linux/drivers/md/dm-cache-target.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2012 Red Hat. All rights reserved.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm.h"
   8#include "dm-bio-prison-v2.h"
   9#include "dm-bio-record.h"
  10#include "dm-cache-metadata.h"
  11
  12#include <linux/dm-io.h>
  13#include <linux/dm-kcopyd.h>
  14#include <linux/jiffies.h>
  15#include <linux/init.h>
  16#include <linux/mempool.h>
  17#include <linux/module.h>
  18#include <linux/rwsem.h>
  19#include <linux/slab.h>
  20#include <linux/vmalloc.h>
  21
  22#define DM_MSG_PREFIX "cache"
  23
  24DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
  25        "A percentage of time allocated for copying to and/or from cache");
  26
  27/*----------------------------------------------------------------*/
  28
  29/*
  30 * Glossary:
  31 *
  32 * oblock: index of an origin block
  33 * cblock: index of a cache block
  34 * promotion: movement of a block from origin to cache
  35 * demotion: movement of a block from cache to origin
  36 * migration: movement of a block between the origin and cache device,
  37 *            either direction
  38 */
  39
  40/*----------------------------------------------------------------*/
  41
  42struct io_tracker {
  43        spinlock_t lock;
  44
  45        /*
  46         * Sectors of in-flight IO.
  47         */
  48        sector_t in_flight;
  49
  50        /*
  51         * The time, in jiffies, when this device became idle (if it is
  52         * indeed idle).
  53         */
  54        unsigned long idle_time;
  55        unsigned long last_update_time;
  56};
  57
  58static void iot_init(struct io_tracker *iot)
  59{
  60        spin_lock_init(&iot->lock);
  61        iot->in_flight = 0ul;
  62        iot->idle_time = 0ul;
  63        iot->last_update_time = jiffies;
  64}
  65
  66static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
  67{
  68        if (iot->in_flight)
  69                return false;
  70
  71        return time_after(jiffies, iot->idle_time + jifs);
  72}
  73
  74static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
  75{
  76        bool r;
  77
  78        spin_lock_irq(&iot->lock);
  79        r = __iot_idle_for(iot, jifs);
  80        spin_unlock_irq(&iot->lock);
  81
  82        return r;
  83}
  84
  85static void iot_io_begin(struct io_tracker *iot, sector_t len)
  86{
  87        spin_lock_irq(&iot->lock);
  88        iot->in_flight += len;
  89        spin_unlock_irq(&iot->lock);
  90}
  91
  92static void __iot_io_end(struct io_tracker *iot, sector_t len)
  93{
  94        if (!len)
  95                return;
  96
  97        iot->in_flight -= len;
  98        if (!iot->in_flight)
  99                iot->idle_time = jiffies;
 100}
 101
 102static void iot_io_end(struct io_tracker *iot, sector_t len)
 103{
 104        unsigned long flags;
 105
 106        spin_lock_irqsave(&iot->lock, flags);
 107        __iot_io_end(iot, len);
 108        spin_unlock_irqrestore(&iot->lock, flags);
 109}
 110
 111/*----------------------------------------------------------------*/
 112
 113/*
 114 * Represents a chunk of future work.  'input' allows continuations to pass
 115 * values between themselves, typically error values.
 116 */
 117struct continuation {
 118        struct work_struct ws;
 119        blk_status_t input;
 120};
 121
 122static inline void init_continuation(struct continuation *k,
 123                                     void (*fn)(struct work_struct *))
 124{
 125        INIT_WORK(&k->ws, fn);
 126        k->input = 0;
 127}
 128
 129static inline void queue_continuation(struct workqueue_struct *wq,
 130                                      struct continuation *k)
 131{
 132        queue_work(wq, &k->ws);
 133}
 134
 135/*----------------------------------------------------------------*/
 136
 137/*
 138 * The batcher collects together pieces of work that need a particular
 139 * operation to occur before they can proceed (typically a commit).
 140 */
 141struct batcher {
 142        /*
 143         * The operation that everyone is waiting for.
 144         */
 145        blk_status_t (*commit_op)(void *context);
 146        void *commit_context;
 147
 148        /*
 149         * This is how bios should be issued once the commit op is complete
 150         * (accounted_request).
 151         */
 152        void (*issue_op)(struct bio *bio, void *context);
 153        void *issue_context;
 154
 155        /*
 156         * Queued work gets put on here after commit.
 157         */
 158        struct workqueue_struct *wq;
 159
 160        spinlock_t lock;
 161        struct list_head work_items;
 162        struct bio_list bios;
 163        struct work_struct commit_work;
 164
 165        bool commit_scheduled;
 166};
 167
 168static void __commit(struct work_struct *_ws)
 169{
 170        struct batcher *b = container_of(_ws, struct batcher, commit_work);
 171        blk_status_t r;
 172        struct list_head work_items;
 173        struct work_struct *ws, *tmp;
 174        struct continuation *k;
 175        struct bio *bio;
 176        struct bio_list bios;
 177
 178        INIT_LIST_HEAD(&work_items);
 179        bio_list_init(&bios);
 180
 181        /*
 182         * We have to grab these before the commit_op to avoid a race
 183         * condition.
 184         */
 185        spin_lock_irq(&b->lock);
 186        list_splice_init(&b->work_items, &work_items);
 187        bio_list_merge(&bios, &b->bios);
 188        bio_list_init(&b->bios);
 189        b->commit_scheduled = false;
 190        spin_unlock_irq(&b->lock);
 191
 192        r = b->commit_op(b->commit_context);
 193
 194        list_for_each_entry_safe(ws, tmp, &work_items, entry) {
 195                k = container_of(ws, struct continuation, ws);
 196                k->input = r;
 197                INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
 198                queue_work(b->wq, ws);
 199        }
 200
 201        while ((bio = bio_list_pop(&bios))) {
 202                if (r) {
 203                        bio->bi_status = r;
 204                        bio_endio(bio);
 205                } else
 206                        b->issue_op(bio, b->issue_context);
 207        }
 208}
 209
 210static void batcher_init(struct batcher *b,
 211                         blk_status_t (*commit_op)(void *),
 212                         void *commit_context,
 213                         void (*issue_op)(struct bio *bio, void *),
 214                         void *issue_context,
 215                         struct workqueue_struct *wq)
 216{
 217        b->commit_op = commit_op;
 218        b->commit_context = commit_context;
 219        b->issue_op = issue_op;
 220        b->issue_context = issue_context;
 221        b->wq = wq;
 222
 223        spin_lock_init(&b->lock);
 224        INIT_LIST_HEAD(&b->work_items);
 225        bio_list_init(&b->bios);
 226        INIT_WORK(&b->commit_work, __commit);
 227        b->commit_scheduled = false;
 228}
 229
 230static void async_commit(struct batcher *b)
 231{
 232        queue_work(b->wq, &b->commit_work);
 233}
 234
 235static void continue_after_commit(struct batcher *b, struct continuation *k)
 236{
 237        bool commit_scheduled;
 238
 239        spin_lock_irq(&b->lock);
 240        commit_scheduled = b->commit_scheduled;
 241        list_add_tail(&k->ws.entry, &b->work_items);
 242        spin_unlock_irq(&b->lock);
 243
 244        if (commit_scheduled)
 245                async_commit(b);
 246}
 247
 248/*
 249 * Bios are errored if commit failed.
 250 */
 251static void issue_after_commit(struct batcher *b, struct bio *bio)
 252{
 253       bool commit_scheduled;
 254
 255       spin_lock_irq(&b->lock);
 256       commit_scheduled = b->commit_scheduled;
 257       bio_list_add(&b->bios, bio);
 258       spin_unlock_irq(&b->lock);
 259
 260       if (commit_scheduled)
 261               async_commit(b);
 262}
 263
 264/*
 265 * Call this if some urgent work is waiting for the commit to complete.
 266 */
 267static void schedule_commit(struct batcher *b)
 268{
 269        bool immediate;
 270
 271        spin_lock_irq(&b->lock);
 272        immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
 273        b->commit_scheduled = true;
 274        spin_unlock_irq(&b->lock);
 275
 276        if (immediate)
 277                async_commit(b);
 278}
 279
 280/*
 281 * There are a couple of places where we let a bio run, but want to do some
 282 * work before calling its endio function.  We do this by temporarily
 283 * changing the endio fn.
 284 */
 285struct dm_hook_info {
 286        bio_end_io_t *bi_end_io;
 287};
 288
 289static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
 290                        bio_end_io_t *bi_end_io, void *bi_private)
 291{
 292        h->bi_end_io = bio->bi_end_io;
 293
 294        bio->bi_end_io = bi_end_io;
 295        bio->bi_private = bi_private;
 296}
 297
 298static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
 299{
 300        bio->bi_end_io = h->bi_end_io;
 301}
 302
 303/*----------------------------------------------------------------*/
 304
 305#define MIGRATION_POOL_SIZE 128
 306#define COMMIT_PERIOD HZ
 307#define MIGRATION_COUNT_WINDOW 10
 308
 309/*
 310 * The block size of the device holding cache data must be
 311 * between 32KB and 1GB.
 312 */
 313#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
 314#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
 315
 316enum cache_metadata_mode {
 317        CM_WRITE,               /* metadata may be changed */
 318        CM_READ_ONLY,           /* metadata may not be changed */
 319        CM_FAIL
 320};
 321
 322enum cache_io_mode {
 323        /*
 324         * Data is written to cached blocks only.  These blocks are marked
 325         * dirty.  If you lose the cache device you will lose data.
 326         * Potential performance increase for both reads and writes.
 327         */
 328        CM_IO_WRITEBACK,
 329
 330        /*
 331         * Data is written to both cache and origin.  Blocks are never
 332         * dirty.  Potential performance benfit for reads only.
 333         */
 334        CM_IO_WRITETHROUGH,
 335
 336        /*
 337         * A degraded mode useful for various cache coherency situations
 338         * (eg, rolling back snapshots).  Reads and writes always go to the
 339         * origin.  If a write goes to a cached oblock, then the cache
 340         * block is invalidated.
 341         */
 342        CM_IO_PASSTHROUGH
 343};
 344
 345struct cache_features {
 346        enum cache_metadata_mode mode;
 347        enum cache_io_mode io_mode;
 348        unsigned metadata_version;
 349        bool discard_passdown:1;
 350};
 351
 352struct cache_stats {
 353        atomic_t read_hit;
 354        atomic_t read_miss;
 355        atomic_t write_hit;
 356        atomic_t write_miss;
 357        atomic_t demotion;
 358        atomic_t promotion;
 359        atomic_t writeback;
 360        atomic_t copies_avoided;
 361        atomic_t cache_cell_clash;
 362        atomic_t commit_count;
 363        atomic_t discard_count;
 364};
 365
 366struct cache {
 367        struct dm_target *ti;
 368        spinlock_t lock;
 369
 370        /*
 371         * Fields for converting from sectors to blocks.
 372         */
 373        int sectors_per_block_shift;
 374        sector_t sectors_per_block;
 375
 376        struct dm_cache_metadata *cmd;
 377
 378        /*
 379         * Metadata is written to this device.
 380         */
 381        struct dm_dev *metadata_dev;
 382
 383        /*
 384         * The slower of the two data devices.  Typically a spindle.
 385         */
 386        struct dm_dev *origin_dev;
 387
 388        /*
 389         * The faster of the two data devices.  Typically an SSD.
 390         */
 391        struct dm_dev *cache_dev;
 392
 393        /*
 394         * Size of the origin device in _complete_ blocks and native sectors.
 395         */
 396        dm_oblock_t origin_blocks;
 397        sector_t origin_sectors;
 398
 399        /*
 400         * Size of the cache device in blocks.
 401         */
 402        dm_cblock_t cache_size;
 403
 404        /*
 405         * Invalidation fields.
 406         */
 407        spinlock_t invalidation_lock;
 408        struct list_head invalidation_requests;
 409
 410        sector_t migration_threshold;
 411        wait_queue_head_t migration_wait;
 412        atomic_t nr_allocated_migrations;
 413
 414        /*
 415         * The number of in flight migrations that are performing
 416         * background io. eg, promotion, writeback.
 417         */
 418        atomic_t nr_io_migrations;
 419
 420        struct bio_list deferred_bios;
 421
 422        struct rw_semaphore quiesce_lock;
 423
 424        /*
 425         * origin_blocks entries, discarded if set.
 426         */
 427        dm_dblock_t discard_nr_blocks;
 428        unsigned long *discard_bitset;
 429        uint32_t discard_block_size; /* a power of 2 times sectors per block */
 430
 431        /*
 432         * Rather than reconstructing the table line for the status we just
 433         * save it and regurgitate.
 434         */
 435        unsigned nr_ctr_args;
 436        const char **ctr_args;
 437
 438        struct dm_kcopyd_client *copier;
 439        struct work_struct deferred_bio_worker;
 440        struct work_struct migration_worker;
 441        struct workqueue_struct *wq;
 442        struct delayed_work waker;
 443        struct dm_bio_prison_v2 *prison;
 444
 445        /*
 446         * cache_size entries, dirty if set
 447         */
 448        unsigned long *dirty_bitset;
 449        atomic_t nr_dirty;
 450
 451        unsigned policy_nr_args;
 452        struct dm_cache_policy *policy;
 453
 454        /*
 455         * Cache features such as write-through.
 456         */
 457        struct cache_features features;
 458
 459        struct cache_stats stats;
 460
 461        bool need_tick_bio:1;
 462        bool sized:1;
 463        bool invalidate:1;
 464        bool commit_requested:1;
 465        bool loaded_mappings:1;
 466        bool loaded_discards:1;
 467
 468        struct rw_semaphore background_work_lock;
 469
 470        struct batcher committer;
 471        struct work_struct commit_ws;
 472
 473        struct io_tracker tracker;
 474
 475        mempool_t migration_pool;
 476
 477        struct bio_set bs;
 478};
 479
 480struct per_bio_data {
 481        bool tick:1;
 482        unsigned req_nr:2;
 483        struct dm_bio_prison_cell_v2 *cell;
 484        struct dm_hook_info hook_info;
 485        sector_t len;
 486};
 487
 488struct dm_cache_migration {
 489        struct continuation k;
 490        struct cache *cache;
 491
 492        struct policy_work *op;
 493        struct bio *overwrite_bio;
 494        struct dm_bio_prison_cell_v2 *cell;
 495
 496        dm_cblock_t invalidate_cblock;
 497        dm_oblock_t invalidate_oblock;
 498};
 499
 500/*----------------------------------------------------------------*/
 501
 502static bool writethrough_mode(struct cache *cache)
 503{
 504        return cache->features.io_mode == CM_IO_WRITETHROUGH;
 505}
 506
 507static bool writeback_mode(struct cache *cache)
 508{
 509        return cache->features.io_mode == CM_IO_WRITEBACK;
 510}
 511
 512static inline bool passthrough_mode(struct cache *cache)
 513{
 514        return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
 515}
 516
 517/*----------------------------------------------------------------*/
 518
 519static void wake_deferred_bio_worker(struct cache *cache)
 520{
 521        queue_work(cache->wq, &cache->deferred_bio_worker);
 522}
 523
 524static void wake_migration_worker(struct cache *cache)
 525{
 526        if (passthrough_mode(cache))
 527                return;
 528
 529        queue_work(cache->wq, &cache->migration_worker);
 530}
 531
 532/*----------------------------------------------------------------*/
 533
 534static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
 535{
 536        return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOIO);
 537}
 538
 539static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
 540{
 541        dm_bio_prison_free_cell_v2(cache->prison, cell);
 542}
 543
 544static struct dm_cache_migration *alloc_migration(struct cache *cache)
 545{
 546        struct dm_cache_migration *mg;
 547
 548        mg = mempool_alloc(&cache->migration_pool, GFP_NOIO);
 549
 550        memset(mg, 0, sizeof(*mg));
 551
 552        mg->cache = cache;
 553        atomic_inc(&cache->nr_allocated_migrations);
 554
 555        return mg;
 556}
 557
 558static void free_migration(struct dm_cache_migration *mg)
 559{
 560        struct cache *cache = mg->cache;
 561
 562        if (atomic_dec_and_test(&cache->nr_allocated_migrations))
 563                wake_up(&cache->migration_wait);
 564
 565        mempool_free(mg, &cache->migration_pool);
 566}
 567
 568/*----------------------------------------------------------------*/
 569
 570static inline dm_oblock_t oblock_succ(dm_oblock_t b)
 571{
 572        return to_oblock(from_oblock(b) + 1ull);
 573}
 574
 575static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
 576{
 577        key->virtual = 0;
 578        key->dev = 0;
 579        key->block_begin = from_oblock(begin);
 580        key->block_end = from_oblock(end);
 581}
 582
 583/*
 584 * We have two lock levels.  Level 0, which is used to prevent WRITEs, and
 585 * level 1 which prevents *both* READs and WRITEs.
 586 */
 587#define WRITE_LOCK_LEVEL 0
 588#define READ_WRITE_LOCK_LEVEL 1
 589
 590static unsigned lock_level(struct bio *bio)
 591{
 592        return bio_data_dir(bio) == WRITE ?
 593                WRITE_LOCK_LEVEL :
 594                READ_WRITE_LOCK_LEVEL;
 595}
 596
 597/*----------------------------------------------------------------
 598 * Per bio data
 599 *--------------------------------------------------------------*/
 600
 601static struct per_bio_data *get_per_bio_data(struct bio *bio)
 602{
 603        struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
 604        BUG_ON(!pb);
 605        return pb;
 606}
 607
 608static struct per_bio_data *init_per_bio_data(struct bio *bio)
 609{
 610        struct per_bio_data *pb = get_per_bio_data(bio);
 611
 612        pb->tick = false;
 613        pb->req_nr = dm_bio_get_target_bio_nr(bio);
 614        pb->cell = NULL;
 615        pb->len = 0;
 616
 617        return pb;
 618}
 619
 620/*----------------------------------------------------------------*/
 621
 622static void defer_bio(struct cache *cache, struct bio *bio)
 623{
 624        spin_lock_irq(&cache->lock);
 625        bio_list_add(&cache->deferred_bios, bio);
 626        spin_unlock_irq(&cache->lock);
 627
 628        wake_deferred_bio_worker(cache);
 629}
 630
 631static void defer_bios(struct cache *cache, struct bio_list *bios)
 632{
 633        spin_lock_irq(&cache->lock);
 634        bio_list_merge(&cache->deferred_bios, bios);
 635        bio_list_init(bios);
 636        spin_unlock_irq(&cache->lock);
 637
 638        wake_deferred_bio_worker(cache);
 639}
 640
 641/*----------------------------------------------------------------*/
 642
 643static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
 644{
 645        bool r;
 646        struct per_bio_data *pb;
 647        struct dm_cell_key_v2 key;
 648        dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
 649        struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
 650
 651        cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
 652
 653        build_key(oblock, end, &key);
 654        r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
 655        if (!r) {
 656                /*
 657                 * Failed to get the lock.
 658                 */
 659                free_prison_cell(cache, cell_prealloc);
 660                return r;
 661        }
 662
 663        if (cell != cell_prealloc)
 664                free_prison_cell(cache, cell_prealloc);
 665
 666        pb = get_per_bio_data(bio);
 667        pb->cell = cell;
 668
 669        return r;
 670}
 671
 672/*----------------------------------------------------------------*/
 673
 674static bool is_dirty(struct cache *cache, dm_cblock_t b)
 675{
 676        return test_bit(from_cblock(b), cache->dirty_bitset);
 677}
 678
 679static void set_dirty(struct cache *cache, dm_cblock_t cblock)
 680{
 681        if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
 682                atomic_inc(&cache->nr_dirty);
 683                policy_set_dirty(cache->policy, cblock);
 684        }
 685}
 686
 687/*
 688 * These two are called when setting after migrations to force the policy
 689 * and dirty bitset to be in sync.
 690 */
 691static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
 692{
 693        if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
 694                atomic_inc(&cache->nr_dirty);
 695        policy_set_dirty(cache->policy, cblock);
 696}
 697
 698static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
 699{
 700        if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
 701                if (atomic_dec_return(&cache->nr_dirty) == 0)
 702                        dm_table_event(cache->ti->table);
 703        }
 704
 705        policy_clear_dirty(cache->policy, cblock);
 706}
 707
 708/*----------------------------------------------------------------*/
 709
 710static bool block_size_is_power_of_two(struct cache *cache)
 711{
 712        return cache->sectors_per_block_shift >= 0;
 713}
 714
 715/* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
 716#if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
 717__always_inline
 718#endif
 719static dm_block_t block_div(dm_block_t b, uint32_t n)
 720{
 721        do_div(b, n);
 722
 723        return b;
 724}
 725
 726static dm_block_t oblocks_per_dblock(struct cache *cache)
 727{
 728        dm_block_t oblocks = cache->discard_block_size;
 729
 730        if (block_size_is_power_of_two(cache))
 731                oblocks >>= cache->sectors_per_block_shift;
 732        else
 733                oblocks = block_div(oblocks, cache->sectors_per_block);
 734
 735        return oblocks;
 736}
 737
 738static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
 739{
 740        return to_dblock(block_div(from_oblock(oblock),
 741                                   oblocks_per_dblock(cache)));
 742}
 743
 744static void set_discard(struct cache *cache, dm_dblock_t b)
 745{
 746        BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
 747        atomic_inc(&cache->stats.discard_count);
 748
 749        spin_lock_irq(&cache->lock);
 750        set_bit(from_dblock(b), cache->discard_bitset);
 751        spin_unlock_irq(&cache->lock);
 752}
 753
 754static void clear_discard(struct cache *cache, dm_dblock_t b)
 755{
 756        spin_lock_irq(&cache->lock);
 757        clear_bit(from_dblock(b), cache->discard_bitset);
 758        spin_unlock_irq(&cache->lock);
 759}
 760
 761static bool is_discarded(struct cache *cache, dm_dblock_t b)
 762{
 763        int r;
 764        spin_lock_irq(&cache->lock);
 765        r = test_bit(from_dblock(b), cache->discard_bitset);
 766        spin_unlock_irq(&cache->lock);
 767
 768        return r;
 769}
 770
 771static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
 772{
 773        int r;
 774        spin_lock_irq(&cache->lock);
 775        r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
 776                     cache->discard_bitset);
 777        spin_unlock_irq(&cache->lock);
 778
 779        return r;
 780}
 781
 782/*----------------------------------------------------------------
 783 * Remapping
 784 *--------------------------------------------------------------*/
 785static void remap_to_origin(struct cache *cache, struct bio *bio)
 786{
 787        bio_set_dev(bio, cache->origin_dev->bdev);
 788}
 789
 790static void remap_to_cache(struct cache *cache, struct bio *bio,
 791                           dm_cblock_t cblock)
 792{
 793        sector_t bi_sector = bio->bi_iter.bi_sector;
 794        sector_t block = from_cblock(cblock);
 795
 796        bio_set_dev(bio, cache->cache_dev->bdev);
 797        if (!block_size_is_power_of_two(cache))
 798                bio->bi_iter.bi_sector =
 799                        (block * cache->sectors_per_block) +
 800                        sector_div(bi_sector, cache->sectors_per_block);
 801        else
 802                bio->bi_iter.bi_sector =
 803                        (block << cache->sectors_per_block_shift) |
 804                        (bi_sector & (cache->sectors_per_block - 1));
 805}
 806
 807static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
 808{
 809        struct per_bio_data *pb;
 810
 811        spin_lock_irq(&cache->lock);
 812        if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
 813            bio_op(bio) != REQ_OP_DISCARD) {
 814                pb = get_per_bio_data(bio);
 815                pb->tick = true;
 816                cache->need_tick_bio = false;
 817        }
 818        spin_unlock_irq(&cache->lock);
 819}
 820
 821static void __remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
 822                                            dm_oblock_t oblock, bool bio_has_pbd)
 823{
 824        if (bio_has_pbd)
 825                check_if_tick_bio_needed(cache, bio);
 826        remap_to_origin(cache, bio);
 827        if (bio_data_dir(bio) == WRITE)
 828                clear_discard(cache, oblock_to_dblock(cache, oblock));
 829}
 830
 831static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
 832                                          dm_oblock_t oblock)
 833{
 834        // FIXME: check_if_tick_bio_needed() is called way too much through this interface
 835        __remap_to_origin_clear_discard(cache, bio, oblock, true);
 836}
 837
 838static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
 839                                 dm_oblock_t oblock, dm_cblock_t cblock)
 840{
 841        check_if_tick_bio_needed(cache, bio);
 842        remap_to_cache(cache, bio, cblock);
 843        if (bio_data_dir(bio) == WRITE) {
 844                set_dirty(cache, cblock);
 845                clear_discard(cache, oblock_to_dblock(cache, oblock));
 846        }
 847}
 848
 849static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
 850{
 851        sector_t block_nr = bio->bi_iter.bi_sector;
 852
 853        if (!block_size_is_power_of_two(cache))
 854                (void) sector_div(block_nr, cache->sectors_per_block);
 855        else
 856                block_nr >>= cache->sectors_per_block_shift;
 857
 858        return to_oblock(block_nr);
 859}
 860
 861static bool accountable_bio(struct cache *cache, struct bio *bio)
 862{
 863        return bio_op(bio) != REQ_OP_DISCARD;
 864}
 865
 866static void accounted_begin(struct cache *cache, struct bio *bio)
 867{
 868        struct per_bio_data *pb;
 869
 870        if (accountable_bio(cache, bio)) {
 871                pb = get_per_bio_data(bio);
 872                pb->len = bio_sectors(bio);
 873                iot_io_begin(&cache->tracker, pb->len);
 874        }
 875}
 876
 877static void accounted_complete(struct cache *cache, struct bio *bio)
 878{
 879        struct per_bio_data *pb = get_per_bio_data(bio);
 880
 881        iot_io_end(&cache->tracker, pb->len);
 882}
 883
 884static void accounted_request(struct cache *cache, struct bio *bio)
 885{
 886        accounted_begin(cache, bio);
 887        submit_bio_noacct(bio);
 888}
 889
 890static void issue_op(struct bio *bio, void *context)
 891{
 892        struct cache *cache = context;
 893        accounted_request(cache, bio);
 894}
 895
 896/*
 897 * When running in writethrough mode we need to send writes to clean blocks
 898 * to both the cache and origin devices.  Clone the bio and send them in parallel.
 899 */
 900static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
 901                                      dm_oblock_t oblock, dm_cblock_t cblock)
 902{
 903        struct bio *origin_bio = bio_clone_fast(bio, GFP_NOIO, &cache->bs);
 904
 905        BUG_ON(!origin_bio);
 906
 907        bio_chain(origin_bio, bio);
 908        /*
 909         * Passing false to __remap_to_origin_clear_discard() skips
 910         * all code that might use per_bio_data (since clone doesn't have it)
 911         */
 912        __remap_to_origin_clear_discard(cache, origin_bio, oblock, false);
 913        submit_bio(origin_bio);
 914
 915        remap_to_cache(cache, bio, cblock);
 916}
 917
 918/*----------------------------------------------------------------
 919 * Failure modes
 920 *--------------------------------------------------------------*/
 921static enum cache_metadata_mode get_cache_mode(struct cache *cache)
 922{
 923        return cache->features.mode;
 924}
 925
 926static const char *cache_device_name(struct cache *cache)
 927{
 928        return dm_device_name(dm_table_get_md(cache->ti->table));
 929}
 930
 931static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
 932{
 933        const char *descs[] = {
 934                "write",
 935                "read-only",
 936                "fail"
 937        };
 938
 939        dm_table_event(cache->ti->table);
 940        DMINFO("%s: switching cache to %s mode",
 941               cache_device_name(cache), descs[(int)mode]);
 942}
 943
 944static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
 945{
 946        bool needs_check;
 947        enum cache_metadata_mode old_mode = get_cache_mode(cache);
 948
 949        if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
 950                DMERR("%s: unable to read needs_check flag, setting failure mode.",
 951                      cache_device_name(cache));
 952                new_mode = CM_FAIL;
 953        }
 954
 955        if (new_mode == CM_WRITE && needs_check) {
 956                DMERR("%s: unable to switch cache to write mode until repaired.",
 957                      cache_device_name(cache));
 958                if (old_mode != new_mode)
 959                        new_mode = old_mode;
 960                else
 961                        new_mode = CM_READ_ONLY;
 962        }
 963
 964        /* Never move out of fail mode */
 965        if (old_mode == CM_FAIL)
 966                new_mode = CM_FAIL;
 967
 968        switch (new_mode) {
 969        case CM_FAIL:
 970        case CM_READ_ONLY:
 971                dm_cache_metadata_set_read_only(cache->cmd);
 972                break;
 973
 974        case CM_WRITE:
 975                dm_cache_metadata_set_read_write(cache->cmd);
 976                break;
 977        }
 978
 979        cache->features.mode = new_mode;
 980
 981        if (new_mode != old_mode)
 982                notify_mode_switch(cache, new_mode);
 983}
 984
 985static void abort_transaction(struct cache *cache)
 986{
 987        const char *dev_name = cache_device_name(cache);
 988
 989        if (get_cache_mode(cache) >= CM_READ_ONLY)
 990                return;
 991
 992        if (dm_cache_metadata_set_needs_check(cache->cmd)) {
 993                DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
 994                set_cache_mode(cache, CM_FAIL);
 995        }
 996
 997        DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
 998        if (dm_cache_metadata_abort(cache->cmd)) {
 999                DMERR("%s: failed to abort metadata transaction", dev_name);
1000                set_cache_mode(cache, CM_FAIL);
1001        }
1002}
1003
1004static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1005{
1006        DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1007                    cache_device_name(cache), op, r);
1008        abort_transaction(cache);
1009        set_cache_mode(cache, CM_READ_ONLY);
1010}
1011
1012/*----------------------------------------------------------------*/
1013
1014static void load_stats(struct cache *cache)
1015{
1016        struct dm_cache_statistics stats;
1017
1018        dm_cache_metadata_get_stats(cache->cmd, &stats);
1019        atomic_set(&cache->stats.read_hit, stats.read_hits);
1020        atomic_set(&cache->stats.read_miss, stats.read_misses);
1021        atomic_set(&cache->stats.write_hit, stats.write_hits);
1022        atomic_set(&cache->stats.write_miss, stats.write_misses);
1023}
1024
1025static void save_stats(struct cache *cache)
1026{
1027        struct dm_cache_statistics stats;
1028
1029        if (get_cache_mode(cache) >= CM_READ_ONLY)
1030                return;
1031
1032        stats.read_hits = atomic_read(&cache->stats.read_hit);
1033        stats.read_misses = atomic_read(&cache->stats.read_miss);
1034        stats.write_hits = atomic_read(&cache->stats.write_hit);
1035        stats.write_misses = atomic_read(&cache->stats.write_miss);
1036
1037        dm_cache_metadata_set_stats(cache->cmd, &stats);
1038}
1039
1040static void update_stats(struct cache_stats *stats, enum policy_operation op)
1041{
1042        switch (op) {
1043        case POLICY_PROMOTE:
1044                atomic_inc(&stats->promotion);
1045                break;
1046
1047        case POLICY_DEMOTE:
1048                atomic_inc(&stats->demotion);
1049                break;
1050
1051        case POLICY_WRITEBACK:
1052                atomic_inc(&stats->writeback);
1053                break;
1054        }
1055}
1056
1057/*----------------------------------------------------------------
1058 * Migration processing
1059 *
1060 * Migration covers moving data from the origin device to the cache, or
1061 * vice versa.
1062 *--------------------------------------------------------------*/
1063
1064static void inc_io_migrations(struct cache *cache)
1065{
1066        atomic_inc(&cache->nr_io_migrations);
1067}
1068
1069static void dec_io_migrations(struct cache *cache)
1070{
1071        atomic_dec(&cache->nr_io_migrations);
1072}
1073
1074static bool discard_or_flush(struct bio *bio)
1075{
1076        return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
1077}
1078
1079static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1080                                     dm_dblock_t *b, dm_dblock_t *e)
1081{
1082        sector_t sb = bio->bi_iter.bi_sector;
1083        sector_t se = bio_end_sector(bio);
1084
1085        *b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1086
1087        if (se - sb < cache->discard_block_size)
1088                *e = *b;
1089        else
1090                *e = to_dblock(block_div(se, cache->discard_block_size));
1091}
1092
1093/*----------------------------------------------------------------*/
1094
1095static void prevent_background_work(struct cache *cache)
1096{
1097        lockdep_off();
1098        down_write(&cache->background_work_lock);
1099        lockdep_on();
1100}
1101
1102static void allow_background_work(struct cache *cache)
1103{
1104        lockdep_off();
1105        up_write(&cache->background_work_lock);
1106        lockdep_on();
1107}
1108
1109static bool background_work_begin(struct cache *cache)
1110{
1111        bool r;
1112
1113        lockdep_off();
1114        r = down_read_trylock(&cache->background_work_lock);
1115        lockdep_on();
1116
1117        return r;
1118}
1119
1120static void background_work_end(struct cache *cache)
1121{
1122        lockdep_off();
1123        up_read(&cache->background_work_lock);
1124        lockdep_on();
1125}
1126
1127/*----------------------------------------------------------------*/
1128
1129static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1130{
1131        return (bio_data_dir(bio) == WRITE) &&
1132                (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1133}
1134
1135static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1136{
1137        return writeback_mode(cache) &&
1138                (is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1139}
1140
1141static void quiesce(struct dm_cache_migration *mg,
1142                    void (*continuation)(struct work_struct *))
1143{
1144        init_continuation(&mg->k, continuation);
1145        dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1146}
1147
1148static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1149{
1150        struct continuation *k = container_of(ws, struct continuation, ws);
1151        return container_of(k, struct dm_cache_migration, k);
1152}
1153
1154static void copy_complete(int read_err, unsigned long write_err, void *context)
1155{
1156        struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
1157
1158        if (read_err || write_err)
1159                mg->k.input = BLK_STS_IOERR;
1160
1161        queue_continuation(mg->cache->wq, &mg->k);
1162}
1163
1164static void copy(struct dm_cache_migration *mg, bool promote)
1165{
1166        struct dm_io_region o_region, c_region;
1167        struct cache *cache = mg->cache;
1168
1169        o_region.bdev = cache->origin_dev->bdev;
1170        o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1171        o_region.count = cache->sectors_per_block;
1172
1173        c_region.bdev = cache->cache_dev->bdev;
1174        c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1175        c_region.count = cache->sectors_per_block;
1176
1177        if (promote)
1178                dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1179        else
1180                dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1181}
1182
1183static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1184{
1185        struct per_bio_data *pb = get_per_bio_data(bio);
1186
1187        if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1188                free_prison_cell(cache, pb->cell);
1189        pb->cell = NULL;
1190}
1191
1192static void overwrite_endio(struct bio *bio)
1193{
1194        struct dm_cache_migration *mg = bio->bi_private;
1195        struct cache *cache = mg->cache;
1196        struct per_bio_data *pb = get_per_bio_data(bio);
1197
1198        dm_unhook_bio(&pb->hook_info, bio);
1199
1200        if (bio->bi_status)
1201                mg->k.input = bio->bi_status;
1202
1203        queue_continuation(cache->wq, &mg->k);
1204}
1205
1206static void overwrite(struct dm_cache_migration *mg,
1207                      void (*continuation)(struct work_struct *))
1208{
1209        struct bio *bio = mg->overwrite_bio;
1210        struct per_bio_data *pb = get_per_bio_data(bio);
1211
1212        dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1213
1214        /*
1215         * The overwrite bio is part of the copy operation, as such it does
1216         * not set/clear discard or dirty flags.
1217         */
1218        if (mg->op->op == POLICY_PROMOTE)
1219                remap_to_cache(mg->cache, bio, mg->op->cblock);
1220        else
1221                remap_to_origin(mg->cache, bio);
1222
1223        init_continuation(&mg->k, continuation);
1224        accounted_request(mg->cache, bio);
1225}
1226
1227/*
1228 * Migration steps:
1229 *
1230 * 1) exclusive lock preventing WRITEs
1231 * 2) quiesce
1232 * 3) copy or issue overwrite bio
1233 * 4) upgrade to exclusive lock preventing READs and WRITEs
1234 * 5) quiesce
1235 * 6) update metadata and commit
1236 * 7) unlock
1237 */
1238static void mg_complete(struct dm_cache_migration *mg, bool success)
1239{
1240        struct bio_list bios;
1241        struct cache *cache = mg->cache;
1242        struct policy_work *op = mg->op;
1243        dm_cblock_t cblock = op->cblock;
1244
1245        if (success)
1246                update_stats(&cache->stats, op->op);
1247
1248        switch (op->op) {
1249        case POLICY_PROMOTE:
1250                clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1251                policy_complete_background_work(cache->policy, op, success);
1252
1253                if (mg->overwrite_bio) {
1254                        if (success)
1255                                force_set_dirty(cache, cblock);
1256                        else if (mg->k.input)
1257                                mg->overwrite_bio->bi_status = mg->k.input;
1258                        else
1259                                mg->overwrite_bio->bi_status = BLK_STS_IOERR;
1260                        bio_endio(mg->overwrite_bio);
1261                } else {
1262                        if (success)
1263                                force_clear_dirty(cache, cblock);
1264                        dec_io_migrations(cache);
1265                }
1266                break;
1267
1268        case POLICY_DEMOTE:
1269                /*
1270                 * We clear dirty here to update the nr_dirty counter.
1271                 */
1272                if (success)
1273                        force_clear_dirty(cache, cblock);
1274                policy_complete_background_work(cache->policy, op, success);
1275                dec_io_migrations(cache);
1276                break;
1277
1278        case POLICY_WRITEBACK:
1279                if (success)
1280                        force_clear_dirty(cache, cblock);
1281                policy_complete_background_work(cache->policy, op, success);
1282                dec_io_migrations(cache);
1283                break;
1284        }
1285
1286        bio_list_init(&bios);
1287        if (mg->cell) {
1288                if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1289                        free_prison_cell(cache, mg->cell);
1290        }
1291
1292        free_migration(mg);
1293        defer_bios(cache, &bios);
1294        wake_migration_worker(cache);
1295
1296        background_work_end(cache);
1297}
1298
1299static void mg_success(struct work_struct *ws)
1300{
1301        struct dm_cache_migration *mg = ws_to_mg(ws);
1302        mg_complete(mg, mg->k.input == 0);
1303}
1304
1305static void mg_update_metadata(struct work_struct *ws)
1306{
1307        int r;
1308        struct dm_cache_migration *mg = ws_to_mg(ws);
1309        struct cache *cache = mg->cache;
1310        struct policy_work *op = mg->op;
1311
1312        switch (op->op) {
1313        case POLICY_PROMOTE:
1314                r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1315                if (r) {
1316                        DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1317                                    cache_device_name(cache));
1318                        metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1319
1320                        mg_complete(mg, false);
1321                        return;
1322                }
1323                mg_complete(mg, true);
1324                break;
1325
1326        case POLICY_DEMOTE:
1327                r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1328                if (r) {
1329                        DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1330                                    cache_device_name(cache));
1331                        metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1332
1333                        mg_complete(mg, false);
1334                        return;
1335                }
1336
1337                /*
1338                 * It would be nice if we only had to commit when a REQ_FLUSH
1339                 * comes through.  But there's one scenario that we have to
1340                 * look out for:
1341                 *
1342                 * - vblock x in a cache block
1343                 * - domotion occurs
1344                 * - cache block gets reallocated and over written
1345                 * - crash
1346                 *
1347                 * When we recover, because there was no commit the cache will
1348                 * rollback to having the data for vblock x in the cache block.
1349                 * But the cache block has since been overwritten, so it'll end
1350                 * up pointing to data that was never in 'x' during the history
1351                 * of the device.
1352                 *
1353                 * To avoid this issue we require a commit as part of the
1354                 * demotion operation.
1355                 */
1356                init_continuation(&mg->k, mg_success);
1357                continue_after_commit(&cache->committer, &mg->k);
1358                schedule_commit(&cache->committer);
1359                break;
1360
1361        case POLICY_WRITEBACK:
1362                mg_complete(mg, true);
1363                break;
1364        }
1365}
1366
1367static void mg_update_metadata_after_copy(struct work_struct *ws)
1368{
1369        struct dm_cache_migration *mg = ws_to_mg(ws);
1370
1371        /*
1372         * Did the copy succeed?
1373         */
1374        if (mg->k.input)
1375                mg_complete(mg, false);
1376        else
1377                mg_update_metadata(ws);
1378}
1379
1380static void mg_upgrade_lock(struct work_struct *ws)
1381{
1382        int r;
1383        struct dm_cache_migration *mg = ws_to_mg(ws);
1384
1385        /*
1386         * Did the copy succeed?
1387         */
1388        if (mg->k.input)
1389                mg_complete(mg, false);
1390
1391        else {
1392                /*
1393                 * Now we want the lock to prevent both reads and writes.
1394                 */
1395                r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1396                                            READ_WRITE_LOCK_LEVEL);
1397                if (r < 0)
1398                        mg_complete(mg, false);
1399
1400                else if (r)
1401                        quiesce(mg, mg_update_metadata);
1402
1403                else
1404                        mg_update_metadata(ws);
1405        }
1406}
1407
1408static void mg_full_copy(struct work_struct *ws)
1409{
1410        struct dm_cache_migration *mg = ws_to_mg(ws);
1411        struct cache *cache = mg->cache;
1412        struct policy_work *op = mg->op;
1413        bool is_policy_promote = (op->op == POLICY_PROMOTE);
1414
1415        if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1416            is_discarded_oblock(cache, op->oblock)) {
1417                mg_upgrade_lock(ws);
1418                return;
1419        }
1420
1421        init_continuation(&mg->k, mg_upgrade_lock);
1422        copy(mg, is_policy_promote);
1423}
1424
1425static void mg_copy(struct work_struct *ws)
1426{
1427        struct dm_cache_migration *mg = ws_to_mg(ws);
1428
1429        if (mg->overwrite_bio) {
1430                /*
1431                 * No exclusive lock was held when we last checked if the bio
1432                 * was optimisable.  So we have to check again in case things
1433                 * have changed (eg, the block may no longer be discarded).
1434                 */
1435                if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1436                        /*
1437                         * Fallback to a real full copy after doing some tidying up.
1438                         */
1439                        bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1440                        BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */
1441                        mg->overwrite_bio = NULL;
1442                        inc_io_migrations(mg->cache);
1443                        mg_full_copy(ws);
1444                        return;
1445                }
1446
1447                /*
1448                 * It's safe to do this here, even though it's new data
1449                 * because all IO has been locked out of the block.
1450                 *
1451                 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1452                 * so _not_ using mg_upgrade_lock() as continutation.
1453                 */
1454                overwrite(mg, mg_update_metadata_after_copy);
1455
1456        } else
1457                mg_full_copy(ws);
1458}
1459
1460static int mg_lock_writes(struct dm_cache_migration *mg)
1461{
1462        int r;
1463        struct dm_cell_key_v2 key;
1464        struct cache *cache = mg->cache;
1465        struct dm_bio_prison_cell_v2 *prealloc;
1466
1467        prealloc = alloc_prison_cell(cache);
1468
1469        /*
1470         * Prevent writes to the block, but allow reads to continue.
1471         * Unless we're using an overwrite bio, in which case we lock
1472         * everything.
1473         */
1474        build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1475        r = dm_cell_lock_v2(cache->prison, &key,
1476                            mg->overwrite_bio ?  READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1477                            prealloc, &mg->cell);
1478        if (r < 0) {
1479                free_prison_cell(cache, prealloc);
1480                mg_complete(mg, false);
1481                return r;
1482        }
1483
1484        if (mg->cell != prealloc)
1485                free_prison_cell(cache, prealloc);
1486
1487        if (r == 0)
1488                mg_copy(&mg->k.ws);
1489        else
1490                quiesce(mg, mg_copy);
1491
1492        return 0;
1493}
1494
1495static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
1496{
1497        struct dm_cache_migration *mg;
1498
1499        if (!background_work_begin(cache)) {
1500                policy_complete_background_work(cache->policy, op, false);
1501                return -EPERM;
1502        }
1503
1504        mg = alloc_migration(cache);
1505
1506        mg->op = op;
1507        mg->overwrite_bio = bio;
1508
1509        if (!bio)
1510                inc_io_migrations(cache);
1511
1512        return mg_lock_writes(mg);
1513}
1514
1515/*----------------------------------------------------------------
1516 * invalidation processing
1517 *--------------------------------------------------------------*/
1518
1519static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1520{
1521        struct bio_list bios;
1522        struct cache *cache = mg->cache;
1523
1524        bio_list_init(&bios);
1525        if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1526                free_prison_cell(cache, mg->cell);
1527
1528        if (!success && mg->overwrite_bio)
1529                bio_io_error(mg->overwrite_bio);
1530
1531        free_migration(mg);
1532        defer_bios(cache, &bios);
1533
1534        background_work_end(cache);
1535}
1536
1537static void invalidate_completed(struct work_struct *ws)
1538{
1539        struct dm_cache_migration *mg = ws_to_mg(ws);
1540        invalidate_complete(mg, !mg->k.input);
1541}
1542
1543static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1544{
1545        int r = policy_invalidate_mapping(cache->policy, cblock);
1546        if (!r) {
1547                r = dm_cache_remove_mapping(cache->cmd, cblock);
1548                if (r) {
1549                        DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1550                                    cache_device_name(cache));
1551                        metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1552                }
1553
1554        } else if (r == -ENODATA) {
1555                /*
1556                 * Harmless, already unmapped.
1557                 */
1558                r = 0;
1559
1560        } else
1561                DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1562
1563        return r;
1564}
1565
1566static void invalidate_remove(struct work_struct *ws)
1567{
1568        int r;
1569        struct dm_cache_migration *mg = ws_to_mg(ws);
1570        struct cache *cache = mg->cache;
1571
1572        r = invalidate_cblock(cache, mg->invalidate_cblock);
1573        if (r) {
1574                invalidate_complete(mg, false);
1575                return;
1576        }
1577
1578        init_continuation(&mg->k, invalidate_completed);
1579        continue_after_commit(&cache->committer, &mg->k);
1580        remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1581        mg->overwrite_bio = NULL;
1582        schedule_commit(&cache->committer);
1583}
1584
1585static int invalidate_lock(struct dm_cache_migration *mg)
1586{
1587        int r;
1588        struct dm_cell_key_v2 key;
1589        struct cache *cache = mg->cache;
1590        struct dm_bio_prison_cell_v2 *prealloc;
1591
1592        prealloc = alloc_prison_cell(cache);
1593
1594        build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1595        r = dm_cell_lock_v2(cache->prison, &key,
1596                            READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1597        if (r < 0) {
1598                free_prison_cell(cache, prealloc);
1599                invalidate_complete(mg, false);
1600                return r;
1601        }
1602
1603        if (mg->cell != prealloc)
1604                free_prison_cell(cache, prealloc);
1605
1606        if (r)
1607                quiesce(mg, invalidate_remove);
1608
1609        else {
1610                /*
1611                 * We can't call invalidate_remove() directly here because we
1612                 * might still be in request context.
1613                 */
1614                init_continuation(&mg->k, invalidate_remove);
1615                queue_work(cache->wq, &mg->k.ws);
1616        }
1617
1618        return 0;
1619}
1620
1621static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1622                            dm_oblock_t oblock, struct bio *bio)
1623{
1624        struct dm_cache_migration *mg;
1625
1626        if (!background_work_begin(cache))
1627                return -EPERM;
1628
1629        mg = alloc_migration(cache);
1630
1631        mg->overwrite_bio = bio;
1632        mg->invalidate_cblock = cblock;
1633        mg->invalidate_oblock = oblock;
1634
1635        return invalidate_lock(mg);
1636}
1637
1638/*----------------------------------------------------------------
1639 * bio processing
1640 *--------------------------------------------------------------*/
1641
1642enum busy {
1643        IDLE,
1644        BUSY
1645};
1646
1647static enum busy spare_migration_bandwidth(struct cache *cache)
1648{
1649        bool idle = iot_idle_for(&cache->tracker, HZ);
1650        sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1651                cache->sectors_per_block;
1652
1653        if (idle && current_volume <= cache->migration_threshold)
1654                return IDLE;
1655        else
1656                return BUSY;
1657}
1658
1659static void inc_hit_counter(struct cache *cache, struct bio *bio)
1660{
1661        atomic_inc(bio_data_dir(bio) == READ ?
1662                   &cache->stats.read_hit : &cache->stats.write_hit);
1663}
1664
1665static void inc_miss_counter(struct cache *cache, struct bio *bio)
1666{
1667        atomic_inc(bio_data_dir(bio) == READ ?
1668                   &cache->stats.read_miss : &cache->stats.write_miss);
1669}
1670
1671/*----------------------------------------------------------------*/
1672
1673static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1674                   bool *commit_needed)
1675{
1676        int r, data_dir;
1677        bool rb, background_queued;
1678        dm_cblock_t cblock;
1679
1680        *commit_needed = false;
1681
1682        rb = bio_detain_shared(cache, block, bio);
1683        if (!rb) {
1684                /*
1685                 * An exclusive lock is held for this block, so we have to
1686                 * wait.  We set the commit_needed flag so the current
1687                 * transaction will be committed asap, allowing this lock
1688                 * to be dropped.
1689                 */
1690                *commit_needed = true;
1691                return DM_MAPIO_SUBMITTED;
1692        }
1693
1694        data_dir = bio_data_dir(bio);
1695
1696        if (optimisable_bio(cache, bio, block)) {
1697                struct policy_work *op = NULL;
1698
1699                r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1700                if (unlikely(r && r != -ENOENT)) {
1701                        DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1702                                    cache_device_name(cache), r);
1703                        bio_io_error(bio);
1704                        return DM_MAPIO_SUBMITTED;
1705                }
1706
1707                if (r == -ENOENT && op) {
1708                        bio_drop_shared_lock(cache, bio);
1709                        BUG_ON(op->op != POLICY_PROMOTE);
1710                        mg_start(cache, op, bio);
1711                        return DM_MAPIO_SUBMITTED;
1712                }
1713        } else {
1714                r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1715                if (unlikely(r && r != -ENOENT)) {
1716                        DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1717                                    cache_device_name(cache), r);
1718                        bio_io_error(bio);
1719                        return DM_MAPIO_SUBMITTED;
1720                }
1721
1722                if (background_queued)
1723                        wake_migration_worker(cache);
1724        }
1725
1726        if (r == -ENOENT) {
1727                struct per_bio_data *pb = get_per_bio_data(bio);
1728
1729                /*
1730                 * Miss.
1731                 */
1732                inc_miss_counter(cache, bio);
1733                if (pb->req_nr == 0) {
1734                        accounted_begin(cache, bio);
1735                        remap_to_origin_clear_discard(cache, bio, block);
1736                } else {
1737                        /*
1738                         * This is a duplicate writethrough io that is no
1739                         * longer needed because the block has been demoted.
1740                         */
1741                        bio_endio(bio);
1742                        return DM_MAPIO_SUBMITTED;
1743                }
1744        } else {
1745                /*
1746                 * Hit.
1747                 */
1748                inc_hit_counter(cache, bio);
1749
1750                /*
1751                 * Passthrough always maps to the origin, invalidating any
1752                 * cache blocks that are written to.
1753                 */
1754                if (passthrough_mode(cache)) {
1755                        if (bio_data_dir(bio) == WRITE) {
1756                                bio_drop_shared_lock(cache, bio);
1757                                atomic_inc(&cache->stats.demotion);
1758                                invalidate_start(cache, cblock, block, bio);
1759                        } else
1760                                remap_to_origin_clear_discard(cache, bio, block);
1761                } else {
1762                        if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
1763                            !is_dirty(cache, cblock)) {
1764                                remap_to_origin_and_cache(cache, bio, block, cblock);
1765                                accounted_begin(cache, bio);
1766                        } else
1767                                remap_to_cache_dirty(cache, bio, block, cblock);
1768                }
1769        }
1770
1771        /*
1772         * dm core turns FUA requests into a separate payload and FLUSH req.
1773         */
1774        if (bio->bi_opf & REQ_FUA) {
1775                /*
1776                 * issue_after_commit will call accounted_begin a second time.  So
1777                 * we call accounted_complete() to avoid double accounting.
1778                 */
1779                accounted_complete(cache, bio);
1780                issue_after_commit(&cache->committer, bio);
1781                *commit_needed = true;
1782                return DM_MAPIO_SUBMITTED;
1783        }
1784
1785        return DM_MAPIO_REMAPPED;
1786}
1787
1788static bool process_bio(struct cache *cache, struct bio *bio)
1789{
1790        bool commit_needed;
1791
1792        if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1793                submit_bio_noacct(bio);
1794
1795        return commit_needed;
1796}
1797
1798/*
1799 * A non-zero return indicates read_only or fail_io mode.
1800 */
1801static int commit(struct cache *cache, bool clean_shutdown)
1802{
1803        int r;
1804
1805        if (get_cache_mode(cache) >= CM_READ_ONLY)
1806                return -EINVAL;
1807
1808        atomic_inc(&cache->stats.commit_count);
1809        r = dm_cache_commit(cache->cmd, clean_shutdown);
1810        if (r)
1811                metadata_operation_failed(cache, "dm_cache_commit", r);
1812
1813        return r;
1814}
1815
1816/*
1817 * Used by the batcher.
1818 */
1819static blk_status_t commit_op(void *context)
1820{
1821        struct cache *cache = context;
1822
1823        if (dm_cache_changed_this_transaction(cache->cmd))
1824                return errno_to_blk_status(commit(cache, false));
1825
1826        return 0;
1827}
1828
1829/*----------------------------------------------------------------*/
1830
1831static bool process_flush_bio(struct cache *cache, struct bio *bio)
1832{
1833        struct per_bio_data *pb = get_per_bio_data(bio);
1834
1835        if (!pb->req_nr)
1836                remap_to_origin(cache, bio);
1837        else
1838                remap_to_cache(cache, bio, 0);
1839
1840        issue_after_commit(&cache->committer, bio);
1841        return true;
1842}
1843
1844static bool process_discard_bio(struct cache *cache, struct bio *bio)
1845{
1846        dm_dblock_t b, e;
1847
1848        // FIXME: do we need to lock the region?  Or can we just assume the
1849        // user wont be so foolish as to issue discard concurrently with
1850        // other IO?
1851        calc_discard_block_range(cache, bio, &b, &e);
1852        while (b != e) {
1853                set_discard(cache, b);
1854                b = to_dblock(from_dblock(b) + 1);
1855        }
1856
1857        if (cache->features.discard_passdown) {
1858                remap_to_origin(cache, bio);
1859                submit_bio_noacct(bio);
1860        } else
1861                bio_endio(bio);
1862
1863        return false;
1864}
1865
1866static void process_deferred_bios(struct work_struct *ws)
1867{
1868        struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1869
1870        bool commit_needed = false;
1871        struct bio_list bios;
1872        struct bio *bio;
1873
1874        bio_list_init(&bios);
1875
1876        spin_lock_irq(&cache->lock);
1877        bio_list_merge(&bios, &cache->deferred_bios);
1878        bio_list_init(&cache->deferred_bios);
1879        spin_unlock_irq(&cache->lock);
1880
1881        while ((bio = bio_list_pop(&bios))) {
1882                if (bio->bi_opf & REQ_PREFLUSH)
1883                        commit_needed = process_flush_bio(cache, bio) || commit_needed;
1884
1885                else if (bio_op(bio) == REQ_OP_DISCARD)
1886                        commit_needed = process_discard_bio(cache, bio) || commit_needed;
1887
1888                else
1889                        commit_needed = process_bio(cache, bio) || commit_needed;
1890        }
1891
1892        if (commit_needed)
1893                schedule_commit(&cache->committer);
1894}
1895
1896/*----------------------------------------------------------------
1897 * Main worker loop
1898 *--------------------------------------------------------------*/
1899
1900static void requeue_deferred_bios(struct cache *cache)
1901{
1902        struct bio *bio;
1903        struct bio_list bios;
1904
1905        bio_list_init(&bios);
1906        bio_list_merge(&bios, &cache->deferred_bios);
1907        bio_list_init(&cache->deferred_bios);
1908
1909        while ((bio = bio_list_pop(&bios))) {
1910                bio->bi_status = BLK_STS_DM_REQUEUE;
1911                bio_endio(bio);
1912        }
1913}
1914
1915/*
1916 * We want to commit periodically so that not too much
1917 * unwritten metadata builds up.
1918 */
1919static void do_waker(struct work_struct *ws)
1920{
1921        struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1922
1923        policy_tick(cache->policy, true);
1924        wake_migration_worker(cache);
1925        schedule_commit(&cache->committer);
1926        queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1927}
1928
1929static void check_migrations(struct work_struct *ws)
1930{
1931        int r;
1932        struct policy_work *op;
1933        struct cache *cache = container_of(ws, struct cache, migration_worker);
1934        enum busy b;
1935
1936        for (;;) {
1937                b = spare_migration_bandwidth(cache);
1938
1939                r = policy_get_background_work(cache->policy, b == IDLE, &op);
1940                if (r == -ENODATA)
1941                        break;
1942
1943                if (r) {
1944                        DMERR_LIMIT("%s: policy_background_work failed",
1945                                    cache_device_name(cache));
1946                        break;
1947                }
1948
1949                r = mg_start(cache, op, NULL);
1950                if (r)
1951                        break;
1952        }
1953}
1954
1955/*----------------------------------------------------------------
1956 * Target methods
1957 *--------------------------------------------------------------*/
1958
1959/*
1960 * This function gets called on the error paths of the constructor, so we
1961 * have to cope with a partially initialised struct.
1962 */
1963static void destroy(struct cache *cache)
1964{
1965        unsigned i;
1966
1967        mempool_exit(&cache->migration_pool);
1968
1969        if (cache->prison)
1970                dm_bio_prison_destroy_v2(cache->prison);
1971
1972        if (cache->wq)
1973                destroy_workqueue(cache->wq);
1974
1975        if (cache->dirty_bitset)
1976                free_bitset(cache->dirty_bitset);
1977
1978        if (cache->discard_bitset)
1979                free_bitset(cache->discard_bitset);
1980
1981        if (cache->copier)
1982                dm_kcopyd_client_destroy(cache->copier);
1983
1984        if (cache->cmd)
1985                dm_cache_metadata_close(cache->cmd);
1986
1987        if (cache->metadata_dev)
1988                dm_put_device(cache->ti, cache->metadata_dev);
1989
1990        if (cache->origin_dev)
1991                dm_put_device(cache->ti, cache->origin_dev);
1992
1993        if (cache->cache_dev)
1994                dm_put_device(cache->ti, cache->cache_dev);
1995
1996        if (cache->policy)
1997                dm_cache_policy_destroy(cache->policy);
1998
1999        for (i = 0; i < cache->nr_ctr_args ; i++)
2000                kfree(cache->ctr_args[i]);
2001        kfree(cache->ctr_args);
2002
2003        bioset_exit(&cache->bs);
2004
2005        kfree(cache);
2006}
2007
2008static void cache_dtr(struct dm_target *ti)
2009{
2010        struct cache *cache = ti->private;
2011
2012        destroy(cache);
2013}
2014
2015static sector_t get_dev_size(struct dm_dev *dev)
2016{
2017        return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2018}
2019
2020/*----------------------------------------------------------------*/
2021
2022/*
2023 * Construct a cache device mapping.
2024 *
2025 * cache <metadata dev> <cache dev> <origin dev> <block size>
2026 *       <#feature args> [<feature arg>]*
2027 *       <policy> <#policy args> [<policy arg>]*
2028 *
2029 * metadata dev    : fast device holding the persistent metadata
2030 * cache dev       : fast device holding cached data blocks
2031 * origin dev      : slow device holding original data blocks
2032 * block size      : cache unit size in sectors
2033 *
2034 * #feature args   : number of feature arguments passed
2035 * feature args    : writethrough.  (The default is writeback.)
2036 *
2037 * policy          : the replacement policy to use
2038 * #policy args    : an even number of policy arguments corresponding
2039 *                   to key/value pairs passed to the policy
2040 * policy args     : key/value pairs passed to the policy
2041 *                   E.g. 'sequential_threshold 1024'
2042 *                   See cache-policies.txt for details.
2043 *
2044 * Optional feature arguments are:
2045 *   writethrough  : write through caching that prohibits cache block
2046 *                   content from being different from origin block content.
2047 *                   Without this argument, the default behaviour is to write
2048 *                   back cache block contents later for performance reasons,
2049 *                   so they may differ from the corresponding origin blocks.
2050 */
2051struct cache_args {
2052        struct dm_target *ti;
2053
2054        struct dm_dev *metadata_dev;
2055
2056        struct dm_dev *cache_dev;
2057        sector_t cache_sectors;
2058
2059        struct dm_dev *origin_dev;
2060        sector_t origin_sectors;
2061
2062        uint32_t block_size;
2063
2064        const char *policy_name;
2065        int policy_argc;
2066        const char **policy_argv;
2067
2068        struct cache_features features;
2069};
2070
2071static void destroy_cache_args(struct cache_args *ca)
2072{
2073        if (ca->metadata_dev)
2074                dm_put_device(ca->ti, ca->metadata_dev);
2075
2076        if (ca->cache_dev)
2077                dm_put_device(ca->ti, ca->cache_dev);
2078
2079        if (ca->origin_dev)
2080                dm_put_device(ca->ti, ca->origin_dev);
2081
2082        kfree(ca);
2083}
2084
2085static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2086{
2087        if (!as->argc) {
2088                *error = "Insufficient args";
2089                return false;
2090        }
2091
2092        return true;
2093}
2094
2095static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2096                              char **error)
2097{
2098        int r;
2099        sector_t metadata_dev_size;
2100        char b[BDEVNAME_SIZE];
2101
2102        if (!at_least_one_arg(as, error))
2103                return -EINVAL;
2104
2105        r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2106                          &ca->metadata_dev);
2107        if (r) {
2108                *error = "Error opening metadata device";
2109                return r;
2110        }
2111
2112        metadata_dev_size = get_dev_size(ca->metadata_dev);
2113        if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2114                DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2115                       bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2116
2117        return 0;
2118}
2119
2120static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2121                           char **error)
2122{
2123        int r;
2124
2125        if (!at_least_one_arg(as, error))
2126                return -EINVAL;
2127
2128        r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2129                          &ca->cache_dev);
2130        if (r) {
2131                *error = "Error opening cache device";
2132                return r;
2133        }
2134        ca->cache_sectors = get_dev_size(ca->cache_dev);
2135
2136        return 0;
2137}
2138
2139static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2140                            char **error)
2141{
2142        int r;
2143
2144        if (!at_least_one_arg(as, error))
2145                return -EINVAL;
2146
2147        r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2148                          &ca->origin_dev);
2149        if (r) {
2150                *error = "Error opening origin device";
2151                return r;
2152        }
2153
2154        ca->origin_sectors = get_dev_size(ca->origin_dev);
2155        if (ca->ti->len > ca->origin_sectors) {
2156                *error = "Device size larger than cached device";
2157                return -EINVAL;
2158        }
2159
2160        return 0;
2161}
2162
2163static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2164                            char **error)
2165{
2166        unsigned long block_size;
2167
2168        if (!at_least_one_arg(as, error))
2169                return -EINVAL;
2170
2171        if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2172            block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2173            block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2174            block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2175                *error = "Invalid data block size";
2176                return -EINVAL;
2177        }
2178
2179        if (block_size > ca->cache_sectors) {
2180                *error = "Data block size is larger than the cache device";
2181                return -EINVAL;
2182        }
2183
2184        ca->block_size = block_size;
2185
2186        return 0;
2187}
2188
2189static void init_features(struct cache_features *cf)
2190{
2191        cf->mode = CM_WRITE;
2192        cf->io_mode = CM_IO_WRITEBACK;
2193        cf->metadata_version = 1;
2194        cf->discard_passdown = true;
2195}
2196
2197static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2198                          char **error)
2199{
2200        static const struct dm_arg _args[] = {
2201                {0, 3, "Invalid number of cache feature arguments"},
2202        };
2203
2204        int r, mode_ctr = 0;
2205        unsigned argc;
2206        const char *arg;
2207        struct cache_features *cf = &ca->features;
2208
2209        init_features(cf);
2210
2211        r = dm_read_arg_group(_args, as, &argc, error);
2212        if (r)
2213                return -EINVAL;
2214
2215        while (argc--) {
2216                arg = dm_shift_arg(as);
2217
2218                if (!strcasecmp(arg, "writeback")) {
2219                        cf->io_mode = CM_IO_WRITEBACK;
2220                        mode_ctr++;
2221                }
2222
2223                else if (!strcasecmp(arg, "writethrough")) {
2224                        cf->io_mode = CM_IO_WRITETHROUGH;
2225                        mode_ctr++;
2226                }
2227
2228                else if (!strcasecmp(arg, "passthrough")) {
2229                        cf->io_mode = CM_IO_PASSTHROUGH;
2230                        mode_ctr++;
2231                }
2232
2233                else if (!strcasecmp(arg, "metadata2"))
2234                        cf->metadata_version = 2;
2235
2236                else if (!strcasecmp(arg, "no_discard_passdown"))
2237                        cf->discard_passdown = false;
2238
2239                else {
2240                        *error = "Unrecognised cache feature requested";
2241                        return -EINVAL;
2242                }
2243        }
2244
2245        if (mode_ctr > 1) {
2246                *error = "Duplicate cache io_mode features requested";
2247                return -EINVAL;
2248        }
2249
2250        return 0;
2251}
2252
2253static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2254                        char **error)
2255{
2256        static const struct dm_arg _args[] = {
2257                {0, 1024, "Invalid number of policy arguments"},
2258        };
2259
2260        int r;
2261
2262        if (!at_least_one_arg(as, error))
2263                return -EINVAL;
2264
2265        ca->policy_name = dm_shift_arg(as);
2266
2267        r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2268        if (r)
2269                return -EINVAL;
2270
2271        ca->policy_argv = (const char **)as->argv;
2272        dm_consume_args(as, ca->policy_argc);
2273
2274        return 0;
2275}
2276
2277static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2278                            char **error)
2279{
2280        int r;
2281        struct dm_arg_set as;
2282
2283        as.argc = argc;
2284        as.argv = argv;
2285
2286        r = parse_metadata_dev(ca, &as, error);
2287        if (r)
2288                return r;
2289
2290        r = parse_cache_dev(ca, &as, error);
2291        if (r)
2292                return r;
2293
2294        r = parse_origin_dev(ca, &as, error);
2295        if (r)
2296                return r;
2297
2298        r = parse_block_size(ca, &as, error);
2299        if (r)
2300                return r;
2301
2302        r = parse_features(ca, &as, error);
2303        if (r)
2304                return r;
2305
2306        r = parse_policy(ca, &as, error);
2307        if (r)
2308                return r;
2309
2310        return 0;
2311}
2312
2313/*----------------------------------------------------------------*/
2314
2315static struct kmem_cache *migration_cache;
2316
2317#define NOT_CORE_OPTION 1
2318
2319static int process_config_option(struct cache *cache, const char *key, const char *value)
2320{
2321        unsigned long tmp;
2322
2323        if (!strcasecmp(key, "migration_threshold")) {
2324                if (kstrtoul(value, 10, &tmp))
2325                        return -EINVAL;
2326
2327                cache->migration_threshold = tmp;
2328                return 0;
2329        }
2330
2331        return NOT_CORE_OPTION;
2332}
2333
2334static int set_config_value(struct cache *cache, const char *key, const char *value)
2335{
2336        int r = process_config_option(cache, key, value);
2337
2338        if (r == NOT_CORE_OPTION)
2339                r = policy_set_config_value(cache->policy, key, value);
2340
2341        if (r)
2342                DMWARN("bad config value for %s: %s", key, value);
2343
2344        return r;
2345}
2346
2347static int set_config_values(struct cache *cache, int argc, const char **argv)
2348{
2349        int r = 0;
2350
2351        if (argc & 1) {
2352                DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2353                return -EINVAL;
2354        }
2355
2356        while (argc) {
2357                r = set_config_value(cache, argv[0], argv[1]);
2358                if (r)
2359                        break;
2360
2361                argc -= 2;
2362                argv += 2;
2363        }
2364
2365        return r;
2366}
2367
2368static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2369                               char **error)
2370{
2371        struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2372                                                           cache->cache_size,
2373                                                           cache->origin_sectors,
2374                                                           cache->sectors_per_block);
2375        if (IS_ERR(p)) {
2376                *error = "Error creating cache's policy";
2377                return PTR_ERR(p);
2378        }
2379        cache->policy = p;
2380        BUG_ON(!cache->policy);
2381
2382        return 0;
2383}
2384
2385/*
2386 * We want the discard block size to be at least the size of the cache
2387 * block size and have no more than 2^14 discard blocks across the origin.
2388 */
2389#define MAX_DISCARD_BLOCKS (1 << 14)
2390
2391static bool too_many_discard_blocks(sector_t discard_block_size,
2392                                    sector_t origin_size)
2393{
2394        (void) sector_div(origin_size, discard_block_size);
2395
2396        return origin_size > MAX_DISCARD_BLOCKS;
2397}
2398
2399static sector_t calculate_discard_block_size(sector_t cache_block_size,
2400                                             sector_t origin_size)
2401{
2402        sector_t discard_block_size = cache_block_size;
2403
2404        if (origin_size)
2405                while (too_many_discard_blocks(discard_block_size, origin_size))
2406                        discard_block_size *= 2;
2407
2408        return discard_block_size;
2409}
2410
2411static void set_cache_size(struct cache *cache, dm_cblock_t size)
2412{
2413        dm_block_t nr_blocks = from_cblock(size);
2414
2415        if (nr_blocks > (1 << 20) && cache->cache_size != size)
2416                DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2417                             "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2418                             "Please consider increasing the cache block size to reduce the overall cache block count.",
2419                             (unsigned long long) nr_blocks);
2420
2421        cache->cache_size = size;
2422}
2423
2424#define DEFAULT_MIGRATION_THRESHOLD 2048
2425
2426static int cache_create(struct cache_args *ca, struct cache **result)
2427{
2428        int r = 0;
2429        char **error = &ca->ti->error;
2430        struct cache *cache;
2431        struct dm_target *ti = ca->ti;
2432        dm_block_t origin_blocks;
2433        struct dm_cache_metadata *cmd;
2434        bool may_format = ca->features.mode == CM_WRITE;
2435
2436        cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2437        if (!cache)
2438                return -ENOMEM;
2439
2440        cache->ti = ca->ti;
2441        ti->private = cache;
2442        ti->num_flush_bios = 2;
2443        ti->flush_supported = true;
2444
2445        ti->num_discard_bios = 1;
2446        ti->discards_supported = true;
2447
2448        ti->per_io_data_size = sizeof(struct per_bio_data);
2449
2450        cache->features = ca->features;
2451        if (writethrough_mode(cache)) {
2452                /* Create bioset for writethrough bios issued to origin */
2453                r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0);
2454                if (r)
2455                        goto bad;
2456        }
2457
2458        cache->metadata_dev = ca->metadata_dev;
2459        cache->origin_dev = ca->origin_dev;
2460        cache->cache_dev = ca->cache_dev;
2461
2462        ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2463
2464        origin_blocks = cache->origin_sectors = ca->origin_sectors;
2465        origin_blocks = block_div(origin_blocks, ca->block_size);
2466        cache->origin_blocks = to_oblock(origin_blocks);
2467
2468        cache->sectors_per_block = ca->block_size;
2469        if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2470                r = -EINVAL;
2471                goto bad;
2472        }
2473
2474        if (ca->block_size & (ca->block_size - 1)) {
2475                dm_block_t cache_size = ca->cache_sectors;
2476
2477                cache->sectors_per_block_shift = -1;
2478                cache_size = block_div(cache_size, ca->block_size);
2479                set_cache_size(cache, to_cblock(cache_size));
2480        } else {
2481                cache->sectors_per_block_shift = __ffs(ca->block_size);
2482                set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2483        }
2484
2485        r = create_cache_policy(cache, ca, error);
2486        if (r)
2487                goto bad;
2488
2489        cache->policy_nr_args = ca->policy_argc;
2490        cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2491
2492        r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2493        if (r) {
2494                *error = "Error setting cache policy's config values";
2495                goto bad;
2496        }
2497
2498        cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2499                                     ca->block_size, may_format,
2500                                     dm_cache_policy_get_hint_size(cache->policy),
2501                                     ca->features.metadata_version);
2502        if (IS_ERR(cmd)) {
2503                *error = "Error creating metadata object";
2504                r = PTR_ERR(cmd);
2505                goto bad;
2506        }
2507        cache->cmd = cmd;
2508        set_cache_mode(cache, CM_WRITE);
2509        if (get_cache_mode(cache) != CM_WRITE) {
2510                *error = "Unable to get write access to metadata, please check/repair metadata.";
2511                r = -EINVAL;
2512                goto bad;
2513        }
2514
2515        if (passthrough_mode(cache)) {
2516                bool all_clean;
2517
2518                r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2519                if (r) {
2520                        *error = "dm_cache_metadata_all_clean() failed";
2521                        goto bad;
2522                }
2523
2524                if (!all_clean) {
2525                        *error = "Cannot enter passthrough mode unless all blocks are clean";
2526                        r = -EINVAL;
2527                        goto bad;
2528                }
2529
2530                policy_allow_migrations(cache->policy, false);
2531        }
2532
2533        spin_lock_init(&cache->lock);
2534        bio_list_init(&cache->deferred_bios);
2535        atomic_set(&cache->nr_allocated_migrations, 0);
2536        atomic_set(&cache->nr_io_migrations, 0);
2537        init_waitqueue_head(&cache->migration_wait);
2538
2539        r = -ENOMEM;
2540        atomic_set(&cache->nr_dirty, 0);
2541        cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2542        if (!cache->dirty_bitset) {
2543                *error = "could not allocate dirty bitset";
2544                goto bad;
2545        }
2546        clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2547
2548        cache->discard_block_size =
2549                calculate_discard_block_size(cache->sectors_per_block,
2550                                             cache->origin_sectors);
2551        cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2552                                                              cache->discard_block_size));
2553        cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2554        if (!cache->discard_bitset) {
2555                *error = "could not allocate discard bitset";
2556                goto bad;
2557        }
2558        clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2559
2560        cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2561        if (IS_ERR(cache->copier)) {
2562                *error = "could not create kcopyd client";
2563                r = PTR_ERR(cache->copier);
2564                goto bad;
2565        }
2566
2567        cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2568        if (!cache->wq) {
2569                *error = "could not create workqueue for metadata object";
2570                goto bad;
2571        }
2572        INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2573        INIT_WORK(&cache->migration_worker, check_migrations);
2574        INIT_DELAYED_WORK(&cache->waker, do_waker);
2575
2576        cache->prison = dm_bio_prison_create_v2(cache->wq);
2577        if (!cache->prison) {
2578                *error = "could not create bio prison";
2579                goto bad;
2580        }
2581
2582        r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE,
2583                                   migration_cache);
2584        if (r) {
2585                *error = "Error creating cache's migration mempool";
2586                goto bad;
2587        }
2588
2589        cache->need_tick_bio = true;
2590        cache->sized = false;
2591        cache->invalidate = false;
2592        cache->commit_requested = false;
2593        cache->loaded_mappings = false;
2594        cache->loaded_discards = false;
2595
2596        load_stats(cache);
2597
2598        atomic_set(&cache->stats.demotion, 0);
2599        atomic_set(&cache->stats.promotion, 0);
2600        atomic_set(&cache->stats.copies_avoided, 0);
2601        atomic_set(&cache->stats.cache_cell_clash, 0);
2602        atomic_set(&cache->stats.commit_count, 0);
2603        atomic_set(&cache->stats.discard_count, 0);
2604
2605        spin_lock_init(&cache->invalidation_lock);
2606        INIT_LIST_HEAD(&cache->invalidation_requests);
2607
2608        batcher_init(&cache->committer, commit_op, cache,
2609                     issue_op, cache, cache->wq);
2610        iot_init(&cache->tracker);
2611
2612        init_rwsem(&cache->background_work_lock);
2613        prevent_background_work(cache);
2614
2615        *result = cache;
2616        return 0;
2617bad:
2618        destroy(cache);
2619        return r;
2620}
2621
2622static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2623{
2624        unsigned i;
2625        const char **copy;
2626
2627        copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2628        if (!copy)
2629                return -ENOMEM;
2630        for (i = 0; i < argc; i++) {
2631                copy[i] = kstrdup(argv[i], GFP_KERNEL);
2632                if (!copy[i]) {
2633                        while (i--)
2634                                kfree(copy[i]);
2635                        kfree(copy);
2636                        return -ENOMEM;
2637                }
2638        }
2639
2640        cache->nr_ctr_args = argc;
2641        cache->ctr_args = copy;
2642
2643        return 0;
2644}
2645
2646static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2647{
2648        int r = -EINVAL;
2649        struct cache_args *ca;
2650        struct cache *cache = NULL;
2651
2652        ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2653        if (!ca) {
2654                ti->error = "Error allocating memory for cache";
2655                return -ENOMEM;
2656        }
2657        ca->ti = ti;
2658
2659        r = parse_cache_args(ca, argc, argv, &ti->error);
2660        if (r)
2661                goto out;
2662
2663        r = cache_create(ca, &cache);
2664        if (r)
2665                goto out;
2666
2667        r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2668        if (r) {
2669                destroy(cache);
2670                goto out;
2671        }
2672
2673        ti->private = cache;
2674out:
2675        destroy_cache_args(ca);
2676        return r;
2677}
2678
2679/*----------------------------------------------------------------*/
2680
2681static int cache_map(struct dm_target *ti, struct bio *bio)
2682{
2683        struct cache *cache = ti->private;
2684
2685        int r;
2686        bool commit_needed;
2687        dm_oblock_t block = get_bio_block(cache, bio);
2688
2689        init_per_bio_data(bio);
2690        if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2691                /*
2692                 * This can only occur if the io goes to a partial block at
2693                 * the end of the origin device.  We don't cache these.
2694                 * Just remap to the origin and carry on.
2695                 */
2696                remap_to_origin(cache, bio);
2697                accounted_begin(cache, bio);
2698                return DM_MAPIO_REMAPPED;
2699        }
2700
2701        if (discard_or_flush(bio)) {
2702                defer_bio(cache, bio);
2703                return DM_MAPIO_SUBMITTED;
2704        }
2705
2706        r = map_bio(cache, bio, block, &commit_needed);
2707        if (commit_needed)
2708                schedule_commit(&cache->committer);
2709
2710        return r;
2711}
2712
2713static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
2714{
2715        struct cache *cache = ti->private;
2716        unsigned long flags;
2717        struct per_bio_data *pb = get_per_bio_data(bio);
2718
2719        if (pb->tick) {
2720                policy_tick(cache->policy, false);
2721
2722                spin_lock_irqsave(&cache->lock, flags);
2723                cache->need_tick_bio = true;
2724                spin_unlock_irqrestore(&cache->lock, flags);
2725        }
2726
2727        bio_drop_shared_lock(cache, bio);
2728        accounted_complete(cache, bio);
2729
2730        return DM_ENDIO_DONE;
2731}
2732
2733static int write_dirty_bitset(struct cache *cache)
2734{
2735        int r;
2736
2737        if (get_cache_mode(cache) >= CM_READ_ONLY)
2738                return -EINVAL;
2739
2740        r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2741        if (r)
2742                metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
2743
2744        return r;
2745}
2746
2747static int write_discard_bitset(struct cache *cache)
2748{
2749        unsigned i, r;
2750
2751        if (get_cache_mode(cache) >= CM_READ_ONLY)
2752                return -EINVAL;
2753
2754        r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2755                                           cache->discard_nr_blocks);
2756        if (r) {
2757                DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2758                metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2759                return r;
2760        }
2761
2762        for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2763                r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2764                                         is_discarded(cache, to_dblock(i)));
2765                if (r) {
2766                        metadata_operation_failed(cache, "dm_cache_set_discard", r);
2767                        return r;
2768                }
2769        }
2770
2771        return 0;
2772}
2773
2774static int write_hints(struct cache *cache)
2775{
2776        int r;
2777
2778        if (get_cache_mode(cache) >= CM_READ_ONLY)
2779                return -EINVAL;
2780
2781        r = dm_cache_write_hints(cache->cmd, cache->policy);
2782        if (r) {
2783                metadata_operation_failed(cache, "dm_cache_write_hints", r);
2784                return r;
2785        }
2786
2787        return 0;
2788}
2789
2790/*
2791 * returns true on success
2792 */
2793static bool sync_metadata(struct cache *cache)
2794{
2795        int r1, r2, r3, r4;
2796
2797        r1 = write_dirty_bitset(cache);
2798        if (r1)
2799                DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2800
2801        r2 = write_discard_bitset(cache);
2802        if (r2)
2803                DMERR("%s: could not write discard bitset", cache_device_name(cache));
2804
2805        save_stats(cache);
2806
2807        r3 = write_hints(cache);
2808        if (r3)
2809                DMERR("%s: could not write hints", cache_device_name(cache));
2810
2811        /*
2812         * If writing the above metadata failed, we still commit, but don't
2813         * set the clean shutdown flag.  This will effectively force every
2814         * dirty bit to be set on reload.
2815         */
2816        r4 = commit(cache, !r1 && !r2 && !r3);
2817        if (r4)
2818                DMERR("%s: could not write cache metadata", cache_device_name(cache));
2819
2820        return !r1 && !r2 && !r3 && !r4;
2821}
2822
2823static void cache_postsuspend(struct dm_target *ti)
2824{
2825        struct cache *cache = ti->private;
2826
2827        prevent_background_work(cache);
2828        BUG_ON(atomic_read(&cache->nr_io_migrations));
2829
2830        cancel_delayed_work_sync(&cache->waker);
2831        drain_workqueue(cache->wq);
2832        WARN_ON(cache->tracker.in_flight);
2833
2834        /*
2835         * If it's a flush suspend there won't be any deferred bios, so this
2836         * call is harmless.
2837         */
2838        requeue_deferred_bios(cache);
2839
2840        if (get_cache_mode(cache) == CM_WRITE)
2841                (void) sync_metadata(cache);
2842}
2843
2844static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2845                        bool dirty, uint32_t hint, bool hint_valid)
2846{
2847        int r;
2848        struct cache *cache = context;
2849
2850        if (dirty) {
2851                set_bit(from_cblock(cblock), cache->dirty_bitset);
2852                atomic_inc(&cache->nr_dirty);
2853        } else
2854                clear_bit(from_cblock(cblock), cache->dirty_bitset);
2855
2856        r = policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2857        if (r)
2858                return r;
2859
2860        return 0;
2861}
2862
2863/*
2864 * The discard block size in the on disk metadata is not
2865 * neccessarily the same as we're currently using.  So we have to
2866 * be careful to only set the discarded attribute if we know it
2867 * covers a complete block of the new size.
2868 */
2869struct discard_load_info {
2870        struct cache *cache;
2871
2872        /*
2873         * These blocks are sized using the on disk dblock size, rather
2874         * than the current one.
2875         */
2876        dm_block_t block_size;
2877        dm_block_t discard_begin, discard_end;
2878};
2879
2880static void discard_load_info_init(struct cache *cache,
2881                                   struct discard_load_info *li)
2882{
2883        li->cache = cache;
2884        li->discard_begin = li->discard_end = 0;
2885}
2886
2887static void set_discard_range(struct discard_load_info *li)
2888{
2889        sector_t b, e;
2890
2891        if (li->discard_begin == li->discard_end)
2892                return;
2893
2894        /*
2895         * Convert to sectors.
2896         */
2897        b = li->discard_begin * li->block_size;
2898        e = li->discard_end * li->block_size;
2899
2900        /*
2901         * Then convert back to the current dblock size.
2902         */
2903        b = dm_sector_div_up(b, li->cache->discard_block_size);
2904        sector_div(e, li->cache->discard_block_size);
2905
2906        /*
2907         * The origin may have shrunk, so we need to check we're still in
2908         * bounds.
2909         */
2910        if (e > from_dblock(li->cache->discard_nr_blocks))
2911                e = from_dblock(li->cache->discard_nr_blocks);
2912
2913        for (; b < e; b++)
2914                set_discard(li->cache, to_dblock(b));
2915}
2916
2917static int load_discard(void *context, sector_t discard_block_size,
2918                        dm_dblock_t dblock, bool discard)
2919{
2920        struct discard_load_info *li = context;
2921
2922        li->block_size = discard_block_size;
2923
2924        if (discard) {
2925                if (from_dblock(dblock) == li->discard_end)
2926                        /*
2927                         * We're already in a discard range, just extend it.
2928                         */
2929                        li->discard_end = li->discard_end + 1ULL;
2930
2931                else {
2932                        /*
2933                         * Emit the old range and start a new one.
2934                         */
2935                        set_discard_range(li);
2936                        li->discard_begin = from_dblock(dblock);
2937                        li->discard_end = li->discard_begin + 1ULL;
2938                }
2939        } else {
2940                set_discard_range(li);
2941                li->discard_begin = li->discard_end = 0;
2942        }
2943
2944        return 0;
2945}
2946
2947static dm_cblock_t get_cache_dev_size(struct cache *cache)
2948{
2949        sector_t size = get_dev_size(cache->cache_dev);
2950        (void) sector_div(size, cache->sectors_per_block);
2951        return to_cblock(size);
2952}
2953
2954static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2955{
2956        if (from_cblock(new_size) > from_cblock(cache->cache_size)) {
2957                if (cache->sized) {
2958                        DMERR("%s: unable to extend cache due to missing cache table reload",
2959                              cache_device_name(cache));
2960                        return false;
2961                }
2962        }
2963
2964        /*
2965         * We can't drop a dirty block when shrinking the cache.
2966         */
2967        while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
2968                new_size = to_cblock(from_cblock(new_size) + 1);
2969                if (is_dirty(cache, new_size)) {
2970                        DMERR("%s: unable to shrink cache; cache block %llu is dirty",
2971                              cache_device_name(cache),
2972                              (unsigned long long) from_cblock(new_size));
2973                        return false;
2974                }
2975        }
2976
2977        return true;
2978}
2979
2980static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
2981{
2982        int r;
2983
2984        r = dm_cache_resize(cache->cmd, new_size);
2985        if (r) {
2986                DMERR("%s: could not resize cache metadata", cache_device_name(cache));
2987                metadata_operation_failed(cache, "dm_cache_resize", r);
2988                return r;
2989        }
2990
2991        set_cache_size(cache, new_size);
2992
2993        return 0;
2994}
2995
2996static int cache_preresume(struct dm_target *ti)
2997{
2998        int r = 0;
2999        struct cache *cache = ti->private;
3000        dm_cblock_t csize = get_cache_dev_size(cache);
3001
3002        /*
3003         * Check to see if the cache has resized.
3004         */
3005        if (!cache->sized) {
3006                r = resize_cache_dev(cache, csize);
3007                if (r)
3008                        return r;
3009
3010                cache->sized = true;
3011
3012        } else if (csize != cache->cache_size) {
3013                if (!can_resize(cache, csize))
3014                        return -EINVAL;
3015
3016                r = resize_cache_dev(cache, csize);
3017                if (r)
3018                        return r;
3019        }
3020
3021        if (!cache->loaded_mappings) {
3022                r = dm_cache_load_mappings(cache->cmd, cache->policy,
3023                                           load_mapping, cache);
3024                if (r) {
3025                        DMERR("%s: could not load cache mappings", cache_device_name(cache));
3026                        metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3027                        return r;
3028                }
3029
3030                cache->loaded_mappings = true;
3031        }
3032
3033        if (!cache->loaded_discards) {
3034                struct discard_load_info li;
3035
3036                /*
3037                 * The discard bitset could have been resized, or the
3038                 * discard block size changed.  To be safe we start by
3039                 * setting every dblock to not discarded.
3040                 */
3041                clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3042
3043                discard_load_info_init(cache, &li);
3044                r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3045                if (r) {
3046                        DMERR("%s: could not load origin discards", cache_device_name(cache));
3047                        metadata_operation_failed(cache, "dm_cache_load_discards", r);
3048                        return r;
3049                }
3050                set_discard_range(&li);
3051
3052                cache->loaded_discards = true;
3053        }
3054
3055        return r;
3056}
3057
3058static void cache_resume(struct dm_target *ti)
3059{
3060        struct cache *cache = ti->private;
3061
3062        cache->need_tick_bio = true;
3063        allow_background_work(cache);
3064        do_waker(&cache->waker.work);
3065}
3066
3067static void emit_flags(struct cache *cache, char *result,
3068                       unsigned maxlen, ssize_t *sz_ptr)
3069{
3070        ssize_t sz = *sz_ptr;
3071        struct cache_features *cf = &cache->features;
3072        unsigned count = (cf->metadata_version == 2) + !cf->discard_passdown + 1;
3073
3074        DMEMIT("%u ", count);
3075
3076        if (cf->metadata_version == 2)
3077                DMEMIT("metadata2 ");
3078
3079        if (writethrough_mode(cache))
3080                DMEMIT("writethrough ");
3081
3082        else if (passthrough_mode(cache))
3083                DMEMIT("passthrough ");
3084
3085        else if (writeback_mode(cache))
3086                DMEMIT("writeback ");
3087
3088        else {
3089                DMEMIT("unknown ");
3090                DMERR("%s: internal error: unknown io mode: %d",
3091                      cache_device_name(cache), (int) cf->io_mode);
3092        }
3093
3094        if (!cf->discard_passdown)
3095                DMEMIT("no_discard_passdown ");
3096
3097        *sz_ptr = sz;
3098}
3099
3100/*
3101 * Status format:
3102 *
3103 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3104 * <cache block size> <#used cache blocks>/<#total cache blocks>
3105 * <#read hits> <#read misses> <#write hits> <#write misses>
3106 * <#demotions> <#promotions> <#dirty>
3107 * <#features> <features>*
3108 * <#core args> <core args>
3109 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3110 */
3111static void cache_status(struct dm_target *ti, status_type_t type,
3112                         unsigned status_flags, char *result, unsigned maxlen)
3113{
3114        int r = 0;
3115        unsigned i;
3116        ssize_t sz = 0;
3117        dm_block_t nr_free_blocks_metadata = 0;
3118        dm_block_t nr_blocks_metadata = 0;
3119        char buf[BDEVNAME_SIZE];
3120        struct cache *cache = ti->private;
3121        dm_cblock_t residency;
3122        bool needs_check;
3123
3124        switch (type) {
3125        case STATUSTYPE_INFO:
3126                if (get_cache_mode(cache) == CM_FAIL) {
3127                        DMEMIT("Fail");
3128                        break;
3129                }
3130
3131                /* Commit to ensure statistics aren't out-of-date */
3132                if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3133                        (void) commit(cache, false);
3134
3135                r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3136                if (r) {
3137                        DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3138                              cache_device_name(cache), r);
3139                        goto err;
3140                }
3141
3142                r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3143                if (r) {
3144                        DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3145                              cache_device_name(cache), r);
3146                        goto err;
3147                }
3148
3149                residency = policy_residency(cache->policy);
3150
3151                DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3152                       (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3153                       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3154                       (unsigned long long)nr_blocks_metadata,
3155                       (unsigned long long)cache->sectors_per_block,
3156                       (unsigned long long) from_cblock(residency),
3157                       (unsigned long long) from_cblock(cache->cache_size),
3158                       (unsigned) atomic_read(&cache->stats.read_hit),
3159                       (unsigned) atomic_read(&cache->stats.read_miss),
3160                       (unsigned) atomic_read(&cache->stats.write_hit),
3161                       (unsigned) atomic_read(&cache->stats.write_miss),
3162                       (unsigned) atomic_read(&cache->stats.demotion),
3163                       (unsigned) atomic_read(&cache->stats.promotion),
3164                       (unsigned long) atomic_read(&cache->nr_dirty));
3165
3166                emit_flags(cache, result, maxlen, &sz);
3167
3168                DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3169
3170                DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3171                if (sz < maxlen) {
3172                        r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3173                        if (r)
3174                                DMERR("%s: policy_emit_config_values returned %d",
3175                                      cache_device_name(cache), r);
3176                }
3177
3178                if (get_cache_mode(cache) == CM_READ_ONLY)
3179                        DMEMIT("ro ");
3180                else
3181                        DMEMIT("rw ");
3182
3183                r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3184
3185                if (r || needs_check)
3186                        DMEMIT("needs_check ");
3187                else
3188                        DMEMIT("- ");
3189
3190                break;
3191
3192        case STATUSTYPE_TABLE:
3193                format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3194                DMEMIT("%s ", buf);
3195                format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3196                DMEMIT("%s ", buf);
3197                format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3198                DMEMIT("%s", buf);
3199
3200                for (i = 0; i < cache->nr_ctr_args - 1; i++)
3201                        DMEMIT(" %s", cache->ctr_args[i]);
3202                if (cache->nr_ctr_args)
3203                        DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3204        }
3205
3206        return;
3207
3208err:
3209        DMEMIT("Error");
3210}
3211
3212/*
3213 * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
3214 * the one-past-the-end value.
3215 */
3216struct cblock_range {
3217        dm_cblock_t begin;
3218        dm_cblock_t end;
3219};
3220
3221/*
3222 * A cache block range can take two forms:
3223 *
3224 * i) A single cblock, eg. '3456'
3225 * ii) A begin and end cblock with a dash between, eg. 123-234
3226 */
3227static int parse_cblock_range(struct cache *cache, const char *str,
3228                              struct cblock_range *result)
3229{
3230        char dummy;
3231        uint64_t b, e;
3232        int r;
3233
3234        /*
3235         * Try and parse form (ii) first.
3236         */
3237        r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3238        if (r < 0)
3239                return r;
3240
3241        if (r == 2) {
3242                result->begin = to_cblock(b);
3243                result->end = to_cblock(e);
3244                return 0;
3245        }
3246
3247        /*
3248         * That didn't work, try form (i).
3249         */
3250        r = sscanf(str, "%llu%c", &b, &dummy);
3251        if (r < 0)
3252                return r;
3253
3254        if (r == 1) {
3255                result->begin = to_cblock(b);
3256                result->end = to_cblock(from_cblock(result->begin) + 1u);
3257                return 0;
3258        }
3259
3260        DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3261        return -EINVAL;
3262}
3263
3264static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3265{
3266        uint64_t b = from_cblock(range->begin);
3267        uint64_t e = from_cblock(range->end);
3268        uint64_t n = from_cblock(cache->cache_size);
3269
3270        if (b >= n) {
3271                DMERR("%s: begin cblock out of range: %llu >= %llu",
3272                      cache_device_name(cache), b, n);
3273                return -EINVAL;
3274        }
3275
3276        if (e > n) {
3277                DMERR("%s: end cblock out of range: %llu > %llu",
3278                      cache_device_name(cache), e, n);
3279                return -EINVAL;
3280        }
3281
3282        if (b >= e) {
3283                DMERR("%s: invalid cblock range: %llu >= %llu",
3284                      cache_device_name(cache), b, e);
3285                return -EINVAL;
3286        }
3287
3288        return 0;
3289}
3290
3291static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3292{
3293        return to_cblock(from_cblock(b) + 1);
3294}
3295
3296static int request_invalidation(struct cache *cache, struct cblock_range *range)
3297{
3298        int r = 0;
3299
3300        /*
3301         * We don't need to do any locking here because we know we're in
3302         * passthrough mode.  There's is potential for a race between an
3303         * invalidation triggered by an io and an invalidation message.  This
3304         * is harmless, we must not worry if the policy call fails.
3305         */
3306        while (range->begin != range->end) {
3307                r = invalidate_cblock(cache, range->begin);
3308                if (r)
3309                        return r;
3310
3311                range->begin = cblock_succ(range->begin);
3312        }
3313
3314        cache->commit_requested = true;
3315        return r;
3316}
3317
3318static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3319                                              const char **cblock_ranges)
3320{
3321        int r = 0;
3322        unsigned i;
3323        struct cblock_range range;
3324
3325        if (!passthrough_mode(cache)) {
3326                DMERR("%s: cache has to be in passthrough mode for invalidation",
3327                      cache_device_name(cache));
3328                return -EPERM;
3329        }
3330
3331        for (i = 0; i < count; i++) {
3332                r = parse_cblock_range(cache, cblock_ranges[i], &range);
3333                if (r)
3334                        break;
3335
3336                r = validate_cblock_range(cache, &range);
3337                if (r)
3338                        break;
3339
3340                /*
3341                 * Pass begin and end origin blocks to the worker and wake it.
3342                 */
3343                r = request_invalidation(cache, &range);
3344                if (r)
3345                        break;
3346        }
3347
3348        return r;
3349}
3350
3351/*
3352 * Supports
3353 *      "<key> <value>"
3354 * and
3355 *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3356 *
3357 * The key migration_threshold is supported by the cache target core.
3358 */
3359static int cache_message(struct dm_target *ti, unsigned argc, char **argv,
3360                         char *result, unsigned maxlen)
3361{
3362        struct cache *cache = ti->private;
3363
3364        if (!argc)
3365                return -EINVAL;
3366
3367        if (get_cache_mode(cache) >= CM_READ_ONLY) {
3368                DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3369                      cache_device_name(cache));
3370                return -EOPNOTSUPP;
3371        }
3372
3373        if (!strcasecmp(argv[0], "invalidate_cblocks"))
3374                return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3375
3376        if (argc != 2)
3377                return -EINVAL;
3378
3379        return set_config_value(cache, argv[0], argv[1]);
3380}
3381
3382static int cache_iterate_devices(struct dm_target *ti,
3383                                 iterate_devices_callout_fn fn, void *data)
3384{
3385        int r = 0;
3386        struct cache *cache = ti->private;
3387
3388        r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3389        if (!r)
3390                r = fn(ti, cache->origin_dev, 0, ti->len, data);
3391
3392        return r;
3393}
3394
3395static bool origin_dev_supports_discard(struct block_device *origin_bdev)
3396{
3397        struct request_queue *q = bdev_get_queue(origin_bdev);
3398
3399        return q && blk_queue_discard(q);
3400}
3401
3402/*
3403 * If discard_passdown was enabled verify that the origin device
3404 * supports discards.  Disable discard_passdown if not.
3405 */
3406static void disable_passdown_if_not_supported(struct cache *cache)
3407{
3408        struct block_device *origin_bdev = cache->origin_dev->bdev;
3409        struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3410        const char *reason = NULL;
3411        char buf[BDEVNAME_SIZE];
3412
3413        if (!cache->features.discard_passdown)
3414                return;
3415
3416        if (!origin_dev_supports_discard(origin_bdev))
3417                reason = "discard unsupported";
3418
3419        else if (origin_limits->max_discard_sectors < cache->sectors_per_block)
3420                reason = "max discard sectors smaller than a block";
3421
3422        if (reason) {
3423                DMWARN("Origin device (%s) %s: Disabling discard passdown.",
3424                       bdevname(origin_bdev, buf), reason);
3425                cache->features.discard_passdown = false;
3426        }
3427}
3428
3429static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3430{
3431        struct block_device *origin_bdev = cache->origin_dev->bdev;
3432        struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3433
3434        if (!cache->features.discard_passdown) {
3435                /* No passdown is done so setting own virtual limits */
3436                limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3437                                                    cache->origin_sectors);
3438                limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3439                return;
3440        }
3441
3442        /*
3443         * cache_iterate_devices() is stacking both origin and fast device limits
3444         * but discards aren't passed to fast device, so inherit origin's limits.
3445         */
3446        limits->max_discard_sectors = origin_limits->max_discard_sectors;
3447        limits->max_hw_discard_sectors = origin_limits->max_hw_discard_sectors;
3448        limits->discard_granularity = origin_limits->discard_granularity;
3449        limits->discard_alignment = origin_limits->discard_alignment;
3450        limits->discard_misaligned = origin_limits->discard_misaligned;
3451}
3452
3453static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3454{
3455        struct cache *cache = ti->private;
3456        uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3457
3458        /*
3459         * If the system-determined stacked limits are compatible with the
3460         * cache's blocksize (io_opt is a factor) do not override them.
3461         */
3462        if (io_opt_sectors < cache->sectors_per_block ||
3463            do_div(io_opt_sectors, cache->sectors_per_block)) {
3464                blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3465                blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3466        }
3467
3468        disable_passdown_if_not_supported(cache);
3469        set_discard_limits(cache, limits);
3470}
3471
3472/*----------------------------------------------------------------*/
3473
3474static struct target_type cache_target = {
3475        .name = "cache",
3476        .version = {2, 2, 0},
3477        .module = THIS_MODULE,
3478        .ctr = cache_ctr,
3479        .dtr = cache_dtr,
3480        .map = cache_map,
3481        .end_io = cache_end_io,
3482        .postsuspend = cache_postsuspend,
3483        .preresume = cache_preresume,
3484        .resume = cache_resume,
3485        .status = cache_status,
3486        .message = cache_message,
3487        .iterate_devices = cache_iterate_devices,
3488        .io_hints = cache_io_hints,
3489};
3490
3491static int __init dm_cache_init(void)
3492{
3493        int r;
3494
3495        migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3496        if (!migration_cache)
3497                return -ENOMEM;
3498
3499        r = dm_register_target(&cache_target);
3500        if (r) {
3501                DMERR("cache target registration failed: %d", r);
3502                kmem_cache_destroy(migration_cache);
3503                return r;
3504        }
3505
3506        return 0;
3507}
3508
3509static void __exit dm_cache_exit(void)
3510{
3511        dm_unregister_target(&cache_target);
3512        kmem_cache_destroy(migration_cache);
3513}
3514
3515module_init(dm_cache_init);
3516module_exit(dm_cache_exit);
3517
3518MODULE_DESCRIPTION(DM_NAME " cache target");
3519MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3520MODULE_LICENSE("GPL");
3521