linux/drivers/md/dm.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-core.h"
   9#include "dm-rq.h"
  10#include "dm-uevent.h"
  11
  12#include <linux/init.h>
  13#include <linux/module.h>
  14#include <linux/mutex.h>
  15#include <linux/sched/mm.h>
  16#include <linux/sched/signal.h>
  17#include <linux/blkpg.h>
  18#include <linux/bio.h>
  19#include <linux/mempool.h>
  20#include <linux/dax.h>
  21#include <linux/slab.h>
  22#include <linux/idr.h>
  23#include <linux/uio.h>
  24#include <linux/hdreg.h>
  25#include <linux/delay.h>
  26#include <linux/wait.h>
  27#include <linux/pr.h>
  28#include <linux/refcount.h>
  29#include <linux/part_stat.h>
  30#include <linux/blk-crypto.h>
  31
  32#define DM_MSG_PREFIX "core"
  33
  34/*
  35 * Cookies are numeric values sent with CHANGE and REMOVE
  36 * uevents while resuming, removing or renaming the device.
  37 */
  38#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  39#define DM_COOKIE_LENGTH 24
  40
  41static const char *_name = DM_NAME;
  42
  43static unsigned int major = 0;
  44static unsigned int _major = 0;
  45
  46static DEFINE_IDR(_minor_idr);
  47
  48static DEFINE_SPINLOCK(_minor_lock);
  49
  50static void do_deferred_remove(struct work_struct *w);
  51
  52static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
  53
  54static struct workqueue_struct *deferred_remove_workqueue;
  55
  56atomic_t dm_global_event_nr = ATOMIC_INIT(0);
  57DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
  58
  59void dm_issue_global_event(void)
  60{
  61        atomic_inc(&dm_global_event_nr);
  62        wake_up(&dm_global_eventq);
  63}
  64
  65/*
  66 * One of these is allocated (on-stack) per original bio.
  67 */
  68struct clone_info {
  69        struct dm_table *map;
  70        struct bio *bio;
  71        struct dm_io *io;
  72        sector_t sector;
  73        unsigned sector_count;
  74};
  75
  76/*
  77 * One of these is allocated per clone bio.
  78 */
  79#define DM_TIO_MAGIC 7282014
  80struct dm_target_io {
  81        unsigned magic;
  82        struct dm_io *io;
  83        struct dm_target *ti;
  84        unsigned target_bio_nr;
  85        unsigned *len_ptr;
  86        bool inside_dm_io;
  87        struct bio clone;
  88};
  89
  90/*
  91 * One of these is allocated per original bio.
  92 * It contains the first clone used for that original.
  93 */
  94#define DM_IO_MAGIC 5191977
  95struct dm_io {
  96        unsigned magic;
  97        struct mapped_device *md;
  98        blk_status_t status;
  99        atomic_t io_count;
 100        struct bio *orig_bio;
 101        unsigned long start_time;
 102        spinlock_t endio_lock;
 103        struct dm_stats_aux stats_aux;
 104        /* last member of dm_target_io is 'struct bio' */
 105        struct dm_target_io tio;
 106};
 107
 108void *dm_per_bio_data(struct bio *bio, size_t data_size)
 109{
 110        struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 111        if (!tio->inside_dm_io)
 112                return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
 113        return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
 114}
 115EXPORT_SYMBOL_GPL(dm_per_bio_data);
 116
 117struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
 118{
 119        struct dm_io *io = (struct dm_io *)((char *)data + data_size);
 120        if (io->magic == DM_IO_MAGIC)
 121                return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
 122        BUG_ON(io->magic != DM_TIO_MAGIC);
 123        return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
 124}
 125EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
 126
 127unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
 128{
 129        return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
 130}
 131EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
 132
 133#define MINOR_ALLOCED ((void *)-1)
 134
 135/*
 136 * Bits for the md->flags field.
 137 */
 138#define DMF_BLOCK_IO_FOR_SUSPEND 0
 139#define DMF_SUSPENDED 1
 140#define DMF_FROZEN 2
 141#define DMF_FREEING 3
 142#define DMF_DELETING 4
 143#define DMF_NOFLUSH_SUSPENDING 5
 144#define DMF_DEFERRED_REMOVE 6
 145#define DMF_SUSPENDED_INTERNALLY 7
 146#define DMF_POST_SUSPENDING 8
 147
 148#define DM_NUMA_NODE NUMA_NO_NODE
 149static int dm_numa_node = DM_NUMA_NODE;
 150
 151/*
 152 * For mempools pre-allocation at the table loading time.
 153 */
 154struct dm_md_mempools {
 155        struct bio_set bs;
 156        struct bio_set io_bs;
 157};
 158
 159struct table_device {
 160        struct list_head list;
 161        refcount_t count;
 162        struct dm_dev dm_dev;
 163};
 164
 165/*
 166 * Bio-based DM's mempools' reserved IOs set by the user.
 167 */
 168#define RESERVED_BIO_BASED_IOS          16
 169static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 170
 171static int __dm_get_module_param_int(int *module_param, int min, int max)
 172{
 173        int param = READ_ONCE(*module_param);
 174        int modified_param = 0;
 175        bool modified = true;
 176
 177        if (param < min)
 178                modified_param = min;
 179        else if (param > max)
 180                modified_param = max;
 181        else
 182                modified = false;
 183
 184        if (modified) {
 185                (void)cmpxchg(module_param, param, modified_param);
 186                param = modified_param;
 187        }
 188
 189        return param;
 190}
 191
 192unsigned __dm_get_module_param(unsigned *module_param,
 193                               unsigned def, unsigned max)
 194{
 195        unsigned param = READ_ONCE(*module_param);
 196        unsigned modified_param = 0;
 197
 198        if (!param)
 199                modified_param = def;
 200        else if (param > max)
 201                modified_param = max;
 202
 203        if (modified_param) {
 204                (void)cmpxchg(module_param, param, modified_param);
 205                param = modified_param;
 206        }
 207
 208        return param;
 209}
 210
 211unsigned dm_get_reserved_bio_based_ios(void)
 212{
 213        return __dm_get_module_param(&reserved_bio_based_ios,
 214                                     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
 215}
 216EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 217
 218static unsigned dm_get_numa_node(void)
 219{
 220        return __dm_get_module_param_int(&dm_numa_node,
 221                                         DM_NUMA_NODE, num_online_nodes() - 1);
 222}
 223
 224static int __init local_init(void)
 225{
 226        int r;
 227
 228        r = dm_uevent_init();
 229        if (r)
 230                return r;
 231
 232        deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
 233        if (!deferred_remove_workqueue) {
 234                r = -ENOMEM;
 235                goto out_uevent_exit;
 236        }
 237
 238        _major = major;
 239        r = register_blkdev(_major, _name);
 240        if (r < 0)
 241                goto out_free_workqueue;
 242
 243        if (!_major)
 244                _major = r;
 245
 246        return 0;
 247
 248out_free_workqueue:
 249        destroy_workqueue(deferred_remove_workqueue);
 250out_uevent_exit:
 251        dm_uevent_exit();
 252
 253        return r;
 254}
 255
 256static void local_exit(void)
 257{
 258        flush_scheduled_work();
 259        destroy_workqueue(deferred_remove_workqueue);
 260
 261        unregister_blkdev(_major, _name);
 262        dm_uevent_exit();
 263
 264        _major = 0;
 265
 266        DMINFO("cleaned up");
 267}
 268
 269static int (*_inits[])(void) __initdata = {
 270        local_init,
 271        dm_target_init,
 272        dm_linear_init,
 273        dm_stripe_init,
 274        dm_io_init,
 275        dm_kcopyd_init,
 276        dm_interface_init,
 277        dm_statistics_init,
 278};
 279
 280static void (*_exits[])(void) = {
 281        local_exit,
 282        dm_target_exit,
 283        dm_linear_exit,
 284        dm_stripe_exit,
 285        dm_io_exit,
 286        dm_kcopyd_exit,
 287        dm_interface_exit,
 288        dm_statistics_exit,
 289};
 290
 291static int __init dm_init(void)
 292{
 293        const int count = ARRAY_SIZE(_inits);
 294
 295        int r, i;
 296
 297        for (i = 0; i < count; i++) {
 298                r = _inits[i]();
 299                if (r)
 300                        goto bad;
 301        }
 302
 303        return 0;
 304
 305      bad:
 306        while (i--)
 307                _exits[i]();
 308
 309        return r;
 310}
 311
 312static void __exit dm_exit(void)
 313{
 314        int i = ARRAY_SIZE(_exits);
 315
 316        while (i--)
 317                _exits[i]();
 318
 319        /*
 320         * Should be empty by this point.
 321         */
 322        idr_destroy(&_minor_idr);
 323}
 324
 325/*
 326 * Block device functions
 327 */
 328int dm_deleting_md(struct mapped_device *md)
 329{
 330        return test_bit(DMF_DELETING, &md->flags);
 331}
 332
 333static int dm_blk_open(struct block_device *bdev, fmode_t mode)
 334{
 335        struct mapped_device *md;
 336
 337        spin_lock(&_minor_lock);
 338
 339        md = bdev->bd_disk->private_data;
 340        if (!md)
 341                goto out;
 342
 343        if (test_bit(DMF_FREEING, &md->flags) ||
 344            dm_deleting_md(md)) {
 345                md = NULL;
 346                goto out;
 347        }
 348
 349        dm_get(md);
 350        atomic_inc(&md->open_count);
 351out:
 352        spin_unlock(&_minor_lock);
 353
 354        return md ? 0 : -ENXIO;
 355}
 356
 357static void dm_blk_close(struct gendisk *disk, fmode_t mode)
 358{
 359        struct mapped_device *md;
 360
 361        spin_lock(&_minor_lock);
 362
 363        md = disk->private_data;
 364        if (WARN_ON(!md))
 365                goto out;
 366
 367        if (atomic_dec_and_test(&md->open_count) &&
 368            (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 369                queue_work(deferred_remove_workqueue, &deferred_remove_work);
 370
 371        dm_put(md);
 372out:
 373        spin_unlock(&_minor_lock);
 374}
 375
 376int dm_open_count(struct mapped_device *md)
 377{
 378        return atomic_read(&md->open_count);
 379}
 380
 381/*
 382 * Guarantees nothing is using the device before it's deleted.
 383 */
 384int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 385{
 386        int r = 0;
 387
 388        spin_lock(&_minor_lock);
 389
 390        if (dm_open_count(md)) {
 391                r = -EBUSY;
 392                if (mark_deferred)
 393                        set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 394        } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 395                r = -EEXIST;
 396        else
 397                set_bit(DMF_DELETING, &md->flags);
 398
 399        spin_unlock(&_minor_lock);
 400
 401        return r;
 402}
 403
 404int dm_cancel_deferred_remove(struct mapped_device *md)
 405{
 406        int r = 0;
 407
 408        spin_lock(&_minor_lock);
 409
 410        if (test_bit(DMF_DELETING, &md->flags))
 411                r = -EBUSY;
 412        else
 413                clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 414
 415        spin_unlock(&_minor_lock);
 416
 417        return r;
 418}
 419
 420static void do_deferred_remove(struct work_struct *w)
 421{
 422        dm_deferred_remove();
 423}
 424
 425sector_t dm_get_size(struct mapped_device *md)
 426{
 427        return get_capacity(md->disk);
 428}
 429
 430struct request_queue *dm_get_md_queue(struct mapped_device *md)
 431{
 432        return md->queue;
 433}
 434
 435struct dm_stats *dm_get_stats(struct mapped_device *md)
 436{
 437        return &md->stats;
 438}
 439
 440static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 441{
 442        struct mapped_device *md = bdev->bd_disk->private_data;
 443
 444        return dm_get_geometry(md, geo);
 445}
 446
 447#ifdef CONFIG_BLK_DEV_ZONED
 448int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data)
 449{
 450        struct dm_report_zones_args *args = data;
 451        sector_t sector_diff = args->tgt->begin - args->start;
 452
 453        /*
 454         * Ignore zones beyond the target range.
 455         */
 456        if (zone->start >= args->start + args->tgt->len)
 457                return 0;
 458
 459        /*
 460         * Remap the start sector and write pointer position of the zone
 461         * to match its position in the target range.
 462         */
 463        zone->start += sector_diff;
 464        if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
 465                if (zone->cond == BLK_ZONE_COND_FULL)
 466                        zone->wp = zone->start + zone->len;
 467                else if (zone->cond == BLK_ZONE_COND_EMPTY)
 468                        zone->wp = zone->start;
 469                else
 470                        zone->wp += sector_diff;
 471        }
 472
 473        args->next_sector = zone->start + zone->len;
 474        return args->orig_cb(zone, args->zone_idx++, args->orig_data);
 475}
 476EXPORT_SYMBOL_GPL(dm_report_zones_cb);
 477
 478static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
 479                unsigned int nr_zones, report_zones_cb cb, void *data)
 480{
 481        struct mapped_device *md = disk->private_data;
 482        struct dm_table *map;
 483        int srcu_idx, ret;
 484        struct dm_report_zones_args args = {
 485                .next_sector = sector,
 486                .orig_data = data,
 487                .orig_cb = cb,
 488        };
 489
 490        if (dm_suspended_md(md))
 491                return -EAGAIN;
 492
 493        map = dm_get_live_table(md, &srcu_idx);
 494        if (!map)
 495                return -EIO;
 496
 497        do {
 498                struct dm_target *tgt;
 499
 500                tgt = dm_table_find_target(map, args.next_sector);
 501                if (WARN_ON_ONCE(!tgt->type->report_zones)) {
 502                        ret = -EIO;
 503                        goto out;
 504                }
 505
 506                args.tgt = tgt;
 507                ret = tgt->type->report_zones(tgt, &args,
 508                                              nr_zones - args.zone_idx);
 509                if (ret < 0)
 510                        goto out;
 511        } while (args.zone_idx < nr_zones &&
 512                 args.next_sector < get_capacity(disk));
 513
 514        ret = args.zone_idx;
 515out:
 516        dm_put_live_table(md, srcu_idx);
 517        return ret;
 518}
 519#else
 520#define dm_blk_report_zones             NULL
 521#endif /* CONFIG_BLK_DEV_ZONED */
 522
 523static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
 524                            struct block_device **bdev)
 525        __acquires(md->io_barrier)
 526{
 527        struct dm_target *tgt;
 528        struct dm_table *map;
 529        int r;
 530
 531retry:
 532        r = -ENOTTY;
 533        map = dm_get_live_table(md, srcu_idx);
 534        if (!map || !dm_table_get_size(map))
 535                return r;
 536
 537        /* We only support devices that have a single target */
 538        if (dm_table_get_num_targets(map) != 1)
 539                return r;
 540
 541        tgt = dm_table_get_target(map, 0);
 542        if (!tgt->type->prepare_ioctl)
 543                return r;
 544
 545        if (dm_suspended_md(md))
 546                return -EAGAIN;
 547
 548        r = tgt->type->prepare_ioctl(tgt, bdev);
 549        if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 550                dm_put_live_table(md, *srcu_idx);
 551                msleep(10);
 552                goto retry;
 553        }
 554
 555        return r;
 556}
 557
 558static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
 559        __releases(md->io_barrier)
 560{
 561        dm_put_live_table(md, srcu_idx);
 562}
 563
 564static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
 565                        unsigned int cmd, unsigned long arg)
 566{
 567        struct mapped_device *md = bdev->bd_disk->private_data;
 568        int r, srcu_idx;
 569
 570        r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
 571        if (r < 0)
 572                goto out;
 573
 574        if (r > 0) {
 575                /*
 576                 * Target determined this ioctl is being issued against a
 577                 * subset of the parent bdev; require extra privileges.
 578                 */
 579                if (!capable(CAP_SYS_RAWIO)) {
 580                        DMWARN_LIMIT(
 581        "%s: sending ioctl %x to DM device without required privilege.",
 582                                current->comm, cmd);
 583                        r = -ENOIOCTLCMD;
 584                        goto out;
 585                }
 586        }
 587
 588        r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
 589out:
 590        dm_unprepare_ioctl(md, srcu_idx);
 591        return r;
 592}
 593
 594static void start_io_acct(struct dm_io *io);
 595
 596static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
 597{
 598        struct dm_io *io;
 599        struct dm_target_io *tio;
 600        struct bio *clone;
 601
 602        clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
 603        if (!clone)
 604                return NULL;
 605
 606        tio = container_of(clone, struct dm_target_io, clone);
 607        tio->inside_dm_io = true;
 608        tio->io = NULL;
 609
 610        io = container_of(tio, struct dm_io, tio);
 611        io->magic = DM_IO_MAGIC;
 612        io->status = 0;
 613        atomic_set(&io->io_count, 1);
 614        io->orig_bio = bio;
 615        io->md = md;
 616        spin_lock_init(&io->endio_lock);
 617
 618        start_io_acct(io);
 619
 620        return io;
 621}
 622
 623static void free_io(struct mapped_device *md, struct dm_io *io)
 624{
 625        bio_put(&io->tio.clone);
 626}
 627
 628static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
 629                                      unsigned target_bio_nr, gfp_t gfp_mask)
 630{
 631        struct dm_target_io *tio;
 632
 633        if (!ci->io->tio.io) {
 634                /* the dm_target_io embedded in ci->io is available */
 635                tio = &ci->io->tio;
 636        } else {
 637                struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
 638                if (!clone)
 639                        return NULL;
 640
 641                tio = container_of(clone, struct dm_target_io, clone);
 642                tio->inside_dm_io = false;
 643        }
 644
 645        tio->magic = DM_TIO_MAGIC;
 646        tio->io = ci->io;
 647        tio->ti = ti;
 648        tio->target_bio_nr = target_bio_nr;
 649
 650        return tio;
 651}
 652
 653static void free_tio(struct dm_target_io *tio)
 654{
 655        if (tio->inside_dm_io)
 656                return;
 657        bio_put(&tio->clone);
 658}
 659
 660u64 dm_start_time_ns_from_clone(struct bio *bio)
 661{
 662        struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 663        struct dm_io *io = tio->io;
 664
 665        return jiffies_to_nsecs(io->start_time);
 666}
 667EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
 668
 669static void start_io_acct(struct dm_io *io)
 670{
 671        struct mapped_device *md = io->md;
 672        struct bio *bio = io->orig_bio;
 673
 674        io->start_time = bio_start_io_acct(bio);
 675        if (unlikely(dm_stats_used(&md->stats)))
 676                dm_stats_account_io(&md->stats, bio_data_dir(bio),
 677                                    bio->bi_iter.bi_sector, bio_sectors(bio),
 678                                    false, 0, &io->stats_aux);
 679}
 680
 681static void end_io_acct(struct dm_io *io)
 682{
 683        struct mapped_device *md = io->md;
 684        struct bio *bio = io->orig_bio;
 685        unsigned long duration = jiffies - io->start_time;
 686
 687        bio_end_io_acct(bio, io->start_time);
 688
 689        if (unlikely(dm_stats_used(&md->stats)))
 690                dm_stats_account_io(&md->stats, bio_data_dir(bio),
 691                                    bio->bi_iter.bi_sector, bio_sectors(bio),
 692                                    true, duration, &io->stats_aux);
 693
 694        /* nudge anyone waiting on suspend queue */
 695        if (unlikely(wq_has_sleeper(&md->wait)))
 696                wake_up(&md->wait);
 697}
 698
 699/*
 700 * Add the bio to the list of deferred io.
 701 */
 702static void queue_io(struct mapped_device *md, struct bio *bio)
 703{
 704        unsigned long flags;
 705
 706        spin_lock_irqsave(&md->deferred_lock, flags);
 707        bio_list_add(&md->deferred, bio);
 708        spin_unlock_irqrestore(&md->deferred_lock, flags);
 709        queue_work(md->wq, &md->work);
 710}
 711
 712/*
 713 * Everyone (including functions in this file), should use this
 714 * function to access the md->map field, and make sure they call
 715 * dm_put_live_table() when finished.
 716 */
 717struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
 718{
 719        *srcu_idx = srcu_read_lock(&md->io_barrier);
 720
 721        return srcu_dereference(md->map, &md->io_barrier);
 722}
 723
 724void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
 725{
 726        srcu_read_unlock(&md->io_barrier, srcu_idx);
 727}
 728
 729void dm_sync_table(struct mapped_device *md)
 730{
 731        synchronize_srcu(&md->io_barrier);
 732        synchronize_rcu_expedited();
 733}
 734
 735/*
 736 * A fast alternative to dm_get_live_table/dm_put_live_table.
 737 * The caller must not block between these two functions.
 738 */
 739static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 740{
 741        rcu_read_lock();
 742        return rcu_dereference(md->map);
 743}
 744
 745static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 746{
 747        rcu_read_unlock();
 748}
 749
 750static char *_dm_claim_ptr = "I belong to device-mapper";
 751
 752/*
 753 * Open a table device so we can use it as a map destination.
 754 */
 755static int open_table_device(struct table_device *td, dev_t dev,
 756                             struct mapped_device *md)
 757{
 758        struct block_device *bdev;
 759
 760        int r;
 761
 762        BUG_ON(td->dm_dev.bdev);
 763
 764        bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
 765        if (IS_ERR(bdev))
 766                return PTR_ERR(bdev);
 767
 768        r = bd_link_disk_holder(bdev, dm_disk(md));
 769        if (r) {
 770                blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
 771                return r;
 772        }
 773
 774        td->dm_dev.bdev = bdev;
 775        td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
 776        return 0;
 777}
 778
 779/*
 780 * Close a table device that we've been using.
 781 */
 782static void close_table_device(struct table_device *td, struct mapped_device *md)
 783{
 784        if (!td->dm_dev.bdev)
 785                return;
 786
 787        bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
 788        blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
 789        put_dax(td->dm_dev.dax_dev);
 790        td->dm_dev.bdev = NULL;
 791        td->dm_dev.dax_dev = NULL;
 792}
 793
 794static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 795                                              fmode_t mode)
 796{
 797        struct table_device *td;
 798
 799        list_for_each_entry(td, l, list)
 800                if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 801                        return td;
 802
 803        return NULL;
 804}
 805
 806int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
 807                        struct dm_dev **result)
 808{
 809        int r;
 810        struct table_device *td;
 811
 812        mutex_lock(&md->table_devices_lock);
 813        td = find_table_device(&md->table_devices, dev, mode);
 814        if (!td) {
 815                td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 816                if (!td) {
 817                        mutex_unlock(&md->table_devices_lock);
 818                        return -ENOMEM;
 819                }
 820
 821                td->dm_dev.mode = mode;
 822                td->dm_dev.bdev = NULL;
 823
 824                if ((r = open_table_device(td, dev, md))) {
 825                        mutex_unlock(&md->table_devices_lock);
 826                        kfree(td);
 827                        return r;
 828                }
 829
 830                format_dev_t(td->dm_dev.name, dev);
 831
 832                refcount_set(&td->count, 1);
 833                list_add(&td->list, &md->table_devices);
 834        } else {
 835                refcount_inc(&td->count);
 836        }
 837        mutex_unlock(&md->table_devices_lock);
 838
 839        *result = &td->dm_dev;
 840        return 0;
 841}
 842EXPORT_SYMBOL_GPL(dm_get_table_device);
 843
 844void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 845{
 846        struct table_device *td = container_of(d, struct table_device, dm_dev);
 847
 848        mutex_lock(&md->table_devices_lock);
 849        if (refcount_dec_and_test(&td->count)) {
 850                close_table_device(td, md);
 851                list_del(&td->list);
 852                kfree(td);
 853        }
 854        mutex_unlock(&md->table_devices_lock);
 855}
 856EXPORT_SYMBOL(dm_put_table_device);
 857
 858static void free_table_devices(struct list_head *devices)
 859{
 860        struct list_head *tmp, *next;
 861
 862        list_for_each_safe(tmp, next, devices) {
 863                struct table_device *td = list_entry(tmp, struct table_device, list);
 864
 865                DMWARN("dm_destroy: %s still exists with %d references",
 866                       td->dm_dev.name, refcount_read(&td->count));
 867                kfree(td);
 868        }
 869}
 870
 871/*
 872 * Get the geometry associated with a dm device
 873 */
 874int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 875{
 876        *geo = md->geometry;
 877
 878        return 0;
 879}
 880
 881/*
 882 * Set the geometry of a device.
 883 */
 884int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 885{
 886        sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 887
 888        if (geo->start > sz) {
 889                DMWARN("Start sector is beyond the geometry limits.");
 890                return -EINVAL;
 891        }
 892
 893        md->geometry = *geo;
 894
 895        return 0;
 896}
 897
 898static int __noflush_suspending(struct mapped_device *md)
 899{
 900        return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 901}
 902
 903/*
 904 * Decrements the number of outstanding ios that a bio has been
 905 * cloned into, completing the original io if necc.
 906 */
 907static void dec_pending(struct dm_io *io, blk_status_t error)
 908{
 909        unsigned long flags;
 910        blk_status_t io_error;
 911        struct bio *bio;
 912        struct mapped_device *md = io->md;
 913
 914        /* Push-back supersedes any I/O errors */
 915        if (unlikely(error)) {
 916                spin_lock_irqsave(&io->endio_lock, flags);
 917                if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
 918                        io->status = error;
 919                spin_unlock_irqrestore(&io->endio_lock, flags);
 920        }
 921
 922        if (atomic_dec_and_test(&io->io_count)) {
 923                if (io->status == BLK_STS_DM_REQUEUE) {
 924                        /*
 925                         * Target requested pushing back the I/O.
 926                         */
 927                        spin_lock_irqsave(&md->deferred_lock, flags);
 928                        if (__noflush_suspending(md))
 929                                /* NOTE early return due to BLK_STS_DM_REQUEUE below */
 930                                bio_list_add_head(&md->deferred, io->orig_bio);
 931                        else
 932                                /* noflush suspend was interrupted. */
 933                                io->status = BLK_STS_IOERR;
 934                        spin_unlock_irqrestore(&md->deferred_lock, flags);
 935                }
 936
 937                io_error = io->status;
 938                bio = io->orig_bio;
 939                end_io_acct(io);
 940                free_io(md, io);
 941
 942                if (io_error == BLK_STS_DM_REQUEUE)
 943                        return;
 944
 945                if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
 946                        /*
 947                         * Preflush done for flush with data, reissue
 948                         * without REQ_PREFLUSH.
 949                         */
 950                        bio->bi_opf &= ~REQ_PREFLUSH;
 951                        queue_io(md, bio);
 952                } else {
 953                        /* done with normal IO or empty flush */
 954                        if (io_error)
 955                                bio->bi_status = io_error;
 956                        bio_endio(bio);
 957                }
 958        }
 959}
 960
 961void disable_discard(struct mapped_device *md)
 962{
 963        struct queue_limits *limits = dm_get_queue_limits(md);
 964
 965        /* device doesn't really support DISCARD, disable it */
 966        limits->max_discard_sectors = 0;
 967        blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
 968}
 969
 970void disable_write_same(struct mapped_device *md)
 971{
 972        struct queue_limits *limits = dm_get_queue_limits(md);
 973
 974        /* device doesn't really support WRITE SAME, disable it */
 975        limits->max_write_same_sectors = 0;
 976}
 977
 978void disable_write_zeroes(struct mapped_device *md)
 979{
 980        struct queue_limits *limits = dm_get_queue_limits(md);
 981
 982        /* device doesn't really support WRITE ZEROES, disable it */
 983        limits->max_write_zeroes_sectors = 0;
 984}
 985
 986static void clone_endio(struct bio *bio)
 987{
 988        blk_status_t error = bio->bi_status;
 989        struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 990        struct dm_io *io = tio->io;
 991        struct mapped_device *md = tio->io->md;
 992        dm_endio_fn endio = tio->ti->type->end_io;
 993        struct bio *orig_bio = io->orig_bio;
 994
 995        if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
 996                if (bio_op(bio) == REQ_OP_DISCARD &&
 997                    !bio->bi_disk->queue->limits.max_discard_sectors)
 998                        disable_discard(md);
 999                else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
1000                         !bio->bi_disk->queue->limits.max_write_same_sectors)
1001                        disable_write_same(md);
1002                else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1003                         !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
1004                        disable_write_zeroes(md);
1005        }
1006
1007        /*
1008         * For zone-append bios get offset in zone of the written
1009         * sector and add that to the original bio sector pos.
1010         */
1011        if (bio_op(orig_bio) == REQ_OP_ZONE_APPEND) {
1012                sector_t written_sector = bio->bi_iter.bi_sector;
1013                struct request_queue *q = orig_bio->bi_disk->queue;
1014                u64 mask = (u64)blk_queue_zone_sectors(q) - 1;
1015
1016                orig_bio->bi_iter.bi_sector += written_sector & mask;
1017        }
1018
1019        if (endio) {
1020                int r = endio(tio->ti, bio, &error);
1021                switch (r) {
1022                case DM_ENDIO_REQUEUE:
1023                        error = BLK_STS_DM_REQUEUE;
1024                        fallthrough;
1025                case DM_ENDIO_DONE:
1026                        break;
1027                case DM_ENDIO_INCOMPLETE:
1028                        /* The target will handle the io */
1029                        return;
1030                default:
1031                        DMWARN("unimplemented target endio return value: %d", r);
1032                        BUG();
1033                }
1034        }
1035
1036        free_tio(tio);
1037        dec_pending(io, error);
1038}
1039
1040/*
1041 * Return maximum size of I/O possible at the supplied sector up to the current
1042 * target boundary.
1043 */
1044static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1045{
1046        sector_t target_offset = dm_target_offset(ti, sector);
1047
1048        return ti->len - target_offset;
1049}
1050
1051static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1052{
1053        sector_t len = max_io_len_target_boundary(sector, ti);
1054        sector_t offset, max_len;
1055
1056        /*
1057         * Does the target need to split even further?
1058         */
1059        if (ti->max_io_len) {
1060                offset = dm_target_offset(ti, sector);
1061                if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1062                        max_len = sector_div(offset, ti->max_io_len);
1063                else
1064                        max_len = offset & (ti->max_io_len - 1);
1065                max_len = ti->max_io_len - max_len;
1066
1067                if (len > max_len)
1068                        len = max_len;
1069        }
1070
1071        return len;
1072}
1073
1074int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1075{
1076        if (len > UINT_MAX) {
1077                DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1078                      (unsigned long long)len, UINT_MAX);
1079                ti->error = "Maximum size of target IO is too large";
1080                return -EINVAL;
1081        }
1082
1083        ti->max_io_len = (uint32_t) len;
1084
1085        return 0;
1086}
1087EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1088
1089static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1090                                                sector_t sector, int *srcu_idx)
1091        __acquires(md->io_barrier)
1092{
1093        struct dm_table *map;
1094        struct dm_target *ti;
1095
1096        map = dm_get_live_table(md, srcu_idx);
1097        if (!map)
1098                return NULL;
1099
1100        ti = dm_table_find_target(map, sector);
1101        if (!ti)
1102                return NULL;
1103
1104        return ti;
1105}
1106
1107static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1108                                 long nr_pages, void **kaddr, pfn_t *pfn)
1109{
1110        struct mapped_device *md = dax_get_private(dax_dev);
1111        sector_t sector = pgoff * PAGE_SECTORS;
1112        struct dm_target *ti;
1113        long len, ret = -EIO;
1114        int srcu_idx;
1115
1116        ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1117
1118        if (!ti)
1119                goto out;
1120        if (!ti->type->direct_access)
1121                goto out;
1122        len = max_io_len(sector, ti) / PAGE_SECTORS;
1123        if (len < 1)
1124                goto out;
1125        nr_pages = min(len, nr_pages);
1126        ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1127
1128 out:
1129        dm_put_live_table(md, srcu_idx);
1130
1131        return ret;
1132}
1133
1134static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1135                int blocksize, sector_t start, sector_t len)
1136{
1137        struct mapped_device *md = dax_get_private(dax_dev);
1138        struct dm_table *map;
1139        bool ret = false;
1140        int srcu_idx;
1141
1142        map = dm_get_live_table(md, &srcu_idx);
1143        if (!map)
1144                goto out;
1145
1146        ret = dm_table_supports_dax(map, device_supports_dax, &blocksize);
1147
1148out:
1149        dm_put_live_table(md, srcu_idx);
1150
1151        return ret;
1152}
1153
1154static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1155                                    void *addr, size_t bytes, struct iov_iter *i)
1156{
1157        struct mapped_device *md = dax_get_private(dax_dev);
1158        sector_t sector = pgoff * PAGE_SECTORS;
1159        struct dm_target *ti;
1160        long ret = 0;
1161        int srcu_idx;
1162
1163        ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1164
1165        if (!ti)
1166                goto out;
1167        if (!ti->type->dax_copy_from_iter) {
1168                ret = copy_from_iter(addr, bytes, i);
1169                goto out;
1170        }
1171        ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1172 out:
1173        dm_put_live_table(md, srcu_idx);
1174
1175        return ret;
1176}
1177
1178static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1179                void *addr, size_t bytes, struct iov_iter *i)
1180{
1181        struct mapped_device *md = dax_get_private(dax_dev);
1182        sector_t sector = pgoff * PAGE_SECTORS;
1183        struct dm_target *ti;
1184        long ret = 0;
1185        int srcu_idx;
1186
1187        ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1188
1189        if (!ti)
1190                goto out;
1191        if (!ti->type->dax_copy_to_iter) {
1192                ret = copy_to_iter(addr, bytes, i);
1193                goto out;
1194        }
1195        ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1196 out:
1197        dm_put_live_table(md, srcu_idx);
1198
1199        return ret;
1200}
1201
1202static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1203                                  size_t nr_pages)
1204{
1205        struct mapped_device *md = dax_get_private(dax_dev);
1206        sector_t sector = pgoff * PAGE_SECTORS;
1207        struct dm_target *ti;
1208        int ret = -EIO;
1209        int srcu_idx;
1210
1211        ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1212
1213        if (!ti)
1214                goto out;
1215        if (WARN_ON(!ti->type->dax_zero_page_range)) {
1216                /*
1217                 * ->zero_page_range() is mandatory dax operation. If we are
1218                 *  here, something is wrong.
1219                 */
1220                dm_put_live_table(md, srcu_idx);
1221                goto out;
1222        }
1223        ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1224
1225 out:
1226        dm_put_live_table(md, srcu_idx);
1227
1228        return ret;
1229}
1230
1231/*
1232 * A target may call dm_accept_partial_bio only from the map routine.  It is
1233 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET,
1234 * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH.
1235 *
1236 * dm_accept_partial_bio informs the dm that the target only wants to process
1237 * additional n_sectors sectors of the bio and the rest of the data should be
1238 * sent in a next bio.
1239 *
1240 * A diagram that explains the arithmetics:
1241 * +--------------------+---------------+-------+
1242 * |         1          |       2       |   3   |
1243 * +--------------------+---------------+-------+
1244 *
1245 * <-------------- *tio->len_ptr --------------->
1246 *                      <------- bi_size ------->
1247 *                      <-- n_sectors -->
1248 *
1249 * Region 1 was already iterated over with bio_advance or similar function.
1250 *      (it may be empty if the target doesn't use bio_advance)
1251 * Region 2 is the remaining bio size that the target wants to process.
1252 *      (it may be empty if region 1 is non-empty, although there is no reason
1253 *       to make it empty)
1254 * The target requires that region 3 is to be sent in the next bio.
1255 *
1256 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1257 * the partially processed part (the sum of regions 1+2) must be the same for all
1258 * copies of the bio.
1259 */
1260void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1261{
1262        struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1263        unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1264        BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1265        BUG_ON(bi_size > *tio->len_ptr);
1266        BUG_ON(n_sectors > bi_size);
1267        *tio->len_ptr -= bi_size - n_sectors;
1268        bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1269}
1270EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1271
1272static blk_qc_t __map_bio(struct dm_target_io *tio)
1273{
1274        int r;
1275        sector_t sector;
1276        struct bio *clone = &tio->clone;
1277        struct dm_io *io = tio->io;
1278        struct dm_target *ti = tio->ti;
1279        blk_qc_t ret = BLK_QC_T_NONE;
1280
1281        clone->bi_end_io = clone_endio;
1282
1283        /*
1284         * Map the clone.  If r == 0 we don't need to do
1285         * anything, the target has assumed ownership of
1286         * this io.
1287         */
1288        atomic_inc(&io->io_count);
1289        sector = clone->bi_iter.bi_sector;
1290
1291        r = ti->type->map(ti, clone);
1292        switch (r) {
1293        case DM_MAPIO_SUBMITTED:
1294                break;
1295        case DM_MAPIO_REMAPPED:
1296                /* the bio has been remapped so dispatch it */
1297                trace_block_bio_remap(clone->bi_disk->queue, clone,
1298                                      bio_dev(io->orig_bio), sector);
1299                ret = submit_bio_noacct(clone);
1300                break;
1301        case DM_MAPIO_KILL:
1302                free_tio(tio);
1303                dec_pending(io, BLK_STS_IOERR);
1304                break;
1305        case DM_MAPIO_REQUEUE:
1306                free_tio(tio);
1307                dec_pending(io, BLK_STS_DM_REQUEUE);
1308                break;
1309        default:
1310                DMWARN("unimplemented target map return value: %d", r);
1311                BUG();
1312        }
1313
1314        return ret;
1315}
1316
1317static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1318{
1319        bio->bi_iter.bi_sector = sector;
1320        bio->bi_iter.bi_size = to_bytes(len);
1321}
1322
1323/*
1324 * Creates a bio that consists of range of complete bvecs.
1325 */
1326static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1327                     sector_t sector, unsigned len)
1328{
1329        struct bio *clone = &tio->clone;
1330
1331        __bio_clone_fast(clone, bio);
1332
1333        bio_crypt_clone(clone, bio, GFP_NOIO);
1334
1335        if (bio_integrity(bio)) {
1336                int r;
1337
1338                if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1339                             !dm_target_passes_integrity(tio->ti->type))) {
1340                        DMWARN("%s: the target %s doesn't support integrity data.",
1341                                dm_device_name(tio->io->md),
1342                                tio->ti->type->name);
1343                        return -EIO;
1344                }
1345
1346                r = bio_integrity_clone(clone, bio, GFP_NOIO);
1347                if (r < 0)
1348                        return r;
1349        }
1350
1351        bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1352        clone->bi_iter.bi_size = to_bytes(len);
1353
1354        if (bio_integrity(bio))
1355                bio_integrity_trim(clone);
1356
1357        return 0;
1358}
1359
1360static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1361                                struct dm_target *ti, unsigned num_bios)
1362{
1363        struct dm_target_io *tio;
1364        int try;
1365
1366        if (!num_bios)
1367                return;
1368
1369        if (num_bios == 1) {
1370                tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1371                bio_list_add(blist, &tio->clone);
1372                return;
1373        }
1374
1375        for (try = 0; try < 2; try++) {
1376                int bio_nr;
1377                struct bio *bio;
1378
1379                if (try)
1380                        mutex_lock(&ci->io->md->table_devices_lock);
1381                for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1382                        tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1383                        if (!tio)
1384                                break;
1385
1386                        bio_list_add(blist, &tio->clone);
1387                }
1388                if (try)
1389                        mutex_unlock(&ci->io->md->table_devices_lock);
1390                if (bio_nr == num_bios)
1391                        return;
1392
1393                while ((bio = bio_list_pop(blist))) {
1394                        tio = container_of(bio, struct dm_target_io, clone);
1395                        free_tio(tio);
1396                }
1397        }
1398}
1399
1400static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1401                                           struct dm_target_io *tio, unsigned *len)
1402{
1403        struct bio *clone = &tio->clone;
1404
1405        tio->len_ptr = len;
1406
1407        __bio_clone_fast(clone, ci->bio);
1408        if (len)
1409                bio_setup_sector(clone, ci->sector, *len);
1410
1411        return __map_bio(tio);
1412}
1413
1414static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1415                                  unsigned num_bios, unsigned *len)
1416{
1417        struct bio_list blist = BIO_EMPTY_LIST;
1418        struct bio *bio;
1419        struct dm_target_io *tio;
1420
1421        alloc_multiple_bios(&blist, ci, ti, num_bios);
1422
1423        while ((bio = bio_list_pop(&blist))) {
1424                tio = container_of(bio, struct dm_target_io, clone);
1425                (void) __clone_and_map_simple_bio(ci, tio, len);
1426        }
1427}
1428
1429static int __send_empty_flush(struct clone_info *ci)
1430{
1431        unsigned target_nr = 0;
1432        struct dm_target *ti;
1433
1434        /*
1435         * Empty flush uses a statically initialized bio, as the base for
1436         * cloning.  However, blkg association requires that a bdev is
1437         * associated with a gendisk, which doesn't happen until the bdev is
1438         * opened.  So, blkg association is done at issue time of the flush
1439         * rather than when the device is created in alloc_dev().
1440         */
1441        bio_set_dev(ci->bio, ci->io->md->bdev);
1442
1443        BUG_ON(bio_has_data(ci->bio));
1444        while ((ti = dm_table_get_target(ci->map, target_nr++)))
1445                __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1446        return 0;
1447}
1448
1449static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1450                                    sector_t sector, unsigned *len)
1451{
1452        struct bio *bio = ci->bio;
1453        struct dm_target_io *tio;
1454        int r;
1455
1456        tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1457        tio->len_ptr = len;
1458        r = clone_bio(tio, bio, sector, *len);
1459        if (r < 0) {
1460                free_tio(tio);
1461                return r;
1462        }
1463        (void) __map_bio(tio);
1464
1465        return 0;
1466}
1467
1468typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1469
1470static unsigned get_num_discard_bios(struct dm_target *ti)
1471{
1472        return ti->num_discard_bios;
1473}
1474
1475static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1476{
1477        return ti->num_secure_erase_bios;
1478}
1479
1480static unsigned get_num_write_same_bios(struct dm_target *ti)
1481{
1482        return ti->num_write_same_bios;
1483}
1484
1485static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1486{
1487        return ti->num_write_zeroes_bios;
1488}
1489
1490static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1491                                       unsigned num_bios)
1492{
1493        unsigned len;
1494
1495        /*
1496         * Even though the device advertised support for this type of
1497         * request, that does not mean every target supports it, and
1498         * reconfiguration might also have changed that since the
1499         * check was performed.
1500         */
1501        if (!num_bios)
1502                return -EOPNOTSUPP;
1503
1504        len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1505
1506        __send_duplicate_bios(ci, ti, num_bios, &len);
1507
1508        ci->sector += len;
1509        ci->sector_count -= len;
1510
1511        return 0;
1512}
1513
1514static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1515{
1516        return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti));
1517}
1518
1519static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1520{
1521        return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti));
1522}
1523
1524static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1525{
1526        return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti));
1527}
1528
1529static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1530{
1531        return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti));
1532}
1533
1534static bool is_abnormal_io(struct bio *bio)
1535{
1536        bool r = false;
1537
1538        switch (bio_op(bio)) {
1539        case REQ_OP_DISCARD:
1540        case REQ_OP_SECURE_ERASE:
1541        case REQ_OP_WRITE_SAME:
1542        case REQ_OP_WRITE_ZEROES:
1543                r = true;
1544                break;
1545        }
1546
1547        return r;
1548}
1549
1550static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1551                                  int *result)
1552{
1553        struct bio *bio = ci->bio;
1554
1555        if (bio_op(bio) == REQ_OP_DISCARD)
1556                *result = __send_discard(ci, ti);
1557        else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1558                *result = __send_secure_erase(ci, ti);
1559        else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1560                *result = __send_write_same(ci, ti);
1561        else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1562                *result = __send_write_zeroes(ci, ti);
1563        else
1564                return false;
1565
1566        return true;
1567}
1568
1569/*
1570 * Select the correct strategy for processing a non-flush bio.
1571 */
1572static int __split_and_process_non_flush(struct clone_info *ci)
1573{
1574        struct dm_target *ti;
1575        unsigned len;
1576        int r;
1577
1578        ti = dm_table_find_target(ci->map, ci->sector);
1579        if (!ti)
1580                return -EIO;
1581
1582        if (__process_abnormal_io(ci, ti, &r))
1583                return r;
1584
1585        len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1586
1587        r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1588        if (r < 0)
1589                return r;
1590
1591        ci->sector += len;
1592        ci->sector_count -= len;
1593
1594        return 0;
1595}
1596
1597static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1598                            struct dm_table *map, struct bio *bio)
1599{
1600        ci->map = map;
1601        ci->io = alloc_io(md, bio);
1602        ci->sector = bio->bi_iter.bi_sector;
1603}
1604
1605#define __dm_part_stat_sub(part, field, subnd)  \
1606        (part_stat_get(part, field) -= (subnd))
1607
1608/*
1609 * Entry point to split a bio into clones and submit them to the targets.
1610 */
1611static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1612                                        struct dm_table *map, struct bio *bio)
1613{
1614        struct clone_info ci;
1615        blk_qc_t ret = BLK_QC_T_NONE;
1616        int error = 0;
1617
1618        init_clone_info(&ci, md, map, bio);
1619
1620        if (bio->bi_opf & REQ_PREFLUSH) {
1621                struct bio flush_bio;
1622
1623                /*
1624                 * Use an on-stack bio for this, it's safe since we don't
1625                 * need to reference it after submit. It's just used as
1626                 * the basis for the clone(s).
1627                 */
1628                bio_init(&flush_bio, NULL, 0);
1629                flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1630                ci.bio = &flush_bio;
1631                ci.sector_count = 0;
1632                error = __send_empty_flush(&ci);
1633                bio_uninit(ci.bio);
1634                /* dec_pending submits any data associated with flush */
1635        } else if (op_is_zone_mgmt(bio_op(bio))) {
1636                ci.bio = bio;
1637                ci.sector_count = 0;
1638                error = __split_and_process_non_flush(&ci);
1639        } else {
1640                ci.bio = bio;
1641                ci.sector_count = bio_sectors(bio);
1642                while (ci.sector_count && !error) {
1643                        error = __split_and_process_non_flush(&ci);
1644                        if (current->bio_list && ci.sector_count && !error) {
1645                                /*
1646                                 * Remainder must be passed to submit_bio_noacct()
1647                                 * so that it gets handled *after* bios already submitted
1648                                 * have been completely processed.
1649                                 * We take a clone of the original to store in
1650                                 * ci.io->orig_bio to be used by end_io_acct() and
1651                                 * for dec_pending to use for completion handling.
1652                                 */
1653                                struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1654                                                          GFP_NOIO, &md->queue->bio_split);
1655                                ci.io->orig_bio = b;
1656
1657                                /*
1658                                 * Adjust IO stats for each split, otherwise upon queue
1659                                 * reentry there will be redundant IO accounting.
1660                                 * NOTE: this is a stop-gap fix, a proper fix involves
1661                                 * significant refactoring of DM core's bio splitting
1662                                 * (by eliminating DM's splitting and just using bio_split)
1663                                 */
1664                                part_stat_lock();
1665                                __dm_part_stat_sub(&dm_disk(md)->part0,
1666                                                   sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1667                                part_stat_unlock();
1668
1669                                bio_chain(b, bio);
1670                                trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1671                                ret = submit_bio_noacct(bio);
1672                                break;
1673                        }
1674                }
1675        }
1676
1677        /* drop the extra reference count */
1678        dec_pending(ci.io, errno_to_blk_status(error));
1679        return ret;
1680}
1681
1682/*
1683 * Optimized variant of __split_and_process_bio that leverages the
1684 * fact that targets that use it do _not_ have a need to split bios.
1685 */
1686static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map,
1687                              struct bio *bio, struct dm_target *ti)
1688{
1689        struct clone_info ci;
1690        blk_qc_t ret = BLK_QC_T_NONE;
1691        int error = 0;
1692
1693        init_clone_info(&ci, md, map, bio);
1694
1695        if (bio->bi_opf & REQ_PREFLUSH) {
1696                struct bio flush_bio;
1697
1698                /*
1699                 * Use an on-stack bio for this, it's safe since we don't
1700                 * need to reference it after submit. It's just used as
1701                 * the basis for the clone(s).
1702                 */
1703                bio_init(&flush_bio, NULL, 0);
1704                flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1705                ci.bio = &flush_bio;
1706                ci.sector_count = 0;
1707                error = __send_empty_flush(&ci);
1708                bio_uninit(ci.bio);
1709                /* dec_pending submits any data associated with flush */
1710        } else {
1711                struct dm_target_io *tio;
1712
1713                ci.bio = bio;
1714                ci.sector_count = bio_sectors(bio);
1715                if (__process_abnormal_io(&ci, ti, &error))
1716                        goto out;
1717
1718                tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1719                ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1720        }
1721out:
1722        /* drop the extra reference count */
1723        dec_pending(ci.io, errno_to_blk_status(error));
1724        return ret;
1725}
1726
1727static blk_qc_t dm_process_bio(struct mapped_device *md,
1728                               struct dm_table *map, struct bio *bio)
1729{
1730        blk_qc_t ret = BLK_QC_T_NONE;
1731        struct dm_target *ti = md->immutable_target;
1732
1733        if (unlikely(!map)) {
1734                bio_io_error(bio);
1735                return ret;
1736        }
1737
1738        if (!ti) {
1739                ti = dm_table_find_target(map, bio->bi_iter.bi_sector);
1740                if (unlikely(!ti)) {
1741                        bio_io_error(bio);
1742                        return ret;
1743                }
1744        }
1745
1746        /*
1747         * If in ->submit_bio we need to use blk_queue_split(), otherwise
1748         * queue_limits for abnormal requests (e.g. discard, writesame, etc)
1749         * won't be imposed.
1750         * If called from dm_wq_work() for deferred bio processing, bio
1751         * was already handled by following code with previous ->submit_bio.
1752         */
1753        if (current->bio_list) {
1754                if (is_abnormal_io(bio))
1755                        blk_queue_split(&bio);
1756                /* regular IO is split by __split_and_process_bio */
1757        }
1758
1759        if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED)
1760                return __process_bio(md, map, bio, ti);
1761        return __split_and_process_bio(md, map, bio);
1762}
1763
1764static blk_qc_t dm_submit_bio(struct bio *bio)
1765{
1766        struct mapped_device *md = bio->bi_disk->private_data;
1767        blk_qc_t ret = BLK_QC_T_NONE;
1768        int srcu_idx;
1769        struct dm_table *map;
1770
1771        if (dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) {
1772                /*
1773                 * We are called with a live reference on q_usage_counter, but
1774                 * that one will be released as soon as we return.  Grab an
1775                 * extra one as blk_mq_submit_bio expects to be able to consume
1776                 * a reference (which lives until the request is freed in case a
1777                 * request is allocated).
1778                 */
1779                percpu_ref_get(&bio->bi_disk->queue->q_usage_counter);
1780                return blk_mq_submit_bio(bio);
1781        }
1782
1783        map = dm_get_live_table(md, &srcu_idx);
1784
1785        /* if we're suspended, we have to queue this io for later */
1786        if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1787                dm_put_live_table(md, srcu_idx);
1788
1789                if (!(bio->bi_opf & REQ_RAHEAD))
1790                        queue_io(md, bio);
1791                else
1792                        bio_io_error(bio);
1793                return ret;
1794        }
1795
1796        ret = dm_process_bio(md, map, bio);
1797
1798        dm_put_live_table(md, srcu_idx);
1799        return ret;
1800}
1801
1802/*-----------------------------------------------------------------
1803 * An IDR is used to keep track of allocated minor numbers.
1804 *---------------------------------------------------------------*/
1805static void free_minor(int minor)
1806{
1807        spin_lock(&_minor_lock);
1808        idr_remove(&_minor_idr, minor);
1809        spin_unlock(&_minor_lock);
1810}
1811
1812/*
1813 * See if the device with a specific minor # is free.
1814 */
1815static int specific_minor(int minor)
1816{
1817        int r;
1818
1819        if (minor >= (1 << MINORBITS))
1820                return -EINVAL;
1821
1822        idr_preload(GFP_KERNEL);
1823        spin_lock(&_minor_lock);
1824
1825        r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1826
1827        spin_unlock(&_minor_lock);
1828        idr_preload_end();
1829        if (r < 0)
1830                return r == -ENOSPC ? -EBUSY : r;
1831        return 0;
1832}
1833
1834static int next_free_minor(int *minor)
1835{
1836        int r;
1837
1838        idr_preload(GFP_KERNEL);
1839        spin_lock(&_minor_lock);
1840
1841        r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1842
1843        spin_unlock(&_minor_lock);
1844        idr_preload_end();
1845        if (r < 0)
1846                return r;
1847        *minor = r;
1848        return 0;
1849}
1850
1851static const struct block_device_operations dm_blk_dops;
1852static const struct dax_operations dm_dax_ops;
1853
1854static void dm_wq_work(struct work_struct *work);
1855
1856static void cleanup_mapped_device(struct mapped_device *md)
1857{
1858        if (md->wq)
1859                destroy_workqueue(md->wq);
1860        bioset_exit(&md->bs);
1861        bioset_exit(&md->io_bs);
1862
1863        if (md->dax_dev) {
1864                kill_dax(md->dax_dev);
1865                put_dax(md->dax_dev);
1866                md->dax_dev = NULL;
1867        }
1868
1869        if (md->disk) {
1870                spin_lock(&_minor_lock);
1871                md->disk->private_data = NULL;
1872                spin_unlock(&_minor_lock);
1873                del_gendisk(md->disk);
1874                put_disk(md->disk);
1875        }
1876
1877        if (md->queue)
1878                blk_cleanup_queue(md->queue);
1879
1880        cleanup_srcu_struct(&md->io_barrier);
1881
1882        if (md->bdev) {
1883                bdput(md->bdev);
1884                md->bdev = NULL;
1885        }
1886
1887        mutex_destroy(&md->suspend_lock);
1888        mutex_destroy(&md->type_lock);
1889        mutex_destroy(&md->table_devices_lock);
1890
1891        dm_mq_cleanup_mapped_device(md);
1892}
1893
1894/*
1895 * Allocate and initialise a blank device with a given minor.
1896 */
1897static struct mapped_device *alloc_dev(int minor)
1898{
1899        int r, numa_node_id = dm_get_numa_node();
1900        struct mapped_device *md;
1901        void *old_md;
1902
1903        md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1904        if (!md) {
1905                DMWARN("unable to allocate device, out of memory.");
1906                return NULL;
1907        }
1908
1909        if (!try_module_get(THIS_MODULE))
1910                goto bad_module_get;
1911
1912        /* get a minor number for the dev */
1913        if (minor == DM_ANY_MINOR)
1914                r = next_free_minor(&minor);
1915        else
1916                r = specific_minor(minor);
1917        if (r < 0)
1918                goto bad_minor;
1919
1920        r = init_srcu_struct(&md->io_barrier);
1921        if (r < 0)
1922                goto bad_io_barrier;
1923
1924        md->numa_node_id = numa_node_id;
1925        md->init_tio_pdu = false;
1926        md->type = DM_TYPE_NONE;
1927        mutex_init(&md->suspend_lock);
1928        mutex_init(&md->type_lock);
1929        mutex_init(&md->table_devices_lock);
1930        spin_lock_init(&md->deferred_lock);
1931        atomic_set(&md->holders, 1);
1932        atomic_set(&md->open_count, 0);
1933        atomic_set(&md->event_nr, 0);
1934        atomic_set(&md->uevent_seq, 0);
1935        INIT_LIST_HEAD(&md->uevent_list);
1936        INIT_LIST_HEAD(&md->table_devices);
1937        spin_lock_init(&md->uevent_lock);
1938
1939        /*
1940         * default to bio-based until DM table is loaded and md->type
1941         * established. If request-based table is loaded: blk-mq will
1942         * override accordingly.
1943         */
1944        md->queue = blk_alloc_queue(numa_node_id);
1945        if (!md->queue)
1946                goto bad;
1947
1948        md->disk = alloc_disk_node(1, md->numa_node_id);
1949        if (!md->disk)
1950                goto bad;
1951
1952        init_waitqueue_head(&md->wait);
1953        INIT_WORK(&md->work, dm_wq_work);
1954        init_waitqueue_head(&md->eventq);
1955        init_completion(&md->kobj_holder.completion);
1956
1957        md->disk->major = _major;
1958        md->disk->first_minor = minor;
1959        md->disk->fops = &dm_blk_dops;
1960        md->disk->queue = md->queue;
1961        md->disk->private_data = md;
1962        sprintf(md->disk->disk_name, "dm-%d", minor);
1963
1964        if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1965                md->dax_dev = alloc_dax(md, md->disk->disk_name,
1966                                        &dm_dax_ops, 0);
1967                if (IS_ERR(md->dax_dev))
1968                        goto bad;
1969        }
1970
1971        add_disk_no_queue_reg(md->disk);
1972        format_dev_t(md->name, MKDEV(_major, minor));
1973
1974        md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1975        if (!md->wq)
1976                goto bad;
1977
1978        md->bdev = bdget_disk(md->disk, 0);
1979        if (!md->bdev)
1980                goto bad;
1981
1982        dm_stats_init(&md->stats);
1983
1984        /* Populate the mapping, nobody knows we exist yet */
1985        spin_lock(&_minor_lock);
1986        old_md = idr_replace(&_minor_idr, md, minor);
1987        spin_unlock(&_minor_lock);
1988
1989        BUG_ON(old_md != MINOR_ALLOCED);
1990
1991        return md;
1992
1993bad:
1994        cleanup_mapped_device(md);
1995bad_io_barrier:
1996        free_minor(minor);
1997bad_minor:
1998        module_put(THIS_MODULE);
1999bad_module_get:
2000        kvfree(md);
2001        return NULL;
2002}
2003
2004static void unlock_fs(struct mapped_device *md);
2005
2006static void free_dev(struct mapped_device *md)
2007{
2008        int minor = MINOR(disk_devt(md->disk));
2009
2010        unlock_fs(md);
2011
2012        cleanup_mapped_device(md);
2013
2014        free_table_devices(&md->table_devices);
2015        dm_stats_cleanup(&md->stats);
2016        free_minor(minor);
2017
2018        module_put(THIS_MODULE);
2019        kvfree(md);
2020}
2021
2022static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
2023{
2024        struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2025        int ret = 0;
2026
2027        if (dm_table_bio_based(t)) {
2028                /*
2029                 * The md may already have mempools that need changing.
2030                 * If so, reload bioset because front_pad may have changed
2031                 * because a different table was loaded.
2032                 */
2033                bioset_exit(&md->bs);
2034                bioset_exit(&md->io_bs);
2035
2036        } else if (bioset_initialized(&md->bs)) {
2037                /*
2038                 * There's no need to reload with request-based dm
2039                 * because the size of front_pad doesn't change.
2040                 * Note for future: If you are to reload bioset,
2041                 * prep-ed requests in the queue may refer
2042                 * to bio from the old bioset, so you must walk
2043                 * through the queue to unprep.
2044                 */
2045                goto out;
2046        }
2047
2048        BUG_ON(!p ||
2049               bioset_initialized(&md->bs) ||
2050               bioset_initialized(&md->io_bs));
2051
2052        ret = bioset_init_from_src(&md->bs, &p->bs);
2053        if (ret)
2054                goto out;
2055        ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2056        if (ret)
2057                bioset_exit(&md->bs);
2058out:
2059        /* mempool bind completed, no longer need any mempools in the table */
2060        dm_table_free_md_mempools(t);
2061        return ret;
2062}
2063
2064/*
2065 * Bind a table to the device.
2066 */
2067static void event_callback(void *context)
2068{
2069        unsigned long flags;
2070        LIST_HEAD(uevents);
2071        struct mapped_device *md = (struct mapped_device *) context;
2072
2073        spin_lock_irqsave(&md->uevent_lock, flags);
2074        list_splice_init(&md->uevent_list, &uevents);
2075        spin_unlock_irqrestore(&md->uevent_lock, flags);
2076
2077        dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2078
2079        atomic_inc(&md->event_nr);
2080        wake_up(&md->eventq);
2081        dm_issue_global_event();
2082}
2083
2084/*
2085 * Protected by md->suspend_lock obtained by dm_swap_table().
2086 */
2087static void __set_size(struct mapped_device *md, sector_t size)
2088{
2089        lockdep_assert_held(&md->suspend_lock);
2090
2091        set_capacity(md->disk, size);
2092
2093        i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2094}
2095
2096/*
2097 * Returns old map, which caller must destroy.
2098 */
2099static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2100                               struct queue_limits *limits)
2101{
2102        struct dm_table *old_map;
2103        struct request_queue *q = md->queue;
2104        bool request_based = dm_table_request_based(t);
2105        sector_t size;
2106        int ret;
2107
2108        lockdep_assert_held(&md->suspend_lock);
2109
2110        size = dm_table_get_size(t);
2111
2112        /*
2113         * Wipe any geometry if the size of the table changed.
2114         */
2115        if (size != dm_get_size(md))
2116                memset(&md->geometry, 0, sizeof(md->geometry));
2117
2118        __set_size(md, size);
2119
2120        dm_table_event_callback(t, event_callback, md);
2121
2122        /*
2123         * The queue hasn't been stopped yet, if the old table type wasn't
2124         * for request-based during suspension.  So stop it to prevent
2125         * I/O mapping before resume.
2126         * This must be done before setting the queue restrictions,
2127         * because request-based dm may be run just after the setting.
2128         */
2129        if (request_based)
2130                dm_stop_queue(q);
2131
2132        if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2133                /*
2134                 * Leverage the fact that request-based DM targets and
2135                 * NVMe bio based targets are immutable singletons
2136                 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2137                 *   and __process_bio.
2138                 */
2139                md->immutable_target = dm_table_get_immutable_target(t);
2140        }
2141
2142        ret = __bind_mempools(md, t);
2143        if (ret) {
2144                old_map = ERR_PTR(ret);
2145                goto out;
2146        }
2147
2148        old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2149        rcu_assign_pointer(md->map, (void *)t);
2150        md->immutable_target_type = dm_table_get_immutable_target_type(t);
2151
2152        dm_table_set_restrictions(t, q, limits);
2153        if (old_map)
2154                dm_sync_table(md);
2155
2156out:
2157        return old_map;
2158}
2159
2160/*
2161 * Returns unbound table for the caller to free.
2162 */
2163static struct dm_table *__unbind(struct mapped_device *md)
2164{
2165        struct dm_table *map = rcu_dereference_protected(md->map, 1);
2166
2167        if (!map)
2168                return NULL;
2169
2170        dm_table_event_callback(map, NULL, NULL);
2171        RCU_INIT_POINTER(md->map, NULL);
2172        dm_sync_table(md);
2173
2174        return map;
2175}
2176
2177/*
2178 * Constructor for a new device.
2179 */
2180int dm_create(int minor, struct mapped_device **result)
2181{
2182        int r;
2183        struct mapped_device *md;
2184
2185        md = alloc_dev(minor);
2186        if (!md)
2187                return -ENXIO;
2188
2189        r = dm_sysfs_init(md);
2190        if (r) {
2191                free_dev(md);
2192                return r;
2193        }
2194
2195        *result = md;
2196        return 0;
2197}
2198
2199/*
2200 * Functions to manage md->type.
2201 * All are required to hold md->type_lock.
2202 */
2203void dm_lock_md_type(struct mapped_device *md)
2204{
2205        mutex_lock(&md->type_lock);
2206}
2207
2208void dm_unlock_md_type(struct mapped_device *md)
2209{
2210        mutex_unlock(&md->type_lock);
2211}
2212
2213void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2214{
2215        BUG_ON(!mutex_is_locked(&md->type_lock));
2216        md->type = type;
2217}
2218
2219enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2220{
2221        return md->type;
2222}
2223
2224struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2225{
2226        return md->immutable_target_type;
2227}
2228
2229/*
2230 * The queue_limits are only valid as long as you have a reference
2231 * count on 'md'.
2232 */
2233struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2234{
2235        BUG_ON(!atomic_read(&md->holders));
2236        return &md->queue->limits;
2237}
2238EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2239
2240/*
2241 * Setup the DM device's queue based on md's type
2242 */
2243int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2244{
2245        int r;
2246        struct queue_limits limits;
2247        enum dm_queue_mode type = dm_get_md_type(md);
2248
2249        switch (type) {
2250        case DM_TYPE_REQUEST_BASED:
2251                r = dm_mq_init_request_queue(md, t);
2252                if (r) {
2253                        DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2254                        return r;
2255                }
2256                break;
2257        case DM_TYPE_BIO_BASED:
2258        case DM_TYPE_DAX_BIO_BASED:
2259        case DM_TYPE_NVME_BIO_BASED:
2260                break;
2261        case DM_TYPE_NONE:
2262                WARN_ON_ONCE(true);
2263                break;
2264        }
2265
2266        r = dm_calculate_queue_limits(t, &limits);
2267        if (r) {
2268                DMERR("Cannot calculate initial queue limits");
2269                return r;
2270        }
2271        dm_table_set_restrictions(t, md->queue, &limits);
2272        blk_register_queue(md->disk);
2273
2274        return 0;
2275}
2276
2277struct mapped_device *dm_get_md(dev_t dev)
2278{
2279        struct mapped_device *md;
2280        unsigned minor = MINOR(dev);
2281
2282        if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2283                return NULL;
2284
2285        spin_lock(&_minor_lock);
2286
2287        md = idr_find(&_minor_idr, minor);
2288        if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2289            test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2290                md = NULL;
2291                goto out;
2292        }
2293        dm_get(md);
2294out:
2295        spin_unlock(&_minor_lock);
2296
2297        return md;
2298}
2299EXPORT_SYMBOL_GPL(dm_get_md);
2300
2301void *dm_get_mdptr(struct mapped_device *md)
2302{
2303        return md->interface_ptr;
2304}
2305
2306void dm_set_mdptr(struct mapped_device *md, void *ptr)
2307{
2308        md->interface_ptr = ptr;
2309}
2310
2311void dm_get(struct mapped_device *md)
2312{
2313        atomic_inc(&md->holders);
2314        BUG_ON(test_bit(DMF_FREEING, &md->flags));
2315}
2316
2317int dm_hold(struct mapped_device *md)
2318{
2319        spin_lock(&_minor_lock);
2320        if (test_bit(DMF_FREEING, &md->flags)) {
2321                spin_unlock(&_minor_lock);
2322                return -EBUSY;
2323        }
2324        dm_get(md);
2325        spin_unlock(&_minor_lock);
2326        return 0;
2327}
2328EXPORT_SYMBOL_GPL(dm_hold);
2329
2330const char *dm_device_name(struct mapped_device *md)
2331{
2332        return md->name;
2333}
2334EXPORT_SYMBOL_GPL(dm_device_name);
2335
2336static void __dm_destroy(struct mapped_device *md, bool wait)
2337{
2338        struct dm_table *map;
2339        int srcu_idx;
2340
2341        might_sleep();
2342
2343        spin_lock(&_minor_lock);
2344        idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2345        set_bit(DMF_FREEING, &md->flags);
2346        spin_unlock(&_minor_lock);
2347
2348        blk_set_queue_dying(md->queue);
2349
2350        /*
2351         * Take suspend_lock so that presuspend and postsuspend methods
2352         * do not race with internal suspend.
2353         */
2354        mutex_lock(&md->suspend_lock);
2355        map = dm_get_live_table(md, &srcu_idx);
2356        if (!dm_suspended_md(md)) {
2357                dm_table_presuspend_targets(map);
2358                set_bit(DMF_SUSPENDED, &md->flags);
2359                set_bit(DMF_POST_SUSPENDING, &md->flags);
2360                dm_table_postsuspend_targets(map);
2361        }
2362        /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2363        dm_put_live_table(md, srcu_idx);
2364        mutex_unlock(&md->suspend_lock);
2365
2366        /*
2367         * Rare, but there may be I/O requests still going to complete,
2368         * for example.  Wait for all references to disappear.
2369         * No one should increment the reference count of the mapped_device,
2370         * after the mapped_device state becomes DMF_FREEING.
2371         */
2372        if (wait)
2373                while (atomic_read(&md->holders))
2374                        msleep(1);
2375        else if (atomic_read(&md->holders))
2376                DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2377                       dm_device_name(md), atomic_read(&md->holders));
2378
2379        dm_sysfs_exit(md);
2380        dm_table_destroy(__unbind(md));
2381        free_dev(md);
2382}
2383
2384void dm_destroy(struct mapped_device *md)
2385{
2386        __dm_destroy(md, true);
2387}
2388
2389void dm_destroy_immediate(struct mapped_device *md)
2390{
2391        __dm_destroy(md, false);
2392}
2393
2394void dm_put(struct mapped_device *md)
2395{
2396        atomic_dec(&md->holders);
2397}
2398EXPORT_SYMBOL_GPL(dm_put);
2399
2400static bool md_in_flight_bios(struct mapped_device *md)
2401{
2402        int cpu;
2403        struct hd_struct *part = &dm_disk(md)->part0;
2404        long sum = 0;
2405
2406        for_each_possible_cpu(cpu) {
2407                sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
2408                sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
2409        }
2410
2411        return sum != 0;
2412}
2413
2414static int dm_wait_for_bios_completion(struct mapped_device *md, long task_state)
2415{
2416        int r = 0;
2417        DEFINE_WAIT(wait);
2418
2419        while (true) {
2420                prepare_to_wait(&md->wait, &wait, task_state);
2421
2422                if (!md_in_flight_bios(md))
2423                        break;
2424
2425                if (signal_pending_state(task_state, current)) {
2426                        r = -EINTR;
2427                        break;
2428                }
2429
2430                io_schedule();
2431        }
2432        finish_wait(&md->wait, &wait);
2433
2434        return r;
2435}
2436
2437static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2438{
2439        int r = 0;
2440
2441        if (!queue_is_mq(md->queue))
2442                return dm_wait_for_bios_completion(md, task_state);
2443
2444        while (true) {
2445                if (!blk_mq_queue_inflight(md->queue))
2446                        break;
2447
2448                if (signal_pending_state(task_state, current)) {
2449                        r = -EINTR;
2450                        break;
2451                }
2452
2453                msleep(5);
2454        }
2455
2456        return r;
2457}
2458
2459/*
2460 * Process the deferred bios
2461 */
2462static void dm_wq_work(struct work_struct *work)
2463{
2464        struct mapped_device *md = container_of(work, struct mapped_device,
2465                                                work);
2466        struct bio *c;
2467        int srcu_idx;
2468        struct dm_table *map;
2469
2470        map = dm_get_live_table(md, &srcu_idx);
2471
2472        while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2473                spin_lock_irq(&md->deferred_lock);
2474                c = bio_list_pop(&md->deferred);
2475                spin_unlock_irq(&md->deferred_lock);
2476
2477                if (!c)
2478                        break;
2479
2480                if (dm_request_based(md))
2481                        (void) submit_bio_noacct(c);
2482                else
2483                        (void) dm_process_bio(md, map, c);
2484        }
2485
2486        dm_put_live_table(md, srcu_idx);
2487}
2488
2489static void dm_queue_flush(struct mapped_device *md)
2490{
2491        clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2492        smp_mb__after_atomic();
2493        queue_work(md->wq, &md->work);
2494}
2495
2496/*
2497 * Swap in a new table, returning the old one for the caller to destroy.
2498 */
2499struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2500{
2501        struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2502        struct queue_limits limits;
2503        int r;
2504
2505        mutex_lock(&md->suspend_lock);
2506
2507        /* device must be suspended */
2508        if (!dm_suspended_md(md))
2509                goto out;
2510
2511        /*
2512         * If the new table has no data devices, retain the existing limits.
2513         * This helps multipath with queue_if_no_path if all paths disappear,
2514         * then new I/O is queued based on these limits, and then some paths
2515         * reappear.
2516         */
2517        if (dm_table_has_no_data_devices(table)) {
2518                live_map = dm_get_live_table_fast(md);
2519                if (live_map)
2520                        limits = md->queue->limits;
2521                dm_put_live_table_fast(md);
2522        }
2523
2524        if (!live_map) {
2525                r = dm_calculate_queue_limits(table, &limits);
2526                if (r) {
2527                        map = ERR_PTR(r);
2528                        goto out;
2529                }
2530        }
2531
2532        map = __bind(md, table, &limits);
2533        dm_issue_global_event();
2534
2535out:
2536        mutex_unlock(&md->suspend_lock);
2537        return map;
2538}
2539
2540/*
2541 * Functions to lock and unlock any filesystem running on the
2542 * device.
2543 */
2544static int lock_fs(struct mapped_device *md)
2545{
2546        int r;
2547
2548        WARN_ON(md->frozen_sb);
2549
2550        md->frozen_sb = freeze_bdev(md->bdev);
2551        if (IS_ERR(md->frozen_sb)) {
2552                r = PTR_ERR(md->frozen_sb);
2553                md->frozen_sb = NULL;
2554                return r;
2555        }
2556
2557        set_bit(DMF_FROZEN, &md->flags);
2558
2559        return 0;
2560}
2561
2562static void unlock_fs(struct mapped_device *md)
2563{
2564        if (!test_bit(DMF_FROZEN, &md->flags))
2565                return;
2566
2567        thaw_bdev(md->bdev, md->frozen_sb);
2568        md->frozen_sb = NULL;
2569        clear_bit(DMF_FROZEN, &md->flags);
2570}
2571
2572/*
2573 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2574 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2575 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2576 *
2577 * If __dm_suspend returns 0, the device is completely quiescent
2578 * now. There is no request-processing activity. All new requests
2579 * are being added to md->deferred list.
2580 */
2581static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2582                        unsigned suspend_flags, long task_state,
2583                        int dmf_suspended_flag)
2584{
2585        bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2586        bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2587        int r;
2588
2589        lockdep_assert_held(&md->suspend_lock);
2590
2591        /*
2592         * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2593         * This flag is cleared before dm_suspend returns.
2594         */
2595        if (noflush)
2596                set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2597        else
2598                DMDEBUG("%s: suspending with flush", dm_device_name(md));
2599
2600        /*
2601         * This gets reverted if there's an error later and the targets
2602         * provide the .presuspend_undo hook.
2603         */
2604        dm_table_presuspend_targets(map);
2605
2606        /*
2607         * Flush I/O to the device.
2608         * Any I/O submitted after lock_fs() may not be flushed.
2609         * noflush takes precedence over do_lockfs.
2610         * (lock_fs() flushes I/Os and waits for them to complete.)
2611         */
2612        if (!noflush && do_lockfs) {
2613                r = lock_fs(md);
2614                if (r) {
2615                        dm_table_presuspend_undo_targets(map);
2616                        return r;
2617                }
2618        }
2619
2620        /*
2621         * Here we must make sure that no processes are submitting requests
2622         * to target drivers i.e. no one may be executing
2623         * __split_and_process_bio. This is called from dm_request and
2624         * dm_wq_work.
2625         *
2626         * To get all processes out of __split_and_process_bio in dm_request,
2627         * we take the write lock. To prevent any process from reentering
2628         * __split_and_process_bio from dm_request and quiesce the thread
2629         * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2630         * flush_workqueue(md->wq).
2631         */
2632        set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2633        if (map)
2634                synchronize_srcu(&md->io_barrier);
2635
2636        /*
2637         * Stop md->queue before flushing md->wq in case request-based
2638         * dm defers requests to md->wq from md->queue.
2639         */
2640        if (dm_request_based(md))
2641                dm_stop_queue(md->queue);
2642
2643        flush_workqueue(md->wq);
2644
2645        /*
2646         * At this point no more requests are entering target request routines.
2647         * We call dm_wait_for_completion to wait for all existing requests
2648         * to finish.
2649         */
2650        r = dm_wait_for_completion(md, task_state);
2651        if (!r)
2652                set_bit(dmf_suspended_flag, &md->flags);
2653
2654        if (noflush)
2655                clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2656        if (map)
2657                synchronize_srcu(&md->io_barrier);
2658
2659        /* were we interrupted ? */
2660        if (r < 0) {
2661                dm_queue_flush(md);
2662
2663                if (dm_request_based(md))
2664                        dm_start_queue(md->queue);
2665
2666                unlock_fs(md);
2667                dm_table_presuspend_undo_targets(map);
2668                /* pushback list is already flushed, so skip flush */
2669        }
2670
2671        return r;
2672}
2673
2674/*
2675 * We need to be able to change a mapping table under a mounted
2676 * filesystem.  For example we might want to move some data in
2677 * the background.  Before the table can be swapped with
2678 * dm_bind_table, dm_suspend must be called to flush any in
2679 * flight bios and ensure that any further io gets deferred.
2680 */
2681/*
2682 * Suspend mechanism in request-based dm.
2683 *
2684 * 1. Flush all I/Os by lock_fs() if needed.
2685 * 2. Stop dispatching any I/O by stopping the request_queue.
2686 * 3. Wait for all in-flight I/Os to be completed or requeued.
2687 *
2688 * To abort suspend, start the request_queue.
2689 */
2690int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2691{
2692        struct dm_table *map = NULL;
2693        int r = 0;
2694
2695retry:
2696        mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2697
2698        if (dm_suspended_md(md)) {
2699                r = -EINVAL;
2700                goto out_unlock;
2701        }
2702
2703        if (dm_suspended_internally_md(md)) {
2704                /* already internally suspended, wait for internal resume */
2705                mutex_unlock(&md->suspend_lock);
2706                r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2707                if (r)
2708                        return r;
2709                goto retry;
2710        }
2711
2712        map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2713
2714        r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2715        if (r)
2716                goto out_unlock;
2717
2718        set_bit(DMF_POST_SUSPENDING, &md->flags);
2719        dm_table_postsuspend_targets(map);
2720        clear_bit(DMF_POST_SUSPENDING, &md->flags);
2721
2722out_unlock:
2723        mutex_unlock(&md->suspend_lock);
2724        return r;
2725}
2726
2727static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2728{
2729        if (map) {
2730                int r = dm_table_resume_targets(map);
2731                if (r)
2732                        return r;
2733        }
2734
2735        dm_queue_flush(md);
2736
2737        /*
2738         * Flushing deferred I/Os must be done after targets are resumed
2739         * so that mapping of targets can work correctly.
2740         * Request-based dm is queueing the deferred I/Os in its request_queue.
2741         */
2742        if (dm_request_based(md))
2743                dm_start_queue(md->queue);
2744
2745        unlock_fs(md);
2746
2747        return 0;
2748}
2749
2750int dm_resume(struct mapped_device *md)
2751{
2752        int r;
2753        struct dm_table *map = NULL;
2754
2755retry:
2756        r = -EINVAL;
2757        mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2758
2759        if (!dm_suspended_md(md))
2760                goto out;
2761
2762        if (dm_suspended_internally_md(md)) {
2763                /* already internally suspended, wait for internal resume */
2764                mutex_unlock(&md->suspend_lock);
2765                r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2766                if (r)
2767                        return r;
2768                goto retry;
2769        }
2770
2771        map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2772        if (!map || !dm_table_get_size(map))
2773                goto out;
2774
2775        r = __dm_resume(md, map);
2776        if (r)
2777                goto out;
2778
2779        clear_bit(DMF_SUSPENDED, &md->flags);
2780out:
2781        mutex_unlock(&md->suspend_lock);
2782
2783        return r;
2784}
2785
2786/*
2787 * Internal suspend/resume works like userspace-driven suspend. It waits
2788 * until all bios finish and prevents issuing new bios to the target drivers.
2789 * It may be used only from the kernel.
2790 */
2791
2792static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2793{
2794        struct dm_table *map = NULL;
2795
2796        lockdep_assert_held(&md->suspend_lock);
2797
2798        if (md->internal_suspend_count++)
2799                return; /* nested internal suspend */
2800
2801        if (dm_suspended_md(md)) {
2802                set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2803                return; /* nest suspend */
2804        }
2805
2806        map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2807
2808        /*
2809         * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2810         * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2811         * would require changing .presuspend to return an error -- avoid this
2812         * until there is a need for more elaborate variants of internal suspend.
2813         */
2814        (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2815                            DMF_SUSPENDED_INTERNALLY);
2816
2817        set_bit(DMF_POST_SUSPENDING, &md->flags);
2818        dm_table_postsuspend_targets(map);
2819        clear_bit(DMF_POST_SUSPENDING, &md->flags);
2820}
2821
2822static void __dm_internal_resume(struct mapped_device *md)
2823{
2824        BUG_ON(!md->internal_suspend_count);
2825
2826        if (--md->internal_suspend_count)
2827                return; /* resume from nested internal suspend */
2828
2829        if (dm_suspended_md(md))
2830                goto done; /* resume from nested suspend */
2831
2832        /*
2833         * NOTE: existing callers don't need to call dm_table_resume_targets
2834         * (which may fail -- so best to avoid it for now by passing NULL map)
2835         */
2836        (void) __dm_resume(md, NULL);
2837
2838done:
2839        clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2840        smp_mb__after_atomic();
2841        wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2842}
2843
2844void dm_internal_suspend_noflush(struct mapped_device *md)
2845{
2846        mutex_lock(&md->suspend_lock);
2847        __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2848        mutex_unlock(&md->suspend_lock);
2849}
2850EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2851
2852void dm_internal_resume(struct mapped_device *md)
2853{
2854        mutex_lock(&md->suspend_lock);
2855        __dm_internal_resume(md);
2856        mutex_unlock(&md->suspend_lock);
2857}
2858EXPORT_SYMBOL_GPL(dm_internal_resume);
2859
2860/*
2861 * Fast variants of internal suspend/resume hold md->suspend_lock,
2862 * which prevents interaction with userspace-driven suspend.
2863 */
2864
2865void dm_internal_suspend_fast(struct mapped_device *md)
2866{
2867        mutex_lock(&md->suspend_lock);
2868        if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2869                return;
2870
2871        set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2872        synchronize_srcu(&md->io_barrier);
2873        flush_workqueue(md->wq);
2874        dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2875}
2876EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2877
2878void dm_internal_resume_fast(struct mapped_device *md)
2879{
2880        if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2881                goto done;
2882
2883        dm_queue_flush(md);
2884
2885done:
2886        mutex_unlock(&md->suspend_lock);
2887}
2888EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2889
2890/*-----------------------------------------------------------------
2891 * Event notification.
2892 *---------------------------------------------------------------*/
2893int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2894                       unsigned cookie)
2895{
2896        int r;
2897        unsigned noio_flag;
2898        char udev_cookie[DM_COOKIE_LENGTH];
2899        char *envp[] = { udev_cookie, NULL };
2900
2901        noio_flag = memalloc_noio_save();
2902
2903        if (!cookie)
2904                r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2905        else {
2906                snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2907                         DM_COOKIE_ENV_VAR_NAME, cookie);
2908                r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2909                                       action, envp);
2910        }
2911
2912        memalloc_noio_restore(noio_flag);
2913
2914        return r;
2915}
2916
2917uint32_t dm_next_uevent_seq(struct mapped_device *md)
2918{
2919        return atomic_add_return(1, &md->uevent_seq);
2920}
2921
2922uint32_t dm_get_event_nr(struct mapped_device *md)
2923{
2924        return atomic_read(&md->event_nr);
2925}
2926
2927int dm_wait_event(struct mapped_device *md, int event_nr)
2928{
2929        return wait_event_interruptible(md->eventq,
2930                        (event_nr != atomic_read(&md->event_nr)));
2931}
2932
2933void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2934{
2935        unsigned long flags;
2936
2937        spin_lock_irqsave(&md->uevent_lock, flags);
2938        list_add(elist, &md->uevent_list);
2939        spin_unlock_irqrestore(&md->uevent_lock, flags);
2940}
2941
2942/*
2943 * The gendisk is only valid as long as you have a reference
2944 * count on 'md'.
2945 */
2946struct gendisk *dm_disk(struct mapped_device *md)
2947{
2948        return md->disk;
2949}
2950EXPORT_SYMBOL_GPL(dm_disk);
2951
2952struct kobject *dm_kobject(struct mapped_device *md)
2953{
2954        return &md->kobj_holder.kobj;
2955}
2956
2957struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2958{
2959        struct mapped_device *md;
2960
2961        md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2962
2963        spin_lock(&_minor_lock);
2964        if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2965                md = NULL;
2966                goto out;
2967        }
2968        dm_get(md);
2969out:
2970        spin_unlock(&_minor_lock);
2971
2972        return md;
2973}
2974
2975int dm_suspended_md(struct mapped_device *md)
2976{
2977        return test_bit(DMF_SUSPENDED, &md->flags);
2978}
2979
2980static int dm_post_suspending_md(struct mapped_device *md)
2981{
2982        return test_bit(DMF_POST_SUSPENDING, &md->flags);
2983}
2984
2985int dm_suspended_internally_md(struct mapped_device *md)
2986{
2987        return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2988}
2989
2990int dm_test_deferred_remove_flag(struct mapped_device *md)
2991{
2992        return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2993}
2994
2995int dm_suspended(struct dm_target *ti)
2996{
2997        return dm_suspended_md(dm_table_get_md(ti->table));
2998}
2999EXPORT_SYMBOL_GPL(dm_suspended);
3000
3001int dm_post_suspending(struct dm_target *ti)
3002{
3003        return dm_post_suspending_md(dm_table_get_md(ti->table));
3004}
3005EXPORT_SYMBOL_GPL(dm_post_suspending);
3006
3007int dm_noflush_suspending(struct dm_target *ti)
3008{
3009        return __noflush_suspending(dm_table_get_md(ti->table));
3010}
3011EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3012
3013struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
3014                                            unsigned integrity, unsigned per_io_data_size,
3015                                            unsigned min_pool_size)
3016{
3017        struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
3018        unsigned int pool_size = 0;
3019        unsigned int front_pad, io_front_pad;
3020        int ret;
3021
3022        if (!pools)
3023                return NULL;
3024
3025        switch (type) {
3026        case DM_TYPE_BIO_BASED:
3027        case DM_TYPE_DAX_BIO_BASED:
3028        case DM_TYPE_NVME_BIO_BASED:
3029                pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
3030                front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3031                io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
3032                ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
3033                if (ret)
3034                        goto out;
3035                if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
3036                        goto out;
3037                break;
3038        case DM_TYPE_REQUEST_BASED:
3039                pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
3040                front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3041                /* per_io_data_size is used for blk-mq pdu at queue allocation */
3042                break;
3043        default:
3044                BUG();
3045        }
3046
3047        ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
3048        if (ret)
3049                goto out;
3050
3051        if (integrity && bioset_integrity_create(&pools->bs, pool_size))
3052                goto out;
3053
3054        return pools;
3055
3056out:
3057        dm_free_md_mempools(pools);
3058
3059        return NULL;
3060}
3061
3062void dm_free_md_mempools(struct dm_md_mempools *pools)
3063{
3064        if (!pools)
3065                return;
3066
3067        bioset_exit(&pools->bs);
3068        bioset_exit(&pools->io_bs);
3069
3070        kfree(pools);
3071}
3072
3073struct dm_pr {
3074        u64     old_key;
3075        u64     new_key;
3076        u32     flags;
3077        bool    fail_early;
3078};
3079
3080static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3081                      void *data)
3082{
3083        struct mapped_device *md = bdev->bd_disk->private_data;
3084        struct dm_table *table;
3085        struct dm_target *ti;
3086        int ret = -ENOTTY, srcu_idx;
3087
3088        table = dm_get_live_table(md, &srcu_idx);
3089        if (!table || !dm_table_get_size(table))
3090                goto out;
3091
3092        /* We only support devices that have a single target */
3093        if (dm_table_get_num_targets(table) != 1)
3094                goto out;
3095        ti = dm_table_get_target(table, 0);
3096
3097        ret = -EINVAL;
3098        if (!ti->type->iterate_devices)
3099                goto out;
3100
3101        ret = ti->type->iterate_devices(ti, fn, data);
3102out:
3103        dm_put_live_table(md, srcu_idx);
3104        return ret;
3105}
3106
3107/*
3108 * For register / unregister we need to manually call out to every path.
3109 */
3110static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3111                            sector_t start, sector_t len, void *data)
3112{
3113        struct dm_pr *pr = data;
3114        const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3115
3116        if (!ops || !ops->pr_register)
3117                return -EOPNOTSUPP;
3118        return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3119}
3120
3121static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3122                          u32 flags)
3123{
3124        struct dm_pr pr = {
3125                .old_key        = old_key,
3126                .new_key        = new_key,
3127                .flags          = flags,
3128                .fail_early     = true,
3129        };
3130        int ret;
3131
3132        ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3133        if (ret && new_key) {
3134                /* unregister all paths if we failed to register any path */
3135                pr.old_key = new_key;
3136                pr.new_key = 0;
3137                pr.flags = 0;
3138                pr.fail_early = false;
3139                dm_call_pr(bdev, __dm_pr_register, &pr);
3140        }
3141
3142        return ret;
3143}
3144
3145static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3146                         u32 flags)
3147{
3148        struct mapped_device *md = bdev->bd_disk->private_data;
3149        const struct pr_ops *ops;
3150        int r, srcu_idx;
3151
3152        r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3153        if (r < 0)
3154                goto out;
3155
3156        ops = bdev->bd_disk->fops->pr_ops;
3157        if (ops && ops->pr_reserve)
3158                r = ops->pr_reserve(bdev, key, type, flags);
3159        else
3160                r = -EOPNOTSUPP;
3161out:
3162        dm_unprepare_ioctl(md, srcu_idx);
3163        return r;
3164}
3165
3166static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3167{
3168        struct mapped_device *md = bdev->bd_disk->private_data;
3169        const struct pr_ops *ops;
3170        int r, srcu_idx;
3171
3172        r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3173        if (r < 0)
3174                goto out;
3175
3176        ops = bdev->bd_disk->fops->pr_ops;
3177        if (ops && ops->pr_release)
3178                r = ops->pr_release(bdev, key, type);
3179        else
3180                r = -EOPNOTSUPP;
3181out:
3182        dm_unprepare_ioctl(md, srcu_idx);
3183        return r;
3184}
3185
3186static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3187                         enum pr_type type, bool abort)
3188{
3189        struct mapped_device *md = bdev->bd_disk->private_data;
3190        const struct pr_ops *ops;
3191        int r, srcu_idx;
3192
3193        r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3194        if (r < 0)
3195                goto out;
3196
3197        ops = bdev->bd_disk->fops->pr_ops;
3198        if (ops && ops->pr_preempt)
3199                r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3200        else
3201                r = -EOPNOTSUPP;
3202out:
3203        dm_unprepare_ioctl(md, srcu_idx);
3204        return r;
3205}
3206
3207static int dm_pr_clear(struct block_device *bdev, u64 key)
3208{
3209        struct mapped_device *md = bdev->bd_disk->private_data;
3210        const struct pr_ops *ops;
3211        int r, srcu_idx;
3212
3213        r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3214        if (r < 0)
3215                goto out;
3216
3217        ops = bdev->bd_disk->fops->pr_ops;
3218        if (ops && ops->pr_clear)
3219                r = ops->pr_clear(bdev, key);
3220        else
3221                r = -EOPNOTSUPP;
3222out:
3223        dm_unprepare_ioctl(md, srcu_idx);
3224        return r;
3225}
3226
3227static const struct pr_ops dm_pr_ops = {
3228        .pr_register    = dm_pr_register,
3229        .pr_reserve     = dm_pr_reserve,
3230        .pr_release     = dm_pr_release,
3231        .pr_preempt     = dm_pr_preempt,
3232        .pr_clear       = dm_pr_clear,
3233};
3234
3235static const struct block_device_operations dm_blk_dops = {
3236        .submit_bio = dm_submit_bio,
3237        .open = dm_blk_open,
3238        .release = dm_blk_close,
3239        .ioctl = dm_blk_ioctl,
3240        .getgeo = dm_blk_getgeo,
3241        .report_zones = dm_blk_report_zones,
3242        .pr_ops = &dm_pr_ops,
3243        .owner = THIS_MODULE
3244};
3245
3246static const struct dax_operations dm_dax_ops = {
3247        .direct_access = dm_dax_direct_access,
3248        .dax_supported = dm_dax_supported,
3249        .copy_from_iter = dm_dax_copy_from_iter,
3250        .copy_to_iter = dm_dax_copy_to_iter,
3251        .zero_page_range = dm_dax_zero_page_range,
3252};
3253
3254/*
3255 * module hooks
3256 */
3257module_init(dm_init);
3258module_exit(dm_exit);
3259
3260module_param(major, uint, 0);
3261MODULE_PARM_DESC(major, "The major number of the device mapper");
3262
3263module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3264MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3265
3266module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3267MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3268
3269MODULE_DESCRIPTION(DM_NAME " driver");
3270MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3271MODULE_LICENSE("GPL");
3272