ttm_mem_global_free_page(mem_glob, d_page->p,
1016                                                         pool->size);
1017                                d_page->vaddr &= ~VADDR_FLAG_UPDATED_COUNT;
1018                        }
1019                        ttm_dma_page_put(pool, d_page);
1020                }
1021
1022                spin_lock_irqsave(&pool->lock, irq_flags);
1023                pool->npages_in_use -= count;
1024                pool->nfrees += count;
1025                spin_unlock_irqrestore(&pool->lock, irq_flags);
1026        }
1027#endif
1028
1029        pool = ttm_dma_find_pool(dev, type);
1030        if (!pool)
1031                return;
1032
1033        is_cached = (ttm_dma_find_pool(pool->dev,
1034                     ttm_to_type(ttm->page_flags, tt_cached)) == pool);
1035
1036        /* make sure pages array match list and count number of pages */
1037        count = 0;
1038        list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list,
1039                                 page_list) {
1040                ttm->pages[count] = d_page->p;
1041                count++;
1042
1043                if (d_page->vaddr & VADDR_FLAG_UPDATED_COUNT) {
1044                        ttm_mem_global_free_page(mem_glob, d_page->p,
1045                                                 pool->size);
1046                        d_page->vaddr &= ~VADDR_FLAG_UPDATED_COUNT;
1047                }
1048
1049                if (is_cached)
1050                        ttm_dma_page_put(pool, d_page);
1051        }
1052
1053        spin_lock_irqsave(&pool->lock, irq_flags);
1054        pool->npages_in_use -= count;
1055        if (is_cached) {
1056                pool->nfrees += count;
1057        } else {
1058                pool->npages_free += count;
1059                list_splice(&ttm_dma->pages_list, &pool->free_list);
1060                /*
1061                 * Wait to have at at least NUM_PAGES_TO_ALLOC number of pages
1062                 * to free in order to minimize calls to set_memory_wb().
1063                 */
1064                if (pool->npages_free >= (_manager->options.max_size +
1065                                          NUM_PAGES_TO_ALLOC))
1066                        npages = pool->npages_free - _manager->options.max_size;
1067        }
1068        spin_unlock_irqrestore(&pool->lock, irq_flags);
1069
1070        INIT_LIST_HEAD(&ttm_dma->pages_list);
1071        for (i = 0; i < ttm->num_pages; i++) {
1072                ttm->pages[i] = NULL;
1073                ttm_dma->dma_address[i] = 0;
1074        }
1075
1076        /* shrink pool if necessary (only on !is_cached pools)*/
1077        if (npages)
1078                ttm_dma_page_pool_free(pool, npages, false);
1079        ttm->state = tt_unpopulated;
1080}
1081EXPORT_SYMBOL_GPL(ttm_dma_unpopulate);
1082
1083/**
1084 * Callback for mm to request pool to reduce number of page held.
1085 *
1086 * XXX: (dchinner) Deadlock warning!
1087 *
1088 * I'm getting sadder as I hear more pathetical whimpers about needing per-pool
1089 * shrinkers
1090 */
1091static unsigned long
1092ttm_dma_pool_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1093{
1094        static unsigned start_pool;
1095        unsigned idx = 0;
1096        unsigned pool_offset;
1097        unsigned shrink_pages = sc->nr_to_scan;
1098        struct device_pools *p;
1099        unsigned long freed = 0;
1100
1101        if (list_empty(&_manager->pools))
1102                return SHRINK_STOP;
1103
1104        if (!mutex_trylock(&_manager->lock))
1105                return SHRINK_STOP;
1106        if (!_manager->npools)
1107                goto out;
1108        pool_offset = ++start_pool % _manager->npools;
1109        list_for_each_entry(p, &_manager->pools, pools) {
1110                unsigned nr_free;
1111
1112                if (!p->dev)
1113                        continue;
1114                if (shrink_pages == 0)
1115                        break;
1116                /* Do it in round-robin fashion. */
1117                if (++idx < pool_offset)
1118                        continue;
1119                nr_free = shrink_pages;
1120                /* OK to use static buffer since global mutex is held. */
1121                shrink_pages = ttm_dma_page_pool_free(p->pool, nr_free, true);
1122                freed += nr_free - shrink_pages;
1123
1124                pr_debug("%s: (%s:%d) Asked to shrink %d, have %d more to go\n",
1125                         p->pool->dev_name, p->pool->name, current->pid,
1126                         nr_free, shrink_pages);
1127        }
1128out:
1129        mutex_unlock(&_manager->lock);
1130        return freed;
1131}
1132
1133static unsigned long
1134ttm_dma_pool_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1135{
1136        struct device_pools *p;
1137        unsigned long count = 0;
1138
1139        if (!mutex_trylock(&_manager->lock))
1140                return 0;
1141        list_for_each_entry(p, &_manager->pools, pools)
1142                count += p->pool->npages_free;
1143        mutex_unlock(&_manager->lock);
1144        return count;
1145}
1146
1147static int ttm_dma_pool_mm_shrink_init(struct ttm_pool_manager *manager)
1148{
1149        manager->mm_shrink.count_objects = ttm_dma_pool_shrink_count;
1150        manager->mm_shrink.scan_objects = &ttm_dma_pool_shrink_scan;
1151        manager->mm_shrink.seeks = 1;
1152        return register_shrinker(&manager->mm_shrink);
1153}
1154
1155static void ttm_dma_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
1156{
1157        unregister_shrinker(&manager->mm_shrink);
1158}
1159
1160int ttm_dma_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
1161{
1162        int ret;
1163
1164        WARN_ON(_manager);
1165
1166        pr_info("Initializing DMA pool allocator\n");
1167
1168        _manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
1169        if (!_manager)
1170                return -ENOMEM;
1171
1172        mutex_init(&_manager->lock);
1173        INIT_LIST_HEAD(&_manager->pools);
1174
1175        _manager->options.max_size = max_pages;
1176        _manager->options.small = SMALL_ALLOCATION;
1177        _manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
1178
1179        /* This takes care of auto-freeing the _manager */
1180        ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
1181                                   &glob->kobj, "dma_pool");
1182        if (unlikely(ret != 0))
1183                goto error;
1184
1185        ret = ttm_dma_pool_mm_shrink_init(_manager);
1186        if (unlikely(ret != 0))
1187                goto error;
1188        return 0;
1189
1190error:
1191        kobject_put(&_manager->kobj);
1192        _manager = NULL;
1193        return ret;
1194}
1195
1196void ttm_dma_page_alloc_fini(void)
1197{
1198        struct device_pools *p, *t;
1199
1200        pr_info("Finalizing DMA pool allocator\n");
1201        ttm_dma_pool_mm_shrink_fini(_manager);
1202
1203        list_for_each_entry_safe_reverse(p, t, &_manager->pools, pools) {
1204                dev_dbg(p->dev, "(%s:%d) Freeing.\n", p->pool->name,
1205                        current->pid);
1206                WARN_ON(devres_destroy(p->dev, ttm_dma_pool_release,
1207                        ttm_dma_pool_match, p->pool));
1208                ttm_dma_free_pool(p->dev, p->pool->type);
1209        }
1210        kobject_put(&_manager->kobj);
1211        _manager = NULL;
1212}
1213
1214int ttm_dma_page_alloc_debugfs(struct seq_file *m, void *data)
1215{
1216        struct device_pools *p;
1217        struct dma_pool *pool = NULL;
1218
1219        if (!_manager) {
1220                seq_printf(m, "No pool allocator running.\n");
1221                return 0;
1222        }
1223        seq_printf(m, "         pool      refills   pages freed    inuse available     name\n");
1224        mutex_lock(&_manager->lock);
1225        list_for_each_entry(p, &_manager->pools, pools) {
1226                struct device *dev = p->dev;
1227                if (!dev)
1228                        continue;
1229                pool = p->pool;
1230                seq_printf(m, "%13s %12ld %13ld %8d %8d %8s\n",
1231                                pool->name, pool->nrefills,
1232                                pool->nfrees, pool->npages_in_use,
1233                                pool->npages_free,
1234                                pool->dev_name);
1235        }
1236        mutex_unlock(&_manager->lock);
1237        return 0;
1238}
1239EXPORT_SYMBOL_GPL(ttm_dma_page_alloc_debugfs);
1240