linux/drivers/md/dm-table.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2001 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-core.h"
   9
  10#include <linux/module.h>
  11#include <linux/vmalloc.h>
  12#include <linux/blkdev.h>
  13#include <linux/namei.h>
  14#include <linux/ctype.h>
  15#include <linux/string.h>
  16#include <linux/slab.h>
  17#include <linux/interrupt.h>
  18#include <linux/mutex.h>
  19#include <linux/delay.h>
  20#include <linux/atomic.h>
  21#include <linux/blk-mq.h>
  22#include <linux/mount.h>
  23#include <linux/dax.h>
  24
  25#define DM_MSG_PREFIX "table"
  26
  27#define MAX_DEPTH 16
  28#define NODE_SIZE L1_CACHE_BYTES
  29#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
  30#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
  31
  32struct dm_table {
  33        struct mapped_device *md;
  34        enum dm_queue_mode type;
  35
  36        /* btree table */
  37        unsigned int depth;
  38        unsigned int counts[MAX_DEPTH]; /* in nodes */
  39        sector_t *index[MAX_DEPTH];
  40
  41        unsigned int num_targets;
  42        unsigned int num_allocated;
  43        sector_t *highs;
  44        struct dm_target *targets;
  45
  46        struct target_type *immutable_target_type;
  47
  48        bool integrity_supported:1;
  49        bool singleton:1;
  50        unsigned integrity_added:1;
  51
  52        /*
  53         * Indicates the rw permissions for the new logical
  54         * device.  This should be a combination of FMODE_READ
  55         * and FMODE_WRITE.
  56         */
  57        fmode_t mode;
  58
  59        /* a list of devices used by this table */
  60        struct list_head devices;
  61
  62        /* events get handed up using this callback */
  63        void (*event_fn)(void *);
  64        void *event_context;
  65
  66        struct dm_md_mempools *mempools;
  67};
  68
  69/*
  70 * Similar to ceiling(log_size(n))
  71 */
  72static unsigned int int_log(unsigned int n, unsigned int base)
  73{
  74        int result = 0;
  75
  76        while (n > 1) {
  77                n = dm_div_up(n, base);
  78                result++;
  79        }
  80
  81        return result;
  82}
  83
  84/*
  85 * Calculate the index of the child node of the n'th node k'th key.
  86 */
  87static inline unsigned int get_child(unsigned int n, unsigned int k)
  88{
  89        return (n * CHILDREN_PER_NODE) + k;
  90}
  91
  92/*
  93 * Return the n'th node of level l from table t.
  94 */
  95static inline sector_t *get_node(struct dm_table *t,
  96                                 unsigned int l, unsigned int n)
  97{
  98        return t->index[l] + (n * KEYS_PER_NODE);
  99}
 100
 101/*
 102 * Return the highest key that you could lookup from the n'th
 103 * node on level l of the btree.
 104 */
 105static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
 106{
 107        for (; l < t->depth - 1; l++)
 108                n = get_child(n, CHILDREN_PER_NODE - 1);
 109
 110        if (n >= t->counts[l])
 111                return (sector_t) - 1;
 112
 113        return get_node(t, l, n)[KEYS_PER_NODE - 1];
 114}
 115
 116/*
 117 * Fills in a level of the btree based on the highs of the level
 118 * below it.
 119 */
 120static int setup_btree_index(unsigned int l, struct dm_table *t)
 121{
 122        unsigned int n, k;
 123        sector_t *node;
 124
 125        for (n = 0U; n < t->counts[l]; n++) {
 126                node = get_node(t, l, n);
 127
 128                for (k = 0U; k < KEYS_PER_NODE; k++)
 129                        node[k] = high(t, l + 1, get_child(n, k));
 130        }
 131
 132        return 0;
 133}
 134
 135void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
 136{
 137        unsigned long size;
 138        void *addr;
 139
 140        /*
 141         * Check that we're not going to overflow.
 142         */
 143        if (nmemb > (ULONG_MAX / elem_size))
 144                return NULL;
 145
 146        size = nmemb * elem_size;
 147        addr = vzalloc(size);
 148
 149        return addr;
 150}
 151EXPORT_SYMBOL(dm_vcalloc);
 152
 153/*
 154 * highs, and targets are managed as dynamic arrays during a
 155 * table load.
 156 */
 157static int alloc_targets(struct dm_table *t, unsigned int num)
 158{
 159        sector_t *n_highs;
 160        struct dm_target *n_targets;
 161
 162        /*
 163         * Allocate both the target array and offset array at once.
 164         */
 165        n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) +
 166                                          sizeof(sector_t));
 167        if (!n_highs)
 168                return -ENOMEM;
 169
 170        n_targets = (struct dm_target *) (n_highs + num);
 171
 172        memset(n_highs, -1, sizeof(*n_highs) * num);
 173        vfree(t->highs);
 174
 175        t->num_allocated = num;
 176        t->highs = n_highs;
 177        t->targets = n_targets;
 178
 179        return 0;
 180}
 181
 182int dm_table_create(struct dm_table **result, fmode_t mode,
 183                    unsigned num_targets, struct mapped_device *md)
 184{
 185        struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
 186
 187        if (!t)
 188                return -ENOMEM;
 189
 190        INIT_LIST_HEAD(&t->devices);
 191
 192        if (!num_targets)
 193                num_targets = KEYS_PER_NODE;
 194
 195        num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
 196
 197        if (!num_targets) {
 198                kfree(t);
 199                return -ENOMEM;
 200        }
 201
 202        if (alloc_targets(t, num_targets)) {
 203                kfree(t);
 204                return -ENOMEM;
 205        }
 206
 207        t->type = DM_TYPE_NONE;
 208        t->mode = mode;
 209        t->md = md;
 210        *result = t;
 211        return 0;
 212}
 213
 214static void free_devices(struct list_head *devices, struct mapped_device *md)
 215{
 216        struct list_head *tmp, *next;
 217
 218        list_for_each_safe(tmp, next, devices) {
 219                struct dm_dev_internal *dd =
 220                    list_entry(tmp, struct dm_dev_internal, list);
 221                DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
 222                       dm_device_name(md), dd->dm_dev->name);
 223                dm_put_table_device(md, dd->dm_dev);
 224                kfree(dd);
 225        }
 226}
 227
 228void dm_table_destroy(struct dm_table *t)
 229{
 230        unsigned int i;
 231
 232        if (!t)
 233                return;
 234
 235        /* free the indexes */
 236        if (t->depth >= 2)
 237                vfree(t->index[t->depth - 2]);
 238
 239        /* free the targets */
 240        for (i = 0; i < t->num_targets; i++) {
 241                struct dm_target *tgt = t->targets + i;
 242
 243                if (tgt->type->dtr)
 244                        tgt->type->dtr(tgt);
 245
 246                dm_put_target_type(tgt->type);
 247        }
 248
 249        vfree(t->highs);
 250
 251        /* free the device list */
 252        free_devices(&t->devices, t->md);
 253
 254        dm_free_md_mempools(t->mempools);
 255
 256        kfree(t);
 257}
 258
 259/*
 260 * See if we've already got a device in the list.
 261 */
 262static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
 263{
 264        struct dm_dev_internal *dd;
 265
 266        list_for_each_entry (dd, l, list)
 267                if (dd->dm_dev->bdev->bd_dev == dev)
 268                        return dd;
 269
 270        return NULL;
 271}
 272
 273/*
 274 * If possible, this checks an area of a destination device is invalid.
 275 */
 276static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
 277                                  sector_t start, sector_t len, void *data)
 278{
 279        struct queue_limits *limits = data;
 280        struct block_device *bdev = dev->bdev;
 281        sector_t dev_size =
 282                i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
 283        unsigned short logical_block_size_sectors =
 284                limits->logical_block_size >> SECTOR_SHIFT;
 285        char b[BDEVNAME_SIZE];
 286
 287        if (!dev_size)
 288                return 0;
 289
 290        if ((start >= dev_size) || (start + len > dev_size)) {
 291                DMWARN("%s: %s too small for target: "
 292                       "start=%llu, len=%llu, dev_size=%llu",
 293                       dm_device_name(ti->table->md), bdevname(bdev, b),
 294                       (unsigned long long)start,
 295                       (unsigned long long)len,
 296                       (unsigned long long)dev_size);
 297                return 1;
 298        }
 299
 300        /*
 301         * If the target is mapped to zoned block device(s), check
 302         * that the zones are not partially mapped.
 303         */
 304        if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
 305                unsigned int zone_sectors = bdev_zone_sectors(bdev);
 306
 307                if (start & (zone_sectors - 1)) {
 308                        DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
 309                               dm_device_name(ti->table->md),
 310                               (unsigned long long)start,
 311                               zone_sectors, bdevname(bdev, b));
 312                        return 1;
 313                }
 314
 315                /*
 316                 * Note: The last zone of a zoned block device may be smaller
 317                 * than other zones. So for a target mapping the end of a
 318                 * zoned block device with such a zone, len would not be zone
 319                 * aligned. We do not allow such last smaller zone to be part
 320                 * of the mapping here to ensure that mappings with multiple
 321                 * devices do not end up with a smaller zone in the middle of
 322                 * the sector range.
 323                 */
 324                if (len & (zone_sectors - 1)) {
 325                        DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
 326                               dm_device_name(ti->table->md),
 327                               (unsigned long long)len,
 328                               zone_sectors, bdevname(bdev, b));
 329                        return 1;
 330                }
 331        }
 332
 333        if (logical_block_size_sectors <= 1)
 334                return 0;
 335
 336        if (start & (logical_block_size_sectors - 1)) {
 337                DMWARN("%s: start=%llu not aligned to h/w "
 338                       "logical block size %u of %s",
 339                       dm_device_name(ti->table->md),
 340                       (unsigned long long)start,
 341                       limits->logical_block_size, bdevname(bdev, b));
 342                return 1;
 343        }
 344
 345        if (len & (logical_block_size_sectors - 1)) {
 346                DMWARN("%s: len=%llu not aligned to h/w "
 347                       "logical block size %u of %s",
 348                       dm_device_name(ti->table->md),
 349                       (unsigned long long)len,
 350                       limits->logical_block_size, bdevname(bdev, b));
 351                return 1;
 352        }
 353
 354        return 0;
 355}
 356
 357/*
 358 * This upgrades the mode on an already open dm_dev, being
 359 * careful to leave things as they were if we fail to reopen the
 360 * device and not to touch the existing bdev field in case
 361 * it is accessed concurrently.
 362 */
 363static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
 364                        struct mapped_device *md)
 365{
 366        int r;
 367        struct dm_dev *old_dev, *new_dev;
 368
 369        old_dev = dd->dm_dev;
 370
 371        r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
 372                                dd->dm_dev->mode | new_mode, &new_dev);
 373        if (r)
 374                return r;
 375
 376        dd->dm_dev = new_dev;
 377        dm_put_table_device(md, old_dev);
 378
 379        return 0;
 380}
 381
 382/*
 383 * Convert the path to a device
 384 */
 385dev_t dm_get_dev_t(const char *path)
 386{
 387        dev_t dev;
 388        struct block_device *bdev;
 389
 390        bdev = lookup_bdev(path);
 391        if (IS_ERR(bdev))
 392                dev = name_to_dev_t(path);
 393        else {
 394                dev = bdev->bd_dev;
 395                bdput(bdev);
 396        }
 397
 398        return dev;
 399}
 400EXPORT_SYMBOL_GPL(dm_get_dev_t);
 401
 402/*
 403 * Add a device to the list, or just increment the usage count if
 404 * it's already present.
 405 */
 406int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
 407                  struct dm_dev **result)
 408{
 409        int r;
 410        dev_t dev;
 411        struct dm_dev_internal *dd;
 412        struct dm_table *t = ti->table;
 413
 414        BUG_ON(!t);
 415
 416        dev = dm_get_dev_t(path);
 417        if (!dev)
 418                return -ENODEV;
 419
 420        dd = find_device(&t->devices, dev);
 421        if (!dd) {
 422                dd = kmalloc(sizeof(*dd), GFP_KERNEL);
 423                if (!dd)
 424                        return -ENOMEM;
 425
 426                if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
 427                        kfree(dd);
 428                        return r;
 429                }
 430
 431                refcount_set(&dd->count, 1);
 432                list_add(&dd->list, &t->devices);
 433                goto out;
 434
 435        } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
 436                r = upgrade_mode(dd, mode, t->md);
 437                if (r)
 438                        return r;
 439        }
 440        refcount_inc(&dd->count);
 441out:
 442        *result = dd->dm_dev;
 443        return 0;
 444}
 445EXPORT_SYMBOL(dm_get_device);
 446
 447static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
 448                                sector_t start, sector_t len, void *data)
 449{
 450        struct queue_limits *limits = data;
 451        struct block_device *bdev = dev->bdev;
 452        struct request_queue *q = bdev_get_queue(bdev);
 453        char b[BDEVNAME_SIZE];
 454
 455        if (unlikely(!q)) {
 456                DMWARN("%s: Cannot set limits for nonexistent device %s",
 457                       dm_device_name(ti->table->md), bdevname(bdev, b));
 458                return 0;
 459        }
 460
 461        if (blk_stack_limits(limits, &q->limits,
 462                        get_start_sect(bdev) + start) < 0)
 463                DMWARN("%s: adding target device %s caused an alignment inconsistency: "
 464                       "physical_block_size=%u, logical_block_size=%u, "
 465                       "alignment_offset=%u, start=%llu",
 466                       dm_device_name(ti->table->md), bdevname(bdev, b),
 467                       q->limits.physical_block_size,
 468                       q->limits.logical_block_size,
 469                       q->limits.alignment_offset,
 470                       (unsigned long long) start << SECTOR_SHIFT);
 471        return 0;
 472}
 473
 474/*
 475 * Decrement a device's use count and remove it if necessary.
 476 */
 477void dm_put_device(struct dm_target *ti, struct dm_dev *d)
 478{
 479        int found = 0;
 480        struct list_head *devices = &ti->table->devices;
 481        struct dm_dev_internal *dd;
 482
 483        list_for_each_entry(dd, devices, list) {
 484                if (dd->dm_dev == d) {
 485                        found = 1;
 486                        break;
 487                }
 488        }
 489        if (!found) {
 490                DMWARN("%s: device %s not in table devices list",
 491                       dm_device_name(ti->table->md), d->name);
 492                return;
 493        }
 494        if (refcount_dec_and_test(&dd->count)) {
 495                dm_put_table_device(ti->table->md, d);
 496                list_del(&dd->list);
 497                kfree(dd);
 498        }
 499}
 500EXPORT_SYMBOL(dm_put_device);
 501
 502/*
 503 * Checks to see if the target joins onto the end of the table.
 504 */
 505static int adjoin(struct dm_table *table, struct dm_target *ti)
 506{
 507        struct dm_target *prev;
 508
 509        if (!table->num_targets)
 510                return !ti->begin;
 511
 512        prev = &table->targets[table->num_targets - 1];
 513        return (ti->begin == (prev->begin + prev->len));
 514}
 515
 516/*
 517 * Used to dynamically allocate the arg array.
 518 *
 519 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
 520 * process messages even if some device is suspended. These messages have a
 521 * small fixed number of arguments.
 522 *
 523 * On the other hand, dm-switch needs to process bulk data using messages and
 524 * excessive use of GFP_NOIO could cause trouble.
 525 */
 526static char **realloc_argv(unsigned *size, char **old_argv)
 527{
 528        char **argv;
 529        unsigned new_size;
 530        gfp_t gfp;
 531
 532        if (*size) {
 533                new_size = *size * 2;
 534                gfp = GFP_KERNEL;
 535        } else {
 536                new_size = 8;
 537                gfp = GFP_NOIO;
 538        }
 539        argv = kmalloc_array(new_size, sizeof(*argv), gfp);
 540        if (argv && old_argv) {
 541                memcpy(argv, old_argv, *size * sizeof(*argv));
 542                *size = new_size;
 543        }
 544
 545        kfree(old_argv);
 546        return argv;
 547}
 548
 549/*
 550 * Destructively splits up the argument list to pass to ctr.
 551 */
 552int dm_split_args(int *argc, char ***argvp, char *input)
 553{
 554        char *start, *end = input, *out, **argv = NULL;
 555        unsigned array_size = 0;
 556
 557        *argc = 0;
 558
 559        if (!input) {
 560                *argvp = NULL;
 561                return 0;
 562        }
 563
 564        argv = realloc_argv(&array_size, argv);
 565        if (!argv)
 566                return -ENOMEM;
 567
 568        while (1) {
 569                /* Skip whitespace */
 570                start = skip_spaces(end);
 571
 572                if (!*start)
 573                        break;  /* success, we hit the end */
 574
 575                /* 'out' is used to remove any back-quotes */
 576                end = out = start;
 577                while (*end) {
 578                        /* Everything apart from '\0' can be quoted */
 579                        if (*end == '\\' && *(end + 1)) {
 580                                *out++ = *(end + 1);
 581                                end += 2;
 582                                continue;
 583                        }
 584
 585                        if (isspace(*end))
 586                                break;  /* end of token */
 587
 588                        *out++ = *end++;
 589                }
 590
 591                /* have we already filled the array ? */
 592                if ((*argc + 1) > array_size) {
 593                        argv = realloc_argv(&array_size, argv);
 594                        if (!argv)
 595                                return -ENOMEM;
 596                }
 597
 598                /* we know this is whitespace */
 599                if (*end)
 600                        end++;
 601
 602                /* terminate the string and put it in the array */
 603                *out = '\0';
 604                argv[*argc] = start;
 605                (*argc)++;
 606        }
 607
 608        *argvp = argv;
 609        return 0;
 610}
 611
 612/*
 613 * Impose necessary and sufficient conditions on a devices's table such
 614 * that any incoming bio which respects its logical_block_size can be
 615 * processed successfully.  If it falls across the boundary between
 616 * two or more targets, the size of each piece it gets split into must
 617 * be compatible with the logical_block_size of the target processing it.
 618 */
 619static int validate_hardware_logical_block_alignment(struct dm_table *table,
 620                                                 struct queue_limits *limits)
 621{
 622        /*
 623         * This function uses arithmetic modulo the logical_block_size
 624         * (in units of 512-byte sectors).
 625         */
 626        unsigned short device_logical_block_size_sects =
 627                limits->logical_block_size >> SECTOR_SHIFT;
 628
 629        /*
 630         * Offset of the start of the next table entry, mod logical_block_size.
 631         */
 632        unsigned short next_target_start = 0;
 633
 634        /*
 635         * Given an aligned bio that extends beyond the end of a
 636         * target, how many sectors must the next target handle?
 637         */
 638        unsigned short remaining = 0;
 639
 640        struct dm_target *ti;
 641        struct queue_limits ti_limits;
 642        unsigned i;
 643
 644        /*
 645         * Check each entry in the table in turn.
 646         */
 647        for (i = 0; i < dm_table_get_num_targets(table); i++) {
 648                ti = dm_table_get_target(table, i);
 649
 650                blk_set_stacking_limits(&ti_limits);
 651
 652                /* combine all target devices' limits */
 653                if (ti->type->iterate_devices)
 654                        ti->type->iterate_devices(ti, dm_set_device_limits,
 655                                                  &ti_limits);
 656
 657                /*
 658                 * If the remaining sectors fall entirely within this
 659                 * table entry are they compatible with its logical_block_size?
 660                 */
 661                if (remaining < ti->len &&
 662                    remaining & ((ti_limits.logical_block_size >>
 663                                  SECTOR_SHIFT) - 1))
 664                        break;  /* Error */
 665
 666                next_target_start =
 667                    (unsigned short) ((next_target_start + ti->len) &
 668                                      (device_logical_block_size_sects - 1));
 669                remaining = next_target_start ?
 670                    device_logical_block_size_sects - next_target_start : 0;
 671        }
 672
 673        if (remaining) {
 674                DMWARN("%s: table line %u (start sect %llu len %llu) "
 675                       "not aligned to h/w logical block size %u",
 676                       dm_device_name(table->md), i,
 677                       (unsigned long long) ti->begin,
 678                       (unsigned long long) ti->len,
 679                       limits->logical_block_size);
 680                return -EINVAL;
 681        }
 682
 683        return 0;
 684}
 685
 686int dm_table_add_target(struct dm_table *t, const char *type,
 687                        sector_t start, sector_t len, char *params)
 688{
 689        int r = -EINVAL, argc;
 690        char **argv;
 691        struct dm_target *tgt;
 692
 693        if (t->singleton) {
 694                DMERR("%s: target type %s must appear alone in table",
 695                      dm_device_name(t->md), t->targets->type->name);
 696                return -EINVAL;
 697        }
 698
 699        BUG_ON(t->num_targets >= t->num_allocated);
 700
 701        tgt = t->targets + t->num_targets;
 702        memset(tgt, 0, sizeof(*tgt));
 703
 704        if (!len) {
 705                DMERR("%s: zero-length target", dm_device_name(t->md));
 706                return -EINVAL;
 707        }
 708
 709        tgt->type = dm_get_target_type(type);
 710        if (!tgt->type) {
 711                DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
 712                return -EINVAL;
 713        }
 714
 715        if (dm_target_needs_singleton(tgt->type)) {
 716                if (t->num_targets) {
 717                        tgt->error = "singleton target type must appear alone in table";
 718                        goto bad;
 719                }
 720                t->singleton = true;
 721        }
 722
 723        if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
 724                tgt->error = "target type may not be included in a read-only table";
 725                goto bad;
 726        }
 727
 728        if (t->immutable_target_type) {
 729                if (t->immutable_target_type != tgt->type) {
 730                        tgt->error = "immutable target type cannot be mixed with other target types";
 731                        goto bad;
 732                }
 733        } else if (dm_target_is_immutable(tgt->type)) {
 734                if (t->num_targets) {
 735                        tgt->error = "immutable target type cannot be mixed with other target types";
 736                        goto bad;
 737                }
 738                t->immutable_target_type = tgt->type;
 739        }
 740
 741        if (dm_target_has_integrity(tgt->type))
 742                t->integrity_added = 1;
 743
 744        tgt->table = t;
 745        tgt->begin = start;
 746        tgt->len = len;
 747        tgt->error = "Unknown error";
 748
 749        /*
 750         * Does this target adjoin the previous one ?
 751         */
 752        if (!adjoin(t, tgt)) {
 753                tgt->error = "Gap in table";
 754                goto bad;
 755        }
 756
 757        r = dm_split_args(&argc, &argv, params);
 758        if (r) {
 759                tgt->error = "couldn't split parameters (insufficient memory)";
 760                goto bad;
 761        }
 762
 763        r = tgt->type->ctr(tgt, argc, argv);
 764        kfree(argv);
 765        if (r)
 766                goto bad;
 767
 768        t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
 769
 770        if (!tgt->num_discard_bios && tgt->discards_supported)
 771                DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
 772                       dm_device_name(t->md), type);
 773
 774        return 0;
 775
 776 bad:
 777        DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
 778        dm_put_target_type(tgt->type);
 779        return r;
 780}
 781
 782/*
 783 * Target argument parsing helpers.
 784 */
 785static int validate_next_arg(const struct dm_arg *arg,
 786                             struct dm_arg_set *arg_set,
 787                             unsigned *value, char **error, unsigned grouped)
 788{
 789        const char *arg_str = dm_shift_arg(arg_set);
 790        char dummy;
 791
 792        if (!arg_str ||
 793            (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
 794            (*value < arg->min) ||
 795            (*value > arg->max) ||
 796            (grouped && arg_set->argc < *value)) {
 797                *error = arg->error;
 798                return -EINVAL;
 799        }
 800
 801        return 0;
 802}
 803
 804int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
 805                unsigned *value, char **error)
 806{
 807        return validate_next_arg(arg, arg_set, value, error, 0);
 808}
 809EXPORT_SYMBOL(dm_read_arg);
 810
 811int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
 812                      unsigned *value, char **error)
 813{
 814        return validate_next_arg(arg, arg_set, value, error, 1);
 815}
 816EXPORT_SYMBOL(dm_read_arg_group);
 817
 818const char *dm_shift_arg(struct dm_arg_set *as)
 819{
 820        char *r;
 821
 822        if (as->argc) {
 823                as->argc--;
 824                r = *as->argv;
 825                as->argv++;
 826                return r;
 827        }
 828
 829        return NULL;
 830}
 831EXPORT_SYMBOL(dm_shift_arg);
 832
 833void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
 834{
 835        BUG_ON(as->argc < num_args);
 836        as->argc -= num_args;
 837        as->argv += num_args;
 838}
 839EXPORT_SYMBOL(dm_consume_args);
 840
 841static bool __table_type_bio_based(enum dm_queue_mode table_type)
 842{
 843        return (table_type == DM_TYPE_BIO_BASED ||
 844                table_type == DM_TYPE_DAX_BIO_BASED ||
 845                table_type == DM_TYPE_NVME_BIO_BASED);
 846}
 847
 848static bool __table_type_request_based(enum dm_queue_mode table_type)
 849{
 850        return table_type == DM_TYPE_REQUEST_BASED;
 851}
 852
 853void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
 854{
 855        t->type = type;
 856}
 857EXPORT_SYMBOL_GPL(dm_table_set_type);
 858
 859/* validate the dax capability of the target device span */
 860int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
 861                        sector_t start, sector_t len, void *data)
 862{
 863        int blocksize = *(int *) data, id;
 864        bool rc;
 865
 866        id = dax_read_lock();
 867        rc = dax_supported(dev->dax_dev, dev->bdev, blocksize, start, len);
 868        dax_read_unlock(id);
 869
 870        return rc;
 871}
 872
 873/* Check devices support synchronous DAX */
 874static int device_dax_synchronous(struct dm_target *ti, struct dm_dev *dev,
 875                                  sector_t start, sector_t len, void *data)
 876{
 877        return dev->dax_dev && dax_synchronous(dev->dax_dev);
 878}
 879
 880bool dm_table_supports_dax(struct dm_table *t,
 881                           iterate_devices_callout_fn iterate_fn, int *blocksize)
 882{
 883        struct dm_target *ti;
 884        unsigned i;
 885
 886        /* Ensure that all targets support DAX. */
 887        for (i = 0; i < dm_table_get_num_targets(t); i++) {
 888                ti = dm_table_get_target(t, i);
 889
 890                if (!ti->type->direct_access)
 891                        return false;
 892
 893                if (!ti->type->iterate_devices ||
 894                    !ti->type->iterate_devices(ti, iterate_fn, blocksize))
 895                        return false;
 896        }
 897
 898        return true;
 899}
 900
 901static bool dm_table_does_not_support_partial_completion(struct dm_table *t);
 902
 903static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
 904                                  sector_t start, sector_t len, void *data)
 905{
 906        struct block_device *bdev = dev->bdev;
 907        struct request_queue *q = bdev_get_queue(bdev);
 908
 909        /* request-based cannot stack on partitions! */
 910        if (bdev != bdev->bd_contains)
 911                return false;
 912
 913        return queue_is_mq(q);
 914}
 915
 916static int dm_table_determine_type(struct dm_table *t)
 917{
 918        unsigned i;
 919        unsigned bio_based = 0, request_based = 0, hybrid = 0;
 920        struct dm_target *tgt;
 921        struct list_head *devices = dm_table_get_devices(t);
 922        enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
 923        int page_size = PAGE_SIZE;
 924
 925        if (t->type != DM_TYPE_NONE) {
 926                /* target already set the table's type */
 927                if (t->type == DM_TYPE_BIO_BASED) {
 928                        /* possibly upgrade to a variant of bio-based */
 929                        goto verify_bio_based;
 930                }
 931                BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
 932                BUG_ON(t->type == DM_TYPE_NVME_BIO_BASED);
 933                goto verify_rq_based;
 934        }
 935
 936        for (i = 0; i < t->num_targets; i++) {
 937                tgt = t->targets + i;
 938                if (dm_target_hybrid(tgt))
 939                        hybrid = 1;
 940                else if (dm_target_request_based(tgt))
 941                        request_based = 1;
 942                else
 943                        bio_based = 1;
 944
 945                if (bio_based && request_based) {
 946                        DMERR("Inconsistent table: different target types"
 947                              " can't be mixed up");
 948                        return -EINVAL;
 949                }
 950        }
 951
 952        if (hybrid && !bio_based && !request_based) {
 953                /*
 954                 * The targets can work either way.
 955                 * Determine the type from the live device.
 956                 * Default to bio-based if device is new.
 957                 */
 958                if (__table_type_request_based(live_md_type))
 959                        request_based = 1;
 960                else
 961                        bio_based = 1;
 962        }
 963
 964        if (bio_based) {
 965verify_bio_based:
 966                /* We must use this table as bio-based */
 967                t->type = DM_TYPE_BIO_BASED;
 968                if (dm_table_supports_dax(t, device_supports_dax, &page_size) ||
 969                    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
 970                        t->type = DM_TYPE_DAX_BIO_BASED;
 971                } else {
 972                        /* Check if upgrading to NVMe bio-based is valid or required */
 973                        tgt = dm_table_get_immutable_target(t);
 974                        if (tgt && !tgt->max_io_len && dm_table_does_not_support_partial_completion(t)) {
 975                                t->type = DM_TYPE_NVME_BIO_BASED;
 976                                goto verify_rq_based; /* must be stacked directly on NVMe (blk-mq) */
 977                        } else if (list_empty(devices) && live_md_type == DM_TYPE_NVME_BIO_BASED) {
 978                                t->type = DM_TYPE_NVME_BIO_BASED;
 979                        }
 980                }
 981                return 0;
 982        }
 983
 984        BUG_ON(!request_based); /* No targets in this table */
 985
 986        t->type = DM_TYPE_REQUEST_BASED;
 987
 988verify_rq_based:
 989        /*
 990         * Request-based dm supports only tables that have a single target now.
 991         * To support multiple targets, request splitting support is needed,
 992         * and that needs lots of changes in the block-layer.
 993         * (e.g. request completion process for partial completion.)
 994         */
 995        if (t->num_targets > 1) {
 996                DMERR("%s DM doesn't support multiple targets",
 997                      t->type == DM_TYPE_NVME_BIO_BASED ? "nvme bio-based" : "request-based");
 998                return -EINVAL;
 999        }
1000
1001        if (list_empty(devices)) {
1002                int srcu_idx;
1003                struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
1004
1005                /* inherit live table's type */
1006                if (live_table)
1007                        t->type = live_table->type;
1008                dm_put_live_table(t->md, srcu_idx);
1009                return 0;
1010        }
1011
1012        tgt = dm_table_get_immutable_target(t);
1013        if (!tgt) {
1014                DMERR("table load rejected: immutable target is required");
1015                return -EINVAL;
1016        } else if (tgt->max_io_len) {
1017                DMERR("table load rejected: immutable target that splits IO is not supported");
1018                return -EINVAL;
1019        }
1020
1021        /* Non-request-stackable devices can't be used for request-based dm */
1022        if (!tgt->type->iterate_devices ||
1023            !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) {
1024                DMERR("table load rejected: including non-request-stackable devices");
1025                return -EINVAL;
1026        }
1027
1028        return 0;
1029}
1030
1031enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1032{
1033        return t->type;
1034}
1035
1036struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1037{
1038        return t->immutable_target_type;
1039}
1040
1041struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1042{
1043        /* Immutable target is implicitly a singleton */
1044        if (t->num_targets > 1 ||
1045            !dm_target_is_immutable(t->targets[0].type))
1046                return NULL;
1047
1048        return t->targets;
1049}
1050
1051struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1052{
1053        struct dm_target *ti;
1054        unsigned i;
1055
1056        for (i = 0; i < dm_table_get_num_targets(t); i++) {
1057                ti = dm_table_get_target(t, i);
1058                if (dm_target_is_wildcard(ti->type))
1059                        return ti;
1060        }
1061
1062        return NULL;
1063}
1064
1065bool dm_table_bio_based(struct dm_table *t)
1066{
1067        return __table_type_bio_based(dm_table_get_type(t));
1068}
1069
1070bool dm_table_request_based(struct dm_table *t)
1071{
1072        return __table_type_request_based(dm_table_get_type(t));
1073}
1074
1075static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1076{
1077        enum dm_queue_mode type = dm_table_get_type(t);
1078        unsigned per_io_data_size = 0;
1079        unsigned min_pool_size = 0;
1080        struct dm_target *ti;
1081        unsigned i;
1082
1083        if (unlikely(type == DM_TYPE_NONE)) {
1084                DMWARN("no table type is set, can't allocate mempools");
1085                return -EINVAL;
1086        }
1087
1088        if (__table_type_bio_based(type))
1089                for (i = 0; i < t->num_targets; i++) {
1090                        ti = t->targets + i;
1091                        per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1092                        min_pool_size = max(min_pool_size, ti->num_flush_bios);
1093                }
1094
1095        t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1096                                           per_io_data_size, min_pool_size);
1097        if (!t->mempools)
1098                return -ENOMEM;
1099
1100        return 0;
1101}
1102
1103void dm_table_free_md_mempools(struct dm_table *t)
1104{
1105        dm_free_md_mempools(t->mempools);
1106        t->mempools = NULL;
1107}
1108
1109struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1110{
1111        return t->mempools;
1112}
1113
1114static int setup_indexes(struct dm_table *t)
1115{
1116        int i;
1117        unsigned int total = 0;
1118        sector_t *indexes;
1119
1120        /* allocate the space for *all* the indexes */
1121        for (i = t->depth - 2; i >= 0; i--) {
1122                t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1123                total += t->counts[i];
1124        }
1125
1126        indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1127        if (!indexes)
1128                return -ENOMEM;
1129
1130        /* set up internal nodes, bottom-up */
1131        for (i = t->depth - 2; i >= 0; i--) {
1132                t->index[i] = indexes;
1133                indexes += (KEYS_PER_NODE * t->counts[i]);
1134                setup_btree_index(i, t);
1135        }
1136
1137        return 0;
1138}
1139
1140/*
1141 * Builds the btree to index the map.
1142 */
1143static int dm_table_build_index(struct dm_table *t)
1144{
1145        int r = 0;
1146        unsigned int leaf_nodes;
1147
1148        /* how many indexes will the btree have ? */
1149        leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1150        t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1151
1152        /* leaf layer has already been set up */
1153        t->counts[t->depth - 1] = leaf_nodes;
1154        t->index[t->depth - 1] = t->highs;
1155
1156        if (t->depth >= 2)
1157                r = setup_indexes(t);
1158
1159        return r;
1160}
1161
1162static bool integrity_profile_exists(struct gendisk *disk)
1163{
1164        return !!blk_get_integrity(disk);
1165}
1166
1167/*
1168 * Get a disk whose integrity profile reflects the table's profile.
1169 * Returns NULL if integrity support was inconsistent or unavailable.
1170 */
1171static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1172{
1173        struct list_head *devices = dm_table_get_devices(t);
1174        struct dm_dev_internal *dd = NULL;
1175        struct gendisk *prev_disk = NULL, *template_disk = NULL;
1176        unsigned i;
1177
1178        for (i = 0; i < dm_table_get_num_targets(t); i++) {
1179                struct dm_target *ti = dm_table_get_target(t, i);
1180                if (!dm_target_passes_integrity(ti->type))
1181                        goto no_integrity;
1182        }
1183
1184        list_for_each_entry(dd, devices, list) {
1185                template_disk = dd->dm_dev->bdev->bd_disk;
1186                if (!integrity_profile_exists(template_disk))
1187                        goto no_integrity;
1188                else if (prev_disk &&
1189                         blk_integrity_compare(prev_disk, template_disk) < 0)
1190                        goto no_integrity;
1191                prev_disk = template_disk;
1192        }
1193
1194        return template_disk;
1195
1196no_integrity:
1197        if (prev_disk)
1198                DMWARN("%s: integrity not set: %s and %s profile mismatch",
1199                       dm_device_name(t->md),
1200                       prev_disk->disk_name,
1201                       template_disk->disk_name);
1202        return NULL;
1203}
1204
1205/*
1206 * Register the mapped device for blk_integrity support if the
1207 * underlying devices have an integrity profile.  But all devices may
1208 * not have matching profiles (checking all devices isn't reliable
1209 * during table load because this table may use other DM device(s) which
1210 * must be resumed before they will have an initialized integity
1211 * profile).  Consequently, stacked DM devices force a 2 stage integrity
1212 * profile validation: First pass during table load, final pass during
1213 * resume.
1214 */
1215static int dm_table_register_integrity(struct dm_table *t)
1216{
1217        struct mapped_device *md = t->md;
1218        struct gendisk *template_disk = NULL;
1219
1220        /* If target handles integrity itself do not register it here. */
1221        if (t->integrity_added)
1222                return 0;
1223
1224        template_disk = dm_table_get_integrity_disk(t);
1225        if (!template_disk)
1226                return 0;
1227
1228        if (!integrity_profile_exists(dm_disk(md))) {
1229                t->integrity_supported = true;
1230                /*
1231                 * Register integrity profile during table load; we can do
1232                 * this because the final profile must match during resume.
1233                 */
1234                blk_integrity_register(dm_disk(md),
1235                                       blk_get_integrity(template_disk));
1236                return 0;
1237        }
1238
1239        /*
1240         * If DM device already has an initialized integrity
1241         * profile the new profile should not conflict.
1242         */
1243        if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1244                DMWARN("%s: conflict with existing integrity profile: "
1245                       "%s profile mismatch",
1246                       dm_device_name(t->md),
1247                       template_disk->disk_name);
1248                return 1;
1249        }
1250
1251        /* Preserve existing integrity profile */
1252        t->integrity_supported = true;
1253        return 0;
1254}
1255
1256/*
1257 * Prepares the table for use by building the indices,
1258 * setting the type, and allocating mempools.
1259 */
1260int dm_table_complete(struct dm_table *t)
1261{
1262        int r;
1263
1264        r = dm_table_determine_type(t);
1265        if (r) {
1266                DMERR("unable to determine table type");
1267                return r;
1268        }
1269
1270        r = dm_table_build_index(t);
1271        if (r) {
1272                DMERR("unable to build btrees");
1273                return r;
1274        }
1275
1276        r = dm_table_register_integrity(t);
1277        if (r) {
1278                DMERR("could not register integrity profile.");
1279                return r;
1280        }
1281
1282        r = dm_table_alloc_md_mempools(t, t->md);
1283        if (r)
1284                DMERR("unable to allocate mempools");
1285
1286        return r;
1287}
1288
1289static DEFINE_MUTEX(_event_lock);
1290void dm_table_event_callback(struct dm_table *t,
1291                             void (*fn)(void *), void *context)
1292{
1293        mutex_lock(&_event_lock);
1294        t->event_fn = fn;
1295        t->event_context = context;
1296        mutex_unlock(&_event_lock);
1297}
1298
1299void dm_table_event(struct dm_table *t)
1300{
1301        /*
1302         * You can no longer call dm_table_event() from interrupt
1303         * context, use a bottom half instead.
1304         */
1305        BUG_ON(in_interrupt());
1306
1307        mutex_lock(&_event_lock);
1308        if (t->event_fn)
1309                t->event_fn(t->event_context);
1310        mutex_unlock(&_event_lock);
1311}
1312EXPORT_SYMBOL(dm_table_event);
1313
1314inline sector_t dm_table_get_size(struct dm_table *t)
1315{
1316        return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1317}
1318EXPORT_SYMBOL(dm_table_get_size);
1319
1320struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1321{
1322        if (index >= t->num_targets)
1323                return NULL;
1324
1325        return t->targets + index;
1326}
1327
1328/*
1329 * Search the btree for the correct target.
1330 *
1331 * Caller should check returned pointer for NULL
1332 * to trap I/O beyond end of device.
1333 */
1334struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1335{
1336        unsigned int l, n = 0, k = 0;
1337        sector_t *node;
1338
1339        if (unlikely(sector >= dm_table_get_size(t)))
1340                return NULL;
1341
1342        for (l = 0; l < t->depth; l++) {
1343                n = get_child(n, k);
1344                node = get_node(t, l, n);
1345
1346                for (k = 0; k < KEYS_PER_NODE; k++)
1347                        if (node[k] >= sector)
1348                                break;
1349        }
1350
1351        return &t->targets[(KEYS_PER_NODE * n) + k];
1352}
1353
1354static int count_device(struct dm_target *ti, struct dm_dev *dev,
1355                        sector_t start, sector_t len, void *data)
1356{
1357        unsigned *num_devices = data;
1358
1359        (*num_devices)++;
1360
1361        return 0;
1362}
1363
1364/*
1365 * Check whether a table has no data devices attached using each
1366 * target's iterate_devices method.
1367 * Returns false if the result is unknown because a target doesn't
1368 * support iterate_devices.
1369 */
1370bool dm_table_has_no_data_devices(struct dm_table *table)
1371{
1372        struct dm_target *ti;
1373        unsigned i, num_devices;
1374
1375        for (i = 0; i < dm_table_get_num_targets(table); i++) {
1376                ti = dm_table_get_target(table, i);
1377
1378                if (!ti->type->iterate_devices)
1379                        return false;
1380
1381                num_devices = 0;
1382                ti->type->iterate_devices(ti, count_device, &num_devices);
1383                if (num_devices)
1384                        return false;
1385        }
1386
1387        return true;
1388}
1389
1390static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1391                                 sector_t start, sector_t len, void *data)
1392{
1393        struct request_queue *q = bdev_get_queue(dev->bdev);
1394        enum blk_zoned_model *zoned_model = data;
1395
1396        return q && blk_queue_zoned_model(q) == *zoned_model;
1397}
1398
1399static bool dm_table_supports_zoned_model(struct dm_table *t,
1400                                          enum blk_zoned_model zoned_model)
1401{
1402        struct dm_target *ti;
1403        unsigned i;
1404
1405        for (i = 0; i < dm_table_get_num_targets(t); i++) {
1406                ti = dm_table_get_target(t, i);
1407
1408                if (zoned_model == BLK_ZONED_HM &&
1409                    !dm_target_supports_zoned_hm(ti->type))
1410                        return false;
1411
1412                if (!ti->type->iterate_devices ||
1413                    !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model))
1414                        return false;
1415        }
1416
1417        return true;
1418}
1419
1420static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1421                                       sector_t start, sector_t len, void *data)
1422{
1423        struct request_queue *q = bdev_get_queue(dev->bdev);
1424        unsigned int *zone_sectors = data;
1425
1426        return q && blk_queue_zone_sectors(q) == *zone_sectors;
1427}
1428
1429static bool dm_table_matches_zone_sectors(struct dm_table *t,
1430                                          unsigned int zone_sectors)
1431{
1432        struct dm_target *ti;
1433        unsigned i;
1434
1435        for (i = 0; i < dm_table_get_num_targets(t); i++) {
1436                ti = dm_table_get_target(t, i);
1437
1438                if (!ti->type->iterate_devices ||
1439                    !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors))
1440                        return false;
1441        }
1442
1443        return true;
1444}
1445
1446static int validate_hardware_zoned_model(struct dm_table *table,
1447                                         enum blk_zoned_model zoned_model,
1448                                         unsigned int zone_sectors)
1449{
1450        if (zoned_model == BLK_ZONED_NONE)
1451                return 0;
1452
1453        if (!dm_table_supports_zoned_model(table, zoned_model)) {
1454                DMERR("%s: zoned model is not consistent across all devices",
1455                      dm_device_name(table->md));
1456                return -EINVAL;
1457        }
1458
1459        /* Check zone size validity and compatibility */
1460        if (!zone_sectors || !is_power_of_2(zone_sectors))
1461                return -EINVAL;
1462
1463        if (!dm_table_matches_zone_sectors(table, zone_sectors)) {
1464                DMERR("%s: zone sectors is not consistent across all devices",
1465                      dm_device_name(table->md));
1466                return -EINVAL;
1467        }
1468
1469        return 0;
1470}
1471
1472/*
1473 * Establish the new table's queue_limits and validate them.
1474 */
1475int dm_calculate_queue_limits(struct dm_table *table,
1476                              struct queue_limits *limits)
1477{
1478        struct dm_target *ti;
1479        struct queue_limits ti_limits;
1480        unsigned i;
1481        enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1482        unsigned int zone_sectors = 0;
1483
1484        blk_set_stacking_limits(limits);
1485
1486        for (i = 0; i < dm_table_get_num_targets(table); i++) {
1487                blk_set_stacking_limits(&ti_limits);
1488
1489                ti = dm_table_get_target(table, i);
1490
1491                if (!ti->type->iterate_devices)
1492                        goto combine_limits;
1493
1494                /*
1495                 * Combine queue limits of all the devices this target uses.
1496                 */
1497                ti->type->iterate_devices(ti, dm_set_device_limits,
1498                                          &ti_limits);
1499
1500                if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1501                        /*
1502                         * After stacking all limits, validate all devices
1503                         * in table support this zoned model and zone sectors.
1504                         */
1505                        zoned_model = ti_limits.zoned;
1506                        zone_sectors = ti_limits.chunk_sectors;
1507                }
1508
1509                /* Set I/O hints portion of queue limits */
1510                if (ti->type->io_hints)
1511                        ti->type->io_hints(ti, &ti_limits);
1512
1513                /*
1514                 * Check each device area is consistent with the target's
1515                 * overall queue limits.
1516                 */
1517                if (ti->type->iterate_devices(ti, device_area_is_invalid,
1518                                              &ti_limits))
1519                        return -EINVAL;
1520
1521combine_limits:
1522                /*
1523                 * Merge this target's queue limits into the overall limits
1524                 * for the table.
1525                 */
1526                if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1527                        DMWARN("%s: adding target device "
1528                               "(start sect %llu len %llu) "
1529                               "caused an alignment inconsistency",
1530                               dm_device_name(table->md),
1531                               (unsigned long long) ti->begin,
1532                               (unsigned long long) ti->len);
1533        }
1534
1535        /*
1536         * Verify that the zoned model and zone sectors, as determined before
1537         * any .io_hints override, are the same across all devices in the table.
1538         * - this is especially relevant if .io_hints is emulating a disk-managed
1539         *   zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1540         * BUT...
1541         */
1542        if (limits->zoned != BLK_ZONED_NONE) {
1543                /*
1544                 * ...IF the above limits stacking determined a zoned model
1545                 * validate that all of the table's devices conform to it.
1546                 */
1547                zoned_model = limits->zoned;
1548                zone_sectors = limits->chunk_sectors;
1549        }
1550        if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1551                return -EINVAL;
1552
1553        return validate_hardware_logical_block_alignment(table, limits);
1554}
1555
1556/*
1557 * Verify that all devices have an integrity profile that matches the
1558 * DM device's registered integrity profile.  If the profiles don't
1559 * match then unregister the DM device's integrity profile.
1560 */
1561static void dm_table_verify_integrity(struct dm_table *t)
1562{
1563        struct gendisk *template_disk = NULL;
1564
1565        if (t->integrity_added)
1566                return;
1567
1568        if (t->integrity_supported) {
1569                /*
1570                 * Verify that the original integrity profile
1571                 * matches all the devices in this table.
1572                 */
1573                template_disk = dm_table_get_integrity_disk(t);
1574                if (template_disk &&
1575                    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1576                        return;
1577        }
1578
1579        if (integrity_profile_exists(dm_disk(t->md))) {
1580                DMWARN("%s: unable to establish an integrity profile",
1581                       dm_device_name(t->md));
1582                blk_integrity_unregister(dm_disk(t->md));
1583        }
1584}
1585
1586static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1587                                sector_t start, sector_t len, void *data)
1588{
1589        unsigned long flush = (unsigned long) data;
1590        struct request_queue *q = bdev_get_queue(dev->bdev);
1591
1592        return q && (q->queue_flags & flush);
1593}
1594
1595static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1596{
1597        struct dm_target *ti;
1598        unsigned i;
1599
1600        /*
1601         * Require at least one underlying device to support flushes.
1602         * t->devices includes internal dm devices such as mirror logs
1603         * so we need to use iterate_devices here, which targets
1604         * supporting flushes must provide.
1605         */
1606        for (i = 0; i < dm_table_get_num_targets(t); i++) {
1607                ti = dm_table_get_target(t, i);
1608
1609                if (!ti->num_flush_bios)
1610                        continue;
1611
1612                if (ti->flush_supported)
1613                        return true;
1614
1615                if (ti->type->iterate_devices &&
1616                    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1617                        return true;
1618        }
1619
1620        return false;
1621}
1622
1623static int device_dax_write_cache_enabled(struct dm_target *ti,
1624                                          struct dm_dev *dev, sector_t start,
1625                                          sector_t len, void *data)
1626{
1627        struct dax_device *dax_dev = dev->dax_dev;
1628
1629        if (!dax_dev)
1630                return false;
1631
1632        if (dax_write_cache_enabled(dax_dev))
1633                return true;
1634        return false;
1635}
1636
1637static int dm_table_supports_dax_write_cache(struct dm_table *t)
1638{
1639        struct dm_target *ti;
1640        unsigned i;
1641
1642        for (i = 0; i < dm_table_get_num_targets(t); i++) {
1643                ti = dm_table_get_target(t, i);
1644
1645                if (ti->type->iterate_devices &&
1646                    ti->type->iterate_devices(ti,
1647                                device_dax_write_cache_enabled, NULL))
1648                        return true;
1649        }
1650
1651        return false;
1652}
1653
1654static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1655                            sector_t start, sector_t len, void *data)
1656{
1657        struct request_queue *q = bdev_get_queue(dev->bdev);
1658
1659        return q && blk_queue_nonrot(q);
1660}
1661
1662static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1663                             sector_t start, sector_t len, void *data)
1664{
1665        struct request_queue *q = bdev_get_queue(dev->bdev);
1666
1667        return q && !blk_queue_add_random(q);
1668}
1669
1670static bool dm_table_all_devices_attribute(struct dm_table *t,
1671                                           iterate_devices_callout_fn func)
1672{
1673        struct dm_target *ti;
1674        unsigned i;
1675
1676        for (i = 0; i < dm_table_get_num_targets(t); i++) {
1677                ti = dm_table_get_target(t, i);
1678
1679                if (!ti->type->iterate_devices ||
1680                    !ti->type->iterate_devices(ti, func, NULL))
1681                        return false;
1682        }
1683
1684        return true;
1685}
1686
1687static int device_no_partial_completion(struct dm_target *ti, struct dm_dev *dev,
1688                                        sector_t start, sector_t len, void *data)
1689{
1690        char b[BDEVNAME_SIZE];
1691
1692        /* For now, NVMe devices are the only devices of this class */
1693        return (strncmp(bdevname(dev->bdev, b), "nvme", 4) == 0);
1694}
1695
1696static bool dm_table_does_not_support_partial_completion(struct dm_table *t)
1697{
1698        return dm_table_all_devices_attribute(t, device_no_partial_completion);
1699}
1700
1701static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1702                                         sector_t start, sector_t len, void *data)
1703{
1704        struct request_queue *q = bdev_get_queue(dev->bdev);
1705
1706        return q && !q->limits.max_write_same_sectors;
1707}
1708
1709static bool dm_table_supports_write_same(struct dm_table *t)
1710{
1711        struct dm_target *ti;
1712        unsigned i;
1713
1714        for (i = 0; i < dm_table_get_num_targets(t); i++) {
1715                ti = dm_table_get_target(t, i);
1716
1717                if (!ti->num_write_same_bios)
1718                        return false;
1719
1720                if (!ti->type->iterate_devices ||
1721                    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1722                        return false;
1723        }
1724
1725        return true;
1726}
1727
1728static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1729                                           sector_t start, sector_t len, void *data)
1730{
1731        struct request_queue *q = bdev_get_queue(dev->bdev);
1732
1733        return q && !q->limits.max_write_zeroes_sectors;
1734}
1735
1736static bool dm_table_supports_write_zeroes(struct dm_table *t)
1737{
1738        struct dm_target *ti;
1739        unsigned i = 0;
1740
1741        while (i < dm_table_get_num_targets(t)) {
1742                ti = dm_table_get_target(t, i++);
1743
1744                if (!ti->num_write_zeroes_bios)
1745                        return false;
1746
1747                if (!ti->type->iterate_devices ||
1748                    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1749                        return false;
1750        }
1751
1752        return true;
1753}
1754
1755static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1756                                      sector_t start, sector_t len, void *data)
1757{
1758        struct request_queue *q = bdev_get_queue(dev->bdev);
1759
1760        return q && !blk_queue_discard(q);
1761}
1762
1763static bool dm_table_supports_discards(struct dm_table *t)
1764{
1765        struct dm_target *ti;
1766        unsigned i;
1767
1768        for (i = 0; i < dm_table_get_num_targets(t); i++) {
1769                ti = dm_table_get_target(t, i);
1770
1771                if (!ti->num_discard_bios)
1772                        return false;
1773
1774                /*
1775                 * Either the target provides discard support (as implied by setting
1776                 * 'discards_supported') or it relies on _all_ data devices having
1777                 * discard support.
1778                 */
1779                if (!ti->discards_supported &&
1780                    (!ti->type->iterate_devices ||
1781                     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1782                        return false;
1783        }
1784
1785        return true;
1786}
1787
1788static int device_not_secure_erase_capable(struct dm_target *ti,
1789                                           struct dm_dev *dev, sector_t start,
1790                                           sector_t len, void *data)
1791{
1792        struct request_queue *q = bdev_get_queue(dev->bdev);
1793
1794        return q && !blk_queue_secure_erase(q);
1795}
1796
1797static bool dm_table_supports_secure_erase(struct dm_table *t)
1798{
1799        struct dm_target *ti;
1800        unsigned int i;
1801
1802        for (i = 0; i < dm_table_get_num_targets(t); i++) {
1803                ti = dm_table_get_target(t, i);
1804
1805                if (!ti->num_secure_erase_bios)
1806                        return false;
1807
1808                if (!ti->type->iterate_devices ||
1809                    ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1810                        return false;
1811        }
1812
1813        return true;
1814}
1815
1816static int device_requires_stable_pages(struct dm_target *ti,
1817                                        struct dm_dev *dev, sector_t start,
1818                                        sector_t len, void *data)
1819{
1820        struct request_queue *q = bdev_get_queue(dev->bdev);
1821
1822        return q && bdi_cap_stable_pages_required(q->backing_dev_info);
1823}
1824
1825/*
1826 * If any underlying device requires stable pages, a table must require
1827 * them as well.  Only targets that support iterate_devices are considered:
1828 * don't want error, zero, etc to require stable pages.
1829 */
1830static bool dm_table_requires_stable_pages(struct dm_table *t)
1831{
1832        struct dm_target *ti;
1833        unsigned i;
1834
1835        for (i = 0; i < dm_table_get_num_targets(t); i++) {
1836                ti = dm_table_get_target(t, i);
1837
1838                if (ti->type->iterate_devices &&
1839                    ti->type->iterate_devices(ti, device_requires_stable_pages, NULL))
1840                        return true;
1841        }
1842
1843        return false;
1844}
1845
1846void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1847                               struct queue_limits *limits)
1848{
1849        bool wc = false, fua = false;
1850        int page_size = PAGE_SIZE;
1851
1852        /*
1853         * Copy table's limits to the DM device's request_queue
1854         */
1855        q->limits = *limits;
1856
1857        if (!dm_table_supports_discards(t)) {
1858                blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
1859                /* Must also clear discard limits... */
1860                q->limits.max_discard_sectors = 0;
1861                q->limits.max_hw_discard_sectors = 0;
1862                q->limits.discard_granularity = 0;
1863                q->limits.discard_alignment = 0;
1864                q->limits.discard_misaligned = 0;
1865        } else
1866                blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
1867
1868        if (dm_table_supports_secure_erase(t))
1869                blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
1870
1871        if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1872                wc = true;
1873                if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1874                        fua = true;
1875        }
1876        blk_queue_write_cache(q, wc, fua);
1877
1878        if (dm_table_supports_dax(t, device_supports_dax, &page_size)) {
1879                blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1880                if (dm_table_supports_dax(t, device_dax_synchronous, NULL))
1881                        set_dax_synchronous(t->md->dax_dev);
1882        }
1883        else
1884                blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1885
1886        if (dm_table_supports_dax_write_cache(t))
1887                dax_write_cache(t->md->dax_dev, true);
1888
1889        /* Ensure that all underlying devices are non-rotational. */
1890        if (dm_table_all_devices_attribute(t, device_is_nonrot))
1891                blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1892        else
1893                blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1894
1895        if (!dm_table_supports_write_same(t))
1896                q->limits.max_write_same_sectors = 0;
1897        if (!dm_table_supports_write_zeroes(t))
1898                q->limits.max_write_zeroes_sectors = 0;
1899
1900        dm_table_verify_integrity(t);
1901
1902        /*
1903         * Some devices don't use blk_integrity but still want stable pages
1904         * because they do their own checksumming.
1905         */
1906        if (dm_table_requires_stable_pages(t))
1907                q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
1908        else
1909                q->backing_dev_info->capabilities &= ~BDI_CAP_STABLE_WRITES;
1910
1911        /*
1912         * Determine whether or not this queue's I/O timings contribute
1913         * to the entropy pool, Only request-based targets use this.
1914         * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1915         * have it set.
1916         */
1917        if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1918                blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
1919
1920        /*
1921         * For a zoned target, the number of zones should be updated for the
1922         * correct value to be exposed in sysfs queue/nr_zones. For a BIO based
1923         * target, this is all that is needed.
1924         */
1925#ifdef CONFIG_BLK_DEV_ZONED
1926        if (blk_queue_is_zoned(q)) {
1927                WARN_ON_ONCE(queue_is_mq(q));
1928                q->nr_zones = blkdev_nr_zones(t->md->disk);
1929        }
1930#endif
1931
1932        /* Allow reads to exceed readahead limits */
1933        q->backing_dev_info->io_pages = limits->max_sectors >> (PAGE_SHIFT - 9);
1934}
1935
1936unsigned int dm_table_get_num_targets(struct dm_table *t)
1937{
1938        return t->num_targets;
1939}
1940
1941struct list_head *dm_table_get_devices(struct dm_table *t)
1942{
1943        return &t->devices;
1944}
1945
1946fmode_t dm_table_get_mode(struct dm_table *t)
1947{
1948        return t->mode;
1949}
1950EXPORT_SYMBOL(dm_table_get_mode);
1951
1952enum suspend_mode {
1953        PRESUSPEND,
1954        PRESUSPEND_UNDO,
1955        POSTSUSPEND,
1956};
1957
1958static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1959{
1960        int i = t->num_targets;
1961        struct dm_target *ti = t->targets;
1962
1963        lockdep_assert_held(&t->md->suspend_lock);
1964
1965        while (i--) {
1966                switch (mode) {
1967                case PRESUSPEND:
1968                        if (ti->type->presuspend)
1969                                ti->type->presuspend(ti);
1970                        break;
1971                case PRESUSPEND_UNDO:
1972                        if (ti->type->presuspend_undo)
1973                                ti->type->presuspend_undo(ti);
1974                        break;
1975                case POSTSUSPEND:
1976                        if (ti->type->postsuspend)
1977                                ti->type->postsuspend(ti);
1978                        break;
1979                }
1980                ti++;
1981        }
1982}
1983
1984void dm_table_presuspend_targets(struct dm_table *t)
1985{
1986        if (!t)
1987                return;
1988
1989        suspend_targets(t, PRESUSPEND);
1990}
1991
1992void dm_table_presuspend_undo_targets(struct dm_table *t)
1993{
1994        if (!t)
1995                return;
1996
1997        suspend_targets(t, PRESUSPEND_UNDO);
1998}
1999
2000void dm_table_postsuspend_targets(struct dm_table *t)
2001{
2002        if (!t)
2003                return;
2004
2005        suspend_targets(t, POSTSUSPEND);
2006}
2007
2008int dm_table_resume_targets(struct dm_table *t)
2009{
2010        int i, r = 0;
2011
2012        lockdep_assert_held(&t->md->suspend_lock);
2013
2014        for (i = 0; i < t->num_targets; i++) {
2015                struct dm_target *ti = t->targets + i;
2016
2017                if (!ti->type->preresume)
2018                        continue;
2019
2020                r = ti->type->preresume(ti);
2021                if (r) {
2022                        DMERR("%s: %s: preresume failed, error = %d",
2023                              dm_device_name(t->md), ti->type->name, r);
2024                        return r;
2025                }
2026        }
2027
2028        for (i = 0; i < t->num_targets; i++) {
2029                struct dm_target *ti = t->targets + i;
2030
2031                if (ti->type->resume)
2032                        ti->type->resume(ti);
2033        }
2034
2035        return 0;
2036}
2037
2038struct mapped_device *dm_table_get_md(struct dm_table *t)
2039{
2040        return t->md;
2041}
2042EXPORT_SYMBOL(dm_table_get_md);
2043
2044const char *dm_table_device_name(struct dm_table *t)
2045{
2046        return dm_device_name(t->md);
2047}
2048EXPORT_SYMBOL_GPL(dm_table_device_name);
2049
2050void dm_table_run_md_queue_async(struct dm_table *t)
2051{
2052        struct mapped_device *md;
2053        struct request_queue *queue;
2054
2055        if (!dm_table_request_based(t))
2056                return;
2057
2058        md = dm_table_get_md(t);
2059        queue = dm_get_md_queue(md);
2060        if (queue)
2061                blk_mq_run_hw_queues(queue, true);
2062}
2063EXPORT_SYMBOL(dm_table_run_md_queue_async);
2064
2065