linux/drivers/macintosh/windfarm_pm112.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Windfarm PowerMac thermal control.
   4 * Control loops for machines with SMU and PPC970MP processors.
   5 *
   6 * Copyright (C) 2005 Paul Mackerras, IBM Corp. <paulus@samba.org>
   7 * Copyright (C) 2006 Benjamin Herrenschmidt, IBM Corp.
   8 */
   9#include <linux/types.h>
  10#include <linux/errno.h>
  11#include <linux/kernel.h>
  12#include <linux/device.h>
  13#include <linux/platform_device.h>
  14#include <linux/reboot.h>
  15#include <asm/prom.h>
  16#include <asm/smu.h>
  17
  18#include "windfarm.h"
  19#include "windfarm_pid.h"
  20
  21#define VERSION "0.2"
  22
  23#define DEBUG
  24#undef LOTSA_DEBUG
  25
  26#ifdef DEBUG
  27#define DBG(args...)    printk(args)
  28#else
  29#define DBG(args...)    do { } while(0)
  30#endif
  31
  32#ifdef LOTSA_DEBUG
  33#define DBG_LOTS(args...)       printk(args)
  34#else
  35#define DBG_LOTS(args...)       do { } while(0)
  36#endif
  37
  38/* define this to force CPU overtemp to 60 degree, useful for testing
  39 * the overtemp code
  40 */
  41#undef HACKED_OVERTEMP
  42
  43/* We currently only handle 2 chips, 4 cores... */
  44#define NR_CHIPS        2
  45#define NR_CORES        4
  46#define NR_CPU_FANS     3 * NR_CHIPS
  47
  48/* Controls and sensors */
  49static struct wf_sensor *sens_cpu_temp[NR_CORES];
  50static struct wf_sensor *sens_cpu_power[NR_CORES];
  51static struct wf_sensor *hd_temp;
  52static struct wf_sensor *slots_power;
  53static struct wf_sensor *u4_temp;
  54
  55static struct wf_control *cpu_fans[NR_CPU_FANS];
  56static char *cpu_fan_names[NR_CPU_FANS] = {
  57        "cpu-rear-fan-0",
  58        "cpu-rear-fan-1",
  59        "cpu-front-fan-0",
  60        "cpu-front-fan-1",
  61        "cpu-pump-0",
  62        "cpu-pump-1",
  63};
  64static struct wf_control *cpufreq_clamp;
  65
  66/* Second pump isn't required (and isn't actually present) */
  67#define CPU_FANS_REQD           (NR_CPU_FANS - 2)
  68#define FIRST_PUMP              4
  69#define LAST_PUMP               5
  70
  71/* We keep a temperature history for average calculation of 180s */
  72#define CPU_TEMP_HIST_SIZE      180
  73
  74/* Scale factor for fan speed, *100 */
  75static int cpu_fan_scale[NR_CPU_FANS] = {
  76        100,
  77        100,
  78        97,             /* inlet fans run at 97% of exhaust fan */
  79        97,
  80        100,            /* updated later */
  81        100,            /* updated later */
  82};
  83
  84static struct wf_control *backside_fan;
  85static struct wf_control *slots_fan;
  86static struct wf_control *drive_bay_fan;
  87
  88/* PID loop state */
  89static struct wf_cpu_pid_state cpu_pid[NR_CORES];
  90static u32 cpu_thist[CPU_TEMP_HIST_SIZE];
  91static int cpu_thist_pt;
  92static s64 cpu_thist_total;
  93static s32 cpu_all_tmax = 100 << 16;
  94static int cpu_last_target;
  95static struct wf_pid_state backside_pid;
  96static int backside_tick;
  97static struct wf_pid_state slots_pid;
  98static bool slots_started;
  99static struct wf_pid_state drive_bay_pid;
 100static int drive_bay_tick;
 101
 102static int nr_cores;
 103static int have_all_controls;
 104static int have_all_sensors;
 105static bool started;
 106
 107static int failure_state;
 108#define FAILURE_SENSOR          1
 109#define FAILURE_FAN             2
 110#define FAILURE_PERM            4
 111#define FAILURE_LOW_OVERTEMP    8
 112#define FAILURE_HIGH_OVERTEMP   16
 113
 114/* Overtemp values */
 115#define LOW_OVER_AVERAGE        0
 116#define LOW_OVER_IMMEDIATE      (10 << 16)
 117#define LOW_OVER_CLEAR          ((-10) << 16)
 118#define HIGH_OVER_IMMEDIATE     (14 << 16)
 119#define HIGH_OVER_AVERAGE       (10 << 16)
 120#define HIGH_OVER_IMMEDIATE     (14 << 16)
 121
 122
 123/* Implementation... */
 124static int create_cpu_loop(int cpu)
 125{
 126        int chip = cpu / 2;
 127        int core = cpu & 1;
 128        struct smu_sdbp_header *hdr;
 129        struct smu_sdbp_cpupiddata *piddata;
 130        struct wf_cpu_pid_param pid;
 131        struct wf_control *main_fan = cpu_fans[0];
 132        s32 tmax;
 133        int fmin;
 134
 135        /* Get FVT params to get Tmax; if not found, assume default */
 136        hdr = smu_sat_get_sdb_partition(chip, 0xC4 + core, NULL);
 137        if (hdr) {
 138                struct smu_sdbp_fvt *fvt = (struct smu_sdbp_fvt *)&hdr[1];
 139                tmax = fvt->maxtemp << 16;
 140        } else
 141                tmax = 95 << 16;        /* default to 95 degrees C */
 142
 143        /* We keep a global tmax for overtemp calculations */
 144        if (tmax < cpu_all_tmax)
 145                cpu_all_tmax = tmax;
 146
 147        kfree(hdr);
 148
 149        /* Get PID params from the appropriate SAT */
 150        hdr = smu_sat_get_sdb_partition(chip, 0xC8 + core, NULL);
 151        if (hdr == NULL) {
 152                printk(KERN_WARNING"windfarm: can't get CPU PID fan config\n");
 153                return -EINVAL;
 154        }
 155        piddata = (struct smu_sdbp_cpupiddata *)&hdr[1];
 156
 157        /*
 158         * Darwin has a minimum fan speed of 1000 rpm for the 4-way and
 159         * 515 for the 2-way.  That appears to be overkill, so for now,
 160         * impose a minimum of 750 or 515.
 161         */
 162        fmin = (nr_cores > 2) ? 750 : 515;
 163
 164        /* Initialize PID loop */
 165        pid.interval = 1;       /* seconds */
 166        pid.history_len = piddata->history_len;
 167        pid.gd = piddata->gd;
 168        pid.gp = piddata->gp;
 169        pid.gr = piddata->gr / piddata->history_len;
 170        pid.pmaxadj = (piddata->max_power << 16) - (piddata->power_adj << 8);
 171        pid.ttarget = tmax - (piddata->target_temp_delta << 16);
 172        pid.tmax = tmax;
 173        pid.min = main_fan->ops->get_min(main_fan);
 174        pid.max = main_fan->ops->get_max(main_fan);
 175        if (pid.min < fmin)
 176                pid.min = fmin;
 177
 178        wf_cpu_pid_init(&cpu_pid[cpu], &pid);
 179
 180        kfree(hdr);
 181
 182        return 0;
 183}
 184
 185static void cpu_max_all_fans(void)
 186{
 187        int i;
 188
 189        /* We max all CPU fans in case of a sensor error. We also do the
 190         * cpufreq clamping now, even if it's supposedly done later by the
 191         * generic code anyway, we do it earlier here to react faster
 192         */
 193        if (cpufreq_clamp)
 194                wf_control_set_max(cpufreq_clamp);
 195        for (i = 0; i < NR_CPU_FANS; ++i)
 196                if (cpu_fans[i])
 197                        wf_control_set_max(cpu_fans[i]);
 198}
 199
 200static int cpu_check_overtemp(s32 temp)
 201{
 202        int new_state = 0;
 203        s32 t_avg, t_old;
 204
 205        /* First check for immediate overtemps */
 206        if (temp >= (cpu_all_tmax + LOW_OVER_IMMEDIATE)) {
 207                new_state |= FAILURE_LOW_OVERTEMP;
 208                if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
 209                        printk(KERN_ERR "windfarm: Overtemp due to immediate CPU"
 210                               " temperature !\n");
 211        }
 212        if (temp >= (cpu_all_tmax + HIGH_OVER_IMMEDIATE)) {
 213                new_state |= FAILURE_HIGH_OVERTEMP;
 214                if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
 215                        printk(KERN_ERR "windfarm: Critical overtemp due to"
 216                               " immediate CPU temperature !\n");
 217        }
 218
 219        /* We calculate a history of max temperatures and use that for the
 220         * overtemp management
 221         */
 222        t_old = cpu_thist[cpu_thist_pt];
 223        cpu_thist[cpu_thist_pt] = temp;
 224        cpu_thist_pt = (cpu_thist_pt + 1) % CPU_TEMP_HIST_SIZE;
 225        cpu_thist_total -= t_old;
 226        cpu_thist_total += temp;
 227        t_avg = cpu_thist_total / CPU_TEMP_HIST_SIZE;
 228
 229        DBG_LOTS("t_avg = %d.%03d (out: %d.%03d, in: %d.%03d)\n",
 230                 FIX32TOPRINT(t_avg), FIX32TOPRINT(t_old), FIX32TOPRINT(temp));
 231
 232        /* Now check for average overtemps */
 233        if (t_avg >= (cpu_all_tmax + LOW_OVER_AVERAGE)) {
 234                new_state |= FAILURE_LOW_OVERTEMP;
 235                if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
 236                        printk(KERN_ERR "windfarm: Overtemp due to average CPU"
 237                               " temperature !\n");
 238        }
 239        if (t_avg >= (cpu_all_tmax + HIGH_OVER_AVERAGE)) {
 240                new_state |= FAILURE_HIGH_OVERTEMP;
 241                if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
 242                        printk(KERN_ERR "windfarm: Critical overtemp due to"
 243                               " average CPU temperature !\n");
 244        }
 245
 246        /* Now handle overtemp conditions. We don't currently use the windfarm
 247         * overtemp handling core as it's not fully suited to the needs of those
 248         * new machine. This will be fixed later.
 249         */
 250        if (new_state) {
 251                /* High overtemp -> immediate shutdown */
 252                if (new_state & FAILURE_HIGH_OVERTEMP)
 253                        machine_power_off();
 254                if ((failure_state & new_state) != new_state)
 255                        cpu_max_all_fans();
 256                failure_state |= new_state;
 257        } else if ((failure_state & FAILURE_LOW_OVERTEMP) &&
 258                   (temp < (cpu_all_tmax + LOW_OVER_CLEAR))) {
 259                printk(KERN_ERR "windfarm: Overtemp condition cleared !\n");
 260                failure_state &= ~FAILURE_LOW_OVERTEMP;
 261        }
 262
 263        return failure_state & (FAILURE_LOW_OVERTEMP | FAILURE_HIGH_OVERTEMP);
 264}
 265
 266static void cpu_fans_tick(void)
 267{
 268        int err, cpu;
 269        s32 greatest_delta = 0;
 270        s32 temp, power, t_max = 0;
 271        int i, t, target = 0;
 272        struct wf_sensor *sr;
 273        struct wf_control *ct;
 274        struct wf_cpu_pid_state *sp;
 275
 276        DBG_LOTS(KERN_DEBUG);
 277        for (cpu = 0; cpu < nr_cores; ++cpu) {
 278                /* Get CPU core temperature */
 279                sr = sens_cpu_temp[cpu];
 280                err = sr->ops->get_value(sr, &temp);
 281                if (err) {
 282                        DBG("\n");
 283                        printk(KERN_WARNING "windfarm: CPU %d temperature "
 284                               "sensor error %d\n", cpu, err);
 285                        failure_state |= FAILURE_SENSOR;
 286                        cpu_max_all_fans();
 287                        return;
 288                }
 289
 290                /* Keep track of highest temp */
 291                t_max = max(t_max, temp);
 292
 293                /* Get CPU power */
 294                sr = sens_cpu_power[cpu];
 295                err = sr->ops->get_value(sr, &power);
 296                if (err) {
 297                        DBG("\n");
 298                        printk(KERN_WARNING "windfarm: CPU %d power "
 299                               "sensor error %d\n", cpu, err);
 300                        failure_state |= FAILURE_SENSOR;
 301                        cpu_max_all_fans();
 302                        return;
 303                }
 304
 305                /* Run PID */
 306                sp = &cpu_pid[cpu];
 307                t = wf_cpu_pid_run(sp, power, temp);
 308
 309                if (cpu == 0 || sp->last_delta > greatest_delta) {
 310                        greatest_delta = sp->last_delta;
 311                        target = t;
 312                }
 313                DBG_LOTS("[%d] P=%d.%.3d T=%d.%.3d ",
 314                    cpu, FIX32TOPRINT(power), FIX32TOPRINT(temp));
 315        }
 316        DBG_LOTS("fans = %d, t_max = %d.%03d\n", target, FIX32TOPRINT(t_max));
 317
 318        /* Darwin limits decrease to 20 per iteration */
 319        if (target < (cpu_last_target - 20))
 320                target = cpu_last_target - 20;
 321        cpu_last_target = target;
 322        for (cpu = 0; cpu < nr_cores; ++cpu)
 323                cpu_pid[cpu].target = target;
 324
 325        /* Handle possible overtemps */
 326        if (cpu_check_overtemp(t_max))
 327                return;
 328
 329        /* Set fans */
 330        for (i = 0; i < NR_CPU_FANS; ++i) {
 331                ct = cpu_fans[i];
 332                if (ct == NULL)
 333                        continue;
 334                err = ct->ops->set_value(ct, target * cpu_fan_scale[i] / 100);
 335                if (err) {
 336                        printk(KERN_WARNING "windfarm: fan %s reports "
 337                               "error %d\n", ct->name, err);
 338                        failure_state |= FAILURE_FAN;
 339                        break;
 340                }
 341        }
 342}
 343
 344/* Backside/U4 fan */
 345static struct wf_pid_param backside_param = {
 346        .interval       = 5,
 347        .history_len    = 2,
 348        .gd             = 48 << 20,
 349        .gp             = 5 << 20,
 350        .gr             = 0,
 351        .itarget        = 64 << 16,
 352        .additive       = 1,
 353};
 354
 355static void backside_fan_tick(void)
 356{
 357        s32 temp;
 358        int speed;
 359        int err;
 360
 361        if (!backside_fan || !u4_temp)
 362                return;
 363        if (!backside_tick) {
 364                /* first time; initialize things */
 365                printk(KERN_INFO "windfarm: Backside control loop started.\n");
 366                backside_param.min = backside_fan->ops->get_min(backside_fan);
 367                backside_param.max = backside_fan->ops->get_max(backside_fan);
 368                wf_pid_init(&backside_pid, &backside_param);
 369                backside_tick = 1;
 370        }
 371        if (--backside_tick > 0)
 372                return;
 373        backside_tick = backside_pid.param.interval;
 374
 375        err = u4_temp->ops->get_value(u4_temp, &temp);
 376        if (err) {
 377                printk(KERN_WARNING "windfarm: U4 temp sensor error %d\n",
 378                       err);
 379                failure_state |= FAILURE_SENSOR;
 380                wf_control_set_max(backside_fan);
 381                return;
 382        }
 383        speed = wf_pid_run(&backside_pid, temp);
 384        DBG_LOTS("backside PID temp=%d.%.3d speed=%d\n",
 385                 FIX32TOPRINT(temp), speed);
 386
 387        err = backside_fan->ops->set_value(backside_fan, speed);
 388        if (err) {
 389                printk(KERN_WARNING "windfarm: backside fan error %d\n", err);
 390                failure_state |= FAILURE_FAN;
 391        }
 392}
 393
 394/* Drive bay fan */
 395static struct wf_pid_param drive_bay_prm = {
 396        .interval       = 5,
 397        .history_len    = 2,
 398        .gd             = 30 << 20,
 399        .gp             = 5 << 20,
 400        .gr             = 0,
 401        .itarget        = 40 << 16,
 402        .additive       = 1,
 403};
 404
 405static void drive_bay_fan_tick(void)
 406{
 407        s32 temp;
 408        int speed;
 409        int err;
 410
 411        if (!drive_bay_fan || !hd_temp)
 412                return;
 413        if (!drive_bay_tick) {
 414                /* first time; initialize things */
 415                printk(KERN_INFO "windfarm: Drive bay control loop started.\n");
 416                drive_bay_prm.min = drive_bay_fan->ops->get_min(drive_bay_fan);
 417                drive_bay_prm.max = drive_bay_fan->ops->get_max(drive_bay_fan);
 418                wf_pid_init(&drive_bay_pid, &drive_bay_prm);
 419                drive_bay_tick = 1;
 420        }
 421        if (--drive_bay_tick > 0)
 422                return;
 423        drive_bay_tick = drive_bay_pid.param.interval;
 424
 425        err = hd_temp->ops->get_value(hd_temp, &temp);
 426        if (err) {
 427                printk(KERN_WARNING "windfarm: drive bay temp sensor "
 428                       "error %d\n", err);
 429                failure_state |= FAILURE_SENSOR;
 430                wf_control_set_max(drive_bay_fan);
 431                return;
 432        }
 433        speed = wf_pid_run(&drive_bay_pid, temp);
 434        DBG_LOTS("drive_bay PID temp=%d.%.3d speed=%d\n",
 435                 FIX32TOPRINT(temp), speed);
 436
 437        err = drive_bay_fan->ops->set_value(drive_bay_fan, speed);
 438        if (err) {
 439                printk(KERN_WARNING "windfarm: drive bay fan error %d\n", err);
 440                failure_state |= FAILURE_FAN;
 441        }
 442}
 443
 444/* PCI slots area fan */
 445/* This makes the fan speed proportional to the power consumed */
 446static struct wf_pid_param slots_param = {
 447        .interval       = 1,
 448        .history_len    = 2,
 449        .gd             = 0,
 450        .gp             = 0,
 451        .gr             = 0x1277952,
 452        .itarget        = 0,
 453        .min            = 1560,
 454        .max            = 3510,
 455};
 456
 457static void slots_fan_tick(void)
 458{
 459        s32 power;
 460        int speed;
 461        int err;
 462
 463        if (!slots_fan || !slots_power)
 464                return;
 465        if (!slots_started) {
 466                /* first time; initialize things */
 467                printk(KERN_INFO "windfarm: Slots control loop started.\n");
 468                wf_pid_init(&slots_pid, &slots_param);
 469                slots_started = true;
 470        }
 471
 472        err = slots_power->ops->get_value(slots_power, &power);
 473        if (err) {
 474                printk(KERN_WARNING "windfarm: slots power sensor error %d\n",
 475                       err);
 476                failure_state |= FAILURE_SENSOR;
 477                wf_control_set_max(slots_fan);
 478                return;
 479        }
 480        speed = wf_pid_run(&slots_pid, power);
 481        DBG_LOTS("slots PID power=%d.%.3d speed=%d\n",
 482                 FIX32TOPRINT(power), speed);
 483
 484        err = slots_fan->ops->set_value(slots_fan, speed);
 485        if (err) {
 486                printk(KERN_WARNING "windfarm: slots fan error %d\n", err);
 487                failure_state |= FAILURE_FAN;
 488        }
 489}
 490
 491static void set_fail_state(void)
 492{
 493        int i;
 494
 495        if (cpufreq_clamp)
 496                wf_control_set_max(cpufreq_clamp);
 497        for (i = 0; i < NR_CPU_FANS; ++i)
 498                if (cpu_fans[i])
 499                        wf_control_set_max(cpu_fans[i]);
 500        if (backside_fan)
 501                wf_control_set_max(backside_fan);
 502        if (slots_fan)
 503                wf_control_set_max(slots_fan);
 504        if (drive_bay_fan)
 505                wf_control_set_max(drive_bay_fan);
 506}
 507
 508static void pm112_tick(void)
 509{
 510        int i, last_failure;
 511
 512        if (!started) {
 513                started = true;
 514                printk(KERN_INFO "windfarm: CPUs control loops started.\n");
 515                for (i = 0; i < nr_cores; ++i) {
 516                        if (create_cpu_loop(i) < 0) {
 517                                failure_state = FAILURE_PERM;
 518                                set_fail_state();
 519                                break;
 520                        }
 521                }
 522                DBG_LOTS("cpu_all_tmax=%d.%03d\n", FIX32TOPRINT(cpu_all_tmax));
 523
 524#ifdef HACKED_OVERTEMP
 525                cpu_all_tmax = 60 << 16;
 526#endif
 527        }
 528
 529        /* Permanent failure, bail out */
 530        if (failure_state & FAILURE_PERM)
 531                return;
 532        /* Clear all failure bits except low overtemp which will be eventually
 533         * cleared by the control loop itself
 534         */
 535        last_failure = failure_state;
 536        failure_state &= FAILURE_LOW_OVERTEMP;
 537        cpu_fans_tick();
 538        backside_fan_tick();
 539        slots_fan_tick();
 540        drive_bay_fan_tick();
 541
 542        DBG_LOTS("last_failure: 0x%x, failure_state: %x\n",
 543                 last_failure, failure_state);
 544
 545        /* Check for failures. Any failure causes cpufreq clamping */
 546        if (failure_state && last_failure == 0 && cpufreq_clamp)
 547                wf_control_set_max(cpufreq_clamp);
 548        if (failure_state == 0 && last_failure && cpufreq_clamp)
 549                wf_control_set_min(cpufreq_clamp);
 550
 551        /* That's it for now, we might want to deal with other failures
 552         * differently in the future though
 553         */
 554}
 555
 556static void pm112_new_control(struct wf_control *ct)
 557{
 558        int i, max_exhaust;
 559
 560        if (cpufreq_clamp == NULL && !strcmp(ct->name, "cpufreq-clamp")) {
 561                if (wf_get_control(ct) == 0)
 562                        cpufreq_clamp = ct;
 563        }
 564
 565        for (i = 0; i < NR_CPU_FANS; ++i) {
 566                if (!strcmp(ct->name, cpu_fan_names[i])) {
 567                        if (cpu_fans[i] == NULL && wf_get_control(ct) == 0)
 568                                cpu_fans[i] = ct;
 569                        break;
 570                }
 571        }
 572        if (i >= NR_CPU_FANS) {
 573                /* not a CPU fan, try the others */
 574                if (!strcmp(ct->name, "backside-fan")) {
 575                        if (backside_fan == NULL && wf_get_control(ct) == 0)
 576                                backside_fan = ct;
 577                } else if (!strcmp(ct->name, "slots-fan")) {
 578                        if (slots_fan == NULL && wf_get_control(ct) == 0)
 579                                slots_fan = ct;
 580                } else if (!strcmp(ct->name, "drive-bay-fan")) {
 581                        if (drive_bay_fan == NULL && wf_get_control(ct) == 0)
 582                                drive_bay_fan = ct;
 583                }
 584                return;
 585        }
 586
 587        for (i = 0; i < CPU_FANS_REQD; ++i)
 588                if (cpu_fans[i] == NULL)
 589                        return;
 590
 591        /* work out pump scaling factors */
 592        max_exhaust = cpu_fans[0]->ops->get_max(cpu_fans[0]);
 593        for (i = FIRST_PUMP; i <= LAST_PUMP; ++i)
 594                if ((ct = cpu_fans[i]) != NULL)
 595                        cpu_fan_scale[i] =
 596                                ct->ops->get_max(ct) * 100 / max_exhaust;
 597
 598        have_all_controls = 1;
 599}
 600
 601static void pm112_new_sensor(struct wf_sensor *sr)
 602{
 603        unsigned int i;
 604
 605        if (!strncmp(sr->name, "cpu-temp-", 9)) {
 606                i = sr->name[9] - '0';
 607                if (sr->name[10] == 0 && i < NR_CORES &&
 608                    sens_cpu_temp[i] == NULL && wf_get_sensor(sr) == 0)
 609                        sens_cpu_temp[i] = sr;
 610
 611        } else if (!strncmp(sr->name, "cpu-power-", 10)) {
 612                i = sr->name[10] - '0';
 613                if (sr->name[11] == 0 && i < NR_CORES &&
 614                    sens_cpu_power[i] == NULL && wf_get_sensor(sr) == 0)
 615                        sens_cpu_power[i] = sr;
 616        } else if (!strcmp(sr->name, "hd-temp")) {
 617                if (hd_temp == NULL && wf_get_sensor(sr) == 0)
 618                        hd_temp = sr;
 619        } else if (!strcmp(sr->name, "slots-power")) {
 620                if (slots_power == NULL && wf_get_sensor(sr) == 0)
 621                        slots_power = sr;
 622        } else if (!strcmp(sr->name, "backside-temp")) {
 623                if (u4_temp == NULL && wf_get_sensor(sr) == 0)
 624                        u4_temp = sr;
 625        } else
 626                return;
 627
 628        /* check if we have all the sensors we need */
 629        for (i = 0; i < nr_cores; ++i)
 630                if (sens_cpu_temp[i] == NULL || sens_cpu_power[i] == NULL)
 631                        return;
 632
 633        have_all_sensors = 1;
 634}
 635
 636static int pm112_wf_notify(struct notifier_block *self,
 637                           unsigned long event, void *data)
 638{
 639        switch (event) {
 640        case WF_EVENT_NEW_SENSOR:
 641                pm112_new_sensor(data);
 642                break;
 643        case WF_EVENT_NEW_CONTROL:
 644                pm112_new_control(data);
 645                break;
 646        case WF_EVENT_TICK:
 647                if (have_all_controls && have_all_sensors)
 648                        pm112_tick();
 649        }
 650        return 0;
 651}
 652
 653static struct notifier_block pm112_events = {
 654        .notifier_call = pm112_wf_notify,
 655};
 656
 657static int wf_pm112_probe(struct platform_device *dev)
 658{
 659        wf_register_client(&pm112_events);
 660        return 0;
 661}
 662
 663static int wf_pm112_remove(struct platform_device *dev)
 664{
 665        wf_unregister_client(&pm112_events);
 666        /* should release all sensors and controls */
 667        return 0;
 668}
 669
 670static struct platform_driver wf_pm112_driver = {
 671        .probe = wf_pm112_probe,
 672        .remove = wf_pm112_remove,
 673        .driver = {
 674                .name = "windfarm",
 675        },
 676};
 677
 678static int __init wf_pm112_init(void)
 679{
 680        struct device_node *cpu;
 681
 682        if (!of_machine_is_compatible("PowerMac11,2"))
 683                return -ENODEV;
 684
 685        /* Count the number of CPU cores */
 686        nr_cores = 0;
 687        for_each_node_by_type(cpu, "cpu")
 688                ++nr_cores;
 689
 690        printk(KERN_INFO "windfarm: initializing for dual-core desktop G5\n");
 691
 692#ifdef MODULE
 693        request_module("windfarm_smu_controls");
 694        request_module("windfarm_smu_sensors");
 695        request_module("windfarm_smu_sat");
 696        request_module("windfarm_lm75_sensor");
 697        request_module("windfarm_max6690_sensor");
 698        request_module("windfarm_cpufreq_clamp");
 699
 700#endif /* MODULE */
 701
 702        platform_driver_register(&wf_pm112_driver);
 703        return 0;
 704}
 705
 706static void __exit wf_pm112_exit(void)
 707{
 708        platform_driver_unregister(&wf_pm112_driver);
 709}
 710
 711module_init(wf_pm112_init);
 712module_exit(wf_pm112_exit);
 713
 714MODULE_AUTHOR("Paul Mackerras <paulus@samba.org>");
 715MODULE_DESCRIPTION("Thermal control for PowerMac11,2");
 716MODULE_LICENSE("GPL");
 717MODULE_ALIAS("platform:windfarm");
 718