linux/drivers/infiniband/hw/mlx5/odp.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
   3 *
   4 * This software is available to you under a choice of one of two
   5 * licenses.  You may choose to be licensed under the terms of the GNU
   6 * General Public License (GPL) Version 2, available from the file
   7 * COPYING in the main directory of this source tree, or the
   8 * OpenIB.org BSD license below:
   9 *
  10 *     Redistribution and use in source and binary forms, with or
  11 *     without modification, are permitted provided that the following
  12 *     conditions are met:
  13 *
  14 *      - Redistributions of source code must retain the above
  15 *        copyright notice, this list of conditions and the following
  16 *        disclaimer.
  17 *
  18 *      - Redistributions in binary form must reproduce the above
  19 *        copyright notice, this list of conditions and the following
  20 *        disclaimer in the documentation and/or other materials
  21 *        provided with the distribution.
  22 *
  23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30 * SOFTWARE.
  31 */
  32
  33#include <rdma/ib_umem.h>
  34#include <rdma/ib_umem_odp.h>
  35#include <linux/kernel.h>
  36
  37#include "mlx5_ib.h"
  38#include "cmd.h"
  39#include "qp.h"
  40
  41#include <linux/mlx5/eq.h>
  42
  43/* Contains the details of a pagefault. */
  44struct mlx5_pagefault {
  45        u32                     bytes_committed;
  46        u32                     token;
  47        u8                      event_subtype;
  48        u8                      type;
  49        union {
  50                /* Initiator or send message responder pagefault details. */
  51                struct {
  52                        /* Received packet size, only valid for responders. */
  53                        u32     packet_size;
  54                        /*
  55                         * Number of resource holding WQE, depends on type.
  56                         */
  57                        u32     wq_num;
  58                        /*
  59                         * WQE index. Refers to either the send queue or
  60                         * receive queue, according to event_subtype.
  61                         */
  62                        u16     wqe_index;
  63                } wqe;
  64                /* RDMA responder pagefault details */
  65                struct {
  66                        u32     r_key;
  67                        /*
  68                         * Received packet size, minimal size page fault
  69                         * resolution required for forward progress.
  70                         */
  71                        u32     packet_size;
  72                        u32     rdma_op_len;
  73                        u64     rdma_va;
  74                } rdma;
  75        };
  76
  77        struct mlx5_ib_pf_eq    *eq;
  78        struct work_struct      work;
  79};
  80
  81#define MAX_PREFETCH_LEN (4*1024*1024U)
  82
  83/* Timeout in ms to wait for an active mmu notifier to complete when handling
  84 * a pagefault. */
  85#define MMU_NOTIFIER_TIMEOUT 1000
  86
  87#define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
  88#define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
  89#define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
  90#define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
  91#define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
  92
  93#define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
  94
  95static u64 mlx5_imr_ksm_entries;
  96
  97static void populate_klm(struct mlx5_klm *pklm, size_t idx, size_t nentries,
  98                        struct mlx5_ib_mr *imr, int flags)
  99{
 100        struct mlx5_klm *end = pklm + nentries;
 101
 102        if (flags & MLX5_IB_UPD_XLT_ZAP) {
 103                for (; pklm != end; pklm++, idx++) {
 104                        pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
 105                        pklm->key = cpu_to_be32(imr->dev->null_mkey);
 106                        pklm->va = 0;
 107                }
 108                return;
 109        }
 110
 111        /*
 112         * The locking here is pretty subtle. Ideally the implicit_children
 113         * xarray would be protected by the umem_mutex, however that is not
 114         * possible. Instead this uses a weaker update-then-lock pattern:
 115         *
 116         *  srcu_read_lock()
 117         *    xa_store()
 118         *    mutex_lock(umem_mutex)
 119         *     mlx5_ib_update_xlt()
 120         *    mutex_unlock(umem_mutex)
 121         *    destroy lkey
 122         *
 123         * ie any change the xarray must be followed by the locked update_xlt
 124         * before destroying.
 125         *
 126         * The umem_mutex provides the acquire/release semantic needed to make
 127         * the xa_store() visible to a racing thread. While SRCU is not
 128         * technically required, using it gives consistent use of the SRCU
 129         * locking around the xarray.
 130         */
 131        lockdep_assert_held(&to_ib_umem_odp(imr->umem)->umem_mutex);
 132        lockdep_assert_held(&imr->dev->odp_srcu);
 133
 134        for (; pklm != end; pklm++, idx++) {
 135                struct mlx5_ib_mr *mtt = xa_load(&imr->implicit_children, idx);
 136
 137                pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
 138                if (mtt) {
 139                        pklm->key = cpu_to_be32(mtt->ibmr.lkey);
 140                        pklm->va = cpu_to_be64(idx * MLX5_IMR_MTT_SIZE);
 141                } else {
 142                        pklm->key = cpu_to_be32(imr->dev->null_mkey);
 143                        pklm->va = 0;
 144                }
 145        }
 146}
 147
 148static u64 umem_dma_to_mtt(dma_addr_t umem_dma)
 149{
 150        u64 mtt_entry = umem_dma & ODP_DMA_ADDR_MASK;
 151
 152        if (umem_dma & ODP_READ_ALLOWED_BIT)
 153                mtt_entry |= MLX5_IB_MTT_READ;
 154        if (umem_dma & ODP_WRITE_ALLOWED_BIT)
 155                mtt_entry |= MLX5_IB_MTT_WRITE;
 156
 157        return mtt_entry;
 158}
 159
 160static void populate_mtt(__be64 *pas, size_t idx, size_t nentries,
 161                         struct mlx5_ib_mr *mr, int flags)
 162{
 163        struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
 164        dma_addr_t pa;
 165        size_t i;
 166
 167        if (flags & MLX5_IB_UPD_XLT_ZAP)
 168                return;
 169
 170        for (i = 0; i < nentries; i++) {
 171                pa = odp->dma_list[idx + i];
 172                pas[i] = cpu_to_be64(umem_dma_to_mtt(pa));
 173        }
 174}
 175
 176void mlx5_odp_populate_xlt(void *xlt, size_t idx, size_t nentries,
 177                           struct mlx5_ib_mr *mr, int flags)
 178{
 179        if (flags & MLX5_IB_UPD_XLT_INDIRECT) {
 180                populate_klm(xlt, idx, nentries, mr, flags);
 181        } else {
 182                populate_mtt(xlt, idx, nentries, mr, flags);
 183        }
 184}
 185
 186static void dma_fence_odp_mr(struct mlx5_ib_mr *mr)
 187{
 188        struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
 189
 190        /* Ensure mlx5_ib_invalidate_range() will not touch the MR any more */
 191        mutex_lock(&odp->umem_mutex);
 192        if (odp->npages) {
 193                mlx5_mr_cache_invalidate(mr);
 194                ib_umem_odp_unmap_dma_pages(odp, ib_umem_start(odp),
 195                                            ib_umem_end(odp));
 196                WARN_ON(odp->npages);
 197        }
 198        odp->private = NULL;
 199        mutex_unlock(&odp->umem_mutex);
 200
 201        if (!mr->cache_ent) {
 202                mlx5_core_destroy_mkey(mr->dev->mdev, &mr->mmkey);
 203                WARN_ON(mr->descs);
 204        }
 205}
 206
 207/*
 208 * This must be called after the mr has been removed from implicit_children
 209 * and the SRCU synchronized.  NOTE: The MR does not necessarily have to be
 210 * empty here, parallel page faults could have raced with the free process and
 211 * added pages to it.
 212 */
 213static void free_implicit_child_mr(struct mlx5_ib_mr *mr, bool need_imr_xlt)
 214{
 215        struct mlx5_ib_mr *imr = mr->parent;
 216        struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
 217        struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
 218        unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
 219        int srcu_key;
 220
 221        /* implicit_child_mr's are not allowed to have deferred work */
 222        WARN_ON(atomic_read(&mr->num_deferred_work));
 223
 224        if (need_imr_xlt) {
 225                srcu_key = srcu_read_lock(&mr->dev->odp_srcu);
 226                mutex_lock(&odp_imr->umem_mutex);
 227                mlx5_ib_update_xlt(mr->parent, idx, 1, 0,
 228                                   MLX5_IB_UPD_XLT_INDIRECT |
 229                                   MLX5_IB_UPD_XLT_ATOMIC);
 230                mutex_unlock(&odp_imr->umem_mutex);
 231                srcu_read_unlock(&mr->dev->odp_srcu, srcu_key);
 232        }
 233
 234        dma_fence_odp_mr(mr);
 235
 236        mr->parent = NULL;
 237        mlx5_mr_cache_free(mr->dev, mr);
 238        ib_umem_odp_release(odp);
 239        if (atomic_dec_and_test(&imr->num_deferred_work))
 240                wake_up(&imr->q_deferred_work);
 241}
 242
 243static void free_implicit_child_mr_work(struct work_struct *work)
 244{
 245        struct mlx5_ib_mr *mr =
 246                container_of(work, struct mlx5_ib_mr, odp_destroy.work);
 247
 248        free_implicit_child_mr(mr, true);
 249}
 250
 251static void free_implicit_child_mr_rcu(struct rcu_head *head)
 252{
 253        struct mlx5_ib_mr *mr =
 254                container_of(head, struct mlx5_ib_mr, odp_destroy.rcu);
 255
 256        /* Freeing a MR is a sleeping operation, so bounce to a work queue */
 257        INIT_WORK(&mr->odp_destroy.work, free_implicit_child_mr_work);
 258        queue_work(system_unbound_wq, &mr->odp_destroy.work);
 259}
 260
 261static void destroy_unused_implicit_child_mr(struct mlx5_ib_mr *mr)
 262{
 263        struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
 264        unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
 265        struct mlx5_ib_mr *imr = mr->parent;
 266
 267        xa_lock(&imr->implicit_children);
 268        /*
 269         * This can race with mlx5_ib_free_implicit_mr(), the first one to
 270         * reach the xa lock wins the race and destroys the MR.
 271         */
 272        if (__xa_cmpxchg(&imr->implicit_children, idx, mr, NULL, GFP_ATOMIC) !=
 273            mr)
 274                goto out_unlock;
 275
 276        atomic_inc(&imr->num_deferred_work);
 277        call_srcu(&mr->dev->odp_srcu, &mr->odp_destroy.rcu,
 278                  free_implicit_child_mr_rcu);
 279
 280out_unlock:
 281        xa_unlock(&imr->implicit_children);
 282}
 283
 284static bool mlx5_ib_invalidate_range(struct mmu_interval_notifier *mni,
 285                                     const struct mmu_notifier_range *range,
 286                                     unsigned long cur_seq)
 287{
 288        struct ib_umem_odp *umem_odp =
 289                container_of(mni, struct ib_umem_odp, notifier);
 290        struct mlx5_ib_mr *mr;
 291        const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
 292                                    sizeof(struct mlx5_mtt)) - 1;
 293        u64 idx = 0, blk_start_idx = 0;
 294        u64 invalidations = 0;
 295        unsigned long start;
 296        unsigned long end;
 297        int in_block = 0;
 298        u64 addr;
 299
 300        if (!mmu_notifier_range_blockable(range))
 301                return false;
 302
 303        mutex_lock(&umem_odp->umem_mutex);
 304        mmu_interval_set_seq(mni, cur_seq);
 305        /*
 306         * If npages is zero then umem_odp->private may not be setup yet. This
 307         * does not complete until after the first page is mapped for DMA.
 308         */
 309        if (!umem_odp->npages)
 310                goto out;
 311        mr = umem_odp->private;
 312
 313        start = max_t(u64, ib_umem_start(umem_odp), range->start);
 314        end = min_t(u64, ib_umem_end(umem_odp), range->end);
 315
 316        /*
 317         * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
 318         * while we are doing the invalidation, no page fault will attempt to
 319         * overwrite the same MTTs.  Concurent invalidations might race us,
 320         * but they will write 0s as well, so no difference in the end result.
 321         */
 322        for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) {
 323                idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift;
 324                /*
 325                 * Strive to write the MTTs in chunks, but avoid overwriting
 326                 * non-existing MTTs. The huristic here can be improved to
 327                 * estimate the cost of another UMR vs. the cost of bigger
 328                 * UMR.
 329                 */
 330                if (umem_odp->dma_list[idx] &
 331                    (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
 332                        if (!in_block) {
 333                                blk_start_idx = idx;
 334                                in_block = 1;
 335                        }
 336
 337                        /* Count page invalidations */
 338                        invalidations += idx - blk_start_idx + 1;
 339                } else {
 340                        u64 umr_offset = idx & umr_block_mask;
 341
 342                        if (in_block && umr_offset == 0) {
 343                                mlx5_ib_update_xlt(mr, blk_start_idx,
 344                                                   idx - blk_start_idx, 0,
 345                                                   MLX5_IB_UPD_XLT_ZAP |
 346                                                   MLX5_IB_UPD_XLT_ATOMIC);
 347                                in_block = 0;
 348                        }
 349                }
 350        }
 351        if (in_block)
 352                mlx5_ib_update_xlt(mr, blk_start_idx,
 353                                   idx - blk_start_idx + 1, 0,
 354                                   MLX5_IB_UPD_XLT_ZAP |
 355                                   MLX5_IB_UPD_XLT_ATOMIC);
 356
 357        mlx5_update_odp_stats(mr, invalidations, invalidations);
 358
 359        /*
 360         * We are now sure that the device will not access the
 361         * memory. We can safely unmap it, and mark it as dirty if
 362         * needed.
 363         */
 364
 365        ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
 366
 367        if (unlikely(!umem_odp->npages && mr->parent))
 368                destroy_unused_implicit_child_mr(mr);
 369out:
 370        mutex_unlock(&umem_odp->umem_mutex);
 371        return true;
 372}
 373
 374const struct mmu_interval_notifier_ops mlx5_mn_ops = {
 375        .invalidate = mlx5_ib_invalidate_range,
 376};
 377
 378void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev)
 379{
 380        struct ib_odp_caps *caps = &dev->odp_caps;
 381
 382        memset(caps, 0, sizeof(*caps));
 383
 384        if (!MLX5_CAP_GEN(dev->mdev, pg) ||
 385            !mlx5_ib_can_use_umr(dev, true, 0))
 386                return;
 387
 388        caps->general_caps = IB_ODP_SUPPORT;
 389
 390        if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
 391                dev->odp_max_size = U64_MAX;
 392        else
 393                dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
 394
 395        if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
 396                caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
 397
 398        if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.srq_receive))
 399                caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
 400
 401        if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
 402                caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
 403
 404        if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
 405                caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
 406
 407        if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
 408                caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
 409
 410        if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
 411                caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
 412
 413        if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
 414                caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
 415
 416        if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.srq_receive))
 417                caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
 418
 419        if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.send))
 420                caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND;
 421
 422        if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.receive))
 423                caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV;
 424
 425        if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.write))
 426                caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE;
 427
 428        if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.read))
 429                caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ;
 430
 431        if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.atomic))
 432                caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
 433
 434        if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.srq_receive))
 435                caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
 436
 437        if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
 438            MLX5_CAP_GEN(dev->mdev, null_mkey) &&
 439            MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) &&
 440            !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled))
 441                caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
 442}
 443
 444static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
 445                                      struct mlx5_pagefault *pfault,
 446                                      int error)
 447{
 448        int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
 449                     pfault->wqe.wq_num : pfault->token;
 450        u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)] = {};
 451        int err;
 452
 453        MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME);
 454        MLX5_SET(page_fault_resume_in, in, page_fault_type, pfault->type);
 455        MLX5_SET(page_fault_resume_in, in, token, pfault->token);
 456        MLX5_SET(page_fault_resume_in, in, wq_number, wq_num);
 457        MLX5_SET(page_fault_resume_in, in, error, !!error);
 458
 459        err = mlx5_cmd_exec_in(dev->mdev, page_fault_resume, in);
 460        if (err)
 461                mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n",
 462                            wq_num, err);
 463}
 464
 465static struct mlx5_ib_mr *implicit_get_child_mr(struct mlx5_ib_mr *imr,
 466                                                unsigned long idx)
 467{
 468        struct ib_umem_odp *odp;
 469        struct mlx5_ib_mr *mr;
 470        struct mlx5_ib_mr *ret;
 471        int err;
 472
 473        odp = ib_umem_odp_alloc_child(to_ib_umem_odp(imr->umem),
 474                                      idx * MLX5_IMR_MTT_SIZE,
 475                                      MLX5_IMR_MTT_SIZE, &mlx5_mn_ops);
 476        if (IS_ERR(odp))
 477                return ERR_CAST(odp);
 478
 479        ret = mr = mlx5_mr_cache_alloc(imr->dev, MLX5_IMR_MTT_CACHE_ENTRY);
 480        if (IS_ERR(mr))
 481                goto out_umem;
 482
 483        mr->ibmr.pd = imr->ibmr.pd;
 484        mr->access_flags = imr->access_flags;
 485        mr->umem = &odp->umem;
 486        mr->ibmr.lkey = mr->mmkey.key;
 487        mr->ibmr.rkey = mr->mmkey.key;
 488        mr->mmkey.iova = idx * MLX5_IMR_MTT_SIZE;
 489        mr->parent = imr;
 490        odp->private = mr;
 491
 492        err = mlx5_ib_update_xlt(mr, 0,
 493                                 MLX5_IMR_MTT_ENTRIES,
 494                                 PAGE_SHIFT,
 495                                 MLX5_IB_UPD_XLT_ZAP |
 496                                 MLX5_IB_UPD_XLT_ENABLE);
 497        if (err) {
 498                ret = ERR_PTR(err);
 499                goto out_mr;
 500        }
 501
 502        /*
 503         * Once the store to either xarray completes any error unwind has to
 504         * use synchronize_srcu(). Avoid this with xa_reserve()
 505         */
 506        ret = xa_cmpxchg(&imr->implicit_children, idx, NULL, mr,
 507                         GFP_KERNEL);
 508        if (unlikely(ret)) {
 509                if (xa_is_err(ret)) {
 510                        ret = ERR_PTR(xa_err(ret));
 511                        goto out_mr;
 512                }
 513                /*
 514                 * Another thread beat us to creating the child mr, use
 515                 * theirs.
 516                 */
 517                goto out_mr;
 518        }
 519
 520        mlx5_ib_dbg(imr->dev, "key %x mr %p\n", mr->mmkey.key, mr);
 521        return mr;
 522
 523out_mr:
 524        mlx5_mr_cache_free(imr->dev, mr);
 525out_umem:
 526        ib_umem_odp_release(odp);
 527        return ret;
 528}
 529
 530struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
 531                                             struct ib_udata *udata,
 532                                             int access_flags)
 533{
 534        struct mlx5_ib_dev *dev = to_mdev(pd->ibpd.device);
 535        struct ib_umem_odp *umem_odp;
 536        struct mlx5_ib_mr *imr;
 537        int err;
 538
 539        umem_odp = ib_umem_odp_alloc_implicit(&dev->ib_dev, access_flags);
 540        if (IS_ERR(umem_odp))
 541                return ERR_CAST(umem_odp);
 542
 543        imr = mlx5_mr_cache_alloc(dev, MLX5_IMR_KSM_CACHE_ENTRY);
 544        if (IS_ERR(imr)) {
 545                err = PTR_ERR(imr);
 546                goto out_umem;
 547        }
 548
 549        imr->ibmr.pd = &pd->ibpd;
 550        imr->access_flags = access_flags;
 551        imr->mmkey.iova = 0;
 552        imr->umem = &umem_odp->umem;
 553        imr->ibmr.lkey = imr->mmkey.key;
 554        imr->ibmr.rkey = imr->mmkey.key;
 555        imr->umem = &umem_odp->umem;
 556        imr->is_odp_implicit = true;
 557        atomic_set(&imr->num_deferred_work, 0);
 558        init_waitqueue_head(&imr->q_deferred_work);
 559        xa_init(&imr->implicit_children);
 560
 561        err = mlx5_ib_update_xlt(imr, 0,
 562                                 mlx5_imr_ksm_entries,
 563                                 MLX5_KSM_PAGE_SHIFT,
 564                                 MLX5_IB_UPD_XLT_INDIRECT |
 565                                 MLX5_IB_UPD_XLT_ZAP |
 566                                 MLX5_IB_UPD_XLT_ENABLE);
 567        if (err)
 568                goto out_mr;
 569
 570        err = xa_err(xa_store(&dev->odp_mkeys, mlx5_base_mkey(imr->mmkey.key),
 571                              &imr->mmkey, GFP_KERNEL));
 572        if (err)
 573                goto out_mr;
 574
 575        mlx5_ib_dbg(dev, "key %x mr %p\n", imr->mmkey.key, imr);
 576        return imr;
 577out_mr:
 578        mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
 579        mlx5_mr_cache_free(dev, imr);
 580out_umem:
 581        ib_umem_odp_release(umem_odp);
 582        return ERR_PTR(err);
 583}
 584
 585void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr)
 586{
 587        struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
 588        struct mlx5_ib_dev *dev = imr->dev;
 589        struct list_head destroy_list;
 590        struct mlx5_ib_mr *mtt;
 591        struct mlx5_ib_mr *tmp;
 592        unsigned long idx;
 593
 594        INIT_LIST_HEAD(&destroy_list);
 595
 596        xa_erase(&dev->odp_mkeys, mlx5_base_mkey(imr->mmkey.key));
 597        /*
 598         * This stops the SRCU protected page fault path from touching either
 599         * the imr or any children. The page fault path can only reach the
 600         * children xarray via the imr.
 601         */
 602        synchronize_srcu(&dev->odp_srcu);
 603
 604        /*
 605         * All work on the prefetch list must be completed, xa_erase() prevented
 606         * new work from being created.
 607         */
 608        wait_event(imr->q_deferred_work, !atomic_read(&imr->num_deferred_work));
 609
 610        /*
 611         * At this point it is forbidden for any other thread to enter
 612         * pagefault_mr() on this imr. It is already forbidden to call
 613         * pagefault_mr() on an implicit child. Due to this additions to
 614         * implicit_children are prevented.
 615         */
 616
 617        /*
 618         * Block destroy_unused_implicit_child_mr() from incrementing
 619         * num_deferred_work.
 620         */
 621        xa_lock(&imr->implicit_children);
 622        xa_for_each (&imr->implicit_children, idx, mtt) {
 623                __xa_erase(&imr->implicit_children, idx);
 624                list_add(&mtt->odp_destroy.elm, &destroy_list);
 625        }
 626        xa_unlock(&imr->implicit_children);
 627
 628        /*
 629         * Wait for any concurrent destroy_unused_implicit_child_mr() to
 630         * complete.
 631         */
 632        wait_event(imr->q_deferred_work, !atomic_read(&imr->num_deferred_work));
 633
 634        /*
 635         * Fence the imr before we destroy the children. This allows us to
 636         * skip updating the XLT of the imr during destroy of the child mkey
 637         * the imr points to.
 638         */
 639        mlx5_mr_cache_invalidate(imr);
 640
 641        list_for_each_entry_safe (mtt, tmp, &destroy_list, odp_destroy.elm)
 642                free_implicit_child_mr(mtt, false);
 643
 644        mlx5_mr_cache_free(dev, imr);
 645        ib_umem_odp_release(odp_imr);
 646}
 647
 648/**
 649 * mlx5_ib_fence_odp_mr - Stop all access to the ODP MR
 650 * @mr: to fence
 651 *
 652 * On return no parallel threads will be touching this MR and no DMA will be
 653 * active.
 654 */
 655void mlx5_ib_fence_odp_mr(struct mlx5_ib_mr *mr)
 656{
 657        /* Prevent new page faults and prefetch requests from succeeding */
 658        xa_erase(&mr->dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key));
 659
 660        /* Wait for all running page-fault handlers to finish. */
 661        synchronize_srcu(&mr->dev->odp_srcu);
 662
 663        wait_event(mr->q_deferred_work, !atomic_read(&mr->num_deferred_work));
 664
 665        dma_fence_odp_mr(mr);
 666}
 667
 668#define MLX5_PF_FLAGS_DOWNGRADE BIT(1)
 669static int pagefault_real_mr(struct mlx5_ib_mr *mr, struct ib_umem_odp *odp,
 670                             u64 user_va, size_t bcnt, u32 *bytes_mapped,
 671                             u32 flags)
 672{
 673        int page_shift, ret, np;
 674        bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE;
 675        unsigned long current_seq;
 676        u64 access_mask;
 677        u64 start_idx;
 678
 679        page_shift = odp->page_shift;
 680        start_idx = (user_va - ib_umem_start(odp)) >> page_shift;
 681        access_mask = ODP_READ_ALLOWED_BIT;
 682
 683        if (odp->umem.writable && !downgrade)
 684                access_mask |= ODP_WRITE_ALLOWED_BIT;
 685
 686        current_seq = mmu_interval_read_begin(&odp->notifier);
 687
 688        np = ib_umem_odp_map_dma_pages(odp, user_va, bcnt, access_mask,
 689                                       current_seq);
 690        if (np < 0)
 691                return np;
 692
 693        mutex_lock(&odp->umem_mutex);
 694        if (!mmu_interval_read_retry(&odp->notifier, current_seq)) {
 695                /*
 696                 * No need to check whether the MTTs really belong to
 697                 * this MR, since ib_umem_odp_map_dma_pages already
 698                 * checks this.
 699                 */
 700                ret = mlx5_ib_update_xlt(mr, start_idx, np,
 701                                         page_shift, MLX5_IB_UPD_XLT_ATOMIC);
 702        } else {
 703                ret = -EAGAIN;
 704        }
 705        mutex_unlock(&odp->umem_mutex);
 706
 707        if (ret < 0) {
 708                if (ret != -EAGAIN)
 709                        mlx5_ib_err(mr->dev,
 710                                    "Failed to update mkey page tables\n");
 711                goto out;
 712        }
 713
 714        if (bytes_mapped) {
 715                u32 new_mappings = (np << page_shift) -
 716                        (user_va - round_down(user_va, 1 << page_shift));
 717
 718                *bytes_mapped += min_t(u32, new_mappings, bcnt);
 719        }
 720
 721        return np << (page_shift - PAGE_SHIFT);
 722
 723out:
 724        return ret;
 725}
 726
 727static int pagefault_implicit_mr(struct mlx5_ib_mr *imr,
 728                                 struct ib_umem_odp *odp_imr, u64 user_va,
 729                                 size_t bcnt, u32 *bytes_mapped, u32 flags)
 730{
 731        unsigned long end_idx = (user_va + bcnt - 1) >> MLX5_IMR_MTT_SHIFT;
 732        unsigned long upd_start_idx = end_idx + 1;
 733        unsigned long upd_len = 0;
 734        unsigned long npages = 0;
 735        int err;
 736        int ret;
 737
 738        if (unlikely(user_va >= mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE ||
 739                     mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE - user_va < bcnt))
 740                return -EFAULT;
 741
 742        /* Fault each child mr that intersects with our interval. */
 743        while (bcnt) {
 744                unsigned long idx = user_va >> MLX5_IMR_MTT_SHIFT;
 745                struct ib_umem_odp *umem_odp;
 746                struct mlx5_ib_mr *mtt;
 747                u64 len;
 748
 749                mtt = xa_load(&imr->implicit_children, idx);
 750                if (unlikely(!mtt)) {
 751                        mtt = implicit_get_child_mr(imr, idx);
 752                        if (IS_ERR(mtt)) {
 753                                ret = PTR_ERR(mtt);
 754                                goto out;
 755                        }
 756                        upd_start_idx = min(upd_start_idx, idx);
 757                        upd_len = idx - upd_start_idx + 1;
 758                }
 759
 760                umem_odp = to_ib_umem_odp(mtt->umem);
 761                len = min_t(u64, user_va + bcnt, ib_umem_end(umem_odp)) -
 762                      user_va;
 763
 764                ret = pagefault_real_mr(mtt, umem_odp, user_va, len,
 765                                        bytes_mapped, flags);
 766                if (ret < 0)
 767                        goto out;
 768                user_va += len;
 769                bcnt -= len;
 770                npages += ret;
 771        }
 772
 773        ret = npages;
 774
 775        /*
 776         * Any time the implicit_children are changed we must perform an
 777         * update of the xlt before exiting to ensure the HW and the
 778         * implicit_children remains synchronized.
 779         */
 780out:
 781        if (likely(!upd_len))
 782                return ret;
 783
 784        /*
 785         * Notice this is not strictly ordered right, the KSM is updated after
 786         * the implicit_children is updated, so a parallel page fault could
 787         * see a MR that is not yet visible in the KSM.  This is similar to a
 788         * parallel page fault seeing a MR that is being concurrently removed
 789         * from the KSM. Both of these improbable situations are resolved
 790         * safely by resuming the HW and then taking another page fault. The
 791         * next pagefault handler will see the new information.
 792         */
 793        mutex_lock(&odp_imr->umem_mutex);
 794        err = mlx5_ib_update_xlt(imr, upd_start_idx, upd_len, 0,
 795                                 MLX5_IB_UPD_XLT_INDIRECT |
 796                                         MLX5_IB_UPD_XLT_ATOMIC);
 797        mutex_unlock(&odp_imr->umem_mutex);
 798        if (err) {
 799                mlx5_ib_err(imr->dev, "Failed to update PAS\n");
 800                return err;
 801        }
 802        return ret;
 803}
 804
 805/*
 806 * Returns:
 807 *  -EFAULT: The io_virt->bcnt is not within the MR, it covers pages that are
 808 *           not accessible, or the MR is no longer valid.
 809 *  -EAGAIN/-ENOMEM: The operation should be retried
 810 *
 811 *  -EINVAL/others: General internal malfunction
 812 *  >0: Number of pages mapped
 813 */
 814static int pagefault_mr(struct mlx5_ib_mr *mr, u64 io_virt, size_t bcnt,
 815                        u32 *bytes_mapped, u32 flags)
 816{
 817        struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
 818
 819        lockdep_assert_held(&mr->dev->odp_srcu);
 820        if (unlikely(io_virt < mr->mmkey.iova))
 821                return -EFAULT;
 822
 823        if (!odp->is_implicit_odp) {
 824                u64 user_va;
 825
 826                if (check_add_overflow(io_virt - mr->mmkey.iova,
 827                                       (u64)odp->umem.address, &user_va))
 828                        return -EFAULT;
 829                if (unlikely(user_va >= ib_umem_end(odp) ||
 830                             ib_umem_end(odp) - user_va < bcnt))
 831                        return -EFAULT;
 832                return pagefault_real_mr(mr, odp, user_va, bcnt, bytes_mapped,
 833                                         flags);
 834        }
 835        return pagefault_implicit_mr(mr, odp, io_virt, bcnt, bytes_mapped,
 836                                     flags);
 837}
 838
 839struct pf_frame {
 840        struct pf_frame *next;
 841        u32 key;
 842        u64 io_virt;
 843        size_t bcnt;
 844        int depth;
 845};
 846
 847static bool mkey_is_eq(struct mlx5_core_mkey *mmkey, u32 key)
 848{
 849        if (!mmkey)
 850                return false;
 851        if (mmkey->type == MLX5_MKEY_MW)
 852                return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key);
 853        return mmkey->key == key;
 854}
 855
 856static int get_indirect_num_descs(struct mlx5_core_mkey *mmkey)
 857{
 858        struct mlx5_ib_mw *mw;
 859        struct mlx5_ib_devx_mr *devx_mr;
 860
 861        if (mmkey->type == MLX5_MKEY_MW) {
 862                mw = container_of(mmkey, struct mlx5_ib_mw, mmkey);
 863                return mw->ndescs;
 864        }
 865
 866        devx_mr = container_of(mmkey, struct mlx5_ib_devx_mr,
 867                               mmkey);
 868        return devx_mr->ndescs;
 869}
 870
 871/*
 872 * Handle a single data segment in a page-fault WQE or RDMA region.
 873 *
 874 * Returns number of OS pages retrieved on success. The caller may continue to
 875 * the next data segment.
 876 * Can return the following error codes:
 877 * -EAGAIN to designate a temporary error. The caller will abort handling the
 878 *  page fault and resolve it.
 879 * -EFAULT when there's an error mapping the requested pages. The caller will
 880 *  abort the page fault handling.
 881 */
 882static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
 883                                         struct ib_pd *pd, u32 key,
 884                                         u64 io_virt, size_t bcnt,
 885                                         u32 *bytes_committed,
 886                                         u32 *bytes_mapped)
 887{
 888        int npages = 0, srcu_key, ret, i, outlen, cur_outlen = 0, depth = 0;
 889        struct pf_frame *head = NULL, *frame;
 890        struct mlx5_core_mkey *mmkey;
 891        struct mlx5_ib_mr *mr;
 892        struct mlx5_klm *pklm;
 893        u32 *out = NULL;
 894        size_t offset;
 895        int ndescs;
 896
 897        srcu_key = srcu_read_lock(&dev->odp_srcu);
 898
 899        io_virt += *bytes_committed;
 900        bcnt -= *bytes_committed;
 901
 902next_mr:
 903        mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(key));
 904        if (!mmkey) {
 905                mlx5_ib_dbg(
 906                        dev,
 907                        "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
 908                        key);
 909                if (bytes_mapped)
 910                        *bytes_mapped += bcnt;
 911                /*
 912                 * The user could specify a SGL with multiple lkeys and only
 913                 * some of them are ODP. Treat the non-ODP ones as fully
 914                 * faulted.
 915                 */
 916                ret = 0;
 917                goto srcu_unlock;
 918        }
 919        if (!mkey_is_eq(mmkey, key)) {
 920                mlx5_ib_dbg(dev, "failed to find mkey %x\n", key);
 921                ret = -EFAULT;
 922                goto srcu_unlock;
 923        }
 924
 925        switch (mmkey->type) {
 926        case MLX5_MKEY_MR:
 927                mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
 928
 929                ret = pagefault_mr(mr, io_virt, bcnt, bytes_mapped, 0);
 930                if (ret < 0)
 931                        goto srcu_unlock;
 932
 933                mlx5_update_odp_stats(mr, faults, ret);
 934
 935                npages += ret;
 936                ret = 0;
 937                break;
 938
 939        case MLX5_MKEY_MW:
 940        case MLX5_MKEY_INDIRECT_DEVX:
 941                ndescs = get_indirect_num_descs(mmkey);
 942
 943                if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
 944                        mlx5_ib_dbg(dev, "indirection level exceeded\n");
 945                        ret = -EFAULT;
 946                        goto srcu_unlock;
 947                }
 948
 949                outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
 950                        sizeof(*pklm) * (ndescs - 2);
 951
 952                if (outlen > cur_outlen) {
 953                        kfree(out);
 954                        out = kzalloc(outlen, GFP_KERNEL);
 955                        if (!out) {
 956                                ret = -ENOMEM;
 957                                goto srcu_unlock;
 958                        }
 959                        cur_outlen = outlen;
 960                }
 961
 962                pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
 963                                                       bsf0_klm0_pas_mtt0_1);
 964
 965                ret = mlx5_core_query_mkey(dev->mdev, mmkey, out, outlen);
 966                if (ret)
 967                        goto srcu_unlock;
 968
 969                offset = io_virt - MLX5_GET64(query_mkey_out, out,
 970                                              memory_key_mkey_entry.start_addr);
 971
 972                for (i = 0; bcnt && i < ndescs; i++, pklm++) {
 973                        if (offset >= be32_to_cpu(pklm->bcount)) {
 974                                offset -= be32_to_cpu(pklm->bcount);
 975                                continue;
 976                        }
 977
 978                        frame = kzalloc(sizeof(*frame), GFP_KERNEL);
 979                        if (!frame) {
 980                                ret = -ENOMEM;
 981                                goto srcu_unlock;
 982                        }
 983
 984                        frame->key = be32_to_cpu(pklm->key);
 985                        frame->io_virt = be64_to_cpu(pklm->va) + offset;
 986                        frame->bcnt = min_t(size_t, bcnt,
 987                                            be32_to_cpu(pklm->bcount) - offset);
 988                        frame->depth = depth + 1;
 989                        frame->next = head;
 990                        head = frame;
 991
 992                        bcnt -= frame->bcnt;
 993                        offset = 0;
 994                }
 995                break;
 996
 997        default:
 998                mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
 999                ret = -EFAULT;
1000                goto srcu_unlock;
1001        }
1002
1003        if (head) {
1004                frame = head;
1005                head = frame->next;
1006
1007                key = frame->key;
1008                io_virt = frame->io_virt;
1009                bcnt = frame->bcnt;
1010                depth = frame->depth;
1011                kfree(frame);
1012
1013                goto next_mr;
1014        }
1015
1016srcu_unlock:
1017        while (head) {
1018                frame = head;
1019                head = frame->next;
1020                kfree(frame);
1021        }
1022        kfree(out);
1023
1024        srcu_read_unlock(&dev->odp_srcu, srcu_key);
1025        *bytes_committed = 0;
1026        return ret ? ret : npages;
1027}
1028
1029/**
1030 * Parse a series of data segments for page fault handling.
1031 *
1032 * @pfault contains page fault information.
1033 * @wqe points at the first data segment in the WQE.
1034 * @wqe_end points after the end of the WQE.
1035 * @bytes_mapped receives the number of bytes that the function was able to
1036 *               map. This allows the caller to decide intelligently whether
1037 *               enough memory was mapped to resolve the page fault
1038 *               successfully (e.g. enough for the next MTU, or the entire
1039 *               WQE).
1040 * @total_wqe_bytes receives the total data size of this WQE in bytes (minus
1041 *                  the committed bytes).
1042 *
1043 * Returns the number of pages loaded if positive, zero for an empty WQE, or a
1044 * negative error code.
1045 */
1046static int pagefault_data_segments(struct mlx5_ib_dev *dev,
1047                                   struct mlx5_pagefault *pfault,
1048                                   void *wqe,
1049                                   void *wqe_end, u32 *bytes_mapped,
1050                                   u32 *total_wqe_bytes, bool receive_queue)
1051{
1052        int ret = 0, npages = 0;
1053        u64 io_virt;
1054        u32 key;
1055        u32 byte_count;
1056        size_t bcnt;
1057        int inline_segment;
1058
1059        if (bytes_mapped)
1060                *bytes_mapped = 0;
1061        if (total_wqe_bytes)
1062                *total_wqe_bytes = 0;
1063
1064        while (wqe < wqe_end) {
1065                struct mlx5_wqe_data_seg *dseg = wqe;
1066
1067                io_virt = be64_to_cpu(dseg->addr);
1068                key = be32_to_cpu(dseg->lkey);
1069                byte_count = be32_to_cpu(dseg->byte_count);
1070                inline_segment = !!(byte_count &  MLX5_INLINE_SEG);
1071                bcnt           = byte_count & ~MLX5_INLINE_SEG;
1072
1073                if (inline_segment) {
1074                        bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
1075                        wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
1076                                     16);
1077                } else {
1078                        wqe += sizeof(*dseg);
1079                }
1080
1081                /* receive WQE end of sg list. */
1082                if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
1083                    io_virt == 0)
1084                        break;
1085
1086                if (!inline_segment && total_wqe_bytes) {
1087                        *total_wqe_bytes += bcnt - min_t(size_t, bcnt,
1088                                        pfault->bytes_committed);
1089                }
1090
1091                /* A zero length data segment designates a length of 2GB. */
1092                if (bcnt == 0)
1093                        bcnt = 1U << 31;
1094
1095                if (inline_segment || bcnt <= pfault->bytes_committed) {
1096                        pfault->bytes_committed -=
1097                                min_t(size_t, bcnt,
1098                                      pfault->bytes_committed);
1099                        continue;
1100                }
1101
1102                ret = pagefault_single_data_segment(dev, NULL, key,
1103                                                    io_virt, bcnt,
1104                                                    &pfault->bytes_committed,
1105                                                    bytes_mapped);
1106                if (ret < 0)
1107                        break;
1108                npages += ret;
1109        }
1110
1111        return ret < 0 ? ret : npages;
1112}
1113
1114/*
1115 * Parse initiator WQE. Advances the wqe pointer to point at the
1116 * scatter-gather list, and set wqe_end to the end of the WQE.
1117 */
1118static int mlx5_ib_mr_initiator_pfault_handler(
1119        struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
1120        struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
1121{
1122        struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
1123        u16 wqe_index = pfault->wqe.wqe_index;
1124        struct mlx5_base_av *av;
1125        unsigned ds, opcode;
1126        u32 qpn = qp->trans_qp.base.mqp.qpn;
1127
1128        ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
1129        if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
1130                mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
1131                            ds, wqe_length);
1132                return -EFAULT;
1133        }
1134
1135        if (ds == 0) {
1136                mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
1137                            wqe_index, qpn);
1138                return -EFAULT;
1139        }
1140
1141        *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
1142        *wqe += sizeof(*ctrl);
1143
1144        opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
1145                 MLX5_WQE_CTRL_OPCODE_MASK;
1146
1147        if (qp->ibqp.qp_type == IB_QPT_XRC_INI)
1148                *wqe += sizeof(struct mlx5_wqe_xrc_seg);
1149
1150        if (qp->type == IB_QPT_UD || qp->type == MLX5_IB_QPT_DCI) {
1151                av = *wqe;
1152                if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
1153                        *wqe += sizeof(struct mlx5_av);
1154                else
1155                        *wqe += sizeof(struct mlx5_base_av);
1156        }
1157
1158        switch (opcode) {
1159        case MLX5_OPCODE_RDMA_WRITE:
1160        case MLX5_OPCODE_RDMA_WRITE_IMM:
1161        case MLX5_OPCODE_RDMA_READ:
1162                *wqe += sizeof(struct mlx5_wqe_raddr_seg);
1163                break;
1164        case MLX5_OPCODE_ATOMIC_CS:
1165        case MLX5_OPCODE_ATOMIC_FA:
1166                *wqe += sizeof(struct mlx5_wqe_raddr_seg);
1167                *wqe += sizeof(struct mlx5_wqe_atomic_seg);
1168                break;
1169        }
1170
1171        return 0;
1172}
1173
1174/*
1175 * Parse responder WQE and set wqe_end to the end of the WQE.
1176 */
1177static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev,
1178                                                   struct mlx5_ib_srq *srq,
1179                                                   void **wqe, void **wqe_end,
1180                                                   int wqe_length)
1181{
1182        int wqe_size = 1 << srq->msrq.wqe_shift;
1183
1184        if (wqe_size > wqe_length) {
1185                mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1186                return -EFAULT;
1187        }
1188
1189        *wqe_end = *wqe + wqe_size;
1190        *wqe += sizeof(struct mlx5_wqe_srq_next_seg);
1191
1192        return 0;
1193}
1194
1195static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev,
1196                                                  struct mlx5_ib_qp *qp,
1197                                                  void *wqe, void **wqe_end,
1198                                                  int wqe_length)
1199{
1200        struct mlx5_ib_wq *wq = &qp->rq;
1201        int wqe_size = 1 << wq->wqe_shift;
1202
1203        if (qp->flags_en & MLX5_QP_FLAG_SIGNATURE) {
1204                mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
1205                return -EFAULT;
1206        }
1207
1208        if (wqe_size > wqe_length) {
1209                mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1210                return -EFAULT;
1211        }
1212
1213        *wqe_end = wqe + wqe_size;
1214
1215        return 0;
1216}
1217
1218static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev,
1219                                                       u32 wq_num, int pf_type)
1220{
1221        struct mlx5_core_rsc_common *common = NULL;
1222        struct mlx5_core_srq *srq;
1223
1224        switch (pf_type) {
1225        case MLX5_WQE_PF_TYPE_RMP:
1226                srq = mlx5_cmd_get_srq(dev, wq_num);
1227                if (srq)
1228                        common = &srq->common;
1229                break;
1230        case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE:
1231        case MLX5_WQE_PF_TYPE_RESP:
1232        case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC:
1233                common = mlx5_core_res_hold(dev, wq_num, MLX5_RES_QP);
1234                break;
1235        default:
1236                break;
1237        }
1238
1239        return common;
1240}
1241
1242static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res)
1243{
1244        struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res;
1245
1246        return to_mibqp(mqp);
1247}
1248
1249static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res)
1250{
1251        struct mlx5_core_srq *msrq =
1252                container_of(res, struct mlx5_core_srq, common);
1253
1254        return to_mibsrq(msrq);
1255}
1256
1257static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
1258                                          struct mlx5_pagefault *pfault)
1259{
1260        bool sq = pfault->type & MLX5_PFAULT_REQUESTOR;
1261        u16 wqe_index = pfault->wqe.wqe_index;
1262        void *wqe, *wqe_start = NULL, *wqe_end = NULL;
1263        u32 bytes_mapped, total_wqe_bytes;
1264        struct mlx5_core_rsc_common *res;
1265        int resume_with_error = 1;
1266        struct mlx5_ib_qp *qp;
1267        size_t bytes_copied;
1268        int ret = 0;
1269
1270        res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type);
1271        if (!res) {
1272                mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num);
1273                return;
1274        }
1275
1276        if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ &&
1277            res->res != MLX5_RES_XSRQ) {
1278                mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n",
1279                            pfault->type);
1280                goto resolve_page_fault;
1281        }
1282
1283        wqe_start = (void *)__get_free_page(GFP_KERNEL);
1284        if (!wqe_start) {
1285                mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
1286                goto resolve_page_fault;
1287        }
1288
1289        wqe = wqe_start;
1290        qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL;
1291        if (qp && sq) {
1292                ret = mlx5_ib_read_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE,
1293                                          &bytes_copied);
1294                if (ret)
1295                        goto read_user;
1296                ret = mlx5_ib_mr_initiator_pfault_handler(
1297                        dev, pfault, qp, &wqe, &wqe_end, bytes_copied);
1298        } else if (qp && !sq) {
1299                ret = mlx5_ib_read_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE,
1300                                          &bytes_copied);
1301                if (ret)
1302                        goto read_user;
1303                ret = mlx5_ib_mr_responder_pfault_handler_rq(
1304                        dev, qp, wqe, &wqe_end, bytes_copied);
1305        } else if (!qp) {
1306                struct mlx5_ib_srq *srq = res_to_srq(res);
1307
1308                ret = mlx5_ib_read_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE,
1309                                           &bytes_copied);
1310                if (ret)
1311                        goto read_user;
1312                ret = mlx5_ib_mr_responder_pfault_handler_srq(
1313                        dev, srq, &wqe, &wqe_end, bytes_copied);
1314        }
1315
1316        if (ret < 0 || wqe >= wqe_end)
1317                goto resolve_page_fault;
1318
1319        ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped,
1320                                      &total_wqe_bytes, !sq);
1321        if (ret == -EAGAIN)
1322                goto out;
1323
1324        if (ret < 0 || total_wqe_bytes > bytes_mapped)
1325                goto resolve_page_fault;
1326
1327out:
1328        ret = 0;
1329        resume_with_error = 0;
1330
1331read_user:
1332        if (ret)
1333                mlx5_ib_err(
1334                        dev,
1335                        "Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %x\n",
1336                        ret, wqe_index, pfault->token);
1337
1338resolve_page_fault:
1339        mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1340        mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
1341                    pfault->wqe.wq_num, resume_with_error,
1342                    pfault->type);
1343        mlx5_core_res_put(res);
1344        free_page((unsigned long)wqe_start);
1345}
1346
1347static int pages_in_range(u64 address, u32 length)
1348{
1349        return (ALIGN(address + length, PAGE_SIZE) -
1350                (address & PAGE_MASK)) >> PAGE_SHIFT;
1351}
1352
1353static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1354                                           struct mlx5_pagefault *pfault)
1355{
1356        u64 address;
1357        u32 length;
1358        u32 prefetch_len = pfault->bytes_committed;
1359        int prefetch_activated = 0;
1360        u32 rkey = pfault->rdma.r_key;
1361        int ret;
1362
1363        /* The RDMA responder handler handles the page fault in two parts.
1364         * First it brings the necessary pages for the current packet
1365         * (and uses the pfault context), and then (after resuming the QP)
1366         * prefetches more pages. The second operation cannot use the pfault
1367         * context and therefore uses the dummy_pfault context allocated on
1368         * the stack */
1369        pfault->rdma.rdma_va += pfault->bytes_committed;
1370        pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1371                                         pfault->rdma.rdma_op_len);
1372        pfault->bytes_committed = 0;
1373
1374        address = pfault->rdma.rdma_va;
1375        length  = pfault->rdma.rdma_op_len;
1376
1377        /* For some operations, the hardware cannot tell the exact message
1378         * length, and in those cases it reports zero. Use prefetch
1379         * logic. */
1380        if (length == 0) {
1381                prefetch_activated = 1;
1382                length = pfault->rdma.packet_size;
1383                prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1384        }
1385
1386        ret = pagefault_single_data_segment(dev, NULL, rkey, address, length,
1387                                            &pfault->bytes_committed, NULL);
1388        if (ret == -EAGAIN) {
1389                /* We're racing with an invalidation, don't prefetch */
1390                prefetch_activated = 0;
1391        } else if (ret < 0 || pages_in_range(address, length) > ret) {
1392                mlx5_ib_page_fault_resume(dev, pfault, 1);
1393                if (ret != -ENOENT)
1394                        mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
1395                                    ret, pfault->token, pfault->type);
1396                return;
1397        }
1398
1399        mlx5_ib_page_fault_resume(dev, pfault, 0);
1400        mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
1401                    pfault->token, pfault->type,
1402                    prefetch_activated);
1403
1404        /* At this point, there might be a new pagefault already arriving in
1405         * the eq, switch to the dummy pagefault for the rest of the
1406         * processing. We're still OK with the objects being alive as the
1407         * work-queue is being fenced. */
1408
1409        if (prefetch_activated) {
1410                u32 bytes_committed = 0;
1411
1412                ret = pagefault_single_data_segment(dev, NULL, rkey, address,
1413                                                    prefetch_len,
1414                                                    &bytes_committed, NULL);
1415                if (ret < 0 && ret != -EAGAIN) {
1416                        mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
1417                                    ret, pfault->token, address, prefetch_len);
1418                }
1419        }
1420}
1421
1422static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault)
1423{
1424        u8 event_subtype = pfault->event_subtype;
1425
1426        switch (event_subtype) {
1427        case MLX5_PFAULT_SUBTYPE_WQE:
1428                mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
1429                break;
1430        case MLX5_PFAULT_SUBTYPE_RDMA:
1431                mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
1432                break;
1433        default:
1434                mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1435                            event_subtype);
1436                mlx5_ib_page_fault_resume(dev, pfault, 1);
1437        }
1438}
1439
1440static void mlx5_ib_eqe_pf_action(struct work_struct *work)
1441{
1442        struct mlx5_pagefault *pfault = container_of(work,
1443                                                     struct mlx5_pagefault,
1444                                                     work);
1445        struct mlx5_ib_pf_eq *eq = pfault->eq;
1446
1447        mlx5_ib_pfault(eq->dev, pfault);
1448        mempool_free(pfault, eq->pool);
1449}
1450
1451static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq)
1452{
1453        struct mlx5_eqe_page_fault *pf_eqe;
1454        struct mlx5_pagefault *pfault;
1455        struct mlx5_eqe *eqe;
1456        int cc = 0;
1457
1458        while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) {
1459                pfault = mempool_alloc(eq->pool, GFP_ATOMIC);
1460                if (!pfault) {
1461                        schedule_work(&eq->work);
1462                        break;
1463                }
1464
1465                pf_eqe = &eqe->data.page_fault;
1466                pfault->event_subtype = eqe->sub_type;
1467                pfault->bytes_committed = be32_to_cpu(pf_eqe->bytes_committed);
1468
1469                mlx5_ib_dbg(eq->dev,
1470                            "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x\n",
1471                            eqe->sub_type, pfault->bytes_committed);
1472
1473                switch (eqe->sub_type) {
1474                case MLX5_PFAULT_SUBTYPE_RDMA:
1475                        /* RDMA based event */
1476                        pfault->type =
1477                                be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24;
1478                        pfault->token =
1479                                be32_to_cpu(pf_eqe->rdma.pftype_token) &
1480                                MLX5_24BIT_MASK;
1481                        pfault->rdma.r_key =
1482                                be32_to_cpu(pf_eqe->rdma.r_key);
1483                        pfault->rdma.packet_size =
1484                                be16_to_cpu(pf_eqe->rdma.packet_length);
1485                        pfault->rdma.rdma_op_len =
1486                                be32_to_cpu(pf_eqe->rdma.rdma_op_len);
1487                        pfault->rdma.rdma_va =
1488                                be64_to_cpu(pf_eqe->rdma.rdma_va);
1489                        mlx5_ib_dbg(eq->dev,
1490                                    "PAGE_FAULT: type:0x%x, token: 0x%06x, r_key: 0x%08x\n",
1491                                    pfault->type, pfault->token,
1492                                    pfault->rdma.r_key);
1493                        mlx5_ib_dbg(eq->dev,
1494                                    "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n",
1495                                    pfault->rdma.rdma_op_len,
1496                                    pfault->rdma.rdma_va);
1497                        break;
1498
1499                case MLX5_PFAULT_SUBTYPE_WQE:
1500                        /* WQE based event */
1501                        pfault->type =
1502                                (be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7;
1503                        pfault->token =
1504                                be32_to_cpu(pf_eqe->wqe.token);
1505                        pfault->wqe.wq_num =
1506                                be32_to_cpu(pf_eqe->wqe.pftype_wq) &
1507                                MLX5_24BIT_MASK;
1508                        pfault->wqe.wqe_index =
1509                                be16_to_cpu(pf_eqe->wqe.wqe_index);
1510                        pfault->wqe.packet_size =
1511                                be16_to_cpu(pf_eqe->wqe.packet_length);
1512                        mlx5_ib_dbg(eq->dev,
1513                                    "PAGE_FAULT: type:0x%x, token: 0x%06x, wq_num: 0x%06x, wqe_index: 0x%04x\n",
1514                                    pfault->type, pfault->token,
1515                                    pfault->wqe.wq_num,
1516                                    pfault->wqe.wqe_index);
1517                        break;
1518
1519                default:
1520                        mlx5_ib_warn(eq->dev,
1521                                     "Unsupported page fault event sub-type: 0x%02hhx\n",
1522                                     eqe->sub_type);
1523                        /* Unsupported page faults should still be
1524                         * resolved by the page fault handler
1525                         */
1526                }
1527
1528                pfault->eq = eq;
1529                INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action);
1530                queue_work(eq->wq, &pfault->work);
1531
1532                cc = mlx5_eq_update_cc(eq->core, ++cc);
1533        }
1534
1535        mlx5_eq_update_ci(eq->core, cc, 1);
1536}
1537
1538static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type,
1539                             void *data)
1540{
1541        struct mlx5_ib_pf_eq *eq =
1542                container_of(nb, struct mlx5_ib_pf_eq, irq_nb);
1543        unsigned long flags;
1544
1545        if (spin_trylock_irqsave(&eq->lock, flags)) {
1546                mlx5_ib_eq_pf_process(eq);
1547                spin_unlock_irqrestore(&eq->lock, flags);
1548        } else {
1549                schedule_work(&eq->work);
1550        }
1551
1552        return IRQ_HANDLED;
1553}
1554
1555/* mempool_refill() was proposed but unfortunately wasn't accepted
1556 * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html
1557 * Cheap workaround.
1558 */
1559static void mempool_refill(mempool_t *pool)
1560{
1561        while (pool->curr_nr < pool->min_nr)
1562                mempool_free(mempool_alloc(pool, GFP_KERNEL), pool);
1563}
1564
1565static void mlx5_ib_eq_pf_action(struct work_struct *work)
1566{
1567        struct mlx5_ib_pf_eq *eq =
1568                container_of(work, struct mlx5_ib_pf_eq, work);
1569
1570        mempool_refill(eq->pool);
1571
1572        spin_lock_irq(&eq->lock);
1573        mlx5_ib_eq_pf_process(eq);
1574        spin_unlock_irq(&eq->lock);
1575}
1576
1577enum {
1578        MLX5_IB_NUM_PF_EQE      = 0x1000,
1579        MLX5_IB_NUM_PF_DRAIN    = 64,
1580};
1581
1582static int
1583mlx5_ib_create_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1584{
1585        struct mlx5_eq_param param = {};
1586        int err;
1587
1588        INIT_WORK(&eq->work, mlx5_ib_eq_pf_action);
1589        spin_lock_init(&eq->lock);
1590        eq->dev = dev;
1591
1592        eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN,
1593                                               sizeof(struct mlx5_pagefault));
1594        if (!eq->pool)
1595                return -ENOMEM;
1596
1597        eq->wq = alloc_workqueue("mlx5_ib_page_fault",
1598                                 WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM,
1599                                 MLX5_NUM_CMD_EQE);
1600        if (!eq->wq) {
1601                err = -ENOMEM;
1602                goto err_mempool;
1603        }
1604
1605        eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int;
1606        param = (struct mlx5_eq_param) {
1607                .irq_index = 0,
1608                .nent = MLX5_IB_NUM_PF_EQE,
1609        };
1610        param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT;
1611        eq->core = mlx5_eq_create_generic(dev->mdev, &param);
1612        if (IS_ERR(eq->core)) {
1613                err = PTR_ERR(eq->core);
1614                goto err_wq;
1615        }
1616        err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb);
1617        if (err) {
1618                mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err);
1619                goto err_eq;
1620        }
1621
1622        return 0;
1623err_eq:
1624        mlx5_eq_destroy_generic(dev->mdev, eq->core);
1625err_wq:
1626        destroy_workqueue(eq->wq);
1627err_mempool:
1628        mempool_destroy(eq->pool);
1629        return err;
1630}
1631
1632static int
1633mlx5_ib_destroy_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1634{
1635        int err;
1636
1637        mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb);
1638        err = mlx5_eq_destroy_generic(dev->mdev, eq->core);
1639        cancel_work_sync(&eq->work);
1640        destroy_workqueue(eq->wq);
1641        mempool_destroy(eq->pool);
1642
1643        return err;
1644}
1645
1646void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent)
1647{
1648        if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1649                return;
1650
1651        switch (ent->order - 2) {
1652        case MLX5_IMR_MTT_CACHE_ENTRY:
1653                ent->page = PAGE_SHIFT;
1654                ent->xlt = MLX5_IMR_MTT_ENTRIES *
1655                           sizeof(struct mlx5_mtt) /
1656                           MLX5_IB_UMR_OCTOWORD;
1657                ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
1658                ent->limit = 0;
1659                break;
1660
1661        case MLX5_IMR_KSM_CACHE_ENTRY:
1662                ent->page = MLX5_KSM_PAGE_SHIFT;
1663                ent->xlt = mlx5_imr_ksm_entries *
1664                           sizeof(struct mlx5_klm) /
1665                           MLX5_IB_UMR_OCTOWORD;
1666                ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
1667                ent->limit = 0;
1668                break;
1669        }
1670}
1671
1672static const struct ib_device_ops mlx5_ib_dev_odp_ops = {
1673        .advise_mr = mlx5_ib_advise_mr,
1674};
1675
1676int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
1677{
1678        int ret = 0;
1679
1680        if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1681                return ret;
1682
1683        ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops);
1684
1685        if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
1686                ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
1687                if (ret) {
1688                        mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
1689                        return ret;
1690                }
1691        }
1692
1693        ret = mlx5_ib_create_pf_eq(dev, &dev->odp_pf_eq);
1694
1695        return ret;
1696}
1697
1698void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev)
1699{
1700        if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1701                return;
1702
1703        mlx5_ib_destroy_pf_eq(dev, &dev->odp_pf_eq);
1704}
1705
1706int mlx5_ib_odp_init(void)
1707{
1708        mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1709                                       MLX5_IMR_MTT_BITS);
1710
1711        return 0;
1712}
1713
1714struct prefetch_mr_work {
1715        struct work_struct work;
1716        u32 pf_flags;
1717        u32 num_sge;
1718        struct {
1719                u64 io_virt;
1720                struct mlx5_ib_mr *mr;
1721                size_t length;
1722        } frags[];
1723};
1724
1725static void destroy_prefetch_work(struct prefetch_mr_work *work)
1726{
1727        u32 i;
1728
1729        for (i = 0; i < work->num_sge; ++i)
1730                if (atomic_dec_and_test(&work->frags[i].mr->num_deferred_work))
1731                        wake_up(&work->frags[i].mr->q_deferred_work);
1732        kvfree(work);
1733}
1734
1735static struct mlx5_ib_mr *
1736get_prefetchable_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
1737                    u32 lkey)
1738{
1739        struct mlx5_ib_dev *dev = to_mdev(pd->device);
1740        struct mlx5_core_mkey *mmkey;
1741        struct ib_umem_odp *odp;
1742        struct mlx5_ib_mr *mr;
1743
1744        lockdep_assert_held(&dev->odp_srcu);
1745
1746        mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(lkey));
1747        if (!mmkey || mmkey->key != lkey || mmkey->type != MLX5_MKEY_MR)
1748                return NULL;
1749
1750        mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1751
1752        if (mr->ibmr.pd != pd)
1753                return NULL;
1754
1755        odp = to_ib_umem_odp(mr->umem);
1756
1757        /* prefetch with write-access must be supported by the MR */
1758        if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1759            !odp->umem.writable)
1760                return NULL;
1761
1762        return mr;
1763}
1764
1765static void mlx5_ib_prefetch_mr_work(struct work_struct *w)
1766{
1767        struct prefetch_mr_work *work =
1768                container_of(w, struct prefetch_mr_work, work);
1769        struct mlx5_ib_dev *dev;
1770        u32 bytes_mapped = 0;
1771        int srcu_key;
1772        int ret;
1773        u32 i;
1774
1775        /* We rely on IB/core that work is executed if we have num_sge != 0 only. */
1776        WARN_ON(!work->num_sge);
1777        dev = work->frags[0].mr->dev;
1778        /* SRCU should be held when calling to mlx5_odp_populate_xlt() */
1779        srcu_key = srcu_read_lock(&dev->odp_srcu);
1780        for (i = 0; i < work->num_sge; ++i) {
1781                ret = pagefault_mr(work->frags[i].mr, work->frags[i].io_virt,
1782                                   work->frags[i].length, &bytes_mapped,
1783                                   work->pf_flags);
1784                if (ret <= 0)
1785                        continue;
1786                mlx5_update_odp_stats(work->frags[i].mr, prefetch, ret);
1787        }
1788        srcu_read_unlock(&dev->odp_srcu, srcu_key);
1789
1790        destroy_prefetch_work(work);
1791}
1792
1793static bool init_prefetch_work(struct ib_pd *pd,
1794                               enum ib_uverbs_advise_mr_advice advice,
1795                               u32 pf_flags, struct prefetch_mr_work *work,
1796                               struct ib_sge *sg_list, u32 num_sge)
1797{
1798        u32 i;
1799
1800        INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work);
1801        work->pf_flags = pf_flags;
1802
1803        for (i = 0; i < num_sge; ++i) {
1804                work->frags[i].io_virt = sg_list[i].addr;
1805                work->frags[i].length = sg_list[i].length;
1806                work->frags[i].mr =
1807                        get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1808                if (!work->frags[i].mr) {
1809                        work->num_sge = i;
1810                        return false;
1811                }
1812
1813                /* Keep the MR pointer will valid outside the SRCU */
1814                atomic_inc(&work->frags[i].mr->num_deferred_work);
1815        }
1816        work->num_sge = num_sge;
1817        return true;
1818}
1819
1820static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd,
1821                                    enum ib_uverbs_advise_mr_advice advice,
1822                                    u32 pf_flags, struct ib_sge *sg_list,
1823                                    u32 num_sge)
1824{
1825        struct mlx5_ib_dev *dev = to_mdev(pd->device);
1826        u32 bytes_mapped = 0;
1827        int srcu_key;
1828        int ret = 0;
1829        u32 i;
1830
1831        srcu_key = srcu_read_lock(&dev->odp_srcu);
1832        for (i = 0; i < num_sge; ++i) {
1833                struct mlx5_ib_mr *mr;
1834
1835                mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1836                if (!mr) {
1837                        ret = -ENOENT;
1838                        goto out;
1839                }
1840                ret = pagefault_mr(mr, sg_list[i].addr, sg_list[i].length,
1841                                   &bytes_mapped, pf_flags);
1842                if (ret < 0)
1843                        goto out;
1844                mlx5_update_odp_stats(mr, prefetch, ret);
1845        }
1846        ret = 0;
1847
1848out:
1849        srcu_read_unlock(&dev->odp_srcu, srcu_key);
1850        return ret;
1851}
1852
1853int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd,
1854                               enum ib_uverbs_advise_mr_advice advice,
1855                               u32 flags, struct ib_sge *sg_list, u32 num_sge)
1856{
1857        struct mlx5_ib_dev *dev = to_mdev(pd->device);
1858        u32 pf_flags = 0;
1859        struct prefetch_mr_work *work;
1860        int srcu_key;
1861
1862        if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH)
1863                pf_flags |= MLX5_PF_FLAGS_DOWNGRADE;
1864
1865        if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH)
1866                return mlx5_ib_prefetch_sg_list(pd, advice, pf_flags, sg_list,
1867                                                num_sge);
1868
1869        work = kvzalloc(struct_size(work, frags, num_sge), GFP_KERNEL);
1870        if (!work)
1871                return -ENOMEM;
1872
1873        srcu_key = srcu_read_lock(&dev->odp_srcu);
1874        if (!init_prefetch_work(pd, advice, pf_flags, work, sg_list, num_sge)) {
1875                srcu_read_unlock(&dev->odp_srcu, srcu_key);
1876                destroy_prefetch_work(work);
1877                return -EINVAL;
1878        }
1879        queue_work(system_unbound_wq, &work->work);
1880        srcu_read_unlock(&dev->odp_srcu, srcu_key);
1881        return 0;
1882}
1883