linux/drivers/infiniband/hw/hfi1/chip.c
<<
>>
Prefs
   1/*
   2 * Copyright(c) 2015 - 2020 Intel Corporation.
   3 *
   4 * This file is provided under a dual BSD/GPLv2 license.  When using or
   5 * redistributing this file, you may do so under either license.
   6 *
   7 * GPL LICENSE SUMMARY
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of version 2 of the GNU General Public License as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 *
  18 * BSD LICENSE
  19 *
  20 * Redistribution and use in source and binary forms, with or without
  21 * modification, are permitted provided that the following conditions
  22 * are met:
  23 *
  24 *  - Redistributions of source code must retain the above copyright
  25 *    notice, this list of conditions and the following disclaimer.
  26 *  - Redistributions in binary form must reproduce the above copyright
  27 *    notice, this list of conditions and the following disclaimer in
  28 *    the documentation and/or other materials provided with the
  29 *    distribution.
  30 *  - Neither the name of Intel Corporation nor the names of its
  31 *    contributors may be used to endorse or promote products derived
  32 *    from this software without specific prior written permission.
  33 *
  34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  45 *
  46 */
  47
  48/*
  49 * This file contains all of the code that is specific to the HFI chip
  50 */
  51
  52#include <linux/pci.h>
  53#include <linux/delay.h>
  54#include <linux/interrupt.h>
  55#include <linux/module.h>
  56
  57#include "hfi.h"
  58#include "trace.h"
  59#include "mad.h"
  60#include "pio.h"
  61#include "sdma.h"
  62#include "eprom.h"
  63#include "efivar.h"
  64#include "platform.h"
  65#include "aspm.h"
  66#include "affinity.h"
  67#include "debugfs.h"
  68#include "fault.h"
  69#include "netdev.h"
  70
  71uint num_vls = HFI1_MAX_VLS_SUPPORTED;
  72module_param(num_vls, uint, S_IRUGO);
  73MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
  74
  75/*
  76 * Default time to aggregate two 10K packets from the idle state
  77 * (timer not running). The timer starts at the end of the first packet,
  78 * so only the time for one 10K packet and header plus a bit extra is needed.
  79 * 10 * 1024 + 64 header byte = 10304 byte
  80 * 10304 byte / 12.5 GB/s = 824.32ns
  81 */
  82uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
  83module_param(rcv_intr_timeout, uint, S_IRUGO);
  84MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
  85
  86uint rcv_intr_count = 16; /* same as qib */
  87module_param(rcv_intr_count, uint, S_IRUGO);
  88MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
  89
  90ushort link_crc_mask = SUPPORTED_CRCS;
  91module_param(link_crc_mask, ushort, S_IRUGO);
  92MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
  93
  94uint loopback;
  95module_param_named(loopback, loopback, uint, S_IRUGO);
  96MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
  97
  98/* Other driver tunables */
  99uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
 100static ushort crc_14b_sideband = 1;
 101static uint use_flr = 1;
 102uint quick_linkup; /* skip LNI */
 103
 104struct flag_table {
 105        u64 flag;       /* the flag */
 106        char *str;      /* description string */
 107        u16 extra;      /* extra information */
 108        u16 unused0;
 109        u32 unused1;
 110};
 111
 112/* str must be a string constant */
 113#define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
 114#define FLAG_ENTRY0(str, flag) {flag, str, 0}
 115
 116/* Send Error Consequences */
 117#define SEC_WRITE_DROPPED       0x1
 118#define SEC_PACKET_DROPPED      0x2
 119#define SEC_SC_HALTED           0x4     /* per-context only */
 120#define SEC_SPC_FREEZE          0x8     /* per-HFI only */
 121
 122#define DEFAULT_KRCVQS            2
 123#define MIN_KERNEL_KCTXTS         2
 124#define FIRST_KERNEL_KCTXT        1
 125
 126/*
 127 * RSM instance allocation
 128 *   0 - User Fecn Handling
 129 *   1 - Vnic
 130 *   2 - AIP
 131 *   3 - Verbs
 132 */
 133#define RSM_INS_FECN              0
 134#define RSM_INS_VNIC              1
 135#define RSM_INS_AIP               2
 136#define RSM_INS_VERBS             3
 137
 138/* Bit offset into the GUID which carries HFI id information */
 139#define GUID_HFI_INDEX_SHIFT     39
 140
 141/* extract the emulation revision */
 142#define emulator_rev(dd) ((dd)->irev >> 8)
 143/* parallel and serial emulation versions are 3 and 4 respectively */
 144#define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
 145#define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
 146
 147/* RSM fields for Verbs */
 148/* packet type */
 149#define IB_PACKET_TYPE         2ull
 150#define QW_SHIFT               6ull
 151/* QPN[7..1] */
 152#define QPN_WIDTH              7ull
 153
 154/* LRH.BTH: QW 0, OFFSET 48 - for match */
 155#define LRH_BTH_QW             0ull
 156#define LRH_BTH_BIT_OFFSET     48ull
 157#define LRH_BTH_OFFSET(off)    ((LRH_BTH_QW << QW_SHIFT) | (off))
 158#define LRH_BTH_MATCH_OFFSET   LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
 159#define LRH_BTH_SELECT
 160#define LRH_BTH_MASK           3ull
 161#define LRH_BTH_VALUE          2ull
 162
 163/* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
 164#define LRH_SC_QW              0ull
 165#define LRH_SC_BIT_OFFSET      56ull
 166#define LRH_SC_OFFSET(off)     ((LRH_SC_QW << QW_SHIFT) | (off))
 167#define LRH_SC_MATCH_OFFSET    LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
 168#define LRH_SC_MASK            128ull
 169#define LRH_SC_VALUE           0ull
 170
 171/* SC[n..0] QW 0, OFFSET 60 - for select */
 172#define LRH_SC_SELECT_OFFSET  ((LRH_SC_QW << QW_SHIFT) | (60ull))
 173
 174/* QPN[m+n:1] QW 1, OFFSET 1 */
 175#define QPN_SELECT_OFFSET      ((1ull << QW_SHIFT) | (1ull))
 176
 177/* RSM fields for AIP */
 178/* LRH.BTH above is reused for this rule */
 179
 180/* BTH.DESTQP: QW 1, OFFSET 16 for match */
 181#define BTH_DESTQP_QW           1ull
 182#define BTH_DESTQP_BIT_OFFSET   16ull
 183#define BTH_DESTQP_OFFSET(off) ((BTH_DESTQP_QW << QW_SHIFT) | (off))
 184#define BTH_DESTQP_MATCH_OFFSET BTH_DESTQP_OFFSET(BTH_DESTQP_BIT_OFFSET)
 185#define BTH_DESTQP_MASK         0xFFull
 186#define BTH_DESTQP_VALUE        0x81ull
 187
 188/* DETH.SQPN: QW 1 Offset 56 for select */
 189/* We use 8 most significant Soure QPN bits as entropy fpr AIP */
 190#define DETH_AIP_SQPN_QW 3ull
 191#define DETH_AIP_SQPN_BIT_OFFSET 56ull
 192#define DETH_AIP_SQPN_OFFSET(off) ((DETH_AIP_SQPN_QW << QW_SHIFT) | (off))
 193#define DETH_AIP_SQPN_SELECT_OFFSET \
 194        DETH_AIP_SQPN_OFFSET(DETH_AIP_SQPN_BIT_OFFSET)
 195
 196/* RSM fields for Vnic */
 197/* L2_TYPE: QW 0, OFFSET 61 - for match */
 198#define L2_TYPE_QW             0ull
 199#define L2_TYPE_BIT_OFFSET     61ull
 200#define L2_TYPE_OFFSET(off)    ((L2_TYPE_QW << QW_SHIFT) | (off))
 201#define L2_TYPE_MATCH_OFFSET   L2_TYPE_OFFSET(L2_TYPE_BIT_OFFSET)
 202#define L2_TYPE_MASK           3ull
 203#define L2_16B_VALUE           2ull
 204
 205/* L4_TYPE QW 1, OFFSET 0 - for match */
 206#define L4_TYPE_QW              1ull
 207#define L4_TYPE_BIT_OFFSET      0ull
 208#define L4_TYPE_OFFSET(off)     ((L4_TYPE_QW << QW_SHIFT) | (off))
 209#define L4_TYPE_MATCH_OFFSET    L4_TYPE_OFFSET(L4_TYPE_BIT_OFFSET)
 210#define L4_16B_TYPE_MASK        0xFFull
 211#define L4_16B_ETH_VALUE        0x78ull
 212
 213/* 16B VESWID - for select */
 214#define L4_16B_HDR_VESWID_OFFSET  ((2 << QW_SHIFT) | (16ull))
 215/* 16B ENTROPY - for select */
 216#define L2_16B_ENTROPY_OFFSET     ((1 << QW_SHIFT) | (32ull))
 217
 218/* defines to build power on SC2VL table */
 219#define SC2VL_VAL( \
 220        num, \
 221        sc0, sc0val, \
 222        sc1, sc1val, \
 223        sc2, sc2val, \
 224        sc3, sc3val, \
 225        sc4, sc4val, \
 226        sc5, sc5val, \
 227        sc6, sc6val, \
 228        sc7, sc7val) \
 229( \
 230        ((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
 231        ((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
 232        ((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
 233        ((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
 234        ((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
 235        ((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
 236        ((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
 237        ((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT)   \
 238)
 239
 240#define DC_SC_VL_VAL( \
 241        range, \
 242        e0, e0val, \
 243        e1, e1val, \
 244        e2, e2val, \
 245        e3, e3val, \
 246        e4, e4val, \
 247        e5, e5val, \
 248        e6, e6val, \
 249        e7, e7val, \
 250        e8, e8val, \
 251        e9, e9val, \
 252        e10, e10val, \
 253        e11, e11val, \
 254        e12, e12val, \
 255        e13, e13val, \
 256        e14, e14val, \
 257        e15, e15val) \
 258( \
 259        ((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
 260        ((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
 261        ((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
 262        ((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
 263        ((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
 264        ((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
 265        ((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
 266        ((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
 267        ((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
 268        ((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
 269        ((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
 270        ((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
 271        ((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
 272        ((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
 273        ((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
 274        ((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
 275)
 276
 277/* all CceStatus sub-block freeze bits */
 278#define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
 279                        | CCE_STATUS_RXE_FROZE_SMASK \
 280                        | CCE_STATUS_TXE_FROZE_SMASK \
 281                        | CCE_STATUS_TXE_PIO_FROZE_SMASK)
 282/* all CceStatus sub-block TXE pause bits */
 283#define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
 284                        | CCE_STATUS_TXE_PAUSED_SMASK \
 285                        | CCE_STATUS_SDMA_PAUSED_SMASK)
 286/* all CceStatus sub-block RXE pause bits */
 287#define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
 288
 289#define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
 290#define CNTR_32BIT_MAX 0x00000000FFFFFFFF
 291
 292/*
 293 * CCE Error flags.
 294 */
 295static struct flag_table cce_err_status_flags[] = {
 296/* 0*/  FLAG_ENTRY0("CceCsrParityErr",
 297                CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
 298/* 1*/  FLAG_ENTRY0("CceCsrReadBadAddrErr",
 299                CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
 300/* 2*/  FLAG_ENTRY0("CceCsrWriteBadAddrErr",
 301                CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
 302/* 3*/  FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
 303                CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
 304/* 4*/  FLAG_ENTRY0("CceTrgtAccessErr",
 305                CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
 306/* 5*/  FLAG_ENTRY0("CceRspdDataParityErr",
 307                CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
 308/* 6*/  FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
 309                CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
 310/* 7*/  FLAG_ENTRY0("CceCsrCfgBusParityErr",
 311                CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
 312/* 8*/  FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
 313                CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
 314/* 9*/  FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
 315            CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
 316/*10*/  FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
 317            CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
 318/*11*/  FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
 319            CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
 320/*12*/  FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
 321                CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
 322/*13*/  FLAG_ENTRY0("PcicRetryMemCorErr",
 323                CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
 324/*14*/  FLAG_ENTRY0("PcicRetryMemCorErr",
 325                CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
 326/*15*/  FLAG_ENTRY0("PcicPostHdQCorErr",
 327                CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
 328/*16*/  FLAG_ENTRY0("PcicPostHdQCorErr",
 329                CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
 330/*17*/  FLAG_ENTRY0("PcicPostHdQCorErr",
 331                CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
 332/*18*/  FLAG_ENTRY0("PcicCplDatQCorErr",
 333                CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
 334/*19*/  FLAG_ENTRY0("PcicNPostHQParityErr",
 335                CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
 336/*20*/  FLAG_ENTRY0("PcicNPostDatQParityErr",
 337                CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
 338/*21*/  FLAG_ENTRY0("PcicRetryMemUncErr",
 339                CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
 340/*22*/  FLAG_ENTRY0("PcicRetrySotMemUncErr",
 341                CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
 342/*23*/  FLAG_ENTRY0("PcicPostHdQUncErr",
 343                CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
 344/*24*/  FLAG_ENTRY0("PcicPostDatQUncErr",
 345                CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
 346/*25*/  FLAG_ENTRY0("PcicCplHdQUncErr",
 347                CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
 348/*26*/  FLAG_ENTRY0("PcicCplDatQUncErr",
 349                CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
 350/*27*/  FLAG_ENTRY0("PcicTransmitFrontParityErr",
 351                CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
 352/*28*/  FLAG_ENTRY0("PcicTransmitBackParityErr",
 353                CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
 354/*29*/  FLAG_ENTRY0("PcicReceiveParityErr",
 355                CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
 356/*30*/  FLAG_ENTRY0("CceTrgtCplTimeoutErr",
 357                CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
 358/*31*/  FLAG_ENTRY0("LATriggered",
 359                CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
 360/*32*/  FLAG_ENTRY0("CceSegReadBadAddrErr",
 361                CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
 362/*33*/  FLAG_ENTRY0("CceSegWriteBadAddrErr",
 363                CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
 364/*34*/  FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
 365                CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
 366/*35*/  FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
 367                CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
 368/*36*/  FLAG_ENTRY0("CceMsixTableCorErr",
 369                CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
 370/*37*/  FLAG_ENTRY0("CceMsixTableUncErr",
 371                CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
 372/*38*/  FLAG_ENTRY0("CceIntMapCorErr",
 373                CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
 374/*39*/  FLAG_ENTRY0("CceIntMapUncErr",
 375                CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
 376/*40*/  FLAG_ENTRY0("CceMsixCsrParityErr",
 377                CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
 378/*41-63 reserved*/
 379};
 380
 381/*
 382 * Misc Error flags
 383 */
 384#define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
 385static struct flag_table misc_err_status_flags[] = {
 386/* 0*/  FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
 387/* 1*/  FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
 388/* 2*/  FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
 389/* 3*/  FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
 390/* 4*/  FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
 391/* 5*/  FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
 392/* 6*/  FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
 393/* 7*/  FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
 394/* 8*/  FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
 395/* 9*/  FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
 396/*10*/  FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
 397/*11*/  FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
 398/*12*/  FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
 399};
 400
 401/*
 402 * TXE PIO Error flags and consequences
 403 */
 404static struct flag_table pio_err_status_flags[] = {
 405/* 0*/  FLAG_ENTRY("PioWriteBadCtxt",
 406        SEC_WRITE_DROPPED,
 407        SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
 408/* 1*/  FLAG_ENTRY("PioWriteAddrParity",
 409        SEC_SPC_FREEZE,
 410        SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
 411/* 2*/  FLAG_ENTRY("PioCsrParity",
 412        SEC_SPC_FREEZE,
 413        SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
 414/* 3*/  FLAG_ENTRY("PioSbMemFifo0",
 415        SEC_SPC_FREEZE,
 416        SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
 417/* 4*/  FLAG_ENTRY("PioSbMemFifo1",
 418        SEC_SPC_FREEZE,
 419        SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
 420/* 5*/  FLAG_ENTRY("PioPccFifoParity",
 421        SEC_SPC_FREEZE,
 422        SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
 423/* 6*/  FLAG_ENTRY("PioPecFifoParity",
 424        SEC_SPC_FREEZE,
 425        SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
 426/* 7*/  FLAG_ENTRY("PioSbrdctlCrrelParity",
 427        SEC_SPC_FREEZE,
 428        SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
 429/* 8*/  FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
 430        SEC_SPC_FREEZE,
 431        SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
 432/* 9*/  FLAG_ENTRY("PioPktEvictFifoParityErr",
 433        SEC_SPC_FREEZE,
 434        SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
 435/*10*/  FLAG_ENTRY("PioSmPktResetParity",
 436        SEC_SPC_FREEZE,
 437        SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
 438/*11*/  FLAG_ENTRY("PioVlLenMemBank0Unc",
 439        SEC_SPC_FREEZE,
 440        SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
 441/*12*/  FLAG_ENTRY("PioVlLenMemBank1Unc",
 442        SEC_SPC_FREEZE,
 443        SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
 444/*13*/  FLAG_ENTRY("PioVlLenMemBank0Cor",
 445        0,
 446        SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
 447/*14*/  FLAG_ENTRY("PioVlLenMemBank1Cor",
 448        0,
 449        SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
 450/*15*/  FLAG_ENTRY("PioCreditRetFifoParity",
 451        SEC_SPC_FREEZE,
 452        SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
 453/*16*/  FLAG_ENTRY("PioPpmcPblFifo",
 454        SEC_SPC_FREEZE,
 455        SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
 456/*17*/  FLAG_ENTRY("PioInitSmIn",
 457        0,
 458        SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
 459/*18*/  FLAG_ENTRY("PioPktEvictSmOrArbSm",
 460        SEC_SPC_FREEZE,
 461        SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
 462/*19*/  FLAG_ENTRY("PioHostAddrMemUnc",
 463        SEC_SPC_FREEZE,
 464        SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
 465/*20*/  FLAG_ENTRY("PioHostAddrMemCor",
 466        0,
 467        SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
 468/*21*/  FLAG_ENTRY("PioWriteDataParity",
 469        SEC_SPC_FREEZE,
 470        SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
 471/*22*/  FLAG_ENTRY("PioStateMachine",
 472        SEC_SPC_FREEZE,
 473        SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
 474/*23*/  FLAG_ENTRY("PioWriteQwValidParity",
 475        SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
 476        SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
 477/*24*/  FLAG_ENTRY("PioBlockQwCountParity",
 478        SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
 479        SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
 480/*25*/  FLAG_ENTRY("PioVlfVlLenParity",
 481        SEC_SPC_FREEZE,
 482        SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
 483/*26*/  FLAG_ENTRY("PioVlfSopParity",
 484        SEC_SPC_FREEZE,
 485        SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
 486/*27*/  FLAG_ENTRY("PioVlFifoParity",
 487        SEC_SPC_FREEZE,
 488        SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
 489/*28*/  FLAG_ENTRY("PioPpmcBqcMemParity",
 490        SEC_SPC_FREEZE,
 491        SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
 492/*29*/  FLAG_ENTRY("PioPpmcSopLen",
 493        SEC_SPC_FREEZE,
 494        SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
 495/*30-31 reserved*/
 496/*32*/  FLAG_ENTRY("PioCurrentFreeCntParity",
 497        SEC_SPC_FREEZE,
 498        SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
 499/*33*/  FLAG_ENTRY("PioLastReturnedCntParity",
 500        SEC_SPC_FREEZE,
 501        SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
 502/*34*/  FLAG_ENTRY("PioPccSopHeadParity",
 503        SEC_SPC_FREEZE,
 504        SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
 505/*35*/  FLAG_ENTRY("PioPecSopHeadParityErr",
 506        SEC_SPC_FREEZE,
 507        SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
 508/*36-63 reserved*/
 509};
 510
 511/* TXE PIO errors that cause an SPC freeze */
 512#define ALL_PIO_FREEZE_ERR \
 513        (SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
 514        | SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
 515        | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
 516        | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
 517        | SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
 518        | SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
 519        | SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
 520        | SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
 521        | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
 522        | SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
 523        | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
 524        | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
 525        | SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
 526        | SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
 527        | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
 528        | SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
 529        | SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
 530        | SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
 531        | SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
 532        | SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
 533        | SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
 534        | SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
 535        | SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
 536        | SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
 537        | SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
 538        | SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
 539        | SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
 540        | SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
 541        | SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
 542
 543/*
 544 * TXE SDMA Error flags
 545 */
 546static struct flag_table sdma_err_status_flags[] = {
 547/* 0*/  FLAG_ENTRY0("SDmaRpyTagErr",
 548                SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
 549/* 1*/  FLAG_ENTRY0("SDmaCsrParityErr",
 550                SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
 551/* 2*/  FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
 552                SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
 553/* 3*/  FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
 554                SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
 555/*04-63 reserved*/
 556};
 557
 558/* TXE SDMA errors that cause an SPC freeze */
 559#define ALL_SDMA_FREEZE_ERR  \
 560                (SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
 561                | SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
 562                | SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
 563
 564/* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
 565#define PORT_DISCARD_EGRESS_ERRS \
 566        (SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
 567        | SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
 568        | SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
 569
 570/*
 571 * TXE Egress Error flags
 572 */
 573#define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
 574static struct flag_table egress_err_status_flags[] = {
 575/* 0*/  FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
 576/* 1*/  FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
 577/* 2 reserved */
 578/* 3*/  FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
 579                SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
 580/* 4*/  FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
 581/* 5*/  FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
 582/* 6 reserved */
 583/* 7*/  FLAG_ENTRY0("TxPioLaunchIntfParityErr",
 584                SEES(TX_PIO_LAUNCH_INTF_PARITY)),
 585/* 8*/  FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
 586                SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
 587/* 9-10 reserved */
 588/*11*/  FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
 589                SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
 590/*12*/  FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
 591/*13*/  FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
 592/*14*/  FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
 593/*15*/  FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
 594/*16*/  FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
 595                SEES(TX_SDMA0_DISALLOWED_PACKET)),
 596/*17*/  FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
 597                SEES(TX_SDMA1_DISALLOWED_PACKET)),
 598/*18*/  FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
 599                SEES(TX_SDMA2_DISALLOWED_PACKET)),
 600/*19*/  FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
 601                SEES(TX_SDMA3_DISALLOWED_PACKET)),
 602/*20*/  FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
 603                SEES(TX_SDMA4_DISALLOWED_PACKET)),
 604/*21*/  FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
 605                SEES(TX_SDMA5_DISALLOWED_PACKET)),
 606/*22*/  FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
 607                SEES(TX_SDMA6_DISALLOWED_PACKET)),
 608/*23*/  FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
 609                SEES(TX_SDMA7_DISALLOWED_PACKET)),
 610/*24*/  FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
 611                SEES(TX_SDMA8_DISALLOWED_PACKET)),
 612/*25*/  FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
 613                SEES(TX_SDMA9_DISALLOWED_PACKET)),
 614/*26*/  FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
 615                SEES(TX_SDMA10_DISALLOWED_PACKET)),
 616/*27*/  FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
 617                SEES(TX_SDMA11_DISALLOWED_PACKET)),
 618/*28*/  FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
 619                SEES(TX_SDMA12_DISALLOWED_PACKET)),
 620/*29*/  FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
 621                SEES(TX_SDMA13_DISALLOWED_PACKET)),
 622/*30*/  FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
 623                SEES(TX_SDMA14_DISALLOWED_PACKET)),
 624/*31*/  FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
 625                SEES(TX_SDMA15_DISALLOWED_PACKET)),
 626/*32*/  FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
 627                SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
 628/*33*/  FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
 629                SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
 630/*34*/  FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
 631                SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
 632/*35*/  FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
 633                SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
 634/*36*/  FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
 635                SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
 636/*37*/  FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
 637                SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
 638/*38*/  FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
 639                SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
 640/*39*/  FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
 641                SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
 642/*40*/  FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
 643                SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
 644/*41*/  FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
 645/*42*/  FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
 646/*43*/  FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
 647/*44*/  FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
 648/*45*/  FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
 649/*46*/  FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
 650/*47*/  FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
 651/*48*/  FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
 652/*49*/  FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
 653/*50*/  FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
 654/*51*/  FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
 655/*52*/  FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
 656/*53*/  FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
 657/*54*/  FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
 658/*55*/  FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
 659/*56*/  FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
 660/*57*/  FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
 661/*58*/  FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
 662/*59*/  FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
 663/*60*/  FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
 664/*61*/  FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
 665/*62*/  FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
 666                SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
 667/*63*/  FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
 668                SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
 669};
 670
 671/*
 672 * TXE Egress Error Info flags
 673 */
 674#define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
 675static struct flag_table egress_err_info_flags[] = {
 676/* 0*/  FLAG_ENTRY0("Reserved", 0ull),
 677/* 1*/  FLAG_ENTRY0("VLErr", SEEI(VL)),
 678/* 2*/  FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
 679/* 3*/  FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
 680/* 4*/  FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
 681/* 5*/  FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
 682/* 6*/  FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
 683/* 7*/  FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
 684/* 8*/  FLAG_ENTRY0("RawErr", SEEI(RAW)),
 685/* 9*/  FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
 686/*10*/  FLAG_ENTRY0("GRHErr", SEEI(GRH)),
 687/*11*/  FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
 688/*12*/  FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
 689/*13*/  FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
 690/*14*/  FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
 691/*15*/  FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
 692/*16*/  FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
 693/*17*/  FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
 694/*18*/  FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
 695/*19*/  FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
 696/*20*/  FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
 697/*21*/  FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
 698};
 699
 700/* TXE Egress errors that cause an SPC freeze */
 701#define ALL_TXE_EGRESS_FREEZE_ERR \
 702        (SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
 703        | SEES(TX_PIO_LAUNCH_INTF_PARITY) \
 704        | SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
 705        | SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
 706        | SEES(TX_LAUNCH_CSR_PARITY) \
 707        | SEES(TX_SBRD_CTL_CSR_PARITY) \
 708        | SEES(TX_CONFIG_PARITY) \
 709        | SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
 710        | SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
 711        | SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
 712        | SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
 713        | SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
 714        | SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
 715        | SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
 716        | SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
 717        | SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
 718        | SEES(TX_CREDIT_RETURN_PARITY))
 719
 720/*
 721 * TXE Send error flags
 722 */
 723#define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
 724static struct flag_table send_err_status_flags[] = {
 725/* 0*/  FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
 726/* 1*/  FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
 727/* 2*/  FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
 728};
 729
 730/*
 731 * TXE Send Context Error flags and consequences
 732 */
 733static struct flag_table sc_err_status_flags[] = {
 734/* 0*/  FLAG_ENTRY("InconsistentSop",
 735                SEC_PACKET_DROPPED | SEC_SC_HALTED,
 736                SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
 737/* 1*/  FLAG_ENTRY("DisallowedPacket",
 738                SEC_PACKET_DROPPED | SEC_SC_HALTED,
 739                SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
 740/* 2*/  FLAG_ENTRY("WriteCrossesBoundary",
 741                SEC_WRITE_DROPPED | SEC_SC_HALTED,
 742                SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
 743/* 3*/  FLAG_ENTRY("WriteOverflow",
 744                SEC_WRITE_DROPPED | SEC_SC_HALTED,
 745                SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
 746/* 4*/  FLAG_ENTRY("WriteOutOfBounds",
 747                SEC_WRITE_DROPPED | SEC_SC_HALTED,
 748                SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
 749/* 5-63 reserved*/
 750};
 751
 752/*
 753 * RXE Receive Error flags
 754 */
 755#define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
 756static struct flag_table rxe_err_status_flags[] = {
 757/* 0*/  FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
 758/* 1*/  FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
 759/* 2*/  FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
 760/* 3*/  FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
 761/* 4*/  FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
 762/* 5*/  FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
 763/* 6*/  FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
 764/* 7*/  FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
 765/* 8*/  FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
 766/* 9*/  FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
 767/*10*/  FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
 768/*11*/  FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
 769/*12*/  FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
 770/*13*/  FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
 771/*14*/  FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
 772/*15*/  FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
 773/*16*/  FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
 774                RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
 775/*17*/  FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
 776/*18*/  FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
 777/*19*/  FLAG_ENTRY0("RxRbufBlockListReadUncErr",
 778                RXES(RBUF_BLOCK_LIST_READ_UNC)),
 779/*20*/  FLAG_ENTRY0("RxRbufBlockListReadCorErr",
 780                RXES(RBUF_BLOCK_LIST_READ_COR)),
 781/*21*/  FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
 782                RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
 783/*22*/  FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
 784                RXES(RBUF_CSR_QENT_CNT_PARITY)),
 785/*23*/  FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
 786                RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
 787/*24*/  FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
 788                RXES(RBUF_CSR_QVLD_BIT_PARITY)),
 789/*25*/  FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
 790/*26*/  FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
 791/*27*/  FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
 792                RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
 793/*28*/  FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
 794/*29*/  FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
 795/*30*/  FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
 796/*31*/  FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
 797/*32*/  FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
 798/*33*/  FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
 799/*34*/  FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
 800/*35*/  FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
 801                RXES(RBUF_FL_INITDONE_PARITY)),
 802/*36*/  FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
 803                RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
 804/*37*/  FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
 805/*38*/  FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
 806/*39*/  FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
 807/*40*/  FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
 808                RXES(LOOKUP_DES_PART1_UNC_COR)),
 809/*41*/  FLAG_ENTRY0("RxLookupDesPart2ParityErr",
 810                RXES(LOOKUP_DES_PART2_PARITY)),
 811/*42*/  FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
 812/*43*/  FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
 813/*44*/  FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
 814/*45*/  FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
 815/*46*/  FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
 816/*47*/  FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
 817/*48*/  FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
 818/*49*/  FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
 819/*50*/  FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
 820/*51*/  FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
 821/*52*/  FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
 822/*53*/  FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
 823/*54*/  FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
 824/*55*/  FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
 825/*56*/  FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
 826/*57*/  FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
 827/*58*/  FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
 828/*59*/  FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
 829/*60*/  FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
 830/*61*/  FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
 831/*62*/  FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
 832/*63*/  FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
 833};
 834
 835/* RXE errors that will trigger an SPC freeze */
 836#define ALL_RXE_FREEZE_ERR  \
 837        (RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
 838        | RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
 839        | RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
 840        | RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
 841        | RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
 842        | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
 843        | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
 844        | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
 845        | RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
 846        | RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
 847        | RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
 848        | RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
 849        | RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
 850        | RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
 851        | RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
 852        | RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
 853        | RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
 854        | RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
 855        | RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
 856        | RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
 857        | RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
 858        | RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
 859        | RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
 860        | RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
 861        | RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
 862        | RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
 863        | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
 864        | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
 865        | RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
 866        | RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
 867        | RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
 868        | RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
 869        | RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
 870        | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
 871        | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
 872        | RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
 873        | RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
 874        | RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
 875        | RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
 876        | RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
 877        | RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
 878        | RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
 879        | RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
 880        | RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
 881
 882#define RXE_FREEZE_ABORT_MASK \
 883        (RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
 884        RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
 885        RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
 886
 887/*
 888 * DCC Error Flags
 889 */
 890#define DCCE(name) DCC_ERR_FLG_##name##_SMASK
 891static struct flag_table dcc_err_flags[] = {
 892        FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
 893        FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
 894        FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
 895        FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
 896        FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
 897        FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
 898        FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
 899        FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
 900        FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
 901        FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
 902        FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
 903        FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
 904        FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
 905        FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
 906        FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
 907        FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
 908        FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
 909        FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
 910        FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
 911        FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
 912        FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
 913        FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
 914        FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
 915        FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
 916        FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
 917        FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
 918        FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
 919        FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
 920        FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
 921        FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
 922        FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
 923        FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
 924        FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
 925        FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
 926        FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
 927        FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
 928        FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
 929        FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
 930        FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
 931        FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
 932        FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
 933        FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
 934        FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
 935        FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
 936        FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
 937        FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
 938};
 939
 940/*
 941 * LCB error flags
 942 */
 943#define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
 944static struct flag_table lcb_err_flags[] = {
 945/* 0*/  FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
 946/* 1*/  FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
 947/* 2*/  FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
 948/* 3*/  FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
 949                LCBE(ALL_LNS_FAILED_REINIT_TEST)),
 950/* 4*/  FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
 951/* 5*/  FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
 952/* 6*/  FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
 953/* 7*/  FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
 954/* 8*/  FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
 955/* 9*/  FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
 956/*10*/  FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
 957/*11*/  FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
 958/*12*/  FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
 959/*13*/  FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
 960                LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
 961/*14*/  FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
 962/*15*/  FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
 963/*16*/  FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
 964/*17*/  FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
 965/*18*/  FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
 966/*19*/  FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
 967                LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
 968/*20*/  FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
 969/*21*/  FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
 970/*22*/  FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
 971/*23*/  FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
 972/*24*/  FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
 973/*25*/  FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
 974/*26*/  FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
 975                LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
 976/*27*/  FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
 977/*28*/  FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
 978                LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
 979/*29*/  FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
 980                LCBE(REDUNDANT_FLIT_PARITY_ERR))
 981};
 982
 983/*
 984 * DC8051 Error Flags
 985 */
 986#define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
 987static struct flag_table dc8051_err_flags[] = {
 988        FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
 989        FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
 990        FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
 991        FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
 992        FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
 993        FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
 994        FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
 995        FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
 996        FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
 997                    D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
 998        FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
 999};
1000
1001/*
1002 * DC8051 Information Error flags
1003 *
1004 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
1005 */
1006static struct flag_table dc8051_info_err_flags[] = {
1007        FLAG_ENTRY0("Spico ROM check failed",  SPICO_ROM_FAILED),
1008        FLAG_ENTRY0("Unknown frame received",  UNKNOWN_FRAME),
1009        FLAG_ENTRY0("Target BER not met",      TARGET_BER_NOT_MET),
1010        FLAG_ENTRY0("Serdes internal loopback failure",
1011                    FAILED_SERDES_INTERNAL_LOOPBACK),
1012        FLAG_ENTRY0("Failed SerDes init",      FAILED_SERDES_INIT),
1013        FLAG_ENTRY0("Failed LNI(Polling)",     FAILED_LNI_POLLING),
1014        FLAG_ENTRY0("Failed LNI(Debounce)",    FAILED_LNI_DEBOUNCE),
1015        FLAG_ENTRY0("Failed LNI(EstbComm)",    FAILED_LNI_ESTBCOMM),
1016        FLAG_ENTRY0("Failed LNI(OptEq)",       FAILED_LNI_OPTEQ),
1017        FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
1018        FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
1019        FLAG_ENTRY0("Failed LNI(ConfigLT)",    FAILED_LNI_CONFIGLT),
1020        FLAG_ENTRY0("Host Handshake Timeout",  HOST_HANDSHAKE_TIMEOUT),
1021        FLAG_ENTRY0("External Device Request Timeout",
1022                    EXTERNAL_DEVICE_REQ_TIMEOUT),
1023};
1024
1025/*
1026 * DC8051 Information Host Information flags
1027 *
1028 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
1029 */
1030static struct flag_table dc8051_info_host_msg_flags[] = {
1031        FLAG_ENTRY0("Host request done", 0x0001),
1032        FLAG_ENTRY0("BC PWR_MGM message", 0x0002),
1033        FLAG_ENTRY0("BC SMA message", 0x0004),
1034        FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
1035        FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
1036        FLAG_ENTRY0("External device config request", 0x0020),
1037        FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
1038        FLAG_ENTRY0("LinkUp achieved", 0x0080),
1039        FLAG_ENTRY0("Link going down", 0x0100),
1040        FLAG_ENTRY0("Link width downgraded", 0x0200),
1041};
1042
1043static u32 encoded_size(u32 size);
1044static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
1045static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
1046static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
1047                               u8 *continuous);
1048static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
1049                                  u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
1050static void read_vc_remote_link_width(struct hfi1_devdata *dd,
1051                                      u8 *remote_tx_rate, u16 *link_widths);
1052static void read_vc_local_link_mode(struct hfi1_devdata *dd, u8 *misc_bits,
1053                                    u8 *flag_bits, u16 *link_widths);
1054static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1055                                  u8 *device_rev);
1056static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1057static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1058                            u8 *tx_polarity_inversion,
1059                            u8 *rx_polarity_inversion, u8 *max_rate);
1060static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1061                                unsigned int context, u64 err_status);
1062static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1063static void handle_dcc_err(struct hfi1_devdata *dd,
1064                           unsigned int context, u64 err_status);
1065static void handle_lcb_err(struct hfi1_devdata *dd,
1066                           unsigned int context, u64 err_status);
1067static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1068static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1069static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1070static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1071static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1072static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1073static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1074static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1075static void set_partition_keys(struct hfi1_pportdata *ppd);
1076static const char *link_state_name(u32 state);
1077static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1078                                          u32 state);
1079static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1080                           u64 *out_data);
1081static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1082static int thermal_init(struct hfi1_devdata *dd);
1083
1084static void update_statusp(struct hfi1_pportdata *ppd, u32 state);
1085static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
1086                                            int msecs);
1087static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1088                                  int msecs);
1089static void log_state_transition(struct hfi1_pportdata *ppd, u32 state);
1090static void log_physical_state(struct hfi1_pportdata *ppd, u32 state);
1091static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1092                                   int msecs);
1093static int wait_phys_link_out_of_offline(struct hfi1_pportdata *ppd,
1094                                         int msecs);
1095static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1096static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
1097static void handle_temp_err(struct hfi1_devdata *dd);
1098static void dc_shutdown(struct hfi1_devdata *dd);
1099static void dc_start(struct hfi1_devdata *dd);
1100static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
1101                           unsigned int *np);
1102static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
1103static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms);
1104static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index);
1105static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width);
1106
1107/*
1108 * Error interrupt table entry.  This is used as input to the interrupt
1109 * "clear down" routine used for all second tier error interrupt register.
1110 * Second tier interrupt registers have a single bit representing them
1111 * in the top-level CceIntStatus.
1112 */
1113struct err_reg_info {
1114        u32 status;             /* status CSR offset */
1115        u32 clear;              /* clear CSR offset */
1116        u32 mask;               /* mask CSR offset */
1117        void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1118        const char *desc;
1119};
1120
1121#define NUM_MISC_ERRS (IS_GENERAL_ERR_END + 1 - IS_GENERAL_ERR_START)
1122#define NUM_DC_ERRS (IS_DC_END + 1 - IS_DC_START)
1123#define NUM_VARIOUS (IS_VARIOUS_END + 1 - IS_VARIOUS_START)
1124
1125/*
1126 * Helpers for building HFI and DC error interrupt table entries.  Different
1127 * helpers are needed because of inconsistent register names.
1128 */
1129#define EE(reg, handler, desc) \
1130        { reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1131                handler, desc }
1132#define DC_EE1(reg, handler, desc) \
1133        { reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1134#define DC_EE2(reg, handler, desc) \
1135        { reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1136
1137/*
1138 * Table of the "misc" grouping of error interrupts.  Each entry refers to
1139 * another register containing more information.
1140 */
1141static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1142/* 0*/  EE(CCE_ERR,             handle_cce_err,    "CceErr"),
1143/* 1*/  EE(RCV_ERR,             handle_rxe_err,    "RxeErr"),
1144/* 2*/  EE(MISC_ERR,    handle_misc_err,   "MiscErr"),
1145/* 3*/  { 0, 0, 0, NULL }, /* reserved */
1146/* 4*/  EE(SEND_PIO_ERR,    handle_pio_err,    "PioErr"),
1147/* 5*/  EE(SEND_DMA_ERR,    handle_sdma_err,   "SDmaErr"),
1148/* 6*/  EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1149/* 7*/  EE(SEND_ERR,    handle_txe_err,    "TxeErr")
1150        /* the rest are reserved */
1151};
1152
1153/*
1154 * Index into the Various section of the interrupt sources
1155 * corresponding to the Critical Temperature interrupt.
1156 */
1157#define TCRIT_INT_SOURCE 4
1158
1159/*
1160 * SDMA error interrupt entry - refers to another register containing more
1161 * information.
1162 */
1163static const struct err_reg_info sdma_eng_err =
1164        EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1165
1166static const struct err_reg_info various_err[NUM_VARIOUS] = {
1167/* 0*/  { 0, 0, 0, NULL }, /* PbcInt */
1168/* 1*/  { 0, 0, 0, NULL }, /* GpioAssertInt */
1169/* 2*/  EE(ASIC_QSFP1,  handle_qsfp_int,        "QSFP1"),
1170/* 3*/  EE(ASIC_QSFP2,  handle_qsfp_int,        "QSFP2"),
1171/* 4*/  { 0, 0, 0, NULL }, /* TCritInt */
1172        /* rest are reserved */
1173};
1174
1175/*
1176 * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1177 * register can not be derived from the MTU value because 10K is not
1178 * a power of 2. Therefore, we need a constant. Everything else can
1179 * be calculated.
1180 */
1181#define DCC_CFG_PORT_MTU_CAP_10240 7
1182
1183/*
1184 * Table of the DC grouping of error interrupts.  Each entry refers to
1185 * another register containing more information.
1186 */
1187static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1188/* 0*/  DC_EE1(DCC_ERR,         handle_dcc_err,        "DCC Err"),
1189/* 1*/  DC_EE2(DC_LCB_ERR,      handle_lcb_err,        "LCB Err"),
1190/* 2*/  DC_EE2(DC_DC8051_ERR,   handle_8051_interrupt, "DC8051 Interrupt"),
1191/* 3*/  /* dc_lbm_int - special, see is_dc_int() */
1192        /* the rest are reserved */
1193};
1194
1195struct cntr_entry {
1196        /*
1197         * counter name
1198         */
1199        char *name;
1200
1201        /*
1202         * csr to read for name (if applicable)
1203         */
1204        u64 csr;
1205
1206        /*
1207         * offset into dd or ppd to store the counter's value
1208         */
1209        int offset;
1210
1211        /*
1212         * flags
1213         */
1214        u8 flags;
1215
1216        /*
1217         * accessor for stat element, context either dd or ppd
1218         */
1219        u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1220                       int mode, u64 data);
1221};
1222
1223#define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1224#define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1225
1226#define CNTR_ELEM(name, csr, offset, flags, accessor) \
1227{ \
1228        name, \
1229        csr, \
1230        offset, \
1231        flags, \
1232        accessor \
1233}
1234
1235/* 32bit RXE */
1236#define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1237CNTR_ELEM(#name, \
1238          (counter * 8 + RCV_COUNTER_ARRAY32), \
1239          0, flags | CNTR_32BIT, \
1240          port_access_u32_csr)
1241
1242#define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1243CNTR_ELEM(#name, \
1244          (counter * 8 + RCV_COUNTER_ARRAY32), \
1245          0, flags | CNTR_32BIT, \
1246          dev_access_u32_csr)
1247
1248/* 64bit RXE */
1249#define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1250CNTR_ELEM(#name, \
1251          (counter * 8 + RCV_COUNTER_ARRAY64), \
1252          0, flags, \
1253          port_access_u64_csr)
1254
1255#define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1256CNTR_ELEM(#name, \
1257          (counter * 8 + RCV_COUNTER_ARRAY64), \
1258          0, flags, \
1259          dev_access_u64_csr)
1260
1261#define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1262#define OVR_ELM(ctx) \
1263CNTR_ELEM("RcvHdrOvr" #ctx, \
1264          (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1265          0, CNTR_NORMAL, port_access_u64_csr)
1266
1267/* 32bit TXE */
1268#define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1269CNTR_ELEM(#name, \
1270          (counter * 8 + SEND_COUNTER_ARRAY32), \
1271          0, flags | CNTR_32BIT, \
1272          port_access_u32_csr)
1273
1274/* 64bit TXE */
1275#define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1276CNTR_ELEM(#name, \
1277          (counter * 8 + SEND_COUNTER_ARRAY64), \
1278          0, flags, \
1279          port_access_u64_csr)
1280
1281# define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1282CNTR_ELEM(#name,\
1283          counter * 8 + SEND_COUNTER_ARRAY64, \
1284          0, \
1285          flags, \
1286          dev_access_u64_csr)
1287
1288/* CCE */
1289#define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1290CNTR_ELEM(#name, \
1291          (counter * 8 + CCE_COUNTER_ARRAY32), \
1292          0, flags | CNTR_32BIT, \
1293          dev_access_u32_csr)
1294
1295#define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1296CNTR_ELEM(#name, \
1297          (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1298          0, flags | CNTR_32BIT, \
1299          dev_access_u32_csr)
1300
1301/* DC */
1302#define DC_PERF_CNTR(name, counter, flags) \
1303CNTR_ELEM(#name, \
1304          counter, \
1305          0, \
1306          flags, \
1307          dev_access_u64_csr)
1308
1309#define DC_PERF_CNTR_LCB(name, counter, flags) \
1310CNTR_ELEM(#name, \
1311          counter, \
1312          0, \
1313          flags, \
1314          dc_access_lcb_cntr)
1315
1316/* ibp counters */
1317#define SW_IBP_CNTR(name, cntr) \
1318CNTR_ELEM(#name, \
1319          0, \
1320          0, \
1321          CNTR_SYNTH, \
1322          access_ibp_##cntr)
1323
1324/**
1325 * hfi_addr_from_offset - return addr for readq/writeq
1326 * @dd - the dd device
1327 * @offset - the offset of the CSR within bar0
1328 *
1329 * This routine selects the appropriate base address
1330 * based on the indicated offset.
1331 */
1332static inline void __iomem *hfi1_addr_from_offset(
1333        const struct hfi1_devdata *dd,
1334        u32 offset)
1335{
1336        if (offset >= dd->base2_start)
1337                return dd->kregbase2 + (offset - dd->base2_start);
1338        return dd->kregbase1 + offset;
1339}
1340
1341/**
1342 * read_csr - read CSR at the indicated offset
1343 * @dd - the dd device
1344 * @offset - the offset of the CSR within bar0
1345 *
1346 * Return: the value read or all FF's if there
1347 * is no mapping
1348 */
1349u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1350{
1351        if (dd->flags & HFI1_PRESENT)
1352                return readq(hfi1_addr_from_offset(dd, offset));
1353        return -1;
1354}
1355
1356/**
1357 * write_csr - write CSR at the indicated offset
1358 * @dd - the dd device
1359 * @offset - the offset of the CSR within bar0
1360 * @value - value to write
1361 */
1362void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1363{
1364        if (dd->flags & HFI1_PRESENT) {
1365                void __iomem *base = hfi1_addr_from_offset(dd, offset);
1366
1367                /* avoid write to RcvArray */
1368                if (WARN_ON(offset >= RCV_ARRAY && offset < dd->base2_start))
1369                        return;
1370                writeq(value, base);
1371        }
1372}
1373
1374/**
1375 * get_csr_addr - return te iomem address for offset
1376 * @dd - the dd device
1377 * @offset - the offset of the CSR within bar0
1378 *
1379 * Return: The iomem address to use in subsequent
1380 * writeq/readq operations.
1381 */
1382void __iomem *get_csr_addr(
1383        const struct hfi1_devdata *dd,
1384        u32 offset)
1385{
1386        if (dd->flags & HFI1_PRESENT)
1387                return hfi1_addr_from_offset(dd, offset);
1388        return NULL;
1389}
1390
1391static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1392                                 int mode, u64 value)
1393{
1394        u64 ret;
1395
1396        if (mode == CNTR_MODE_R) {
1397                ret = read_csr(dd, csr);
1398        } else if (mode == CNTR_MODE_W) {
1399                write_csr(dd, csr, value);
1400                ret = value;
1401        } else {
1402                dd_dev_err(dd, "Invalid cntr register access mode");
1403                return 0;
1404        }
1405
1406        hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1407        return ret;
1408}
1409
1410/* Dev Access */
1411static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1412                              void *context, int vl, int mode, u64 data)
1413{
1414        struct hfi1_devdata *dd = context;
1415        u64 csr = entry->csr;
1416
1417        if (entry->flags & CNTR_SDMA) {
1418                if (vl == CNTR_INVALID_VL)
1419                        return 0;
1420                csr += 0x100 * vl;
1421        } else {
1422                if (vl != CNTR_INVALID_VL)
1423                        return 0;
1424        }
1425        return read_write_csr(dd, csr, mode, data);
1426}
1427
1428static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1429                              void *context, int idx, int mode, u64 data)
1430{
1431        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1432
1433        if (dd->per_sdma && idx < dd->num_sdma)
1434                return dd->per_sdma[idx].err_cnt;
1435        return 0;
1436}
1437
1438static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1439                              void *context, int idx, int mode, u64 data)
1440{
1441        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1442
1443        if (dd->per_sdma && idx < dd->num_sdma)
1444                return dd->per_sdma[idx].sdma_int_cnt;
1445        return 0;
1446}
1447
1448static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1449                                   void *context, int idx, int mode, u64 data)
1450{
1451        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1452
1453        if (dd->per_sdma && idx < dd->num_sdma)
1454                return dd->per_sdma[idx].idle_int_cnt;
1455        return 0;
1456}
1457
1458static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1459                                       void *context, int idx, int mode,
1460                                       u64 data)
1461{
1462        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1463
1464        if (dd->per_sdma && idx < dd->num_sdma)
1465                return dd->per_sdma[idx].progress_int_cnt;
1466        return 0;
1467}
1468
1469static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1470                              int vl, int mode, u64 data)
1471{
1472        struct hfi1_devdata *dd = context;
1473
1474        u64 val = 0;
1475        u64 csr = entry->csr;
1476
1477        if (entry->flags & CNTR_VL) {
1478                if (vl == CNTR_INVALID_VL)
1479                        return 0;
1480                csr += 8 * vl;
1481        } else {
1482                if (vl != CNTR_INVALID_VL)
1483                        return 0;
1484        }
1485
1486        val = read_write_csr(dd, csr, mode, data);
1487        return val;
1488}
1489
1490static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1491                              int vl, int mode, u64 data)
1492{
1493        struct hfi1_devdata *dd = context;
1494        u32 csr = entry->csr;
1495        int ret = 0;
1496
1497        if (vl != CNTR_INVALID_VL)
1498                return 0;
1499        if (mode == CNTR_MODE_R)
1500                ret = read_lcb_csr(dd, csr, &data);
1501        else if (mode == CNTR_MODE_W)
1502                ret = write_lcb_csr(dd, csr, data);
1503
1504        if (ret) {
1505                dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1506                return 0;
1507        }
1508
1509        hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1510        return data;
1511}
1512
1513/* Port Access */
1514static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1515                               int vl, int mode, u64 data)
1516{
1517        struct hfi1_pportdata *ppd = context;
1518
1519        if (vl != CNTR_INVALID_VL)
1520                return 0;
1521        return read_write_csr(ppd->dd, entry->csr, mode, data);
1522}
1523
1524static u64 port_access_u64_csr(const struct cntr_entry *entry,
1525                               void *context, int vl, int mode, u64 data)
1526{
1527        struct hfi1_pportdata *ppd = context;
1528        u64 val;
1529        u64 csr = entry->csr;
1530
1531        if (entry->flags & CNTR_VL) {
1532                if (vl == CNTR_INVALID_VL)
1533                        return 0;
1534                csr += 8 * vl;
1535        } else {
1536                if (vl != CNTR_INVALID_VL)
1537                        return 0;
1538        }
1539        val = read_write_csr(ppd->dd, csr, mode, data);
1540        return val;
1541}
1542
1543/* Software defined */
1544static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1545                                u64 data)
1546{
1547        u64 ret;
1548
1549        if (mode == CNTR_MODE_R) {
1550                ret = *cntr;
1551        } else if (mode == CNTR_MODE_W) {
1552                *cntr = data;
1553                ret = data;
1554        } else {
1555                dd_dev_err(dd, "Invalid cntr sw access mode");
1556                return 0;
1557        }
1558
1559        hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1560
1561        return ret;
1562}
1563
1564static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1565                                 int vl, int mode, u64 data)
1566{
1567        struct hfi1_pportdata *ppd = context;
1568
1569        if (vl != CNTR_INVALID_VL)
1570                return 0;
1571        return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1572}
1573
1574static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1575                                 int vl, int mode, u64 data)
1576{
1577        struct hfi1_pportdata *ppd = context;
1578
1579        if (vl != CNTR_INVALID_VL)
1580                return 0;
1581        return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1582}
1583
1584static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1585                                       void *context, int vl, int mode,
1586                                       u64 data)
1587{
1588        struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1589
1590        if (vl != CNTR_INVALID_VL)
1591                return 0;
1592        return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1593}
1594
1595static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1596                                   void *context, int vl, int mode, u64 data)
1597{
1598        struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1599        u64 zero = 0;
1600        u64 *counter;
1601
1602        if (vl == CNTR_INVALID_VL)
1603                counter = &ppd->port_xmit_discards;
1604        else if (vl >= 0 && vl < C_VL_COUNT)
1605                counter = &ppd->port_xmit_discards_vl[vl];
1606        else
1607                counter = &zero;
1608
1609        return read_write_sw(ppd->dd, counter, mode, data);
1610}
1611
1612static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1613                                       void *context, int vl, int mode,
1614                                       u64 data)
1615{
1616        struct hfi1_pportdata *ppd = context;
1617
1618        if (vl != CNTR_INVALID_VL)
1619                return 0;
1620
1621        return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1622                             mode, data);
1623}
1624
1625static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1626                                      void *context, int vl, int mode, u64 data)
1627{
1628        struct hfi1_pportdata *ppd = context;
1629
1630        if (vl != CNTR_INVALID_VL)
1631                return 0;
1632
1633        return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1634                             mode, data);
1635}
1636
1637u64 get_all_cpu_total(u64 __percpu *cntr)
1638{
1639        int cpu;
1640        u64 counter = 0;
1641
1642        for_each_possible_cpu(cpu)
1643                counter += *per_cpu_ptr(cntr, cpu);
1644        return counter;
1645}
1646
1647static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1648                          u64 __percpu *cntr,
1649                          int vl, int mode, u64 data)
1650{
1651        u64 ret = 0;
1652
1653        if (vl != CNTR_INVALID_VL)
1654                return 0;
1655
1656        if (mode == CNTR_MODE_R) {
1657                ret = get_all_cpu_total(cntr) - *z_val;
1658        } else if (mode == CNTR_MODE_W) {
1659                /* A write can only zero the counter */
1660                if (data == 0)
1661                        *z_val = get_all_cpu_total(cntr);
1662                else
1663                        dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1664        } else {
1665                dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1666                return 0;
1667        }
1668
1669        return ret;
1670}
1671
1672static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1673                              void *context, int vl, int mode, u64 data)
1674{
1675        struct hfi1_devdata *dd = context;
1676
1677        return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1678                              mode, data);
1679}
1680
1681static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1682                                   void *context, int vl, int mode, u64 data)
1683{
1684        struct hfi1_devdata *dd = context;
1685
1686        return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1687                              mode, data);
1688}
1689
1690static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1691                              void *context, int vl, int mode, u64 data)
1692{
1693        struct hfi1_devdata *dd = context;
1694
1695        return dd->verbs_dev.n_piowait;
1696}
1697
1698static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1699                               void *context, int vl, int mode, u64 data)
1700{
1701        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1702
1703        return dd->verbs_dev.n_piodrain;
1704}
1705
1706static u64 access_sw_ctx0_seq_drop(const struct cntr_entry *entry,
1707                                   void *context, int vl, int mode, u64 data)
1708{
1709        struct hfi1_devdata *dd = context;
1710
1711        return dd->ctx0_seq_drop;
1712}
1713
1714static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1715                              void *context, int vl, int mode, u64 data)
1716{
1717        struct hfi1_devdata *dd = context;
1718
1719        return dd->verbs_dev.n_txwait;
1720}
1721
1722static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1723                               void *context, int vl, int mode, u64 data)
1724{
1725        struct hfi1_devdata *dd = context;
1726
1727        return dd->verbs_dev.n_kmem_wait;
1728}
1729
1730static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1731                                   void *context, int vl, int mode, u64 data)
1732{
1733        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1734
1735        return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1736                              mode, data);
1737}
1738
1739/* Software counters for the error status bits within MISC_ERR_STATUS */
1740static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1741                                             void *context, int vl, int mode,
1742                                             u64 data)
1743{
1744        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1745
1746        return dd->misc_err_status_cnt[12];
1747}
1748
1749static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1750                                          void *context, int vl, int mode,
1751                                          u64 data)
1752{
1753        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1754
1755        return dd->misc_err_status_cnt[11];
1756}
1757
1758static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1759                                               void *context, int vl, int mode,
1760                                               u64 data)
1761{
1762        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1763
1764        return dd->misc_err_status_cnt[10];
1765}
1766
1767static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1768                                                 void *context, int vl,
1769                                                 int mode, u64 data)
1770{
1771        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1772
1773        return dd->misc_err_status_cnt[9];
1774}
1775
1776static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1777                                           void *context, int vl, int mode,
1778                                           u64 data)
1779{
1780        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1781
1782        return dd->misc_err_status_cnt[8];
1783}
1784
1785static u64 access_misc_efuse_read_bad_addr_err_cnt(
1786                                const struct cntr_entry *entry,
1787                                void *context, int vl, int mode, u64 data)
1788{
1789        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1790
1791        return dd->misc_err_status_cnt[7];
1792}
1793
1794static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1795                                                void *context, int vl,
1796                                                int mode, u64 data)
1797{
1798        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1799
1800        return dd->misc_err_status_cnt[6];
1801}
1802
1803static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1804                                              void *context, int vl, int mode,
1805                                              u64 data)
1806{
1807        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1808
1809        return dd->misc_err_status_cnt[5];
1810}
1811
1812static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1813                                            void *context, int vl, int mode,
1814                                            u64 data)
1815{
1816        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1817
1818        return dd->misc_err_status_cnt[4];
1819}
1820
1821static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1822                                                 void *context, int vl,
1823                                                 int mode, u64 data)
1824{
1825        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1826
1827        return dd->misc_err_status_cnt[3];
1828}
1829
1830static u64 access_misc_csr_write_bad_addr_err_cnt(
1831                                const struct cntr_entry *entry,
1832                                void *context, int vl, int mode, u64 data)
1833{
1834        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1835
1836        return dd->misc_err_status_cnt[2];
1837}
1838
1839static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1840                                                 void *context, int vl,
1841                                                 int mode, u64 data)
1842{
1843        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1844
1845        return dd->misc_err_status_cnt[1];
1846}
1847
1848static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1849                                          void *context, int vl, int mode,
1850                                          u64 data)
1851{
1852        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1853
1854        return dd->misc_err_status_cnt[0];
1855}
1856
1857/*
1858 * Software counter for the aggregate of
1859 * individual CceErrStatus counters
1860 */
1861static u64 access_sw_cce_err_status_aggregated_cnt(
1862                                const struct cntr_entry *entry,
1863                                void *context, int vl, int mode, u64 data)
1864{
1865        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1866
1867        return dd->sw_cce_err_status_aggregate;
1868}
1869
1870/*
1871 * Software counters corresponding to each of the
1872 * error status bits within CceErrStatus
1873 */
1874static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1875                                              void *context, int vl, int mode,
1876                                              u64 data)
1877{
1878        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1879
1880        return dd->cce_err_status_cnt[40];
1881}
1882
1883static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1884                                          void *context, int vl, int mode,
1885                                          u64 data)
1886{
1887        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1888
1889        return dd->cce_err_status_cnt[39];
1890}
1891
1892static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1893                                          void *context, int vl, int mode,
1894                                          u64 data)
1895{
1896        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1897
1898        return dd->cce_err_status_cnt[38];
1899}
1900
1901static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1902                                             void *context, int vl, int mode,
1903                                             u64 data)
1904{
1905        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1906
1907        return dd->cce_err_status_cnt[37];
1908}
1909
1910static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1911                                             void *context, int vl, int mode,
1912                                             u64 data)
1913{
1914        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1915
1916        return dd->cce_err_status_cnt[36];
1917}
1918
1919static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1920                                const struct cntr_entry *entry,
1921                                void *context, int vl, int mode, u64 data)
1922{
1923        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1924
1925        return dd->cce_err_status_cnt[35];
1926}
1927
1928static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1929                                const struct cntr_entry *entry,
1930                                void *context, int vl, int mode, u64 data)
1931{
1932        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1933
1934        return dd->cce_err_status_cnt[34];
1935}
1936
1937static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1938                                                 void *context, int vl,
1939                                                 int mode, u64 data)
1940{
1941        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1942
1943        return dd->cce_err_status_cnt[33];
1944}
1945
1946static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1947                                                void *context, int vl, int mode,
1948                                                u64 data)
1949{
1950        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1951
1952        return dd->cce_err_status_cnt[32];
1953}
1954
1955static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1956                                   void *context, int vl, int mode, u64 data)
1957{
1958        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1959
1960        return dd->cce_err_status_cnt[31];
1961}
1962
1963static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1964                                               void *context, int vl, int mode,
1965                                               u64 data)
1966{
1967        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1968
1969        return dd->cce_err_status_cnt[30];
1970}
1971
1972static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1973                                              void *context, int vl, int mode,
1974                                              u64 data)
1975{
1976        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1977
1978        return dd->cce_err_status_cnt[29];
1979}
1980
1981static u64 access_pcic_transmit_back_parity_err_cnt(
1982                                const struct cntr_entry *entry,
1983                                void *context, int vl, int mode, u64 data)
1984{
1985        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1986
1987        return dd->cce_err_status_cnt[28];
1988}
1989
1990static u64 access_pcic_transmit_front_parity_err_cnt(
1991                                const struct cntr_entry *entry,
1992                                void *context, int vl, int mode, u64 data)
1993{
1994        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1995
1996        return dd->cce_err_status_cnt[27];
1997}
1998
1999static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
2000                                             void *context, int vl, int mode,
2001                                             u64 data)
2002{
2003        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2004
2005        return dd->cce_err_status_cnt[26];
2006}
2007
2008static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
2009                                            void *context, int vl, int mode,
2010                                            u64 data)
2011{
2012        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2013
2014        return dd->cce_err_status_cnt[25];
2015}
2016
2017static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
2018                                              void *context, int vl, int mode,
2019                                              u64 data)
2020{
2021        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2022
2023        return dd->cce_err_status_cnt[24];
2024}
2025
2026static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
2027                                             void *context, int vl, int mode,
2028                                             u64 data)
2029{
2030        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2031
2032        return dd->cce_err_status_cnt[23];
2033}
2034
2035static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
2036                                                 void *context, int vl,
2037                                                 int mode, u64 data)
2038{
2039        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2040
2041        return dd->cce_err_status_cnt[22];
2042}
2043
2044static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
2045                                         void *context, int vl, int mode,
2046                                         u64 data)
2047{
2048        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2049
2050        return dd->cce_err_status_cnt[21];
2051}
2052
2053static u64 access_pcic_n_post_dat_q_parity_err_cnt(
2054                                const struct cntr_entry *entry,
2055                                void *context, int vl, int mode, u64 data)
2056{
2057        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2058
2059        return dd->cce_err_status_cnt[20];
2060}
2061
2062static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
2063                                                 void *context, int vl,
2064                                                 int mode, u64 data)
2065{
2066        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2067
2068        return dd->cce_err_status_cnt[19];
2069}
2070
2071static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2072                                             void *context, int vl, int mode,
2073                                             u64 data)
2074{
2075        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2076
2077        return dd->cce_err_status_cnt[18];
2078}
2079
2080static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2081                                            void *context, int vl, int mode,
2082                                            u64 data)
2083{
2084        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2085
2086        return dd->cce_err_status_cnt[17];
2087}
2088
2089static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2090                                              void *context, int vl, int mode,
2091                                              u64 data)
2092{
2093        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2094
2095        return dd->cce_err_status_cnt[16];
2096}
2097
2098static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2099                                             void *context, int vl, int mode,
2100                                             u64 data)
2101{
2102        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2103
2104        return dd->cce_err_status_cnt[15];
2105}
2106
2107static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
2108                                                 void *context, int vl,
2109                                                 int mode, u64 data)
2110{
2111        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2112
2113        return dd->cce_err_status_cnt[14];
2114}
2115
2116static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
2117                                             void *context, int vl, int mode,
2118                                             u64 data)
2119{
2120        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2121
2122        return dd->cce_err_status_cnt[13];
2123}
2124
2125static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2126                                const struct cntr_entry *entry,
2127                                void *context, int vl, int mode, u64 data)
2128{
2129        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2130
2131        return dd->cce_err_status_cnt[12];
2132}
2133
2134static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2135                                const struct cntr_entry *entry,
2136                                void *context, int vl, int mode, u64 data)
2137{
2138        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2139
2140        return dd->cce_err_status_cnt[11];
2141}
2142
2143static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2144                                const struct cntr_entry *entry,
2145                                void *context, int vl, int mode, u64 data)
2146{
2147        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2148
2149        return dd->cce_err_status_cnt[10];
2150}
2151
2152static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2153                                const struct cntr_entry *entry,
2154                                void *context, int vl, int mode, u64 data)
2155{
2156        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2157
2158        return dd->cce_err_status_cnt[9];
2159}
2160
2161static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2162                                const struct cntr_entry *entry,
2163                                void *context, int vl, int mode, u64 data)
2164{
2165        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2166
2167        return dd->cce_err_status_cnt[8];
2168}
2169
2170static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2171                                                 void *context, int vl,
2172                                                 int mode, u64 data)
2173{
2174        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2175
2176        return dd->cce_err_status_cnt[7];
2177}
2178
2179static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2180                                const struct cntr_entry *entry,
2181                                void *context, int vl, int mode, u64 data)
2182{
2183        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2184
2185        return dd->cce_err_status_cnt[6];
2186}
2187
2188static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2189                                               void *context, int vl, int mode,
2190                                               u64 data)
2191{
2192        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2193
2194        return dd->cce_err_status_cnt[5];
2195}
2196
2197static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2198                                          void *context, int vl, int mode,
2199                                          u64 data)
2200{
2201        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2202
2203        return dd->cce_err_status_cnt[4];
2204}
2205
2206static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2207                                const struct cntr_entry *entry,
2208                                void *context, int vl, int mode, u64 data)
2209{
2210        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2211
2212        return dd->cce_err_status_cnt[3];
2213}
2214
2215static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2216                                                 void *context, int vl,
2217                                                 int mode, u64 data)
2218{
2219        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2220
2221        return dd->cce_err_status_cnt[2];
2222}
2223
2224static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2225                                                void *context, int vl,
2226                                                int mode, u64 data)
2227{
2228        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2229
2230        return dd->cce_err_status_cnt[1];
2231}
2232
2233static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2234                                         void *context, int vl, int mode,
2235                                         u64 data)
2236{
2237        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2238
2239        return dd->cce_err_status_cnt[0];
2240}
2241
2242/*
2243 * Software counters corresponding to each of the
2244 * error status bits within RcvErrStatus
2245 */
2246static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2247                                        void *context, int vl, int mode,
2248                                        u64 data)
2249{
2250        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2251
2252        return dd->rcv_err_status_cnt[63];
2253}
2254
2255static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2256                                                void *context, int vl,
2257                                                int mode, u64 data)
2258{
2259        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2260
2261        return dd->rcv_err_status_cnt[62];
2262}
2263
2264static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2265                                               void *context, int vl, int mode,
2266                                               u64 data)
2267{
2268        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2269
2270        return dd->rcv_err_status_cnt[61];
2271}
2272
2273static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2274                                         void *context, int vl, int mode,
2275                                         u64 data)
2276{
2277        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2278
2279        return dd->rcv_err_status_cnt[60];
2280}
2281
2282static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2283                                                 void *context, int vl,
2284                                                 int mode, u64 data)
2285{
2286        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2287
2288        return dd->rcv_err_status_cnt[59];
2289}
2290
2291static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2292                                                 void *context, int vl,
2293                                                 int mode, u64 data)
2294{
2295        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2296
2297        return dd->rcv_err_status_cnt[58];
2298}
2299
2300static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2301                                            void *context, int vl, int mode,
2302                                            u64 data)
2303{
2304        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2305
2306        return dd->rcv_err_status_cnt[57];
2307}
2308
2309static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2310                                           void *context, int vl, int mode,
2311                                           u64 data)
2312{
2313        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2314
2315        return dd->rcv_err_status_cnt[56];
2316}
2317
2318static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2319                                           void *context, int vl, int mode,
2320                                           u64 data)
2321{
2322        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2323
2324        return dd->rcv_err_status_cnt[55];
2325}
2326
2327static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2328                                const struct cntr_entry *entry,
2329                                void *context, int vl, int mode, u64 data)
2330{
2331        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2332
2333        return dd->rcv_err_status_cnt[54];
2334}
2335
2336static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2337                                const struct cntr_entry *entry,
2338                                void *context, int vl, int mode, u64 data)
2339{
2340        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2341
2342        return dd->rcv_err_status_cnt[53];
2343}
2344
2345static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2346                                                 void *context, int vl,
2347                                                 int mode, u64 data)
2348{
2349        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2350
2351        return dd->rcv_err_status_cnt[52];
2352}
2353
2354static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2355                                                 void *context, int vl,
2356                                                 int mode, u64 data)
2357{
2358        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2359
2360        return dd->rcv_err_status_cnt[51];
2361}
2362
2363static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2364                                                 void *context, int vl,
2365                                                 int mode, u64 data)
2366{
2367        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2368
2369        return dd->rcv_err_status_cnt[50];
2370}
2371
2372static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2373                                                 void *context, int vl,
2374                                                 int mode, u64 data)
2375{
2376        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2377
2378        return dd->rcv_err_status_cnt[49];
2379}
2380
2381static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2382                                                 void *context, int vl,
2383                                                 int mode, u64 data)
2384{
2385        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2386
2387        return dd->rcv_err_status_cnt[48];
2388}
2389
2390static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2391                                                 void *context, int vl,
2392                                                 int mode, u64 data)
2393{
2394        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2395
2396        return dd->rcv_err_status_cnt[47];
2397}
2398
2399static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2400                                         void *context, int vl, int mode,
2401                                         u64 data)
2402{
2403        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2404
2405        return dd->rcv_err_status_cnt[46];
2406}
2407
2408static u64 access_rx_hq_intr_csr_parity_err_cnt(
2409                                const struct cntr_entry *entry,
2410                                void *context, int vl, int mode, u64 data)
2411{
2412        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2413
2414        return dd->rcv_err_status_cnt[45];
2415}
2416
2417static u64 access_rx_lookup_csr_parity_err_cnt(
2418                                const struct cntr_entry *entry,
2419                                void *context, int vl, int mode, u64 data)
2420{
2421        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2422
2423        return dd->rcv_err_status_cnt[44];
2424}
2425
2426static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2427                                const struct cntr_entry *entry,
2428                                void *context, int vl, int mode, u64 data)
2429{
2430        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2431
2432        return dd->rcv_err_status_cnt[43];
2433}
2434
2435static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2436                                const struct cntr_entry *entry,
2437                                void *context, int vl, int mode, u64 data)
2438{
2439        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2440
2441        return dd->rcv_err_status_cnt[42];
2442}
2443
2444static u64 access_rx_lookup_des_part2_parity_err_cnt(
2445                                const struct cntr_entry *entry,
2446                                void *context, int vl, int mode, u64 data)
2447{
2448        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2449
2450        return dd->rcv_err_status_cnt[41];
2451}
2452
2453static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2454                                const struct cntr_entry *entry,
2455                                void *context, int vl, int mode, u64 data)
2456{
2457        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2458
2459        return dd->rcv_err_status_cnt[40];
2460}
2461
2462static u64 access_rx_lookup_des_part1_unc_err_cnt(
2463                                const struct cntr_entry *entry,
2464                                void *context, int vl, int mode, u64 data)
2465{
2466        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2467
2468        return dd->rcv_err_status_cnt[39];
2469}
2470
2471static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2472                                const struct cntr_entry *entry,
2473                                void *context, int vl, int mode, u64 data)
2474{
2475        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2476
2477        return dd->rcv_err_status_cnt[38];
2478}
2479
2480static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2481                                const struct cntr_entry *entry,
2482                                void *context, int vl, int mode, u64 data)
2483{
2484        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2485
2486        return dd->rcv_err_status_cnt[37];
2487}
2488
2489static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2490                                const struct cntr_entry *entry,
2491                                void *context, int vl, int mode, u64 data)
2492{
2493        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2494
2495        return dd->rcv_err_status_cnt[36];
2496}
2497
2498static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2499                                const struct cntr_entry *entry,
2500                                void *context, int vl, int mode, u64 data)
2501{
2502        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2503
2504        return dd->rcv_err_status_cnt[35];
2505}
2506
2507static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2508                                const struct cntr_entry *entry,
2509                                void *context, int vl, int mode, u64 data)
2510{
2511        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2512
2513        return dd->rcv_err_status_cnt[34];
2514}
2515
2516static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2517                                const struct cntr_entry *entry,
2518                                void *context, int vl, int mode, u64 data)
2519{
2520        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2521
2522        return dd->rcv_err_status_cnt[33];
2523}
2524
2525static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2526                                        void *context, int vl, int mode,
2527                                        u64 data)
2528{
2529        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2530
2531        return dd->rcv_err_status_cnt[32];
2532}
2533
2534static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2535                                       void *context, int vl, int mode,
2536                                       u64 data)
2537{
2538        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2539
2540        return dd->rcv_err_status_cnt[31];
2541}
2542
2543static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2544                                          void *context, int vl, int mode,
2545                                          u64 data)
2546{
2547        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2548
2549        return dd->rcv_err_status_cnt[30];
2550}
2551
2552static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2553                                             void *context, int vl, int mode,
2554                                             u64 data)
2555{
2556        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2557
2558        return dd->rcv_err_status_cnt[29];
2559}
2560
2561static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2562                                                 void *context, int vl,
2563                                                 int mode, u64 data)
2564{
2565        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2566
2567        return dd->rcv_err_status_cnt[28];
2568}
2569
2570static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2571                                const struct cntr_entry *entry,
2572                                void *context, int vl, int mode, u64 data)
2573{
2574        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2575
2576        return dd->rcv_err_status_cnt[27];
2577}
2578
2579static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2580                                const struct cntr_entry *entry,
2581                                void *context, int vl, int mode, u64 data)
2582{
2583        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2584
2585        return dd->rcv_err_status_cnt[26];
2586}
2587
2588static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2589                                const struct cntr_entry *entry,
2590                                void *context, int vl, int mode, u64 data)
2591{
2592        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2593
2594        return dd->rcv_err_status_cnt[25];
2595}
2596
2597static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2598                                const struct cntr_entry *entry,
2599                                void *context, int vl, int mode, u64 data)
2600{
2601        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2602
2603        return dd->rcv_err_status_cnt[24];
2604}
2605
2606static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2607                                const struct cntr_entry *entry,
2608                                void *context, int vl, int mode, u64 data)
2609{
2610        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2611
2612        return dd->rcv_err_status_cnt[23];
2613}
2614
2615static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2616                                const struct cntr_entry *entry,
2617                                void *context, int vl, int mode, u64 data)
2618{
2619        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2620
2621        return dd->rcv_err_status_cnt[22];
2622}
2623
2624static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2625                                const struct cntr_entry *entry,
2626                                void *context, int vl, int mode, u64 data)
2627{
2628        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2629
2630        return dd->rcv_err_status_cnt[21];
2631}
2632
2633static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2634                                const struct cntr_entry *entry,
2635                                void *context, int vl, int mode, u64 data)
2636{
2637        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2638
2639        return dd->rcv_err_status_cnt[20];
2640}
2641
2642static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2643                                const struct cntr_entry *entry,
2644                                void *context, int vl, int mode, u64 data)
2645{
2646        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2647
2648        return dd->rcv_err_status_cnt[19];
2649}
2650
2651static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2652                                                 void *context, int vl,
2653                                                 int mode, u64 data)
2654{
2655        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2656
2657        return dd->rcv_err_status_cnt[18];
2658}
2659
2660static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2661                                                 void *context, int vl,
2662                                                 int mode, u64 data)
2663{
2664        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2665
2666        return dd->rcv_err_status_cnt[17];
2667}
2668
2669static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2670                                const struct cntr_entry *entry,
2671                                void *context, int vl, int mode, u64 data)
2672{
2673        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2674
2675        return dd->rcv_err_status_cnt[16];
2676}
2677
2678static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2679                                const struct cntr_entry *entry,
2680                                void *context, int vl, int mode, u64 data)
2681{
2682        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2683
2684        return dd->rcv_err_status_cnt[15];
2685}
2686
2687static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2688                                                void *context, int vl,
2689                                                int mode, u64 data)
2690{
2691        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2692
2693        return dd->rcv_err_status_cnt[14];
2694}
2695
2696static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2697                                                void *context, int vl,
2698                                                int mode, u64 data)
2699{
2700        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2701
2702        return dd->rcv_err_status_cnt[13];
2703}
2704
2705static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2706                                              void *context, int vl, int mode,
2707                                              u64 data)
2708{
2709        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2710
2711        return dd->rcv_err_status_cnt[12];
2712}
2713
2714static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2715                                          void *context, int vl, int mode,
2716                                          u64 data)
2717{
2718        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2719
2720        return dd->rcv_err_status_cnt[11];
2721}
2722
2723static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2724                                          void *context, int vl, int mode,
2725                                          u64 data)
2726{
2727        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2728
2729        return dd->rcv_err_status_cnt[10];
2730}
2731
2732static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2733                                               void *context, int vl, int mode,
2734                                               u64 data)
2735{
2736        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2737
2738        return dd->rcv_err_status_cnt[9];
2739}
2740
2741static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2742                                            void *context, int vl, int mode,
2743                                            u64 data)
2744{
2745        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2746
2747        return dd->rcv_err_status_cnt[8];
2748}
2749
2750static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2751                                const struct cntr_entry *entry,
2752                                void *context, int vl, int mode, u64 data)
2753{
2754        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2755
2756        return dd->rcv_err_status_cnt[7];
2757}
2758
2759static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2760                                const struct cntr_entry *entry,
2761                                void *context, int vl, int mode, u64 data)
2762{
2763        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2764
2765        return dd->rcv_err_status_cnt[6];
2766}
2767
2768static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2769                                          void *context, int vl, int mode,
2770                                          u64 data)
2771{
2772        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2773
2774        return dd->rcv_err_status_cnt[5];
2775}
2776
2777static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2778                                          void *context, int vl, int mode,
2779                                          u64 data)
2780{
2781        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2782
2783        return dd->rcv_err_status_cnt[4];
2784}
2785
2786static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2787                                         void *context, int vl, int mode,
2788                                         u64 data)
2789{
2790        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2791
2792        return dd->rcv_err_status_cnt[3];
2793}
2794
2795static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2796                                         void *context, int vl, int mode,
2797                                         u64 data)
2798{
2799        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2800
2801        return dd->rcv_err_status_cnt[2];
2802}
2803
2804static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2805                                            void *context, int vl, int mode,
2806                                            u64 data)
2807{
2808        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2809
2810        return dd->rcv_err_status_cnt[1];
2811}
2812
2813static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2814                                         void *context, int vl, int mode,
2815                                         u64 data)
2816{
2817        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2818
2819        return dd->rcv_err_status_cnt[0];
2820}
2821
2822/*
2823 * Software counters corresponding to each of the
2824 * error status bits within SendPioErrStatus
2825 */
2826static u64 access_pio_pec_sop_head_parity_err_cnt(
2827                                const struct cntr_entry *entry,
2828                                void *context, int vl, int mode, u64 data)
2829{
2830        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2831
2832        return dd->send_pio_err_status_cnt[35];
2833}
2834
2835static u64 access_pio_pcc_sop_head_parity_err_cnt(
2836                                const struct cntr_entry *entry,
2837                                void *context, int vl, int mode, u64 data)
2838{
2839        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2840
2841        return dd->send_pio_err_status_cnt[34];
2842}
2843
2844static u64 access_pio_last_returned_cnt_parity_err_cnt(
2845                                const struct cntr_entry *entry,
2846                                void *context, int vl, int mode, u64 data)
2847{
2848        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2849
2850        return dd->send_pio_err_status_cnt[33];
2851}
2852
2853static u64 access_pio_current_free_cnt_parity_err_cnt(
2854                                const struct cntr_entry *entry,
2855                                void *context, int vl, int mode, u64 data)
2856{
2857        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2858
2859        return dd->send_pio_err_status_cnt[32];
2860}
2861
2862static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2863                                          void *context, int vl, int mode,
2864                                          u64 data)
2865{
2866        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2867
2868        return dd->send_pio_err_status_cnt[31];
2869}
2870
2871static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2872                                          void *context, int vl, int mode,
2873                                          u64 data)
2874{
2875        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2876
2877        return dd->send_pio_err_status_cnt[30];
2878}
2879
2880static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2881                                           void *context, int vl, int mode,
2882                                           u64 data)
2883{
2884        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2885
2886        return dd->send_pio_err_status_cnt[29];
2887}
2888
2889static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2890                                const struct cntr_entry *entry,
2891                                void *context, int vl, int mode, u64 data)
2892{
2893        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2894
2895        return dd->send_pio_err_status_cnt[28];
2896}
2897
2898static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2899                                             void *context, int vl, int mode,
2900                                             u64 data)
2901{
2902        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2903
2904        return dd->send_pio_err_status_cnt[27];
2905}
2906
2907static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2908                                             void *context, int vl, int mode,
2909                                             u64 data)
2910{
2911        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2912
2913        return dd->send_pio_err_status_cnt[26];
2914}
2915
2916static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2917                                                void *context, int vl,
2918                                                int mode, u64 data)
2919{
2920        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2921
2922        return dd->send_pio_err_status_cnt[25];
2923}
2924
2925static u64 access_pio_block_qw_count_parity_err_cnt(
2926                                const struct cntr_entry *entry,
2927                                void *context, int vl, int mode, u64 data)
2928{
2929        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2930
2931        return dd->send_pio_err_status_cnt[24];
2932}
2933
2934static u64 access_pio_write_qw_valid_parity_err_cnt(
2935                                const struct cntr_entry *entry,
2936                                void *context, int vl, int mode, u64 data)
2937{
2938        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2939
2940        return dd->send_pio_err_status_cnt[23];
2941}
2942
2943static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2944                                            void *context, int vl, int mode,
2945                                            u64 data)
2946{
2947        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2948
2949        return dd->send_pio_err_status_cnt[22];
2950}
2951
2952static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2953                                                void *context, int vl,
2954                                                int mode, u64 data)
2955{
2956        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2957
2958        return dd->send_pio_err_status_cnt[21];
2959}
2960
2961static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2962                                                void *context, int vl,
2963                                                int mode, u64 data)
2964{
2965        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2966
2967        return dd->send_pio_err_status_cnt[20];
2968}
2969
2970static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2971                                                void *context, int vl,
2972                                                int mode, u64 data)
2973{
2974        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2975
2976        return dd->send_pio_err_status_cnt[19];
2977}
2978
2979static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2980                                const struct cntr_entry *entry,
2981                                void *context, int vl, int mode, u64 data)
2982{
2983        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2984
2985        return dd->send_pio_err_status_cnt[18];
2986}
2987
2988static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2989                                         void *context, int vl, int mode,
2990                                         u64 data)
2991{
2992        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2993
2994        return dd->send_pio_err_status_cnt[17];
2995}
2996
2997static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2998                                            void *context, int vl, int mode,
2999                                            u64 data)
3000{
3001        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3002
3003        return dd->send_pio_err_status_cnt[16];
3004}
3005
3006static u64 access_pio_credit_ret_fifo_parity_err_cnt(
3007                                const struct cntr_entry *entry,
3008                                void *context, int vl, int mode, u64 data)
3009{
3010        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3011
3012        return dd->send_pio_err_status_cnt[15];
3013}
3014
3015static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
3016                                const struct cntr_entry *entry,
3017                                void *context, int vl, int mode, u64 data)
3018{
3019        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3020
3021        return dd->send_pio_err_status_cnt[14];
3022}
3023
3024static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
3025                                const struct cntr_entry *entry,
3026                                void *context, int vl, int mode, u64 data)
3027{
3028        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3029
3030        return dd->send_pio_err_status_cnt[13];
3031}
3032
3033static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
3034                                const struct cntr_entry *entry,
3035                                void *context, int vl, int mode, u64 data)
3036{
3037        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3038
3039        return dd->send_pio_err_status_cnt[12];
3040}
3041
3042static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
3043                                const struct cntr_entry *entry,
3044                                void *context, int vl, int mode, u64 data)
3045{
3046        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3047
3048        return dd->send_pio_err_status_cnt[11];
3049}
3050
3051static u64 access_pio_sm_pkt_reset_parity_err_cnt(
3052                                const struct cntr_entry *entry,
3053                                void *context, int vl, int mode, u64 data)
3054{
3055        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3056
3057        return dd->send_pio_err_status_cnt[10];
3058}
3059
3060static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
3061                                const struct cntr_entry *entry,
3062                                void *context, int vl, int mode, u64 data)
3063{
3064        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3065
3066        return dd->send_pio_err_status_cnt[9];
3067}
3068
3069static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
3070                                const struct cntr_entry *entry,
3071                                void *context, int vl, int mode, u64 data)
3072{
3073        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3074
3075        return dd->send_pio_err_status_cnt[8];
3076}
3077
3078static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
3079                                const struct cntr_entry *entry,
3080                                void *context, int vl, int mode, u64 data)
3081{
3082        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3083
3084        return dd->send_pio_err_status_cnt[7];
3085}
3086
3087static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
3088                                              void *context, int vl, int mode,
3089                                              u64 data)
3090{
3091        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3092
3093        return dd->send_pio_err_status_cnt[6];
3094}
3095
3096static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
3097                                              void *context, int vl, int mode,
3098                                              u64 data)
3099{
3100        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3101
3102        return dd->send_pio_err_status_cnt[5];
3103}
3104
3105static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
3106                                           void *context, int vl, int mode,
3107                                           u64 data)
3108{
3109        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3110
3111        return dd->send_pio_err_status_cnt[4];
3112}
3113
3114static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
3115                                           void *context, int vl, int mode,
3116                                           u64 data)
3117{
3118        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3119
3120        return dd->send_pio_err_status_cnt[3];
3121}
3122
3123static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3124                                         void *context, int vl, int mode,
3125                                         u64 data)
3126{
3127        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3128
3129        return dd->send_pio_err_status_cnt[2];
3130}
3131
3132static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3133                                                void *context, int vl,
3134                                                int mode, u64 data)
3135{
3136        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3137
3138        return dd->send_pio_err_status_cnt[1];
3139}
3140
3141static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3142                                             void *context, int vl, int mode,
3143                                             u64 data)
3144{
3145        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3146
3147        return dd->send_pio_err_status_cnt[0];
3148}
3149
3150/*
3151 * Software counters corresponding to each of the
3152 * error status bits within SendDmaErrStatus
3153 */
3154static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3155                                const struct cntr_entry *entry,
3156                                void *context, int vl, int mode, u64 data)
3157{
3158        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3159
3160        return dd->send_dma_err_status_cnt[3];
3161}
3162
3163static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3164                                const struct cntr_entry *entry,
3165                                void *context, int vl, int mode, u64 data)
3166{
3167        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3168
3169        return dd->send_dma_err_status_cnt[2];
3170}
3171
3172static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3173                                          void *context, int vl, int mode,
3174                                          u64 data)
3175{
3176        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3177
3178        return dd->send_dma_err_status_cnt[1];
3179}
3180
3181static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3182                                       void *context, int vl, int mode,
3183                                       u64 data)
3184{
3185        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3186
3187        return dd->send_dma_err_status_cnt[0];
3188}
3189
3190/*
3191 * Software counters corresponding to each of the
3192 * error status bits within SendEgressErrStatus
3193 */
3194static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3195                                const struct cntr_entry *entry,
3196                                void *context, int vl, int mode, u64 data)
3197{
3198        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3199
3200        return dd->send_egress_err_status_cnt[63];
3201}
3202
3203static u64 access_tx_read_sdma_memory_csr_err_cnt(
3204                                const struct cntr_entry *entry,
3205                                void *context, int vl, int mode, u64 data)
3206{
3207        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3208
3209        return dd->send_egress_err_status_cnt[62];
3210}
3211
3212static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3213                                             void *context, int vl, int mode,
3214                                             u64 data)
3215{
3216        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3217
3218        return dd->send_egress_err_status_cnt[61];
3219}
3220
3221static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3222                                                 void *context, int vl,
3223                                                 int mode, u64 data)
3224{
3225        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3226
3227        return dd->send_egress_err_status_cnt[60];
3228}
3229
3230static u64 access_tx_read_sdma_memory_cor_err_cnt(
3231                                const struct cntr_entry *entry,
3232                                void *context, int vl, int mode, u64 data)
3233{
3234        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3235
3236        return dd->send_egress_err_status_cnt[59];
3237}
3238
3239static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3240                                        void *context, int vl, int mode,
3241                                        u64 data)
3242{
3243        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3244
3245        return dd->send_egress_err_status_cnt[58];
3246}
3247
3248static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3249                                            void *context, int vl, int mode,
3250                                            u64 data)
3251{
3252        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3253
3254        return dd->send_egress_err_status_cnt[57];
3255}
3256
3257static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3258                                              void *context, int vl, int mode,
3259                                              u64 data)
3260{
3261        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3262
3263        return dd->send_egress_err_status_cnt[56];
3264}
3265
3266static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3267                                              void *context, int vl, int mode,
3268                                              u64 data)
3269{
3270        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3271
3272        return dd->send_egress_err_status_cnt[55];
3273}
3274
3275static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3276                                              void *context, int vl, int mode,
3277                                              u64 data)
3278{
3279        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3280
3281        return dd->send_egress_err_status_cnt[54];
3282}
3283
3284static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3285                                              void *context, int vl, int mode,
3286                                              u64 data)
3287{
3288        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3289
3290        return dd->send_egress_err_status_cnt[53];
3291}
3292
3293static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3294                                              void *context, int vl, int mode,
3295                                              u64 data)
3296{
3297        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3298
3299        return dd->send_egress_err_status_cnt[52];
3300}
3301
3302static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3303                                              void *context, int vl, int mode,
3304                                              u64 data)
3305{
3306        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3307
3308        return dd->send_egress_err_status_cnt[51];
3309}
3310
3311static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3312                                              void *context, int vl, int mode,
3313                                              u64 data)
3314{
3315        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3316
3317        return dd->send_egress_err_status_cnt[50];
3318}
3319
3320static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3321                                              void *context, int vl, int mode,
3322                                              u64 data)
3323{
3324        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3325
3326        return dd->send_egress_err_status_cnt[49];
3327}
3328
3329static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3330                                              void *context, int vl, int mode,
3331                                              u64 data)
3332{
3333        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3334
3335        return dd->send_egress_err_status_cnt[48];
3336}
3337
3338static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3339                                              void *context, int vl, int mode,
3340                                              u64 data)
3341{
3342        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3343
3344        return dd->send_egress_err_status_cnt[47];
3345}
3346
3347static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3348                                            void *context, int vl, int mode,
3349                                            u64 data)
3350{
3351        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3352
3353        return dd->send_egress_err_status_cnt[46];
3354}
3355
3356static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3357                                             void *context, int vl, int mode,
3358                                             u64 data)
3359{
3360        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3361
3362        return dd->send_egress_err_status_cnt[45];
3363}
3364
3365static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3366                                                 void *context, int vl,
3367                                                 int mode, u64 data)
3368{
3369        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3370
3371        return dd->send_egress_err_status_cnt[44];
3372}
3373
3374static u64 access_tx_read_sdma_memory_unc_err_cnt(
3375                                const struct cntr_entry *entry,
3376                                void *context, int vl, int mode, u64 data)
3377{
3378        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3379
3380        return dd->send_egress_err_status_cnt[43];
3381}
3382
3383static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3384                                        void *context, int vl, int mode,
3385                                        u64 data)
3386{
3387        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3388
3389        return dd->send_egress_err_status_cnt[42];
3390}
3391
3392static u64 access_tx_credit_return_partiy_err_cnt(
3393                                const struct cntr_entry *entry,
3394                                void *context, int vl, int mode, u64 data)
3395{
3396        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3397
3398        return dd->send_egress_err_status_cnt[41];
3399}
3400
3401static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3402                                const struct cntr_entry *entry,
3403                                void *context, int vl, int mode, u64 data)
3404{
3405        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3406
3407        return dd->send_egress_err_status_cnt[40];
3408}
3409
3410static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3411                                const struct cntr_entry *entry,
3412                                void *context, int vl, int mode, u64 data)
3413{
3414        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3415
3416        return dd->send_egress_err_status_cnt[39];
3417}
3418
3419static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3420                                const struct cntr_entry *entry,
3421                                void *context, int vl, int mode, u64 data)
3422{
3423        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3424
3425        return dd->send_egress_err_status_cnt[38];
3426}
3427
3428static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3429                                const struct cntr_entry *entry,
3430                                void *context, int vl, int mode, u64 data)
3431{
3432        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3433
3434        return dd->send_egress_err_status_cnt[37];
3435}
3436
3437static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3438                                const struct cntr_entry *entry,
3439                                void *context, int vl, int mode, u64 data)
3440{
3441        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3442
3443        return dd->send_egress_err_status_cnt[36];
3444}
3445
3446static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3447                                const struct cntr_entry *entry,
3448                                void *context, int vl, int mode, u64 data)
3449{
3450        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3451
3452        return dd->send_egress_err_status_cnt[35];
3453}
3454
3455static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3456                                const struct cntr_entry *entry,
3457                                void *context, int vl, int mode, u64 data)
3458{
3459        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3460
3461        return dd->send_egress_err_status_cnt[34];
3462}
3463
3464static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3465                                const struct cntr_entry *entry,
3466                                void *context, int vl, int mode, u64 data)
3467{
3468        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3469
3470        return dd->send_egress_err_status_cnt[33];
3471}
3472
3473static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3474                                const struct cntr_entry *entry,
3475                                void *context, int vl, int mode, u64 data)
3476{
3477        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3478
3479        return dd->send_egress_err_status_cnt[32];
3480}
3481
3482static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3483                                const struct cntr_entry *entry,
3484                                void *context, int vl, int mode, u64 data)
3485{
3486        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3487
3488        return dd->send_egress_err_status_cnt[31];
3489}
3490
3491static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3492                                const struct cntr_entry *entry,
3493                                void *context, int vl, int mode, u64 data)
3494{
3495        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3496
3497        return dd->send_egress_err_status_cnt[30];
3498}
3499
3500static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3501                                const struct cntr_entry *entry,
3502                                void *context, int vl, int mode, u64 data)
3503{
3504        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3505
3506        return dd->send_egress_err_status_cnt[29];
3507}
3508
3509static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3510                                const struct cntr_entry *entry,
3511                                void *context, int vl, int mode, u64 data)
3512{
3513        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3514
3515        return dd->send_egress_err_status_cnt[28];
3516}
3517
3518static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3519                                const struct cntr_entry *entry,
3520                                void *context, int vl, int mode, u64 data)
3521{
3522        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3523
3524        return dd->send_egress_err_status_cnt[27];
3525}
3526
3527static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3528                                const struct cntr_entry *entry,
3529                                void *context, int vl, int mode, u64 data)
3530{
3531        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3532
3533        return dd->send_egress_err_status_cnt[26];
3534}
3535
3536static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3537                                const struct cntr_entry *entry,
3538                                void *context, int vl, int mode, u64 data)
3539{
3540        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3541
3542        return dd->send_egress_err_status_cnt[25];
3543}
3544
3545static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3546                                const struct cntr_entry *entry,
3547                                void *context, int vl, int mode, u64 data)
3548{
3549        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3550
3551        return dd->send_egress_err_status_cnt[24];
3552}
3553
3554static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3555                                const struct cntr_entry *entry,
3556                                void *context, int vl, int mode, u64 data)
3557{
3558        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3559
3560        return dd->send_egress_err_status_cnt[23];
3561}
3562
3563static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3564                                const struct cntr_entry *entry,
3565                                void *context, int vl, int mode, u64 data)
3566{
3567        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3568
3569        return dd->send_egress_err_status_cnt[22];
3570}
3571
3572static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3573                                const struct cntr_entry *entry,
3574                                void *context, int vl, int mode, u64 data)
3575{
3576        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3577
3578        return dd->send_egress_err_status_cnt[21];
3579}
3580
3581static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3582                                const struct cntr_entry *entry,
3583                                void *context, int vl, int mode, u64 data)
3584{
3585        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3586
3587        return dd->send_egress_err_status_cnt[20];
3588}
3589
3590static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3591                                const struct cntr_entry *entry,
3592                                void *context, int vl, int mode, u64 data)
3593{
3594        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3595
3596        return dd->send_egress_err_status_cnt[19];
3597}
3598
3599static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3600                                const struct cntr_entry *entry,
3601                                void *context, int vl, int mode, u64 data)
3602{
3603        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3604
3605        return dd->send_egress_err_status_cnt[18];
3606}
3607
3608static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3609                                const struct cntr_entry *entry,
3610                                void *context, int vl, int mode, u64 data)
3611{
3612        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3613
3614        return dd->send_egress_err_status_cnt[17];
3615}
3616
3617static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3618                                const struct cntr_entry *entry,
3619                                void *context, int vl, int mode, u64 data)
3620{
3621        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3622
3623        return dd->send_egress_err_status_cnt[16];
3624}
3625
3626static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3627                                           void *context, int vl, int mode,
3628                                           u64 data)
3629{
3630        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3631
3632        return dd->send_egress_err_status_cnt[15];
3633}
3634
3635static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3636                                                 void *context, int vl,
3637                                                 int mode, u64 data)
3638{
3639        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3640
3641        return dd->send_egress_err_status_cnt[14];
3642}
3643
3644static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3645                                               void *context, int vl, int mode,
3646                                               u64 data)
3647{
3648        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3649
3650        return dd->send_egress_err_status_cnt[13];
3651}
3652
3653static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3654                                        void *context, int vl, int mode,
3655                                        u64 data)
3656{
3657        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3658
3659        return dd->send_egress_err_status_cnt[12];
3660}
3661
3662static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3663                                const struct cntr_entry *entry,
3664                                void *context, int vl, int mode, u64 data)
3665{
3666        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3667
3668        return dd->send_egress_err_status_cnt[11];
3669}
3670
3671static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3672                                             void *context, int vl, int mode,
3673                                             u64 data)
3674{
3675        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3676
3677        return dd->send_egress_err_status_cnt[10];
3678}
3679
3680static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3681                                            void *context, int vl, int mode,
3682                                            u64 data)
3683{
3684        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3685
3686        return dd->send_egress_err_status_cnt[9];
3687}
3688
3689static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3690                                const struct cntr_entry *entry,
3691                                void *context, int vl, int mode, u64 data)
3692{
3693        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3694
3695        return dd->send_egress_err_status_cnt[8];
3696}
3697
3698static u64 access_tx_pio_launch_intf_parity_err_cnt(
3699                                const struct cntr_entry *entry,
3700                                void *context, int vl, int mode, u64 data)
3701{
3702        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3703
3704        return dd->send_egress_err_status_cnt[7];
3705}
3706
3707static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3708                                            void *context, int vl, int mode,
3709                                            u64 data)
3710{
3711        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3712
3713        return dd->send_egress_err_status_cnt[6];
3714}
3715
3716static u64 access_tx_incorrect_link_state_err_cnt(
3717                                const struct cntr_entry *entry,
3718                                void *context, int vl, int mode, u64 data)
3719{
3720        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3721
3722        return dd->send_egress_err_status_cnt[5];
3723}
3724
3725static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3726                                      void *context, int vl, int mode,
3727                                      u64 data)
3728{
3729        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3730
3731        return dd->send_egress_err_status_cnt[4];
3732}
3733
3734static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3735                                const struct cntr_entry *entry,
3736                                void *context, int vl, int mode, u64 data)
3737{
3738        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3739
3740        return dd->send_egress_err_status_cnt[3];
3741}
3742
3743static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3744                                            void *context, int vl, int mode,
3745                                            u64 data)
3746{
3747        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3748
3749        return dd->send_egress_err_status_cnt[2];
3750}
3751
3752static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3753                                const struct cntr_entry *entry,
3754                                void *context, int vl, int mode, u64 data)
3755{
3756        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3757
3758        return dd->send_egress_err_status_cnt[1];
3759}
3760
3761static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3762                                const struct cntr_entry *entry,
3763                                void *context, int vl, int mode, u64 data)
3764{
3765        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3766
3767        return dd->send_egress_err_status_cnt[0];
3768}
3769
3770/*
3771 * Software counters corresponding to each of the
3772 * error status bits within SendErrStatus
3773 */
3774static u64 access_send_csr_write_bad_addr_err_cnt(
3775                                const struct cntr_entry *entry,
3776                                void *context, int vl, int mode, u64 data)
3777{
3778        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3779
3780        return dd->send_err_status_cnt[2];
3781}
3782
3783static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3784                                                 void *context, int vl,
3785                                                 int mode, u64 data)
3786{
3787        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3788
3789        return dd->send_err_status_cnt[1];
3790}
3791
3792static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3793                                      void *context, int vl, int mode,
3794                                      u64 data)
3795{
3796        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3797
3798        return dd->send_err_status_cnt[0];
3799}
3800
3801/*
3802 * Software counters corresponding to each of the
3803 * error status bits within SendCtxtErrStatus
3804 */
3805static u64 access_pio_write_out_of_bounds_err_cnt(
3806                                const struct cntr_entry *entry,
3807                                void *context, int vl, int mode, u64 data)
3808{
3809        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3810
3811        return dd->sw_ctxt_err_status_cnt[4];
3812}
3813
3814static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3815                                             void *context, int vl, int mode,
3816                                             u64 data)
3817{
3818        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3819
3820        return dd->sw_ctxt_err_status_cnt[3];
3821}
3822
3823static u64 access_pio_write_crosses_boundary_err_cnt(
3824                                const struct cntr_entry *entry,
3825                                void *context, int vl, int mode, u64 data)
3826{
3827        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3828
3829        return dd->sw_ctxt_err_status_cnt[2];
3830}
3831
3832static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3833                                                void *context, int vl,
3834                                                int mode, u64 data)
3835{
3836        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3837
3838        return dd->sw_ctxt_err_status_cnt[1];
3839}
3840
3841static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3842                                               void *context, int vl, int mode,
3843                                               u64 data)
3844{
3845        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3846
3847        return dd->sw_ctxt_err_status_cnt[0];
3848}
3849
3850/*
3851 * Software counters corresponding to each of the
3852 * error status bits within SendDmaEngErrStatus
3853 */
3854static u64 access_sdma_header_request_fifo_cor_err_cnt(
3855                                const struct cntr_entry *entry,
3856                                void *context, int vl, int mode, u64 data)
3857{
3858        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3859
3860        return dd->sw_send_dma_eng_err_status_cnt[23];
3861}
3862
3863static u64 access_sdma_header_storage_cor_err_cnt(
3864                                const struct cntr_entry *entry,
3865                                void *context, int vl, int mode, u64 data)
3866{
3867        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3868
3869        return dd->sw_send_dma_eng_err_status_cnt[22];
3870}
3871
3872static u64 access_sdma_packet_tracking_cor_err_cnt(
3873                                const struct cntr_entry *entry,
3874                                void *context, int vl, int mode, u64 data)
3875{
3876        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3877
3878        return dd->sw_send_dma_eng_err_status_cnt[21];
3879}
3880
3881static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3882                                            void *context, int vl, int mode,
3883                                            u64 data)
3884{
3885        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3886
3887        return dd->sw_send_dma_eng_err_status_cnt[20];
3888}
3889
3890static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3891                                              void *context, int vl, int mode,
3892                                              u64 data)
3893{
3894        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3895
3896        return dd->sw_send_dma_eng_err_status_cnt[19];
3897}
3898
3899static u64 access_sdma_header_request_fifo_unc_err_cnt(
3900                                const struct cntr_entry *entry,
3901                                void *context, int vl, int mode, u64 data)
3902{
3903        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3904
3905        return dd->sw_send_dma_eng_err_status_cnt[18];
3906}
3907
3908static u64 access_sdma_header_storage_unc_err_cnt(
3909                                const struct cntr_entry *entry,
3910                                void *context, int vl, int mode, u64 data)
3911{
3912        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3913
3914        return dd->sw_send_dma_eng_err_status_cnt[17];
3915}
3916
3917static u64 access_sdma_packet_tracking_unc_err_cnt(
3918                                const struct cntr_entry *entry,
3919                                void *context, int vl, int mode, u64 data)
3920{
3921        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3922
3923        return dd->sw_send_dma_eng_err_status_cnt[16];
3924}
3925
3926static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3927                                            void *context, int vl, int mode,
3928                                            u64 data)
3929{
3930        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3931
3932        return dd->sw_send_dma_eng_err_status_cnt[15];
3933}
3934
3935static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3936                                              void *context, int vl, int mode,
3937                                              u64 data)
3938{
3939        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3940
3941        return dd->sw_send_dma_eng_err_status_cnt[14];
3942}
3943
3944static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3945                                       void *context, int vl, int mode,
3946                                       u64 data)
3947{
3948        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3949
3950        return dd->sw_send_dma_eng_err_status_cnt[13];
3951}
3952
3953static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3954                                             void *context, int vl, int mode,
3955                                             u64 data)
3956{
3957        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3958
3959        return dd->sw_send_dma_eng_err_status_cnt[12];
3960}
3961
3962static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3963                                              void *context, int vl, int mode,
3964                                              u64 data)
3965{
3966        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3967
3968        return dd->sw_send_dma_eng_err_status_cnt[11];
3969}
3970
3971static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3972                                             void *context, int vl, int mode,
3973                                             u64 data)
3974{
3975        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3976
3977        return dd->sw_send_dma_eng_err_status_cnt[10];
3978}
3979
3980static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3981                                          void *context, int vl, int mode,
3982                                          u64 data)
3983{
3984        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3985
3986        return dd->sw_send_dma_eng_err_status_cnt[9];
3987}
3988
3989static u64 access_sdma_packet_desc_overflow_err_cnt(
3990                                const struct cntr_entry *entry,
3991                                void *context, int vl, int mode, u64 data)
3992{
3993        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3994
3995        return dd->sw_send_dma_eng_err_status_cnt[8];
3996}
3997
3998static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3999                                               void *context, int vl,
4000                                               int mode, u64 data)
4001{
4002        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4003
4004        return dd->sw_send_dma_eng_err_status_cnt[7];
4005}
4006
4007static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
4008                                    void *context, int vl, int mode, u64 data)
4009{
4010        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4011
4012        return dd->sw_send_dma_eng_err_status_cnt[6];
4013}
4014
4015static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
4016                                        void *context, int vl, int mode,
4017                                        u64 data)
4018{
4019        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4020
4021        return dd->sw_send_dma_eng_err_status_cnt[5];
4022}
4023
4024static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
4025                                          void *context, int vl, int mode,
4026                                          u64 data)
4027{
4028        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4029
4030        return dd->sw_send_dma_eng_err_status_cnt[4];
4031}
4032
4033static u64 access_sdma_tail_out_of_bounds_err_cnt(
4034                                const struct cntr_entry *entry,
4035                                void *context, int vl, int mode, u64 data)
4036{
4037        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4038
4039        return dd->sw_send_dma_eng_err_status_cnt[3];
4040}
4041
4042static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
4043                                        void *context, int vl, int mode,
4044                                        u64 data)
4045{
4046        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4047
4048        return dd->sw_send_dma_eng_err_status_cnt[2];
4049}
4050
4051static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
4052                                            void *context, int vl, int mode,
4053                                            u64 data)
4054{
4055        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4056
4057        return dd->sw_send_dma_eng_err_status_cnt[1];
4058}
4059
4060static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
4061                                        void *context, int vl, int mode,
4062                                        u64 data)
4063{
4064        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4065
4066        return dd->sw_send_dma_eng_err_status_cnt[0];
4067}
4068
4069static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
4070                                 void *context, int vl, int mode,
4071                                 u64 data)
4072{
4073        struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4074
4075        u64 val = 0;
4076        u64 csr = entry->csr;
4077
4078        val = read_write_csr(dd, csr, mode, data);
4079        if (mode == CNTR_MODE_R) {
4080                val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
4081                        CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
4082        } else if (mode == CNTR_MODE_W) {
4083                dd->sw_rcv_bypass_packet_errors = 0;
4084        } else {
4085                dd_dev_err(dd, "Invalid cntr register access mode");
4086                return 0;
4087        }
4088        return val;
4089}
4090
4091#define def_access_sw_cpu(cntr) \
4092static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry,               \
4093                              void *context, int vl, int mode, u64 data)      \
4094{                                                                             \
4095        struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;        \
4096        return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr,       \
4097                              ppd->ibport_data.rvp.cntr, vl,                  \
4098                              mode, data);                                    \
4099}
4100
4101def_access_sw_cpu(rc_acks);
4102def_access_sw_cpu(rc_qacks);
4103def_access_sw_cpu(rc_delayed_comp);
4104
4105#define def_access_ibp_counter(cntr) \
4106static u64 access_ibp_##cntr(const struct cntr_entry *entry,                  \
4107                                void *context, int vl, int mode, u64 data)    \
4108{                                                                             \
4109        struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;        \
4110                                                                              \
4111        if (vl != CNTR_INVALID_VL)                                            \
4112                return 0;                                                     \
4113                                                                              \
4114        return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr,        \
4115                             mode, data);                                     \
4116}
4117
4118def_access_ibp_counter(loop_pkts);
4119def_access_ibp_counter(rc_resends);
4120def_access_ibp_counter(rnr_naks);
4121def_access_ibp_counter(other_naks);
4122def_access_ibp_counter(rc_timeouts);
4123def_access_ibp_counter(pkt_drops);
4124def_access_ibp_counter(dmawait);
4125def_access_ibp_counter(rc_seqnak);
4126def_access_ibp_counter(rc_dupreq);
4127def_access_ibp_counter(rdma_seq);
4128def_access_ibp_counter(unaligned);
4129def_access_ibp_counter(seq_naks);
4130def_access_ibp_counter(rc_crwaits);
4131
4132static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
4133[C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
4134[C_RX_LEN_ERR] = RXE32_DEV_CNTR_ELEM(RxLenErr, RCV_LENGTH_ERR_CNT, CNTR_SYNTH),
4135[C_RX_SHORT_ERR] = RXE32_DEV_CNTR_ELEM(RxShrErr, RCV_SHORT_ERR_CNT, CNTR_SYNTH),
4136[C_RX_ICRC_ERR] = RXE32_DEV_CNTR_ELEM(RxICrcErr, RCV_ICRC_ERR_CNT, CNTR_SYNTH),
4137[C_RX_EBP] = RXE32_DEV_CNTR_ELEM(RxEbpCnt, RCV_EBP_CNT, CNTR_SYNTH),
4138[C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
4139                        CNTR_NORMAL),
4140[C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
4141                        CNTR_NORMAL),
4142[C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
4143                        RCV_TID_FLOW_GEN_MISMATCH_CNT,
4144                        CNTR_NORMAL),
4145[C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4146                        CNTR_NORMAL),
4147[C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4148                        RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4149[C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4150                        CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4151[C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4152                        CNTR_NORMAL),
4153[C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4154                        CNTR_NORMAL),
4155[C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4156                        CNTR_NORMAL),
4157[C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4158                        CNTR_NORMAL),
4159[C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4160                        CNTR_NORMAL),
4161[C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4162                        CNTR_NORMAL),
4163[C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4164                        CCE_RCV_URGENT_INT_CNT, CNTR_NORMAL),
4165[C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4166                        CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4167[C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4168                              CNTR_SYNTH),
4169[C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
4170                            access_dc_rcv_err_cnt),
4171[C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4172                                 CNTR_SYNTH),
4173[C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4174                                  CNTR_SYNTH),
4175[C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4176                                  CNTR_SYNTH),
4177[C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4178                                   DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4179[C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4180                                  DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4181                                  CNTR_SYNTH),
4182[C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4183                                DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4184[C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4185                               CNTR_SYNTH),
4186[C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4187                              CNTR_SYNTH),
4188[C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4189                               CNTR_SYNTH),
4190[C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4191                                 CNTR_SYNTH),
4192[C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4193                                CNTR_SYNTH),
4194[C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4195                                CNTR_SYNTH),
4196[C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4197                               CNTR_SYNTH),
4198[C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4199                                 CNTR_SYNTH | CNTR_VL),
4200[C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4201                                CNTR_SYNTH | CNTR_VL),
4202[C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4203[C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4204                                 CNTR_SYNTH | CNTR_VL),
4205[C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4206[C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4207                                 CNTR_SYNTH | CNTR_VL),
4208[C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4209                              CNTR_SYNTH),
4210[C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4211                                 CNTR_SYNTH | CNTR_VL),
4212[C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4213                                CNTR_SYNTH),
4214[C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4215                                   CNTR_SYNTH | CNTR_VL),
4216[C_DC_TOTAL_CRC] =
4217        DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4218                         CNTR_SYNTH),
4219[C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4220                                  CNTR_SYNTH),
4221[C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4222                                  CNTR_SYNTH),
4223[C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4224                                  CNTR_SYNTH),
4225[C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4226                                  CNTR_SYNTH),
4227[C_DC_CRC_MULT_LN] =
4228        DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4229                         CNTR_SYNTH),
4230[C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4231                                    CNTR_SYNTH),
4232[C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4233                                    CNTR_SYNTH),
4234[C_DC_SEQ_CRC_CNT] =
4235        DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4236                         CNTR_SYNTH),
4237[C_DC_ESC0_ONLY_CNT] =
4238        DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4239                         CNTR_SYNTH),
4240[C_DC_ESC0_PLUS1_CNT] =
4241        DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4242                         CNTR_SYNTH),
4243[C_DC_ESC0_PLUS2_CNT] =
4244        DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4245                         CNTR_SYNTH),
4246[C_DC_REINIT_FROM_PEER_CNT] =
4247        DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4248                         CNTR_SYNTH),
4249[C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4250                                  CNTR_SYNTH),
4251[C_DC_MISC_FLG_CNT] =
4252        DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4253                         CNTR_SYNTH),
4254[C_DC_PRF_GOOD_LTP_CNT] =
4255        DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4256[C_DC_PRF_ACCEPTED_LTP_CNT] =
4257        DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4258                         CNTR_SYNTH),
4259[C_DC_PRF_RX_FLIT_CNT] =
4260        DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4261[C_DC_PRF_TX_FLIT_CNT] =
4262        DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4263[C_DC_PRF_CLK_CNTR] =
4264        DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4265[C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4266        DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4267[C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4268        DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4269                         CNTR_SYNTH),
4270[C_DC_PG_STS_TX_SBE_CNT] =
4271        DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4272[C_DC_PG_STS_TX_MBE_CNT] =
4273        DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4274                         CNTR_SYNTH),
4275[C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4276                            access_sw_cpu_intr),
4277[C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4278                            access_sw_cpu_rcv_limit),
4279[C_SW_CTX0_SEQ_DROP] = CNTR_ELEM("SeqDrop0", 0, 0, CNTR_NORMAL,
4280                            access_sw_ctx0_seq_drop),
4281[C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4282                            access_sw_vtx_wait),
4283[C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4284                            access_sw_pio_wait),
4285[C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4286                            access_sw_pio_drain),
4287[C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4288                            access_sw_kmem_wait),
4289[C_SW_TID_WAIT] = CNTR_ELEM("TidWait", 0, 0, CNTR_NORMAL,
4290                            hfi1_access_sw_tid_wait),
4291[C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4292                            access_sw_send_schedule),
4293[C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4294                                      SEND_DMA_DESC_FETCHED_CNT, 0,
4295                                      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4296                                      dev_access_u32_csr),
4297[C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4298                             CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4299                             access_sde_int_cnt),
4300[C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4301                             CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4302                             access_sde_err_cnt),
4303[C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4304                                  CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4305                                  access_sde_idle_int_cnt),
4306[C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4307                                      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4308                                      access_sde_progress_int_cnt),
4309/* MISC_ERR_STATUS */
4310[C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4311                                CNTR_NORMAL,
4312                                access_misc_pll_lock_fail_err_cnt),
4313[C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4314                                CNTR_NORMAL,
4315                                access_misc_mbist_fail_err_cnt),
4316[C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4317                                CNTR_NORMAL,
4318                                access_misc_invalid_eep_cmd_err_cnt),
4319[C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4320                                CNTR_NORMAL,
4321                                access_misc_efuse_done_parity_err_cnt),
4322[C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4323                                CNTR_NORMAL,
4324                                access_misc_efuse_write_err_cnt),
4325[C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4326                                0, CNTR_NORMAL,
4327                                access_misc_efuse_read_bad_addr_err_cnt),
4328[C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4329                                CNTR_NORMAL,
4330                                access_misc_efuse_csr_parity_err_cnt),
4331[C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4332                                CNTR_NORMAL,
4333                                access_misc_fw_auth_failed_err_cnt),
4334[C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4335                                CNTR_NORMAL,
4336                                access_misc_key_mismatch_err_cnt),
4337[C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4338                                CNTR_NORMAL,
4339                                access_misc_sbus_write_failed_err_cnt),
4340[C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4341                                CNTR_NORMAL,
4342                                access_misc_csr_write_bad_addr_err_cnt),
4343[C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4344                                CNTR_NORMAL,
4345                                access_misc_csr_read_bad_addr_err_cnt),
4346[C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4347                                CNTR_NORMAL,
4348                                access_misc_csr_parity_err_cnt),
4349/* CceErrStatus */
4350[C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4351                                CNTR_NORMAL,
4352                                access_sw_cce_err_status_aggregated_cnt),
4353[C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4354                                CNTR_NORMAL,
4355                                access_cce_msix_csr_parity_err_cnt),
4356[C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4357                                CNTR_NORMAL,
4358                                access_cce_int_map_unc_err_cnt),
4359[C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4360                                CNTR_NORMAL,
4361                                access_cce_int_map_cor_err_cnt),
4362[C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4363                                CNTR_NORMAL,
4364                                access_cce_msix_table_unc_err_cnt),
4365[C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4366                                CNTR_NORMAL,
4367                                access_cce_msix_table_cor_err_cnt),
4368[C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4369                                0, CNTR_NORMAL,
4370                                access_cce_rxdma_conv_fifo_parity_err_cnt),
4371[C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4372                                0, CNTR_NORMAL,
4373                                access_cce_rcpl_async_fifo_parity_err_cnt),
4374[C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4375                                CNTR_NORMAL,
4376                                access_cce_seg_write_bad_addr_err_cnt),
4377[C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4378                                CNTR_NORMAL,
4379                                access_cce_seg_read_bad_addr_err_cnt),
4380[C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4381                                CNTR_NORMAL,
4382                                access_la_triggered_cnt),
4383[C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4384                                CNTR_NORMAL,
4385                                access_cce_trgt_cpl_timeout_err_cnt),
4386[C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4387                                CNTR_NORMAL,
4388                                access_pcic_receive_parity_err_cnt),
4389[C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4390                                CNTR_NORMAL,
4391                                access_pcic_transmit_back_parity_err_cnt),
4392[C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4393                                0, CNTR_NORMAL,
4394                                access_pcic_transmit_front_parity_err_cnt),
4395[C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4396                                CNTR_NORMAL,
4397                                access_pcic_cpl_dat_q_unc_err_cnt),
4398[C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4399                                CNTR_NORMAL,
4400                                access_pcic_cpl_hd_q_unc_err_cnt),
4401[C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4402                                CNTR_NORMAL,
4403                                access_pcic_post_dat_q_unc_err_cnt),
4404[C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4405                                CNTR_NORMAL,
4406                                access_pcic_post_hd_q_unc_err_cnt),
4407[C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4408                                CNTR_NORMAL,
4409                                access_pcic_retry_sot_mem_unc_err_cnt),
4410[C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4411                                CNTR_NORMAL,
4412                                access_pcic_retry_mem_unc_err),
4413[C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4414                                CNTR_NORMAL,
4415                                access_pcic_n_post_dat_q_parity_err_cnt),
4416[C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4417                                CNTR_NORMAL,
4418                                access_pcic_n_post_h_q_parity_err_cnt),
4419[C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4420                                CNTR_NORMAL,
4421                                access_pcic_cpl_dat_q_cor_err_cnt),
4422[C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4423                                CNTR_NORMAL,
4424                                access_pcic_cpl_hd_q_cor_err_cnt),
4425[C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4426                                CNTR_NORMAL,
4427                                access_pcic_post_dat_q_cor_err_cnt),
4428[C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4429                                CNTR_NORMAL,
4430                                access_pcic_post_hd_q_cor_err_cnt),
4431[C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4432                                CNTR_NORMAL,
4433                                access_pcic_retry_sot_mem_cor_err_cnt),
4434[C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4435                                CNTR_NORMAL,
4436                                access_pcic_retry_mem_cor_err_cnt),
4437[C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4438                                "CceCli1AsyncFifoDbgParityError", 0, 0,
4439                                CNTR_NORMAL,
4440                                access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4441[C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4442                                "CceCli1AsyncFifoRxdmaParityError", 0, 0,
4443                                CNTR_NORMAL,
4444                                access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4445                                ),
4446[C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4447                        "CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4448                        CNTR_NORMAL,
4449                        access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4450[C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4451                        "CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4452                        CNTR_NORMAL,
4453                        access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4454[C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4455                        0, CNTR_NORMAL,
4456                        access_cce_cli2_async_fifo_parity_err_cnt),
4457[C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4458                        CNTR_NORMAL,
4459                        access_cce_csr_cfg_bus_parity_err_cnt),
4460[C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4461                        0, CNTR_NORMAL,
4462                        access_cce_cli0_async_fifo_parity_err_cnt),
4463[C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4464                        CNTR_NORMAL,
4465                        access_cce_rspd_data_parity_err_cnt),
4466[C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4467                        CNTR_NORMAL,
4468                        access_cce_trgt_access_err_cnt),
4469[C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4470                        0, CNTR_NORMAL,
4471                        access_cce_trgt_async_fifo_parity_err_cnt),
4472[C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4473                        CNTR_NORMAL,
4474                        access_cce_csr_write_bad_addr_err_cnt),
4475[C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4476                        CNTR_NORMAL,
4477                        access_cce_csr_read_bad_addr_err_cnt),
4478[C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4479                        CNTR_NORMAL,
4480                        access_ccs_csr_parity_err_cnt),
4481
4482/* RcvErrStatus */
4483[C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4484                        CNTR_NORMAL,
4485                        access_rx_csr_parity_err_cnt),
4486[C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4487                        CNTR_NORMAL,
4488                        access_rx_csr_write_bad_addr_err_cnt),
4489[C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4490                        CNTR_NORMAL,
4491                        access_rx_csr_read_bad_addr_err_cnt),
4492[C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4493                        CNTR_NORMAL,
4494                        access_rx_dma_csr_unc_err_cnt),
4495[C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4496                        CNTR_NORMAL,
4497                        access_rx_dma_dq_fsm_encoding_err_cnt),
4498[C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4499                        CNTR_NORMAL,
4500                        access_rx_dma_eq_fsm_encoding_err_cnt),
4501[C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4502                        CNTR_NORMAL,
4503                        access_rx_dma_csr_parity_err_cnt),
4504[C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4505                        CNTR_NORMAL,
4506                        access_rx_rbuf_data_cor_err_cnt),
4507[C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4508                        CNTR_NORMAL,
4509                        access_rx_rbuf_data_unc_err_cnt),
4510[C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4511                        CNTR_NORMAL,
4512                        access_rx_dma_data_fifo_rd_cor_err_cnt),
4513[C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4514                        CNTR_NORMAL,
4515                        access_rx_dma_data_fifo_rd_unc_err_cnt),
4516[C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4517                        CNTR_NORMAL,
4518                        access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4519[C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4520                        CNTR_NORMAL,
4521                        access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4522[C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4523                        CNTR_NORMAL,
4524                        access_rx_rbuf_desc_part2_cor_err_cnt),
4525[C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4526                        CNTR_NORMAL,
4527                        access_rx_rbuf_desc_part2_unc_err_cnt),
4528[C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4529                        CNTR_NORMAL,
4530                        access_rx_rbuf_desc_part1_cor_err_cnt),
4531[C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4532                        CNTR_NORMAL,
4533                        access_rx_rbuf_desc_part1_unc_err_cnt),
4534[C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4535                        CNTR_NORMAL,
4536                        access_rx_hq_intr_fsm_err_cnt),
4537[C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4538                        CNTR_NORMAL,
4539                        access_rx_hq_intr_csr_parity_err_cnt),
4540[C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4541                        CNTR_NORMAL,
4542                        access_rx_lookup_csr_parity_err_cnt),
4543[C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4544                        CNTR_NORMAL,
4545                        access_rx_lookup_rcv_array_cor_err_cnt),
4546[C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4547                        CNTR_NORMAL,
4548                        access_rx_lookup_rcv_array_unc_err_cnt),
4549[C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4550                        0, CNTR_NORMAL,
4551                        access_rx_lookup_des_part2_parity_err_cnt),
4552[C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4553                        0, CNTR_NORMAL,
4554                        access_rx_lookup_des_part1_unc_cor_err_cnt),
4555[C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4556                        CNTR_NORMAL,
4557                        access_rx_lookup_des_part1_unc_err_cnt),
4558[C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4559                        CNTR_NORMAL,
4560                        access_rx_rbuf_next_free_buf_cor_err_cnt),
4561[C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4562                        CNTR_NORMAL,
4563                        access_rx_rbuf_next_free_buf_unc_err_cnt),
4564[C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4565                        "RxRbufFlInitWrAddrParityErr", 0, 0,
4566                        CNTR_NORMAL,
4567                        access_rbuf_fl_init_wr_addr_parity_err_cnt),
4568[C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4569                        0, CNTR_NORMAL,
4570                        access_rx_rbuf_fl_initdone_parity_err_cnt),
4571[C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4572                        0, CNTR_NORMAL,
4573                        access_rx_rbuf_fl_write_addr_parity_err_cnt),
4574[C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4575                        CNTR_NORMAL,
4576                        access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4577[C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4578                        CNTR_NORMAL,
4579                        access_rx_rbuf_empty_err_cnt),
4580[C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4581                        CNTR_NORMAL,
4582                        access_rx_rbuf_full_err_cnt),
4583[C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4584                        CNTR_NORMAL,
4585                        access_rbuf_bad_lookup_err_cnt),
4586[C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4587                        CNTR_NORMAL,
4588                        access_rbuf_ctx_id_parity_err_cnt),
4589[C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4590                        CNTR_NORMAL,
4591                        access_rbuf_csr_qeopdw_parity_err_cnt),
4592[C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4593                        "RxRbufCsrQNumOfPktParityErr", 0, 0,
4594                        CNTR_NORMAL,
4595                        access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4596[C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4597                        "RxRbufCsrQTlPtrParityErr", 0, 0,
4598                        CNTR_NORMAL,
4599                        access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4600[C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4601                        0, CNTR_NORMAL,
4602                        access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4603[C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4604                        0, CNTR_NORMAL,
4605                        access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4606[C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4607                        0, 0, CNTR_NORMAL,
4608                        access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4609[C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4610                        0, CNTR_NORMAL,
4611                        access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4612[C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4613                        "RxRbufCsrQHeadBufNumParityErr", 0, 0,
4614                        CNTR_NORMAL,
4615                        access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4616[C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4617                        0, CNTR_NORMAL,
4618                        access_rx_rbuf_block_list_read_cor_err_cnt),
4619[C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4620                        0, CNTR_NORMAL,
4621                        access_rx_rbuf_block_list_read_unc_err_cnt),
4622[C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4623                        CNTR_NORMAL,
4624                        access_rx_rbuf_lookup_des_cor_err_cnt),
4625[C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4626                        CNTR_NORMAL,
4627                        access_rx_rbuf_lookup_des_unc_err_cnt),
4628[C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4629                        "RxRbufLookupDesRegUncCorErr", 0, 0,
4630                        CNTR_NORMAL,
4631                        access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4632[C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4633                        CNTR_NORMAL,
4634                        access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4635[C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4636                        CNTR_NORMAL,
4637                        access_rx_rbuf_free_list_cor_err_cnt),
4638[C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4639                        CNTR_NORMAL,
4640                        access_rx_rbuf_free_list_unc_err_cnt),
4641[C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4642                        CNTR_NORMAL,
4643                        access_rx_rcv_fsm_encoding_err_cnt),
4644[C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4645                        CNTR_NORMAL,
4646                        access_rx_dma_flag_cor_err_cnt),
4647[C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4648                        CNTR_NORMAL,
4649                        access_rx_dma_flag_unc_err_cnt),
4650[C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4651                        CNTR_NORMAL,
4652                        access_rx_dc_sop_eop_parity_err_cnt),
4653[C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4654                        CNTR_NORMAL,
4655                        access_rx_rcv_csr_parity_err_cnt),
4656[C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4657                        CNTR_NORMAL,
4658                        access_rx_rcv_qp_map_table_cor_err_cnt),
4659[C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4660                        CNTR_NORMAL,
4661                        access_rx_rcv_qp_map_table_unc_err_cnt),
4662[C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4663                        CNTR_NORMAL,
4664                        access_rx_rcv_data_cor_err_cnt),
4665[C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4666                        CNTR_NORMAL,
4667                        access_rx_rcv_data_unc_err_cnt),
4668[C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4669                        CNTR_NORMAL,
4670                        access_rx_rcv_hdr_cor_err_cnt),
4671[C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4672                        CNTR_NORMAL,
4673                        access_rx_rcv_hdr_unc_err_cnt),
4674[C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4675                        CNTR_NORMAL,
4676                        access_rx_dc_intf_parity_err_cnt),
4677[C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4678                        CNTR_NORMAL,
4679                        access_rx_dma_csr_cor_err_cnt),
4680/* SendPioErrStatus */
4681[C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4682                        CNTR_NORMAL,
4683                        access_pio_pec_sop_head_parity_err_cnt),
4684[C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4685                        CNTR_NORMAL,
4686                        access_pio_pcc_sop_head_parity_err_cnt),
4687[C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4688                        0, 0, CNTR_NORMAL,
4689                        access_pio_last_returned_cnt_parity_err_cnt),
4690[C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4691                        0, CNTR_NORMAL,
4692                        access_pio_current_free_cnt_parity_err_cnt),
4693[C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4694                        CNTR_NORMAL,
4695                        access_pio_reserved_31_err_cnt),
4696[C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4697                        CNTR_NORMAL,
4698                        access_pio_reserved_30_err_cnt),
4699[C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4700                        CNTR_NORMAL,
4701                        access_pio_ppmc_sop_len_err_cnt),
4702[C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4703                        CNTR_NORMAL,
4704                        access_pio_ppmc_bqc_mem_parity_err_cnt),
4705[C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4706                        CNTR_NORMAL,
4707                        access_pio_vl_fifo_parity_err_cnt),
4708[C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4709                        CNTR_NORMAL,
4710                        access_pio_vlf_sop_parity_err_cnt),
4711[C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4712                        CNTR_NORMAL,
4713                        access_pio_vlf_v1_len_parity_err_cnt),
4714[C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4715                        CNTR_NORMAL,
4716                        access_pio_block_qw_count_parity_err_cnt),
4717[C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4718                        CNTR_NORMAL,
4719                        access_pio_write_qw_valid_parity_err_cnt),
4720[C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4721                        CNTR_NORMAL,
4722                        access_pio_state_machine_err_cnt),
4723[C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4724                        CNTR_NORMAL,
4725                        access_pio_write_data_parity_err_cnt),
4726[C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4727                        CNTR_NORMAL,
4728                        access_pio_host_addr_mem_cor_err_cnt),
4729[C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4730                        CNTR_NORMAL,
4731                        access_pio_host_addr_mem_unc_err_cnt),
4732[C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4733                        CNTR_NORMAL,
4734                        access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4735[C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4736                        CNTR_NORMAL,
4737                        access_pio_init_sm_in_err_cnt),
4738[C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4739                        CNTR_NORMAL,
4740                        access_pio_ppmc_pbl_fifo_err_cnt),
4741[C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4742                        0, CNTR_NORMAL,
4743                        access_pio_credit_ret_fifo_parity_err_cnt),
4744[C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4745                        CNTR_NORMAL,
4746                        access_pio_v1_len_mem_bank1_cor_err_cnt),
4747[C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4748                        CNTR_NORMAL,
4749                        access_pio_v1_len_mem_bank0_cor_err_cnt),
4750[C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4751                        CNTR_NORMAL,
4752                        access_pio_v1_len_mem_bank1_unc_err_cnt),
4753[C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4754                        CNTR_NORMAL,
4755                        access_pio_v1_len_mem_bank0_unc_err_cnt),
4756[C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4757                        CNTR_NORMAL,
4758                        access_pio_sm_pkt_reset_parity_err_cnt),
4759[C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4760                        CNTR_NORMAL,
4761                        access_pio_pkt_evict_fifo_parity_err_cnt),
4762[C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4763                        "PioSbrdctrlCrrelFifoParityErr", 0, 0,
4764                        CNTR_NORMAL,
4765                        access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4766[C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4767                        CNTR_NORMAL,
4768                        access_pio_sbrdctl_crrel_parity_err_cnt),
4769[C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4770                        CNTR_NORMAL,
4771                        access_pio_pec_fifo_parity_err_cnt),
4772[C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4773                        CNTR_NORMAL,
4774                        access_pio_pcc_fifo_parity_err_cnt),
4775[C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4776                        CNTR_NORMAL,
4777                        access_pio_sb_mem_fifo1_err_cnt),
4778[C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4779                        CNTR_NORMAL,
4780                        access_pio_sb_mem_fifo0_err_cnt),
4781[C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4782                        CNTR_NORMAL,
4783                        access_pio_csr_parity_err_cnt),
4784[C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4785                        CNTR_NORMAL,
4786                        access_pio_write_addr_parity_err_cnt),
4787[C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4788                        CNTR_NORMAL,
4789                        access_pio_write_bad_ctxt_err_cnt),
4790/* SendDmaErrStatus */
4791[C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4792                        0, CNTR_NORMAL,
4793                        access_sdma_pcie_req_tracking_cor_err_cnt),
4794[C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4795                        0, CNTR_NORMAL,
4796                        access_sdma_pcie_req_tracking_unc_err_cnt),
4797[C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4798                        CNTR_NORMAL,
4799                        access_sdma_csr_parity_err_cnt),
4800[C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4801                        CNTR_NORMAL,
4802                        access_sdma_rpy_tag_err_cnt),
4803/* SendEgressErrStatus */
4804[C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4805                        CNTR_NORMAL,
4806                        access_tx_read_pio_memory_csr_unc_err_cnt),
4807[C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4808                        0, CNTR_NORMAL,
4809                        access_tx_read_sdma_memory_csr_err_cnt),
4810[C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4811                        CNTR_NORMAL,
4812                        access_tx_egress_fifo_cor_err_cnt),
4813[C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4814                        CNTR_NORMAL,
4815                        access_tx_read_pio_memory_cor_err_cnt),
4816[C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4817                        CNTR_NORMAL,
4818                        access_tx_read_sdma_memory_cor_err_cnt),
4819[C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4820                        CNTR_NORMAL,
4821                        access_tx_sb_hdr_cor_err_cnt),
4822[C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4823                        CNTR_NORMAL,
4824                        access_tx_credit_overrun_err_cnt),
4825[C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4826                        CNTR_NORMAL,
4827                        access_tx_launch_fifo8_cor_err_cnt),
4828[C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4829                        CNTR_NORMAL,
4830                        access_tx_launch_fifo7_cor_err_cnt),
4831[C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4832                        CNTR_NORMAL,
4833                        access_tx_launch_fifo6_cor_err_cnt),
4834[C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4835                        CNTR_NORMAL,
4836                        access_tx_launch_fifo5_cor_err_cnt),
4837[C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4838                        CNTR_NORMAL,
4839                        access_tx_launch_fifo4_cor_err_cnt),
4840[C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4841                        CNTR_NORMAL,
4842                        access_tx_launch_fifo3_cor_err_cnt),
4843[C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4844                        CNTR_NORMAL,
4845                        access_tx_launch_fifo2_cor_err_cnt),
4846[C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4847                        CNTR_NORMAL,
4848                        access_tx_launch_fifo1_cor_err_cnt),
4849[C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4850                        CNTR_NORMAL,
4851                        access_tx_launch_fifo0_cor_err_cnt),
4852[C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4853                        CNTR_NORMAL,
4854                        access_tx_credit_return_vl_err_cnt),
4855[C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4856                        CNTR_NORMAL,
4857                        access_tx_hcrc_insertion_err_cnt),
4858[C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4859                        CNTR_NORMAL,
4860                        access_tx_egress_fifo_unc_err_cnt),
4861[C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4862                        CNTR_NORMAL,
4863                        access_tx_read_pio_memory_unc_err_cnt),
4864[C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4865                        CNTR_NORMAL,
4866                        access_tx_read_sdma_memory_unc_err_cnt),
4867[C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4868                        CNTR_NORMAL,
4869                        access_tx_sb_hdr_unc_err_cnt),
4870[C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4871                        CNTR_NORMAL,
4872                        access_tx_credit_return_partiy_err_cnt),
4873[C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4874                        0, 0, CNTR_NORMAL,
4875                        access_tx_launch_fifo8_unc_or_parity_err_cnt),
4876[C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4877                        0, 0, CNTR_NORMAL,
4878                        access_tx_launch_fifo7_unc_or_parity_err_cnt),
4879[C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4880                        0, 0, CNTR_NORMAL,
4881                        access_tx_launch_fifo6_unc_or_parity_err_cnt),
4882[C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4883                        0, 0, CNTR_NORMAL,
4884                        access_tx_launch_fifo5_unc_or_parity_err_cnt),
4885[C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4886                        0, 0, CNTR_NORMAL,
4887                        access_tx_launch_fifo4_unc_or_parity_err_cnt),
4888[C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4889                        0, 0, CNTR_NORMAL,
4890                        access_tx_launch_fifo3_unc_or_parity_err_cnt),
4891[C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4892                        0, 0, CNTR_NORMAL,
4893                        access_tx_launch_fifo2_unc_or_parity_err_cnt),
4894[C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4895                        0, 0, CNTR_NORMAL,
4896                        access_tx_launch_fifo1_unc_or_parity_err_cnt),
4897[C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4898                        0, 0, CNTR_NORMAL,
4899                        access_tx_launch_fifo0_unc_or_parity_err_cnt),
4900[C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4901                        0, 0, CNTR_NORMAL,
4902                        access_tx_sdma15_disallowed_packet_err_cnt),
4903[C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4904                        0, 0, CNTR_NORMAL,
4905                        access_tx_sdma14_disallowed_packet_err_cnt),
4906[C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4907                        0, 0, CNTR_NORMAL,
4908                        access_tx_sdma13_disallowed_packet_err_cnt),
4909[C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4910                        0, 0, CNTR_NORMAL,
4911                        access_tx_sdma12_disallowed_packet_err_cnt),
4912[C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4913                        0, 0, CNTR_NORMAL,
4914                        access_tx_sdma11_disallowed_packet_err_cnt),
4915[C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4916                        0, 0, CNTR_NORMAL,
4917                        access_tx_sdma10_disallowed_packet_err_cnt),
4918[C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4919                        0, 0, CNTR_NORMAL,
4920                        access_tx_sdma9_disallowed_packet_err_cnt),
4921[C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4922                        0, 0, CNTR_NORMAL,
4923                        access_tx_sdma8_disallowed_packet_err_cnt),
4924[C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4925                        0, 0, CNTR_NORMAL,
4926                        access_tx_sdma7_disallowed_packet_err_cnt),
4927[C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4928                        0, 0, CNTR_NORMAL,
4929                        access_tx_sdma6_disallowed_packet_err_cnt),
4930[C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4931                        0, 0, CNTR_NORMAL,
4932                        access_tx_sdma5_disallowed_packet_err_cnt),
4933[C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4934                        0, 0, CNTR_NORMAL,
4935                        access_tx_sdma4_disallowed_packet_err_cnt),
4936[C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4937                        0, 0, CNTR_NORMAL,
4938                        access_tx_sdma3_disallowed_packet_err_cnt),
4939[C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4940                        0, 0, CNTR_NORMAL,
4941                        access_tx_sdma2_disallowed_packet_err_cnt),
4942[C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4943                        0, 0, CNTR_NORMAL,
4944                        access_tx_sdma1_disallowed_packet_err_cnt),
4945[C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4946                        0, 0, CNTR_NORMAL,
4947                        access_tx_sdma0_disallowed_packet_err_cnt),
4948[C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4949                        CNTR_NORMAL,
4950                        access_tx_config_parity_err_cnt),
4951[C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4952                        CNTR_NORMAL,
4953                        access_tx_sbrd_ctl_csr_parity_err_cnt),
4954[C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4955                        CNTR_NORMAL,
4956                        access_tx_launch_csr_parity_err_cnt),
4957[C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4958                        CNTR_NORMAL,
4959                        access_tx_illegal_vl_err_cnt),
4960[C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4961                        "TxSbrdCtlStateMachineParityErr", 0, 0,
4962                        CNTR_NORMAL,
4963                        access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4964[C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4965                        CNTR_NORMAL,
4966                        access_egress_reserved_10_err_cnt),
4967[C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4968                        CNTR_NORMAL,
4969                        access_egress_reserved_9_err_cnt),
4970[C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4971                        0, 0, CNTR_NORMAL,
4972                        access_tx_sdma_launch_intf_parity_err_cnt),
4973[C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4974                        CNTR_NORMAL,
4975                        access_tx_pio_launch_intf_parity_err_cnt),
4976[C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4977                        CNTR_NORMAL,
4978                        access_egress_reserved_6_err_cnt),
4979[C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4980                        CNTR_NORMAL,
4981                        access_tx_incorrect_link_state_err_cnt),
4982[C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4983                        CNTR_NORMAL,
4984                        access_tx_linkdown_err_cnt),
4985[C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4986                        "EgressFifoUnderrunOrParityErr", 0, 0,
4987                        CNTR_NORMAL,
4988                        access_tx_egress_fifi_underrun_or_parity_err_cnt),
4989[C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4990                        CNTR_NORMAL,
4991                        access_egress_reserved_2_err_cnt),
4992[C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4993                        CNTR_NORMAL,
4994                        access_tx_pkt_integrity_mem_unc_err_cnt),
4995[C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4996                        CNTR_NORMAL,
4997                        access_tx_pkt_integrity_mem_cor_err_cnt),
4998/* SendErrStatus */
4999[C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
5000                        CNTR_NORMAL,
5001                        access_send_csr_write_bad_addr_err_cnt),
5002[C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
5003                        CNTR_NORMAL,
5004                        access_send_csr_read_bad_addr_err_cnt),
5005[C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
5006                        CNTR_NORMAL,
5007                        access_send_csr_parity_cnt),
5008/* SendCtxtErrStatus */
5009[C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
5010                        CNTR_NORMAL,
5011                        access_pio_write_out_of_bounds_err_cnt),
5012[C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
5013                        CNTR_NORMAL,
5014                        access_pio_write_overflow_err_cnt),
5015[C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
5016                        0, 0, CNTR_NORMAL,
5017                        access_pio_write_crosses_boundary_err_cnt),
5018[C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
5019                        CNTR_NORMAL,
5020                        access_pio_disallowed_packet_err_cnt),
5021[C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
5022                        CNTR_NORMAL,
5023                        access_pio_inconsistent_sop_err_cnt),
5024/* SendDmaEngErrStatus */
5025[C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
5026                        0, 0, CNTR_NORMAL,
5027                        access_sdma_header_request_fifo_cor_err_cnt),
5028[C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
5029                        CNTR_NORMAL,
5030                        access_sdma_header_storage_cor_err_cnt),
5031[C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
5032                        CNTR_NORMAL,
5033                        access_sdma_packet_tracking_cor_err_cnt),
5034[C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
5035                        CNTR_NORMAL,
5036                        access_sdma_assembly_cor_err_cnt),
5037[C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
5038                        CNTR_NORMAL,
5039                        access_sdma_desc_table_cor_err_cnt),
5040[C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
5041                        0, 0, CNTR_NORMAL,
5042                        access_sdma_header_request_fifo_unc_err_cnt),
5043[C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
5044                        CNTR_NORMAL,
5045                        access_sdma_header_storage_unc_err_cnt),
5046[C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
5047                        CNTR_NORMAL,
5048                        access_sdma_packet_tracking_unc_err_cnt),
5049[C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
5050                        CNTR_NORMAL,
5051                        access_sdma_assembly_unc_err_cnt),
5052[C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
5053                        CNTR_NORMAL,
5054                        access_sdma_desc_table_unc_err_cnt),
5055[C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
5056                        CNTR_NORMAL,
5057                        access_sdma_timeout_err_cnt),
5058[C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
5059                        CNTR_NORMAL,
5060                        access_sdma_header_length_err_cnt),
5061[C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
5062                        CNTR_NORMAL,
5063                        access_sdma_header_address_err_cnt),
5064[C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
5065                        CNTR_NORMAL,
5066                        access_sdma_header_select_err_cnt),
5067[C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
5068                        CNTR_NORMAL,
5069                        access_sdma_reserved_9_err_cnt),
5070[C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
5071                        CNTR_NORMAL,
5072                        access_sdma_packet_desc_overflow_err_cnt),
5073[C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
5074                        CNTR_NORMAL,
5075                        access_sdma_length_mismatch_err_cnt),
5076[C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
5077                        CNTR_NORMAL,
5078                        access_sdma_halt_err_cnt),
5079[C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
5080                        CNTR_NORMAL,
5081                        access_sdma_mem_read_err_cnt),
5082[C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
5083                        CNTR_NORMAL,
5084                        access_sdma_first_desc_err_cnt),
5085[C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
5086                        CNTR_NORMAL,
5087                        access_sdma_tail_out_of_bounds_err_cnt),
5088[C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
5089                        CNTR_NORMAL,
5090                        access_sdma_too_long_err_cnt),
5091[C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
5092                        CNTR_NORMAL,
5093                        access_sdma_gen_mismatch_err_cnt),
5094[C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
5095                        CNTR_NORMAL,
5096                        access_sdma_wrong_dw_err_cnt),
5097};
5098
5099static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
5100[C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
5101                        CNTR_NORMAL),
5102[C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
5103                        CNTR_NORMAL),
5104[C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
5105                        CNTR_NORMAL),
5106[C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
5107                        CNTR_NORMAL),
5108[C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
5109                        CNTR_NORMAL),
5110[C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
5111                        CNTR_NORMAL),
5112[C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
5113                        CNTR_NORMAL),
5114[C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
5115[C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
5116[C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
5117[C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
5118                                      CNTR_SYNTH | CNTR_VL),
5119[C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
5120                                     CNTR_SYNTH | CNTR_VL),
5121[C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
5122                                      CNTR_SYNTH | CNTR_VL),
5123[C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
5124[C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
5125[C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5126                             access_sw_link_dn_cnt),
5127[C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5128                           access_sw_link_up_cnt),
5129[C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
5130                                 access_sw_unknown_frame_cnt),
5131[C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5132                             access_sw_xmit_discards),
5133[C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
5134                                CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
5135                                access_sw_xmit_discards),
5136[C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
5137                                 access_xmit_constraint_errs),
5138[C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
5139                                access_rcv_constraint_errs),
5140[C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
5141[C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
5142[C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
5143[C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
5144[C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
5145[C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
5146[C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
5147[C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
5148[C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
5149[C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5150[C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5151[C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
5152[C_SW_IBP_RC_CRWAITS] = SW_IBP_CNTR(RcCrWait, rc_crwaits),
5153[C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5154                               access_sw_cpu_rc_acks),
5155[C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
5156                                access_sw_cpu_rc_qacks),
5157[C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5158                                       access_sw_cpu_rc_delayed_comp),
5159[OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5160[OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5161[OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5162[OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5163[OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5164[OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5165[OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5166[OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5167[OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5168[OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5169[OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5170[OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5171[OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5172[OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5173[OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5174[OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5175[OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5176[OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5177[OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5178[OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5179[OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5180[OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5181[OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5182[OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5183[OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5184[OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5185[OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5186[OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5187[OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5188[OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5189[OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5190[OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5191[OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5192[OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5193[OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5194[OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5195[OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5196[OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5197[OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5198[OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5199[OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5200[OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5201[OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5202[OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5203[OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5204[OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5205[OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5206[OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5207[OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5208[OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5209[OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5210[OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5211[OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5212[OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5213[OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5214[OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5215[OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5216[OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5217[OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5218[OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5219[OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5220[OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5221[OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5222[OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5223[OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5224[OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5225[OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5226[OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5227[OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5228[OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5229[OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5230[OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5231[OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5232[OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5233[OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5234[OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5235[OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5236[OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5237[OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5238[OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5239};
5240
5241/* ======================================================================== */
5242
5243/* return true if this is chip revision revision a */
5244int is_ax(struct hfi1_devdata *dd)
5245{
5246        u8 chip_rev_minor =
5247                dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5248                        & CCE_REVISION_CHIP_REV_MINOR_MASK;
5249        return (chip_rev_minor & 0xf0) == 0;
5250}
5251
5252/* return true if this is chip revision revision b */
5253int is_bx(struct hfi1_devdata *dd)
5254{
5255        u8 chip_rev_minor =
5256                dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5257                        & CCE_REVISION_CHIP_REV_MINOR_MASK;
5258        return (chip_rev_minor & 0xF0) == 0x10;
5259}
5260
5261/* return true is kernel urg disabled for rcd */
5262bool is_urg_masked(struct hfi1_ctxtdata *rcd)
5263{
5264        u64 mask;
5265        u32 is = IS_RCVURGENT_START + rcd->ctxt;
5266        u8 bit = is % 64;
5267
5268        mask = read_csr(rcd->dd, CCE_INT_MASK + (8 * (is / 64)));
5269        return !(mask & BIT_ULL(bit));
5270}
5271
5272/*
5273 * Append string s to buffer buf.  Arguments curp and len are the current
5274 * position and remaining length, respectively.
5275 *
5276 * return 0 on success, 1 on out of room
5277 */
5278static int append_str(char *buf, char **curp, int *lenp, const char *s)
5279{
5280        char *p = *curp;
5281        int len = *lenp;
5282        int result = 0; /* success */
5283        char c;
5284
5285        /* add a comma, if first in the buffer */
5286        if (p != buf) {
5287                if (len == 0) {
5288                        result = 1; /* out of room */
5289                        goto done;
5290                }
5291                *p++ = ',';
5292                len--;
5293        }
5294
5295        /* copy the string */
5296        while ((c = *s++) != 0) {
5297                if (len == 0) {
5298                        result = 1; /* out of room */
5299                        goto done;
5300                }
5301                *p++ = c;
5302                len--;
5303        }
5304
5305done:
5306        /* write return values */
5307        *curp = p;
5308        *lenp = len;
5309
5310        return result;
5311}
5312
5313/*
5314 * Using the given flag table, print a comma separated string into
5315 * the buffer.  End in '*' if the buffer is too short.
5316 */
5317static char *flag_string(char *buf, int buf_len, u64 flags,
5318                         struct flag_table *table, int table_size)
5319{
5320        char extra[32];
5321        char *p = buf;
5322        int len = buf_len;
5323        int no_room = 0;
5324        int i;
5325
5326        /* make sure there is at least 2 so we can form "*" */
5327        if (len < 2)
5328                return "";
5329
5330        len--;  /* leave room for a nul */
5331        for (i = 0; i < table_size; i++) {
5332                if (flags & table[i].flag) {
5333                        no_room = append_str(buf, &p, &len, table[i].str);
5334                        if (no_room)
5335                                break;
5336                        flags &= ~table[i].flag;
5337                }
5338        }
5339
5340        /* any undocumented bits left? */
5341        if (!no_room && flags) {
5342                snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5343                no_room = append_str(buf, &p, &len, extra);
5344        }
5345
5346        /* add * if ran out of room */
5347        if (no_room) {
5348                /* may need to back up to add space for a '*' */
5349                if (len == 0)
5350                        --p;
5351                *p++ = '*';
5352        }
5353
5354        /* add final nul - space already allocated above */
5355        *p = 0;
5356        return buf;
5357}
5358
5359/* first 8 CCE error interrupt source names */
5360static const char * const cce_misc_names[] = {
5361        "CceErrInt",            /* 0 */
5362        "RxeErrInt",            /* 1 */
5363        "MiscErrInt",           /* 2 */
5364        "Reserved3",            /* 3 */
5365        "PioErrInt",            /* 4 */
5366        "SDmaErrInt",           /* 5 */
5367        "EgressErrInt",         /* 6 */
5368        "TxeErrInt"             /* 7 */
5369};
5370
5371/*
5372 * Return the miscellaneous error interrupt name.
5373 */
5374static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5375{
5376        if (source < ARRAY_SIZE(cce_misc_names))
5377                strncpy(buf, cce_misc_names[source], bsize);
5378        else
5379                snprintf(buf, bsize, "Reserved%u",
5380                         source + IS_GENERAL_ERR_START);
5381
5382        return buf;
5383}
5384
5385/*
5386 * Return the SDMA engine error interrupt name.
5387 */
5388static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5389{
5390        snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5391        return buf;
5392}
5393
5394/*
5395 * Return the send context error interrupt name.
5396 */
5397static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5398{
5399        snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5400        return buf;
5401}
5402
5403static const char * const various_names[] = {
5404        "PbcInt",
5405        "GpioAssertInt",
5406        "Qsfp1Int",
5407        "Qsfp2Int",
5408        "TCritInt"
5409};
5410
5411/*
5412 * Return the various interrupt name.
5413 */
5414static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5415{
5416        if (source < ARRAY_SIZE(various_names))
5417                strncpy(buf, various_names[source], bsize);
5418        else
5419                snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
5420        return buf;
5421}
5422
5423/*
5424 * Return the DC interrupt name.
5425 */
5426static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5427{
5428        static const char * const dc_int_names[] = {
5429                "common",
5430                "lcb",
5431                "8051",
5432                "lbm"   /* local block merge */
5433        };
5434
5435        if (source < ARRAY_SIZE(dc_int_names))
5436                snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5437        else
5438                snprintf(buf, bsize, "DCInt%u", source);
5439        return buf;
5440}
5441
5442static const char * const sdma_int_names[] = {
5443        "SDmaInt",
5444        "SdmaIdleInt",
5445        "SdmaProgressInt",
5446};
5447
5448/*
5449 * Return the SDMA engine interrupt name.
5450 */
5451static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5452{
5453        /* what interrupt */
5454        unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
5455        /* which engine */
5456        unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5457
5458        if (likely(what < 3))
5459                snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5460        else
5461                snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5462        return buf;
5463}
5464
5465/*
5466 * Return the receive available interrupt name.
5467 */
5468static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5469{
5470        snprintf(buf, bsize, "RcvAvailInt%u", source);
5471        return buf;
5472}
5473
5474/*
5475 * Return the receive urgent interrupt name.
5476 */
5477static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5478{
5479        snprintf(buf, bsize, "RcvUrgentInt%u", source);
5480        return buf;
5481}
5482
5483/*
5484 * Return the send credit interrupt name.
5485 */
5486static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5487{
5488        snprintf(buf, bsize, "SendCreditInt%u", source);
5489        return buf;
5490}
5491
5492/*
5493 * Return the reserved interrupt name.
5494 */
5495static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5496{
5497        snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5498        return buf;
5499}
5500
5501static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5502{
5503        return flag_string(buf, buf_len, flags,
5504                           cce_err_status_flags,
5505                           ARRAY_SIZE(cce_err_status_flags));
5506}
5507
5508static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5509{
5510        return flag_string(buf, buf_len, flags,
5511                           rxe_err_status_flags,
5512                           ARRAY_SIZE(rxe_err_status_flags));
5513}
5514
5515static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5516{
5517        return flag_string(buf, buf_len, flags, misc_err_status_flags,
5518                           ARRAY_SIZE(misc_err_status_flags));
5519}
5520
5521static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5522{
5523        return flag_string(buf, buf_len, flags,
5524                           pio_err_status_flags,
5525                           ARRAY_SIZE(pio_err_status_flags));
5526}
5527
5528static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5529{
5530        return flag_string(buf, buf_len, flags,
5531                           sdma_err_status_flags,
5532                           ARRAY_SIZE(sdma_err_status_flags));
5533}
5534
5535static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5536{
5537        return flag_string(buf, buf_len, flags,
5538                           egress_err_status_flags,
5539                           ARRAY_SIZE(egress_err_status_flags));
5540}
5541
5542static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5543{
5544        return flag_string(buf, buf_len, flags,
5545                           egress_err_info_flags,
5546                           ARRAY_SIZE(egress_err_info_flags));
5547}
5548
5549static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5550{
5551        return flag_string(buf, buf_len, flags,
5552                           send_err_status_flags,
5553                           ARRAY_SIZE(send_err_status_flags));
5554}
5555
5556static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5557{
5558        char buf[96];
5559        int i = 0;
5560
5561        /*
5562         * For most these errors, there is nothing that can be done except
5563         * report or record it.
5564         */
5565        dd_dev_info(dd, "CCE Error: %s\n",
5566                    cce_err_status_string(buf, sizeof(buf), reg));
5567
5568        if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5569            is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
5570                /* this error requires a manual drop into SPC freeze mode */
5571                /* then a fix up */
5572                start_freeze_handling(dd->pport, FREEZE_SELF);
5573        }
5574
5575        for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5576                if (reg & (1ull << i)) {
5577                        incr_cntr64(&dd->cce_err_status_cnt[i]);
5578                        /* maintain a counter over all cce_err_status errors */
5579                        incr_cntr64(&dd->sw_cce_err_status_aggregate);
5580                }
5581        }
5582}
5583
5584/*
5585 * Check counters for receive errors that do not have an interrupt
5586 * associated with them.
5587 */
5588#define RCVERR_CHECK_TIME 10
5589static void update_rcverr_timer(struct timer_list *t)
5590{
5591        struct hfi1_devdata *dd = from_timer(dd, t, rcverr_timer);
5592        struct hfi1_pportdata *ppd = dd->pport;
5593        u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5594
5595        if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5596            ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5597                dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5598                set_link_down_reason(
5599                ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5600                OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5601                queue_work(ppd->link_wq, &ppd->link_bounce_work);
5602        }
5603        dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
5604
5605        mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5606}
5607
5608static int init_rcverr(struct hfi1_devdata *dd)
5609{
5610        timer_setup(&dd->rcverr_timer, update_rcverr_timer, 0);
5611        /* Assume the hardware counter has been reset */
5612        dd->rcv_ovfl_cnt = 0;
5613        return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5614}
5615
5616static void free_rcverr(struct hfi1_devdata *dd)
5617{
5618        if (dd->rcverr_timer.function)
5619                del_timer_sync(&dd->rcverr_timer);
5620}
5621
5622static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5623{
5624        char buf[96];
5625        int i = 0;
5626
5627        dd_dev_info(dd, "Receive Error: %s\n",
5628                    rxe_err_status_string(buf, sizeof(buf), reg));
5629
5630        if (reg & ALL_RXE_FREEZE_ERR) {
5631                int flags = 0;
5632
5633                /*
5634                 * Freeze mode recovery is disabled for the errors
5635                 * in RXE_FREEZE_ABORT_MASK
5636                 */
5637                if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
5638                        flags = FREEZE_ABORT;
5639
5640                start_freeze_handling(dd->pport, flags);
5641        }
5642
5643        for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5644                if (reg & (1ull << i))
5645                        incr_cntr64(&dd->rcv_err_status_cnt[i]);
5646        }
5647}
5648
5649static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5650{
5651        char buf[96];
5652        int i = 0;
5653
5654        dd_dev_info(dd, "Misc Error: %s",
5655                    misc_err_status_string(buf, sizeof(buf), reg));
5656        for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5657                if (reg & (1ull << i))
5658                        incr_cntr64(&dd->misc_err_status_cnt[i]);
5659        }
5660}
5661
5662static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5663{
5664        char buf[96];
5665        int i = 0;
5666
5667        dd_dev_info(dd, "PIO Error: %s\n",
5668                    pio_err_status_string(buf, sizeof(buf), reg));
5669
5670        if (reg & ALL_PIO_FREEZE_ERR)
5671                start_freeze_handling(dd->pport, 0);
5672
5673        for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5674                if (reg & (1ull << i))
5675                        incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5676        }
5677}
5678
5679static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5680{
5681        char buf[96];
5682        int i = 0;
5683
5684        dd_dev_info(dd, "SDMA Error: %s\n",
5685                    sdma_err_status_string(buf, sizeof(buf), reg));
5686
5687        if (reg & ALL_SDMA_FREEZE_ERR)
5688                start_freeze_handling(dd->pport, 0);
5689
5690        for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5691                if (reg & (1ull << i))
5692                        incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5693        }
5694}
5695
5696static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5697{
5698        incr_cntr64(&ppd->port_xmit_discards);
5699}
5700
5701static void count_port_inactive(struct hfi1_devdata *dd)
5702{
5703        __count_port_discards(dd->pport);
5704}
5705
5706/*
5707 * We have had a "disallowed packet" error during egress. Determine the
5708 * integrity check which failed, and update relevant error counter, etc.
5709 *
5710 * Note that the SEND_EGRESS_ERR_INFO register has only a single
5711 * bit of state per integrity check, and so we can miss the reason for an
5712 * egress error if more than one packet fails the same integrity check
5713 * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5714 */
5715static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5716                                        int vl)
5717{
5718        struct hfi1_pportdata *ppd = dd->pport;
5719        u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5720        u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5721        char buf[96];
5722
5723        /* clear down all observed info as quickly as possible after read */
5724        write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5725
5726        dd_dev_info(dd,
5727                    "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5728                    info, egress_err_info_string(buf, sizeof(buf), info), src);
5729
5730        /* Eventually add other counters for each bit */
5731        if (info & PORT_DISCARD_EGRESS_ERRS) {
5732                int weight, i;
5733
5734                /*
5735                 * Count all applicable bits as individual errors and
5736                 * attribute them to the packet that triggered this handler.
5737                 * This may not be completely accurate due to limitations
5738                 * on the available hardware error information.  There is
5739                 * a single information register and any number of error
5740                 * packets may have occurred and contributed to it before
5741                 * this routine is called.  This means that:
5742                 * a) If multiple packets with the same error occur before
5743                 *    this routine is called, earlier packets are missed.
5744                 *    There is only a single bit for each error type.
5745                 * b) Errors may not be attributed to the correct VL.
5746                 *    The driver is attributing all bits in the info register
5747                 *    to the packet that triggered this call, but bits
5748                 *    could be an accumulation of different packets with
5749                 *    different VLs.
5750                 * c) A single error packet may have multiple counts attached
5751                 *    to it.  There is no way for the driver to know if
5752                 *    multiple bits set in the info register are due to a
5753                 *    single packet or multiple packets.  The driver assumes
5754                 *    multiple packets.
5755                 */
5756                weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
5757                for (i = 0; i < weight; i++) {
5758                        __count_port_discards(ppd);
5759                        if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5760                                incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5761                        else if (vl == 15)
5762                                incr_cntr64(&ppd->port_xmit_discards_vl
5763                                            [C_VL_15]);
5764                }
5765        }
5766}
5767
5768/*
5769 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5770 * register. Does it represent a 'port inactive' error?
5771 */
5772static inline int port_inactive_err(u64 posn)
5773{
5774        return (posn >= SEES(TX_LINKDOWN) &&
5775                posn <= SEES(TX_INCORRECT_LINK_STATE));
5776}
5777
5778/*
5779 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5780 * register. Does it represent a 'disallowed packet' error?
5781 */
5782static inline int disallowed_pkt_err(int posn)
5783{
5784        return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5785                posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5786}
5787
5788/*
5789 * Input value is a bit position of one of the SDMA engine disallowed
5790 * packet errors.  Return which engine.  Use of this must be guarded by
5791 * disallowed_pkt_err().
5792 */
5793static inline int disallowed_pkt_engine(int posn)
5794{
5795        return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5796}
5797
5798/*
5799 * Translate an SDMA engine to a VL.  Return -1 if the tranlation cannot
5800 * be done.
5801 */
5802static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5803{
5804        struct sdma_vl_map *m;
5805        int vl;
5806
5807        /* range check */
5808        if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5809                return -1;
5810
5811        rcu_read_lock();
5812        m = rcu_dereference(dd->sdma_map);
5813        vl = m->engine_to_vl[engine];
5814        rcu_read_unlock();
5815
5816        return vl;
5817}
5818
5819/*
5820 * Translate the send context (sofware index) into a VL.  Return -1 if the
5821 * translation cannot be done.
5822 */
5823static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5824{
5825        struct send_context_info *sci;
5826        struct send_context *sc;
5827        int i;
5828
5829        sci = &dd->send_contexts[sw_index];
5830
5831        /* there is no information for user (PSM) and ack contexts */
5832        if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
5833                return -1;
5834
5835        sc = sci->sc;
5836        if (!sc)
5837                return -1;
5838        if (dd->vld[15].sc == sc)
5839                return 15;
5840        for (i = 0; i < num_vls; i++)
5841                if (dd->vld[i].sc == sc)
5842                        return i;
5843
5844        return -1;
5845}
5846
5847static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5848{
5849        u64 reg_copy = reg, handled = 0;
5850        char buf[96];
5851        int i = 0;
5852
5853        if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5854                start_freeze_handling(dd->pport, 0);
5855        else if (is_ax(dd) &&
5856                 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5857                 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5858                start_freeze_handling(dd->pport, 0);
5859
5860        while (reg_copy) {
5861                int posn = fls64(reg_copy);
5862                /* fls64() returns a 1-based offset, we want it zero based */
5863                int shift = posn - 1;
5864                u64 mask = 1ULL << shift;
5865
5866                if (port_inactive_err(shift)) {
5867                        count_port_inactive(dd);
5868                        handled |= mask;
5869                } else if (disallowed_pkt_err(shift)) {
5870                        int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5871
5872                        handle_send_egress_err_info(dd, vl);
5873                        handled |= mask;
5874                }
5875                reg_copy &= ~mask;
5876        }
5877
5878        reg &= ~handled;
5879
5880        if (reg)
5881                dd_dev_info(dd, "Egress Error: %s\n",
5882                            egress_err_status_string(buf, sizeof(buf), reg));
5883
5884        for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5885                if (reg & (1ull << i))
5886                        incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5887        }
5888}
5889
5890static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5891{
5892        char buf[96];
5893        int i = 0;
5894
5895        dd_dev_info(dd, "Send Error: %s\n",
5896                    send_err_status_string(buf, sizeof(buf), reg));
5897
5898        for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5899                if (reg & (1ull << i))
5900                        incr_cntr64(&dd->send_err_status_cnt[i]);
5901        }
5902}
5903
5904/*
5905 * The maximum number of times the error clear down will loop before
5906 * blocking a repeating error.  This value is arbitrary.
5907 */
5908#define MAX_CLEAR_COUNT 20
5909
5910/*
5911 * Clear and handle an error register.  All error interrupts are funneled
5912 * through here to have a central location to correctly handle single-
5913 * or multi-shot errors.
5914 *
5915 * For non per-context registers, call this routine with a context value
5916 * of 0 so the per-context offset is zero.
5917 *
5918 * If the handler loops too many times, assume that something is wrong
5919 * and can't be fixed, so mask the error bits.
5920 */
5921static void interrupt_clear_down(struct hfi1_devdata *dd,
5922                                 u32 context,
5923                                 const struct err_reg_info *eri)
5924{
5925        u64 reg;
5926        u32 count;
5927
5928        /* read in a loop until no more errors are seen */
5929        count = 0;
5930        while (1) {
5931                reg = read_kctxt_csr(dd, context, eri->status);
5932                if (reg == 0)
5933                        break;
5934                write_kctxt_csr(dd, context, eri->clear, reg);
5935                if (likely(eri->handler))
5936                        eri->handler(dd, context, reg);
5937                count++;
5938                if (count > MAX_CLEAR_COUNT) {
5939                        u64 mask;
5940
5941                        dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5942                                   eri->desc, reg);
5943                        /*
5944                         * Read-modify-write so any other masked bits
5945                         * remain masked.
5946                         */
5947                        mask = read_kctxt_csr(dd, context, eri->mask);
5948                        mask &= ~reg;
5949                        write_kctxt_csr(dd, context, eri->mask, mask);
5950                        break;
5951                }
5952        }
5953}
5954
5955/*
5956 * CCE block "misc" interrupt.  Source is < 16.
5957 */
5958static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5959{
5960        const struct err_reg_info *eri = &misc_errs[source];
5961
5962        if (eri->handler) {
5963                interrupt_clear_down(dd, 0, eri);
5964        } else {
5965                dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5966                           source);
5967        }
5968}
5969
5970static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5971{
5972        return flag_string(buf, buf_len, flags,
5973                           sc_err_status_flags,
5974                           ARRAY_SIZE(sc_err_status_flags));
5975}
5976
5977/*
5978 * Send context error interrupt.  Source (hw_context) is < 160.
5979 *
5980 * All send context errors cause the send context to halt.  The normal
5981 * clear-down mechanism cannot be used because we cannot clear the
5982 * error bits until several other long-running items are done first.
5983 * This is OK because with the context halted, nothing else is going
5984 * to happen on it anyway.
5985 */
5986static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5987                                unsigned int hw_context)
5988{
5989        struct send_context_info *sci;
5990        struct send_context *sc;
5991        char flags[96];
5992        u64 status;
5993        u32 sw_index;
5994        int i = 0;
5995        unsigned long irq_flags;
5996
5997        sw_index = dd->hw_to_sw[hw_context];
5998        if (sw_index >= dd->num_send_contexts) {
5999                dd_dev_err(dd,
6000                           "out of range sw index %u for send context %u\n",
6001                           sw_index, hw_context);
6002                return;
6003        }
6004        sci = &dd->send_contexts[sw_index];
6005        spin_lock_irqsave(&dd->sc_lock, irq_flags);
6006        sc = sci->sc;
6007        if (!sc) {
6008                dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
6009                           sw_index, hw_context);
6010                spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
6011                return;
6012        }
6013
6014        /* tell the software that a halt has begun */
6015        sc_stop(sc, SCF_HALTED);
6016
6017        status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
6018
6019        dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
6020                    send_context_err_status_string(flags, sizeof(flags),
6021                                                   status));
6022
6023        if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
6024                handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
6025
6026        /*
6027         * Automatically restart halted kernel contexts out of interrupt
6028         * context.  User contexts must ask the driver to restart the context.
6029         */
6030        if (sc->type != SC_USER)
6031                queue_work(dd->pport->hfi1_wq, &sc->halt_work);
6032        spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
6033
6034        /*
6035         * Update the counters for the corresponding status bits.
6036         * Note that these particular counters are aggregated over all
6037         * 160 contexts.
6038         */
6039        for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
6040                if (status & (1ull << i))
6041                        incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
6042        }
6043}
6044
6045static void handle_sdma_eng_err(struct hfi1_devdata *dd,
6046                                unsigned int source, u64 status)
6047{
6048        struct sdma_engine *sde;
6049        int i = 0;
6050
6051        sde = &dd->per_sdma[source];
6052#ifdef CONFIG_SDMA_VERBOSITY
6053        dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6054                   slashstrip(__FILE__), __LINE__, __func__);
6055        dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
6056                   sde->this_idx, source, (unsigned long long)status);
6057#endif
6058        sde->err_cnt++;
6059        sdma_engine_error(sde, status);
6060
6061        /*
6062        * Update the counters for the corresponding status bits.
6063        * Note that these particular counters are aggregated over
6064        * all 16 DMA engines.
6065        */
6066        for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
6067                if (status & (1ull << i))
6068                        incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
6069        }
6070}
6071
6072/*
6073 * CCE block SDMA error interrupt.  Source is < 16.
6074 */
6075static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
6076{
6077#ifdef CONFIG_SDMA_VERBOSITY
6078        struct sdma_engine *sde = &dd->per_sdma[source];
6079
6080        dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6081                   slashstrip(__FILE__), __LINE__, __func__);
6082        dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
6083                   source);
6084        sdma_dumpstate(sde);
6085#endif
6086        interrupt_clear_down(dd, source, &sdma_eng_err);
6087}
6088
6089/*
6090 * CCE block "various" interrupt.  Source is < 8.
6091 */
6092static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
6093{
6094        const struct err_reg_info *eri = &various_err[source];
6095
6096        /*
6097         * TCritInt cannot go through interrupt_clear_down()
6098         * because it is not a second tier interrupt. The handler
6099         * should be called directly.
6100         */
6101        if (source == TCRIT_INT_SOURCE)
6102                handle_temp_err(dd);
6103        else if (eri->handler)
6104                interrupt_clear_down(dd, 0, eri);
6105        else
6106                dd_dev_info(dd,
6107                            "%s: Unimplemented/reserved interrupt %d\n",
6108                            __func__, source);
6109}
6110
6111static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
6112{
6113        /* src_ctx is always zero */
6114        struct hfi1_pportdata *ppd = dd->pport;
6115        unsigned long flags;
6116        u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
6117
6118        if (reg & QSFP_HFI0_MODPRST_N) {
6119                if (!qsfp_mod_present(ppd)) {
6120                        dd_dev_info(dd, "%s: QSFP module removed\n",
6121                                    __func__);
6122
6123                        ppd->driver_link_ready = 0;
6124                        /*
6125                         * Cable removed, reset all our information about the
6126                         * cache and cable capabilities
6127                         */
6128
6129                        spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6130                        /*
6131                         * We don't set cache_refresh_required here as we expect
6132                         * an interrupt when a cable is inserted
6133                         */
6134                        ppd->qsfp_info.cache_valid = 0;
6135                        ppd->qsfp_info.reset_needed = 0;
6136                        ppd->qsfp_info.limiting_active = 0;
6137                        spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6138                                               flags);
6139                        /* Invert the ModPresent pin now to detect plug-in */
6140                        write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6141                                  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6142
6143                        if ((ppd->offline_disabled_reason >
6144                          HFI1_ODR_MASK(
6145                          OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
6146                          (ppd->offline_disabled_reason ==
6147                          HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
6148                                ppd->offline_disabled_reason =
6149                                HFI1_ODR_MASK(
6150                                OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
6151
6152                        if (ppd->host_link_state == HLS_DN_POLL) {
6153                                /*
6154                                 * The link is still in POLL. This means
6155                                 * that the normal link down processing
6156                                 * will not happen. We have to do it here
6157                                 * before turning the DC off.
6158                                 */
6159                                queue_work(ppd->link_wq, &ppd->link_down_work);
6160                        }
6161                } else {
6162                        dd_dev_info(dd, "%s: QSFP module inserted\n",
6163                                    __func__);
6164
6165                        spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6166                        ppd->qsfp_info.cache_valid = 0;
6167                        ppd->qsfp_info.cache_refresh_required = 1;
6168                        spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6169                                               flags);
6170
6171                        /*
6172                         * Stop inversion of ModPresent pin to detect
6173                         * removal of the cable
6174                         */
6175                        qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
6176                        write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6177                                  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6178
6179                        ppd->offline_disabled_reason =
6180                                HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
6181                }
6182        }
6183
6184        if (reg & QSFP_HFI0_INT_N) {
6185                dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
6186                            __func__);
6187                spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6188                ppd->qsfp_info.check_interrupt_flags = 1;
6189                spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6190        }
6191
6192        /* Schedule the QSFP work only if there is a cable attached. */
6193        if (qsfp_mod_present(ppd))
6194                queue_work(ppd->link_wq, &ppd->qsfp_info.qsfp_work);
6195}
6196
6197static int request_host_lcb_access(struct hfi1_devdata *dd)
6198{
6199        int ret;
6200
6201        ret = do_8051_command(dd, HCMD_MISC,
6202                              (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6203                              LOAD_DATA_FIELD_ID_SHIFT, NULL);
6204        if (ret != HCMD_SUCCESS) {
6205                dd_dev_err(dd, "%s: command failed with error %d\n",
6206                           __func__, ret);
6207        }
6208        return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6209}
6210
6211static int request_8051_lcb_access(struct hfi1_devdata *dd)
6212{
6213        int ret;
6214
6215        ret = do_8051_command(dd, HCMD_MISC,
6216                              (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6217                              LOAD_DATA_FIELD_ID_SHIFT, NULL);
6218        if (ret != HCMD_SUCCESS) {
6219                dd_dev_err(dd, "%s: command failed with error %d\n",
6220                           __func__, ret);
6221        }
6222        return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6223}
6224
6225/*
6226 * Set the LCB selector - allow host access.  The DCC selector always
6227 * points to the host.
6228 */
6229static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6230{
6231        write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6232                  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6233                  DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6234}
6235
6236/*
6237 * Clear the LCB selector - allow 8051 access.  The DCC selector always
6238 * points to the host.
6239 */
6240static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6241{
6242        write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6243                  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6244}
6245
6246/*
6247 * Acquire LCB access from the 8051.  If the host already has access,
6248 * just increment a counter.  Otherwise, inform the 8051 that the
6249 * host is taking access.
6250 *
6251 * Returns:
6252 *      0 on success
6253 *      -EBUSY if the 8051 has control and cannot be disturbed
6254 *      -errno if unable to acquire access from the 8051
6255 */
6256int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6257{
6258        struct hfi1_pportdata *ppd = dd->pport;
6259        int ret = 0;
6260
6261        /*
6262         * Use the host link state lock so the operation of this routine
6263         * { link state check, selector change, count increment } can occur
6264         * as a unit against a link state change.  Otherwise there is a
6265         * race between the state change and the count increment.
6266         */
6267        if (sleep_ok) {
6268                mutex_lock(&ppd->hls_lock);
6269        } else {
6270                while (!mutex_trylock(&ppd->hls_lock))
6271                        udelay(1);
6272        }
6273
6274        /* this access is valid only when the link is up */
6275        if (ppd->host_link_state & HLS_DOWN) {
6276                dd_dev_info(dd, "%s: link state %s not up\n",
6277                            __func__, link_state_name(ppd->host_link_state));
6278                ret = -EBUSY;
6279                goto done;
6280        }
6281
6282        if (dd->lcb_access_count == 0) {
6283                ret = request_host_lcb_access(dd);
6284                if (ret) {
6285                        dd_dev_err(dd,
6286                                   "%s: unable to acquire LCB access, err %d\n",
6287                                   __func__, ret);
6288                        goto done;
6289                }
6290                set_host_lcb_access(dd);
6291        }
6292        dd->lcb_access_count++;
6293done:
6294        mutex_unlock(&ppd->hls_lock);
6295        return ret;
6296}
6297
6298/*
6299 * Release LCB access by decrementing the use count.  If the count is moving
6300 * from 1 to 0, inform 8051 that it has control back.
6301 *
6302 * Returns:
6303 *      0 on success
6304 *      -errno if unable to release access to the 8051
6305 */
6306int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6307{
6308        int ret = 0;
6309
6310        /*
6311         * Use the host link state lock because the acquire needed it.
6312         * Here, we only need to keep { selector change, count decrement }
6313         * as a unit.
6314         */
6315        if (sleep_ok) {
6316                mutex_lock(&dd->pport->hls_lock);
6317        } else {
6318                while (!mutex_trylock(&dd->pport->hls_lock))
6319                        udelay(1);
6320        }
6321
6322        if (dd->lcb_access_count == 0) {
6323                dd_dev_err(dd, "%s: LCB access count is zero.  Skipping.\n",
6324                           __func__);
6325                goto done;
6326        }
6327
6328        if (dd->lcb_access_count == 1) {
6329                set_8051_lcb_access(dd);
6330                ret = request_8051_lcb_access(dd);
6331                if (ret) {
6332                        dd_dev_err(dd,
6333                                   "%s: unable to release LCB access, err %d\n",
6334                                   __func__, ret);
6335                        /* restore host access if the grant didn't work */
6336                        set_host_lcb_access(dd);
6337                        goto done;
6338                }
6339        }
6340        dd->lcb_access_count--;
6341done:
6342        mutex_unlock(&dd->pport->hls_lock);
6343        return ret;
6344}
6345
6346/*
6347 * Initialize LCB access variables and state.  Called during driver load,
6348 * after most of the initialization is finished.
6349 *
6350 * The DC default is LCB access on for the host.  The driver defaults to
6351 * leaving access to the 8051.  Assign access now - this constrains the call
6352 * to this routine to be after all LCB set-up is done.  In particular, after
6353 * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6354 */
6355static void init_lcb_access(struct hfi1_devdata *dd)
6356{
6357        dd->lcb_access_count = 0;
6358}
6359
6360/*
6361 * Write a response back to a 8051 request.
6362 */
6363static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6364{
6365        write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6366                  DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6367                  (u64)return_code <<
6368                  DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6369                  (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6370}
6371
6372/*
6373 * Handle host requests from the 8051.
6374 */
6375static void handle_8051_request(struct hfi1_pportdata *ppd)
6376{
6377        struct hfi1_devdata *dd = ppd->dd;
6378        u64 reg;
6379        u16 data = 0;
6380        u8 type;
6381
6382        reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6383        if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6384                return; /* no request */
6385
6386        /* zero out COMPLETED so the response is seen */
6387        write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6388
6389        /* extract request details */
6390        type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6391                        & DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6392        data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6393                        & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6394
6395        switch (type) {
6396        case HREQ_LOAD_CONFIG:
6397        case HREQ_SAVE_CONFIG:
6398        case HREQ_READ_CONFIG:
6399        case HREQ_SET_TX_EQ_ABS:
6400        case HREQ_SET_TX_EQ_REL:
6401        case HREQ_ENABLE:
6402                dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6403                            type);
6404                hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6405                break;
6406        case HREQ_LCB_RESET:
6407                /* Put the LCB, RX FPE and TX FPE into reset */
6408                write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_INTO_RESET);
6409                /* Make sure the write completed */
6410                (void)read_csr(dd, DCC_CFG_RESET);
6411                /* Hold the reset long enough to take effect */
6412                udelay(1);
6413                /* Take the LCB, RX FPE and TX FPE out of reset */
6414                write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_OUT_OF_RESET);
6415                hreq_response(dd, HREQ_SUCCESS, 0);
6416
6417                break;
6418        case HREQ_CONFIG_DONE:
6419                hreq_response(dd, HREQ_SUCCESS, 0);
6420                break;
6421
6422        case HREQ_INTERFACE_TEST:
6423                hreq_response(dd, HREQ_SUCCESS, data);
6424                break;
6425        default:
6426                dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6427                hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6428                break;
6429        }
6430}
6431
6432/*
6433 * Set up allocation unit vaulue.
6434 */
6435void set_up_vau(struct hfi1_devdata *dd, u8 vau)
6436{
6437        u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6438
6439        /* do not modify other values in the register */
6440        reg &= ~SEND_CM_GLOBAL_CREDIT_AU_SMASK;
6441        reg |= (u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT;
6442        write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6443}
6444
6445/*
6446 * Set up initial VL15 credits of the remote.  Assumes the rest of
6447 * the CM credit registers are zero from a previous global or credit reset.
6448 * Shared limit for VL15 will always be 0.
6449 */
6450void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf)
6451{
6452        u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6453
6454        /* set initial values for total and shared credit limit */
6455        reg &= ~(SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK |
6456                 SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK);
6457
6458        /*
6459         * Set total limit to be equal to VL15 credits.
6460         * Leave shared limit at 0.
6461         */
6462        reg |= (u64)vl15buf << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
6463        write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6464
6465        write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6466                  << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6467}
6468
6469/*
6470 * Zero all credit details from the previous connection and
6471 * reset the CM manager's internal counters.
6472 */
6473void reset_link_credits(struct hfi1_devdata *dd)
6474{
6475        int i;
6476
6477        /* remove all previous VL credit limits */
6478        for (i = 0; i < TXE_NUM_DATA_VL; i++)
6479                write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
6480        write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6481        write_csr(dd, SEND_CM_GLOBAL_CREDIT, 0);
6482        /* reset the CM block */
6483        pio_send_control(dd, PSC_CM_RESET);
6484        /* reset cached value */
6485        dd->vl15buf_cached = 0;
6486}
6487
6488/* convert a vCU to a CU */
6489static u32 vcu_to_cu(u8 vcu)
6490{
6491        return 1 << vcu;
6492}
6493
6494/* convert a CU to a vCU */
6495static u8 cu_to_vcu(u32 cu)
6496{
6497        return ilog2(cu);
6498}
6499
6500/* convert a vAU to an AU */
6501static u32 vau_to_au(u8 vau)
6502{
6503        return 8 * (1 << vau);
6504}
6505
6506static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6507{
6508        ppd->sm_trap_qp = 0x0;
6509        ppd->sa_qp = 0x1;
6510}
6511
6512/*
6513 * Graceful LCB shutdown.  This leaves the LCB FIFOs in reset.
6514 */
6515static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6516{
6517        u64 reg;
6518
6519        /* clear lcb run: LCB_CFG_RUN.EN = 0 */
6520        write_csr(dd, DC_LCB_CFG_RUN, 0);
6521        /* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6522        write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6523                  1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6524        /* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6525        dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6526        reg = read_csr(dd, DCC_CFG_RESET);
6527        write_csr(dd, DCC_CFG_RESET, reg |
6528                  DCC_CFG_RESET_RESET_LCB | DCC_CFG_RESET_RESET_RX_FPE);
6529        (void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6530        if (!abort) {
6531                udelay(1);    /* must hold for the longer of 16cclks or 20ns */
6532                write_csr(dd, DCC_CFG_RESET, reg);
6533                write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6534        }
6535}
6536
6537/*
6538 * This routine should be called after the link has been transitioned to
6539 * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6540 * reset).
6541 *
6542 * The expectation is that the caller of this routine would have taken
6543 * care of properly transitioning the link into the correct state.
6544 * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6545 *       before calling this function.
6546 */
6547static void _dc_shutdown(struct hfi1_devdata *dd)
6548{
6549        lockdep_assert_held(&dd->dc8051_lock);
6550
6551        if (dd->dc_shutdown)
6552                return;
6553
6554        dd->dc_shutdown = 1;
6555        /* Shutdown the LCB */
6556        lcb_shutdown(dd, 1);
6557        /*
6558         * Going to OFFLINE would have causes the 8051 to put the
6559         * SerDes into reset already. Just need to shut down the 8051,
6560         * itself.
6561         */
6562        write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6563}
6564
6565static void dc_shutdown(struct hfi1_devdata *dd)
6566{
6567        mutex_lock(&dd->dc8051_lock);
6568        _dc_shutdown(dd);
6569        mutex_unlock(&dd->dc8051_lock);
6570}
6571
6572/*
6573 * Calling this after the DC has been brought out of reset should not
6574 * do any damage.
6575 * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6576 *       before calling this function.
6577 */
6578static void _dc_start(struct hfi1_devdata *dd)
6579{
6580        lockdep_assert_held(&dd->dc8051_lock);
6581
6582        if (!dd->dc_shutdown)
6583                return;
6584
6585        /* Take the 8051 out of reset */
6586        write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6587        /* Wait until 8051 is ready */
6588        if (wait_fm_ready(dd, TIMEOUT_8051_START))
6589                dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6590                           __func__);
6591
6592        /* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6593        write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_OUT_OF_RESET);
6594        /* lcb_shutdown() with abort=1 does not restore these */
6595        write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6596        dd->dc_shutdown = 0;
6597}
6598
6599static void dc_start(struct hfi1_devdata *dd)
6600{
6601        mutex_lock(&dd->dc8051_lock);
6602        _dc_start(dd);
6603        mutex_unlock(&dd->dc8051_lock);
6604}
6605
6606/*
6607 * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6608 */
6609static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6610{
6611        u64 rx_radr, tx_radr;
6612        u32 version;
6613
6614        if (dd->icode != ICODE_FPGA_EMULATION)
6615                return;
6616
6617        /*
6618         * These LCB defaults on emulator _s are good, nothing to do here:
6619         *      LCB_CFG_TX_FIFOS_RADR
6620         *      LCB_CFG_RX_FIFOS_RADR
6621         *      LCB_CFG_LN_DCLK
6622         *      LCB_CFG_IGNORE_LOST_RCLK
6623         */
6624        if (is_emulator_s(dd))
6625                return;
6626        /* else this is _p */
6627
6628        version = emulator_rev(dd);
6629        if (!is_ax(dd))
6630                version = 0x2d; /* all B0 use 0x2d or higher settings */
6631
6632        if (version <= 0x12) {
6633                /* release 0x12 and below */
6634
6635                /*
6636                 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6637                 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6638                 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6639                 */
6640                rx_radr =
6641                      0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6642                    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6643                    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6644                /*
6645                 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6646                 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6647                 */
6648                tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6649        } else if (version <= 0x18) {
6650                /* release 0x13 up to 0x18 */
6651                /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6652                rx_radr =
6653                      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6654                    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6655                    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6656                tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6657        } else if (version == 0x19) {
6658                /* release 0x19 */
6659                /* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6660                rx_radr =
6661                      0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6662                    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6663                    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6664                tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6665        } else if (version == 0x1a) {
6666                /* release 0x1a */
6667                /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6668                rx_radr =
6669                      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6670                    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6671                    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6672                tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6673                write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6674        } else {
6675                /* release 0x1b and higher */
6676                /* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6677                rx_radr =
6678                      0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6679                    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6680                    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6681                tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6682        }
6683
6684        write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6685        /* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6686        write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6687                  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6688        write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6689}
6690
6691/*
6692 * Handle a SMA idle message
6693 *
6694 * This is a work-queue function outside of the interrupt.
6695 */
6696void handle_sma_message(struct work_struct *work)
6697{
6698        struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6699                                                        sma_message_work);
6700        struct hfi1_devdata *dd = ppd->dd;
6701        u64 msg;
6702        int ret;
6703
6704        /*
6705         * msg is bytes 1-4 of the 40-bit idle message - the command code
6706         * is stripped off
6707         */
6708        ret = read_idle_sma(dd, &msg);
6709        if (ret)
6710                return;
6711        dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6712        /*
6713         * React to the SMA message.  Byte[1] (0 for us) is the command.
6714         */
6715        switch (msg & 0xff) {
6716        case SMA_IDLE_ARM:
6717                /*
6718                 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6719                 * State Transitions
6720                 *
6721                 * Only expected in INIT or ARMED, discard otherwise.
6722                 */
6723                if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6724                        ppd->neighbor_normal = 1;
6725                break;
6726        case SMA_IDLE_ACTIVE:
6727                /*
6728                 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6729                 * State Transitions
6730                 *
6731                 * Can activate the node.  Discard otherwise.
6732                 */
6733                if (ppd->host_link_state == HLS_UP_ARMED &&
6734                    ppd->is_active_optimize_enabled) {
6735                        ppd->neighbor_normal = 1;
6736                        ret = set_link_state(ppd, HLS_UP_ACTIVE);
6737                        if (ret)
6738                                dd_dev_err(
6739                                        dd,
6740                                        "%s: received Active SMA idle message, couldn't set link to Active\n",
6741                                        __func__);
6742                }
6743                break;
6744        default:
6745                dd_dev_err(dd,
6746                           "%s: received unexpected SMA idle message 0x%llx\n",
6747                           __func__, msg);
6748                break;
6749        }
6750}
6751
6752static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6753{
6754        u64 rcvctrl;
6755        unsigned long flags;
6756
6757        spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6758        rcvctrl = read_csr(dd, RCV_CTRL);
6759        rcvctrl |= add;
6760        rcvctrl &= ~clear;
6761        write_csr(dd, RCV_CTRL, rcvctrl);
6762        spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6763}
6764
6765static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6766{
6767        adjust_rcvctrl(dd, add, 0);
6768}
6769
6770static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6771{
6772        adjust_rcvctrl(dd, 0, clear);
6773}
6774
6775/*
6776 * Called from all interrupt handlers to start handling an SPC freeze.
6777 */
6778void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6779{
6780        struct hfi1_devdata *dd = ppd->dd;
6781        struct send_context *sc;
6782        int i;
6783        int sc_flags;
6784
6785        if (flags & FREEZE_SELF)
6786                write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6787
6788        /* enter frozen mode */
6789        dd->flags |= HFI1_FROZEN;
6790
6791        /* notify all SDMA engines that they are going into a freeze */
6792        sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6793
6794        sc_flags = SCF_FROZEN | SCF_HALTED | (flags & FREEZE_LINK_DOWN ?
6795                                              SCF_LINK_DOWN : 0);
6796        /* do halt pre-handling on all enabled send contexts */
6797        for (i = 0; i < dd->num_send_contexts; i++) {
6798                sc = dd->send_contexts[i].sc;
6799                if (sc && (sc->flags & SCF_ENABLED))
6800                        sc_stop(sc, sc_flags);
6801        }
6802
6803        /* Send context are frozen. Notify user space */
6804        hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6805
6806        if (flags & FREEZE_ABORT) {
6807                dd_dev_err(dd,
6808                           "Aborted freeze recovery. Please REBOOT system\n");
6809                return;
6810        }
6811        /* queue non-interrupt handler */
6812        queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6813}
6814
6815/*
6816 * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6817 * depending on the "freeze" parameter.
6818 *
6819 * No need to return an error if it times out, our only option
6820 * is to proceed anyway.
6821 */
6822static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6823{
6824        unsigned long timeout;
6825        u64 reg;
6826
6827        timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6828        while (1) {
6829                reg = read_csr(dd, CCE_STATUS);
6830                if (freeze) {
6831                        /* waiting until all indicators are set */
6832                        if ((reg & ALL_FROZE) == ALL_FROZE)
6833                                return; /* all done */
6834                } else {
6835                        /* waiting until all indicators are clear */
6836                        if ((reg & ALL_FROZE) == 0)
6837                                return; /* all done */
6838                }
6839
6840                if (time_after(jiffies, timeout)) {
6841                        dd_dev_err(dd,
6842                                   "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6843                                   freeze ? "" : "un", reg & ALL_FROZE,
6844                                   freeze ? ALL_FROZE : 0ull);
6845                        return;
6846                }
6847                usleep_range(80, 120);
6848        }
6849}
6850
6851/*
6852 * Do all freeze handling for the RXE block.
6853 */
6854static void rxe_freeze(struct hfi1_devdata *dd)
6855{
6856        int i;
6857        struct hfi1_ctxtdata *rcd;
6858
6859        /* disable port */
6860        clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6861
6862        /* disable all receive contexts */
6863        for (i = 0; i < dd->num_rcv_contexts; i++) {
6864                rcd = hfi1_rcd_get_by_index(dd, i);
6865                hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, rcd);
6866                hfi1_rcd_put(rcd);
6867        }
6868}
6869
6870/*
6871 * Unfreeze handling for the RXE block - kernel contexts only.
6872 * This will also enable the port.  User contexts will do unfreeze
6873 * handling on a per-context basis as they call into the driver.
6874 *
6875 */
6876static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6877{
6878        u32 rcvmask;
6879        u16 i;
6880        struct hfi1_ctxtdata *rcd;
6881
6882        /* enable all kernel contexts */
6883        for (i = 0; i < dd->num_rcv_contexts; i++) {
6884                rcd = hfi1_rcd_get_by_index(dd, i);
6885
6886                /* Ensure all non-user contexts(including vnic) are enabled */
6887                if (!rcd ||
6888                    (i >= dd->first_dyn_alloc_ctxt && !rcd->is_vnic)) {
6889                        hfi1_rcd_put(rcd);
6890                        continue;
6891                }
6892                rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6893                /* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6894                rcvmask |= hfi1_rcvhdrtail_kvaddr(rcd) ?
6895                        HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6896                hfi1_rcvctrl(dd, rcvmask, rcd);
6897                hfi1_rcd_put(rcd);
6898        }
6899
6900        /* enable port */
6901        add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6902}
6903
6904/*
6905 * Non-interrupt SPC freeze handling.
6906 *
6907 * This is a work-queue function outside of the triggering interrupt.
6908 */
6909void handle_freeze(struct work_struct *work)
6910{
6911        struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6912                                                                freeze_work);
6913        struct hfi1_devdata *dd = ppd->dd;
6914
6915        /* wait for freeze indicators on all affected blocks */
6916        wait_for_freeze_status(dd, 1);
6917
6918        /* SPC is now frozen */
6919
6920        /* do send PIO freeze steps */
6921        pio_freeze(dd);
6922
6923        /* do send DMA freeze steps */
6924        sdma_freeze(dd);
6925
6926        /* do send egress freeze steps - nothing to do */
6927
6928        /* do receive freeze steps */
6929        rxe_freeze(dd);
6930
6931        /*
6932         * Unfreeze the hardware - clear the freeze, wait for each
6933         * block's frozen bit to clear, then clear the frozen flag.
6934         */
6935        write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6936        wait_for_freeze_status(dd, 0);
6937
6938        if (is_ax(dd)) {
6939                write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6940                wait_for_freeze_status(dd, 1);
6941                write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6942                wait_for_freeze_status(dd, 0);
6943        }
6944
6945        /* do send PIO unfreeze steps for kernel contexts */
6946        pio_kernel_unfreeze(dd);
6947
6948        /* do send DMA unfreeze steps */
6949        sdma_unfreeze(dd);
6950
6951        /* do send egress unfreeze steps - nothing to do */
6952
6953        /* do receive unfreeze steps for kernel contexts */
6954        rxe_kernel_unfreeze(dd);
6955
6956        /*
6957         * The unfreeze procedure touches global device registers when
6958         * it disables and re-enables RXE. Mark the device unfrozen
6959         * after all that is done so other parts of the driver waiting
6960         * for the device to unfreeze don't do things out of order.
6961         *
6962         * The above implies that the meaning of HFI1_FROZEN flag is
6963         * "Device has gone into freeze mode and freeze mode handling
6964         * is still in progress."
6965         *
6966         * The flag will be removed when freeze mode processing has
6967         * completed.
6968         */
6969        dd->flags &= ~HFI1_FROZEN;
6970        wake_up(&dd->event_queue);
6971
6972        /* no longer frozen */
6973}
6974
6975/**
6976 * update_xmit_counters - update PortXmitWait/PortVlXmitWait
6977 * counters.
6978 * @ppd: info of physical Hfi port
6979 * @link_width: new link width after link up or downgrade
6980 *
6981 * Update the PortXmitWait and PortVlXmitWait counters after
6982 * a link up or downgrade event to reflect a link width change.
6983 */
6984static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width)
6985{
6986        int i;
6987        u16 tx_width;
6988        u16 link_speed;
6989
6990        tx_width = tx_link_width(link_width);
6991        link_speed = get_link_speed(ppd->link_speed_active);
6992
6993        /*
6994         * There are C_VL_COUNT number of PortVLXmitWait counters.
6995         * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
6996         */
6997        for (i = 0; i < C_VL_COUNT + 1; i++)
6998                get_xmit_wait_counters(ppd, tx_width, link_speed, i);
6999}
7000
7001/*
7002 * Handle a link up interrupt from the 8051.
7003 *
7004 * This is a work-queue function outside of the interrupt.
7005 */
7006void handle_link_up(struct work_struct *work)
7007{
7008        struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7009                                                  link_up_work);
7010        struct hfi1_devdata *dd = ppd->dd;
7011
7012        set_link_state(ppd, HLS_UP_INIT);
7013
7014        /* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
7015        read_ltp_rtt(dd);
7016        /*
7017         * OPA specifies that certain counters are cleared on a transition
7018         * to link up, so do that.
7019         */
7020        clear_linkup_counters(dd);
7021        /*
7022         * And (re)set link up default values.
7023         */
7024        set_linkup_defaults(ppd);
7025
7026        /*
7027         * Set VL15 credits. Use cached value from verify cap interrupt.
7028         * In case of quick linkup or simulator, vl15 value will be set by
7029         * handle_linkup_change. VerifyCap interrupt handler will not be
7030         * called in those scenarios.
7031         */
7032        if (!(quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR))
7033                set_up_vl15(dd, dd->vl15buf_cached);
7034
7035        /* enforce link speed enabled */
7036        if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
7037                /* oops - current speed is not enabled, bounce */
7038                dd_dev_err(dd,
7039                           "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
7040                           ppd->link_speed_active, ppd->link_speed_enabled);
7041                set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
7042                                     OPA_LINKDOWN_REASON_SPEED_POLICY);
7043                set_link_state(ppd, HLS_DN_OFFLINE);
7044                start_link(ppd);
7045        }
7046}
7047
7048/*
7049 * Several pieces of LNI information were cached for SMA in ppd.
7050 * Reset these on link down
7051 */
7052static void reset_neighbor_info(struct hfi1_pportdata *ppd)
7053{
7054        ppd->neighbor_guid = 0;
7055        ppd->neighbor_port_number = 0;
7056        ppd->neighbor_type = 0;
7057        ppd->neighbor_fm_security = 0;
7058}
7059
7060static const char * const link_down_reason_strs[] = {
7061        [OPA_LINKDOWN_REASON_NONE] = "None",
7062        [OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Receive error 0",
7063        [OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
7064        [OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
7065        [OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
7066        [OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
7067        [OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
7068        [OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
7069        [OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
7070        [OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
7071        [OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
7072        [OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
7073        [OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
7074        [OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
7075        [OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
7076        [OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
7077        [OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
7078        [OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
7079        [OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
7080        [OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
7081        [OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
7082        [OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
7083        [OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
7084        [OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
7085        [OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
7086        [OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
7087        [OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
7088        [OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
7089        [OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
7090        [OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
7091        [OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
7092        [OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
7093        [OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
7094                                        "Excessive buffer overrun",
7095        [OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
7096        [OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
7097        [OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
7098        [OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
7099        [OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
7100        [OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
7101        [OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
7102        [OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
7103                                        "Local media not installed",
7104        [OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
7105        [OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
7106        [OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
7107                                        "End to end not installed",
7108        [OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
7109        [OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
7110        [OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
7111        [OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
7112        [OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
7113        [OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
7114};
7115
7116/* return the neighbor link down reason string */
7117static const char *link_down_reason_str(u8 reason)
7118{
7119        const char *str = NULL;
7120
7121        if (reason < ARRAY_SIZE(link_down_reason_strs))
7122                str = link_down_reason_strs[reason];
7123        if (!str)
7124                str = "(invalid)";
7125
7126        return str;
7127}
7128
7129/*
7130 * Handle a link down interrupt from the 8051.
7131 *
7132 * This is a work-queue function outside of the interrupt.
7133 */
7134void handle_link_down(struct work_struct *work)
7135{
7136        u8 lcl_reason, neigh_reason = 0;
7137        u8 link_down_reason;
7138        struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7139                                                  link_down_work);
7140        int was_up;
7141        static const char ldr_str[] = "Link down reason: ";
7142
7143        if ((ppd->host_link_state &
7144             (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
7145             ppd->port_type == PORT_TYPE_FIXED)
7146                ppd->offline_disabled_reason =
7147                        HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
7148
7149        /* Go offline first, then deal with reading/writing through 8051 */
7150        was_up = !!(ppd->host_link_state & HLS_UP);
7151        set_link_state(ppd, HLS_DN_OFFLINE);
7152        xchg(&ppd->is_link_down_queued, 0);
7153
7154        if (was_up) {
7155                lcl_reason = 0;
7156                /* link down reason is only valid if the link was up */
7157                read_link_down_reason(ppd->dd, &link_down_reason);
7158                switch (link_down_reason) {
7159                case LDR_LINK_TRANSFER_ACTIVE_LOW:
7160                        /* the link went down, no idle message reason */
7161                        dd_dev_info(ppd->dd, "%sUnexpected link down\n",
7162                                    ldr_str);
7163                        break;
7164                case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
7165                        /*
7166                         * The neighbor reason is only valid if an idle message
7167                         * was received for it.
7168                         */
7169                        read_planned_down_reason_code(ppd->dd, &neigh_reason);
7170                        dd_dev_info(ppd->dd,
7171                                    "%sNeighbor link down message %d, %s\n",
7172                                    ldr_str, neigh_reason,
7173                                    link_down_reason_str(neigh_reason));
7174                        break;
7175                case LDR_RECEIVED_HOST_OFFLINE_REQ:
7176                        dd_dev_info(ppd->dd,
7177                                    "%sHost requested link to go offline\n",
7178                                    ldr_str);
7179                        break;
7180                default:
7181                        dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
7182                                    ldr_str, link_down_reason);
7183                        break;
7184                }
7185
7186                /*
7187                 * If no reason, assume peer-initiated but missed
7188                 * LinkGoingDown idle flits.
7189                 */
7190                if (neigh_reason == 0)
7191                        lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
7192        } else {
7193                /* went down while polling or going up */
7194                lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
7195        }
7196
7197        set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
7198
7199        /* inform the SMA when the link transitions from up to down */
7200        if (was_up && ppd->local_link_down_reason.sma == 0 &&
7201            ppd->neigh_link_down_reason.sma == 0) {
7202                ppd->local_link_down_reason.sma =
7203                                        ppd->local_link_down_reason.latest;
7204                ppd->neigh_link_down_reason.sma =
7205                                        ppd->neigh_link_down_reason.latest;
7206        }
7207
7208        reset_neighbor_info(ppd);
7209
7210        /* disable the port */
7211        clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
7212
7213        /*
7214         * If there is no cable attached, turn the DC off. Otherwise,
7215         * start the link bring up.
7216         */
7217        if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd))
7218                dc_shutdown(ppd->dd);
7219        else
7220                start_link(ppd);
7221}
7222
7223void handle_link_bounce(struct work_struct *work)
7224{
7225        struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7226                                                        link_bounce_work);
7227
7228        /*
7229         * Only do something if the link is currently up.
7230         */
7231        if (ppd->host_link_state & HLS_UP) {
7232                set_link_state(ppd, HLS_DN_OFFLINE);
7233                start_link(ppd);
7234        } else {
7235                dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
7236                            __func__, link_state_name(ppd->host_link_state));
7237        }
7238}
7239
7240/*
7241 * Mask conversion: Capability exchange to Port LTP.  The capability
7242 * exchange has an implicit 16b CRC that is mandatory.
7243 */
7244static int cap_to_port_ltp(int cap)
7245{
7246        int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
7247
7248        if (cap & CAP_CRC_14B)
7249                port_ltp |= PORT_LTP_CRC_MODE_14;
7250        if (cap & CAP_CRC_48B)
7251                port_ltp |= PORT_LTP_CRC_MODE_48;
7252        if (cap & CAP_CRC_12B_16B_PER_LANE)
7253                port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
7254
7255        return port_ltp;
7256}
7257
7258/*
7259 * Convert an OPA Port LTP mask to capability mask
7260 */
7261int port_ltp_to_cap(int port_ltp)
7262{
7263        int cap_mask = 0;
7264
7265        if (port_ltp & PORT_LTP_CRC_MODE_14)
7266                cap_mask |= CAP_CRC_14B;
7267        if (port_ltp & PORT_LTP_CRC_MODE_48)
7268                cap_mask |= CAP_CRC_48B;
7269        if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
7270                cap_mask |= CAP_CRC_12B_16B_PER_LANE;
7271
7272        return cap_mask;
7273}
7274
7275/*
7276 * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7277 */
7278static int lcb_to_port_ltp(int lcb_crc)
7279{
7280        int port_ltp = 0;
7281
7282        if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
7283                port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
7284        else if (lcb_crc == LCB_CRC_48B)
7285                port_ltp = PORT_LTP_CRC_MODE_48;
7286        else if (lcb_crc == LCB_CRC_14B)
7287                port_ltp = PORT_LTP_CRC_MODE_14;
7288        else
7289                port_ltp = PORT_LTP_CRC_MODE_16;
7290
7291        return port_ltp;
7292}
7293
7294static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7295{
7296        if (ppd->pkeys[2] != 0) {
7297                ppd->pkeys[2] = 0;
7298                (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7299                hfi1_event_pkey_change(ppd->dd, ppd->port);
7300        }
7301}
7302
7303/*
7304 * Convert the given link width to the OPA link width bitmask.
7305 */
7306static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
7307{
7308        switch (width) {
7309        case 0:
7310                /*
7311                 * Simulator and quick linkup do not set the width.
7312                 * Just set it to 4x without complaint.
7313                 */
7314                if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7315                        return OPA_LINK_WIDTH_4X;
7316                return 0; /* no lanes up */
7317        case 1: return OPA_LINK_WIDTH_1X;
7318        case 2: return OPA_LINK_WIDTH_2X;
7319        case 3: return OPA_LINK_WIDTH_3X;
7320        case 4: return OPA_LINK_WIDTH_4X;
7321        default:
7322                dd_dev_info(dd, "%s: invalid width %d, using 4\n",
7323                            __func__, width);
7324                return OPA_LINK_WIDTH_4X;
7325        }
7326}
7327
7328/*
7329 * Do a population count on the bottom nibble.
7330 */
7331static const u8 bit_counts[16] = {
7332        0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7333};
7334
7335static inline u8 nibble_to_count(u8 nibble)
7336{
7337        return bit_counts[nibble & 0xf];
7338}
7339
7340/*
7341 * Read the active lane information from the 8051 registers and return
7342 * their widths.
7343 *
7344 * Active lane information is found in these 8051 registers:
7345 *      enable_lane_tx
7346 *      enable_lane_rx
7347 */
7348static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7349                            u16 *rx_width)
7350{
7351        u16 tx, rx;
7352        u8 enable_lane_rx;
7353        u8 enable_lane_tx;
7354        u8 tx_polarity_inversion;
7355        u8 rx_polarity_inversion;
7356        u8 max_rate;
7357
7358        /* read the active lanes */
7359        read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7360                         &rx_polarity_inversion, &max_rate);
7361        read_local_lni(dd, &enable_lane_rx);
7362
7363        /* convert to counts */
7364        tx = nibble_to_count(enable_lane_tx);
7365        rx = nibble_to_count(enable_lane_rx);
7366
7367        /*
7368         * Set link_speed_active here, overriding what was set in
7369         * handle_verify_cap().  The ASIC 8051 firmware does not correctly
7370         * set the max_rate field in handle_verify_cap until v0.19.
7371         */
7372        if ((dd->icode == ICODE_RTL_SILICON) &&
7373            (dd->dc8051_ver < dc8051_ver(0, 19, 0))) {
7374                /* max_rate: 0 = 12.5G, 1 = 25G */
7375                switch (max_rate) {
7376                case 0:
7377                        dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7378                        break;
7379                case 1:
7380                        dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7381                        break;
7382                default:
7383                        dd_dev_err(dd,
7384                                   "%s: unexpected max rate %d, using 25Gb\n",
7385                                   __func__, (int)max_rate);
7386                        dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7387                        break;
7388                }
7389        }
7390
7391        dd_dev_info(dd,
7392                    "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7393                    enable_lane_tx, tx, enable_lane_rx, rx);
7394        *tx_width = link_width_to_bits(dd, tx);
7395        *rx_width = link_width_to_bits(dd, rx);
7396}
7397
7398/*
7399 * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7400 * Valid after the end of VerifyCap and during LinkUp.  Does not change
7401 * after link up.  I.e. look elsewhere for downgrade information.
7402 *
7403 * Bits are:
7404 *      + bits [7:4] contain the number of active transmitters
7405 *      + bits [3:0] contain the number of active receivers
7406 * These are numbers 1 through 4 and can be different values if the
7407 * link is asymmetric.
7408 *
7409 * verify_cap_local_fm_link_width[0] retains its original value.
7410 */
7411static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7412                              u16 *rx_width)
7413{
7414        u16 widths, tx, rx;
7415        u8 misc_bits, local_flags;
7416        u16 active_tx, active_rx;
7417
7418        read_vc_local_link_mode(dd, &misc_bits, &local_flags, &widths);
7419        tx = widths >> 12;
7420        rx = (widths >> 8) & 0xf;
7421
7422        *tx_width = link_width_to_bits(dd, tx);
7423        *rx_width = link_width_to_bits(dd, rx);
7424
7425        /* print the active widths */
7426        get_link_widths(dd, &active_tx, &active_rx);
7427}
7428
7429/*
7430 * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7431 * hardware information when the link first comes up.
7432 *
7433 * The link width is not available until after VerifyCap.AllFramesReceived
7434 * (the trigger for handle_verify_cap), so this is outside that routine
7435 * and should be called when the 8051 signals linkup.
7436 */
7437void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7438{
7439        u16 tx_width, rx_width;
7440
7441        /* get end-of-LNI link widths */
7442        get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7443
7444        /* use tx_width as the link is supposed to be symmetric on link up */
7445        ppd->link_width_active = tx_width;
7446        /* link width downgrade active (LWD.A) starts out matching LW.A */
7447        ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7448        ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7449        /* per OPA spec, on link up LWD.E resets to LWD.S */
7450        ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7451        /* cache the active egress rate (units {10^6 bits/sec]) */
7452        ppd->current_egress_rate = active_egress_rate(ppd);
7453}
7454
7455/*
7456 * Handle a verify capabilities interrupt from the 8051.
7457 *
7458 * This is a work-queue function outside of the interrupt.
7459 */
7460void handle_verify_cap(struct work_struct *work)
7461{
7462        struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7463                                                                link_vc_work);
7464        struct hfi1_devdata *dd = ppd->dd;
7465        u64 reg;
7466        u8 power_management;
7467        u8 continuous;
7468        u8 vcu;
7469        u8 vau;
7470        u8 z;
7471        u16 vl15buf;
7472        u16 link_widths;
7473        u16 crc_mask;
7474        u16 crc_val;
7475        u16 device_id;
7476        u16 active_tx, active_rx;
7477        u8 partner_supported_crc;
7478        u8 remote_tx_rate;
7479        u8 device_rev;
7480
7481        set_link_state(ppd, HLS_VERIFY_CAP);
7482
7483        lcb_shutdown(dd, 0);
7484        adjust_lcb_for_fpga_serdes(dd);
7485
7486        read_vc_remote_phy(dd, &power_management, &continuous);
7487        read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7488                              &partner_supported_crc);
7489        read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7490        read_remote_device_id(dd, &device_id, &device_rev);
7491
7492        /* print the active widths */
7493        get_link_widths(dd, &active_tx, &active_rx);
7494        dd_dev_info(dd,
7495                    "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7496                    (int)power_management, (int)continuous);
7497        dd_dev_info(dd,
7498                    "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7499                    (int)vau, (int)z, (int)vcu, (int)vl15buf,
7500                    (int)partner_supported_crc);
7501        dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7502                    (u32)remote_tx_rate, (u32)link_widths);
7503        dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7504                    (u32)device_id, (u32)device_rev);
7505        /*
7506         * The peer vAU value just read is the peer receiver value.  HFI does
7507         * not support a transmit vAU of 0 (AU == 8).  We advertised that
7508         * with Z=1 in the fabric capabilities sent to the peer.  The peer
7509         * will see our Z=1, and, if it advertised a vAU of 0, will move its
7510         * receive to vAU of 1 (AU == 16).  Do the same here.  We do not care
7511         * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7512         * subject to the Z value exception.
7513         */
7514        if (vau == 0)
7515                vau = 1;
7516        set_up_vau(dd, vau);
7517
7518        /*
7519         * Set VL15 credits to 0 in global credit register. Cache remote VL15
7520         * credits value and wait for link-up interrupt ot set it.
7521         */
7522        set_up_vl15(dd, 0);
7523        dd->vl15buf_cached = vl15buf;
7524
7525        /* set up the LCB CRC mode */
7526        crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7527
7528        /* order is important: use the lowest bit in common */
7529        if (crc_mask & CAP_CRC_14B)
7530                crc_val = LCB_CRC_14B;
7531        else if (crc_mask & CAP_CRC_48B)
7532                crc_val = LCB_CRC_48B;
7533        else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7534                crc_val = LCB_CRC_12B_16B_PER_LANE;
7535        else
7536                crc_val = LCB_CRC_16B;
7537
7538        dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7539        write_csr(dd, DC_LCB_CFG_CRC_MODE,
7540                  (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7541
7542        /* set (14b only) or clear sideband credit */
7543        reg = read_csr(dd, SEND_CM_CTRL);
7544        if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7545                write_csr(dd, SEND_CM_CTRL,
7546                          reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7547        } else {
7548                write_csr(dd, SEND_CM_CTRL,
7549                          reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7550        }
7551
7552        ppd->link_speed_active = 0;     /* invalid value */
7553        if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
7554                /* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7555                switch (remote_tx_rate) {
7556                case 0:
7557                        ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7558                        break;
7559                case 1:
7560                        ppd->link_speed_active = OPA_LINK_SPEED_25G;
7561                        break;
7562                }
7563        } else {
7564                /* actual rate is highest bit of the ANDed rates */
7565                u8 rate = remote_tx_rate & ppd->local_tx_rate;
7566
7567                if (rate & 2)
7568                        ppd->link_speed_active = OPA_LINK_SPEED_25G;
7569                else if (rate & 1)
7570                        ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7571        }
7572        if (ppd->link_speed_active == 0) {
7573                dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7574                           __func__, (int)remote_tx_rate);
7575                ppd->link_speed_active = OPA_LINK_SPEED_25G;
7576        }
7577
7578        /*
7579         * Cache the values of the supported, enabled, and active
7580         * LTP CRC modes to return in 'portinfo' queries. But the bit
7581         * flags that are returned in the portinfo query differ from
7582         * what's in the link_crc_mask, crc_sizes, and crc_val
7583         * variables. Convert these here.
7584         */
7585        ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7586                /* supported crc modes */
7587        ppd->port_ltp_crc_mode |=
7588                cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7589                /* enabled crc modes */
7590        ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7591                /* active crc mode */
7592
7593        /* set up the remote credit return table */
7594        assign_remote_cm_au_table(dd, vcu);
7595
7596        /*
7597         * The LCB is reset on entry to handle_verify_cap(), so this must
7598         * be applied on every link up.
7599         *
7600         * Adjust LCB error kill enable to kill the link if
7601         * these RBUF errors are seen:
7602         *      REPLAY_BUF_MBE_SMASK
7603         *      FLIT_INPUT_BUF_MBE_SMASK
7604         */
7605        if (is_ax(dd)) {                        /* fixed in B0 */
7606                reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7607                reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7608                        | DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7609                write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7610        }
7611
7612        /* pull LCB fifos out of reset - all fifo clocks must be stable */
7613        write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7614
7615        /* give 8051 access to the LCB CSRs */
7616        write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7617        set_8051_lcb_access(dd);
7618
7619        /* tell the 8051 to go to LinkUp */
7620        set_link_state(ppd, HLS_GOING_UP);
7621}
7622
7623/**
7624 * apply_link_downgrade_policy - Apply the link width downgrade enabled
7625 * policy against the current active link widths.
7626 * @ppd: info of physical Hfi port
7627 * @refresh_widths: True indicates link downgrade event
7628 * @return: True indicates a successful link downgrade. False indicates
7629 *          link downgrade event failed and the link will bounce back to
7630 *          default link width.
7631 *
7632 * Called when the enabled policy changes or the active link widths
7633 * change.
7634 * Refresh_widths indicates that a link downgrade occurred. The
7635 * link_downgraded variable is set by refresh_widths and
7636 * determines the success/failure of the policy application.
7637 */
7638bool apply_link_downgrade_policy(struct hfi1_pportdata *ppd,
7639                                 bool refresh_widths)
7640{
7641        int do_bounce = 0;
7642        int tries;
7643        u16 lwde;
7644        u16 tx, rx;
7645        bool link_downgraded = refresh_widths;
7646
7647        /* use the hls lock to avoid a race with actual link up */
7648        tries = 0;
7649retry:
7650        mutex_lock(&ppd->hls_lock);
7651        /* only apply if the link is up */
7652        if (ppd->host_link_state & HLS_DOWN) {
7653                /* still going up..wait and retry */
7654                if (ppd->host_link_state & HLS_GOING_UP) {
7655                        if (++tries < 1000) {
7656                                mutex_unlock(&ppd->hls_lock);
7657                                usleep_range(100, 120); /* arbitrary */
7658                                goto retry;
7659                        }
7660                        dd_dev_err(ppd->dd,
7661                                   "%s: giving up waiting for link state change\n",
7662                                   __func__);
7663                }
7664                goto done;
7665        }
7666
7667        lwde = ppd->link_width_downgrade_enabled;
7668
7669        if (refresh_widths) {
7670                get_link_widths(ppd->dd, &tx, &rx);
7671                ppd->link_width_downgrade_tx_active = tx;
7672                ppd->link_width_downgrade_rx_active = rx;
7673        }
7674
7675        if (ppd->link_width_downgrade_tx_active == 0 ||
7676            ppd->link_width_downgrade_rx_active == 0) {
7677                /* the 8051 reported a dead link as a downgrade */
7678                dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
7679                link_downgraded = false;
7680        } else if (lwde == 0) {
7681                /* downgrade is disabled */
7682
7683                /* bounce if not at starting active width */
7684                if ((ppd->link_width_active !=
7685                     ppd->link_width_downgrade_tx_active) ||
7686                    (ppd->link_width_active !=
7687                     ppd->link_width_downgrade_rx_active)) {
7688                        dd_dev_err(ppd->dd,
7689                                   "Link downgrade is disabled and link has downgraded, downing link\n");
7690                        dd_dev_err(ppd->dd,
7691                                   "  original 0x%x, tx active 0x%x, rx active 0x%x\n",
7692                                   ppd->link_width_active,
7693                                   ppd->link_width_downgrade_tx_active,
7694                                   ppd->link_width_downgrade_rx_active);
7695                        do_bounce = 1;
7696                        link_downgraded = false;
7697                }
7698        } else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7699                   (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7700                /* Tx or Rx is outside the enabled policy */
7701                dd_dev_err(ppd->dd,
7702                           "Link is outside of downgrade allowed, downing link\n");
7703                dd_dev_err(ppd->dd,
7704                           "  enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7705                           lwde, ppd->link_width_downgrade_tx_active,
7706                           ppd->link_width_downgrade_rx_active);
7707                do_bounce = 1;
7708                link_downgraded = false;
7709        }
7710
7711done:
7712        mutex_unlock(&ppd->hls_lock);
7713
7714        if (do_bounce) {
7715                set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7716                                     OPA_LINKDOWN_REASON_WIDTH_POLICY);
7717                set_link_state(ppd, HLS_DN_OFFLINE);
7718                start_link(ppd);
7719        }
7720
7721        return link_downgraded;
7722}
7723
7724/*
7725 * Handle a link downgrade interrupt from the 8051.
7726 *
7727 * This is a work-queue function outside of the interrupt.
7728 */
7729void handle_link_downgrade(struct work_struct *work)
7730{
7731        struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7732                                                        link_downgrade_work);
7733
7734        dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7735        if (apply_link_downgrade_policy(ppd, true))
7736                update_xmit_counters(ppd, ppd->link_width_downgrade_tx_active);
7737}
7738
7739static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7740{
7741        return flag_string(buf, buf_len, flags, dcc_err_flags,
7742                ARRAY_SIZE(dcc_err_flags));
7743}
7744
7745static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7746{
7747        return flag_string(buf, buf_len, flags, lcb_err_flags,
7748                ARRAY_SIZE(lcb_err_flags));
7749}
7750
7751static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7752{
7753        return flag_string(buf, buf_len, flags, dc8051_err_flags,
7754                ARRAY_SIZE(dc8051_err_flags));
7755}
7756
7757static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7758{
7759        return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7760                ARRAY_SIZE(dc8051_info_err_flags));
7761}
7762
7763static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7764{
7765        return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7766                ARRAY_SIZE(dc8051_info_host_msg_flags));
7767}
7768
7769static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7770{
7771        struct hfi1_pportdata *ppd = dd->pport;
7772        u64 info, err, host_msg;
7773        int queue_link_down = 0;
7774        char buf[96];
7775
7776        /* look at the flags */
7777        if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7778                /* 8051 information set by firmware */
7779                /* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7780                info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7781                err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7782                        & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7783                host_msg = (info >>
7784                        DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7785                        & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7786
7787                /*
7788                 * Handle error flags.
7789                 */
7790                if (err & FAILED_LNI) {
7791                        /*
7792                         * LNI error indications are cleared by the 8051
7793                         * only when starting polling.  Only pay attention
7794                         * to them when in the states that occur during
7795                         * LNI.
7796                         */
7797                        if (ppd->host_link_state
7798                            & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7799                                queue_link_down = 1;
7800                                dd_dev_info(dd, "Link error: %s\n",
7801                                            dc8051_info_err_string(buf,
7802                                                                   sizeof(buf),
7803                                                                   err &
7804                                                                   FAILED_LNI));
7805                        }
7806                        err &= ~(u64)FAILED_LNI;
7807                }
7808                /* unknown frames can happen durning LNI, just count */
7809                if (err & UNKNOWN_FRAME) {
7810                        ppd->unknown_frame_count++;
7811                        err &= ~(u64)UNKNOWN_FRAME;
7812                }
7813                if (err) {
7814                        /* report remaining errors, but do not do anything */
7815                        dd_dev_err(dd, "8051 info error: %s\n",
7816                                   dc8051_info_err_string(buf, sizeof(buf),
7817                                                          err));
7818                }
7819
7820                /*
7821                 * Handle host message flags.
7822                 */
7823                if (host_msg & HOST_REQ_DONE) {
7824                        /*
7825                         * Presently, the driver does a busy wait for
7826                         * host requests to complete.  This is only an
7827                         * informational message.
7828                         * NOTE: The 8051 clears the host message
7829                         * information *on the next 8051 command*.
7830                         * Therefore, when linkup is achieved,
7831                         * this flag will still be set.
7832                         */
7833                        host_msg &= ~(u64)HOST_REQ_DONE;
7834                }
7835                if (host_msg & BC_SMA_MSG) {
7836                        queue_work(ppd->link_wq, &ppd->sma_message_work);
7837                        host_msg &= ~(u64)BC_SMA_MSG;
7838                }
7839                if (host_msg & LINKUP_ACHIEVED) {
7840                        dd_dev_info(dd, "8051: Link up\n");
7841                        queue_work(ppd->link_wq, &ppd->link_up_work);
7842                        host_msg &= ~(u64)LINKUP_ACHIEVED;
7843                }
7844                if (host_msg & EXT_DEVICE_CFG_REQ) {
7845                        handle_8051_request(ppd);
7846                        host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7847                }
7848                if (host_msg & VERIFY_CAP_FRAME) {
7849                        queue_work(ppd->link_wq, &ppd->link_vc_work);
7850                        host_msg &= ~(u64)VERIFY_CAP_FRAME;
7851                }
7852                if (host_msg & LINK_GOING_DOWN) {
7853                        const char *extra = "";
7854                        /* no downgrade action needed if going down */
7855                        if (host_msg & LINK_WIDTH_DOWNGRADED) {
7856                                host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7857                                extra = " (ignoring downgrade)";
7858                        }
7859                        dd_dev_info(dd, "8051: Link down%s\n", extra);
7860                        queue_link_down = 1;
7861                        host_msg &= ~(u64)LINK_GOING_DOWN;
7862                }
7863                if (host_msg & LINK_WIDTH_DOWNGRADED) {
7864                        queue_work(ppd->link_wq, &ppd->link_downgrade_work);
7865                        host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7866                }
7867                if (host_msg) {
7868                        /* report remaining messages, but do not do anything */
7869                        dd_dev_info(dd, "8051 info host message: %s\n",
7870                                    dc8051_info_host_msg_string(buf,
7871                                                                sizeof(buf),
7872                                                                host_msg));
7873                }
7874
7875                reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7876        }
7877        if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7878                /*
7879                 * Lost the 8051 heartbeat.  If this happens, we
7880                 * receive constant interrupts about it.  Disable
7881                 * the interrupt after the first.
7882                 */
7883                dd_dev_err(dd, "Lost 8051 heartbeat\n");
7884                write_csr(dd, DC_DC8051_ERR_EN,
7885                          read_csr(dd, DC_DC8051_ERR_EN) &
7886                          ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7887
7888                reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7889        }
7890        if (reg) {
7891                /* report the error, but do not do anything */
7892                dd_dev_err(dd, "8051 error: %s\n",
7893                           dc8051_err_string(buf, sizeof(buf), reg));
7894        }
7895
7896        if (queue_link_down) {
7897                /*
7898                 * if the link is already going down or disabled, do not
7899                 * queue another. If there's a link down entry already
7900                 * queued, don't queue another one.
7901                 */
7902                if ((ppd->host_link_state &
7903                    (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7904                    ppd->link_enabled == 0) {
7905                        dd_dev_info(dd, "%s: not queuing link down. host_link_state %x, link_enabled %x\n",
7906                                    __func__, ppd->host_link_state,
7907                                    ppd->link_enabled);
7908                } else {
7909                        if (xchg(&ppd->is_link_down_queued, 1) == 1)
7910                                dd_dev_info(dd,
7911                                            "%s: link down request already queued\n",
7912                                            __func__);
7913                        else
7914                                queue_work(ppd->link_wq, &ppd->link_down_work);
7915                }
7916        }
7917}
7918
7919static const char * const fm_config_txt[] = {
7920[0] =
7921        "BadHeadDist: Distance violation between two head flits",
7922[1] =
7923        "BadTailDist: Distance violation between two tail flits",
7924[2] =
7925        "BadCtrlDist: Distance violation between two credit control flits",
7926[3] =
7927        "BadCrdAck: Credits return for unsupported VL",
7928[4] =
7929        "UnsupportedVLMarker: Received VL Marker",
7930[5] =
7931        "BadPreempt: Exceeded the preemption nesting level",
7932[6] =
7933        "BadControlFlit: Received unsupported control flit",
7934/* no 7 */
7935[8] =
7936        "UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7937};
7938
7939static const char * const port_rcv_txt[] = {
7940[1] =
7941        "BadPktLen: Illegal PktLen",
7942[2] =
7943        "PktLenTooLong: Packet longer than PktLen",
7944[3] =
7945        "PktLenTooShort: Packet shorter than PktLen",
7946[4] =
7947        "BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7948[5] =
7949        "BadDLID: Illegal DLID (0, doesn't match HFI)",
7950[6] =
7951        "BadL2: Illegal L2 opcode",
7952[7] =
7953        "BadSC: Unsupported SC",
7954[9] =
7955        "BadRC: Illegal RC",
7956[11] =
7957        "PreemptError: Preempting with same VL",
7958[12] =
7959        "PreemptVL15: Preempting a VL15 packet",
7960};
7961
7962#define OPA_LDR_FMCONFIG_OFFSET 16
7963#define OPA_LDR_PORTRCV_OFFSET 0
7964static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7965{
7966        u64 info, hdr0, hdr1;
7967        const char *extra;
7968        char buf[96];
7969        struct hfi1_pportdata *ppd = dd->pport;
7970        u8 lcl_reason = 0;
7971        int do_bounce = 0;
7972
7973        if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7974                if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7975                        info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7976                        dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7977                        /* set status bit */
7978                        dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7979                }
7980                reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7981        }
7982
7983        if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7984                struct hfi1_pportdata *ppd = dd->pport;
7985                /* this counter saturates at (2^32) - 1 */
7986                if (ppd->link_downed < (u32)UINT_MAX)
7987                        ppd->link_downed++;
7988                reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7989        }
7990
7991        if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7992                u8 reason_valid = 1;
7993
7994                info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7995                if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7996                        dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7997                        /* set status bit */
7998                        dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7999                }
8000                switch (info) {
8001                case 0:
8002                case 1:
8003                case 2:
8004                case 3:
8005                case 4:
8006                case 5:
8007                case 6:
8008                        extra = fm_config_txt[info];
8009                        break;
8010                case 8:
8011                        extra = fm_config_txt[info];
8012                        if (ppd->port_error_action &
8013                            OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
8014                                do_bounce = 1;
8015                                /*
8016                                 * lcl_reason cannot be derived from info
8017                                 * for this error
8018                                 */
8019                                lcl_reason =
8020                                  OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
8021                        }
8022                        break;
8023                default:
8024                        reason_valid = 0;
8025                        snprintf(buf, sizeof(buf), "reserved%lld", info);
8026                        extra = buf;
8027                        break;
8028                }
8029
8030                if (reason_valid && !do_bounce) {
8031                        do_bounce = ppd->port_error_action &
8032                                        (1 << (OPA_LDR_FMCONFIG_OFFSET + info));
8033                        lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
8034                }
8035
8036                /* just report this */
8037                dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n",
8038                                        extra);
8039                reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
8040        }
8041
8042        if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
8043                u8 reason_valid = 1;
8044
8045                info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
8046                hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
8047                hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
8048                if (!(dd->err_info_rcvport.status_and_code &
8049                      OPA_EI_STATUS_SMASK)) {
8050                        dd->err_info_rcvport.status_and_code =
8051                                info & OPA_EI_CODE_SMASK;
8052                        /* set status bit */
8053                        dd->err_info_rcvport.status_and_code |=
8054                                OPA_EI_STATUS_SMASK;
8055                        /*
8056                         * save first 2 flits in the packet that caused
8057                         * the error
8058                         */
8059                        dd->err_info_rcvport.packet_flit1 = hdr0;
8060                        dd->err_info_rcvport.packet_flit2 = hdr1;
8061                }
8062                switch (info) {
8063                case 1:
8064                case 2:
8065                case 3:
8066                case 4:
8067                case 5:
8068                case 6:
8069                case 7:
8070                case 9:
8071                case 11:
8072                case 12:
8073                        extra = port_rcv_txt[info];
8074                        break;
8075                default:
8076                        reason_valid = 0;
8077                        snprintf(buf, sizeof(buf), "reserved%lld", info);
8078                        extra = buf;
8079                        break;
8080                }
8081
8082                if (reason_valid && !do_bounce) {
8083                        do_bounce = ppd->port_error_action &
8084                                        (1 << (OPA_LDR_PORTRCV_OFFSET + info));
8085                        lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
8086                }
8087
8088                /* just report this */
8089                dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n"
8090                                        "               hdr0 0x%llx, hdr1 0x%llx\n",
8091                                        extra, hdr0, hdr1);
8092
8093                reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
8094        }
8095
8096        if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
8097                /* informative only */
8098                dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n");
8099                reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
8100        }
8101        if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
8102                /* informative only */
8103                dd_dev_info_ratelimited(dd, "host access to LCB blocked\n");
8104                reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
8105        }
8106
8107        if (unlikely(hfi1_dbg_fault_suppress_err(&dd->verbs_dev)))
8108                reg &= ~DCC_ERR_FLG_LATE_EBP_ERR_SMASK;
8109
8110        /* report any remaining errors */
8111        if (reg)
8112                dd_dev_info_ratelimited(dd, "DCC Error: %s\n",
8113                                        dcc_err_string(buf, sizeof(buf), reg));
8114
8115        if (lcl_reason == 0)
8116                lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
8117
8118        if (do_bounce) {
8119                dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n",
8120                                        __func__);
8121                set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
8122                queue_work(ppd->link_wq, &ppd->link_bounce_work);
8123        }
8124}
8125
8126static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
8127{
8128        char buf[96];
8129
8130        dd_dev_info(dd, "LCB Error: %s\n",
8131                    lcb_err_string(buf, sizeof(buf), reg));
8132}
8133
8134/*
8135 * CCE block DC interrupt.  Source is < 8.
8136 */
8137static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
8138{
8139        const struct err_reg_info *eri = &dc_errs[source];
8140
8141        if (eri->handler) {
8142                interrupt_clear_down(dd, 0, eri);
8143        } else if (source == 3 /* dc_lbm_int */) {
8144                /*
8145                 * This indicates that a parity error has occurred on the
8146                 * address/control lines presented to the LBM.  The error
8147                 * is a single pulse, there is no associated error flag,
8148                 * and it is non-maskable.  This is because if a parity
8149                 * error occurs on the request the request is dropped.
8150                 * This should never occur, but it is nice to know if it
8151                 * ever does.
8152                 */
8153                dd_dev_err(dd, "Parity error in DC LBM block\n");
8154        } else {
8155                dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
8156        }
8157}
8158
8159/*
8160 * TX block send credit interrupt.  Source is < 160.
8161 */
8162static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
8163{
8164        sc_group_release_update(dd, source);
8165}
8166
8167/*
8168 * TX block SDMA interrupt.  Source is < 48.
8169 *
8170 * SDMA interrupts are grouped by type:
8171 *
8172 *       0 -  N-1 = SDma
8173 *       N - 2N-1 = SDmaProgress
8174 *      2N - 3N-1 = SDmaIdle
8175 */
8176static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
8177{
8178        /* what interrupt */
8179        unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
8180        /* which engine */
8181        unsigned int which = source % TXE_NUM_SDMA_ENGINES;
8182
8183#ifdef CONFIG_SDMA_VERBOSITY
8184        dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
8185                   slashstrip(__FILE__), __LINE__, __func__);
8186        sdma_dumpstate(&dd->per_sdma[which]);
8187#endif
8188
8189        if (likely(what < 3 && which < dd->num_sdma)) {
8190                sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
8191        } else {
8192                /* should not happen */
8193                dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
8194        }
8195}
8196
8197/**
8198 * is_rcv_avail_int() - User receive context available IRQ handler
8199 * @dd: valid dd
8200 * @source: logical IRQ source (offset from IS_RCVAVAIL_START)
8201 *
8202 * RX block receive available interrupt.  Source is < 160.
8203 *
8204 * This is the general interrupt handler for user (PSM) receive contexts,
8205 * and can only be used for non-threaded IRQs.
8206 */
8207static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
8208{
8209        struct hfi1_ctxtdata *rcd;
8210        char *err_detail;
8211
8212        if (likely(source < dd->num_rcv_contexts)) {
8213                rcd = hfi1_rcd_get_by_index(dd, source);
8214                if (rcd) {
8215                        handle_user_interrupt(rcd);
8216                        hfi1_rcd_put(rcd);
8217                        return; /* OK */
8218                }
8219                /* received an interrupt, but no rcd */
8220                err_detail = "dataless";
8221        } else {
8222                /* received an interrupt, but are not using that context */
8223                err_detail = "out of range";
8224        }
8225        dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
8226                   err_detail, source);
8227}
8228
8229/**
8230 * is_rcv_urgent_int() - User receive context urgent IRQ handler
8231 * @dd: valid dd
8232 * @source: logical IRQ source (offset from IS_RCVURGENT_START)
8233 *
8234 * RX block receive urgent interrupt.  Source is < 160.
8235 *
8236 * NOTE: kernel receive contexts specifically do NOT enable this IRQ.
8237 */
8238static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
8239{
8240        struct hfi1_ctxtdata *rcd;
8241        char *err_detail;
8242
8243        if (likely(source < dd->num_rcv_contexts)) {
8244                rcd = hfi1_rcd_get_by_index(dd, source);
8245                if (rcd) {
8246                        handle_user_interrupt(rcd);
8247                        hfi1_rcd_put(rcd);
8248                        return; /* OK */
8249                }
8250                /* received an interrupt, but no rcd */
8251                err_detail = "dataless";
8252        } else {
8253                /* received an interrupt, but are not using that context */
8254                err_detail = "out of range";
8255        }
8256        dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
8257                   err_detail, source);
8258}
8259
8260/*
8261 * Reserved range interrupt.  Should not be called in normal operation.
8262 */
8263static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
8264{
8265        char name[64];
8266
8267        dd_dev_err(dd, "unexpected %s interrupt\n",
8268                   is_reserved_name(name, sizeof(name), source));
8269}
8270
8271static const struct is_table is_table[] = {
8272/*
8273 * start                 end
8274 *                              name func               interrupt func
8275 */
8276{ IS_GENERAL_ERR_START,  IS_GENERAL_ERR_END,
8277                                is_misc_err_name,       is_misc_err_int },
8278{ IS_SDMAENG_ERR_START,  IS_SDMAENG_ERR_END,
8279                                is_sdma_eng_err_name,   is_sdma_eng_err_int },
8280{ IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
8281                                is_sendctxt_err_name,   is_sendctxt_err_int },
8282{ IS_SDMA_START,             IS_SDMA_IDLE_END,
8283                                is_sdma_eng_name,       is_sdma_eng_int },
8284{ IS_VARIOUS_START,          IS_VARIOUS_END,
8285                                is_various_name,        is_various_int },
8286{ IS_DC_START,       IS_DC_END,
8287                                is_dc_name,             is_dc_int },
8288{ IS_RCVAVAIL_START,     IS_RCVAVAIL_END,
8289                                is_rcv_avail_name,      is_rcv_avail_int },
8290{ IS_RCVURGENT_START,    IS_RCVURGENT_END,
8291                                is_rcv_urgent_name,     is_rcv_urgent_int },
8292{ IS_SENDCREDIT_START,   IS_SENDCREDIT_END,
8293                                is_send_credit_name,    is_send_credit_int},
8294{ IS_RESERVED_START,     IS_RESERVED_END,
8295                                is_reserved_name,       is_reserved_int},
8296};
8297
8298/*
8299 * Interrupt source interrupt - called when the given source has an interrupt.
8300 * Source is a bit index into an array of 64-bit integers.
8301 */
8302static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
8303{
8304        const struct is_table *entry;
8305
8306        /* avoids a double compare by walking the table in-order */
8307        for (entry = &is_table[0]; entry->is_name; entry++) {
8308                if (source <= entry->end) {
8309                        trace_hfi1_interrupt(dd, entry, source);
8310                        entry->is_int(dd, source - entry->start);
8311                        return;
8312                }
8313        }
8314        /* fell off the end */
8315        dd_dev_err(dd, "invalid interrupt source %u\n", source);
8316}
8317
8318/**
8319 * gerneral_interrupt() -  General interrupt handler
8320 * @irq: MSIx IRQ vector
8321 * @data: hfi1 devdata
8322 *
8323 * This is able to correctly handle all non-threaded interrupts.  Receive
8324 * context DATA IRQs are threaded and are not supported by this handler.
8325 *
8326 */
8327irqreturn_t general_interrupt(int irq, void *data)
8328{
8329        struct hfi1_devdata *dd = data;
8330        u64 regs[CCE_NUM_INT_CSRS];
8331        u32 bit;
8332        int i;
8333        irqreturn_t handled = IRQ_NONE;
8334
8335        this_cpu_inc(*dd->int_counter);
8336
8337        /* phase 1: scan and clear all handled interrupts */
8338        for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8339                if (dd->gi_mask[i] == 0) {
8340                        regs[i] = 0;    /* used later */
8341                        continue;
8342                }
8343                regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8344                                dd->gi_mask[i];
8345                /* only clear if anything is set */
8346                if (regs[i])
8347                        write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8348        }
8349
8350        /* phase 2: call the appropriate handler */
8351        for_each_set_bit(bit, (unsigned long *)&regs[0],
8352                         CCE_NUM_INT_CSRS * 64) {
8353                is_interrupt(dd, bit);
8354                handled = IRQ_HANDLED;
8355        }
8356
8357        return handled;
8358}
8359
8360irqreturn_t sdma_interrupt(int irq, void *data)
8361{
8362        struct sdma_engine *sde = data;
8363        struct hfi1_devdata *dd = sde->dd;
8364        u64 status;
8365
8366#ifdef CONFIG_SDMA_VERBOSITY
8367        dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8368                   slashstrip(__FILE__), __LINE__, __func__);
8369        sdma_dumpstate(sde);
8370#endif
8371
8372        this_cpu_inc(*dd->int_counter);
8373
8374        /* This read_csr is really bad in the hot path */
8375        status = read_csr(dd,
8376                          CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8377                          & sde->imask;
8378        if (likely(status)) {
8379                /* clear the interrupt(s) */
8380                write_csr(dd,
8381                          CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8382                          status);
8383
8384                /* handle the interrupt(s) */
8385                sdma_engine_interrupt(sde, status);
8386        } else {
8387                dd_dev_info_ratelimited(dd, "SDMA engine %u interrupt, but no status bits set\n",
8388                                        sde->this_idx);
8389        }
8390        return IRQ_HANDLED;
8391}
8392
8393/*
8394 * Clear the receive interrupt.  Use a read of the interrupt clear CSR
8395 * to insure that the write completed.  This does NOT guarantee that
8396 * queued DMA writes to memory from the chip are pushed.
8397 */
8398static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8399{
8400        struct hfi1_devdata *dd = rcd->dd;
8401        u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8402
8403        write_csr(dd, addr, rcd->imask);
8404        /* force the above write on the chip and get a value back */
8405        (void)read_csr(dd, addr);
8406}
8407
8408/* force the receive interrupt */
8409void force_recv_intr(struct hfi1_ctxtdata *rcd)
8410{
8411        write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8412}
8413
8414/*
8415 * Return non-zero if a packet is present.
8416 *
8417 * This routine is called when rechecking for packets after the RcvAvail
8418 * interrupt has been cleared down.  First, do a quick check of memory for
8419 * a packet present.  If not found, use an expensive CSR read of the context
8420 * tail to determine the actual tail.  The CSR read is necessary because there
8421 * is no method to push pending DMAs to memory other than an interrupt and we
8422 * are trying to determine if we need to force an interrupt.
8423 */
8424static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8425{
8426        u32 tail;
8427
8428        if (hfi1_packet_present(rcd))
8429                return 1;
8430
8431        /* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8432        tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8433        return hfi1_rcd_head(rcd) != tail;
8434}
8435
8436/**
8437 * Common code for receive contexts interrupt handlers.
8438 * Update traces, increment kernel IRQ counter and
8439 * setup ASPM when needed.
8440 */
8441static void receive_interrupt_common(struct hfi1_ctxtdata *rcd)
8442{
8443        struct hfi1_devdata *dd = rcd->dd;
8444
8445        trace_hfi1_receive_interrupt(dd, rcd);
8446        this_cpu_inc(*dd->int_counter);
8447        aspm_ctx_disable(rcd);
8448}
8449
8450/**
8451 * __hfi1_rcd_eoi_intr() - Make HW issue receive interrupt
8452 * when there are packets present in the queue. When calling
8453 * with interrupts enabled please use hfi1_rcd_eoi_intr.
8454 *
8455 * @rcd: valid receive context
8456 */
8457static void __hfi1_rcd_eoi_intr(struct hfi1_ctxtdata *rcd)
8458{
8459        clear_recv_intr(rcd);
8460        if (check_packet_present(rcd))
8461                force_recv_intr(rcd);
8462}
8463
8464/**
8465 * hfi1_rcd_eoi_intr() - End of Interrupt processing action
8466 *
8467 * @rcd: Ptr to hfi1_ctxtdata of receive context
8468 *
8469 *  Hold IRQs so we can safely clear the interrupt and
8470 *  recheck for a packet that may have arrived after the previous
8471 *  check and the interrupt clear.  If a packet arrived, force another
8472 *  interrupt. This routine can be called at the end of receive packet
8473 *  processing in interrupt service routines, interrupt service thread
8474 *  and softirqs
8475 */
8476static void hfi1_rcd_eoi_intr(struct hfi1_ctxtdata *rcd)
8477{
8478        unsigned long flags;
8479
8480        local_irq_save(flags);
8481        __hfi1_rcd_eoi_intr(rcd);
8482        local_irq_restore(flags);
8483}
8484
8485/**
8486 * hfi1_netdev_rx_napi - napi poll function to move eoi inline
8487 * @napi - pointer to napi object
8488 * @budget - netdev budget
8489 */
8490int hfi1_netdev_rx_napi(struct napi_struct *napi, int budget)
8491{
8492        struct hfi1_netdev_rxq *rxq = container_of(napi,
8493                        struct hfi1_netdev_rxq, napi);
8494        struct hfi1_ctxtdata *rcd = rxq->rcd;
8495        int work_done = 0;
8496
8497        work_done = rcd->do_interrupt(rcd, budget);
8498
8499        if (work_done < budget) {
8500                napi_complete_done(napi, work_done);
8501                hfi1_rcd_eoi_intr(rcd);
8502        }
8503
8504        return work_done;
8505}
8506
8507/* Receive packet napi handler for netdevs VNIC and AIP  */
8508irqreturn_t receive_context_interrupt_napi(int irq, void *data)
8509{
8510        struct hfi1_ctxtdata *rcd = data;
8511
8512        receive_interrupt_common(rcd);
8513
8514        if (likely(rcd->napi)) {
8515                if (likely(napi_schedule_prep(rcd->napi)))
8516                        __napi_schedule_irqoff(rcd->napi);
8517                else
8518                        __hfi1_rcd_eoi_intr(rcd);
8519        } else {
8520                WARN_ONCE(1, "Napi IRQ handler without napi set up ctxt=%d\n",
8521                          rcd->ctxt);
8522                __hfi1_rcd_eoi_intr(rcd);
8523        }
8524
8525        return IRQ_HANDLED;
8526}
8527
8528/*
8529 * Receive packet IRQ handler.  This routine expects to be on its own IRQ.
8530 * This routine will try to handle packets immediately (latency), but if
8531 * it finds too many, it will invoke the thread handler (bandwitdh).  The
8532 * chip receive interrupt is *not* cleared down until this or the thread (if
8533 * invoked) is finished.  The intent is to avoid extra interrupts while we
8534 * are processing packets anyway.
8535 */
8536irqreturn_t receive_context_interrupt(int irq, void *data)
8537{
8538        struct hfi1_ctxtdata *rcd = data;
8539        int disposition;
8540
8541        receive_interrupt_common(rcd);
8542
8543        /* receive interrupt remains blocked while processing packets */
8544        disposition = rcd->do_interrupt(rcd, 0);
8545
8546        /*
8547         * Too many packets were seen while processing packets in this
8548         * IRQ handler.  Invoke the handler thread.  The receive interrupt
8549         * remains blocked.
8550         */
8551        if (disposition == RCV_PKT_LIMIT)
8552                return IRQ_WAKE_THREAD;
8553
8554        __hfi1_rcd_eoi_intr(rcd);
8555        return IRQ_HANDLED;
8556}
8557
8558/*
8559 * Receive packet thread handler.  This expects to be invoked with the
8560 * receive interrupt still blocked.
8561 */
8562irqreturn_t receive_context_thread(int irq, void *data)
8563{
8564        struct hfi1_ctxtdata *rcd = data;
8565
8566        /* receive interrupt is still blocked from the IRQ handler */
8567        (void)rcd->do_interrupt(rcd, 1);
8568
8569        hfi1_rcd_eoi_intr(rcd);
8570
8571        return IRQ_HANDLED;
8572}
8573
8574/* ========================================================================= */
8575
8576u32 read_physical_state(struct hfi1_devdata *dd)
8577{
8578        u64 reg;
8579
8580        reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8581        return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8582                                & DC_DC8051_STS_CUR_STATE_PORT_MASK;
8583}
8584
8585u32 read_logical_state(struct hfi1_devdata *dd)
8586{
8587        u64 reg;
8588
8589        reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8590        return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8591                                & DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8592}
8593
8594static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8595{
8596        u64 reg;
8597
8598        reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8599        /* clear current state, set new state */
8600        reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8601        reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8602        write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8603}
8604
8605/*
8606 * Use the 8051 to read a LCB CSR.
8607 */
8608static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8609{
8610        u32 regno;
8611        int ret;
8612
8613        if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8614                if (acquire_lcb_access(dd, 0) == 0) {
8615                        *data = read_csr(dd, addr);
8616                        release_lcb_access(dd, 0);
8617                        return 0;
8618                }
8619                return -EBUSY;
8620        }
8621
8622        /* register is an index of LCB registers: (offset - base) / 8 */
8623        regno = (addr - DC_LCB_CFG_RUN) >> 3;
8624        ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8625        if (ret != HCMD_SUCCESS)
8626                return -EBUSY;
8627        return 0;
8628}
8629
8630/*
8631 * Provide a cache for some of the LCB registers in case the LCB is
8632 * unavailable.
8633 * (The LCB is unavailable in certain link states, for example.)
8634 */
8635struct lcb_datum {
8636        u32 off;
8637        u64 val;
8638};
8639
8640static struct lcb_datum lcb_cache[] = {
8641        { DC_LCB_ERR_INFO_RX_REPLAY_CNT, 0},
8642        { DC_LCB_ERR_INFO_SEQ_CRC_CNT, 0 },
8643        { DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 0 },
8644};
8645
8646static void update_lcb_cache(struct hfi1_devdata *dd)
8647{
8648        int i;
8649        int ret;
8650        u64 val;
8651
8652        for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8653                ret = read_lcb_csr(dd, lcb_cache[i].off, &val);
8654
8655                /* Update if we get good data */
8656                if (likely(ret != -EBUSY))
8657                        lcb_cache[i].val = val;
8658        }
8659}
8660
8661static int read_lcb_cache(u32 off, u64 *val)
8662{
8663        int i;
8664
8665        for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8666                if (lcb_cache[i].off == off) {
8667                        *val = lcb_cache[i].val;
8668                        return 0;
8669                }
8670        }
8671
8672        pr_warn("%s bad offset 0x%x\n", __func__, off);
8673        return -1;
8674}
8675
8676/*
8677 * Read an LCB CSR.  Access may not be in host control, so check.
8678 * Return 0 on success, -EBUSY on failure.
8679 */
8680int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8681{
8682        struct hfi1_pportdata *ppd = dd->pport;
8683
8684        /* if up, go through the 8051 for the value */
8685        if (ppd->host_link_state & HLS_UP)
8686                return read_lcb_via_8051(dd, addr, data);
8687        /* if going up or down, check the cache, otherwise, no access */
8688        if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) {
8689                if (read_lcb_cache(addr, data))
8690                        return -EBUSY;
8691                return 0;
8692        }
8693
8694        /* otherwise, host has access */
8695        *data = read_csr(dd, addr);
8696        return 0;
8697}
8698
8699/*
8700 * Use the 8051 to write a LCB CSR.
8701 */
8702static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8703{
8704        u32 regno;
8705        int ret;
8706
8707        if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8708            (dd->dc8051_ver < dc8051_ver(0, 20, 0))) {
8709                if (acquire_lcb_access(dd, 0) == 0) {
8710                        write_csr(dd, addr, data);
8711                        release_lcb_access(dd, 0);
8712                        return 0;
8713                }
8714                return -EBUSY;
8715        }
8716
8717        /* register is an index of LCB registers: (offset - base) / 8 */
8718        regno = (addr - DC_LCB_CFG_RUN) >> 3;
8719        ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8720        if (ret != HCMD_SUCCESS)
8721                return -EBUSY;
8722        return 0;
8723}
8724
8725/*
8726 * Write an LCB CSR.  Access may not be in host control, so check.
8727 * Return 0 on success, -EBUSY on failure.
8728 */
8729int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8730{
8731        struct hfi1_pportdata *ppd = dd->pport;
8732
8733        /* if up, go through the 8051 for the value */
8734        if (ppd->host_link_state & HLS_UP)
8735                return write_lcb_via_8051(dd, addr, data);
8736        /* if going up or down, no access */
8737        if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8738                return -EBUSY;
8739        /* otherwise, host has access */
8740        write_csr(dd, addr, data);
8741        return 0;
8742}
8743
8744/*
8745 * Returns:
8746 *      < 0 = Linux error, not able to get access
8747 *      > 0 = 8051 command RETURN_CODE
8748 */
8749static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
8750                           u64 *out_data)
8751{
8752        u64 reg, completed;
8753        int return_code;
8754        unsigned long timeout;
8755
8756        hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8757
8758        mutex_lock(&dd->dc8051_lock);
8759
8760        /* We can't send any commands to the 8051 if it's in reset */
8761        if (dd->dc_shutdown) {
8762                return_code = -ENODEV;
8763                goto fail;
8764        }
8765
8766        /*
8767         * If an 8051 host command timed out previously, then the 8051 is
8768         * stuck.
8769         *
8770         * On first timeout, attempt to reset and restart the entire DC
8771         * block (including 8051). (Is this too big of a hammer?)
8772         *
8773         * If the 8051 times out a second time, the reset did not bring it
8774         * back to healthy life. In that case, fail any subsequent commands.
8775         */
8776        if (dd->dc8051_timed_out) {
8777                if (dd->dc8051_timed_out > 1) {
8778                        dd_dev_err(dd,
8779                                   "Previous 8051 host command timed out, skipping command %u\n",
8780                                   type);
8781                        return_code = -ENXIO;
8782                        goto fail;
8783                }
8784                _dc_shutdown(dd);
8785                _dc_start(dd);
8786        }
8787
8788        /*
8789         * If there is no timeout, then the 8051 command interface is
8790         * waiting for a command.
8791         */
8792
8793        /*
8794         * When writing a LCB CSR, out_data contains the full value to
8795         * to be written, while in_data contains the relative LCB
8796         * address in 7:0.  Do the work here, rather than the caller,
8797         * of distrubting the write data to where it needs to go:
8798         *
8799         * Write data
8800         *   39:00 -> in_data[47:8]
8801         *   47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8802         *   63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8803         */
8804        if (type == HCMD_WRITE_LCB_CSR) {
8805                in_data |= ((*out_data) & 0xffffffffffull) << 8;
8806                /* must preserve COMPLETED - it is tied to hardware */
8807                reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0);
8808                reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK;
8809                reg |= ((((*out_data) >> 40) & 0xff) <<
8810                                DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8811                      | ((((*out_data) >> 48) & 0xffff) <<
8812                                DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8813                write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8814        }
8815
8816        /*
8817         * Do two writes: the first to stabilize the type and req_data, the
8818         * second to activate.
8819         */
8820        reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8821                        << DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8822                | (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8823                        << DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8824        write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8825        reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8826        write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8827
8828        /* wait for completion, alternate: interrupt */
8829        timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8830        while (1) {
8831                reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8832                completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8833                if (completed)
8834                        break;
8835                if (time_after(jiffies, timeout)) {
8836                        dd->dc8051_timed_out++;
8837                        dd_dev_err(dd, "8051 host command %u timeout\n", type);
8838                        if (out_data)
8839                                *out_data = 0;
8840                        return_code = -ETIMEDOUT;
8841                        goto fail;
8842                }
8843                udelay(2);
8844        }
8845
8846        if (out_data) {
8847                *out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8848                                & DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8849                if (type == HCMD_READ_LCB_CSR) {
8850                        /* top 16 bits are in a different register */
8851                        *out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8852                                & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8853                                << (48
8854                                    - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8855                }
8856        }
8857        return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8858                                & DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8859        dd->dc8051_timed_out = 0;
8860        /*
8861         * Clear command for next user.
8862         */
8863        write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8864
8865fail:
8866        mutex_unlock(&dd->dc8051_lock);
8867        return return_code;
8868}
8869
8870static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8871{
8872        return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8873}
8874
8875int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8876                     u8 lane_id, u32 config_data)
8877{
8878        u64 data;
8879        int ret;
8880
8881        data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8882                | (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8883                | (u64)config_data << LOAD_DATA_DATA_SHIFT;
8884        ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8885        if (ret != HCMD_SUCCESS) {
8886                dd_dev_err(dd,
8887                           "load 8051 config: field id %d, lane %d, err %d\n",
8888                           (int)field_id, (int)lane_id, ret);
8889        }
8890        return ret;
8891}
8892
8893/*
8894 * Read the 8051 firmware "registers".  Use the RAM directly.  Always
8895 * set the result, even on error.
8896 * Return 0 on success, -errno on failure
8897 */
8898int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8899                     u32 *result)
8900{
8901        u64 big_data;
8902        u32 addr;
8903        int ret;
8904
8905        /* address start depends on the lane_id */
8906        if (lane_id < 4)
8907                addr = (4 * NUM_GENERAL_FIELDS)
8908                        + (lane_id * 4 * NUM_LANE_FIELDS);
8909        else
8910                addr = 0;
8911        addr += field_id * 4;
8912
8913        /* read is in 8-byte chunks, hardware will truncate the address down */
8914        ret = read_8051_data(dd, addr, 8, &big_data);
8915
8916        if (ret == 0) {
8917                /* extract the 4 bytes we want */
8918                if (addr & 0x4)
8919                        *result = (u32)(big_data >> 32);
8920                else
8921                        *result = (u32)big_data;
8922        } else {
8923                *result = 0;
8924                dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8925                           __func__, lane_id, field_id);
8926        }
8927
8928        return ret;
8929}
8930
8931static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8932                              u8 continuous)
8933{
8934        u32 frame;
8935
8936        frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8937                | power_management << POWER_MANAGEMENT_SHIFT;
8938        return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8939                                GENERAL_CONFIG, frame);
8940}
8941
8942static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8943                                 u16 vl15buf, u8 crc_sizes)
8944{
8945        u32 frame;
8946
8947        frame = (u32)vau << VAU_SHIFT
8948                | (u32)z << Z_SHIFT
8949                | (u32)vcu << VCU_SHIFT
8950                | (u32)vl15buf << VL15BUF_SHIFT
8951                | (u32)crc_sizes << CRC_SIZES_SHIFT;
8952        return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8953                                GENERAL_CONFIG, frame);
8954}
8955
8956static void read_vc_local_link_mode(struct hfi1_devdata *dd, u8 *misc_bits,
8957                                    u8 *flag_bits, u16 *link_widths)
8958{
8959        u32 frame;
8960
8961        read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_MODE, GENERAL_CONFIG,
8962                         &frame);
8963        *misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8964        *flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8965        *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8966}
8967
8968static int write_vc_local_link_mode(struct hfi1_devdata *dd,
8969                                    u8 misc_bits,
8970                                    u8 flag_bits,
8971                                    u16 link_widths)
8972{
8973        u32 frame;
8974
8975        frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8976                | (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8977                | (u32)link_widths << LINK_WIDTH_SHIFT;
8978        return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_MODE, GENERAL_CONFIG,
8979                     frame);
8980}
8981
8982static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8983                                 u8 device_rev)
8984{
8985        u32 frame;
8986
8987        frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8988                | ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8989        return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8990}
8991
8992static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8993                                  u8 *device_rev)
8994{
8995        u32 frame;
8996
8997        read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8998        *device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8999        *device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
9000                        & REMOTE_DEVICE_REV_MASK;
9001}
9002
9003int write_host_interface_version(struct hfi1_devdata *dd, u8 version)
9004{
9005        u32 frame;
9006        u32 mask;
9007
9008        mask = (HOST_INTERFACE_VERSION_MASK << HOST_INTERFACE_VERSION_SHIFT);
9009        read_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG, &frame);
9010        /* Clear, then set field */
9011        frame &= ~mask;
9012        frame |= ((u32)version << HOST_INTERFACE_VERSION_SHIFT);
9013        return load_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG,
9014                                frame);
9015}
9016
9017void read_misc_status(struct hfi1_devdata *dd, u8 *ver_major, u8 *ver_minor,
9018                      u8 *ver_patch)
9019{
9020        u32 frame;
9021
9022        read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
9023        *ver_major = (frame >> STS_FM_VERSION_MAJOR_SHIFT) &
9024                STS_FM_VERSION_MAJOR_MASK;
9025        *ver_minor = (frame >> STS_FM_VERSION_MINOR_SHIFT) &
9026                STS_FM_VERSION_MINOR_MASK;
9027
9028        read_8051_config(dd, VERSION_PATCH, GENERAL_CONFIG, &frame);
9029        *ver_patch = (frame >> STS_FM_VERSION_PATCH_SHIFT) &
9030                STS_FM_VERSION_PATCH_MASK;
9031}
9032
9033static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
9034                               u8 *continuous)
9035{
9036        u32 frame;
9037
9038        read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
9039        *power_management = (frame >> POWER_MANAGEMENT_SHIFT)
9040                                        & POWER_MANAGEMENT_MASK;
9041        *continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
9042                                        & CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
9043}
9044
9045static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
9046                                  u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
9047{
9048        u32 frame;
9049
9050        read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
9051        *vau = (frame >> VAU_SHIFT) & VAU_MASK;
9052        *z = (frame >> Z_SHIFT) & Z_MASK;
9053        *vcu = (frame >> VCU_SHIFT) & VCU_MASK;
9054        *vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
9055        *crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
9056}
9057
9058static void read_vc_remote_link_width(struct hfi1_devdata *dd,
9059                                      u8 *remote_tx_rate,
9060                                      u16 *link_widths)
9061{
9062        u32 frame;
9063
9064        read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
9065                         &frame);
9066        *remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
9067                                & REMOTE_TX_RATE_MASK;
9068        *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
9069}
9070
9071static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
9072{
9073        u32 frame;
9074
9075        read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
9076        *enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
9077}
9078
9079static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
9080{
9081        read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
9082}
9083
9084static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
9085{
9086        read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
9087}
9088
9089void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
9090{
9091        u32 frame;
9092        int ret;
9093
9094        *link_quality = 0;
9095        if (dd->pport->host_link_state & HLS_UP) {
9096                ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
9097                                       &frame);
9098                if (ret == 0)
9099                        *link_quality = (frame >> LINK_QUALITY_SHIFT)
9100                                                & LINK_QUALITY_MASK;
9101        }
9102}
9103
9104static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
9105{
9106        u32 frame;
9107
9108        read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
9109        *pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
9110}
9111
9112static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
9113{
9114        u32 frame;
9115
9116        read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
9117        *ldr = (frame & 0xff);
9118}
9119
9120static int read_tx_settings(struct hfi1_devdata *dd,
9121                            u8 *enable_lane_tx,
9122                            u8 *tx_polarity_inversion,
9123                            u8 *rx_polarity_inversion,
9124                            u8 *max_rate)
9125{
9126        u32 frame;
9127        int ret;
9128
9129        ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
9130        *enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
9131                                & ENABLE_LANE_TX_MASK;
9132        *tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
9133                                & TX_POLARITY_INVERSION_MASK;
9134        *rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
9135                                & RX_POLARITY_INVERSION_MASK;
9136        *max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
9137        return ret;
9138}
9139
9140static int write_tx_settings(struct hfi1_devdata *dd,
9141                             u8 enable_lane_tx,
9142                             u8 tx_polarity_inversion,
9143                             u8 rx_polarity_inversion,
9144                             u8 max_rate)
9145{
9146        u32 frame;
9147
9148        /* no need to mask, all variable sizes match field widths */
9149        frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
9150                | tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
9151                | rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
9152                | max_rate << MAX_RATE_SHIFT;
9153        return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
9154}
9155
9156/*
9157 * Read an idle LCB message.
9158 *
9159 * Returns 0 on success, -EINVAL on error
9160 */
9161static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
9162{
9163        int ret;
9164
9165        ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
9166        if (ret != HCMD_SUCCESS) {
9167                dd_dev_err(dd, "read idle message: type %d, err %d\n",
9168                           (u32)type, ret);
9169                return -EINVAL;
9170        }
9171        dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
9172        /* return only the payload as we already know the type */
9173        *data_out >>= IDLE_PAYLOAD_SHIFT;
9174        return 0;
9175}
9176
9177/*
9178 * Read an idle SMA message.  To be done in response to a notification from
9179 * the 8051.
9180 *
9181 * Returns 0 on success, -EINVAL on error
9182 */
9183static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
9184{
9185        return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
9186                                 data);
9187}
9188
9189/*
9190 * Send an idle LCB message.
9191 *
9192 * Returns 0 on success, -EINVAL on error
9193 */
9194static int send_idle_message(struct hfi1_devdata *dd, u64 data)
9195{
9196        int ret;
9197
9198        dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
9199        ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
9200        if (ret != HCMD_SUCCESS) {
9201                dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
9202                           data, ret);
9203                return -EINVAL;
9204        }
9205        return 0;
9206}
9207
9208/*
9209 * Send an idle SMA message.
9210 *
9211 * Returns 0 on success, -EINVAL on error
9212 */
9213int send_idle_sma(struct hfi1_devdata *dd, u64 message)
9214{
9215        u64 data;
9216
9217        data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
9218                ((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
9219        return send_idle_message(dd, data);
9220}
9221
9222/*
9223 * Initialize the LCB then do a quick link up.  This may or may not be
9224 * in loopback.
9225 *
9226 * return 0 on success, -errno on error
9227 */
9228static int do_quick_linkup(struct hfi1_devdata *dd)
9229{
9230        int ret;
9231
9232        lcb_shutdown(dd, 0);
9233
9234        if (loopback) {
9235                /* LCB_CFG_LOOPBACK.VAL = 2 */
9236                /* LCB_CFG_LANE_WIDTH.VAL = 0 */
9237                write_csr(dd, DC_LCB_CFG_LOOPBACK,
9238                          IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
9239                write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
9240        }
9241
9242        /* start the LCBs */
9243        /* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
9244        write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
9245
9246        /* simulator only loopback steps */
9247        if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
9248                /* LCB_CFG_RUN.EN = 1 */
9249                write_csr(dd, DC_LCB_CFG_RUN,
9250                          1ull << DC_LCB_CFG_RUN_EN_SHIFT);
9251
9252                ret = wait_link_transfer_active(dd, 10);
9253                if (ret)
9254                        return ret;
9255
9256                write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
9257                          1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
9258        }
9259
9260        if (!loopback) {
9261                /*
9262                 * When doing quick linkup and not in loopback, both
9263                 * sides must be done with LCB set-up before either
9264                 * starts the quick linkup.  Put a delay here so that
9265                 * both sides can be started and have a chance to be
9266                 * done with LCB set up before resuming.
9267                 */
9268                dd_dev_err(dd,
9269                           "Pausing for peer to be finished with LCB set up\n");
9270                msleep(5000);
9271                dd_dev_err(dd, "Continuing with quick linkup\n");
9272        }
9273
9274        write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
9275        set_8051_lcb_access(dd);
9276
9277        /*
9278         * State "quick" LinkUp request sets the physical link state to
9279         * LinkUp without a verify capability sequence.
9280         * This state is in simulator v37 and later.
9281         */
9282        ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
9283        if (ret != HCMD_SUCCESS) {
9284                dd_dev_err(dd,
9285                           "%s: set physical link state to quick LinkUp failed with return %d\n",
9286                           __func__, ret);
9287
9288                set_host_lcb_access(dd);
9289                write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
9290
9291                if (ret >= 0)
9292                        ret = -EINVAL;
9293                return ret;
9294        }
9295
9296        return 0; /* success */
9297}
9298
9299/*
9300 * Do all special steps to set up loopback.
9301 */
9302static int init_loopback(struct hfi1_devdata *dd)
9303{
9304        dd_dev_info(dd, "Entering loopback mode\n");
9305
9306        /* all loopbacks should disable self GUID check */
9307        write_csr(dd, DC_DC8051_CFG_MODE,
9308                  (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
9309
9310        /*
9311         * The simulator has only one loopback option - LCB.  Switch
9312         * to that option, which includes quick link up.
9313         *
9314         * Accept all valid loopback values.
9315         */
9316        if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
9317            (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
9318             loopback == LOOPBACK_CABLE)) {
9319                loopback = LOOPBACK_LCB;
9320                quick_linkup = 1;
9321                return 0;
9322        }
9323
9324        /*
9325         * SerDes loopback init sequence is handled in set_local_link_attributes
9326         */
9327        if (loopback == LOOPBACK_SERDES)
9328                return 0;
9329
9330        /* LCB loopback - handled at poll time */
9331        if (loopback == LOOPBACK_LCB) {
9332                quick_linkup = 1; /* LCB is always quick linkup */
9333
9334                /* not supported in emulation due to emulation RTL changes */
9335                if (dd->icode == ICODE_FPGA_EMULATION) {
9336                        dd_dev_err(dd,
9337                                   "LCB loopback not supported in emulation\n");
9338                        return -EINVAL;
9339                }
9340                return 0;
9341        }
9342
9343        /* external cable loopback requires no extra steps */
9344        if (loopback == LOOPBACK_CABLE)
9345                return 0;
9346
9347        dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
9348        return -EINVAL;
9349}
9350
9351/*
9352 * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9353 * used in the Verify Capability link width attribute.
9354 */
9355static u16 opa_to_vc_link_widths(u16 opa_widths)
9356{
9357        int i;
9358        u16 result = 0;
9359
9360        static const struct link_bits {
9361                u16 from;
9362                u16 to;
9363        } opa_link_xlate[] = {
9364                { OPA_LINK_WIDTH_1X, 1 << (1 - 1)  },
9365                { OPA_LINK_WIDTH_2X, 1 << (2 - 1)  },
9366                { OPA_LINK_WIDTH_3X, 1 << (3 - 1)  },
9367                { OPA_LINK_WIDTH_4X, 1 << (4 - 1)  },
9368        };
9369
9370        for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
9371                if (opa_widths & opa_link_xlate[i].from)
9372                        result |= opa_link_xlate[i].to;
9373        }
9374        return result;
9375}
9376
9377/*
9378 * Set link attributes before moving to polling.
9379 */
9380static int set_local_link_attributes(struct hfi1_pportdata *ppd)
9381{
9382        struct hfi1_devdata *dd = ppd->dd;
9383        u8 enable_lane_tx;
9384        u8 tx_polarity_inversion;
9385        u8 rx_polarity_inversion;
9386        int ret;
9387        u32 misc_bits = 0;
9388        /* reset our fabric serdes to clear any lingering problems */
9389        fabric_serdes_reset(dd);
9390
9391        /* set the local tx rate - need to read-modify-write */
9392        ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
9393                               &rx_polarity_inversion, &ppd->local_tx_rate);
9394        if (ret)
9395                goto set_local_link_attributes_fail;
9396
9397        if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
9398                /* set the tx rate to the fastest enabled */
9399                if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9400                        ppd->local_tx_rate = 1;
9401                else
9402                        ppd->local_tx_rate = 0;
9403        } else {
9404                /* set the tx rate to all enabled */
9405                ppd->local_tx_rate = 0;
9406                if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9407                        ppd->local_tx_rate |= 2;
9408                if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9409                        ppd->local_tx_rate |= 1;
9410        }
9411
9412        enable_lane_tx = 0xF; /* enable all four lanes */
9413        ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
9414                                rx_polarity_inversion, ppd->local_tx_rate);
9415        if (ret != HCMD_SUCCESS)
9416                goto set_local_link_attributes_fail;
9417
9418        ret = write_host_interface_version(dd, HOST_INTERFACE_VERSION);
9419        if (ret != HCMD_SUCCESS) {
9420                dd_dev_err(dd,
9421                           "Failed to set host interface version, return 0x%x\n",
9422                           ret);
9423                goto set_local_link_attributes_fail;
9424        }
9425
9426        /*
9427         * DC supports continuous updates.
9428         */
9429        ret = write_vc_local_phy(dd,
9430                                 0 /* no power management */,
9431                                 1 /* continuous updates */);
9432        if (ret != HCMD_SUCCESS)
9433                goto set_local_link_attributes_fail;
9434
9435        /* z=1 in the next call: AU of 0 is not supported by the hardware */
9436        ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9437                                    ppd->port_crc_mode_enabled);
9438        if (ret != HCMD_SUCCESS)
9439                goto set_local_link_attributes_fail;
9440
9441        /*
9442         * SerDes loopback init sequence requires
9443         * setting bit 0 of MISC_CONFIG_BITS
9444         */
9445        if (loopback == LOOPBACK_SERDES)
9446                misc_bits |= 1 << LOOPBACK_SERDES_CONFIG_BIT_MASK_SHIFT;
9447
9448        /*
9449         * An external device configuration request is used to reset the LCB
9450         * to retry to obtain operational lanes when the first attempt is
9451         * unsuccesful.
9452         */
9453        if (dd->dc8051_ver >= dc8051_ver(1, 25, 0))
9454                misc_bits |= 1 << EXT_CFG_LCB_RESET_SUPPORTED_SHIFT;
9455
9456        ret = write_vc_local_link_mode(dd, misc_bits, 0,
9457                                       opa_to_vc_link_widths(
9458                                                ppd->link_width_enabled));
9459        if (ret != HCMD_SUCCESS)
9460                goto set_local_link_attributes_fail;
9461
9462        /* let peer know who we are */
9463        ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9464        if (ret == HCMD_SUCCESS)
9465                return 0;
9466
9467set_local_link_attributes_fail:
9468        dd_dev_err(dd,
9469                   "Failed to set local link attributes, return 0x%x\n",
9470                   ret);
9471        return ret;
9472}
9473
9474/*
9475 * Call this to start the link.
9476 * Do not do anything if the link is disabled.
9477 * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
9478 */
9479int start_link(struct hfi1_pportdata *ppd)
9480{
9481        /*
9482         * Tune the SerDes to a ballpark setting for optimal signal and bit
9483         * error rate.  Needs to be done before starting the link.
9484         */
9485        tune_serdes(ppd);
9486
9487        if (!ppd->driver_link_ready) {
9488                dd_dev_info(ppd->dd,
9489                            "%s: stopping link start because driver is not ready\n",
9490                            __func__);
9491                return 0;
9492        }
9493
9494        /*
9495         * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9496         * pkey table can be configured properly if the HFI unit is connected
9497         * to switch port with MgmtAllowed=NO
9498         */
9499        clear_full_mgmt_pkey(ppd);
9500
9501        return set_link_state(ppd, HLS_DN_POLL);
9502}
9503
9504static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9505{
9506        struct hfi1_devdata *dd = ppd->dd;
9507        u64 mask;
9508        unsigned long timeout;
9509
9510        /*
9511         * Some QSFP cables have a quirk that asserts the IntN line as a side
9512         * effect of power up on plug-in. We ignore this false positive
9513         * interrupt until the module has finished powering up by waiting for
9514         * a minimum timeout of the module inrush initialization time of
9515         * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9516         * module have stabilized.
9517         */
9518        msleep(500);
9519
9520        /*
9521         * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
9522         */
9523        timeout = jiffies + msecs_to_jiffies(2000);
9524        while (1) {
9525                mask = read_csr(dd, dd->hfi1_id ?
9526                                ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9527                if (!(mask & QSFP_HFI0_INT_N))
9528                        break;
9529                if (time_after(jiffies, timeout)) {
9530                        dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9531                                    __func__);
9532                        break;
9533                }
9534                udelay(2);
9535        }
9536}
9537
9538static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9539{
9540        struct hfi1_devdata *dd = ppd->dd;
9541        u64 mask;
9542
9543        mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9544        if (enable) {
9545                /*
9546                 * Clear the status register to avoid an immediate interrupt
9547                 * when we re-enable the IntN pin
9548                 */
9549                write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9550                          QSFP_HFI0_INT_N);
9551                mask |= (u64)QSFP_HFI0_INT_N;
9552        } else {
9553                mask &= ~(u64)QSFP_HFI0_INT_N;
9554        }
9555        write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9556}
9557
9558int reset_qsfp(struct hfi1_pportdata *ppd)
9559{
9560        struct hfi1_devdata *dd = ppd->dd;
9561        u64 mask, qsfp_mask;
9562
9563        /* Disable INT_N from triggering QSFP interrupts */
9564        set_qsfp_int_n(ppd, 0);
9565
9566        /* Reset the QSFP */
9567        mask = (u64)QSFP_HFI0_RESET_N;
9568
9569        qsfp_mask = read_csr(dd,
9570                             dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
9571        qsfp_mask &= ~mask;
9572        write_csr(dd,
9573                  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9574
9575        udelay(10);
9576
9577        qsfp_mask |= mask;
9578        write_csr(dd,
9579                  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9580
9581        wait_for_qsfp_init(ppd);
9582
9583        /*
9584         * Allow INT_N to trigger the QSFP interrupt to watch
9585         * for alarms and warnings
9586         */
9587        set_qsfp_int_n(ppd, 1);
9588
9589        /*
9590         * After the reset, AOC transmitters are enabled by default. They need
9591         * to be turned off to complete the QSFP setup before they can be
9592         * enabled again.
9593         */
9594        return set_qsfp_tx(ppd, 0);
9595}
9596
9597static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9598                                        u8 *qsfp_interrupt_status)
9599{
9600        struct hfi1_devdata *dd = ppd->dd;
9601
9602        if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9603            (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9604                dd_dev_err(dd, "%s: QSFP cable temperature too high\n",
9605                           __func__);
9606
9607        if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9608            (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9609                dd_dev_err(dd, "%s: QSFP cable temperature too low\n",
9610                           __func__);
9611
9612        /*
9613         * The remaining alarms/warnings don't matter if the link is down.
9614         */
9615        if (ppd->host_link_state & HLS_DOWN)
9616                return 0;
9617
9618        if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9619            (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9620                dd_dev_err(dd, "%s: QSFP supply voltage too high\n",
9621                           __func__);
9622
9623        if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9624            (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9625                dd_dev_err(dd, "%s: QSFP supply voltage too low\n",
9626                           __func__);
9627
9628        /* Byte 2 is vendor specific */
9629
9630        if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9631            (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9632                dd_dev_err(dd, "%s: Cable RX channel 1/2 power too high\n",
9633                           __func__);
9634
9635        if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9636            (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9637                dd_dev_err(dd, "%s: Cable RX channel 1/2 power too low\n",
9638                           __func__);
9639
9640        if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9641            (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9642                dd_dev_err(dd, "%s: Cable RX channel 3/4 power too high\n",
9643                           __func__);
9644
9645        if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9646            (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9647                dd_dev_err(dd, "%s: Cable RX channel 3/4 power too low\n",
9648                           __func__);
9649
9650        if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9651            (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9652                dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too high\n",
9653                           __func__);
9654
9655        if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9656            (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9657                dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too low\n",
9658                           __func__);
9659
9660        if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9661            (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9662                dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too high\n",
9663                           __func__);
9664
9665        if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9666            (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9667                dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too low\n",
9668                           __func__);
9669
9670        if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9671            (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9672                dd_dev_err(dd, "%s: Cable TX channel 1/2 power too high\n",
9673                           __func__);
9674
9675        if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9676            (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9677                dd_dev_err(dd, "%s: Cable TX channel 1/2 power too low\n",
9678                           __func__);
9679
9680        if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9681            (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9682                dd_dev_err(dd, "%s: Cable TX channel 3/4 power too high\n",
9683                           __func__);
9684
9685        if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9686            (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9687                dd_dev_err(dd, "%s: Cable TX channel 3/4 power too low\n",
9688                           __func__);
9689
9690        /* Bytes 9-10 and 11-12 are reserved */
9691        /* Bytes 13-15 are vendor specific */
9692
9693        return 0;
9694}
9695
9696/* This routine will only be scheduled if the QSFP module present is asserted */
9697void qsfp_event(struct work_struct *work)
9698{
9699        struct qsfp_data *qd;
9700        struct hfi1_pportdata *ppd;
9701        struct hfi1_devdata *dd;
9702
9703        qd = container_of(work, struct qsfp_data, qsfp_work);
9704        ppd = qd->ppd;
9705        dd = ppd->dd;
9706
9707        /* Sanity check */
9708        if (!qsfp_mod_present(ppd))
9709                return;
9710
9711        if (ppd->host_link_state == HLS_DN_DISABLE) {
9712                dd_dev_info(ppd->dd,
9713                            "%s: stopping link start because link is disabled\n",
9714                            __func__);
9715                return;
9716        }
9717
9718        /*
9719         * Turn DC back on after cable has been re-inserted. Up until
9720         * now, the DC has been in reset to save power.
9721         */
9722        dc_start(dd);
9723
9724        if (qd->cache_refresh_required) {
9725                set_qsfp_int_n(ppd, 0);
9726
9727                wait_for_qsfp_init(ppd);
9728
9729                /*
9730                 * Allow INT_N to trigger the QSFP interrupt to watch
9731                 * for alarms and warnings
9732                 */
9733                set_qsfp_int_n(ppd, 1);
9734
9735                start_link(ppd);
9736        }
9737
9738        if (qd->check_interrupt_flags) {
9739                u8 qsfp_interrupt_status[16] = {0,};
9740
9741                if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9742                                  &qsfp_interrupt_status[0], 16) != 16) {
9743                        dd_dev_info(dd,
9744                                    "%s: Failed to read status of QSFP module\n",
9745                                    __func__);
9746                } else {
9747                        unsigned long flags;
9748
9749                        handle_qsfp_error_conditions(
9750                                        ppd, qsfp_interrupt_status);
9751                        spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9752                        ppd->qsfp_info.check_interrupt_flags = 0;
9753                        spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9754                                               flags);
9755                }
9756        }
9757}
9758
9759void init_qsfp_int(struct hfi1_devdata *dd)
9760{
9761        struct hfi1_pportdata *ppd = dd->pport;
9762        u64 qsfp_mask;
9763
9764        qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9765        /* Clear current status to avoid spurious interrupts */
9766        write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9767                  qsfp_mask);
9768        write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9769                  qsfp_mask);
9770
9771        set_qsfp_int_n(ppd, 0);
9772
9773        /* Handle active low nature of INT_N and MODPRST_N pins */
9774        if (qsfp_mod_present(ppd))
9775                qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9776        write_csr(dd,
9777                  dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9778                  qsfp_mask);
9779
9780        /* Enable the appropriate QSFP IRQ source */
9781        if (!dd->hfi1_id)
9782                set_intr_bits(dd, QSFP1_INT, QSFP1_INT, true);
9783        else
9784                set_intr_bits(dd, QSFP2_INT, QSFP2_INT, true);
9785}
9786
9787/*
9788 * Do a one-time initialize of the LCB block.
9789 */
9790static void init_lcb(struct hfi1_devdata *dd)
9791{
9792        /* simulator does not correctly handle LCB cclk loopback, skip */
9793        if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9794                return;
9795
9796        /* the DC has been reset earlier in the driver load */
9797
9798        /* set LCB for cclk loopback on the port */
9799        write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9800        write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9801        write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9802        write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9803        write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9804        write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9805        write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9806}
9807
9808/*
9809 * Perform a test read on the QSFP.  Return 0 on success, -ERRNO
9810 * on error.
9811 */
9812static int test_qsfp_read(struct hfi1_pportdata *ppd)
9813{
9814        int ret;
9815        u8 status;
9816
9817        /*
9818         * Report success if not a QSFP or, if it is a QSFP, but the cable is
9819         * not present
9820         */
9821        if (ppd->port_type != PORT_TYPE_QSFP || !qsfp_mod_present(ppd))
9822                return 0;
9823
9824        /* read byte 2, the status byte */
9825        ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
9826        if (ret < 0)
9827                return ret;
9828        if (ret != 1)
9829                return -EIO;
9830
9831        return 0; /* success */
9832}
9833
9834/*
9835 * Values for QSFP retry.
9836 *
9837 * Give up after 10s (20 x 500ms).  The overall timeout was empirically
9838 * arrived at from experience on a large cluster.
9839 */
9840#define MAX_QSFP_RETRIES 20
9841#define QSFP_RETRY_WAIT 500 /* msec */
9842
9843/*
9844 * Try a QSFP read.  If it fails, schedule a retry for later.
9845 * Called on first link activation after driver load.
9846 */
9847static void try_start_link(struct hfi1_pportdata *ppd)
9848{
9849        if (test_qsfp_read(ppd)) {
9850                /* read failed */
9851                if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
9852                        dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
9853                        return;
9854                }
9855                dd_dev_info(ppd->dd,
9856                            "QSFP not responding, waiting and retrying %d\n",
9857                            (int)ppd->qsfp_retry_count);
9858                ppd->qsfp_retry_count++;
9859                queue_delayed_work(ppd->link_wq, &ppd->start_link_work,
9860                                   msecs_to_jiffies(QSFP_RETRY_WAIT));
9861                return;
9862        }
9863        ppd->qsfp_retry_count = 0;
9864
9865        start_link(ppd);
9866}
9867
9868/*
9869 * Workqueue function to start the link after a delay.
9870 */
9871void handle_start_link(struct work_struct *work)
9872{
9873        struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
9874                                                  start_link_work.work);
9875        try_start_link(ppd);
9876}
9877
9878int bringup_serdes(struct hfi1_pportdata *ppd)
9879{
9880        struct hfi1_devdata *dd = ppd->dd;
9881        u64 guid;
9882        int ret;
9883
9884        if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9885                add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9886
9887        guid = ppd->guids[HFI1_PORT_GUID_INDEX];
9888        if (!guid) {
9889                if (dd->base_guid)
9890                        guid = dd->base_guid + ppd->port - 1;
9891                ppd->guids[HFI1_PORT_GUID_INDEX] = guid;
9892        }
9893
9894        /* Set linkinit_reason on power up per OPA spec */
9895        ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9896
9897        /* one-time init of the LCB */
9898        init_lcb(dd);
9899
9900        if (loopback) {
9901                ret = init_loopback(dd);
9902                if (ret < 0)
9903                        return ret;
9904        }
9905
9906        get_port_type(ppd);
9907        if (ppd->port_type == PORT_TYPE_QSFP) {
9908                set_qsfp_int_n(ppd, 0);
9909                wait_for_qsfp_init(ppd);
9910                set_qsfp_int_n(ppd, 1);
9911        }
9912
9913        try_start_link(ppd);
9914        return 0;
9915}
9916
9917void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9918{
9919        struct hfi1_devdata *dd = ppd->dd;
9920
9921        /*
9922         * Shut down the link and keep it down.   First turn off that the
9923         * driver wants to allow the link to be up (driver_link_ready).
9924         * Then make sure the link is not automatically restarted
9925         * (link_enabled).  Cancel any pending restart.  And finally
9926         * go offline.
9927         */
9928        ppd->driver_link_ready = 0;
9929        ppd->link_enabled = 0;
9930
9931        ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
9932        flush_delayed_work(&ppd->start_link_work);
9933        cancel_delayed_work_sync(&ppd->start_link_work);
9934
9935        ppd->offline_disabled_reason =
9936                        HFI1_ODR_MASK(OPA_LINKDOWN_REASON_REBOOT);
9937        set_link_down_reason(ppd, OPA_LINKDOWN_REASON_REBOOT, 0,
9938                             OPA_LINKDOWN_REASON_REBOOT);
9939        set_link_state(ppd, HLS_DN_OFFLINE);
9940
9941        /* disable the port */
9942        clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9943        cancel_work_sync(&ppd->freeze_work);
9944}
9945
9946static inline int init_cpu_counters(struct hfi1_devdata *dd)
9947{
9948        struct hfi1_pportdata *ppd;
9949        int i;
9950
9951        ppd = (struct hfi1_pportdata *)(dd + 1);
9952        for (i = 0; i < dd->num_pports; i++, ppd++) {
9953                ppd->ibport_data.rvp.rc_acks = NULL;
9954                ppd->ibport_data.rvp.rc_qacks = NULL;
9955                ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9956                ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9957                ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9958                if (!ppd->ibport_data.rvp.rc_acks ||
9959                    !ppd->ibport_data.rvp.rc_delayed_comp ||
9960                    !ppd->ibport_data.rvp.rc_qacks)
9961                        return -ENOMEM;
9962        }
9963
9964        return 0;
9965}
9966
9967/*
9968 * index is the index into the receive array
9969 */
9970void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9971                  u32 type, unsigned long pa, u16 order)
9972{
9973        u64 reg;
9974
9975        if (!(dd->flags & HFI1_PRESENT))
9976                goto done;
9977
9978        if (type == PT_INVALID || type == PT_INVALID_FLUSH) {
9979                pa = 0;
9980                order = 0;
9981        } else if (type > PT_INVALID) {
9982                dd_dev_err(dd,
9983                           "unexpected receive array type %u for index %u, not handled\n",
9984                           type, index);
9985                goto done;
9986        }
9987        trace_hfi1_put_tid(dd, index, type, pa, order);
9988
9989#define RT_ADDR_SHIFT 12        /* 4KB kernel address boundary */
9990        reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9991                | (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9992                | ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9993                                        << RCV_ARRAY_RT_ADDR_SHIFT;
9994        trace_hfi1_write_rcvarray(dd->rcvarray_wc + (index * 8), reg);
9995        writeq(reg, dd->rcvarray_wc + (index * 8));
9996
9997        if (type == PT_EAGER || type == PT_INVALID_FLUSH || (index & 3) == 3)
9998                /*
9999                 * Eager entries are written and flushed
10000                 *
10001                 * Expected entries are flushed every 4 writes
10002                 */
10003                flush_wc();
10004done:
10005        return;
10006}
10007
10008void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
10009{
10010        struct hfi1_devdata *dd = rcd->dd;
10011        u32 i;
10012
10013        /* this could be optimized */
10014        for (i = rcd->eager_base; i < rcd->eager_base +
10015                     rcd->egrbufs.alloced; i++)
10016                hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
10017
10018        for (i = rcd->expected_base;
10019                        i < rcd->expected_base + rcd->expected_count; i++)
10020                hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
10021}
10022
10023static const char * const ib_cfg_name_strings[] = {
10024        "HFI1_IB_CFG_LIDLMC",
10025        "HFI1_IB_CFG_LWID_DG_ENB",
10026        "HFI1_IB_CFG_LWID_ENB",
10027        "HFI1_IB_CFG_LWID",
10028        "HFI1_IB_CFG_SPD_ENB",
10029        "HFI1_IB_CFG_SPD",
10030        "HFI1_IB_CFG_RXPOL_ENB",
10031        "HFI1_IB_CFG_LREV_ENB",
10032        "HFI1_IB_CFG_LINKLATENCY",
10033        "HFI1_IB_CFG_HRTBT",
10034        "HFI1_IB_CFG_OP_VLS",
10035        "HFI1_IB_CFG_VL_HIGH_CAP",
10036        "HFI1_IB_CFG_VL_LOW_CAP",
10037        "HFI1_IB_CFG_OVERRUN_THRESH",
10038        "HFI1_IB_CFG_PHYERR_THRESH",
10039        "HFI1_IB_CFG_LINKDEFAULT",
10040        "HFI1_IB_CFG_PKEYS",
10041        "HFI1_IB_CFG_MTU",
10042        "HFI1_IB_CFG_LSTATE",
10043        "HFI1_IB_CFG_VL_HIGH_LIMIT",
10044        "HFI1_IB_CFG_PMA_TICKS",
10045        "HFI1_IB_CFG_PORT"
10046};
10047
10048static const char *ib_cfg_name(int which)
10049{
10050        if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
10051                return "invalid";
10052        return ib_cfg_name_strings[which];
10053}
10054
10055int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
10056{
10057        struct hfi1_devdata *dd = ppd->dd;
10058        int val = 0;
10059
10060        switch (which) {
10061        case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
10062                val = ppd->link_width_enabled;
10063                break;
10064        case HFI1_IB_CFG_LWID: /* currently active Link-width */
10065                val = ppd->link_width_active;
10066                break;
10067        case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10068                val = ppd->link_speed_enabled;
10069                break;
10070        case HFI1_IB_CFG_SPD: /* current Link speed */
10071                val = ppd->link_speed_active;
10072                break;
10073
10074        case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
10075        case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
10076        case HFI1_IB_CFG_LINKLATENCY:
10077                goto unimplemented;
10078
10079        case HFI1_IB_CFG_OP_VLS:
10080                val = ppd->actual_vls_operational;
10081                break;
10082        case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
10083                val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
10084                break;
10085        case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
10086                val = VL_ARB_LOW_PRIO_TABLE_SIZE;
10087                break;
10088        case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10089                val = ppd->overrun_threshold;
10090                break;
10091        case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10092                val = ppd->phy_error_threshold;
10093                break;
10094        case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10095                val = HLS_DEFAULT;
10096                break;
10097
10098        case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
10099        case HFI1_IB_CFG_PMA_TICKS:
10100        default:
10101unimplemented:
10102                if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10103                        dd_dev_info(
10104                                dd,
10105                                "%s: which %s: not implemented\n",
10106                                __func__,
10107                                ib_cfg_name(which));
10108                break;
10109        }
10110
10111        return val;
10112}
10113
10114/*
10115 * The largest MAD packet size.
10116 */
10117#define MAX_MAD_PACKET 2048
10118
10119/*
10120 * Return the maximum header bytes that can go on the _wire_
10121 * for this device. This count includes the ICRC which is
10122 * not part of the packet held in memory but it is appended
10123 * by the HW.
10124 * This is dependent on the device's receive header entry size.
10125 * HFI allows this to be set per-receive context, but the
10126 * driver presently enforces a global value.
10127 */
10128u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
10129{
10130        /*
10131         * The maximum non-payload (MTU) bytes in LRH.PktLen are
10132         * the Receive Header Entry Size minus the PBC (or RHF) size
10133         * plus one DW for the ICRC appended by HW.
10134         *
10135         * dd->rcd[0].rcvhdrqentsize is in DW.
10136         * We use rcd[0] as all context will have the same value. Also,
10137         * the first kernel context would have been allocated by now so
10138         * we are guaranteed a valid value.
10139         */
10140        return (get_hdrqentsize(dd->rcd[0]) - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
10141}
10142
10143/*
10144 * Set Send Length
10145 * @ppd - per port data
10146 *
10147 * Set the MTU by limiting how many DWs may be sent.  The SendLenCheck*
10148 * registers compare against LRH.PktLen, so use the max bytes included
10149 * in the LRH.
10150 *
10151 * This routine changes all VL values except VL15, which it maintains at
10152 * the same value.
10153 */
10154static void set_send_length(struct hfi1_pportdata *ppd)
10155{
10156        struct hfi1_devdata *dd = ppd->dd;
10157        u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
10158        u32 maxvlmtu = dd->vld[15].mtu;
10159        u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
10160                              & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
10161                SEND_LEN_CHECK1_LEN_VL15_SHIFT;
10162        int i, j;
10163        u32 thres;
10164
10165        for (i = 0; i < ppd->vls_supported; i++) {
10166                if (dd->vld[i].mtu > maxvlmtu)
10167                        maxvlmtu = dd->vld[i].mtu;
10168                if (i <= 3)
10169                        len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
10170                                 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
10171                                ((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
10172                else
10173                        len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
10174                                 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
10175                                ((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
10176        }
10177        write_csr(dd, SEND_LEN_CHECK0, len1);
10178        write_csr(dd, SEND_LEN_CHECK1, len2);
10179        /* adjust kernel credit return thresholds based on new MTUs */
10180        /* all kernel receive contexts have the same hdrqentsize */
10181        for (i = 0; i < ppd->vls_supported; i++) {
10182                thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
10183                            sc_mtu_to_threshold(dd->vld[i].sc,
10184                                                dd->vld[i].mtu,
10185                                                get_hdrqentsize(dd->rcd[0])));
10186                for (j = 0; j < INIT_SC_PER_VL; j++)
10187                        sc_set_cr_threshold(
10188                                        pio_select_send_context_vl(dd, j, i),
10189                                            thres);
10190        }
10191        thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
10192                    sc_mtu_to_threshold(dd->vld[15].sc,
10193                                        dd->vld[15].mtu,
10194                                        dd->rcd[0]->rcvhdrqentsize));
10195        sc_set_cr_threshold(dd->vld[15].sc, thres);
10196
10197        /* Adjust maximum MTU for the port in DC */
10198        dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
10199                (ilog2(maxvlmtu >> 8) + 1);
10200        len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
10201        len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
10202        len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
10203                DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
10204        write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
10205}
10206
10207static void set_lidlmc(struct hfi1_pportdata *ppd)
10208{
10209        int i;
10210        u64 sreg = 0;
10211        struct hfi1_devdata *dd = ppd->dd;
10212        u32 mask = ~((1U << ppd->lmc) - 1);
10213        u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
10214        u32 lid;
10215
10216        /*
10217         * Program 0 in CSR if port lid is extended. This prevents
10218         * 9B packets being sent out for large lids.
10219         */
10220        lid = (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) ? 0 : ppd->lid;
10221        c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
10222                | DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
10223        c1 |= ((lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
10224                        << DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
10225              ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
10226                        << DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
10227        write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
10228
10229        /*
10230         * Iterate over all the send contexts and set their SLID check
10231         */
10232        sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
10233                        SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
10234               (((lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
10235                        SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
10236
10237        for (i = 0; i < chip_send_contexts(dd); i++) {
10238                hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
10239                          i, (u32)sreg);
10240                write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
10241        }
10242
10243        /* Now we have to do the same thing for the sdma engines */
10244        sdma_update_lmc(dd, mask, lid);
10245}
10246
10247static const char *state_completed_string(u32 completed)
10248{
10249        static const char * const state_completed[] = {
10250                "EstablishComm",
10251                "OptimizeEQ",
10252                "VerifyCap"
10253        };
10254
10255        if (completed < ARRAY_SIZE(state_completed))
10256                return state_completed[completed];
10257
10258        return "unknown";
10259}
10260
10261static const char all_lanes_dead_timeout_expired[] =
10262        "All lanes were inactive – was the interconnect media removed?";
10263static const char tx_out_of_policy[] =
10264        "Passing lanes on local port do not meet the local link width policy";
10265static const char no_state_complete[] =
10266        "State timeout occurred before link partner completed the state";
10267static const char * const state_complete_reasons[] = {
10268        [0x00] = "Reason unknown",
10269        [0x01] = "Link was halted by driver, refer to LinkDownReason",
10270        [0x02] = "Link partner reported failure",
10271        [0x10] = "Unable to achieve frame sync on any lane",
10272        [0x11] =
10273          "Unable to find a common bit rate with the link partner",
10274        [0x12] =
10275          "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
10276        [0x13] =
10277          "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
10278        [0x14] = no_state_complete,
10279        [0x15] =
10280          "State timeout occurred before link partner identified equalization presets",
10281        [0x16] =
10282          "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
10283        [0x17] = tx_out_of_policy,
10284        [0x20] = all_lanes_dead_timeout_expired,
10285        [0x21] =
10286          "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
10287        [0x22] = no_state_complete,
10288        [0x23] =
10289          "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
10290        [0x24] = tx_out_of_policy,
10291        [0x30] = all_lanes_dead_timeout_expired,
10292        [0x31] =
10293          "State timeout occurred waiting for host to process received frames",
10294        [0x32] = no_state_complete,
10295        [0x33] =
10296          "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
10297        [0x34] = tx_out_of_policy,
10298        [0x35] = "Negotiated link width is mutually exclusive",
10299        [0x36] =
10300          "Timed out before receiving verifycap frames in VerifyCap.Exchange",
10301        [0x37] = "Unable to resolve secure data exchange",
10302};
10303
10304static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
10305                                                     u32 code)
10306{
10307        const char *str = NULL;
10308
10309        if (code < ARRAY_SIZE(state_complete_reasons))
10310                str = state_complete_reasons[code];
10311
10312        if (str)
10313                return str;
10314        return "Reserved";
10315}
10316
10317/* describe the given last state complete frame */
10318static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
10319                                  const char *prefix)
10320{
10321        struct hfi1_devdata *dd = ppd->dd;
10322        u32 success;
10323        u32 state;
10324        u32 reason;
10325        u32 lanes;
10326
10327        /*
10328         * Decode frame:
10329         *  [ 0: 0] - success
10330         *  [ 3: 1] - state
10331         *  [ 7: 4] - next state timeout
10332         *  [15: 8] - reason code
10333         *  [31:16] - lanes
10334         */
10335        success = frame & 0x1;
10336        state = (frame >> 1) & 0x7;
10337        reason = (frame >> 8) & 0xff;
10338        lanes = (frame >> 16) & 0xffff;
10339
10340        dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
10341                   prefix, frame);
10342        dd_dev_err(dd, "    last reported state state: %s (0x%x)\n",
10343                   state_completed_string(state), state);
10344        dd_dev_err(dd, "    state successfully completed: %s\n",
10345                   success ? "yes" : "no");
10346        dd_dev_err(dd, "    fail reason 0x%x: %s\n",
10347                   reason, state_complete_reason_code_string(ppd, reason));
10348        dd_dev_err(dd, "    passing lane mask: 0x%x", lanes);
10349}
10350
10351/*
10352 * Read the last state complete frames and explain them.  This routine
10353 * expects to be called if the link went down during link negotiation
10354 * and initialization (LNI).  That is, anywhere between polling and link up.
10355 */
10356static void check_lni_states(struct hfi1_pportdata *ppd)
10357{
10358        u32 last_local_state;
10359        u32 last_remote_state;
10360
10361        read_last_local_state(ppd->dd, &last_local_state);
10362        read_last_remote_state(ppd->dd, &last_remote_state);
10363
10364        /*
10365         * Don't report anything if there is nothing to report.  A value of
10366         * 0 means the link was taken down while polling and there was no
10367         * training in-process.
10368         */
10369        if (last_local_state == 0 && last_remote_state == 0)
10370                return;
10371
10372        decode_state_complete(ppd, last_local_state, "transmitted");
10373        decode_state_complete(ppd, last_remote_state, "received");
10374}
10375
10376/* wait for wait_ms for LINK_TRANSFER_ACTIVE to go to 1 */
10377static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms)
10378{
10379        u64 reg;
10380        unsigned long timeout;
10381
10382        /* watch LCB_STS_LINK_TRANSFER_ACTIVE */
10383        timeout = jiffies + msecs_to_jiffies(wait_ms);
10384        while (1) {
10385                reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
10386                if (reg)
10387                        break;
10388                if (time_after(jiffies, timeout)) {
10389                        dd_dev_err(dd,
10390                                   "timeout waiting for LINK_TRANSFER_ACTIVE\n");
10391                        return -ETIMEDOUT;
10392                }
10393                udelay(2);
10394        }
10395        return 0;
10396}
10397
10398/* called when the logical link state is not down as it should be */
10399static void force_logical_link_state_down(struct hfi1_pportdata *ppd)
10400{
10401        struct hfi1_devdata *dd = ppd->dd;
10402
10403        /*
10404         * Bring link up in LCB loopback
10405         */
10406        write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10407        write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
10408                  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
10409
10410        write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
10411        write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0);
10412        write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
10413        write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x2);
10414
10415        write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
10416        (void)read_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET);
10417        udelay(3);
10418        write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 1);
10419        write_csr(dd, DC_LCB_CFG_RUN, 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
10420
10421        wait_link_transfer_active(dd, 100);
10422
10423        /*
10424         * Bring the link down again.
10425         */
10426        write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10427        write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 0);
10428        write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 0);
10429
10430        dd_dev_info(ppd->dd, "logical state forced to LINK_DOWN\n");
10431}
10432
10433/*
10434 * Helper for set_link_state().  Do not call except from that routine.
10435 * Expects ppd->hls_mutex to be held.
10436 *
10437 * @rem_reason value to be sent to the neighbor
10438 *
10439 * LinkDownReasons only set if transition succeeds.
10440 */
10441static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
10442{
10443        struct hfi1_devdata *dd = ppd->dd;
10444        u32 previous_state;
10445        int offline_state_ret;
10446        int ret;
10447
10448        update_lcb_cache(dd);
10449
10450        previous_state = ppd->host_link_state;
10451        ppd->host_link_state = HLS_GOING_OFFLINE;
10452
10453        /* start offline transition */
10454        ret = set_physical_link_state(dd, (rem_reason << 8) | PLS_OFFLINE);
10455
10456        if (ret != HCMD_SUCCESS) {
10457                dd_dev_err(dd,
10458                           "Failed to transition to Offline link state, return %d\n",
10459                           ret);
10460                return -EINVAL;
10461        }
10462        if (ppd->offline_disabled_reason ==
10463                        HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
10464                ppd->offline_disabled_reason =
10465                HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
10466
10467        offline_state_ret = wait_phys_link_offline_substates(ppd, 10000);
10468        if (offline_state_ret < 0)
10469                return offline_state_ret;
10470
10471        /* Disabling AOC transmitters */
10472        if (ppd->port_type == PORT_TYPE_QSFP &&
10473            ppd->qsfp_info.limiting_active &&
10474            qsfp_mod_present(ppd)) {
10475                int ret;
10476
10477                ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
10478                if (ret == 0) {
10479                        set_qsfp_tx(ppd, 0);
10480                        release_chip_resource(dd, qsfp_resource(dd));
10481                } else {
10482                        /* not fatal, but should warn */
10483                        dd_dev_err(dd,
10484                                   "Unable to acquire lock to turn off QSFP TX\n");
10485                }
10486        }
10487
10488        /*
10489         * Wait for the offline.Quiet transition if it hasn't happened yet. It
10490         * can take a while for the link to go down.
10491         */
10492        if (offline_state_ret != PLS_OFFLINE_QUIET) {
10493                ret = wait_physical_linkstate(ppd, PLS_OFFLINE, 30000);
10494                if (ret < 0)
10495                        return ret;
10496        }
10497
10498        /*
10499         * Now in charge of LCB - must be after the physical state is
10500         * offline.quiet and before host_link_state is changed.
10501         */
10502        set_host_lcb_access(dd);
10503        write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
10504
10505        /* make sure the logical state is also down */
10506        ret = wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
10507        if (ret)
10508                force_logical_link_state_down(ppd);
10509
10510        ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
10511        update_statusp(ppd, IB_PORT_DOWN);
10512
10513        /*
10514         * The LNI has a mandatory wait time after the physical state
10515         * moves to Offline.Quiet.  The wait time may be different
10516         * depending on how the link went down.  The 8051 firmware
10517         * will observe the needed wait time and only move to ready
10518         * when that is completed.  The largest of the quiet timeouts
10519         * is 6s, so wait that long and then at least 0.5s more for
10520         * other transitions, and another 0.5s for a buffer.
10521         */
10522        ret = wait_fm_ready(dd, 7000);
10523        if (ret) {
10524                dd_dev_err(dd,
10525                           "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
10526                /* state is really offline, so make it so */
10527                ppd->host_link_state = HLS_DN_OFFLINE;
10528                return ret;
10529        }
10530
10531        /*
10532         * The state is now offline and the 8051 is ready to accept host
10533         * requests.
10534         *      - change our state
10535         *      - notify others if we were previously in a linkup state
10536         */
10537        ppd->host_link_state = HLS_DN_OFFLINE;
10538        if (previous_state & HLS_UP) {
10539                /* went down while link was up */
10540                handle_linkup_change(dd, 0);
10541        } else if (previous_state
10542                        & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
10543                /* went down while attempting link up */
10544                check_lni_states(ppd);
10545
10546                /* The QSFP doesn't need to be reset on LNI failure */
10547                ppd->qsfp_info.reset_needed = 0;
10548        }
10549
10550        /* the active link width (downgrade) is 0 on link down */
10551        ppd->link_width_active = 0;
10552        ppd->link_width_downgrade_tx_active = 0;
10553        ppd->link_width_downgrade_rx_active = 0;
10554        ppd->current_egress_rate = 0;
10555        return 0;
10556}
10557
10558/* return the link state name */
10559static const char *link_state_name(u32 state)
10560{
10561        const char *name;
10562        int n = ilog2(state);
10563        static const char * const names[] = {
10564                [__HLS_UP_INIT_BP]       = "INIT",
10565                [__HLS_UP_ARMED_BP]      = "ARMED",
10566                [__HLS_UP_ACTIVE_BP]     = "ACTIVE",
10567                [__HLS_DN_DOWNDEF_BP]    = "DOWNDEF",
10568                [__HLS_DN_POLL_BP]       = "POLL",
10569                [__HLS_DN_DISABLE_BP]    = "DISABLE",
10570                [__HLS_DN_OFFLINE_BP]    = "OFFLINE",
10571                [__HLS_VERIFY_CAP_BP]    = "VERIFY_CAP",
10572                [__HLS_GOING_UP_BP]      = "GOING_UP",
10573                [__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
10574                [__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
10575        };
10576
10577        name = n < ARRAY_SIZE(names) ? names[n] : NULL;
10578        return name ? name : "unknown";
10579}
10580
10581/* return the link state reason name */
10582static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
10583{
10584        if (state == HLS_UP_INIT) {
10585                switch (ppd->linkinit_reason) {
10586                case OPA_LINKINIT_REASON_LINKUP:
10587                        return "(LINKUP)";
10588                case OPA_LINKINIT_REASON_FLAPPING:
10589                        return "(FLAPPING)";
10590                case OPA_LINKINIT_OUTSIDE_POLICY:
10591                        return "(OUTSIDE_POLICY)";
10592                case OPA_LINKINIT_QUARANTINED:
10593                        return "(QUARANTINED)";
10594                case OPA_LINKINIT_INSUFIC_CAPABILITY:
10595                        return "(INSUFIC_CAPABILITY)";
10596                default:
10597                        break;
10598                }
10599        }
10600        return "";
10601}
10602
10603/*
10604 * driver_pstate - convert the driver's notion of a port's
10605 * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10606 * Return -1 (converted to a u32) to indicate error.
10607 */
10608u32 driver_pstate(struct hfi1_pportdata *ppd)
10609{
10610        switch (ppd->host_link_state) {
10611        case HLS_UP_INIT:
10612        case HLS_UP_ARMED:
10613        case HLS_UP_ACTIVE:
10614                return IB_PORTPHYSSTATE_LINKUP;
10615        case HLS_DN_POLL:
10616                return IB_PORTPHYSSTATE_POLLING;
10617        case HLS_DN_DISABLE:
10618                return IB_PORTPHYSSTATE_DISABLED;
10619        case HLS_DN_OFFLINE:
10620                return OPA_PORTPHYSSTATE_OFFLINE;
10621        case HLS_VERIFY_CAP:
10622                return IB_PORTPHYSSTATE_TRAINING;
10623        case HLS_GOING_UP:
10624                return IB_PORTPHYSSTATE_TRAINING;
10625        case HLS_GOING_OFFLINE:
10626                return OPA_PORTPHYSSTATE_OFFLINE;
10627        case HLS_LINK_COOLDOWN:
10628                return OPA_PORTPHYSSTATE_OFFLINE;
10629        case HLS_DN_DOWNDEF:
10630        default:
10631                dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10632                           ppd->host_link_state);
10633                return  -1;
10634        }
10635}
10636
10637/*
10638 * driver_lstate - convert the driver's notion of a port's
10639 * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10640 * (converted to a u32) to indicate error.
10641 */
10642u32 driver_lstate(struct hfi1_pportdata *ppd)
10643{
10644        if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
10645                return IB_PORT_DOWN;
10646
10647        switch (ppd->host_link_state & HLS_UP) {
10648        case HLS_UP_INIT:
10649                return IB_PORT_INIT;
10650        case HLS_UP_ARMED:
10651                return IB_PORT_ARMED;
10652        case HLS_UP_ACTIVE:
10653                return IB_PORT_ACTIVE;
10654        default:
10655                dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10656                           ppd->host_link_state);
10657        return -1;
10658        }
10659}
10660
10661void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10662                          u8 neigh_reason, u8 rem_reason)
10663{
10664        if (ppd->local_link_down_reason.latest == 0 &&
10665            ppd->neigh_link_down_reason.latest == 0) {
10666                ppd->local_link_down_reason.latest = lcl_reason;
10667                ppd->neigh_link_down_reason.latest = neigh_reason;
10668                ppd->remote_link_down_reason = rem_reason;
10669        }
10670}
10671
10672/**
10673 * data_vls_operational() - Verify if data VL BCT credits and MTU
10674 *                          are both set.
10675 * @ppd: pointer to hfi1_pportdata structure
10676 *
10677 * Return: true - Ok, false -otherwise.
10678 */
10679static inline bool data_vls_operational(struct hfi1_pportdata *ppd)
10680{
10681        int i;
10682        u64 reg;
10683
10684        if (!ppd->actual_vls_operational)
10685                return false;
10686
10687        for (i = 0; i < ppd->vls_supported; i++) {
10688                reg = read_csr(ppd->dd, SEND_CM_CREDIT_VL + (8 * i));
10689                if ((reg && !ppd->dd->vld[i].mtu) ||
10690                    (!reg && ppd->dd->vld[i].mtu))
10691                        return false;
10692        }
10693
10694        return true;
10695}
10696
10697/*
10698 * Change the physical and/or logical link state.
10699 *
10700 * Do not call this routine while inside an interrupt.  It contains
10701 * calls to routines that can take multiple seconds to finish.
10702 *
10703 * Returns 0 on success, -errno on failure.
10704 */
10705int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10706{
10707        struct hfi1_devdata *dd = ppd->dd;
10708        struct ib_event event = {.device = NULL};
10709        int ret1, ret = 0;
10710        int orig_new_state, poll_bounce;
10711
10712        mutex_lock(&ppd->hls_lock);
10713
10714        orig_new_state = state;
10715        if (state == HLS_DN_DOWNDEF)
10716                state = HLS_DEFAULT;
10717
10718        /* interpret poll -> poll as a link bounce */
10719        poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10720                      state == HLS_DN_POLL;
10721
10722        dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10723                    link_state_name(ppd->host_link_state),
10724                    link_state_name(orig_new_state),
10725                    poll_bounce ? "(bounce) " : "",
10726                    link_state_reason_name(ppd, state));
10727
10728        /*
10729         * If we're going to a (HLS_*) link state that implies the logical
10730         * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10731         * reset is_sm_config_started to 0.
10732         */
10733        if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10734                ppd->is_sm_config_started = 0;
10735
10736        /*
10737         * Do nothing if the states match.  Let a poll to poll link bounce
10738         * go through.
10739         */
10740        if (ppd->host_link_state == state && !poll_bounce)
10741                goto done;
10742
10743        switch (state) {
10744        case HLS_UP_INIT:
10745                if (ppd->host_link_state == HLS_DN_POLL &&
10746                    (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10747                        /*
10748                         * Quick link up jumps from polling to here.
10749                         *
10750                         * Whether in normal or loopback mode, the
10751                         * simulator jumps from polling to link up.
10752                         * Accept that here.
10753                         */
10754                        /* OK */
10755                } else if (ppd->host_link_state != HLS_GOING_UP) {
10756                        goto unexpected;
10757                }
10758
10759                /*
10760                 * Wait for Link_Up physical state.
10761                 * Physical and Logical states should already be
10762                 * be transitioned to LinkUp and LinkInit respectively.
10763                 */
10764                ret = wait_physical_linkstate(ppd, PLS_LINKUP, 1000);
10765                if (ret) {
10766                        dd_dev_err(dd,
10767                                   "%s: physical state did not change to LINK-UP\n",
10768                                   __func__);
10769                        break;
10770                }
10771
10772                ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10773                if (ret) {
10774                        dd_dev_err(dd,
10775                                   "%s: logical state did not change to INIT\n",
10776                                   __func__);
10777                        break;
10778                }
10779
10780                /* clear old transient LINKINIT_REASON code */
10781                if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10782                        ppd->linkinit_reason =
10783                                OPA_LINKINIT_REASON_LINKUP;
10784
10785                /* enable the port */
10786                add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10787
10788                handle_linkup_change(dd, 1);
10789                pio_kernel_linkup(dd);
10790
10791                /*
10792                 * After link up, a new link width will have been set.
10793                 * Update the xmit counters with regards to the new
10794                 * link width.
10795                 */
10796                update_xmit_counters(ppd, ppd->link_width_active);
10797
10798                ppd->host_link_state = HLS_UP_INIT;
10799                update_statusp(ppd, IB_PORT_INIT);
10800                break;
10801        case HLS_UP_ARMED:
10802                if (ppd->host_link_state != HLS_UP_INIT)
10803                        goto unexpected;
10804
10805                if (!data_vls_operational(ppd)) {
10806                        dd_dev_err(dd,
10807                                   "%s: Invalid data VL credits or mtu\n",
10808                                   __func__);
10809                        ret = -EINVAL;
10810                        break;
10811                }
10812
10813                set_logical_state(dd, LSTATE_ARMED);
10814                ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10815                if (ret) {
10816                        dd_dev_err(dd,
10817                                   "%s: logical state did not change to ARMED\n",
10818                                   __func__);
10819                        break;
10820                }
10821                ppd->host_link_state = HLS_UP_ARMED;
10822                update_statusp(ppd, IB_PORT_ARMED);
10823                /*
10824                 * The simulator does not currently implement SMA messages,
10825                 * so neighbor_normal is not set.  Set it here when we first
10826                 * move to Armed.
10827                 */
10828                if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10829                        ppd->neighbor_normal = 1;
10830                break;
10831        case HLS_UP_ACTIVE:
10832                if (ppd->host_link_state != HLS_UP_ARMED)
10833                        goto unexpected;
10834
10835                set_logical_state(dd, LSTATE_ACTIVE);
10836                ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10837                if (ret) {
10838                        dd_dev_err(dd,
10839                                   "%s: logical state did not change to ACTIVE\n",
10840                                   __func__);
10841                } else {
10842                        /* tell all engines to go running */
10843                        sdma_all_running(dd);
10844                        ppd->host_link_state = HLS_UP_ACTIVE;
10845                        update_statusp(ppd, IB_PORT_ACTIVE);
10846
10847                        /* Signal the IB layer that the port has went active */
10848                        event.device = &dd->verbs_dev.rdi.ibdev;
10849                        event.element.port_num = ppd->port;
10850                        event.event = IB_EVENT_PORT_ACTIVE;
10851                }
10852                break;
10853        case HLS_DN_POLL:
10854                if ((ppd->host_link_state == HLS_DN_DISABLE ||
10855                     ppd->host_link_state == HLS_DN_OFFLINE) &&
10856                    dd->dc_shutdown)
10857                        dc_start(dd);
10858                /* Hand LED control to the DC */
10859                write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10860
10861                if (ppd->host_link_state != HLS_DN_OFFLINE) {
10862                        u8 tmp = ppd->link_enabled;
10863
10864                        ret = goto_offline(ppd, ppd->remote_link_down_reason);
10865                        if (ret) {
10866                                ppd->link_enabled = tmp;
10867                                break;
10868                        }
10869                        ppd->remote_link_down_reason = 0;
10870
10871                        if (ppd->driver_link_ready)
10872                                ppd->link_enabled = 1;
10873                }
10874
10875                set_all_slowpath(ppd->dd);
10876                ret = set_local_link_attributes(ppd);
10877                if (ret)
10878                        break;
10879
10880                ppd->port_error_action = 0;
10881
10882                if (quick_linkup) {
10883                        /* quick linkup does not go into polling */
10884                        ret = do_quick_linkup(dd);
10885                } else {
10886                        ret1 = set_physical_link_state(dd, PLS_POLLING);
10887                        if (!ret1)
10888                                ret1 = wait_phys_link_out_of_offline(ppd,
10889                                                                     3000);
10890                        if (ret1 != HCMD_SUCCESS) {
10891                                dd_dev_err(dd,
10892                                           "Failed to transition to Polling link state, return 0x%x\n",
10893                                           ret1);
10894                                ret = -EINVAL;
10895                        }
10896                }
10897
10898                /*
10899                 * Change the host link state after requesting DC8051 to
10900                 * change its physical state so that we can ignore any
10901                 * interrupt with stale LNI(XX) error, which will not be
10902                 * cleared until DC8051 transitions to Polling state.
10903                 */
10904                ppd->host_link_state = HLS_DN_POLL;
10905                ppd->offline_disabled_reason =
10906                        HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
10907                /*
10908                 * If an error occurred above, go back to offline.  The
10909                 * caller may reschedule another attempt.
10910                 */
10911                if (ret)
10912                        goto_offline(ppd, 0);
10913                else
10914                        log_physical_state(ppd, PLS_POLLING);
10915                break;
10916        case HLS_DN_DISABLE:
10917                /* link is disabled */
10918                ppd->link_enabled = 0;
10919
10920                /* allow any state to transition to disabled */
10921
10922                /* must transition to offline first */
10923                if (ppd->host_link_state != HLS_DN_OFFLINE) {
10924                        ret = goto_offline(ppd, ppd->remote_link_down_reason);
10925                        if (ret)
10926                                break;
10927                        ppd->remote_link_down_reason = 0;
10928                }
10929
10930                if (!dd->dc_shutdown) {
10931                        ret1 = set_physical_link_state(dd, PLS_DISABLED);
10932                        if (ret1 != HCMD_SUCCESS) {
10933                                dd_dev_err(dd,
10934                                           "Failed to transition to Disabled link state, return 0x%x\n",
10935                                           ret1);
10936                                ret = -EINVAL;
10937                                break;
10938                        }
10939                        ret = wait_physical_linkstate(ppd, PLS_DISABLED, 10000);
10940                        if (ret) {
10941                                dd_dev_err(dd,
10942                                           "%s: physical state did not change to DISABLED\n",
10943                                           __func__);
10944                                break;
10945                        }
10946                        dc_shutdown(dd);
10947                }
10948                ppd->host_link_state = HLS_DN_DISABLE;
10949                break;
10950        case HLS_DN_OFFLINE:
10951                if (ppd->host_link_state == HLS_DN_DISABLE)
10952                        dc_start(dd);
10953
10954                /* allow any state to transition to offline */
10955                ret = goto_offline(ppd, ppd->remote_link_down_reason);
10956                if (!ret)
10957                        ppd->remote_link_down_reason = 0;
10958                break;
10959        case HLS_VERIFY_CAP:
10960                if (ppd->host_link_state != HLS_DN_POLL)
10961                        goto unexpected;
10962                ppd->host_link_state = HLS_VERIFY_CAP;
10963                log_physical_state(ppd, PLS_CONFIGPHY_VERIFYCAP);
10964                break;
10965        case HLS_GOING_UP:
10966                if (ppd->host_link_state != HLS_VERIFY_CAP)
10967                        goto unexpected;
10968
10969                ret1 = set_physical_link_state(dd, PLS_LINKUP);
10970                if (ret1 != HCMD_SUCCESS) {
10971                        dd_dev_err(dd,
10972                                   "Failed to transition to link up state, return 0x%x\n",
10973                                   ret1);
10974                        ret = -EINVAL;
10975                        break;
10976                }
10977                ppd->host_link_state = HLS_GOING_UP;
10978                break;
10979
10980        case HLS_GOING_OFFLINE:         /* transient within goto_offline() */
10981        case HLS_LINK_COOLDOWN:         /* transient within goto_offline() */
10982        default:
10983                dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10984                            __func__, state);
10985                ret = -EINVAL;
10986                break;
10987        }
10988
10989        goto done;
10990
10991unexpected:
10992        dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10993                   __func__, link_state_name(ppd->host_link_state),
10994                   link_state_name(state));
10995        ret = -EINVAL;
10996
10997done:
10998        mutex_unlock(&ppd->hls_lock);
10999
11000        if (event.device)
11001                ib_dispatch_event(&event);
11002
11003        return ret;
11004}
11005
11006int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
11007{
11008        u64 reg;
11009        int ret = 0;
11010
11011        switch (which) {
11012        case HFI1_IB_CFG_LIDLMC:
11013                set_lidlmc(ppd);
11014                break;
11015        case HFI1_IB_CFG_VL_HIGH_LIMIT:
11016                /*
11017                 * The VL Arbitrator high limit is sent in units of 4k
11018                 * bytes, while HFI stores it in units of 64 bytes.
11019                 */
11020                val *= 4096 / 64;
11021                reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
11022                        << SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
11023                write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
11024                break;
11025        case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
11026                /* HFI only supports POLL as the default link down state */
11027                if (val != HLS_DN_POLL)
11028                        ret = -EINVAL;
11029                break;
11030        case HFI1_IB_CFG_OP_VLS:
11031                if (ppd->vls_operational != val) {
11032                        ppd->vls_operational = val;
11033                        if (!ppd->port)
11034                                ret = -EINVAL;
11035                }
11036                break;
11037        /*
11038         * For link width, link width downgrade, and speed enable, always AND
11039         * the setting with what is actually supported.  This has two benefits.
11040         * First, enabled can't have unsupported values, no matter what the
11041         * SM or FM might want.  Second, the ALL_SUPPORTED wildcards that mean
11042         * "fill in with your supported value" have all the bits in the
11043         * field set, so simply ANDing with supported has the desired result.
11044         */
11045        case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
11046                ppd->link_width_enabled = val & ppd->link_width_supported;
11047                break;
11048        case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
11049                ppd->link_width_downgrade_enabled =
11050                                val & ppd->link_width_downgrade_supported;
11051                break;
11052        case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
11053                ppd->link_speed_enabled = val & ppd->link_speed_supported;
11054                break;
11055        case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
11056                /*
11057                 * HFI does not follow IB specs, save this value
11058                 * so we can report it, if asked.
11059                 */
11060                ppd->overrun_threshold = val;
11061                break;
11062        case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
11063                /*
11064                 * HFI does not follow IB specs, save this value
11065                 * so we can report it, if asked.
11066                 */
11067                ppd->phy_error_threshold = val;
11068                break;
11069
11070        case HFI1_IB_CFG_MTU:
11071                set_send_length(ppd);
11072                break;
11073
11074        case HFI1_IB_CFG_PKEYS:
11075                if (HFI1_CAP_IS_KSET(PKEY_CHECK))
11076                        set_partition_keys(ppd);
11077                break;
11078
11079        default:
11080                if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
11081                        dd_dev_info(ppd->dd,
11082                                    "%s: which %s, val 0x%x: not implemented\n",
11083                                    __func__, ib_cfg_name(which), val);
11084                break;
11085        }
11086        return ret;
11087}
11088
11089/* begin functions related to vl arbitration table caching */
11090static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
11091{
11092        int i;
11093
11094        BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
11095                        VL_ARB_LOW_PRIO_TABLE_SIZE);
11096        BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
11097                        VL_ARB_HIGH_PRIO_TABLE_SIZE);
11098
11099        /*
11100         * Note that we always return values directly from the
11101         * 'vl_arb_cache' (and do no CSR reads) in response to a
11102         * 'Get(VLArbTable)'. This is obviously correct after a
11103         * 'Set(VLArbTable)', since the cache will then be up to
11104         * date. But it's also correct prior to any 'Set(VLArbTable)'
11105         * since then both the cache, and the relevant h/w registers
11106         * will be zeroed.
11107         */
11108
11109        for (i = 0; i < MAX_PRIO_TABLE; i++)
11110                spin_lock_init(&ppd->vl_arb_cache[i].lock);
11111}
11112
11113/*
11114 * vl_arb_lock_cache
11115 *
11116 * All other vl_arb_* functions should be called only after locking
11117 * the cache.
11118 */
11119static inline struct vl_arb_cache *
11120vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
11121{
11122        if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
11123                return NULL;
11124        spin_lock(&ppd->vl_arb_cache[idx].lock);
11125        return &ppd->vl_arb_cache[idx];
11126}
11127
11128static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
11129{
11130        spin_unlock(&ppd->vl_arb_cache[idx].lock);
11131}
11132
11133static void vl_arb_get_cache(struct vl_arb_cache *cache,
11134                             struct ib_vl_weight_elem *vl)
11135{
11136        memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
11137}
11138
11139static void vl_arb_set_cache(struct vl_arb_cache *cache,
11140                             struct ib_vl_weight_elem *vl)
11141{
11142        memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11143}
11144
11145static int vl_arb_match_cache(struct vl_arb_cache *cache,
11146                              struct ib_vl_weight_elem *vl)
11147{
11148        return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11149}
11150
11151/* end functions related to vl arbitration table caching */
11152
11153static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
11154                          u32 size, struct ib_vl_weight_elem *vl)
11155{
11156        struct hfi1_devdata *dd = ppd->dd;
11157        u64 reg;
11158        unsigned int i, is_up = 0;
11159        int drain, ret = 0;
11160
11161        mutex_lock(&ppd->hls_lock);
11162
11163        if (ppd->host_link_state & HLS_UP)
11164                is_up = 1;
11165
11166        drain = !is_ax(dd) && is_up;
11167
11168        if (drain)
11169                /*
11170                 * Before adjusting VL arbitration weights, empty per-VL
11171                 * FIFOs, otherwise a packet whose VL weight is being
11172                 * set to 0 could get stuck in a FIFO with no chance to
11173                 * egress.
11174                 */
11175                ret = stop_drain_data_vls(dd);
11176
11177        if (ret) {
11178                dd_dev_err(
11179                        dd,
11180                        "%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
11181                        __func__);
11182                goto err;
11183        }
11184
11185        for (i = 0; i < size; i++, vl++) {
11186                /*
11187                 * NOTE: The low priority shift and mask are used here, but
11188                 * they are the same for both the low and high registers.
11189                 */
11190                reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
11191                                << SEND_LOW_PRIORITY_LIST_VL_SHIFT)
11192                      | (((u64)vl->weight
11193                                & SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
11194                                << SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
11195                write_csr(dd, target + (i * 8), reg);
11196        }
11197        pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
11198
11199        if (drain)
11200                open_fill_data_vls(dd); /* reopen all VLs */
11201
11202err:
11203        mutex_unlock(&ppd->hls_lock);
11204
11205        return ret;
11206}
11207
11208/*
11209 * Read one credit merge VL register.
11210 */
11211static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
11212                           struct vl_limit *vll)
11213{
11214        u64 reg = read_csr(dd, csr);
11215
11216        vll->dedicated = cpu_to_be16(
11217                (reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
11218                & SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
11219        vll->shared = cpu_to_be16(
11220                (reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
11221                & SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
11222}
11223
11224/*
11225 * Read the current credit merge limits.
11226 */
11227static int get_buffer_control(struct hfi1_devdata *dd,
11228                              struct buffer_control *bc, u16 *overall_limit)
11229{
11230        u64 reg;
11231        int i;
11232
11233        /* not all entries are filled in */
11234        memset(bc, 0, sizeof(*bc));
11235
11236        /* OPA and HFI have a 1-1 mapping */
11237        for (i = 0; i < TXE_NUM_DATA_VL; i++)
11238                read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
11239
11240        /* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
11241        read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
11242
11243        reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11244        bc->overall_shared_limit = cpu_to_be16(
11245                (reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
11246                & SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
11247        if (overall_limit)
11248                *overall_limit = (reg
11249                        >> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
11250                        & SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
11251        return sizeof(struct buffer_control);
11252}
11253
11254static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11255{
11256        u64 reg;
11257        int i;
11258
11259        /* each register contains 16 SC->VLnt mappings, 4 bits each */
11260        reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
11261        for (i = 0; i < sizeof(u64); i++) {
11262                u8 byte = *(((u8 *)&reg) + i);
11263
11264                dp->vlnt[2 * i] = byte & 0xf;
11265                dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
11266        }
11267
11268        reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
11269        for (i = 0; i < sizeof(u64); i++) {
11270                u8 byte = *(((u8 *)&reg) + i);
11271
11272                dp->vlnt[16 + (2 * i)] = byte & 0xf;
11273                dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
11274        }
11275        return sizeof(struct sc2vlnt);
11276}
11277
11278static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
11279                              struct ib_vl_weight_elem *vl)
11280{
11281        unsigned int i;
11282
11283        for (i = 0; i < nelems; i++, vl++) {
11284                vl->vl = 0xf;
11285                vl->weight = 0;
11286        }
11287}
11288
11289static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11290{
11291        write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
11292                  DC_SC_VL_VAL(15_0,
11293                               0, dp->vlnt[0] & 0xf,
11294                               1, dp->vlnt[1] & 0xf,
11295                               2, dp->vlnt[2] & 0xf,
11296                               3, dp->vlnt[3] & 0xf,
11297                               4, dp->vlnt[4] & 0xf,
11298                               5, dp->vlnt[5] & 0xf,
11299                               6, dp->vlnt[6] & 0xf,
11300                               7, dp->vlnt[7] & 0xf,
11301                               8, dp->vlnt[8] & 0xf,
11302                               9, dp->vlnt[9] & 0xf,
11303                               10, dp->vlnt[10] & 0xf,
11304                               11, dp->vlnt[11] & 0xf,
11305                               12, dp->vlnt[12] & 0xf,
11306                               13, dp->vlnt[13] & 0xf,
11307                               14, dp->vlnt[14] & 0xf,
11308                               15, dp->vlnt[15] & 0xf));
11309        write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
11310                  DC_SC_VL_VAL(31_16,
11311                               16, dp->vlnt[16] & 0xf,
11312                               17, dp->vlnt[17] & 0xf,
11313                               18, dp->vlnt[18] & 0xf,
11314                               19, dp->vlnt[19] & 0xf,
11315                               20, dp->vlnt[20] & 0xf,
11316                               21, dp->vlnt[21] & 0xf,
11317                               22, dp->vlnt[22] & 0xf,
11318                               23, dp->vlnt[23] & 0xf,
11319                               24, dp->vlnt[24] & 0xf,
11320                               25, dp->vlnt[25] & 0xf,
11321                               26, dp->vlnt[26] & 0xf,
11322                               27, dp->vlnt[27] & 0xf,
11323                               28, dp->vlnt[28] & 0xf,
11324                               29, dp->vlnt[29] & 0xf,
11325                               30, dp->vlnt[30] & 0xf,
11326                               31, dp->vlnt[31] & 0xf));
11327}
11328
11329static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
11330                        u16 limit)
11331{
11332        if (limit != 0)
11333                dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
11334                            what, (int)limit, idx);
11335}
11336
11337/* change only the shared limit portion of SendCmGLobalCredit */
11338static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
11339{
11340        u64 reg;
11341
11342        reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11343        reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
11344        reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
11345        write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11346}
11347
11348/* change only the total credit limit portion of SendCmGLobalCredit */
11349static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
11350{
11351        u64 reg;
11352
11353        reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11354        reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
11355        reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
11356        write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11357}
11358
11359/* set the given per-VL shared limit */
11360static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
11361{
11362        u64 reg;
11363        u32 addr;
11364
11365        if (vl < TXE_NUM_DATA_VL)
11366                addr = SEND_CM_CREDIT_VL + (8 * vl);
11367        else
11368                addr = SEND_CM_CREDIT_VL15;
11369
11370        reg = read_csr(dd, addr);
11371        reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
11372        reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
11373        write_csr(dd, addr, reg);
11374}
11375
11376/* set the given per-VL dedicated limit */
11377static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
11378{
11379        u64 reg;
11380        u32 addr;
11381
11382        if (vl < TXE_NUM_DATA_VL)
11383                addr = SEND_CM_CREDIT_VL + (8 * vl);
11384        else
11385                addr = SEND_CM_CREDIT_VL15;
11386
11387        reg = read_csr(dd, addr);
11388        reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
11389        reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
11390        write_csr(dd, addr, reg);
11391}
11392
11393/* spin until the given per-VL status mask bits clear */
11394static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
11395                                     const char *which)
11396{
11397        unsigned long timeout;
11398        u64 reg;
11399
11400        timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
11401        while (1) {
11402                reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
11403
11404                if (reg == 0)
11405                        return; /* success */
11406                if (time_after(jiffies, timeout))
11407                        break;          /* timed out */
11408                udelay(1);
11409        }
11410
11411        dd_dev_err(dd,
11412                   "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
11413                   which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
11414        /*
11415         * If this occurs, it is likely there was a credit loss on the link.
11416         * The only recovery from that is a link bounce.
11417         */
11418        dd_dev_err(dd,
11419                   "Continuing anyway.  A credit loss may occur.  Suggest a link bounce\n");
11420}
11421
11422/*
11423 * The number of credits on the VLs may be changed while everything
11424 * is "live", but the following algorithm must be followed due to
11425 * how the hardware is actually implemented.  In particular,
11426 * Return_Credit_Status[] is the only correct status check.
11427 *
11428 * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
11429 *     set Global_Shared_Credit_Limit = 0
11430 *     use_all_vl = 1
11431 * mask0 = all VLs that are changing either dedicated or shared limits
11432 * set Shared_Limit[mask0] = 0
11433 * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
11434 * if (changing any dedicated limit)
11435 *     mask1 = all VLs that are lowering dedicated limits
11436 *     lower Dedicated_Limit[mask1]
11437 *     spin until Return_Credit_Status[mask1] == 0
11438 *     raise Dedicated_Limits
11439 * raise Shared_Limits
11440 * raise Global_Shared_Credit_Limit
11441 *
11442 * lower = if the new limit is lower, set the limit to the new value
11443 * raise = if the new limit is higher than the current value (may be changed
11444 *      earlier in the algorithm), set the new limit to the new value
11445 */
11446int set_buffer_control(struct hfi1_pportdata *ppd,
11447                       struct buffer_control *new_bc)
11448{
11449        struct hfi1_devdata *dd = ppd->dd;
11450        u64 changing_mask, ld_mask, stat_mask;
11451        int change_count;
11452        int i, use_all_mask;
11453        int this_shared_changing;
11454        int vl_count = 0, ret;
11455        /*
11456         * A0: add the variable any_shared_limit_changing below and in the
11457         * algorithm above.  If removing A0 support, it can be removed.
11458         */
11459        int any_shared_limit_changing;
11460        struct buffer_control cur_bc;
11461        u8 changing[OPA_MAX_VLS];
11462        u8 lowering_dedicated[OPA_MAX_VLS];
11463        u16 cur_total;
11464        u32 new_total = 0;
11465        const u64 all_mask =
11466        SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
11467         | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
11468         | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
11469         | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
11470         | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
11471         | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
11472         | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
11473         | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
11474         | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
11475
11476#define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
11477#define NUM_USABLE_VLS 16       /* look at VL15 and less */
11478
11479        /* find the new total credits, do sanity check on unused VLs */
11480        for (i = 0; i < OPA_MAX_VLS; i++) {
11481                if (valid_vl(i)) {
11482                        new_total += be16_to_cpu(new_bc->vl[i].dedicated);
11483                        continue;
11484                }
11485                nonzero_msg(dd, i, "dedicated",
11486                            be16_to_cpu(new_bc->vl[i].dedicated));
11487                nonzero_msg(dd, i, "shared",
11488                            be16_to_cpu(new_bc->vl[i].shared));
11489                new_bc->vl[i].dedicated = 0;
11490                new_bc->vl[i].shared = 0;
11491        }
11492        new_total += be16_to_cpu(new_bc->overall_shared_limit);
11493
11494        /* fetch the current values */
11495        get_buffer_control(dd, &cur_bc, &cur_total);
11496
11497        /*
11498         * Create the masks we will use.
11499         */
11500        memset(changing, 0, sizeof(changing));
11501        memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
11502        /*
11503         * NOTE: Assumes that the individual VL bits are adjacent and in
11504         * increasing order
11505         */
11506        stat_mask =
11507                SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
11508        changing_mask = 0;
11509        ld_mask = 0;
11510        change_count = 0;
11511        any_shared_limit_changing = 0;
11512        for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
11513                if (!valid_vl(i))
11514                        continue;
11515                this_shared_changing = new_bc->vl[i].shared
11516                                                != cur_bc.vl[i].shared;
11517                if (this_shared_changing)
11518                        any_shared_limit_changing = 1;
11519                if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
11520                    this_shared_changing) {
11521                        changing[i] = 1;
11522                        changing_mask |= stat_mask;
11523                        change_count++;
11524                }
11525                if (be16_to_cpu(new_bc->vl[i].dedicated) <
11526                                        be16_to_cpu(cur_bc.vl[i].dedicated)) {
11527                        lowering_dedicated[i] = 1;
11528                        ld_mask |= stat_mask;
11529                }
11530        }
11531
11532        /* bracket the credit change with a total adjustment */
11533        if (new_total > cur_total)
11534                set_global_limit(dd, new_total);
11535
11536        /*
11537         * Start the credit change algorithm.
11538         */
11539        use_all_mask = 0;
11540        if ((be16_to_cpu(new_bc->overall_shared_limit) <
11541             be16_to_cpu(cur_bc.overall_shared_limit)) ||
11542            (is_ax(dd) && any_shared_limit_changing)) {
11543                set_global_shared(dd, 0);
11544                cur_bc.overall_shared_limit = 0;
11545                use_all_mask = 1;
11546        }
11547
11548        for (i = 0; i < NUM_USABLE_VLS; i++) {
11549                if (!valid_vl(i))
11550                        continue;
11551
11552                if (changing[i]) {
11553                        set_vl_shared(dd, i, 0);
11554                        cur_bc.vl[i].shared = 0;
11555                }
11556        }
11557
11558        wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
11559                                 "shared");
11560
11561        if (change_count > 0) {
11562                for (i = 0; i < NUM_USABLE_VLS; i++) {
11563                        if (!valid_vl(i))
11564                                continue;
11565
11566                        if (lowering_dedicated[i]) {
11567                                set_vl_dedicated(dd, i,
11568                                                 be16_to_cpu(new_bc->
11569                                                             vl[i].dedicated));
11570                                cur_bc.vl[i].dedicated =
11571                                                new_bc->vl[i].dedicated;
11572                        }
11573                }
11574
11575                wait_for_vl_status_clear(dd, ld_mask, "dedicated");
11576
11577                /* now raise all dedicated that are going up */
11578                for (i = 0; i < NUM_USABLE_VLS; i++) {
11579                        if (!valid_vl(i))
11580                                continue;
11581
11582                        if (be16_to_cpu(new_bc->vl[i].dedicated) >
11583                                        be16_to_cpu(cur_bc.vl[i].dedicated))
11584                                set_vl_dedicated(dd, i,
11585                                                 be16_to_cpu(new_bc->
11586                                                             vl[i].dedicated));
11587                }
11588        }
11589
11590        /* next raise all shared that are going up */
11591        for (i = 0; i < NUM_USABLE_VLS; i++) {
11592                if (!valid_vl(i))
11593                        continue;
11594
11595                if (be16_to_cpu(new_bc->vl[i].shared) >
11596                                be16_to_cpu(cur_bc.vl[i].shared))
11597                        set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
11598        }
11599
11600        /* finally raise the global shared */
11601        if (be16_to_cpu(new_bc->overall_shared_limit) >
11602            be16_to_cpu(cur_bc.overall_shared_limit))
11603                set_global_shared(dd,
11604                                  be16_to_cpu(new_bc->overall_shared_limit));
11605
11606        /* bracket the credit change with a total adjustment */
11607        if (new_total < cur_total)
11608                set_global_limit(dd, new_total);
11609
11610        /*
11611         * Determine the actual number of operational VLS using the number of
11612         * dedicated and shared credits for each VL.
11613         */
11614        if (change_count > 0) {
11615                for (i = 0; i < TXE_NUM_DATA_VL; i++)
11616                        if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
11617                            be16_to_cpu(new_bc->vl[i].shared) > 0)
11618                                vl_count++;
11619                ppd->actual_vls_operational = vl_count;
11620                ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
11621                                    ppd->actual_vls_operational :
11622                                    ppd->vls_operational,
11623                                    NULL);
11624                if (ret == 0)
11625                        ret = pio_map_init(dd, ppd->port - 1, vl_count ?
11626                                           ppd->actual_vls_operational :
11627                                           ppd->vls_operational, NULL);
11628                if (ret)
11629                        return ret;
11630        }
11631        return 0;
11632}
11633
11634/*
11635 * Read the given fabric manager table. Return the size of the
11636 * table (in bytes) on success, and a negative error code on
11637 * failure.
11638 */
11639int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
11640
11641{
11642        int size;
11643        struct vl_arb_cache *vlc;
11644
11645        switch (which) {
11646        case FM_TBL_VL_HIGH_ARB:
11647                size = 256;
11648                /*
11649                 * OPA specifies 128 elements (of 2 bytes each), though
11650                 * HFI supports only 16 elements in h/w.
11651                 */
11652                vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11653                vl_arb_get_cache(vlc, t);
11654                vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11655                break;
11656        case FM_TBL_VL_LOW_ARB:
11657                size = 256;
11658                /*
11659                 * OPA specifies 128 elements (of 2 bytes each), though
11660                 * HFI supports only 16 elements in h/w.
11661                 */
11662                vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11663                vl_arb_get_cache(vlc, t);
11664                vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11665                break;
11666        case FM_TBL_BUFFER_CONTROL:
11667                size = get_buffer_control(ppd->dd, t, NULL);
11668                break;
11669        case FM_TBL_SC2VLNT:
11670                size = get_sc2vlnt(ppd->dd, t);
11671                break;
11672        case FM_TBL_VL_PREEMPT_ELEMS:
11673                size = 256;
11674                /* OPA specifies 128 elements, of 2 bytes each */
11675                get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
11676                break;
11677        case FM_TBL_VL_PREEMPT_MATRIX:
11678                size = 256;
11679                /*
11680                 * OPA specifies that this is the same size as the VL
11681                 * arbitration tables (i.e., 256 bytes).
11682                 */
11683                break;
11684        default:
11685                return -EINVAL;
11686        }
11687        return size;
11688}
11689
11690/*
11691 * Write the given fabric manager table.
11692 */
11693int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
11694{
11695        int ret = 0;
11696        struct vl_arb_cache *vlc;
11697
11698        switch (which) {
11699        case FM_TBL_VL_HIGH_ARB:
11700                vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11701                if (vl_arb_match_cache(vlc, t)) {
11702                        vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11703                        break;
11704                }
11705                vl_arb_set_cache(vlc, t);
11706                vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11707                ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
11708                                     VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
11709                break;
11710        case FM_TBL_VL_LOW_ARB:
11711                vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11712                if (vl_arb_match_cache(vlc, t)) {
11713                        vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11714                        break;
11715                }
11716                vl_arb_set_cache(vlc, t);
11717                vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11718                ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11719                                     VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11720                break;
11721        case FM_TBL_BUFFER_CONTROL:
11722                ret = set_buffer_control(ppd, t);
11723                break;
11724        case FM_TBL_SC2VLNT:
11725                set_sc2vlnt(ppd->dd, t);
11726                break;
11727        default:
11728                ret = -EINVAL;
11729        }
11730        return ret;
11731}
11732
11733/*
11734 * Disable all data VLs.
11735 *
11736 * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11737 */
11738static int disable_data_vls(struct hfi1_devdata *dd)
11739{
11740        if (is_ax(dd))
11741                return 1;
11742
11743        pio_send_control(dd, PSC_DATA_VL_DISABLE);
11744
11745        return 0;
11746}
11747
11748/*
11749 * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11750 * Just re-enables all data VLs (the "fill" part happens
11751 * automatically - the name was chosen for symmetry with
11752 * stop_drain_data_vls()).
11753 *
11754 * Return 0 if successful, non-zero if the VLs cannot be enabled.
11755 */
11756int open_fill_data_vls(struct hfi1_devdata *dd)
11757{
11758        if (is_ax(dd))
11759                return 1;
11760
11761        pio_send_control(dd, PSC_DATA_VL_ENABLE);
11762
11763        return 0;
11764}
11765
11766/*
11767 * drain_data_vls() - assumes that disable_data_vls() has been called,
11768 * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11769 * engines to drop to 0.
11770 */
11771static void drain_data_vls(struct hfi1_devdata *dd)
11772{
11773        sc_wait(dd);
11774        sdma_wait(dd);
11775        pause_for_credit_return(dd);
11776}
11777
11778/*
11779 * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11780 *
11781 * Use open_fill_data_vls() to resume using data VLs.  This pair is
11782 * meant to be used like this:
11783 *
11784 * stop_drain_data_vls(dd);
11785 * // do things with per-VL resources
11786 * open_fill_data_vls(dd);
11787 */
11788int stop_drain_data_vls(struct hfi1_devdata *dd)
11789{
11790        int ret;
11791
11792        ret = disable_data_vls(dd);
11793        if (ret == 0)
11794                drain_data_vls(dd);
11795
11796        return ret;
11797}
11798
11799/*
11800 * Convert a nanosecond time to a cclock count.  No matter how slow
11801 * the cclock, a non-zero ns will always have a non-zero result.
11802 */
11803u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11804{
11805        u32 cclocks;
11806
11807        if (dd->icode == ICODE_FPGA_EMULATION)
11808                cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11809        else  /* simulation pretends to be ASIC */
11810                cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11811        if (ns && !cclocks)     /* if ns nonzero, must be at least 1 */
11812                cclocks = 1;
11813        return cclocks;
11814}
11815
11816/*
11817 * Convert a cclock count to nanoseconds. Not matter how slow
11818 * the cclock, a non-zero cclocks will always have a non-zero result.
11819 */
11820u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11821{
11822        u32 ns;
11823
11824        if (dd->icode == ICODE_FPGA_EMULATION)
11825                ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11826        else  /* simulation pretends to be ASIC */
11827                ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11828        if (cclocks && !ns)
11829                ns = 1;
11830        return ns;
11831}
11832
11833/*
11834 * Dynamically adjust the receive interrupt timeout for a context based on
11835 * incoming packet rate.
11836 *
11837 * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11838 */
11839static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11840{
11841        struct hfi1_devdata *dd = rcd->dd;
11842        u32 timeout = rcd->rcvavail_timeout;
11843
11844        /*
11845         * This algorithm doubles or halves the timeout depending on whether
11846         * the number of packets received in this interrupt were less than or
11847         * greater equal the interrupt count.
11848         *
11849         * The calculations below do not allow a steady state to be achieved.
11850         * Only at the endpoints it is possible to have an unchanging
11851         * timeout.
11852         */
11853        if (npkts < rcv_intr_count) {
11854                /*
11855                 * Not enough packets arrived before the timeout, adjust
11856                 * timeout downward.
11857                 */
11858                if (timeout < 2) /* already at minimum? */
11859                        return;
11860                timeout >>= 1;
11861        } else {
11862                /*
11863                 * More than enough packets arrived before the timeout, adjust
11864                 * timeout upward.
11865                 */
11866                if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11867                        return;
11868                timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11869        }
11870
11871        rcd->rcvavail_timeout = timeout;
11872        /*
11873         * timeout cannot be larger than rcv_intr_timeout_csr which has already
11874         * been verified to be in range
11875         */
11876        write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11877                        (u64)timeout <<
11878                        RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11879}
11880
11881void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11882                    u32 intr_adjust, u32 npkts)
11883{
11884        struct hfi1_devdata *dd = rcd->dd;
11885        u64 reg;
11886        u32 ctxt = rcd->ctxt;
11887
11888        /*
11889         * Need to write timeout register before updating RcvHdrHead to ensure
11890         * that a new value is used when the HW decides to restart counting.
11891         */
11892        if (intr_adjust)
11893                adjust_rcv_timeout(rcd, npkts);
11894        if (updegr) {
11895                reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11896                        << RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11897                write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11898        }
11899        reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11900                (((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11901                        << RCV_HDR_HEAD_HEAD_SHIFT);
11902        write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11903}
11904
11905u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11906{
11907        u32 head, tail;
11908
11909        head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11910                & RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11911
11912        if (hfi1_rcvhdrtail_kvaddr(rcd))
11913                tail = get_rcvhdrtail(rcd);
11914        else
11915                tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11916
11917        return head == tail;
11918}
11919
11920/*
11921 * Context Control and Receive Array encoding for buffer size:
11922 *      0x0 invalid
11923 *      0x1   4 KB
11924 *      0x2   8 KB
11925 *      0x3  16 KB
11926 *      0x4  32 KB
11927 *      0x5  64 KB
11928 *      0x6 128 KB
11929 *      0x7 256 KB
11930 *      0x8 512 KB (Receive Array only)
11931 *      0x9   1 MB (Receive Array only)
11932 *      0xa   2 MB (Receive Array only)
11933 *
11934 *      0xB-0xF - reserved (Receive Array only)
11935 *
11936 *
11937 * This routine assumes that the value has already been sanity checked.
11938 */
11939static u32 encoded_size(u32 size)
11940{
11941        switch (size) {
11942        case   4 * 1024: return 0x1;
11943        case   8 * 1024: return 0x2;
11944        case  16 * 1024: return 0x3;
11945        case  32 * 1024: return 0x4;
11946        case  64 * 1024: return 0x5;
11947        case 128 * 1024: return 0x6;
11948        case 256 * 1024: return 0x7;
11949        case 512 * 1024: return 0x8;
11950        case   1 * 1024 * 1024: return 0x9;
11951        case   2 * 1024 * 1024: return 0xa;
11952        }
11953        return 0x1;     /* if invalid, go with the minimum size */
11954}
11955
11956/**
11957 * encode_rcv_header_entry_size - return chip specific encoding for size
11958 * @size: size in dwords
11959 *
11960 * Convert a receive header entry size that to the encoding used in the CSR.
11961 *
11962 * Return a zero if the given size is invalid, otherwise the encoding.
11963 */
11964u8 encode_rcv_header_entry_size(u8 size)
11965{
11966        /* there are only 3 valid receive header entry sizes */
11967        if (size == 2)
11968                return 1;
11969        if (size == 16)
11970                return 2;
11971        if (size == 32)
11972                return 4;
11973        return 0; /* invalid */
11974}
11975
11976/**
11977 * hfi1_validate_rcvhdrcnt - validate hdrcnt
11978 * @dd: the device data
11979 * @thecnt: the header count
11980 */
11981int hfi1_validate_rcvhdrcnt(struct hfi1_devdata *dd, uint thecnt)
11982{
11983        if (thecnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) {
11984                dd_dev_err(dd, "Receive header queue count too small\n");
11985                return -EINVAL;
11986        }
11987
11988        if (thecnt > HFI1_MAX_HDRQ_EGRBUF_CNT) {
11989                dd_dev_err(dd,
11990                           "Receive header queue count cannot be greater than %u\n",
11991                           HFI1_MAX_HDRQ_EGRBUF_CNT);
11992                return -EINVAL;
11993        }
11994
11995        if (thecnt % HDRQ_INCREMENT) {
11996                dd_dev_err(dd, "Receive header queue count %d must be divisible by %lu\n",
11997                           thecnt, HDRQ_INCREMENT);
11998                return -EINVAL;
11999        }
12000
12001        return 0;
12002}
12003
12004/**
12005 * set_hdrq_regs - set header queue registers for context
12006 * @dd: the device data
12007 * @ctxt: the context
12008 * @entsize: the dword entry size
12009 * @hdrcnt: the number of header entries
12010 */
12011void set_hdrq_regs(struct hfi1_devdata *dd, u8 ctxt, u8 entsize, u16 hdrcnt)
12012{
12013        u64 reg;
12014
12015        reg = (((u64)hdrcnt >> HDRQ_SIZE_SHIFT) & RCV_HDR_CNT_CNT_MASK) <<
12016              RCV_HDR_CNT_CNT_SHIFT;
12017        write_kctxt_csr(dd, ctxt, RCV_HDR_CNT, reg);
12018        reg = ((u64)encode_rcv_header_entry_size(entsize) &
12019               RCV_HDR_ENT_SIZE_ENT_SIZE_MASK) <<
12020              RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT;
12021        write_kctxt_csr(dd, ctxt, RCV_HDR_ENT_SIZE, reg);
12022        reg = ((u64)DEFAULT_RCVHDRSIZE & RCV_HDR_SIZE_HDR_SIZE_MASK) <<
12023              RCV_HDR_SIZE_HDR_SIZE_SHIFT;
12024        write_kctxt_csr(dd, ctxt, RCV_HDR_SIZE, reg);
12025
12026        /*
12027         * Program dummy tail address for every receive context
12028         * before enabling any receive context
12029         */
12030        write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12031                        dd->rcvhdrtail_dummy_dma);
12032}
12033
12034void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op,
12035                  struct hfi1_ctxtdata *rcd)
12036{
12037        u64 rcvctrl, reg;
12038        int did_enable = 0;
12039        u16 ctxt;
12040
12041        if (!rcd)
12042                return;
12043
12044        ctxt = rcd->ctxt;
12045
12046        hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
12047
12048        rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
12049        /* if the context already enabled, don't do the extra steps */
12050        if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
12051            !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
12052                /* reset the tail and hdr addresses, and sequence count */
12053                write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
12054                                rcd->rcvhdrq_dma);
12055                if (hfi1_rcvhdrtail_kvaddr(rcd))
12056                        write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12057                                        rcd->rcvhdrqtailaddr_dma);
12058                hfi1_set_seq_cnt(rcd, 1);
12059
12060                /* reset the cached receive header queue head value */
12061                hfi1_set_rcd_head(rcd, 0);
12062
12063                /*
12064                 * Zero the receive header queue so we don't get false
12065                 * positives when checking the sequence number.  The
12066                 * sequence numbers could land exactly on the same spot.
12067                 * E.g. a rcd restart before the receive header wrapped.
12068                 */
12069                memset(rcd->rcvhdrq, 0, rcvhdrq_size(rcd));
12070
12071                /* starting timeout */
12072                rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
12073
12074                /* enable the context */
12075                rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
12076
12077                /* clean the egr buffer size first */
12078                rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
12079                rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
12080                                & RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
12081                                        << RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
12082
12083                /* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
12084                write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
12085                did_enable = 1;
12086
12087                /* zero RcvEgrIndexHead */
12088                write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
12089
12090                /* set eager count and base index */
12091                reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
12092                        & RCV_EGR_CTRL_EGR_CNT_MASK)
12093                       << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
12094                        (((rcd->eager_base >> RCV_SHIFT)
12095                          & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
12096                         << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
12097                write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
12098
12099                /*
12100                 * Set TID (expected) count and base index.
12101                 * rcd->expected_count is set to individual RcvArray entries,
12102                 * not pairs, and the CSR takes a pair-count in groups of
12103                 * four, so divide by 8.
12104                 */
12105                reg = (((rcd->expected_count >> RCV_SHIFT)
12106                                        & RCV_TID_CTRL_TID_PAIR_CNT_MASK)
12107                                << RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
12108                      (((rcd->expected_base >> RCV_SHIFT)
12109                                        & RCV_TID_CTRL_TID_BASE_INDEX_MASK)
12110                                << RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
12111                write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
12112                if (ctxt == HFI1_CTRL_CTXT)
12113                        write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
12114        }
12115        if (op & HFI1_RCVCTRL_CTXT_DIS) {
12116                write_csr(dd, RCV_VL15, 0);
12117                /*
12118                 * When receive context is being disabled turn on tail
12119                 * update with a dummy tail address and then disable
12120                 * receive context.
12121                 */
12122                if (dd->rcvhdrtail_dummy_dma) {
12123                        write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12124                                        dd->rcvhdrtail_dummy_dma);
12125                        /* Enabling RcvCtxtCtrl.TailUpd is intentional. */
12126                        rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
12127                }
12128
12129                rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
12130        }
12131        if (op & HFI1_RCVCTRL_INTRAVAIL_ENB) {
12132                set_intr_bits(dd, IS_RCVAVAIL_START + rcd->ctxt,
12133                              IS_RCVAVAIL_START + rcd->ctxt, true);
12134                rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
12135        }
12136        if (op & HFI1_RCVCTRL_INTRAVAIL_DIS) {
12137                set_intr_bits(dd, IS_RCVAVAIL_START + rcd->ctxt,
12138                              IS_RCVAVAIL_START + rcd->ctxt, false);
12139                rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
12140        }
12141        if ((op & HFI1_RCVCTRL_TAILUPD_ENB) && hfi1_rcvhdrtail_kvaddr(rcd))
12142                rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
12143        if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
12144                /* See comment on RcvCtxtCtrl.TailUpd above */
12145                if (!(op & HFI1_RCVCTRL_CTXT_DIS))
12146                        rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
12147        }
12148        if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
12149                rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
12150        if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
12151                rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
12152        if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
12153                /*
12154                 * In one-packet-per-eager mode, the size comes from
12155                 * the RcvArray entry.
12156                 */
12157                rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
12158                rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
12159        }
12160        if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
12161                rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
12162        if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
12163                rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
12164        if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
12165                rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
12166        if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
12167                rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
12168        if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
12169                rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
12170        if (op & HFI1_RCVCTRL_URGENT_ENB)
12171                set_intr_bits(dd, IS_RCVURGENT_START + rcd->ctxt,
12172                              IS_RCVURGENT_START + rcd->ctxt, true);
12173        if (op & HFI1_RCVCTRL_URGENT_DIS)
12174                set_intr_bits(dd, IS_RCVURGENT_START + rcd->ctxt,
12175                              IS_RCVURGENT_START + rcd->ctxt, false);
12176
12177        hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
12178        write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcvctrl);
12179
12180        /* work around sticky RcvCtxtStatus.BlockedRHQFull */
12181        if (did_enable &&
12182            (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
12183                reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
12184                if (reg != 0) {
12185                        dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
12186                                    ctxt, reg);
12187                        read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
12188                        write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
12189                        write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
12190                        read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
12191                        reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
12192                        dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
12193                                    ctxt, reg, reg == 0 ? "not" : "still");
12194                }
12195        }
12196
12197        if (did_enable) {
12198                /*
12199                 * The interrupt timeout and count must be set after
12200                 * the context is enabled to take effect.
12201                 */
12202                /* set interrupt timeout */
12203                write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
12204                                (u64)rcd->rcvavail_timeout <<
12205                                RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
12206
12207                /* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
12208                reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
12209                write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
12210        }
12211
12212        if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
12213                /*
12214                 * If the context has been disabled and the Tail Update has
12215                 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
12216                 * so it doesn't contain an address that is invalid.
12217                 */
12218                write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12219                                dd->rcvhdrtail_dummy_dma);
12220}
12221
12222u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
12223{
12224        int ret;
12225        u64 val = 0;
12226
12227        if (namep) {
12228                ret = dd->cntrnameslen;
12229                *namep = dd->cntrnames;
12230        } else {
12231                const struct cntr_entry *entry;
12232                int i, j;
12233
12234                ret = (dd->ndevcntrs) * sizeof(u64);
12235
12236                /* Get the start of the block of counters */
12237                *cntrp = dd->cntrs;
12238
12239                /*
12240                 * Now go and fill in each counter in the block.
12241                 */
12242                for (i = 0; i < DEV_CNTR_LAST; i++) {
12243                        entry = &dev_cntrs[i];
12244                        hfi1_cdbg(CNTR, "reading %s", entry->name);
12245                        if (entry->flags & CNTR_DISABLED) {
12246                                /* Nothing */
12247                                hfi1_cdbg(CNTR, "\tDisabled\n");
12248                        } else {
12249                                if (entry->flags & CNTR_VL) {
12250                                        hfi1_cdbg(CNTR, "\tPer VL\n");
12251                                        for (j = 0; j < C_VL_COUNT; j++) {
12252                                                val = entry->rw_cntr(entry,
12253                                                                  dd, j,
12254                                                                  CNTR_MODE_R,
12255                                                                  0);
12256                                                hfi1_cdbg(
12257                                                   CNTR,
12258                                                   "\t\tRead 0x%llx for %d\n",
12259                                                   val, j);
12260                                                dd->cntrs[entry->offset + j] =
12261                                                                            val;
12262                                        }
12263                                } else if (entry->flags & CNTR_SDMA) {
12264                                        hfi1_cdbg(CNTR,
12265                                                  "\t Per SDMA Engine\n");
12266                                        for (j = 0; j < chip_sdma_engines(dd);
12267                                             j++) {
12268                                                val =
12269                                                entry->rw_cntr(entry, dd, j,
12270                                                               CNTR_MODE_R, 0);
12271                                                hfi1_cdbg(CNTR,
12272                                                          "\t\tRead 0x%llx for %d\n",
12273                                                          val, j);
12274                                                dd->cntrs[entry->offset + j] =
12275                                                                        val;
12276                                        }
12277                                } else {
12278                                        val = entry->rw_cntr(entry, dd,
12279                                                        CNTR_INVALID_VL,
12280                                                        CNTR_MODE_R, 0);
12281                                        dd->cntrs[entry->offset] = val;
12282                                        hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12283                                }
12284                        }
12285                }
12286        }
12287        return ret;
12288}
12289
12290/*
12291 * Used by sysfs to create files for hfi stats to read
12292 */
12293u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
12294{
12295        int ret;
12296        u64 val = 0;
12297
12298        if (namep) {
12299                ret = ppd->dd->portcntrnameslen;
12300                *namep = ppd->dd->portcntrnames;
12301        } else {
12302                const struct cntr_entry *entry;
12303                int i, j;
12304
12305                ret = ppd->dd->nportcntrs * sizeof(u64);
12306                *cntrp = ppd->cntrs;
12307
12308                for (i = 0; i < PORT_CNTR_LAST; i++) {
12309                        entry = &port_cntrs[i];
12310                        hfi1_cdbg(CNTR, "reading %s", entry->name);
12311                        if (entry->flags & CNTR_DISABLED) {
12312                                /* Nothing */
12313                                hfi1_cdbg(CNTR, "\tDisabled\n");
12314                                continue;
12315                        }
12316
12317                        if (entry->flags & CNTR_VL) {
12318                                hfi1_cdbg(CNTR, "\tPer VL");
12319                                for (j = 0; j < C_VL_COUNT; j++) {
12320                                        val = entry->rw_cntr(entry, ppd, j,
12321                                                               CNTR_MODE_R,
12322                                                               0);
12323                                        hfi1_cdbg(
12324                                           CNTR,
12325                                           "\t\tRead 0x%llx for %d",
12326                                           val, j);
12327                                        ppd->cntrs[entry->offset + j] = val;
12328                                }
12329                        } else {
12330                                val = entry->rw_cntr(entry, ppd,
12331                                                       CNTR_INVALID_VL,
12332                                                       CNTR_MODE_R,
12333                                                       0);
12334                                ppd->cntrs[entry->offset] = val;
12335                                hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12336                        }
12337                }
12338        }
12339        return ret;
12340}
12341
12342static void free_cntrs(struct hfi1_devdata *dd)
12343{
12344        struct hfi1_pportdata *ppd;
12345        int i;
12346
12347        if (dd->synth_stats_timer.function)
12348                del_timer_sync(&dd->synth_stats_timer);
12349        ppd = (struct hfi1_pportdata *)(dd + 1);
12350        for (i = 0; i < dd->num_pports; i++, ppd++) {
12351                kfree(ppd->cntrs);
12352                kfree(ppd->scntrs);
12353                free_percpu(ppd->ibport_data.rvp.rc_acks);
12354                free_percpu(ppd->ibport_data.rvp.rc_qacks);
12355                free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
12356                ppd->cntrs = NULL;
12357                ppd->scntrs = NULL;
12358                ppd->ibport_data.rvp.rc_acks = NULL;
12359                ppd->ibport_data.rvp.rc_qacks = NULL;
12360                ppd->ibport_data.rvp.rc_delayed_comp = NULL;
12361        }
12362        kfree(dd->portcntrnames);
12363        dd->portcntrnames = NULL;
12364        kfree(dd->cntrs);
12365        dd->cntrs = NULL;
12366        kfree(dd->scntrs);
12367        dd->scntrs = NULL;
12368        kfree(dd->cntrnames);
12369        dd->cntrnames = NULL;
12370        if (dd->update_cntr_wq) {
12371                destroy_workqueue(dd->update_cntr_wq);
12372                dd->update_cntr_wq = NULL;
12373        }
12374}
12375
12376static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
12377                              u64 *psval, void *context, int vl)
12378{
12379        u64 val;
12380        u64 sval = *psval;
12381
12382        if (entry->flags & CNTR_DISABLED) {
12383                dd_dev_err(dd, "Counter %s not enabled", entry->name);
12384                return 0;
12385        }
12386
12387        hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12388
12389        val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
12390
12391        /* If its a synthetic counter there is more work we need to do */
12392        if (entry->flags & CNTR_SYNTH) {
12393                if (sval == CNTR_MAX) {
12394                        /* No need to read already saturated */
12395                        return CNTR_MAX;
12396                }
12397
12398                if (entry->flags & CNTR_32BIT) {
12399                        /* 32bit counters can wrap multiple times */
12400                        u64 upper = sval >> 32;
12401                        u64 lower = (sval << 32) >> 32;
12402
12403                        if (lower > val) { /* hw wrapped */
12404                                if (upper == CNTR_32BIT_MAX)
12405                                        val = CNTR_MAX;
12406                                else
12407                                        upper++;
12408                        }
12409
12410                        if (val != CNTR_MAX)
12411                                val = (upper << 32) | val;
12412
12413                } else {
12414                        /* If we rolled we are saturated */
12415                        if ((val < sval) || (val > CNTR_MAX))
12416                                val = CNTR_MAX;
12417                }
12418        }
12419
12420        *psval = val;
12421
12422        hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12423
12424        return val;
12425}
12426
12427static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
12428                               struct cntr_entry *entry,
12429                               u64 *psval, void *context, int vl, u64 data)
12430{
12431        u64 val;
12432
12433        if (entry->flags & CNTR_DISABLED) {
12434                dd_dev_err(dd, "Counter %s not enabled", entry->name);
12435                return 0;
12436        }
12437
12438        hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12439
12440        if (entry->flags & CNTR_SYNTH) {
12441                *psval = data;
12442                if (entry->flags & CNTR_32BIT) {
12443                        val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12444                                             (data << 32) >> 32);
12445                        val = data; /* return the full 64bit value */
12446                } else {
12447                        val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12448                                             data);
12449                }
12450        } else {
12451                val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
12452        }
12453
12454        *psval = val;
12455
12456        hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12457
12458        return val;
12459}
12460
12461u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
12462{
12463        struct cntr_entry *entry;
12464        u64 *sval;
12465
12466        entry = &dev_cntrs[index];
12467        sval = dd->scntrs + entry->offset;
12468
12469        if (vl != CNTR_INVALID_VL)
12470                sval += vl;
12471
12472        return read_dev_port_cntr(dd, entry, sval, dd, vl);
12473}
12474
12475u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
12476{
12477        struct cntr_entry *entry;
12478        u64 *sval;
12479
12480        entry = &dev_cntrs[index];
12481        sval = dd->scntrs + entry->offset;
12482
12483        if (vl != CNTR_INVALID_VL)
12484                sval += vl;
12485
12486        return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
12487}
12488
12489u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
12490{
12491        struct cntr_entry *entry;
12492        u64 *sval;
12493
12494        entry = &port_cntrs[index];
12495        sval = ppd->scntrs + entry->offset;
12496
12497        if (vl != CNTR_INVALID_VL)
12498                sval += vl;
12499
12500        if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12501            (index <= C_RCV_HDR_OVF_LAST)) {
12502                /* We do not want to bother for disabled contexts */
12503                return 0;
12504        }
12505
12506        return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
12507}
12508
12509u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
12510{
12511        struct cntr_entry *entry;
12512        u64 *sval;
12513
12514        entry = &port_cntrs[index];
12515        sval = ppd->scntrs + entry->offset;
12516
12517        if (vl != CNTR_INVALID_VL)
12518                sval += vl;
12519
12520        if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12521            (index <= C_RCV_HDR_OVF_LAST)) {
12522                /* We do not want to bother for disabled contexts */
12523                return 0;
12524        }
12525
12526        return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
12527}
12528
12529static void do_update_synth_timer(struct work_struct *work)
12530{
12531        u64 cur_tx;
12532        u64 cur_rx;
12533        u64 total_flits;
12534        u8 update = 0;
12535        int i, j, vl;
12536        struct hfi1_pportdata *ppd;
12537        struct cntr_entry *entry;
12538        struct hfi1_devdata *dd = container_of(work, struct hfi1_devdata,
12539                                               update_cntr_work);
12540
12541        /*
12542         * Rather than keep beating on the CSRs pick a minimal set that we can
12543         * check to watch for potential roll over. We can do this by looking at
12544         * the number of flits sent/recv. If the total flits exceeds 32bits then
12545         * we have to iterate all the counters and update.
12546         */
12547        entry = &dev_cntrs[C_DC_RCV_FLITS];
12548        cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12549
12550        entry = &dev_cntrs[C_DC_XMIT_FLITS];
12551        cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12552
12553        hfi1_cdbg(
12554            CNTR,
12555            "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
12556            dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
12557
12558        if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
12559                /*
12560                 * May not be strictly necessary to update but it won't hurt and
12561                 * simplifies the logic here.
12562                 */
12563                update = 1;
12564                hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
12565                          dd->unit);
12566        } else {
12567                total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
12568                hfi1_cdbg(CNTR,
12569                          "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
12570                          total_flits, (u64)CNTR_32BIT_MAX);
12571                if (total_flits >= CNTR_32BIT_MAX) {
12572                        hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
12573                                  dd->unit);
12574                        update = 1;
12575                }
12576        }
12577
12578        if (update) {
12579                hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
12580                for (i = 0; i < DEV_CNTR_LAST; i++) {
12581                        entry = &dev_cntrs[i];
12582                        if (entry->flags & CNTR_VL) {
12583                                for (vl = 0; vl < C_VL_COUNT; vl++)
12584                                        read_dev_cntr(dd, i, vl);
12585                        } else {
12586                                read_dev_cntr(dd, i, CNTR_INVALID_VL);
12587                        }
12588                }
12589                ppd = (struct hfi1_pportdata *)(dd + 1);
12590                for (i = 0; i < dd->num_pports; i++, ppd++) {
12591                        for (j = 0; j < PORT_CNTR_LAST; j++) {
12592                                entry = &port_cntrs[j];
12593                                if (entry->flags & CNTR_VL) {
12594                                        for (vl = 0; vl < C_VL_COUNT; vl++)
12595                                                read_port_cntr(ppd, j, vl);
12596                                } else {
12597                                        read_port_cntr(ppd, j, CNTR_INVALID_VL);
12598                                }
12599                        }
12600                }
12601
12602                /*
12603                 * We want the value in the register. The goal is to keep track
12604                 * of the number of "ticks" not the counter value. In other
12605                 * words if the register rolls we want to notice it and go ahead
12606                 * and force an update.
12607                 */
12608                entry = &dev_cntrs[C_DC_XMIT_FLITS];
12609                dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12610                                                CNTR_MODE_R, 0);
12611
12612                entry = &dev_cntrs[C_DC_RCV_FLITS];
12613                dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12614                                                CNTR_MODE_R, 0);
12615
12616                hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12617                          dd->unit, dd->last_tx, dd->last_rx);
12618
12619        } else {
12620                hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
12621        }
12622}
12623
12624static void update_synth_timer(struct timer_list *t)
12625{
12626        struct hfi1_devdata *dd = from_timer(dd, t, synth_stats_timer);
12627
12628        queue_work(dd->update_cntr_wq, &dd->update_cntr_work);
12629        mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12630}
12631
12632#define C_MAX_NAME 16 /* 15 chars + one for /0 */
12633static int init_cntrs(struct hfi1_devdata *dd)
12634{
12635        int i, rcv_ctxts, j;
12636        size_t sz;
12637        char *p;
12638        char name[C_MAX_NAME];
12639        struct hfi1_pportdata *ppd;
12640        const char *bit_type_32 = ",32";
12641        const int bit_type_32_sz = strlen(bit_type_32);
12642        u32 sdma_engines = chip_sdma_engines(dd);
12643
12644        /* set up the stats timer; the add_timer is done at the end */
12645        timer_setup(&dd->synth_stats_timer, update_synth_timer, 0);
12646
12647        /***********************/
12648        /* per device counters */
12649        /***********************/
12650
12651        /* size names and determine how many we have*/
12652        dd->ndevcntrs = 0;
12653        sz = 0;
12654
12655        for (i = 0; i < DEV_CNTR_LAST; i++) {
12656                if (dev_cntrs[i].flags & CNTR_DISABLED) {
12657                        hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
12658                        continue;
12659                }
12660
12661                if (dev_cntrs[i].flags & CNTR_VL) {
12662                        dev_cntrs[i].offset = dd->ndevcntrs;
12663                        for (j = 0; j < C_VL_COUNT; j++) {
12664                                snprintf(name, C_MAX_NAME, "%s%d",
12665                                         dev_cntrs[i].name, vl_from_idx(j));
12666                                sz += strlen(name);
12667                                /* Add ",32" for 32-bit counters */
12668                                if (dev_cntrs[i].flags & CNTR_32BIT)
12669                                        sz += bit_type_32_sz;
12670                                sz++;
12671                                dd->ndevcntrs++;
12672                        }
12673                } else if (dev_cntrs[i].flags & CNTR_SDMA) {
12674                        dev_cntrs[i].offset = dd->ndevcntrs;
12675                        for (j = 0; j < sdma_engines; j++) {
12676                                snprintf(name, C_MAX_NAME, "%s%d",
12677                                         dev_cntrs[i].name, j);
12678                                sz += strlen(name);
12679                                /* Add ",32" for 32-bit counters */
12680                                if (dev_cntrs[i].flags & CNTR_32BIT)
12681                                        sz += bit_type_32_sz;
12682                                sz++;
12683                                dd->ndevcntrs++;
12684                        }
12685                } else {
12686                        /* +1 for newline. */
12687                        sz += strlen(dev_cntrs[i].name) + 1;
12688                        /* Add ",32" for 32-bit counters */
12689                        if (dev_cntrs[i].flags & CNTR_32BIT)
12690                                sz += bit_type_32_sz;
12691                        dev_cntrs[i].offset = dd->ndevcntrs;
12692                        dd->ndevcntrs++;
12693                }
12694        }
12695
12696        /* allocate space for the counter values */
12697        dd->cntrs = kcalloc(dd->ndevcntrs + num_driver_cntrs, sizeof(u64),
12698                            GFP_KERNEL);
12699        if (!dd->cntrs)
12700                goto bail;
12701
12702        dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12703        if (!dd->scntrs)
12704                goto bail;
12705
12706        /* allocate space for the counter names */
12707        dd->cntrnameslen = sz;
12708        dd->cntrnames = kmalloc(sz, GFP_KERNEL);
12709        if (!dd->cntrnames)
12710                goto bail;
12711
12712        /* fill in the names */
12713        for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
12714                if (dev_cntrs[i].flags & CNTR_DISABLED) {
12715                        /* Nothing */
12716                } else if (dev_cntrs[i].flags & CNTR_VL) {
12717                        for (j = 0; j < C_VL_COUNT; j++) {
12718                                snprintf(name, C_MAX_NAME, "%s%d",
12719                                         dev_cntrs[i].name,
12720                                         vl_from_idx(j));
12721                                memcpy(p, name, strlen(name));
12722                                p += strlen(name);
12723
12724                                /* Counter is 32 bits */
12725                                if (dev_cntrs[i].flags & CNTR_32BIT) {
12726                                        memcpy(p, bit_type_32, bit_type_32_sz);
12727                                        p += bit_type_32_sz;
12728                                }
12729
12730                                *p++ = '\n';
12731                        }
12732                } else if (dev_cntrs[i].flags & CNTR_SDMA) {
12733                        for (j = 0; j < sdma_engines; j++) {
12734                                snprintf(name, C_MAX_NAME, "%s%d",
12735                                         dev_cntrs[i].name, j);
12736                                memcpy(p, name, strlen(name));
12737                                p += strlen(name);
12738
12739                                /* Counter is 32 bits */
12740                                if (dev_cntrs[i].flags & CNTR_32BIT) {
12741                                        memcpy(p, bit_type_32, bit_type_32_sz);
12742                                        p += bit_type_32_sz;
12743                                }
12744
12745                                *p++ = '\n';
12746                        }
12747                } else {
12748                        memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
12749                        p += strlen(dev_cntrs[i].name);
12750
12751                        /* Counter is 32 bits */
12752                        if (dev_cntrs[i].flags & CNTR_32BIT) {
12753                                memcpy(p, bit_type_32, bit_type_32_sz);
12754                                p += bit_type_32_sz;
12755                        }
12756
12757                        *p++ = '\n';
12758                }
12759        }
12760
12761        /*********************/
12762        /* per port counters */
12763        /*********************/
12764
12765        /*
12766         * Go through the counters for the overflows and disable the ones we
12767         * don't need. This varies based on platform so we need to do it
12768         * dynamically here.
12769         */
12770        rcv_ctxts = dd->num_rcv_contexts;
12771        for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
12772             i <= C_RCV_HDR_OVF_LAST; i++) {
12773                port_cntrs[i].flags |= CNTR_DISABLED;
12774        }
12775
12776        /* size port counter names and determine how many we have*/
12777        sz = 0;
12778        dd->nportcntrs = 0;
12779        for (i = 0; i < PORT_CNTR_LAST; i++) {
12780                if (port_cntrs[i].flags & CNTR_DISABLED) {
12781                        hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
12782                        continue;
12783                }
12784
12785                if (port_cntrs[i].flags & CNTR_VL) {
12786                        port_cntrs[i].offset = dd->nportcntrs;
12787                        for (j = 0; j < C_VL_COUNT; j++) {
12788                                snprintf(name, C_MAX_NAME, "%s%d",
12789                                         port_cntrs[i].name, vl_from_idx(j));
12790                                sz += strlen(name);
12791                                /* Add ",32" for 32-bit counters */
12792                                if (port_cntrs[i].flags & CNTR_32BIT)
12793                                        sz += bit_type_32_sz;
12794                                sz++;
12795                                dd->nportcntrs++;
12796                        }
12797                } else {
12798                        /* +1 for newline */
12799                        sz += strlen(port_cntrs[i].name) + 1;
12800                        /* Add ",32" for 32-bit counters */
12801                        if (port_cntrs[i].flags & CNTR_32BIT)
12802                                sz += bit_type_32_sz;
12803                        port_cntrs[i].offset = dd->nportcntrs;
12804                        dd->nportcntrs++;
12805                }
12806        }
12807
12808        /* allocate space for the counter names */
12809        dd->portcntrnameslen = sz;
12810        dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12811        if (!dd->portcntrnames)
12812                goto bail;
12813
12814        /* fill in port cntr names */
12815        for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12816                if (port_cntrs[i].flags & CNTR_DISABLED)
12817                        continue;
12818
12819                if (port_cntrs[i].flags & CNTR_VL) {
12820                        for (j = 0; j < C_VL_COUNT; j++) {
12821                                snprintf(name, C_MAX_NAME, "%s%d",
12822                                         port_cntrs[i].name, vl_from_idx(j));
12823                                memcpy(p, name, strlen(name));
12824                                p += strlen(name);
12825
12826                                /* Counter is 32 bits */
12827                                if (port_cntrs[i].flags & CNTR_32BIT) {
12828                                        memcpy(p, bit_type_32, bit_type_32_sz);
12829                                        p += bit_type_32_sz;
12830                                }
12831
12832                                *p++ = '\n';
12833                        }
12834                } else {
12835                        memcpy(p, port_cntrs[i].name,
12836                               strlen(port_cntrs[i].name));
12837                        p += strlen(port_cntrs[i].name);
12838
12839                        /* Counter is 32 bits */
12840                        if (port_cntrs[i].flags & CNTR_32BIT) {
12841                                memcpy(p, bit_type_32, bit_type_32_sz);
12842                                p += bit_type_32_sz;
12843                        }
12844
12845                        *p++ = '\n';
12846                }
12847        }
12848
12849        /* allocate per port storage for counter values */
12850        ppd = (struct hfi1_pportdata *)(dd + 1);
12851        for (i = 0; i < dd->num_pports; i++, ppd++) {
12852                ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12853                if (!ppd->cntrs)
12854                        goto bail;
12855
12856                ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12857                if (!ppd->scntrs)
12858                        goto bail;
12859        }
12860
12861        /* CPU counters need to be allocated and zeroed */
12862        if (init_cpu_counters(dd))
12863                goto bail;
12864
12865        dd->update_cntr_wq = alloc_ordered_workqueue("hfi1_update_cntr_%d",
12866                                                     WQ_MEM_RECLAIM, dd->unit);
12867        if (!dd->update_cntr_wq)
12868                goto bail;
12869
12870        INIT_WORK(&dd->update_cntr_work, do_update_synth_timer);
12871
12872        mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12873        return 0;
12874bail:
12875        free_cntrs(dd);
12876        return -ENOMEM;
12877}
12878
12879static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12880{
12881        switch (chip_lstate) {
12882        case LSTATE_DOWN:
12883                return IB_PORT_DOWN;
12884        case LSTATE_INIT:
12885                return IB_PORT_INIT;
12886        case LSTATE_ARMED:
12887                return IB_PORT_ARMED;
12888        case LSTATE_ACTIVE:
12889                return IB_PORT_ACTIVE;
12890        default:
12891                dd_dev_err(dd,
12892                           "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12893                           chip_lstate);
12894                return IB_PORT_DOWN;
12895        }
12896}
12897
12898u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12899{
12900        /* look at the HFI meta-states only */
12901        switch (chip_pstate & 0xf0) {
12902        case PLS_DISABLED:
12903                return IB_PORTPHYSSTATE_DISABLED;
12904        case PLS_OFFLINE:
12905                return OPA_PORTPHYSSTATE_OFFLINE;
12906        case PLS_POLLING:
12907                return IB_PORTPHYSSTATE_POLLING;
12908        case PLS_CONFIGPHY:
12909                return IB_PORTPHYSSTATE_TRAINING;
12910        case PLS_LINKUP:
12911                return IB_PORTPHYSSTATE_LINKUP;
12912        case PLS_PHYTEST:
12913                return IB_PORTPHYSSTATE_PHY_TEST;
12914        default:
12915                dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12916                           chip_pstate);
12917                return IB_PORTPHYSSTATE_DISABLED;
12918        }
12919}
12920
12921/* return the OPA port logical state name */
12922const char *opa_lstate_name(u32 lstate)
12923{
12924        static const char * const port_logical_names[] = {
12925                "PORT_NOP",
12926                "PORT_DOWN",
12927                "PORT_INIT",
12928                "PORT_ARMED",
12929                "PORT_ACTIVE",
12930                "PORT_ACTIVE_DEFER",
12931        };
12932        if (lstate < ARRAY_SIZE(port_logical_names))
12933                return port_logical_names[lstate];
12934        return "unknown";
12935}
12936
12937/* return the OPA port physical state name */
12938const char *opa_pstate_name(u32 pstate)
12939{
12940        static const char * const port_physical_names[] = {
12941                "PHYS_NOP",
12942                "reserved1",
12943                "PHYS_POLL",
12944                "PHYS_DISABLED",
12945                "PHYS_TRAINING",
12946                "PHYS_LINKUP",
12947                "PHYS_LINK_ERR_RECOVER",
12948                "PHYS_PHY_TEST",
12949                "reserved8",
12950                "PHYS_OFFLINE",
12951                "PHYS_GANGED",
12952                "PHYS_TEST",
12953        };
12954        if (pstate < ARRAY_SIZE(port_physical_names))
12955                return port_physical_names[pstate];
12956        return "unknown";
12957}
12958
12959/**
12960 * update_statusp - Update userspace status flag
12961 * @ppd: Port data structure
12962 * @state: port state information
12963 *
12964 * Actual port status is determined by the host_link_state value
12965 * in the ppd.
12966 *
12967 * host_link_state MUST be updated before updating the user space
12968 * statusp.
12969 */
12970static void update_statusp(struct hfi1_pportdata *ppd, u32 state)
12971{
12972        /*
12973         * Set port status flags in the page mapped into userspace
12974         * memory. Do it here to ensure a reliable state - this is
12975         * the only function called by all state handling code.
12976         * Always set the flags due to the fact that the cache value
12977         * might have been changed explicitly outside of this
12978         * function.
12979         */
12980        if (ppd->statusp) {
12981                switch (state) {
12982                case IB_PORT_DOWN:
12983                case IB_PORT_INIT:
12984                        *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12985                                           HFI1_STATUS_IB_READY);
12986                        break;
12987                case IB_PORT_ARMED:
12988                        *ppd->statusp |= HFI1_STATUS_IB_CONF;
12989                        break;
12990                case IB_PORT_ACTIVE:
12991                        *ppd->statusp |= HFI1_STATUS_IB_READY;
12992                        break;
12993                }
12994        }
12995        dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
12996                    opa_lstate_name(state), state);
12997}
12998
12999/**
13000 * wait_logical_linkstate - wait for an IB link state change to occur
13001 * @ppd: port device
13002 * @state: the state to wait for
13003 * @msecs: the number of milliseconds to wait
13004 *
13005 * Wait up to msecs milliseconds for IB link state change to occur.
13006 * For now, take the easy polling route.
13007 * Returns 0 if state reached, otherwise -ETIMEDOUT.
13008 */
13009static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
13010                                  int msecs)
13011{
13012        unsigned long timeout;
13013        u32 new_state;
13014
13015        timeout = jiffies + msecs_to_jiffies(msecs);
13016        while (1) {
13017                new_state = chip_to_opa_lstate(ppd->dd,
13018                                               read_logical_state(ppd->dd));
13019                if (new_state == state)
13020                        break;
13021                if (time_after(jiffies, timeout)) {
13022                        dd_dev_err(ppd->dd,
13023                                   "timeout waiting for link state 0x%x\n",
13024                                   state);
13025                        return -ETIMEDOUT;
13026                }
13027                msleep(20);
13028        }
13029
13030        return 0;
13031}
13032
13033static void log_state_transition(struct hfi1_pportdata *ppd, u32 state)
13034{
13035        u32 ib_pstate = chip_to_opa_pstate(ppd->dd, state);
13036
13037        dd_dev_info(ppd->dd,
13038                    "physical state changed to %s (0x%x), phy 0x%x\n",
13039                    opa_pstate_name(ib_pstate), ib_pstate, state);
13040}
13041
13042/*
13043 * Read the physical hardware link state and check if it matches host
13044 * drivers anticipated state.
13045 */
13046static void log_physical_state(struct hfi1_pportdata *ppd, u32 state)
13047{
13048        u32 read_state = read_physical_state(ppd->dd);
13049
13050        if (read_state == state) {
13051                log_state_transition(ppd, state);
13052        } else {
13053                dd_dev_err(ppd->dd,
13054                           "anticipated phy link state 0x%x, read 0x%x\n",
13055                           state, read_state);
13056        }
13057}
13058
13059/*
13060 * wait_physical_linkstate - wait for an physical link state change to occur
13061 * @ppd: port device
13062 * @state: the state to wait for
13063 * @msecs: the number of milliseconds to wait
13064 *
13065 * Wait up to msecs milliseconds for physical link state change to occur.
13066 * Returns 0 if state reached, otherwise -ETIMEDOUT.
13067 */
13068static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
13069                                   int msecs)
13070{
13071        u32 read_state;
13072        unsigned long timeout;
13073
13074        timeout = jiffies + msecs_to_jiffies(msecs);
13075        while (1) {
13076                read_state = read_physical_state(ppd->dd);
13077                if (read_state == state)
13078                        break;
13079                if (time_after(jiffies, timeout)) {
13080                        dd_dev_err(ppd->dd,
13081                                   "timeout waiting for phy link state 0x%x\n",
13082                                   state);
13083                        return -ETIMEDOUT;
13084                }
13085                usleep_range(1950, 2050); /* sleep 2ms-ish */
13086        }
13087
13088        log_state_transition(ppd, state);
13089        return 0;
13090}
13091
13092/*
13093 * wait_phys_link_offline_quiet_substates - wait for any offline substate
13094 * @ppd: port device
13095 * @msecs: the number of milliseconds to wait
13096 *
13097 * Wait up to msecs milliseconds for any offline physical link
13098 * state change to occur.
13099 * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
13100 */
13101static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
13102                                            int msecs)
13103{
13104        u32 read_state;
13105        unsigned long timeout;
13106
13107        timeout = jiffies + msecs_to_jiffies(msecs);
13108        while (1) {
13109                read_state = read_physical_state(ppd->dd);
13110                if ((read_state & 0xF0) == PLS_OFFLINE)
13111                        break;
13112                if (time_after(jiffies, timeout)) {
13113                        dd_dev_err(ppd->dd,
13114                                   "timeout waiting for phy link offline.quiet substates. Read state 0x%x, %dms\n",
13115                                   read_state, msecs);
13116                        return -ETIMEDOUT;
13117                }
13118                usleep_range(1950, 2050); /* sleep 2ms-ish */
13119        }
13120
13121        log_state_transition(ppd, read_state);
13122        return read_state;
13123}
13124
13125/*
13126 * wait_phys_link_out_of_offline - wait for any out of offline state
13127 * @ppd: port device
13128 * @msecs: the number of milliseconds to wait
13129 *
13130 * Wait up to msecs milliseconds for any out of offline physical link
13131 * state change to occur.
13132 * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
13133 */
13134static int wait_phys_link_out_of_offline(struct hfi1_pportdata *ppd,
13135                                         int msecs)
13136{
13137        u32 read_state;
13138        unsigned long timeout;
13139
13140        timeout = jiffies + msecs_to_jiffies(msecs);
13141        while (1) {
13142                read_state = read_physical_state(ppd->dd);
13143                if ((read_state & 0xF0) != PLS_OFFLINE)
13144                        break;
13145                if (time_after(jiffies, timeout)) {
13146                        dd_dev_err(ppd->dd,
13147                                   "timeout waiting for phy link out of offline. Read state 0x%x, %dms\n",
13148                                   read_state, msecs);
13149                        return -ETIMEDOUT;
13150                }
13151                usleep_range(1950, 2050); /* sleep 2ms-ish */
13152        }
13153
13154        log_state_transition(ppd, read_state);
13155        return read_state;
13156}
13157
13158#define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
13159(r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
13160
13161#define SET_STATIC_RATE_CONTROL_SMASK(r) \
13162(r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
13163
13164void hfi1_init_ctxt(struct send_context *sc)
13165{
13166        if (sc) {
13167                struct hfi1_devdata *dd = sc->dd;
13168                u64 reg;
13169                u8 set = (sc->type == SC_USER ?
13170                          HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
13171                          HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
13172                reg = read_kctxt_csr(dd, sc->hw_context,
13173                                     SEND_CTXT_CHECK_ENABLE);
13174                if (set)
13175                        CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
13176                else
13177                        SET_STATIC_RATE_CONTROL_SMASK(reg);
13178                write_kctxt_csr(dd, sc->hw_context,
13179                                SEND_CTXT_CHECK_ENABLE, reg);
13180        }
13181}
13182
13183int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
13184{
13185        int ret = 0;
13186        u64 reg;
13187
13188        if (dd->icode != ICODE_RTL_SILICON) {
13189                if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
13190                        dd_dev_info(dd, "%s: tempsense not supported by HW\n",
13191                                    __func__);
13192                return -EINVAL;
13193        }
13194        reg = read_csr(dd, ASIC_STS_THERM);
13195        temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
13196                      ASIC_STS_THERM_CURR_TEMP_MASK);
13197        temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
13198                        ASIC_STS_THERM_LO_TEMP_MASK);
13199        temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
13200                        ASIC_STS_THERM_HI_TEMP_MASK);
13201        temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
13202                          ASIC_STS_THERM_CRIT_TEMP_MASK);
13203        /* triggers is a 3-bit value - 1 bit per trigger. */
13204        temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
13205
13206        return ret;
13207}
13208
13209/* ========================================================================= */
13210
13211/**
13212 * read_mod_write() - Calculate the IRQ register index and set/clear the bits
13213 * @dd: valid devdata
13214 * @src: IRQ source to determine register index from
13215 * @bits: the bits to set or clear
13216 * @set: true == set the bits, false == clear the bits
13217 *
13218 */
13219static void read_mod_write(struct hfi1_devdata *dd, u16 src, u64 bits,
13220                           bool set)
13221{
13222        u64 reg;
13223        u16 idx = src / BITS_PER_REGISTER;
13224
13225        spin_lock(&dd->irq_src_lock);
13226        reg = read_csr(dd, CCE_INT_MASK + (8 * idx));
13227        if (set)
13228                reg |= bits;
13229        else
13230                reg &= ~bits;
13231        write_csr(dd, CCE_INT_MASK + (8 * idx), reg);
13232        spin_unlock(&dd->irq_src_lock);
13233}
13234
13235/**
13236 * set_intr_bits() - Enable/disable a range (one or more) IRQ sources
13237 * @dd: valid devdata
13238 * @first: first IRQ source to set/clear
13239 * @last: last IRQ source (inclusive) to set/clear
13240 * @set: true == set the bits, false == clear the bits
13241 *
13242 * If first == last, set the exact source.
13243 */
13244int set_intr_bits(struct hfi1_devdata *dd, u16 first, u16 last, bool set)
13245{
13246        u64 bits = 0;
13247        u64 bit;
13248        u16 src;
13249
13250        if (first > NUM_INTERRUPT_SOURCES || last > NUM_INTERRUPT_SOURCES)
13251                return -EINVAL;
13252
13253        if (last < first)
13254                return -ERANGE;
13255
13256        for (src = first; src <= last; src++) {
13257                bit = src % BITS_PER_REGISTER;
13258                /* wrapped to next register? */
13259                if (!bit && bits) {
13260                        read_mod_write(dd, src - 1, bits, set);
13261                        bits = 0;
13262                }
13263                bits |= BIT_ULL(bit);
13264        }
13265        read_mod_write(dd, last, bits, set);
13266
13267        return 0;
13268}
13269
13270/*
13271 * Clear all interrupt sources on the chip.
13272 */
13273void clear_all_interrupts(struct hfi1_devdata *dd)
13274{
13275        int i;
13276
13277        for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13278                write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
13279
13280        write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
13281        write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
13282        write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
13283        write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
13284        write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
13285        write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
13286        write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
13287        for (i = 0; i < chip_send_contexts(dd); i++)
13288                write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
13289        for (i = 0; i < chip_sdma_engines(dd); i++)
13290                write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
13291
13292        write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
13293        write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
13294        write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
13295}
13296
13297/*
13298 * Remap the interrupt source from the general handler to the given MSI-X
13299 * interrupt.
13300 */
13301void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
13302{
13303        u64 reg;
13304        int m, n;
13305
13306        /* clear from the handled mask of the general interrupt */
13307        m = isrc / 64;
13308        n = isrc % 64;
13309        if (likely(m < CCE_NUM_INT_CSRS)) {
13310                dd->gi_mask[m] &= ~((u64)1 << n);
13311        } else {
13312                dd_dev_err(dd, "remap interrupt err\n");
13313                return;
13314        }
13315
13316        /* direct the chip source to the given MSI-X interrupt */
13317        m = isrc / 8;
13318        n = isrc % 8;
13319        reg = read_csr(dd, CCE_INT_MAP + (8 * m));
13320        reg &= ~((u64)0xff << (8 * n));
13321        reg |= ((u64)msix_intr & 0xff) << (8 * n);
13322        write_csr(dd, CCE_INT_MAP + (8 * m), reg);
13323}
13324
13325void remap_sdma_interrupts(struct hfi1_devdata *dd, int engine, int msix_intr)
13326{
13327        /*
13328         * SDMA engine interrupt sources grouped by type, rather than
13329         * engine.  Per-engine interrupts are as follows:
13330         *      SDMA
13331         *      SDMAProgress
13332         *      SDMAIdle
13333         */
13334        remap_intr(dd, IS_SDMA_START + engine, msix_intr);
13335        remap_intr(dd, IS_SDMA_PROGRESS_START + engine, msix_intr);
13336        remap_intr(dd, IS_SDMA_IDLE_START + engine, msix_intr);
13337}
13338
13339/*
13340 * Set the general handler to accept all interrupts, remap all
13341 * chip interrupts back to MSI-X 0.
13342 */
13343void reset_interrupts(struct hfi1_devdata *dd)
13344{
13345        int i;
13346
13347        /* all interrupts handled by the general handler */
13348        for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13349                dd->gi_mask[i] = ~(u64)0;
13350
13351        /* all chip interrupts map to MSI-X 0 */
13352        for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13353                write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13354}
13355
13356/**
13357 * set_up_interrupts() - Initialize the IRQ resources and state
13358 * @dd: valid devdata
13359 *
13360 */
13361static int set_up_interrupts(struct hfi1_devdata *dd)
13362{
13363        int ret;
13364
13365        /* mask all interrupts */
13366        set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false);
13367
13368        /* clear all pending interrupts */
13369        clear_all_interrupts(dd);
13370
13371        /* reset general handler mask, chip MSI-X mappings */
13372        reset_interrupts(dd);
13373
13374        /* ask for MSI-X interrupts */
13375        ret = msix_initialize(dd);
13376        if (ret)
13377                return ret;
13378
13379        ret = msix_request_irqs(dd);
13380        if (ret)
13381                msix_clean_up_interrupts(dd);
13382
13383        return ret;
13384}
13385
13386/*
13387 * Set up context values in dd.  Sets:
13388 *
13389 *      num_rcv_contexts - number of contexts being used
13390 *      n_krcv_queues - number of kernel contexts
13391 *      first_dyn_alloc_ctxt - first dynamically allocated context
13392 *                             in array of contexts
13393 *      freectxts  - number of free user contexts
13394 *      num_send_contexts - number of PIO send contexts being used
13395 *      num_netdev_contexts - number of contexts reserved for netdev
13396 */
13397static int set_up_context_variables(struct hfi1_devdata *dd)
13398{
13399        unsigned long num_kernel_contexts;
13400        u16 num_netdev_contexts;
13401        int ret;
13402        unsigned ngroups;
13403        int rmt_count;
13404        int user_rmt_reduced;
13405        u32 n_usr_ctxts;
13406        u32 send_contexts = chip_send_contexts(dd);
13407        u32 rcv_contexts = chip_rcv_contexts(dd);
13408
13409        /*
13410         * Kernel receive contexts:
13411         * - Context 0 - control context (VL15/multicast/error)
13412         * - Context 1 - first kernel context
13413         * - Context 2 - second kernel context
13414         * ...
13415         */
13416        if (n_krcvqs)
13417                /*
13418                 * n_krcvqs is the sum of module parameter kernel receive
13419                 * contexts, krcvqs[].  It does not include the control
13420                 * context, so add that.
13421                 */
13422                num_kernel_contexts = n_krcvqs + 1;
13423        else
13424                num_kernel_contexts = DEFAULT_KRCVQS + 1;
13425        /*
13426         * Every kernel receive context needs an ACK send context.
13427         * one send context is allocated for each VL{0-7} and VL15
13428         */
13429        if (num_kernel_contexts > (send_contexts - num_vls - 1)) {
13430                dd_dev_err(dd,
13431                           "Reducing # kernel rcv contexts to: %d, from %lu\n",
13432                           send_contexts - num_vls - 1,
13433                           num_kernel_contexts);
13434                num_kernel_contexts = send_contexts - num_vls - 1;
13435        }
13436
13437        /*
13438         * User contexts:
13439         *      - default to 1 user context per real (non-HT) CPU core if
13440         *        num_user_contexts is negative
13441         */
13442        if (num_user_contexts < 0)
13443                n_usr_ctxts = cpumask_weight(&node_affinity.real_cpu_mask);
13444        else
13445                n_usr_ctxts = num_user_contexts;
13446        /*
13447         * Adjust the counts given a global max.
13448         */
13449        if (num_kernel_contexts + n_usr_ctxts > rcv_contexts) {
13450                dd_dev_err(dd,
13451                           "Reducing # user receive contexts to: %u, from %u\n",
13452                           (u32)(rcv_contexts - num_kernel_contexts),
13453                           n_usr_ctxts);
13454                /* recalculate */
13455                n_usr_ctxts = rcv_contexts - num_kernel_contexts;
13456        }
13457
13458        num_netdev_contexts =
13459                hfi1_num_netdev_contexts(dd, rcv_contexts -
13460                                         (num_kernel_contexts + n_usr_ctxts),
13461                                         &node_affinity.real_cpu_mask);
13462        /*
13463         * The RMT entries are currently allocated as shown below:
13464         * 1. QOS (0 to 128 entries);
13465         * 2. FECN (num_kernel_context - 1 + num_user_contexts +
13466         *    num_netdev_contexts);
13467         * 3. netdev (num_netdev_contexts).
13468         * It should be noted that FECN oversubscribe num_netdev_contexts
13469         * entries of RMT because both netdev and PSM could allocate any receive
13470         * context between dd->first_dyn_alloc_text and dd->num_rcv_contexts,
13471         * and PSM FECN must reserve an RMT entry for each possible PSM receive
13472         * context.
13473         */
13474        rmt_count = qos_rmt_entries(dd, NULL, NULL) + (num_netdev_contexts * 2);
13475        if (HFI1_CAP_IS_KSET(TID_RDMA))
13476                rmt_count += num_kernel_contexts - 1;
13477        if (rmt_count + n_usr_ctxts > NUM_MAP_ENTRIES) {
13478                user_rmt_reduced = NUM_MAP_ENTRIES - rmt_count;
13479                dd_dev_err(dd,
13480                           "RMT size is reducing the number of user receive contexts from %u to %d\n",
13481                           n_usr_ctxts,
13482                           user_rmt_reduced);
13483                /* recalculate */
13484                n_usr_ctxts = user_rmt_reduced;
13485        }
13486
13487        /* the first N are kernel contexts, the rest are user/netdev contexts */
13488        dd->num_rcv_contexts =
13489                num_kernel_contexts + n_usr_ctxts + num_netdev_contexts;
13490        dd->n_krcv_queues = num_kernel_contexts;
13491        dd->first_dyn_alloc_ctxt = num_kernel_contexts;
13492        dd->num_netdev_contexts = num_netdev_contexts;
13493        dd->num_user_contexts = n_usr_ctxts;
13494        dd->freectxts = n_usr_ctxts;
13495        dd_dev_info(dd,
13496                    "rcv contexts: chip %d, used %d (kernel %d, netdev %u, user %u)\n",
13497                    rcv_contexts,
13498                    (int)dd->num_rcv_contexts,
13499                    (int)dd->n_krcv_queues,
13500                    dd->num_netdev_contexts,
13501                    dd->num_user_contexts);
13502
13503        /*
13504         * Receive array allocation:
13505         *   All RcvArray entries are divided into groups of 8. This
13506         *   is required by the hardware and will speed up writes to
13507         *   consecutive entries by using write-combining of the entire
13508         *   cacheline.
13509         *
13510         *   The number of groups are evenly divided among all contexts.
13511         *   any left over groups will be given to the first N user
13512         *   contexts.
13513         */
13514        dd->rcv_entries.group_size = RCV_INCREMENT;
13515        ngroups = chip_rcv_array_count(dd) / dd->rcv_entries.group_size;
13516        dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
13517        dd->rcv_entries.nctxt_extra = ngroups -
13518                (dd->num_rcv_contexts * dd->rcv_entries.ngroups);
13519        dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
13520                    dd->rcv_entries.ngroups,
13521                    dd->rcv_entries.nctxt_extra);
13522        if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
13523            MAX_EAGER_ENTRIES * 2) {
13524                dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
13525                        dd->rcv_entries.group_size;
13526                dd_dev_info(dd,
13527                            "RcvArray group count too high, change to %u\n",
13528                            dd->rcv_entries.ngroups);
13529                dd->rcv_entries.nctxt_extra = 0;
13530        }
13531        /*
13532         * PIO send contexts
13533         */
13534        ret = init_sc_pools_and_sizes(dd);
13535        if (ret >= 0) { /* success */
13536                dd->num_send_contexts = ret;
13537                dd_dev_info(
13538                        dd,
13539                        "send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
13540                        send_contexts,
13541                        dd->num_send_contexts,
13542                        dd->sc_sizes[SC_KERNEL].count,
13543                        dd->sc_sizes[SC_ACK].count,
13544                        dd->sc_sizes[SC_USER].count,
13545                        dd->sc_sizes[SC_VL15].count);
13546                ret = 0;        /* success */
13547        }
13548
13549        return ret;
13550}
13551
13552/*
13553 * Set the device/port partition key table. The MAD code
13554 * will ensure that, at least, the partial management
13555 * partition key is present in the table.
13556 */
13557static void set_partition_keys(struct hfi1_pportdata *ppd)
13558{
13559        struct hfi1_devdata *dd = ppd->dd;
13560        u64 reg = 0;
13561        int i;
13562
13563        dd_dev_info(dd, "Setting partition keys\n");
13564        for (i = 0; i < hfi1_get_npkeys(dd); i++) {
13565                reg |= (ppd->pkeys[i] &
13566                        RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
13567                        ((i % 4) *
13568                         RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
13569                /* Each register holds 4 PKey values. */
13570                if ((i % 4) == 3) {
13571                        write_csr(dd, RCV_PARTITION_KEY +
13572                                  ((i - 3) * 2), reg);
13573                        reg = 0;
13574                }
13575        }
13576
13577        /* Always enable HW pkeys check when pkeys table is set */
13578        add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
13579}
13580
13581/*
13582 * These CSRs and memories are uninitialized on reset and must be
13583 * written before reading to set the ECC/parity bits.
13584 *
13585 * NOTE: All user context CSRs that are not mmaped write-only
13586 * (e.g. the TID flows) must be initialized even if the driver never
13587 * reads them.
13588 */
13589static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
13590{
13591        int i, j;
13592
13593        /* CceIntMap */
13594        for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13595                write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13596
13597        /* SendCtxtCreditReturnAddr */
13598        for (i = 0; i < chip_send_contexts(dd); i++)
13599                write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13600
13601        /* PIO Send buffers */
13602        /* SDMA Send buffers */
13603        /*
13604         * These are not normally read, and (presently) have no method
13605         * to be read, so are not pre-initialized
13606         */
13607
13608        /* RcvHdrAddr */
13609        /* RcvHdrTailAddr */
13610        /* RcvTidFlowTable */
13611        for (i = 0; i < chip_rcv_contexts(dd); i++) {
13612                write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13613                write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13614                for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
13615                        write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
13616        }
13617
13618        /* RcvArray */
13619        for (i = 0; i < chip_rcv_array_count(dd); i++)
13620                hfi1_put_tid(dd, i, PT_INVALID_FLUSH, 0, 0);
13621
13622        /* RcvQPMapTable */
13623        for (i = 0; i < 32; i++)
13624                write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13625}
13626
13627/*
13628 * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13629 */
13630static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
13631                             u64 ctrl_bits)
13632{
13633        unsigned long timeout;
13634        u64 reg;
13635
13636        /* is the condition present? */
13637        reg = read_csr(dd, CCE_STATUS);
13638        if ((reg & status_bits) == 0)
13639                return;
13640
13641        /* clear the condition */
13642        write_csr(dd, CCE_CTRL, ctrl_bits);
13643
13644        /* wait for the condition to clear */
13645        timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
13646        while (1) {
13647                reg = read_csr(dd, CCE_STATUS);
13648                if ((reg & status_bits) == 0)
13649                        return;
13650                if (time_after(jiffies, timeout)) {
13651                        dd_dev_err(dd,
13652                                   "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13653                                   status_bits, reg & status_bits);
13654                        return;
13655                }
13656                udelay(1);
13657        }
13658}
13659
13660/* set CCE CSRs to chip reset defaults */
13661static void reset_cce_csrs(struct hfi1_devdata *dd)
13662{
13663        int i;
13664
13665        /* CCE_REVISION read-only */
13666        /* CCE_REVISION2 read-only */
13667        /* CCE_CTRL - bits clear automatically */
13668        /* CCE_STATUS read-only, use CceCtrl to clear */
13669        clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
13670        clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
13671        clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
13672        for (i = 0; i < CCE_NUM_SCRATCH; i++)
13673                write_csr(dd, CCE_SCRATCH + (8 * i), 0);
13674        /* CCE_ERR_STATUS read-only */
13675        write_csr(dd, CCE_ERR_MASK, 0);
13676        write_csr(dd, CCE_ERR_CLEAR, ~0ull);
13677        /* CCE_ERR_FORCE leave alone */
13678        for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
13679                write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
13680        write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
13681        /* CCE_PCIE_CTRL leave alone */
13682        for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
13683                write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
13684                write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
13685                          CCE_MSIX_TABLE_UPPER_RESETCSR);
13686        }
13687        for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
13688                /* CCE_MSIX_PBA read-only */
13689                write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
13690                write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
13691        }
13692        for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13693                write_csr(dd, CCE_INT_MAP, 0);
13694        for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13695                /* CCE_INT_STATUS read-only */
13696                write_csr(dd, CCE_INT_MASK + (8 * i), 0);
13697                write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
13698                /* CCE_INT_FORCE leave alone */
13699                /* CCE_INT_BLOCKED read-only */
13700        }
13701        for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
13702                write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
13703}
13704
13705/* set MISC CSRs to chip reset defaults */
13706static void reset_misc_csrs(struct hfi1_devdata *dd)
13707{
13708        int i;
13709
13710        for (i = 0; i < 32; i++) {
13711                write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13712                write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13713                write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13714        }
13715        /*
13716         * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13717         * only be written 128-byte chunks
13718         */
13719        /* init RSA engine to clear lingering errors */
13720        write_csr(dd, MISC_CFG_RSA_CMD, 1);
13721        write_csr(dd, MISC_CFG_RSA_MU, 0);
13722        write_csr(dd, MISC_CFG_FW_CTRL, 0);
13723        /* MISC_STS_8051_DIGEST read-only */
13724        /* MISC_STS_SBM_DIGEST read-only */
13725        /* MISC_STS_PCIE_DIGEST read-only */
13726        /* MISC_STS_FAB_DIGEST read-only */
13727        /* MISC_ERR_STATUS read-only */
13728        write_csr(dd, MISC_ERR_MASK, 0);
13729        write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13730        /* MISC_ERR_FORCE leave alone */
13731}
13732
13733/* set TXE CSRs to chip reset defaults */
13734static void reset_txe_csrs(struct hfi1_devdata *dd)
13735{
13736        int i;
13737
13738        /*
13739         * TXE Kernel CSRs
13740         */
13741        write_csr(dd, SEND_CTRL, 0);
13742        __cm_reset(dd, 0);      /* reset CM internal state */
13743        /* SEND_CONTEXTS read-only */
13744        /* SEND_DMA_ENGINES read-only */
13745        /* SEND_PIO_MEM_SIZE read-only */
13746        /* SEND_DMA_MEM_SIZE read-only */
13747        write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13748        pio_reset_all(dd);      /* SEND_PIO_INIT_CTXT */
13749        /* SEND_PIO_ERR_STATUS read-only */
13750        write_csr(dd, SEND_PIO_ERR_MASK, 0);
13751        write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13752        /* SEND_PIO_ERR_FORCE leave alone */
13753        /* SEND_DMA_ERR_STATUS read-only */
13754        write_csr(dd, SEND_DMA_ERR_MASK, 0);
13755        write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13756        /* SEND_DMA_ERR_FORCE leave alone */
13757        /* SEND_EGRESS_ERR_STATUS read-only */
13758        write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13759        write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13760        /* SEND_EGRESS_ERR_FORCE leave alone */
13761        write_csr(dd, SEND_BTH_QP, 0);
13762        write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13763        write_csr(dd, SEND_SC2VLT0, 0);
13764        write_csr(dd, SEND_SC2VLT1, 0);
13765        write_csr(dd, SEND_SC2VLT2, 0);
13766        write_csr(dd, SEND_SC2VLT3, 0);
13767        write_csr(dd, SEND_LEN_CHECK0, 0);
13768        write_csr(dd, SEND_LEN_CHECK1, 0);
13769        /* SEND_ERR_STATUS read-only */
13770        write_csr(dd, SEND_ERR_MASK, 0);
13771        write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13772        /* SEND_ERR_FORCE read-only */
13773        for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13774                write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
13775        for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13776                write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13777        for (i = 0; i < chip_send_contexts(dd) / NUM_CONTEXTS_PER_SET; i++)
13778                write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
13779        for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13780                write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
13781        for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13782                write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
13783        write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13784        write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
13785        /* SEND_CM_CREDIT_USED_STATUS read-only */
13786        write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13787        write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13788        write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13789        write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13790        write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13791        for (i = 0; i < TXE_NUM_DATA_VL; i++)
13792                write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
13793        write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13794        /* SEND_CM_CREDIT_USED_VL read-only */
13795        /* SEND_CM_CREDIT_USED_VL15 read-only */
13796        /* SEND_EGRESS_CTXT_STATUS read-only */
13797        /* SEND_EGRESS_SEND_DMA_STATUS read-only */
13798        write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13799        /* SEND_EGRESS_ERR_INFO read-only */
13800        /* SEND_EGRESS_ERR_SOURCE read-only */
13801
13802        /*
13803         * TXE Per-Context CSRs
13804         */
13805        for (i = 0; i < chip_send_contexts(dd); i++) {
13806                write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13807                write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13808                write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13809                write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13810                write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13811                write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13812                write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13813                write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13814                write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13815                write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13816                write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13817                write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13818        }
13819
13820        /*
13821         * TXE Per-SDMA CSRs
13822         */
13823        for (i = 0; i < chip_sdma_engines(dd); i++) {
13824                write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13825                /* SEND_DMA_STATUS read-only */
13826                write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13827                write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13828                write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13829                /* SEND_DMA_HEAD read-only */
13830                write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13831                write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13832                /* SEND_DMA_IDLE_CNT read-only */
13833                write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13834                write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13835                /* SEND_DMA_DESC_FETCHED_CNT read-only */
13836                /* SEND_DMA_ENG_ERR_STATUS read-only */
13837                write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13838                write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13839                /* SEND_DMA_ENG_ERR_FORCE leave alone */
13840                write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13841                write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13842                write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13843                write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13844                write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13845                write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13846                write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13847        }
13848}
13849
13850/*
13851 * Expect on entry:
13852 * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13853 */
13854static void init_rbufs(struct hfi1_devdata *dd)
13855{
13856        u64 reg;
13857        int count;
13858
13859        /*
13860         * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13861         * clear.
13862         */
13863        count = 0;
13864        while (1) {
13865                reg = read_csr(dd, RCV_STATUS);
13866                if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13867                            | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13868                        break;
13869                /*
13870                 * Give up after 1ms - maximum wait time.
13871                 *
13872                 * RBuf size is 136KiB.  Slowest possible is PCIe Gen1 x1 at
13873                 * 250MB/s bandwidth.  Lower rate to 66% for overhead to get:
13874                 *      136 KB / (66% * 250MB/s) = 844us
13875                 */
13876                if (count++ > 500) {
13877                        dd_dev_err(dd,
13878                                   "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13879                                   __func__, reg);
13880                        break;
13881                }
13882                udelay(2); /* do not busy-wait the CSR */
13883        }
13884
13885        /* start the init - expect RcvCtrl to be 0 */
13886        write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13887
13888        /*
13889         * Read to force the write of Rcvtrl.RxRbufInit.  There is a brief
13890         * period after the write before RcvStatus.RxRbufInitDone is valid.
13891         * The delay in the first run through the loop below is sufficient and
13892         * required before the first read of RcvStatus.RxRbufInintDone.
13893         */
13894        read_csr(dd, RCV_CTRL);
13895
13896        /* wait for the init to finish */
13897        count = 0;
13898        while (1) {
13899                /* delay is required first time through - see above */
13900                udelay(2); /* do not busy-wait the CSR */
13901                reg = read_csr(dd, RCV_STATUS);
13902                if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13903                        break;
13904
13905                /* give up after 100us - slowest possible at 33MHz is 73us */
13906                if (count++ > 50) {
13907                        dd_dev_err(dd,
13908                                   "%s: RcvStatus.RxRbufInit not set, continuing\n",
13909                                   __func__);
13910                        break;
13911                }
13912        }
13913}
13914
13915/* set RXE CSRs to chip reset defaults */
13916static void reset_rxe_csrs(struct hfi1_devdata *dd)
13917{
13918        int i, j;
13919
13920        /*
13921         * RXE Kernel CSRs
13922         */
13923        write_csr(dd, RCV_CTRL, 0);
13924        init_rbufs(dd);
13925        /* RCV_STATUS read-only */
13926        /* RCV_CONTEXTS read-only */
13927        /* RCV_ARRAY_CNT read-only */
13928        /* RCV_BUF_SIZE read-only */
13929        write_csr(dd, RCV_BTH_QP, 0);
13930        write_csr(dd, RCV_MULTICAST, 0);
13931        write_csr(dd, RCV_BYPASS, 0);
13932        write_csr(dd, RCV_VL15, 0);
13933        /* this is a clear-down */
13934        write_csr(dd, RCV_ERR_INFO,
13935                  RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13936        /* RCV_ERR_STATUS read-only */
13937        write_csr(dd, RCV_ERR_MASK, 0);
13938        write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13939        /* RCV_ERR_FORCE leave alone */
13940        for (i = 0; i < 32; i++)
13941                write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13942        for (i = 0; i < 4; i++)
13943                write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13944        for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13945                write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13946        for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13947                write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13948        for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++)
13949                clear_rsm_rule(dd, i);
13950        for (i = 0; i < 32; i++)
13951                write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13952
13953        /*
13954         * RXE Kernel and User Per-Context CSRs
13955         */
13956        for (i = 0; i < chip_rcv_contexts(dd); i++) {
13957                /* kernel */
13958                write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13959                /* RCV_CTXT_STATUS read-only */
13960                write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13961                write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13962                write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13963                write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13964                write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13965                write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13966                write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13967                write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13968                write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13969                write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13970
13971                /* user */
13972                /* RCV_HDR_TAIL read-only */
13973                write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13974                /* RCV_EGR_INDEX_TAIL read-only */
13975                write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13976                /* RCV_EGR_OFFSET_TAIL read-only */
13977                for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13978                        write_uctxt_csr(dd, i,
13979                                        RCV_TID_FLOW_TABLE + (8 * j), 0);
13980                }
13981        }
13982}
13983
13984/*
13985 * Set sc2vl tables.
13986 *
13987 * They power on to zeros, so to avoid send context errors
13988 * they need to be set:
13989 *
13990 * SC 0-7 -> VL 0-7 (respectively)
13991 * SC 15  -> VL 15
13992 * otherwise
13993 *        -> VL 0
13994 */
13995static void init_sc2vl_tables(struct hfi1_devdata *dd)
13996{
13997        int i;
13998        /* init per architecture spec, constrained by hardware capability */
13999
14000        /* HFI maps sent packets */
14001        write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
14002                0,
14003                0, 0, 1, 1,
14004                2, 2, 3, 3,
14005                4, 4, 5, 5,
14006                6, 6, 7, 7));
14007        write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
14008                1,
14009                8, 0, 9, 0,
14010                10, 0, 11, 0,
14011                12, 0, 13, 0,
14012                14, 0, 15, 15));
14013        write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
14014                2,
14015                16, 0, 17, 0,
14016                18, 0, 19, 0,
14017                20, 0, 21, 0,
14018                22, 0, 23, 0));
14019        write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
14020                3,
14021                24, 0, 25, 0,
14022                26, 0, 27, 0,
14023                28, 0, 29, 0,
14024                30, 0, 31, 0));
14025
14026        /* DC maps received packets */
14027        write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
14028                15_0,
14029                0, 0, 1, 1,  2, 2,  3, 3,  4, 4,  5, 5,  6, 6,  7,  7,
14030                8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
14031        write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
14032                31_16,
14033                16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
14034                24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
14035
14036        /* initialize the cached sc2vl values consistently with h/w */
14037        for (i = 0; i < 32; i++) {
14038                if (i < 8 || i == 15)
14039                        *((u8 *)(dd->sc2vl) + i) = (u8)i;
14040                else
14041                        *((u8 *)(dd->sc2vl) + i) = 0;
14042        }
14043}
14044
14045/*
14046 * Read chip sizes and then reset parts to sane, disabled, values.  We cannot
14047 * depend on the chip going through a power-on reset - a driver may be loaded
14048 * and unloaded many times.
14049 *
14050 * Do not write any CSR values to the chip in this routine - there may be
14051 * a reset following the (possible) FLR in this routine.
14052 *
14053 */
14054static int init_chip(struct hfi1_devdata *dd)
14055{
14056        int i;
14057        int ret = 0;
14058
14059        /*
14060         * Put the HFI CSRs in a known state.
14061         * Combine this with a DC reset.
14062         *
14063         * Stop the device from doing anything while we do a
14064         * reset.  We know there are no other active users of
14065         * the device since we are now in charge.  Turn off
14066         * off all outbound and inbound traffic and make sure
14067         * the device does not generate any interrupts.
14068         */
14069
14070        /* disable send contexts and SDMA engines */
14071        write_csr(dd, SEND_CTRL, 0);
14072        for (i = 0; i < chip_send_contexts(dd); i++)
14073                write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
14074        for (i = 0; i < chip_sdma_engines(dd); i++)
14075                write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
14076        /* disable port (turn off RXE inbound traffic) and contexts */
14077        write_csr(dd, RCV_CTRL, 0);
14078        for (i = 0; i < chip_rcv_contexts(dd); i++)
14079                write_csr(dd, RCV_CTXT_CTRL, 0);
14080        /* mask all interrupt sources */
14081        for (i = 0; i < CCE_NUM_INT_CSRS; i++)
14082                write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
14083
14084        /*
14085         * DC Reset: do a full DC reset before the register clear.
14086         * A recommended length of time to hold is one CSR read,
14087         * so reread the CceDcCtrl.  Then, hold the DC in reset
14088         * across the clear.
14089         */
14090        write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
14091        (void)read_csr(dd, CCE_DC_CTRL);
14092
14093        if (use_flr) {
14094                /*
14095                 * A FLR will reset the SPC core and part of the PCIe.
14096                 * The parts that need to be restored have already been
14097                 * saved.
14098                 */
14099                dd_dev_info(dd, "Resetting CSRs with FLR\n");
14100
14101                /* do the FLR, the DC reset will remain */
14102                pcie_flr(dd->pcidev);
14103
14104                /* restore command and BARs */
14105                ret = restore_pci_variables(dd);
14106                if (ret) {
14107                        dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14108                                   __func__);
14109                        return ret;
14110                }
14111
14112                if (is_ax(dd)) {
14113                        dd_dev_info(dd, "Resetting CSRs with FLR\n");
14114                        pcie_flr(dd->pcidev);
14115                        ret = restore_pci_variables(dd);
14116                        if (ret) {
14117                                dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14118                                           __func__);
14119                                return ret;
14120                        }
14121                }
14122        } else {
14123                dd_dev_info(dd, "Resetting CSRs with writes\n");
14124                reset_cce_csrs(dd);
14125                reset_txe_csrs(dd);
14126                reset_rxe_csrs(dd);
14127                reset_misc_csrs(dd);
14128        }
14129        /* clear the DC reset */
14130        write_csr(dd, CCE_DC_CTRL, 0);
14131
14132        /* Set the LED off */
14133        setextled(dd, 0);
14134
14135        /*
14136         * Clear the QSFP reset.
14137         * An FLR enforces a 0 on all out pins. The driver does not touch
14138         * ASIC_QSFPn_OUT otherwise.  This leaves RESET_N low and
14139         * anything plugged constantly in reset, if it pays attention
14140         * to RESET_N.
14141         * Prime examples of this are optical cables. Set all pins high.
14142         * I2CCLK and I2CDAT will change per direction, and INT_N and
14143         * MODPRS_N are input only and their value is ignored.
14144         */
14145        write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
14146        write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
14147        init_chip_resources(dd);
14148        return ret;
14149}
14150
14151static void init_early_variables(struct hfi1_devdata *dd)
14152{
14153        int i;
14154
14155        /* assign link credit variables */
14156        dd->vau = CM_VAU;
14157        dd->link_credits = CM_GLOBAL_CREDITS;
14158        if (is_ax(dd))
14159                dd->link_credits--;
14160        dd->vcu = cu_to_vcu(hfi1_cu);
14161        /* enough room for 8 MAD packets plus header - 17K */
14162        dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
14163        if (dd->vl15_init > dd->link_credits)
14164                dd->vl15_init = dd->link_credits;
14165
14166        write_uninitialized_csrs_and_memories(dd);
14167
14168        if (HFI1_CAP_IS_KSET(PKEY_CHECK))
14169                for (i = 0; i < dd->num_pports; i++) {
14170                        struct hfi1_pportdata *ppd = &dd->pport[i];
14171
14172                        set_partition_keys(ppd);
14173                }
14174        init_sc2vl_tables(dd);
14175}
14176
14177static void init_kdeth_qp(struct hfi1_devdata *dd)
14178{
14179        write_csr(dd, SEND_BTH_QP,
14180                  (RVT_KDETH_QP_PREFIX & SEND_BTH_QP_KDETH_QP_MASK) <<
14181                  SEND_BTH_QP_KDETH_QP_SHIFT);
14182
14183        write_csr(dd, RCV_BTH_QP,
14184                  (RVT_KDETH_QP_PREFIX & RCV_BTH_QP_KDETH_QP_MASK) <<
14185                  RCV_BTH_QP_KDETH_QP_SHIFT);
14186}
14187
14188/**
14189 * hfi1_get_qp_map
14190 * @dd: device data
14191 * @idx: index to read
14192 */
14193u8 hfi1_get_qp_map(struct hfi1_devdata *dd, u8 idx)
14194{
14195        u64 reg = read_csr(dd, RCV_QP_MAP_TABLE + (idx / 8) * 8);
14196
14197        reg >>= (idx % 8) * 8;
14198        return reg;
14199}
14200
14201/**
14202 * init_qpmap_table
14203 * @dd - device data
14204 * @first_ctxt - first context
14205 * @last_ctxt - first context
14206 *
14207 * This return sets the qpn mapping table that
14208 * is indexed by qpn[8:1].
14209 *
14210 * The routine will round robin the 256 settings
14211 * from first_ctxt to last_ctxt.
14212 *
14213 * The first/last looks ahead to having specialized
14214 * receive contexts for mgmt and bypass.  Normal
14215 * verbs traffic will assumed to be on a range
14216 * of receive contexts.
14217 */
14218static void init_qpmap_table(struct hfi1_devdata *dd,
14219                             u32 first_ctxt,
14220                             u32 last_ctxt)
14221{
14222        u64 reg = 0;
14223        u64 regno = RCV_QP_MAP_TABLE;
14224        int i;
14225        u64 ctxt = first_ctxt;
14226
14227        for (i = 0; i < 256; i++) {
14228                reg |= ctxt << (8 * (i % 8));
14229                ctxt++;
14230                if (ctxt > last_ctxt)
14231                        ctxt = first_ctxt;
14232                if (i % 8 == 7) {
14233                        write_csr(dd, regno, reg);
14234                        reg = 0;
14235                        regno += 8;
14236                }
14237        }
14238
14239        add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
14240                        | RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
14241}
14242
14243struct rsm_map_table {
14244        u64 map[NUM_MAP_REGS];
14245        unsigned int used;
14246};
14247
14248struct rsm_rule_data {
14249        u8 offset;
14250        u8 pkt_type;
14251        u32 field1_off;
14252        u32 field2_off;
14253        u32 index1_off;
14254        u32 index1_width;
14255        u32 index2_off;
14256        u32 index2_width;
14257        u32 mask1;
14258        u32 value1;
14259        u32 mask2;
14260        u32 value2;
14261};
14262
14263/*
14264 * Return an initialized RMT map table for users to fill in.  OK if it
14265 * returns NULL, indicating no table.
14266 */
14267static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
14268{
14269        struct rsm_map_table *rmt;
14270        u8 rxcontext = is_ax(dd) ? 0 : 0xff;  /* 0 is default if a0 ver. */
14271
14272        rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
14273        if (rmt) {
14274                memset(rmt->map, rxcontext, sizeof(rmt->map));
14275                rmt->used = 0;
14276        }
14277
14278        return rmt;
14279}
14280
14281/*
14282 * Write the final RMT map table to the chip and free the table.  OK if
14283 * table is NULL.
14284 */
14285static void complete_rsm_map_table(struct hfi1_devdata *dd,
14286                                   struct rsm_map_table *rmt)
14287{
14288        int i;
14289
14290        if (rmt) {
14291                /* write table to chip */
14292                for (i = 0; i < NUM_MAP_REGS; i++)
14293                        write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
14294
14295                /* enable RSM */
14296                add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14297        }
14298}
14299
14300/* Is a receive side mapping rule */
14301static bool has_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14302{
14303        return read_csr(dd, RCV_RSM_CFG + (8 * rule_index)) != 0;
14304}
14305
14306/*
14307 * Add a receive side mapping rule.
14308 */
14309static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
14310                         struct rsm_rule_data *rrd)
14311{
14312        write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
14313                  (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
14314                  1ull << rule_index | /* enable bit */
14315                  (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
14316        write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
14317                  (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
14318                  (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
14319                  (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
14320                  (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
14321                  (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
14322                  (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
14323        write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
14324                  (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
14325                  (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
14326                  (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
14327                  (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
14328}
14329
14330/*
14331 * Clear a receive side mapping rule.
14332 */
14333static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14334{
14335        write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 0);
14336        write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 0);
14337        write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 0);
14338}
14339
14340/* return the number of RSM map table entries that will be used for QOS */
14341static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
14342                           unsigned int *np)
14343{
14344        int i;
14345        unsigned int m, n;
14346        u8 max_by_vl = 0;
14347
14348        /* is QOS active at all? */
14349        if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
14350            num_vls == 1 ||
14351            krcvqsset <= 1)
14352                goto no_qos;
14353
14354        /* determine bits for qpn */
14355        for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
14356                if (krcvqs[i] > max_by_vl)
14357                        max_by_vl = krcvqs[i];
14358        if (max_by_vl > 32)
14359                goto no_qos;
14360        m = ilog2(__roundup_pow_of_two(max_by_vl));
14361
14362        /* determine bits for vl */
14363        n = ilog2(__roundup_pow_of_two(num_vls));
14364
14365        /* reject if too much is used */
14366        if ((m + n) > 7)
14367                goto no_qos;
14368
14369        if (mp)
14370                *mp = m;
14371        if (np)
14372                *np = n;
14373
14374        return 1 << (m + n);
14375
14376no_qos:
14377        if (mp)
14378                *mp = 0;
14379        if (np)
14380                *np = 0;
14381        return 0;
14382}
14383
14384/**
14385 * init_qos - init RX qos
14386 * @dd - device data
14387 * @rmt - RSM map table
14388 *
14389 * This routine initializes Rule 0 and the RSM map table to implement
14390 * quality of service (qos).
14391 *
14392 * If all of the limit tests succeed, qos is applied based on the array
14393 * interpretation of krcvqs where entry 0 is VL0.
14394 *
14395 * The number of vl bits (n) and the number of qpn bits (m) are computed to
14396 * feed both the RSM map table and the single rule.
14397 */
14398static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
14399{
14400        struct rsm_rule_data rrd;
14401        unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
14402        unsigned int rmt_entries;
14403        u64 reg;
14404
14405        if (!rmt)
14406                goto bail;
14407        rmt_entries = qos_rmt_entries(dd, &m, &n);
14408        if (rmt_entries == 0)
14409                goto bail;
14410        qpns_per_vl = 1 << m;
14411
14412        /* enough room in the map table? */
14413        rmt_entries = 1 << (m + n);
14414        if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
14415                goto bail;
14416
14417        /* add qos entries to the the RSM map table */
14418        for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
14419                unsigned tctxt;
14420
14421                for (qpn = 0, tctxt = ctxt;
14422                     krcvqs[i] && qpn < qpns_per_vl; qpn++) {
14423                        unsigned idx, regoff, regidx;
14424
14425                        /* generate the index the hardware will produce */
14426                        idx = rmt->used + ((qpn << n) ^ i);
14427                        regoff = (idx % 8) * 8;
14428                        regidx = idx / 8;
14429                        /* replace default with context number */
14430                        reg = rmt->map[regidx];
14431                        reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
14432                                << regoff);
14433                        reg |= (u64)(tctxt++) << regoff;
14434                        rmt->map[regidx] = reg;
14435                        if (tctxt == ctxt + krcvqs[i])
14436                                tctxt = ctxt;
14437                }
14438                ctxt += krcvqs[i];
14439        }
14440
14441        rrd.offset = rmt->used;
14442        rrd.pkt_type = 2;
14443        rrd.field1_off = LRH_BTH_MATCH_OFFSET;
14444        rrd.field2_off = LRH_SC_MATCH_OFFSET;
14445        rrd.index1_off = LRH_SC_SELECT_OFFSET;
14446        rrd.index1_width = n;
14447        rrd.index2_off = QPN_SELECT_OFFSET;
14448        rrd.index2_width = m + n;
14449        rrd.mask1 = LRH_BTH_MASK;
14450        rrd.value1 = LRH_BTH_VALUE;
14451        rrd.mask2 = LRH_SC_MASK;
14452        rrd.value2 = LRH_SC_VALUE;
14453
14454        /* add rule 0 */
14455        add_rsm_rule(dd, RSM_INS_VERBS, &rrd);
14456
14457        /* mark RSM map entries as used */
14458        rmt->used += rmt_entries;
14459        /* map everything else to the mcast/err/vl15 context */
14460        init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
14461        dd->qos_shift = n + 1;
14462        return;
14463bail:
14464        dd->qos_shift = 1;
14465        init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
14466}
14467
14468static void init_fecn_handling(struct hfi1_devdata *dd,
14469                               struct rsm_map_table *rmt)
14470{
14471        struct rsm_rule_data rrd;
14472        u64 reg;
14473        int i, idx, regoff, regidx, start;
14474        u8 offset;
14475        u32 total_cnt;
14476
14477        if (HFI1_CAP_IS_KSET(TID_RDMA))
14478                /* Exclude context 0 */
14479                start = 1;
14480        else
14481                start = dd->first_dyn_alloc_ctxt;
14482
14483        total_cnt = dd->num_rcv_contexts - start;
14484
14485        /* there needs to be enough room in the map table */
14486        if (rmt->used + total_cnt >= NUM_MAP_ENTRIES) {
14487                dd_dev_err(dd, "FECN handling disabled - too many contexts allocated\n");
14488                return;
14489        }
14490
14491        /*
14492         * RSM will extract the destination context as an index into the
14493         * map table.  The destination contexts are a sequential block
14494         * in the range start...num_rcv_contexts-1 (inclusive).
14495         * Map entries are accessed as offset + extracted value.  Adjust
14496         * the added offset so this sequence can be placed anywhere in
14497         * the table - as long as the entries themselves do not wrap.
14498         * There are only enough bits in offset for the table size, so
14499         * start with that to allow for a "negative" offset.
14500         */
14501        offset = (u8)(NUM_MAP_ENTRIES + rmt->used - start);
14502
14503        for (i = start, idx = rmt->used; i < dd->num_rcv_contexts;
14504             i++, idx++) {
14505                /* replace with identity mapping */
14506                regoff = (idx % 8) * 8;
14507                regidx = idx / 8;
14508                reg = rmt->map[regidx];
14509                reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
14510                reg |= (u64)i << regoff;
14511                rmt->map[regidx] = reg;
14512        }
14513
14514        /*
14515         * For RSM intercept of Expected FECN packets:
14516         * o packet type 0 - expected
14517         * o match on F (bit 95), using select/match 1, and
14518         * o match on SH (bit 133), using select/match 2.
14519         *
14520         * Use index 1 to extract the 8-bit receive context from DestQP
14521         * (start at bit 64).  Use that as the RSM map table index.
14522         */
14523        rrd.offset = offset;
14524        rrd.pkt_type = 0;
14525        rrd.field1_off = 95;
14526        rrd.field2_off = 133;
14527        rrd.index1_off = 64;
14528        rrd.index1_width = 8;
14529        rrd.index2_off = 0;
14530        rrd.index2_width = 0;
14531        rrd.mask1 = 1;
14532        rrd.value1 = 1;
14533        rrd.mask2 = 1;
14534        rrd.value2 = 1;
14535
14536        /* add rule 1 */
14537        add_rsm_rule(dd, RSM_INS_FECN, &rrd);
14538
14539        rmt->used += total_cnt;
14540}
14541
14542static inline bool hfi1_is_rmt_full(int start, int spare)
14543{
14544        return (start + spare) > NUM_MAP_ENTRIES;
14545}
14546
14547static bool hfi1_netdev_update_rmt(struct hfi1_devdata *dd)
14548{
14549        u8 i, j;
14550        u8 ctx_id = 0;
14551        u64 reg;
14552        u32 regoff;
14553        int rmt_start = hfi1_netdev_get_free_rmt_idx(dd);
14554        int ctxt_count = hfi1_netdev_ctxt_count(dd);
14555
14556        /* We already have contexts mapped in RMT */
14557        if (has_rsm_rule(dd, RSM_INS_VNIC) || has_rsm_rule(dd, RSM_INS_AIP)) {
14558                dd_dev_info(dd, "Contexts are already mapped in RMT\n");
14559                return true;
14560        }
14561
14562        if (hfi1_is_rmt_full(rmt_start, NUM_NETDEV_MAP_ENTRIES)) {
14563                dd_dev_err(dd, "Not enough RMT entries used = %d\n",
14564                           rmt_start);
14565                return false;
14566        }
14567
14568        dev_dbg(&(dd)->pcidev->dev, "RMT start = %d, end %d\n",
14569                rmt_start,
14570                rmt_start + NUM_NETDEV_MAP_ENTRIES);
14571
14572        /* Update RSM mapping table, 32 regs, 256 entries - 1 ctx per byte */
14573        regoff = RCV_RSM_MAP_TABLE + (rmt_start / 8) * 8;
14574        reg = read_csr(dd, regoff);
14575        for (i = 0; i < NUM_NETDEV_MAP_ENTRIES; i++) {
14576                /* Update map register with netdev context */
14577                j = (rmt_start + i) % 8;
14578                reg &= ~(0xffllu << (j * 8));
14579                reg |= (u64)hfi1_netdev_get_ctxt(dd, ctx_id++)->ctxt << (j * 8);
14580                /* Wrap up netdev ctx index */
14581                ctx_id %= ctxt_count;
14582                /* Write back map register */
14583                if (j == 7 || ((i + 1) == NUM_NETDEV_MAP_ENTRIES)) {
14584                        dev_dbg(&(dd)->pcidev->dev,
14585                                "RMT[%d] =0x%llx\n",
14586                                regoff - RCV_RSM_MAP_TABLE, reg);
14587
14588                        write_csr(dd, regoff, reg);
14589                        regoff += 8;
14590                        if (i < (NUM_NETDEV_MAP_ENTRIES - 1))
14591                                reg = read_csr(dd, regoff);
14592                }
14593        }
14594
14595        return true;
14596}
14597
14598static void hfi1_enable_rsm_rule(struct hfi1_devdata *dd,
14599                                 int rule, struct rsm_rule_data *rrd)
14600{
14601        if (!hfi1_netdev_update_rmt(dd)) {
14602                dd_dev_err(dd, "Failed to update RMT for RSM%d rule\n", rule);
14603                return;
14604        }
14605
14606        add_rsm_rule(dd, rule, rrd);
14607        add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14608}
14609
14610void hfi1_init_aip_rsm(struct hfi1_devdata *dd)
14611{
14612        /*
14613         * go through with the initialisation only if this rule actually doesn't
14614         * exist yet
14615         */
14616        if (atomic_fetch_inc(&dd->ipoib_rsm_usr_num) == 0) {
14617                int rmt_start = hfi1_netdev_get_free_rmt_idx(dd);
14618                struct rsm_rule_data rrd = {
14619                        .offset = rmt_start,
14620                        .pkt_type = IB_PACKET_TYPE,
14621                        .field1_off = LRH_BTH_MATCH_OFFSET,
14622                        .mask1 = LRH_BTH_MASK,
14623                        .value1 = LRH_BTH_VALUE,
14624                        .field2_off = BTH_DESTQP_MATCH_OFFSET,
14625                        .mask2 = BTH_DESTQP_MASK,
14626                        .value2 = BTH_DESTQP_VALUE,
14627                        .index1_off = DETH_AIP_SQPN_SELECT_OFFSET +
14628                                        ilog2(NUM_NETDEV_MAP_ENTRIES),
14629                        .index1_width = ilog2(NUM_NETDEV_MAP_ENTRIES),
14630                        .index2_off = DETH_AIP_SQPN_SELECT_OFFSET,
14631                        .index2_width = ilog2(NUM_NETDEV_MAP_ENTRIES)
14632                };
14633
14634                hfi1_enable_rsm_rule(dd, RSM_INS_AIP, &rrd);
14635        }
14636}
14637
14638/* Initialize RSM for VNIC */
14639void hfi1_init_vnic_rsm(struct hfi1_devdata *dd)
14640{
14641        int rmt_start = hfi1_netdev_get_free_rmt_idx(dd);
14642        struct rsm_rule_data rrd = {
14643                /* Add rule for vnic */
14644                .offset = rmt_start,
14645                .pkt_type = 4,
14646                /* Match 16B packets */
14647                .field1_off = L2_TYPE_MATCH_OFFSET,
14648                .mask1 = L2_TYPE_MASK,
14649                .value1 = L2_16B_VALUE,
14650                /* Match ETH L4 packets */
14651                .field2_off = L4_TYPE_MATCH_OFFSET,
14652                .mask2 = L4_16B_TYPE_MASK,
14653                .value2 = L4_16B_ETH_VALUE,
14654                /* Calc context from veswid and entropy */
14655                .index1_off = L4_16B_HDR_VESWID_OFFSET,
14656                .index1_width = ilog2(NUM_NETDEV_MAP_ENTRIES),
14657                .index2_off = L2_16B_ENTROPY_OFFSET,
14658                .index2_width = ilog2(NUM_NETDEV_MAP_ENTRIES)
14659        };
14660
14661        hfi1_enable_rsm_rule(dd, RSM_INS_VNIC, &rrd);
14662}
14663
14664void hfi1_deinit_vnic_rsm(struct hfi1_devdata *dd)
14665{
14666        clear_rsm_rule(dd, RSM_INS_VNIC);
14667}
14668
14669void hfi1_deinit_aip_rsm(struct hfi1_devdata *dd)
14670{
14671        /* only actually clear the rule if it's the last user asking to do so */
14672        if (atomic_fetch_add_unless(&dd->ipoib_rsm_usr_num, -1, 0) == 1)
14673                clear_rsm_rule(dd, RSM_INS_AIP);
14674}
14675
14676static int init_rxe(struct hfi1_devdata *dd)
14677{
14678        struct rsm_map_table *rmt;
14679        u64 val;
14680
14681        /* enable all receive errors */
14682        write_csr(dd, RCV_ERR_MASK, ~0ull);
14683
14684        rmt = alloc_rsm_map_table(dd);
14685        if (!rmt)
14686                return -ENOMEM;
14687
14688        /* set up QOS, including the QPN map table */
14689        init_qos(dd, rmt);
14690        init_fecn_handling(dd, rmt);
14691        complete_rsm_map_table(dd, rmt);
14692        /* record number of used rsm map entries for netdev */
14693        hfi1_netdev_set_free_rmt_idx(dd, rmt->used);
14694        kfree(rmt);
14695
14696        /*
14697         * make sure RcvCtrl.RcvWcb <= PCIe Device Control
14698         * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
14699         * space, PciCfgCap2.MaxPayloadSize in HFI).  There is only one
14700         * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
14701         * Max_PayLoad_Size set to its minimum of 128.
14702         *
14703         * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
14704         * (64 bytes).  Max_Payload_Size is possibly modified upward in
14705         * tune_pcie_caps() which is called after this routine.
14706         */
14707
14708        /* Have 16 bytes (4DW) of bypass header available in header queue */
14709        val = read_csr(dd, RCV_BYPASS);
14710        val &= ~RCV_BYPASS_HDR_SIZE_SMASK;
14711        val |= ((4ull & RCV_BYPASS_HDR_SIZE_MASK) <<
14712                RCV_BYPASS_HDR_SIZE_SHIFT);
14713        write_csr(dd, RCV_BYPASS, val);
14714        return 0;
14715}
14716
14717static void init_other(struct hfi1_devdata *dd)
14718{
14719        /* enable all CCE errors */
14720        write_csr(dd, CCE_ERR_MASK, ~0ull);
14721        /* enable *some* Misc errors */
14722        write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
14723        /* enable all DC errors, except LCB */
14724        write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
14725        write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
14726}
14727
14728/*
14729 * Fill out the given AU table using the given CU.  A CU is defined in terms
14730 * AUs.  The table is a an encoding: given the index, how many AUs does that
14731 * represent?
14732 *
14733 * NOTE: Assumes that the register layout is the same for the
14734 * local and remote tables.
14735 */
14736static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
14737                               u32 csr0to3, u32 csr4to7)
14738{
14739        write_csr(dd, csr0to3,
14740                  0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
14741                  1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
14742                  2ull * cu <<
14743                  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
14744                  4ull * cu <<
14745                  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
14746        write_csr(dd, csr4to7,
14747                  8ull * cu <<
14748                  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
14749                  16ull * cu <<
14750                  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
14751                  32ull * cu <<
14752                  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
14753                  64ull * cu <<
14754                  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
14755}
14756
14757static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14758{
14759        assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
14760                           SEND_CM_LOCAL_AU_TABLE4_TO7);
14761}
14762
14763void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14764{
14765        assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
14766                           SEND_CM_REMOTE_AU_TABLE4_TO7);
14767}
14768
14769static void init_txe(struct hfi1_devdata *dd)
14770{
14771        int i;
14772
14773        /* enable all PIO, SDMA, general, and Egress errors */
14774        write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
14775        write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
14776        write_csr(dd, SEND_ERR_MASK, ~0ull);
14777        write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
14778
14779        /* enable all per-context and per-SDMA engine errors */
14780        for (i = 0; i < chip_send_contexts(dd); i++)
14781                write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
14782        for (i = 0; i < chip_sdma_engines(dd); i++)
14783                write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
14784
14785        /* set the local CU to AU mapping */
14786        assign_local_cm_au_table(dd, dd->vcu);
14787
14788        /*
14789         * Set reasonable default for Credit Return Timer
14790         * Don't set on Simulator - causes it to choke.
14791         */
14792        if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
14793                write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
14794}
14795
14796int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14797                       u16 jkey)
14798{
14799        u8 hw_ctxt;
14800        u64 reg;
14801
14802        if (!rcd || !rcd->sc)
14803                return -EINVAL;
14804
14805        hw_ctxt = rcd->sc->hw_context;
14806        reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
14807                ((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
14808                 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
14809        /* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14810        if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
14811                reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
14812        write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
14813        /*
14814         * Enable send-side J_KEY integrity check, unless this is A0 h/w
14815         */
14816        if (!is_ax(dd)) {
14817                reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14818                reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14819                write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14820        }
14821
14822        /* Enable J_KEY check on receive context. */
14823        reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
14824                ((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
14825                 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
14826        write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, reg);
14827
14828        return 0;
14829}
14830
14831int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
14832{
14833        u8 hw_ctxt;
14834        u64 reg;
14835
14836        if (!rcd || !rcd->sc)
14837                return -EINVAL;
14838
14839        hw_ctxt = rcd->sc->hw_context;
14840        write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
14841        /*
14842         * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14843         * This check would not have been enabled for A0 h/w, see
14844         * set_ctxt_jkey().
14845         */
14846        if (!is_ax(dd)) {
14847                reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14848                reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14849                write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14850        }
14851        /* Turn off the J_KEY on the receive side */
14852        write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, 0);
14853
14854        return 0;
14855}
14856
14857int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14858                       u16 pkey)
14859{
14860        u8 hw_ctxt;
14861        u64 reg;
14862
14863        if (!rcd || !rcd->sc)
14864                return -EINVAL;
14865
14866        hw_ctxt = rcd->sc->hw_context;
14867        reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
14868                SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
14869        write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
14870        reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14871        reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14872        reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
14873        write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14874
14875        return 0;
14876}
14877
14878int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *ctxt)
14879{
14880        u8 hw_ctxt;
14881        u64 reg;
14882
14883        if (!ctxt || !ctxt->sc)
14884                return -EINVAL;
14885
14886        hw_ctxt = ctxt->sc->hw_context;
14887        reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14888        reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14889        write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14890        write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
14891
14892        return 0;
14893}
14894
14895/*
14896 * Start doing the clean up the the chip. Our clean up happens in multiple
14897 * stages and this is just the first.
14898 */
14899void hfi1_start_cleanup(struct hfi1_devdata *dd)
14900{
14901        aspm_exit(dd);
14902        free_cntrs(dd);
14903        free_rcverr(dd);
14904        finish_chip_resources(dd);
14905}
14906
14907#define HFI_BASE_GUID(dev) \
14908        ((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14909
14910/*
14911 * Information can be shared between the two HFIs on the same ASIC
14912 * in the same OS.  This function finds the peer device and sets
14913 * up a shared structure.
14914 */
14915static int init_asic_data(struct hfi1_devdata *dd)
14916{
14917        unsigned long index;
14918        struct hfi1_devdata *peer;
14919        struct hfi1_asic_data *asic_data;
14920        int ret = 0;
14921
14922        /* pre-allocate the asic structure in case we are the first device */
14923        asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
14924        if (!asic_data)
14925                return -ENOMEM;
14926
14927        xa_lock_irq(&hfi1_dev_table);
14928        /* Find our peer device */
14929        xa_for_each(&hfi1_dev_table, index, peer) {
14930                if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(peer)) &&
14931                    dd->unit != peer->unit)
14932                        break;
14933        }
14934
14935        if (peer) {
14936                /* use already allocated structure */
14937                dd->asic_data = peer->asic_data;
14938                kfree(asic_data);
14939        } else {
14940                dd->asic_data = asic_data;
14941                mutex_init(&dd->asic_data->asic_resource_mutex);
14942        }
14943        dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
14944        xa_unlock_irq(&hfi1_dev_table);
14945
14946        /* first one through - set up i2c devices */
14947        if (!peer)
14948                ret = set_up_i2c(dd, dd->asic_data);
14949
14950        return ret;
14951}
14952
14953/*
14954 * Set dd->boardname.  Use a generic name if a name is not returned from
14955 * EFI variable space.
14956 *
14957 * Return 0 on success, -ENOMEM if space could not be allocated.
14958 */
14959static int obtain_boardname(struct hfi1_devdata *dd)
14960{
14961        /* generic board description */
14962        const char generic[] =
14963                "Intel Omni-Path Host Fabric Interface Adapter 100 Series";
14964        unsigned long size;
14965        int ret;
14966
14967        ret = read_hfi1_efi_var(dd, "description", &size,
14968                                (void **)&dd->boardname);
14969        if (ret) {
14970                dd_dev_info(dd, "Board description not found\n");
14971                /* use generic description */
14972                dd->boardname = kstrdup(generic, GFP_KERNEL);
14973                if (!dd->boardname)
14974                        return -ENOMEM;
14975        }
14976        return 0;
14977}
14978
14979/*
14980 * Check the interrupt registers to make sure that they are mapped correctly.
14981 * It is intended to help user identify any mismapping by VMM when the driver
14982 * is running in a VM. This function should only be called before interrupt
14983 * is set up properly.
14984 *
14985 * Return 0 on success, -EINVAL on failure.
14986 */
14987static int check_int_registers(struct hfi1_devdata *dd)
14988{
14989        u64 reg;
14990        u64 all_bits = ~(u64)0;
14991        u64 mask;
14992
14993        /* Clear CceIntMask[0] to avoid raising any interrupts */
14994        mask = read_csr(dd, CCE_INT_MASK);
14995        write_csr(dd, CCE_INT_MASK, 0ull);
14996        reg = read_csr(dd, CCE_INT_MASK);
14997        if (reg)
14998                goto err_exit;
14999
15000        /* Clear all interrupt status bits */
15001        write_csr(dd, CCE_INT_CLEAR, all_bits);
15002        reg = read_csr(dd, CCE_INT_STATUS);
15003        if (reg)
15004                goto err_exit;
15005
15006        /* Set all interrupt status bits */
15007        write_csr(dd, CCE_INT_FORCE, all_bits);
15008        reg = read_csr(dd, CCE_INT_STATUS);
15009        if (reg != all_bits)
15010                goto err_exit;
15011
15012        /* Restore the interrupt mask */
15013        write_csr(dd, CCE_INT_CLEAR, all_bits);
15014        write_csr(dd, CCE_INT_MASK, mask);
15015
15016        return 0;
15017err_exit:
15018        write_csr(dd, CCE_INT_MASK, mask);
15019        dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
15020        return -EINVAL;
15021}
15022
15023/**
15024 * hfi1_init_dd() - Initialize most of the dd structure.
15025 * @dev: the pci_dev for hfi1_ib device
15026 * @ent: pci_device_id struct for this dev
15027 *
15028 * This is global, and is called directly at init to set up the
15029 * chip-specific function pointers for later use.
15030 */
15031int hfi1_init_dd(struct hfi1_devdata *dd)
15032{
15033        struct pci_dev *pdev = dd->pcidev;
15034        struct hfi1_pportdata *ppd;
15035        u64 reg;
15036        int i, ret;
15037        static const char * const inames[] = { /* implementation names */
15038                "RTL silicon",
15039                "RTL VCS simulation",
15040                "RTL FPGA emulation",
15041                "Functional simulator"
15042        };
15043        struct pci_dev *parent = pdev->bus->self;
15044        u32 sdma_engines = chip_sdma_engines(dd);
15045
15046        ppd = dd->pport;
15047        for (i = 0; i < dd->num_pports; i++, ppd++) {
15048                int vl;
15049                /* init common fields */
15050                hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
15051                /* DC supports 4 link widths */
15052                ppd->link_width_supported =
15053                        OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
15054                        OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
15055                ppd->link_width_downgrade_supported =
15056                        ppd->link_width_supported;
15057                /* start out enabling only 4X */
15058                ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
15059                ppd->link_width_downgrade_enabled =
15060                                        ppd->link_width_downgrade_supported;
15061                /* link width active is 0 when link is down */
15062                /* link width downgrade active is 0 when link is down */
15063
15064                if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
15065                    num_vls > HFI1_MAX_VLS_SUPPORTED) {
15066                        dd_dev_err(dd, "Invalid num_vls %u, using %u VLs\n",
15067                                   num_vls, HFI1_MAX_VLS_SUPPORTED);
15068                        num_vls = HFI1_MAX_VLS_SUPPORTED;
15069                }
15070                ppd->vls_supported = num_vls;
15071                ppd->vls_operational = ppd->vls_supported;
15072                /* Set the default MTU. */
15073                for (vl = 0; vl < num_vls; vl++)
15074                        dd->vld[vl].mtu = hfi1_max_mtu;
15075                dd->vld[15].mtu = MAX_MAD_PACKET;
15076                /*
15077                 * Set the initial values to reasonable default, will be set
15078                 * for real when link is up.
15079                 */
15080                ppd->overrun_threshold = 0x4;
15081                ppd->phy_error_threshold = 0xf;
15082                ppd->port_crc_mode_enabled = link_crc_mask;
15083                /* initialize supported LTP CRC mode */
15084                ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
15085                /* initialize enabled LTP CRC mode */
15086                ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
15087                /* start in offline */
15088                ppd->host_link_state = HLS_DN_OFFLINE;
15089                init_vl_arb_caches(ppd);
15090        }
15091
15092        /*
15093         * Do remaining PCIe setup and save PCIe values in dd.
15094         * Any error printing is already done by the init code.
15095         * On return, we have the chip mapped.
15096         */
15097        ret = hfi1_pcie_ddinit(dd, pdev);
15098        if (ret < 0)
15099                goto bail_free;
15100
15101        /* Save PCI space registers to rewrite after device reset */
15102        ret = save_pci_variables(dd);
15103        if (ret < 0)
15104                goto bail_cleanup;
15105
15106        dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
15107                        & CCE_REVISION_CHIP_REV_MAJOR_MASK;
15108        dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
15109                        & CCE_REVISION_CHIP_REV_MINOR_MASK;
15110
15111        /*
15112         * Check interrupt registers mapping if the driver has no access to
15113         * the upstream component. In this case, it is likely that the driver
15114         * is running in a VM.
15115         */
15116        if (!parent) {
15117                ret = check_int_registers(dd);
15118                if (ret)
15119                        goto bail_cleanup;
15120        }
15121
15122        /*
15123         * obtain the hardware ID - NOT related to unit, which is a
15124         * software enumeration
15125         */
15126        reg = read_csr(dd, CCE_REVISION2);
15127        dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
15128                                        & CCE_REVISION2_HFI_ID_MASK;
15129        /* the variable size will remove unwanted bits */
15130        dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
15131        dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
15132        dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
15133                    dd->icode < ARRAY_SIZE(inames) ?
15134                    inames[dd->icode] : "unknown", (int)dd->irev);
15135
15136        /* speeds the hardware can support */
15137        dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
15138        /* speeds allowed to run at */
15139        dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
15140        /* give a reasonable active value, will be set on link up */
15141        dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
15142
15143        /* fix up link widths for emulation _p */
15144        ppd = dd->pport;
15145        if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
15146                ppd->link_width_supported =
15147                        ppd->link_width_enabled =
15148                        ppd->link_width_downgrade_supported =
15149                        ppd->link_width_downgrade_enabled =
15150                                OPA_LINK_WIDTH_1X;
15151        }
15152        /* insure num_vls isn't larger than number of sdma engines */
15153        if (HFI1_CAP_IS_KSET(SDMA) && num_vls > sdma_engines) {
15154                dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
15155                           num_vls, sdma_engines);
15156                num_vls = sdma_engines;
15157                ppd->vls_supported = sdma_engines;
15158                ppd->vls_operational = ppd->vls_supported;
15159        }
15160
15161        /*
15162         * Convert the ns parameter to the 64 * cclocks used in the CSR.
15163         * Limit the max if larger than the field holds.  If timeout is
15164         * non-zero, then the calculated field will be at least 1.
15165         *
15166         * Must be after icode is set up - the cclock rate depends
15167         * on knowing the hardware being used.
15168         */
15169        dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
15170        if (dd->rcv_intr_timeout_csr >
15171                        RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
15172                dd->rcv_intr_timeout_csr =
15173                        RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
15174        else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
15175                dd->rcv_intr_timeout_csr = 1;
15176
15177        /* needs to be done before we look for the peer device */
15178        read_guid(dd);
15179
15180        /* set up shared ASIC data with peer device */
15181        ret = init_asic_data(dd);
15182        if (ret)
15183                goto bail_cleanup;
15184
15185        /* obtain chip sizes, reset chip CSRs */
15186        ret = init_chip(dd);
15187        if (ret)
15188                goto bail_cleanup;
15189
15190        /* read in the PCIe link speed information */
15191        ret = pcie_speeds(dd);
15192        if (ret)
15193                goto bail_cleanup;
15194
15195        /* call before get_platform_config(), after init_chip_resources() */
15196        ret = eprom_init(dd);
15197        if (ret)
15198                goto bail_free_rcverr;
15199
15200        /* Needs to be called before hfi1_firmware_init */
15201        get_platform_config(dd);
15202
15203        /* read in firmware */
15204        ret = hfi1_firmware_init(dd);
15205        if (ret)
15206                goto bail_cleanup;
15207
15208        /*
15209         * In general, the PCIe Gen3 transition must occur after the
15210         * chip has been idled (so it won't initiate any PCIe transactions
15211         * e.g. an interrupt) and before the driver changes any registers
15212         * (the transition will reset the registers).
15213         *
15214         * In particular, place this call after:
15215         * - init_chip()     - the chip will not initiate any PCIe transactions
15216         * - pcie_speeds()   - reads the current link speed
15217         * - hfi1_firmware_init() - the needed firmware is ready to be
15218         *                          downloaded
15219         */
15220        ret = do_pcie_gen3_transition(dd);
15221        if (ret)
15222                goto bail_cleanup;
15223
15224        /*
15225         * This should probably occur in hfi1_pcie_init(), but historically
15226         * occurs after the do_pcie_gen3_transition() code.
15227         */
15228        tune_pcie_caps(dd);
15229
15230        /* start setting dd values and adjusting CSRs */
15231        init_early_variables(dd);
15232
15233        parse_platform_config(dd);
15234
15235        ret = obtain_boardname(dd);
15236        if (ret)
15237                goto bail_cleanup;
15238
15239        snprintf(dd->boardversion, BOARD_VERS_MAX,
15240                 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
15241                 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
15242                 (u32)dd->majrev,
15243                 (u32)dd->minrev,
15244                 (dd->revision >> CCE_REVISION_SW_SHIFT)
15245                    & CCE_REVISION_SW_MASK);
15246
15247        /* alloc netdev data */
15248        if (hfi1_netdev_alloc(dd))
15249                goto bail_cleanup;
15250
15251        ret = set_up_context_variables(dd);
15252        if (ret)
15253                goto bail_cleanup;
15254
15255        /* set initial RXE CSRs */
15256        ret = init_rxe(dd);
15257        if (ret)
15258                goto bail_cleanup;
15259
15260        /* set initial TXE CSRs */
15261        init_txe(dd);
15262        /* set initial non-RXE, non-TXE CSRs */
15263        init_other(dd);
15264        /* set up KDETH QP prefix in both RX and TX CSRs */
15265        init_kdeth_qp(dd);
15266
15267        ret = hfi1_dev_affinity_init(dd);
15268        if (ret)
15269                goto bail_cleanup;
15270
15271        /* send contexts must be set up before receive contexts */
15272        ret = init_send_contexts(dd);
15273        if (ret)
15274                goto bail_cleanup;
15275
15276        ret = hfi1_create_kctxts(dd);
15277        if (ret)
15278                goto bail_cleanup;
15279
15280        /*
15281         * Initialize aspm, to be done after gen3 transition and setting up
15282         * contexts and before enabling interrupts
15283         */
15284        aspm_init(dd);
15285
15286        ret = init_pervl_scs(dd);
15287        if (ret)
15288                goto bail_cleanup;
15289
15290        /* sdma init */
15291        for (i = 0; i < dd->num_pports; ++i) {
15292                ret = sdma_init(dd, i);
15293                if (ret)
15294                        goto bail_cleanup;
15295        }
15296
15297        /* use contexts created by hfi1_create_kctxts */
15298        ret = set_up_interrupts(dd);
15299        if (ret)
15300                goto bail_cleanup;
15301
15302        ret = hfi1_comp_vectors_set_up(dd);
15303        if (ret)
15304                goto bail_clear_intr;
15305
15306        /* set up LCB access - must be after set_up_interrupts() */
15307        init_lcb_access(dd);
15308
15309        /*
15310         * Serial number is created from the base guid:
15311         * [27:24] = base guid [38:35]
15312         * [23: 0] = base guid [23: 0]
15313         */
15314        snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
15315                 (dd->base_guid & 0xFFFFFF) |
15316                     ((dd->base_guid >> 11) & 0xF000000));
15317
15318        dd->oui1 = dd->base_guid >> 56 & 0xFF;
15319        dd->oui2 = dd->base_guid >> 48 & 0xFF;
15320        dd->oui3 = dd->base_guid >> 40 & 0xFF;
15321
15322        ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
15323        if (ret)
15324                goto bail_clear_intr;
15325
15326        thermal_init(dd);
15327
15328        ret = init_cntrs(dd);
15329        if (ret)
15330                goto bail_clear_intr;
15331
15332        ret = init_rcverr(dd);
15333        if (ret)
15334                goto bail_free_cntrs;
15335
15336        init_completion(&dd->user_comp);
15337
15338        /* The user refcount starts with one to inidicate an active device */
15339        atomic_set(&dd->user_refcount, 1);
15340
15341        goto bail;
15342
15343bail_free_rcverr:
15344        free_rcverr(dd);
15345bail_free_cntrs:
15346        free_cntrs(dd);
15347bail_clear_intr:
15348        hfi1_comp_vectors_clean_up(dd);
15349        msix_clean_up_interrupts(dd);
15350bail_cleanup:
15351        hfi1_netdev_free(dd);
15352        hfi1_pcie_ddcleanup(dd);
15353bail_free:
15354        hfi1_free_devdata(dd);
15355bail:
15356        return ret;
15357}
15358
15359static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
15360                        u32 dw_len)
15361{
15362        u32 delta_cycles;
15363        u32 current_egress_rate = ppd->current_egress_rate;
15364        /* rates here are in units of 10^6 bits/sec */
15365
15366        if (desired_egress_rate == -1)
15367                return 0; /* shouldn't happen */
15368
15369        if (desired_egress_rate >= current_egress_rate)
15370                return 0; /* we can't help go faster, only slower */
15371
15372        delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
15373                        egress_cycles(dw_len * 4, current_egress_rate);
15374
15375        return (u16)delta_cycles;
15376}
15377
15378/**
15379 * create_pbc - build a pbc for transmission
15380 * @flags: special case flags or-ed in built pbc
15381 * @srate: static rate
15382 * @vl: vl
15383 * @dwlen: dword length (header words + data words + pbc words)
15384 *
15385 * Create a PBC with the given flags, rate, VL, and length.
15386 *
15387 * NOTE: The PBC created will not insert any HCRC - all callers but one are
15388 * for verbs, which does not use this PSM feature.  The lone other caller
15389 * is for the diagnostic interface which calls this if the user does not
15390 * supply their own PBC.
15391 */
15392u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
15393               u32 dw_len)
15394{
15395        u64 pbc, delay = 0;
15396
15397        if (unlikely(srate_mbs))
15398                delay = delay_cycles(ppd, srate_mbs, dw_len);
15399
15400        pbc = flags
15401                | (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
15402                | ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
15403                | (vl & PBC_VL_MASK) << PBC_VL_SHIFT
15404                | (dw_len & PBC_LENGTH_DWS_MASK)
15405                        << PBC_LENGTH_DWS_SHIFT;
15406
15407        return pbc;
15408}
15409
15410#define SBUS_THERMAL    0x4f
15411#define SBUS_THERM_MONITOR_MODE 0x1
15412
15413#define THERM_FAILURE(dev, ret, reason) \
15414        dd_dev_err((dd),                                                \
15415                   "Thermal sensor initialization failed: %s (%d)\n",   \
15416                   (reason), (ret))
15417
15418/*
15419 * Initialize the thermal sensor.
15420 *
15421 * After initialization, enable polling of thermal sensor through
15422 * SBus interface. In order for this to work, the SBus Master
15423 * firmware has to be loaded due to the fact that the HW polling
15424 * logic uses SBus interrupts, which are not supported with
15425 * default firmware. Otherwise, no data will be returned through
15426 * the ASIC_STS_THERM CSR.
15427 */
15428static int thermal_init(struct hfi1_devdata *dd)
15429{
15430        int ret = 0;
15431
15432        if (dd->icode != ICODE_RTL_SILICON ||
15433            check_chip_resource(dd, CR_THERM_INIT, NULL))
15434                return ret;
15435
15436        ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
15437        if (ret) {
15438                THERM_FAILURE(dd, ret, "Acquire SBus");
15439                return ret;
15440        }
15441
15442        dd_dev_info(dd, "Initializing thermal sensor\n");
15443        /* Disable polling of thermal readings */
15444        write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
15445        msleep(100);
15446        /* Thermal Sensor Initialization */
15447        /*    Step 1: Reset the Thermal SBus Receiver */
15448        ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15449                                RESET_SBUS_RECEIVER, 0);
15450        if (ret) {
15451                THERM_FAILURE(dd, ret, "Bus Reset");
15452                goto done;
15453        }
15454        /*    Step 2: Set Reset bit in Thermal block */
15455        ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15456                                WRITE_SBUS_RECEIVER, 0x1);
15457        if (ret) {
15458                THERM_FAILURE(dd, ret, "Therm Block Reset");
15459                goto done;
15460        }
15461        /*    Step 3: Write clock divider value (100MHz -> 2MHz) */
15462        ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
15463                                WRITE_SBUS_RECEIVER, 0x32);
15464        if (ret) {
15465                THERM_FAILURE(dd, ret, "Write Clock Div");
15466                goto done;
15467        }
15468        /*    Step 4: Select temperature mode */
15469        ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
15470                                WRITE_SBUS_RECEIVER,
15471                                SBUS_THERM_MONITOR_MODE);
15472        if (ret) {
15473                THERM_FAILURE(dd, ret, "Write Mode Sel");
15474                goto done;
15475        }
15476        /*    Step 5: De-assert block reset and start conversion */
15477        ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15478                                WRITE_SBUS_RECEIVER, 0x2);
15479        if (ret) {
15480                THERM_FAILURE(dd, ret, "Write Reset Deassert");
15481                goto done;
15482        }
15483        /*    Step 5.1: Wait for first conversion (21.5ms per spec) */
15484        msleep(22);
15485
15486        /* Enable polling of thermal readings */
15487        write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
15488
15489        /* Set initialized flag */
15490        ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
15491        if (ret)
15492                THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
15493
15494done:
15495        release_chip_resource(dd, CR_SBUS);
15496        return ret;
15497}
15498
15499static void handle_temp_err(struct hfi1_devdata *dd)
15500{
15501        struct hfi1_pportdata *ppd = &dd->pport[0];
15502        /*
15503         * Thermal Critical Interrupt
15504         * Put the device into forced freeze mode, take link down to
15505         * offline, and put DC into reset.
15506         */
15507        dd_dev_emerg(dd,
15508                     "Critical temperature reached! Forcing device into freeze mode!\n");
15509        dd->flags |= HFI1_FORCED_FREEZE;
15510        start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
15511        /*
15512         * Shut DC down as much and as quickly as possible.
15513         *
15514         * Step 1: Take the link down to OFFLINE. This will cause the
15515         *         8051 to put the Serdes in reset. However, we don't want to
15516         *         go through the entire link state machine since we want to
15517         *         shutdown ASAP. Furthermore, this is not a graceful shutdown
15518         *         but rather an attempt to save the chip.
15519         *         Code below is almost the same as quiet_serdes() but avoids
15520         *         all the extra work and the sleeps.
15521         */
15522        ppd->driver_link_ready = 0;
15523        ppd->link_enabled = 0;
15524        set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
15525                                PLS_OFFLINE);
15526        /*
15527         * Step 2: Shutdown LCB and 8051
15528         *         After shutdown, do not restore DC_CFG_RESET value.
15529         */
15530        dc_shutdown(dd);
15531}
15532