linux/drivers/md/raid10.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * raid10.c : Multiple Devices driver for Linux
   4 *
   5 * Copyright (C) 2000-2004 Neil Brown
   6 *
   7 * RAID-10 support for md.
   8 *
   9 * Base on code in raid1.c.  See raid1.c for further copyright information.
  10 */
  11
  12#include <linux/slab.h>
  13#include <linux/delay.h>
  14#include <linux/blkdev.h>
  15#include <linux/module.h>
  16#include <linux/seq_file.h>
  17#include <linux/ratelimit.h>
  18#include <linux/kthread.h>
  19#include <linux/raid/md_p.h>
  20#include <trace/events/block.h>
  21#include "md.h"
  22#include "raid10.h"
  23#include "raid0.h"
  24#include "md-bitmap.h"
  25
  26/*
  27 * RAID10 provides a combination of RAID0 and RAID1 functionality.
  28 * The layout of data is defined by
  29 *    chunk_size
  30 *    raid_disks
  31 *    near_copies (stored in low byte of layout)
  32 *    far_copies (stored in second byte of layout)
  33 *    far_offset (stored in bit 16 of layout )
  34 *    use_far_sets (stored in bit 17 of layout )
  35 *    use_far_sets_bugfixed (stored in bit 18 of layout )
  36 *
  37 * The data to be stored is divided into chunks using chunksize.  Each device
  38 * is divided into far_copies sections.   In each section, chunks are laid out
  39 * in a style similar to raid0, but near_copies copies of each chunk is stored
  40 * (each on a different drive).  The starting device for each section is offset
  41 * near_copies from the starting device of the previous section.  Thus there
  42 * are (near_copies * far_copies) of each chunk, and each is on a different
  43 * drive.  near_copies and far_copies must be at least one, and their product
  44 * is at most raid_disks.
  45 *
  46 * If far_offset is true, then the far_copies are handled a bit differently.
  47 * The copies are still in different stripes, but instead of being very far
  48 * apart on disk, there are adjacent stripes.
  49 *
  50 * The far and offset algorithms are handled slightly differently if
  51 * 'use_far_sets' is true.  In this case, the array's devices are grouped into
  52 * sets that are (near_copies * far_copies) in size.  The far copied stripes
  53 * are still shifted by 'near_copies' devices, but this shifting stays confined
  54 * to the set rather than the entire array.  This is done to improve the number
  55 * of device combinations that can fail without causing the array to fail.
  56 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
  57 * on a device):
  58 *    A B C D    A B C D E
  59 *      ...         ...
  60 *    D A B C    E A B C D
  61 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
  62 *    [A B] [C D]    [A B] [C D E]
  63 *    |...| |...|    |...| | ... |
  64 *    [B A] [D C]    [B A] [E C D]
  65 */
  66
  67static void allow_barrier(struct r10conf *conf);
  68static void lower_barrier(struct r10conf *conf);
  69static int _enough(struct r10conf *conf, int previous, int ignore);
  70static int enough(struct r10conf *conf, int ignore);
  71static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
  72                                int *skipped);
  73static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
  74static void end_reshape_write(struct bio *bio);
  75static void end_reshape(struct r10conf *conf);
  76
  77#define raid10_log(md, fmt, args...)                            \
  78        do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
  79
  80#include "raid1-10.c"
  81
  82/*
  83 * for resync bio, r10bio pointer can be retrieved from the per-bio
  84 * 'struct resync_pages'.
  85 */
  86static inline struct r10bio *get_resync_r10bio(struct bio *bio)
  87{
  88        return get_resync_pages(bio)->raid_bio;
  89}
  90
  91static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
  92{
  93        struct r10conf *conf = data;
  94        int size = offsetof(struct r10bio, devs[conf->copies]);
  95
  96        /* allocate a r10bio with room for raid_disks entries in the
  97         * bios array */
  98        return kzalloc(size, gfp_flags);
  99}
 100
 101#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
 102/* amount of memory to reserve for resync requests */
 103#define RESYNC_WINDOW (1024*1024)
 104/* maximum number of concurrent requests, memory permitting */
 105#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
 106#define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
 107#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
 108
 109/*
 110 * When performing a resync, we need to read and compare, so
 111 * we need as many pages are there are copies.
 112 * When performing a recovery, we need 2 bios, one for read,
 113 * one for write (we recover only one drive per r10buf)
 114 *
 115 */
 116static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
 117{
 118        struct r10conf *conf = data;
 119        struct r10bio *r10_bio;
 120        struct bio *bio;
 121        int j;
 122        int nalloc, nalloc_rp;
 123        struct resync_pages *rps;
 124
 125        r10_bio = r10bio_pool_alloc(gfp_flags, conf);
 126        if (!r10_bio)
 127                return NULL;
 128
 129        if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
 130            test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
 131                nalloc = conf->copies; /* resync */
 132        else
 133                nalloc = 2; /* recovery */
 134
 135        /* allocate once for all bios */
 136        if (!conf->have_replacement)
 137                nalloc_rp = nalloc;
 138        else
 139                nalloc_rp = nalloc * 2;
 140        rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
 141        if (!rps)
 142                goto out_free_r10bio;
 143
 144        /*
 145         * Allocate bios.
 146         */
 147        for (j = nalloc ; j-- ; ) {
 148                bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 149                if (!bio)
 150                        goto out_free_bio;
 151                r10_bio->devs[j].bio = bio;
 152                if (!conf->have_replacement)
 153                        continue;
 154                bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 155                if (!bio)
 156                        goto out_free_bio;
 157                r10_bio->devs[j].repl_bio = bio;
 158        }
 159        /*
 160         * Allocate RESYNC_PAGES data pages and attach them
 161         * where needed.
 162         */
 163        for (j = 0; j < nalloc; j++) {
 164                struct bio *rbio = r10_bio->devs[j].repl_bio;
 165                struct resync_pages *rp, *rp_repl;
 166
 167                rp = &rps[j];
 168                if (rbio)
 169                        rp_repl = &rps[nalloc + j];
 170
 171                bio = r10_bio->devs[j].bio;
 172
 173                if (!j || test_bit(MD_RECOVERY_SYNC,
 174                                   &conf->mddev->recovery)) {
 175                        if (resync_alloc_pages(rp, gfp_flags))
 176                                goto out_free_pages;
 177                } else {
 178                        memcpy(rp, &rps[0], sizeof(*rp));
 179                        resync_get_all_pages(rp);
 180                }
 181
 182                rp->raid_bio = r10_bio;
 183                bio->bi_private = rp;
 184                if (rbio) {
 185                        memcpy(rp_repl, rp, sizeof(*rp));
 186                        rbio->bi_private = rp_repl;
 187                }
 188        }
 189
 190        return r10_bio;
 191
 192out_free_pages:
 193        while (--j >= 0)
 194                resync_free_pages(&rps[j]);
 195
 196        j = 0;
 197out_free_bio:
 198        for ( ; j < nalloc; j++) {
 199                if (r10_bio->devs[j].bio)
 200                        bio_put(r10_bio->devs[j].bio);
 201                if (r10_bio->devs[j].repl_bio)
 202                        bio_put(r10_bio->devs[j].repl_bio);
 203        }
 204        kfree(rps);
 205out_free_r10bio:
 206        rbio_pool_free(r10_bio, conf);
 207        return NULL;
 208}
 209
 210static void r10buf_pool_free(void *__r10_bio, void *data)
 211{
 212        struct r10conf *conf = data;
 213        struct r10bio *r10bio = __r10_bio;
 214        int j;
 215        struct resync_pages *rp = NULL;
 216
 217        for (j = conf->copies; j--; ) {
 218                struct bio *bio = r10bio->devs[j].bio;
 219
 220                if (bio) {
 221                        rp = get_resync_pages(bio);
 222                        resync_free_pages(rp);
 223                        bio_put(bio);
 224                }
 225
 226                bio = r10bio->devs[j].repl_bio;
 227                if (bio)
 228                        bio_put(bio);
 229        }
 230
 231        /* resync pages array stored in the 1st bio's .bi_private */
 232        kfree(rp);
 233
 234        rbio_pool_free(r10bio, conf);
 235}
 236
 237static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
 238{
 239        int i;
 240
 241        for (i = 0; i < conf->copies; i++) {
 242                struct bio **bio = & r10_bio->devs[i].bio;
 243                if (!BIO_SPECIAL(*bio))
 244                        bio_put(*bio);
 245                *bio = NULL;
 246                bio = &r10_bio->devs[i].repl_bio;
 247                if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
 248                        bio_put(*bio);
 249                *bio = NULL;
 250        }
 251}
 252
 253static void free_r10bio(struct r10bio *r10_bio)
 254{
 255        struct r10conf *conf = r10_bio->mddev->private;
 256
 257        put_all_bios(conf, r10_bio);
 258        mempool_free(r10_bio, &conf->r10bio_pool);
 259}
 260
 261static void put_buf(struct r10bio *r10_bio)
 262{
 263        struct r10conf *conf = r10_bio->mddev->private;
 264
 265        mempool_free(r10_bio, &conf->r10buf_pool);
 266
 267        lower_barrier(conf);
 268}
 269
 270static void reschedule_retry(struct r10bio *r10_bio)
 271{
 272        unsigned long flags;
 273        struct mddev *mddev = r10_bio->mddev;
 274        struct r10conf *conf = mddev->private;
 275
 276        spin_lock_irqsave(&conf->device_lock, flags);
 277        list_add(&r10_bio->retry_list, &conf->retry_list);
 278        conf->nr_queued ++;
 279        spin_unlock_irqrestore(&conf->device_lock, flags);
 280
 281        /* wake up frozen array... */
 282        wake_up(&conf->wait_barrier);
 283
 284        md_wakeup_thread(mddev->thread);
 285}
 286
 287/*
 288 * raid_end_bio_io() is called when we have finished servicing a mirrored
 289 * operation and are ready to return a success/failure code to the buffer
 290 * cache layer.
 291 */
 292static void raid_end_bio_io(struct r10bio *r10_bio)
 293{
 294        struct bio *bio = r10_bio->master_bio;
 295        struct r10conf *conf = r10_bio->mddev->private;
 296
 297        if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
 298                bio->bi_status = BLK_STS_IOERR;
 299
 300        bio_endio(bio);
 301        /*
 302         * Wake up any possible resync thread that waits for the device
 303         * to go idle.
 304         */
 305        allow_barrier(conf);
 306
 307        free_r10bio(r10_bio);
 308}
 309
 310/*
 311 * Update disk head position estimator based on IRQ completion info.
 312 */
 313static inline void update_head_pos(int slot, struct r10bio *r10_bio)
 314{
 315        struct r10conf *conf = r10_bio->mddev->private;
 316
 317        conf->mirrors[r10_bio->devs[slot].devnum].head_position =
 318                r10_bio->devs[slot].addr + (r10_bio->sectors);
 319}
 320
 321/*
 322 * Find the disk number which triggered given bio
 323 */
 324static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
 325                         struct bio *bio, int *slotp, int *replp)
 326{
 327        int slot;
 328        int repl = 0;
 329
 330        for (slot = 0; slot < conf->copies; slot++) {
 331                if (r10_bio->devs[slot].bio == bio)
 332                        break;
 333                if (r10_bio->devs[slot].repl_bio == bio) {
 334                        repl = 1;
 335                        break;
 336                }
 337        }
 338
 339        BUG_ON(slot == conf->copies);
 340        update_head_pos(slot, r10_bio);
 341
 342        if (slotp)
 343                *slotp = slot;
 344        if (replp)
 345                *replp = repl;
 346        return r10_bio->devs[slot].devnum;
 347}
 348
 349static void raid10_end_read_request(struct bio *bio)
 350{
 351        int uptodate = !bio->bi_status;
 352        struct r10bio *r10_bio = bio->bi_private;
 353        int slot;
 354        struct md_rdev *rdev;
 355        struct r10conf *conf = r10_bio->mddev->private;
 356
 357        slot = r10_bio->read_slot;
 358        rdev = r10_bio->devs[slot].rdev;
 359        /*
 360         * this branch is our 'one mirror IO has finished' event handler:
 361         */
 362        update_head_pos(slot, r10_bio);
 363
 364        if (uptodate) {
 365                /*
 366                 * Set R10BIO_Uptodate in our master bio, so that
 367                 * we will return a good error code to the higher
 368                 * levels even if IO on some other mirrored buffer fails.
 369                 *
 370                 * The 'master' represents the composite IO operation to
 371                 * user-side. So if something waits for IO, then it will
 372                 * wait for the 'master' bio.
 373                 */
 374                set_bit(R10BIO_Uptodate, &r10_bio->state);
 375        } else {
 376                /* If all other devices that store this block have
 377                 * failed, we want to return the error upwards rather
 378                 * than fail the last device.  Here we redefine
 379                 * "uptodate" to mean "Don't want to retry"
 380                 */
 381                if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
 382                             rdev->raid_disk))
 383                        uptodate = 1;
 384        }
 385        if (uptodate) {
 386                raid_end_bio_io(r10_bio);
 387                rdev_dec_pending(rdev, conf->mddev);
 388        } else {
 389                /*
 390                 * oops, read error - keep the refcount on the rdev
 391                 */
 392                char b[BDEVNAME_SIZE];
 393                pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
 394                                   mdname(conf->mddev),
 395                                   bdevname(rdev->bdev, b),
 396                                   (unsigned long long)r10_bio->sector);
 397                set_bit(R10BIO_ReadError, &r10_bio->state);
 398                reschedule_retry(r10_bio);
 399        }
 400}
 401
 402static void close_write(struct r10bio *r10_bio)
 403{
 404        /* clear the bitmap if all writes complete successfully */
 405        md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
 406                           r10_bio->sectors,
 407                           !test_bit(R10BIO_Degraded, &r10_bio->state),
 408                           0);
 409        md_write_end(r10_bio->mddev);
 410}
 411
 412static void one_write_done(struct r10bio *r10_bio)
 413{
 414        if (atomic_dec_and_test(&r10_bio->remaining)) {
 415                if (test_bit(R10BIO_WriteError, &r10_bio->state))
 416                        reschedule_retry(r10_bio);
 417                else {
 418                        close_write(r10_bio);
 419                        if (test_bit(R10BIO_MadeGood, &r10_bio->state))
 420                                reschedule_retry(r10_bio);
 421                        else
 422                                raid_end_bio_io(r10_bio);
 423                }
 424        }
 425}
 426
 427static void raid10_end_write_request(struct bio *bio)
 428{
 429        struct r10bio *r10_bio = bio->bi_private;
 430        int dev;
 431        int dec_rdev = 1;
 432        struct r10conf *conf = r10_bio->mddev->private;
 433        int slot, repl;
 434        struct md_rdev *rdev = NULL;
 435        struct bio *to_put = NULL;
 436        bool discard_error;
 437
 438        discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
 439
 440        dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
 441
 442        if (repl)
 443                rdev = conf->mirrors[dev].replacement;
 444        if (!rdev) {
 445                smp_rmb();
 446                repl = 0;
 447                rdev = conf->mirrors[dev].rdev;
 448        }
 449        /*
 450         * this branch is our 'one mirror IO has finished' event handler:
 451         */
 452        if (bio->bi_status && !discard_error) {
 453                if (repl)
 454                        /* Never record new bad blocks to replacement,
 455                         * just fail it.
 456                         */
 457                        md_error(rdev->mddev, rdev);
 458                else {
 459                        set_bit(WriteErrorSeen, &rdev->flags);
 460                        if (!test_and_set_bit(WantReplacement, &rdev->flags))
 461                                set_bit(MD_RECOVERY_NEEDED,
 462                                        &rdev->mddev->recovery);
 463
 464                        dec_rdev = 0;
 465                        if (test_bit(FailFast, &rdev->flags) &&
 466                            (bio->bi_opf & MD_FAILFAST)) {
 467                                md_error(rdev->mddev, rdev);
 468                        }
 469
 470                        /*
 471                         * When the device is faulty, it is not necessary to
 472                         * handle write error.
 473                         * For failfast, this is the only remaining device,
 474                         * We need to retry the write without FailFast.
 475                         */
 476                        if (!test_bit(Faulty, &rdev->flags))
 477                                set_bit(R10BIO_WriteError, &r10_bio->state);
 478                        else {
 479                                r10_bio->devs[slot].bio = NULL;
 480                                to_put = bio;
 481                                dec_rdev = 1;
 482                        }
 483                }
 484        } else {
 485                /*
 486                 * Set R10BIO_Uptodate in our master bio, so that
 487                 * we will return a good error code for to the higher
 488                 * levels even if IO on some other mirrored buffer fails.
 489                 *
 490                 * The 'master' represents the composite IO operation to
 491                 * user-side. So if something waits for IO, then it will
 492                 * wait for the 'master' bio.
 493                 */
 494                sector_t first_bad;
 495                int bad_sectors;
 496
 497                /*
 498                 * Do not set R10BIO_Uptodate if the current device is
 499                 * rebuilding or Faulty. This is because we cannot use
 500                 * such device for properly reading the data back (we could
 501                 * potentially use it, if the current write would have felt
 502                 * before rdev->recovery_offset, but for simplicity we don't
 503                 * check this here.
 504                 */
 505                if (test_bit(In_sync, &rdev->flags) &&
 506                    !test_bit(Faulty, &rdev->flags))
 507                        set_bit(R10BIO_Uptodate, &r10_bio->state);
 508
 509                /* Maybe we can clear some bad blocks. */
 510                if (is_badblock(rdev,
 511                                r10_bio->devs[slot].addr,
 512                                r10_bio->sectors,
 513                                &first_bad, &bad_sectors) && !discard_error) {
 514                        bio_put(bio);
 515                        if (repl)
 516                                r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
 517                        else
 518                                r10_bio->devs[slot].bio = IO_MADE_GOOD;
 519                        dec_rdev = 0;
 520                        set_bit(R10BIO_MadeGood, &r10_bio->state);
 521                }
 522        }
 523
 524        /*
 525         *
 526         * Let's see if all mirrored write operations have finished
 527         * already.
 528         */
 529        one_write_done(r10_bio);
 530        if (dec_rdev)
 531                rdev_dec_pending(rdev, conf->mddev);
 532        if (to_put)
 533                bio_put(to_put);
 534}
 535
 536/*
 537 * RAID10 layout manager
 538 * As well as the chunksize and raid_disks count, there are two
 539 * parameters: near_copies and far_copies.
 540 * near_copies * far_copies must be <= raid_disks.
 541 * Normally one of these will be 1.
 542 * If both are 1, we get raid0.
 543 * If near_copies == raid_disks, we get raid1.
 544 *
 545 * Chunks are laid out in raid0 style with near_copies copies of the
 546 * first chunk, followed by near_copies copies of the next chunk and
 547 * so on.
 548 * If far_copies > 1, then after 1/far_copies of the array has been assigned
 549 * as described above, we start again with a device offset of near_copies.
 550 * So we effectively have another copy of the whole array further down all
 551 * the drives, but with blocks on different drives.
 552 * With this layout, and block is never stored twice on the one device.
 553 *
 554 * raid10_find_phys finds the sector offset of a given virtual sector
 555 * on each device that it is on.
 556 *
 557 * raid10_find_virt does the reverse mapping, from a device and a
 558 * sector offset to a virtual address
 559 */
 560
 561static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
 562{
 563        int n,f;
 564        sector_t sector;
 565        sector_t chunk;
 566        sector_t stripe;
 567        int dev;
 568        int slot = 0;
 569        int last_far_set_start, last_far_set_size;
 570
 571        last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 572        last_far_set_start *= geo->far_set_size;
 573
 574        last_far_set_size = geo->far_set_size;
 575        last_far_set_size += (geo->raid_disks % geo->far_set_size);
 576
 577        /* now calculate first sector/dev */
 578        chunk = r10bio->sector >> geo->chunk_shift;
 579        sector = r10bio->sector & geo->chunk_mask;
 580
 581        chunk *= geo->near_copies;
 582        stripe = chunk;
 583        dev = sector_div(stripe, geo->raid_disks);
 584        if (geo->far_offset)
 585                stripe *= geo->far_copies;
 586
 587        sector += stripe << geo->chunk_shift;
 588
 589        /* and calculate all the others */
 590        for (n = 0; n < geo->near_copies; n++) {
 591                int d = dev;
 592                int set;
 593                sector_t s = sector;
 594                r10bio->devs[slot].devnum = d;
 595                r10bio->devs[slot].addr = s;
 596                slot++;
 597
 598                for (f = 1; f < geo->far_copies; f++) {
 599                        set = d / geo->far_set_size;
 600                        d += geo->near_copies;
 601
 602                        if ((geo->raid_disks % geo->far_set_size) &&
 603                            (d > last_far_set_start)) {
 604                                d -= last_far_set_start;
 605                                d %= last_far_set_size;
 606                                d += last_far_set_start;
 607                        } else {
 608                                d %= geo->far_set_size;
 609                                d += geo->far_set_size * set;
 610                        }
 611                        s += geo->stride;
 612                        r10bio->devs[slot].devnum = d;
 613                        r10bio->devs[slot].addr = s;
 614                        slot++;
 615                }
 616                dev++;
 617                if (dev >= geo->raid_disks) {
 618                        dev = 0;
 619                        sector += (geo->chunk_mask + 1);
 620                }
 621        }
 622}
 623
 624static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
 625{
 626        struct geom *geo = &conf->geo;
 627
 628        if (conf->reshape_progress != MaxSector &&
 629            ((r10bio->sector >= conf->reshape_progress) !=
 630             conf->mddev->reshape_backwards)) {
 631                set_bit(R10BIO_Previous, &r10bio->state);
 632                geo = &conf->prev;
 633        } else
 634                clear_bit(R10BIO_Previous, &r10bio->state);
 635
 636        __raid10_find_phys(geo, r10bio);
 637}
 638
 639static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
 640{
 641        sector_t offset, chunk, vchunk;
 642        /* Never use conf->prev as this is only called during resync
 643         * or recovery, so reshape isn't happening
 644         */
 645        struct geom *geo = &conf->geo;
 646        int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
 647        int far_set_size = geo->far_set_size;
 648        int last_far_set_start;
 649
 650        if (geo->raid_disks % geo->far_set_size) {
 651                last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 652                last_far_set_start *= geo->far_set_size;
 653
 654                if (dev >= last_far_set_start) {
 655                        far_set_size = geo->far_set_size;
 656                        far_set_size += (geo->raid_disks % geo->far_set_size);
 657                        far_set_start = last_far_set_start;
 658                }
 659        }
 660
 661        offset = sector & geo->chunk_mask;
 662        if (geo->far_offset) {
 663                int fc;
 664                chunk = sector >> geo->chunk_shift;
 665                fc = sector_div(chunk, geo->far_copies);
 666                dev -= fc * geo->near_copies;
 667                if (dev < far_set_start)
 668                        dev += far_set_size;
 669        } else {
 670                while (sector >= geo->stride) {
 671                        sector -= geo->stride;
 672                        if (dev < (geo->near_copies + far_set_start))
 673                                dev += far_set_size - geo->near_copies;
 674                        else
 675                                dev -= geo->near_copies;
 676                }
 677                chunk = sector >> geo->chunk_shift;
 678        }
 679        vchunk = chunk * geo->raid_disks + dev;
 680        sector_div(vchunk, geo->near_copies);
 681        return (vchunk << geo->chunk_shift) + offset;
 682}
 683
 684/*
 685 * This routine returns the disk from which the requested read should
 686 * be done. There is a per-array 'next expected sequential IO' sector
 687 * number - if this matches on the next IO then we use the last disk.
 688 * There is also a per-disk 'last know head position' sector that is
 689 * maintained from IRQ contexts, both the normal and the resync IO
 690 * completion handlers update this position correctly. If there is no
 691 * perfect sequential match then we pick the disk whose head is closest.
 692 *
 693 * If there are 2 mirrors in the same 2 devices, performance degrades
 694 * because position is mirror, not device based.
 695 *
 696 * The rdev for the device selected will have nr_pending incremented.
 697 */
 698
 699/*
 700 * FIXME: possibly should rethink readbalancing and do it differently
 701 * depending on near_copies / far_copies geometry.
 702 */
 703static struct md_rdev *read_balance(struct r10conf *conf,
 704                                    struct r10bio *r10_bio,
 705                                    int *max_sectors)
 706{
 707        const sector_t this_sector = r10_bio->sector;
 708        int disk, slot;
 709        int sectors = r10_bio->sectors;
 710        int best_good_sectors;
 711        sector_t new_distance, best_dist;
 712        struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
 713        int do_balance;
 714        int best_dist_slot, best_pending_slot;
 715        bool has_nonrot_disk = false;
 716        unsigned int min_pending;
 717        struct geom *geo = &conf->geo;
 718
 719        raid10_find_phys(conf, r10_bio);
 720        rcu_read_lock();
 721        best_dist_slot = -1;
 722        min_pending = UINT_MAX;
 723        best_dist_rdev = NULL;
 724        best_pending_rdev = NULL;
 725        best_dist = MaxSector;
 726        best_good_sectors = 0;
 727        do_balance = 1;
 728        clear_bit(R10BIO_FailFast, &r10_bio->state);
 729        /*
 730         * Check if we can balance. We can balance on the whole
 731         * device if no resync is going on (recovery is ok), or below
 732         * the resync window. We take the first readable disk when
 733         * above the resync window.
 734         */
 735        if ((conf->mddev->recovery_cp < MaxSector
 736             && (this_sector + sectors >= conf->next_resync)) ||
 737            (mddev_is_clustered(conf->mddev) &&
 738             md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
 739                                            this_sector + sectors)))
 740                do_balance = 0;
 741
 742        for (slot = 0; slot < conf->copies ; slot++) {
 743                sector_t first_bad;
 744                int bad_sectors;
 745                sector_t dev_sector;
 746                unsigned int pending;
 747                bool nonrot;
 748
 749                if (r10_bio->devs[slot].bio == IO_BLOCKED)
 750                        continue;
 751                disk = r10_bio->devs[slot].devnum;
 752                rdev = rcu_dereference(conf->mirrors[disk].replacement);
 753                if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
 754                    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 755                        rdev = rcu_dereference(conf->mirrors[disk].rdev);
 756                if (rdev == NULL ||
 757                    test_bit(Faulty, &rdev->flags))
 758                        continue;
 759                if (!test_bit(In_sync, &rdev->flags) &&
 760                    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 761                        continue;
 762
 763                dev_sector = r10_bio->devs[slot].addr;
 764                if (is_badblock(rdev, dev_sector, sectors,
 765                                &first_bad, &bad_sectors)) {
 766                        if (best_dist < MaxSector)
 767                                /* Already have a better slot */
 768                                continue;
 769                        if (first_bad <= dev_sector) {
 770                                /* Cannot read here.  If this is the
 771                                 * 'primary' device, then we must not read
 772                                 * beyond 'bad_sectors' from another device.
 773                                 */
 774                                bad_sectors -= (dev_sector - first_bad);
 775                                if (!do_balance && sectors > bad_sectors)
 776                                        sectors = bad_sectors;
 777                                if (best_good_sectors > sectors)
 778                                        best_good_sectors = sectors;
 779                        } else {
 780                                sector_t good_sectors =
 781                                        first_bad - dev_sector;
 782                                if (good_sectors > best_good_sectors) {
 783                                        best_good_sectors = good_sectors;
 784                                        best_dist_slot = slot;
 785                                        best_dist_rdev = rdev;
 786                                }
 787                                if (!do_balance)
 788                                        /* Must read from here */
 789                                        break;
 790                        }
 791                        continue;
 792                } else
 793                        best_good_sectors = sectors;
 794
 795                if (!do_balance)
 796                        break;
 797
 798                nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
 799                has_nonrot_disk |= nonrot;
 800                pending = atomic_read(&rdev->nr_pending);
 801                if (min_pending > pending && nonrot) {
 802                        min_pending = pending;
 803                        best_pending_slot = slot;
 804                        best_pending_rdev = rdev;
 805                }
 806
 807                if (best_dist_slot >= 0)
 808                        /* At least 2 disks to choose from so failfast is OK */
 809                        set_bit(R10BIO_FailFast, &r10_bio->state);
 810                /* This optimisation is debatable, and completely destroys
 811                 * sequential read speed for 'far copies' arrays.  So only
 812                 * keep it for 'near' arrays, and review those later.
 813                 */
 814                if (geo->near_copies > 1 && !pending)
 815                        new_distance = 0;
 816
 817                /* for far > 1 always use the lowest address */
 818                else if (geo->far_copies > 1)
 819                        new_distance = r10_bio->devs[slot].addr;
 820                else
 821                        new_distance = abs(r10_bio->devs[slot].addr -
 822                                           conf->mirrors[disk].head_position);
 823
 824                if (new_distance < best_dist) {
 825                        best_dist = new_distance;
 826                        best_dist_slot = slot;
 827                        best_dist_rdev = rdev;
 828                }
 829        }
 830        if (slot >= conf->copies) {
 831                if (has_nonrot_disk) {
 832                        slot = best_pending_slot;
 833                        rdev = best_pending_rdev;
 834                } else {
 835                        slot = best_dist_slot;
 836                        rdev = best_dist_rdev;
 837                }
 838        }
 839
 840        if (slot >= 0) {
 841                atomic_inc(&rdev->nr_pending);
 842                r10_bio->read_slot = slot;
 843        } else
 844                rdev = NULL;
 845        rcu_read_unlock();
 846        *max_sectors = best_good_sectors;
 847
 848        return rdev;
 849}
 850
 851static void flush_pending_writes(struct r10conf *conf)
 852{
 853        /* Any writes that have been queued but are awaiting
 854         * bitmap updates get flushed here.
 855         */
 856        spin_lock_irq(&conf->device_lock);
 857
 858        if (conf->pending_bio_list.head) {
 859                struct blk_plug plug;
 860                struct bio *bio;
 861
 862                bio = bio_list_get(&conf->pending_bio_list);
 863                conf->pending_count = 0;
 864                spin_unlock_irq(&conf->device_lock);
 865
 866                /*
 867                 * As this is called in a wait_event() loop (see freeze_array),
 868                 * current->state might be TASK_UNINTERRUPTIBLE which will
 869                 * cause a warning when we prepare to wait again.  As it is
 870                 * rare that this path is taken, it is perfectly safe to force
 871                 * us to go around the wait_event() loop again, so the warning
 872                 * is a false-positive. Silence the warning by resetting
 873                 * thread state
 874                 */
 875                __set_current_state(TASK_RUNNING);
 876
 877                blk_start_plug(&plug);
 878                /* flush any pending bitmap writes to disk
 879                 * before proceeding w/ I/O */
 880                md_bitmap_unplug(conf->mddev->bitmap);
 881                wake_up(&conf->wait_barrier);
 882
 883                while (bio) { /* submit pending writes */
 884                        struct bio *next = bio->bi_next;
 885                        struct md_rdev *rdev = (void*)bio->bi_disk;
 886                        bio->bi_next = NULL;
 887                        bio_set_dev(bio, rdev->bdev);
 888                        if (test_bit(Faulty, &rdev->flags)) {
 889                                bio_io_error(bio);
 890                        } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
 891                                            !blk_queue_discard(bio->bi_disk->queue)))
 892                                /* Just ignore it */
 893                                bio_endio(bio);
 894                        else
 895                                submit_bio_noacct(bio);
 896                        bio = next;
 897                }
 898                blk_finish_plug(&plug);
 899        } else
 900                spin_unlock_irq(&conf->device_lock);
 901}
 902
 903/* Barriers....
 904 * Sometimes we need to suspend IO while we do something else,
 905 * either some resync/recovery, or reconfigure the array.
 906 * To do this we raise a 'barrier'.
 907 * The 'barrier' is a counter that can be raised multiple times
 908 * to count how many activities are happening which preclude
 909 * normal IO.
 910 * We can only raise the barrier if there is no pending IO.
 911 * i.e. if nr_pending == 0.
 912 * We choose only to raise the barrier if no-one is waiting for the
 913 * barrier to go down.  This means that as soon as an IO request
 914 * is ready, no other operations which require a barrier will start
 915 * until the IO request has had a chance.
 916 *
 917 * So: regular IO calls 'wait_barrier'.  When that returns there
 918 *    is no backgroup IO happening,  It must arrange to call
 919 *    allow_barrier when it has finished its IO.
 920 * backgroup IO calls must call raise_barrier.  Once that returns
 921 *    there is no normal IO happeing.  It must arrange to call
 922 *    lower_barrier when the particular background IO completes.
 923 */
 924
 925static void raise_barrier(struct r10conf *conf, int force)
 926{
 927        BUG_ON(force && !conf->barrier);
 928        spin_lock_irq(&conf->resync_lock);
 929
 930        /* Wait until no block IO is waiting (unless 'force') */
 931        wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
 932                            conf->resync_lock);
 933
 934        /* block any new IO from starting */
 935        conf->barrier++;
 936
 937        /* Now wait for all pending IO to complete */
 938        wait_event_lock_irq(conf->wait_barrier,
 939                            !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
 940                            conf->resync_lock);
 941
 942        spin_unlock_irq(&conf->resync_lock);
 943}
 944
 945static void lower_barrier(struct r10conf *conf)
 946{
 947        unsigned long flags;
 948        spin_lock_irqsave(&conf->resync_lock, flags);
 949        conf->barrier--;
 950        spin_unlock_irqrestore(&conf->resync_lock, flags);
 951        wake_up(&conf->wait_barrier);
 952}
 953
 954static void wait_barrier(struct r10conf *conf)
 955{
 956        spin_lock_irq(&conf->resync_lock);
 957        if (conf->barrier) {
 958                struct bio_list *bio_list = current->bio_list;
 959                conf->nr_waiting++;
 960                /* Wait for the barrier to drop.
 961                 * However if there are already pending
 962                 * requests (preventing the barrier from
 963                 * rising completely), and the
 964                 * pre-process bio queue isn't empty,
 965                 * then don't wait, as we need to empty
 966                 * that queue to get the nr_pending
 967                 * count down.
 968                 */
 969                raid10_log(conf->mddev, "wait barrier");
 970                wait_event_lock_irq(conf->wait_barrier,
 971                                    !conf->barrier ||
 972                                    (atomic_read(&conf->nr_pending) &&
 973                                     bio_list &&
 974                                     (!bio_list_empty(&bio_list[0]) ||
 975                                      !bio_list_empty(&bio_list[1]))) ||
 976                                     /* move on if recovery thread is
 977                                      * blocked by us
 978                                      */
 979                                     (conf->mddev->thread->tsk == current &&
 980                                      test_bit(MD_RECOVERY_RUNNING,
 981                                               &conf->mddev->recovery) &&
 982                                      conf->nr_queued > 0),
 983                                    conf->resync_lock);
 984                conf->nr_waiting--;
 985                if (!conf->nr_waiting)
 986                        wake_up(&conf->wait_barrier);
 987        }
 988        atomic_inc(&conf->nr_pending);
 989        spin_unlock_irq(&conf->resync_lock);
 990}
 991
 992static void allow_barrier(struct r10conf *conf)
 993{
 994        if ((atomic_dec_and_test(&conf->nr_pending)) ||
 995                        (conf->array_freeze_pending))
 996                wake_up(&conf->wait_barrier);
 997}
 998
 999static void freeze_array(struct r10conf *conf, int extra)
1000{
1001        /* stop syncio and normal IO and wait for everything to
1002         * go quiet.
1003         * We increment barrier and nr_waiting, and then
1004         * wait until nr_pending match nr_queued+extra
1005         * This is called in the context of one normal IO request
1006         * that has failed. Thus any sync request that might be pending
1007         * will be blocked by nr_pending, and we need to wait for
1008         * pending IO requests to complete or be queued for re-try.
1009         * Thus the number queued (nr_queued) plus this request (extra)
1010         * must match the number of pending IOs (nr_pending) before
1011         * we continue.
1012         */
1013        spin_lock_irq(&conf->resync_lock);
1014        conf->array_freeze_pending++;
1015        conf->barrier++;
1016        conf->nr_waiting++;
1017        wait_event_lock_irq_cmd(conf->wait_barrier,
1018                                atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1019                                conf->resync_lock,
1020                                flush_pending_writes(conf));
1021
1022        conf->array_freeze_pending--;
1023        spin_unlock_irq(&conf->resync_lock);
1024}
1025
1026static void unfreeze_array(struct r10conf *conf)
1027{
1028        /* reverse the effect of the freeze */
1029        spin_lock_irq(&conf->resync_lock);
1030        conf->barrier--;
1031        conf->nr_waiting--;
1032        wake_up(&conf->wait_barrier);
1033        spin_unlock_irq(&conf->resync_lock);
1034}
1035
1036static sector_t choose_data_offset(struct r10bio *r10_bio,
1037                                   struct md_rdev *rdev)
1038{
1039        if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1040            test_bit(R10BIO_Previous, &r10_bio->state))
1041                return rdev->data_offset;
1042        else
1043                return rdev->new_data_offset;
1044}
1045
1046struct raid10_plug_cb {
1047        struct blk_plug_cb      cb;
1048        struct bio_list         pending;
1049        int                     pending_cnt;
1050};
1051
1052static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1053{
1054        struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1055                                                   cb);
1056        struct mddev *mddev = plug->cb.data;
1057        struct r10conf *conf = mddev->private;
1058        struct bio *bio;
1059
1060        if (from_schedule || current->bio_list) {
1061                spin_lock_irq(&conf->device_lock);
1062                bio_list_merge(&conf->pending_bio_list, &plug->pending);
1063                conf->pending_count += plug->pending_cnt;
1064                spin_unlock_irq(&conf->device_lock);
1065                wake_up(&conf->wait_barrier);
1066                md_wakeup_thread(mddev->thread);
1067                kfree(plug);
1068                return;
1069        }
1070
1071        /* we aren't scheduling, so we can do the write-out directly. */
1072        bio = bio_list_get(&plug->pending);
1073        md_bitmap_unplug(mddev->bitmap);
1074        wake_up(&conf->wait_barrier);
1075
1076        while (bio) { /* submit pending writes */
1077                struct bio *next = bio->bi_next;
1078                struct md_rdev *rdev = (void*)bio->bi_disk;
1079                bio->bi_next = NULL;
1080                bio_set_dev(bio, rdev->bdev);
1081                if (test_bit(Faulty, &rdev->flags)) {
1082                        bio_io_error(bio);
1083                } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1084                                    !blk_queue_discard(bio->bi_disk->queue)))
1085                        /* Just ignore it */
1086                        bio_endio(bio);
1087                else
1088                        submit_bio_noacct(bio);
1089                bio = next;
1090        }
1091        kfree(plug);
1092}
1093
1094/*
1095 * 1. Register the new request and wait if the reconstruction thread has put
1096 * up a bar for new requests. Continue immediately if no resync is active
1097 * currently.
1098 * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1099 */
1100static void regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1101                                 struct bio *bio, sector_t sectors)
1102{
1103        wait_barrier(conf);
1104        while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1105            bio->bi_iter.bi_sector < conf->reshape_progress &&
1106            bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1107                raid10_log(conf->mddev, "wait reshape");
1108                allow_barrier(conf);
1109                wait_event(conf->wait_barrier,
1110                           conf->reshape_progress <= bio->bi_iter.bi_sector ||
1111                           conf->reshape_progress >= bio->bi_iter.bi_sector +
1112                           sectors);
1113                wait_barrier(conf);
1114        }
1115}
1116
1117static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1118                                struct r10bio *r10_bio)
1119{
1120        struct r10conf *conf = mddev->private;
1121        struct bio *read_bio;
1122        const int op = bio_op(bio);
1123        const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1124        int max_sectors;
1125        struct md_rdev *rdev;
1126        char b[BDEVNAME_SIZE];
1127        int slot = r10_bio->read_slot;
1128        struct md_rdev *err_rdev = NULL;
1129        gfp_t gfp = GFP_NOIO;
1130
1131        if (r10_bio->devs[slot].rdev) {
1132                /*
1133                 * This is an error retry, but we cannot
1134                 * safely dereference the rdev in the r10_bio,
1135                 * we must use the one in conf.
1136                 * If it has already been disconnected (unlikely)
1137                 * we lose the device name in error messages.
1138                 */
1139                int disk;
1140                /*
1141                 * As we are blocking raid10, it is a little safer to
1142                 * use __GFP_HIGH.
1143                 */
1144                gfp = GFP_NOIO | __GFP_HIGH;
1145
1146                rcu_read_lock();
1147                disk = r10_bio->devs[slot].devnum;
1148                err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1149                if (err_rdev)
1150                        bdevname(err_rdev->bdev, b);
1151                else {
1152                        strcpy(b, "???");
1153                        /* This never gets dereferenced */
1154                        err_rdev = r10_bio->devs[slot].rdev;
1155                }
1156                rcu_read_unlock();
1157        }
1158
1159        regular_request_wait(mddev, conf, bio, r10_bio->sectors);
1160        rdev = read_balance(conf, r10_bio, &max_sectors);
1161        if (!rdev) {
1162                if (err_rdev) {
1163                        pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1164                                            mdname(mddev), b,
1165                                            (unsigned long long)r10_bio->sector);
1166                }
1167                raid_end_bio_io(r10_bio);
1168                return;
1169        }
1170        if (err_rdev)
1171                pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1172                                   mdname(mddev),
1173                                   bdevname(rdev->bdev, b),
1174                                   (unsigned long long)r10_bio->sector);
1175        if (max_sectors < bio_sectors(bio)) {
1176                struct bio *split = bio_split(bio, max_sectors,
1177                                              gfp, &conf->bio_split);
1178                bio_chain(split, bio);
1179                allow_barrier(conf);
1180                submit_bio_noacct(bio);
1181                wait_barrier(conf);
1182                bio = split;
1183                r10_bio->master_bio = bio;
1184                r10_bio->sectors = max_sectors;
1185        }
1186        slot = r10_bio->read_slot;
1187
1188        read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1189
1190        r10_bio->devs[slot].bio = read_bio;
1191        r10_bio->devs[slot].rdev = rdev;
1192
1193        read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1194                choose_data_offset(r10_bio, rdev);
1195        bio_set_dev(read_bio, rdev->bdev);
1196        read_bio->bi_end_io = raid10_end_read_request;
1197        bio_set_op_attrs(read_bio, op, do_sync);
1198        if (test_bit(FailFast, &rdev->flags) &&
1199            test_bit(R10BIO_FailFast, &r10_bio->state))
1200                read_bio->bi_opf |= MD_FAILFAST;
1201        read_bio->bi_private = r10_bio;
1202
1203        if (mddev->gendisk)
1204                trace_block_bio_remap(read_bio->bi_disk->queue,
1205                                      read_bio, disk_devt(mddev->gendisk),
1206                                      r10_bio->sector);
1207        submit_bio_noacct(read_bio);
1208        return;
1209}
1210
1211static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1212                                  struct bio *bio, bool replacement,
1213                                  int n_copy)
1214{
1215        const int op = bio_op(bio);
1216        const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1217        const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1218        unsigned long flags;
1219        struct blk_plug_cb *cb;
1220        struct raid10_plug_cb *plug = NULL;
1221        struct r10conf *conf = mddev->private;
1222        struct md_rdev *rdev;
1223        int devnum = r10_bio->devs[n_copy].devnum;
1224        struct bio *mbio;
1225
1226        if (replacement) {
1227                rdev = conf->mirrors[devnum].replacement;
1228                if (rdev == NULL) {
1229                        /* Replacement just got moved to main 'rdev' */
1230                        smp_mb();
1231                        rdev = conf->mirrors[devnum].rdev;
1232                }
1233        } else
1234                rdev = conf->mirrors[devnum].rdev;
1235
1236        mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1237        if (replacement)
1238                r10_bio->devs[n_copy].repl_bio = mbio;
1239        else
1240                r10_bio->devs[n_copy].bio = mbio;
1241
1242        mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1243                                   choose_data_offset(r10_bio, rdev));
1244        bio_set_dev(mbio, rdev->bdev);
1245        mbio->bi_end_io = raid10_end_write_request;
1246        bio_set_op_attrs(mbio, op, do_sync | do_fua);
1247        if (!replacement && test_bit(FailFast,
1248                                     &conf->mirrors[devnum].rdev->flags)
1249                         && enough(conf, devnum))
1250                mbio->bi_opf |= MD_FAILFAST;
1251        mbio->bi_private = r10_bio;
1252
1253        if (conf->mddev->gendisk)
1254                trace_block_bio_remap(mbio->bi_disk->queue,
1255                                      mbio, disk_devt(conf->mddev->gendisk),
1256                                      r10_bio->sector);
1257        /* flush_pending_writes() needs access to the rdev so...*/
1258        mbio->bi_disk = (void *)rdev;
1259
1260        atomic_inc(&r10_bio->remaining);
1261
1262        cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1263        if (cb)
1264                plug = container_of(cb, struct raid10_plug_cb, cb);
1265        else
1266                plug = NULL;
1267        if (plug) {
1268                bio_list_add(&plug->pending, mbio);
1269                plug->pending_cnt++;
1270        } else {
1271                spin_lock_irqsave(&conf->device_lock, flags);
1272                bio_list_add(&conf->pending_bio_list, mbio);
1273                conf->pending_count++;
1274                spin_unlock_irqrestore(&conf->device_lock, flags);
1275                md_wakeup_thread(mddev->thread);
1276        }
1277}
1278
1279static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1280                                 struct r10bio *r10_bio)
1281{
1282        struct r10conf *conf = mddev->private;
1283        int i;
1284        struct md_rdev *blocked_rdev;
1285        sector_t sectors;
1286        int max_sectors;
1287
1288        if ((mddev_is_clustered(mddev) &&
1289             md_cluster_ops->area_resyncing(mddev, WRITE,
1290                                            bio->bi_iter.bi_sector,
1291                                            bio_end_sector(bio)))) {
1292                DEFINE_WAIT(w);
1293                for (;;) {
1294                        prepare_to_wait(&conf->wait_barrier,
1295                                        &w, TASK_IDLE);
1296                        if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1297                                 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1298                                break;
1299                        schedule();
1300                }
1301                finish_wait(&conf->wait_barrier, &w);
1302        }
1303
1304        sectors = r10_bio->sectors;
1305        regular_request_wait(mddev, conf, bio, sectors);
1306        if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1307            (mddev->reshape_backwards
1308             ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1309                bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1310             : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1311                bio->bi_iter.bi_sector < conf->reshape_progress))) {
1312                /* Need to update reshape_position in metadata */
1313                mddev->reshape_position = conf->reshape_progress;
1314                set_mask_bits(&mddev->sb_flags, 0,
1315                              BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1316                md_wakeup_thread(mddev->thread);
1317                raid10_log(conf->mddev, "wait reshape metadata");
1318                wait_event(mddev->sb_wait,
1319                           !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1320
1321                conf->reshape_safe = mddev->reshape_position;
1322        }
1323
1324        if (conf->pending_count >= max_queued_requests) {
1325                md_wakeup_thread(mddev->thread);
1326                raid10_log(mddev, "wait queued");
1327                wait_event(conf->wait_barrier,
1328                           conf->pending_count < max_queued_requests);
1329        }
1330        /* first select target devices under rcu_lock and
1331         * inc refcount on their rdev.  Record them by setting
1332         * bios[x] to bio
1333         * If there are known/acknowledged bad blocks on any device
1334         * on which we have seen a write error, we want to avoid
1335         * writing to those blocks.  This potentially requires several
1336         * writes to write around the bad blocks.  Each set of writes
1337         * gets its own r10_bio with a set of bios attached.
1338         */
1339
1340        r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1341        raid10_find_phys(conf, r10_bio);
1342retry_write:
1343        blocked_rdev = NULL;
1344        rcu_read_lock();
1345        max_sectors = r10_bio->sectors;
1346
1347        for (i = 0;  i < conf->copies; i++) {
1348                int d = r10_bio->devs[i].devnum;
1349                struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1350                struct md_rdev *rrdev = rcu_dereference(
1351                        conf->mirrors[d].replacement);
1352                if (rdev == rrdev)
1353                        rrdev = NULL;
1354                if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1355                        atomic_inc(&rdev->nr_pending);
1356                        blocked_rdev = rdev;
1357                        break;
1358                }
1359                if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1360                        atomic_inc(&rrdev->nr_pending);
1361                        blocked_rdev = rrdev;
1362                        break;
1363                }
1364                if (rdev && (test_bit(Faulty, &rdev->flags)))
1365                        rdev = NULL;
1366                if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1367                        rrdev = NULL;
1368
1369                r10_bio->devs[i].bio = NULL;
1370                r10_bio->devs[i].repl_bio = NULL;
1371
1372                if (!rdev && !rrdev) {
1373                        set_bit(R10BIO_Degraded, &r10_bio->state);
1374                        continue;
1375                }
1376                if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1377                        sector_t first_bad;
1378                        sector_t dev_sector = r10_bio->devs[i].addr;
1379                        int bad_sectors;
1380                        int is_bad;
1381
1382                        is_bad = is_badblock(rdev, dev_sector, max_sectors,
1383                                             &first_bad, &bad_sectors);
1384                        if (is_bad < 0) {
1385                                /* Mustn't write here until the bad block
1386                                 * is acknowledged
1387                                 */
1388                                atomic_inc(&rdev->nr_pending);
1389                                set_bit(BlockedBadBlocks, &rdev->flags);
1390                                blocked_rdev = rdev;
1391                                break;
1392                        }
1393                        if (is_bad && first_bad <= dev_sector) {
1394                                /* Cannot write here at all */
1395                                bad_sectors -= (dev_sector - first_bad);
1396                                if (bad_sectors < max_sectors)
1397                                        /* Mustn't write more than bad_sectors
1398                                         * to other devices yet
1399                                         */
1400                                        max_sectors = bad_sectors;
1401                                /* We don't set R10BIO_Degraded as that
1402                                 * only applies if the disk is missing,
1403                                 * so it might be re-added, and we want to
1404                                 * know to recover this chunk.
1405                                 * In this case the device is here, and the
1406                                 * fact that this chunk is not in-sync is
1407                                 * recorded in the bad block log.
1408                                 */
1409                                continue;
1410                        }
1411                        if (is_bad) {
1412                                int good_sectors = first_bad - dev_sector;
1413                                if (good_sectors < max_sectors)
1414                                        max_sectors = good_sectors;
1415                        }
1416                }
1417                if (rdev) {
1418                        r10_bio->devs[i].bio = bio;
1419                        atomic_inc(&rdev->nr_pending);
1420                }
1421                if (rrdev) {
1422                        r10_bio->devs[i].repl_bio = bio;
1423                        atomic_inc(&rrdev->nr_pending);
1424                }
1425        }
1426        rcu_read_unlock();
1427
1428        if (unlikely(blocked_rdev)) {
1429                /* Have to wait for this device to get unblocked, then retry */
1430                int j;
1431                int d;
1432
1433                for (j = 0; j < i; j++) {
1434                        if (r10_bio->devs[j].bio) {
1435                                d = r10_bio->devs[j].devnum;
1436                                rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1437                        }
1438                        if (r10_bio->devs[j].repl_bio) {
1439                                struct md_rdev *rdev;
1440                                d = r10_bio->devs[j].devnum;
1441                                rdev = conf->mirrors[d].replacement;
1442                                if (!rdev) {
1443                                        /* Race with remove_disk */
1444                                        smp_mb();
1445                                        rdev = conf->mirrors[d].rdev;
1446                                }
1447                                rdev_dec_pending(rdev, mddev);
1448                        }
1449                }
1450                allow_barrier(conf);
1451                raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1452                md_wait_for_blocked_rdev(blocked_rdev, mddev);
1453                wait_barrier(conf);
1454                goto retry_write;
1455        }
1456
1457        if (max_sectors < r10_bio->sectors)
1458                r10_bio->sectors = max_sectors;
1459
1460        if (r10_bio->sectors < bio_sectors(bio)) {
1461                struct bio *split = bio_split(bio, r10_bio->sectors,
1462                                              GFP_NOIO, &conf->bio_split);
1463                bio_chain(split, bio);
1464                allow_barrier(conf);
1465                submit_bio_noacct(bio);
1466                wait_barrier(conf);
1467                bio = split;
1468                r10_bio->master_bio = bio;
1469        }
1470
1471        atomic_set(&r10_bio->remaining, 1);
1472        md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1473
1474        for (i = 0; i < conf->copies; i++) {
1475                if (r10_bio->devs[i].bio)
1476                        raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1477                if (r10_bio->devs[i].repl_bio)
1478                        raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1479        }
1480        one_write_done(r10_bio);
1481}
1482
1483static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1484{
1485        struct r10conf *conf = mddev->private;
1486        struct r10bio *r10_bio;
1487
1488        r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1489
1490        r10_bio->master_bio = bio;
1491        r10_bio->sectors = sectors;
1492
1493        r10_bio->mddev = mddev;
1494        r10_bio->sector = bio->bi_iter.bi_sector;
1495        r10_bio->state = 0;
1496        memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1497
1498        if (bio_data_dir(bio) == READ)
1499                raid10_read_request(mddev, bio, r10_bio);
1500        else
1501                raid10_write_request(mddev, bio, r10_bio);
1502}
1503
1504static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1505{
1506        struct r10conf *conf = mddev->private;
1507        sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1508        int chunk_sects = chunk_mask + 1;
1509        int sectors = bio_sectors(bio);
1510
1511        if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1512            && md_flush_request(mddev, bio))
1513                return true;
1514
1515        if (!md_write_start(mddev, bio))
1516                return false;
1517
1518        /*
1519         * If this request crosses a chunk boundary, we need to split
1520         * it.
1521         */
1522        if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1523                     sectors > chunk_sects
1524                     && (conf->geo.near_copies < conf->geo.raid_disks
1525                         || conf->prev.near_copies <
1526                         conf->prev.raid_disks)))
1527                sectors = chunk_sects -
1528                        (bio->bi_iter.bi_sector &
1529                         (chunk_sects - 1));
1530        __make_request(mddev, bio, sectors);
1531
1532        /* In case raid10d snuck in to freeze_array */
1533        wake_up(&conf->wait_barrier);
1534        return true;
1535}
1536
1537static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1538{
1539        struct r10conf *conf = mddev->private;
1540        int i;
1541
1542        if (conf->geo.near_copies < conf->geo.raid_disks)
1543                seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1544        if (conf->geo.near_copies > 1)
1545                seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1546        if (conf->geo.far_copies > 1) {
1547                if (conf->geo.far_offset)
1548                        seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1549                else
1550                        seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1551                if (conf->geo.far_set_size != conf->geo.raid_disks)
1552                        seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1553        }
1554        seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1555                                        conf->geo.raid_disks - mddev->degraded);
1556        rcu_read_lock();
1557        for (i = 0; i < conf->geo.raid_disks; i++) {
1558                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1559                seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1560        }
1561        rcu_read_unlock();
1562        seq_printf(seq, "]");
1563}
1564
1565/* check if there are enough drives for
1566 * every block to appear on atleast one.
1567 * Don't consider the device numbered 'ignore'
1568 * as we might be about to remove it.
1569 */
1570static int _enough(struct r10conf *conf, int previous, int ignore)
1571{
1572        int first = 0;
1573        int has_enough = 0;
1574        int disks, ncopies;
1575        if (previous) {
1576                disks = conf->prev.raid_disks;
1577                ncopies = conf->prev.near_copies;
1578        } else {
1579                disks = conf->geo.raid_disks;
1580                ncopies = conf->geo.near_copies;
1581        }
1582
1583        rcu_read_lock();
1584        do {
1585                int n = conf->copies;
1586                int cnt = 0;
1587                int this = first;
1588                while (n--) {
1589                        struct md_rdev *rdev;
1590                        if (this != ignore &&
1591                            (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1592                            test_bit(In_sync, &rdev->flags))
1593                                cnt++;
1594                        this = (this+1) % disks;
1595                }
1596                if (cnt == 0)
1597                        goto out;
1598                first = (first + ncopies) % disks;
1599        } while (first != 0);
1600        has_enough = 1;
1601out:
1602        rcu_read_unlock();
1603        return has_enough;
1604}
1605
1606static int enough(struct r10conf *conf, int ignore)
1607{
1608        /* when calling 'enough', both 'prev' and 'geo' must
1609         * be stable.
1610         * This is ensured if ->reconfig_mutex or ->device_lock
1611         * is held.
1612         */
1613        return _enough(conf, 0, ignore) &&
1614                _enough(conf, 1, ignore);
1615}
1616
1617static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1618{
1619        char b[BDEVNAME_SIZE];
1620        struct r10conf *conf = mddev->private;
1621        unsigned long flags;
1622
1623        /*
1624         * If it is not operational, then we have already marked it as dead
1625         * else if it is the last working disks with "fail_last_dev == false",
1626         * ignore the error, let the next level up know.
1627         * else mark the drive as failed
1628         */
1629        spin_lock_irqsave(&conf->device_lock, flags);
1630        if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1631            && !enough(conf, rdev->raid_disk)) {
1632                /*
1633                 * Don't fail the drive, just return an IO error.
1634                 */
1635                spin_unlock_irqrestore(&conf->device_lock, flags);
1636                return;
1637        }
1638        if (test_and_clear_bit(In_sync, &rdev->flags))
1639                mddev->degraded++;
1640        /*
1641         * If recovery is running, make sure it aborts.
1642         */
1643        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1644        set_bit(Blocked, &rdev->flags);
1645        set_bit(Faulty, &rdev->flags);
1646        set_mask_bits(&mddev->sb_flags, 0,
1647                      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1648        spin_unlock_irqrestore(&conf->device_lock, flags);
1649        pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1650                "md/raid10:%s: Operation continuing on %d devices.\n",
1651                mdname(mddev), bdevname(rdev->bdev, b),
1652                mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1653}
1654
1655static void print_conf(struct r10conf *conf)
1656{
1657        int i;
1658        struct md_rdev *rdev;
1659
1660        pr_debug("RAID10 conf printout:\n");
1661        if (!conf) {
1662                pr_debug("(!conf)\n");
1663                return;
1664        }
1665        pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1666                 conf->geo.raid_disks);
1667
1668        /* This is only called with ->reconfix_mutex held, so
1669         * rcu protection of rdev is not needed */
1670        for (i = 0; i < conf->geo.raid_disks; i++) {
1671                char b[BDEVNAME_SIZE];
1672                rdev = conf->mirrors[i].rdev;
1673                if (rdev)
1674                        pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1675                                 i, !test_bit(In_sync, &rdev->flags),
1676                                 !test_bit(Faulty, &rdev->flags),
1677                                 bdevname(rdev->bdev,b));
1678        }
1679}
1680
1681static void close_sync(struct r10conf *conf)
1682{
1683        wait_barrier(conf);
1684        allow_barrier(conf);
1685
1686        mempool_exit(&conf->r10buf_pool);
1687}
1688
1689static int raid10_spare_active(struct mddev *mddev)
1690{
1691        int i;
1692        struct r10conf *conf = mddev->private;
1693        struct raid10_info *tmp;
1694        int count = 0;
1695        unsigned long flags;
1696
1697        /*
1698         * Find all non-in_sync disks within the RAID10 configuration
1699         * and mark them in_sync
1700         */
1701        for (i = 0; i < conf->geo.raid_disks; i++) {
1702                tmp = conf->mirrors + i;
1703                if (tmp->replacement
1704                    && tmp->replacement->recovery_offset == MaxSector
1705                    && !test_bit(Faulty, &tmp->replacement->flags)
1706                    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1707                        /* Replacement has just become active */
1708                        if (!tmp->rdev
1709                            || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1710                                count++;
1711                        if (tmp->rdev) {
1712                                /* Replaced device not technically faulty,
1713                                 * but we need to be sure it gets removed
1714                                 * and never re-added.
1715                                 */
1716                                set_bit(Faulty, &tmp->rdev->flags);
1717                                sysfs_notify_dirent_safe(
1718                                        tmp->rdev->sysfs_state);
1719                        }
1720                        sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1721                } else if (tmp->rdev
1722                           && tmp->rdev->recovery_offset == MaxSector
1723                           && !test_bit(Faulty, &tmp->rdev->flags)
1724                           && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1725                        count++;
1726                        sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1727                }
1728        }
1729        spin_lock_irqsave(&conf->device_lock, flags);
1730        mddev->degraded -= count;
1731        spin_unlock_irqrestore(&conf->device_lock, flags);
1732
1733        print_conf(conf);
1734        return count;
1735}
1736
1737static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1738{
1739        struct r10conf *conf = mddev->private;
1740        int err = -EEXIST;
1741        int mirror;
1742        int first = 0;
1743        int last = conf->geo.raid_disks - 1;
1744
1745        if (mddev->recovery_cp < MaxSector)
1746                /* only hot-add to in-sync arrays, as recovery is
1747                 * very different from resync
1748                 */
1749                return -EBUSY;
1750        if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1751                return -EINVAL;
1752
1753        if (md_integrity_add_rdev(rdev, mddev))
1754                return -ENXIO;
1755
1756        if (rdev->raid_disk >= 0)
1757                first = last = rdev->raid_disk;
1758
1759        if (rdev->saved_raid_disk >= first &&
1760            rdev->saved_raid_disk < conf->geo.raid_disks &&
1761            conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1762                mirror = rdev->saved_raid_disk;
1763        else
1764                mirror = first;
1765        for ( ; mirror <= last ; mirror++) {
1766                struct raid10_info *p = &conf->mirrors[mirror];
1767                if (p->recovery_disabled == mddev->recovery_disabled)
1768                        continue;
1769                if (p->rdev) {
1770                        if (!test_bit(WantReplacement, &p->rdev->flags) ||
1771                            p->replacement != NULL)
1772                                continue;
1773                        clear_bit(In_sync, &rdev->flags);
1774                        set_bit(Replacement, &rdev->flags);
1775                        rdev->raid_disk = mirror;
1776                        err = 0;
1777                        if (mddev->gendisk)
1778                                disk_stack_limits(mddev->gendisk, rdev->bdev,
1779                                                  rdev->data_offset << 9);
1780                        conf->fullsync = 1;
1781                        rcu_assign_pointer(p->replacement, rdev);
1782                        break;
1783                }
1784
1785                if (mddev->gendisk)
1786                        disk_stack_limits(mddev->gendisk, rdev->bdev,
1787                                          rdev->data_offset << 9);
1788
1789                p->head_position = 0;
1790                p->recovery_disabled = mddev->recovery_disabled - 1;
1791                rdev->raid_disk = mirror;
1792                err = 0;
1793                if (rdev->saved_raid_disk != mirror)
1794                        conf->fullsync = 1;
1795                rcu_assign_pointer(p->rdev, rdev);
1796                break;
1797        }
1798        if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1799                blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1800
1801        print_conf(conf);
1802        return err;
1803}
1804
1805static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1806{
1807        struct r10conf *conf = mddev->private;
1808        int err = 0;
1809        int number = rdev->raid_disk;
1810        struct md_rdev **rdevp;
1811        struct raid10_info *p = conf->mirrors + number;
1812
1813        print_conf(conf);
1814        if (rdev == p->rdev)
1815                rdevp = &p->rdev;
1816        else if (rdev == p->replacement)
1817                rdevp = &p->replacement;
1818        else
1819                return 0;
1820
1821        if (test_bit(In_sync, &rdev->flags) ||
1822            atomic_read(&rdev->nr_pending)) {
1823                err = -EBUSY;
1824                goto abort;
1825        }
1826        /* Only remove non-faulty devices if recovery
1827         * is not possible.
1828         */
1829        if (!test_bit(Faulty, &rdev->flags) &&
1830            mddev->recovery_disabled != p->recovery_disabled &&
1831            (!p->replacement || p->replacement == rdev) &&
1832            number < conf->geo.raid_disks &&
1833            enough(conf, -1)) {
1834                err = -EBUSY;
1835                goto abort;
1836        }
1837        *rdevp = NULL;
1838        if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1839                synchronize_rcu();
1840                if (atomic_read(&rdev->nr_pending)) {
1841                        /* lost the race, try later */
1842                        err = -EBUSY;
1843                        *rdevp = rdev;
1844                        goto abort;
1845                }
1846        }
1847        if (p->replacement) {
1848                /* We must have just cleared 'rdev' */
1849                p->rdev = p->replacement;
1850                clear_bit(Replacement, &p->replacement->flags);
1851                smp_mb(); /* Make sure other CPUs may see both as identical
1852                           * but will never see neither -- if they are careful.
1853                           */
1854                p->replacement = NULL;
1855        }
1856
1857        clear_bit(WantReplacement, &rdev->flags);
1858        err = md_integrity_register(mddev);
1859
1860abort:
1861
1862        print_conf(conf);
1863        return err;
1864}
1865
1866static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1867{
1868        struct r10conf *conf = r10_bio->mddev->private;
1869
1870        if (!bio->bi_status)
1871                set_bit(R10BIO_Uptodate, &r10_bio->state);
1872        else
1873                /* The write handler will notice the lack of
1874                 * R10BIO_Uptodate and record any errors etc
1875                 */
1876                atomic_add(r10_bio->sectors,
1877                           &conf->mirrors[d].rdev->corrected_errors);
1878
1879        /* for reconstruct, we always reschedule after a read.
1880         * for resync, only after all reads
1881         */
1882        rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1883        if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1884            atomic_dec_and_test(&r10_bio->remaining)) {
1885                /* we have read all the blocks,
1886                 * do the comparison in process context in raid10d
1887                 */
1888                reschedule_retry(r10_bio);
1889        }
1890}
1891
1892static void end_sync_read(struct bio *bio)
1893{
1894        struct r10bio *r10_bio = get_resync_r10bio(bio);
1895        struct r10conf *conf = r10_bio->mddev->private;
1896        int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1897
1898        __end_sync_read(r10_bio, bio, d);
1899}
1900
1901static void end_reshape_read(struct bio *bio)
1902{
1903        /* reshape read bio isn't allocated from r10buf_pool */
1904        struct r10bio *r10_bio = bio->bi_private;
1905
1906        __end_sync_read(r10_bio, bio, r10_bio->read_slot);
1907}
1908
1909static void end_sync_request(struct r10bio *r10_bio)
1910{
1911        struct mddev *mddev = r10_bio->mddev;
1912
1913        while (atomic_dec_and_test(&r10_bio->remaining)) {
1914                if (r10_bio->master_bio == NULL) {
1915                        /* the primary of several recovery bios */
1916                        sector_t s = r10_bio->sectors;
1917                        if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1918                            test_bit(R10BIO_WriteError, &r10_bio->state))
1919                                reschedule_retry(r10_bio);
1920                        else
1921                                put_buf(r10_bio);
1922                        md_done_sync(mddev, s, 1);
1923                        break;
1924                } else {
1925                        struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1926                        if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1927                            test_bit(R10BIO_WriteError, &r10_bio->state))
1928                                reschedule_retry(r10_bio);
1929                        else
1930                                put_buf(r10_bio);
1931                        r10_bio = r10_bio2;
1932                }
1933        }
1934}
1935
1936static void end_sync_write(struct bio *bio)
1937{
1938        struct r10bio *r10_bio = get_resync_r10bio(bio);
1939        struct mddev *mddev = r10_bio->mddev;
1940        struct r10conf *conf = mddev->private;
1941        int d;
1942        sector_t first_bad;
1943        int bad_sectors;
1944        int slot;
1945        int repl;
1946        struct md_rdev *rdev = NULL;
1947
1948        d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1949        if (repl)
1950                rdev = conf->mirrors[d].replacement;
1951        else
1952                rdev = conf->mirrors[d].rdev;
1953
1954        if (bio->bi_status) {
1955                if (repl)
1956                        md_error(mddev, rdev);
1957                else {
1958                        set_bit(WriteErrorSeen, &rdev->flags);
1959                        if (!test_and_set_bit(WantReplacement, &rdev->flags))
1960                                set_bit(MD_RECOVERY_NEEDED,
1961                                        &rdev->mddev->recovery);
1962                        set_bit(R10BIO_WriteError, &r10_bio->state);
1963                }
1964        } else if (is_badblock(rdev,
1965                             r10_bio->devs[slot].addr,
1966                             r10_bio->sectors,
1967                             &first_bad, &bad_sectors))
1968                set_bit(R10BIO_MadeGood, &r10_bio->state);
1969
1970        rdev_dec_pending(rdev, mddev);
1971
1972        end_sync_request(r10_bio);
1973}
1974
1975/*
1976 * Note: sync and recover and handled very differently for raid10
1977 * This code is for resync.
1978 * For resync, we read through virtual addresses and read all blocks.
1979 * If there is any error, we schedule a write.  The lowest numbered
1980 * drive is authoritative.
1981 * However requests come for physical address, so we need to map.
1982 * For every physical address there are raid_disks/copies virtual addresses,
1983 * which is always are least one, but is not necessarly an integer.
1984 * This means that a physical address can span multiple chunks, so we may
1985 * have to submit multiple io requests for a single sync request.
1986 */
1987/*
1988 * We check if all blocks are in-sync and only write to blocks that
1989 * aren't in sync
1990 */
1991static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1992{
1993        struct r10conf *conf = mddev->private;
1994        int i, first;
1995        struct bio *tbio, *fbio;
1996        int vcnt;
1997        struct page **tpages, **fpages;
1998
1999        atomic_set(&r10_bio->remaining, 1);
2000
2001        /* find the first device with a block */
2002        for (i=0; i<conf->copies; i++)
2003                if (!r10_bio->devs[i].bio->bi_status)
2004                        break;
2005
2006        if (i == conf->copies)
2007                goto done;
2008
2009        first = i;
2010        fbio = r10_bio->devs[i].bio;
2011        fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2012        fbio->bi_iter.bi_idx = 0;
2013        fpages = get_resync_pages(fbio)->pages;
2014
2015        vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2016        /* now find blocks with errors */
2017        for (i=0 ; i < conf->copies ; i++) {
2018                int  j, d;
2019                struct md_rdev *rdev;
2020                struct resync_pages *rp;
2021
2022                tbio = r10_bio->devs[i].bio;
2023
2024                if (tbio->bi_end_io != end_sync_read)
2025                        continue;
2026                if (i == first)
2027                        continue;
2028
2029                tpages = get_resync_pages(tbio)->pages;
2030                d = r10_bio->devs[i].devnum;
2031                rdev = conf->mirrors[d].rdev;
2032                if (!r10_bio->devs[i].bio->bi_status) {
2033                        /* We know that the bi_io_vec layout is the same for
2034                         * both 'first' and 'i', so we just compare them.
2035                         * All vec entries are PAGE_SIZE;
2036                         */
2037                        int sectors = r10_bio->sectors;
2038                        for (j = 0; j < vcnt; j++) {
2039                                int len = PAGE_SIZE;
2040                                if (sectors < (len / 512))
2041                                        len = sectors * 512;
2042                                if (memcmp(page_address(fpages[j]),
2043                                           page_address(tpages[j]),
2044                                           len))
2045                                        break;
2046                                sectors -= len/512;
2047                        }
2048                        if (j == vcnt)
2049                                continue;
2050                        atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2051                        if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2052                                /* Don't fix anything. */
2053                                continue;
2054                } else if (test_bit(FailFast, &rdev->flags)) {
2055                        /* Just give up on this device */
2056                        md_error(rdev->mddev, rdev);
2057                        continue;
2058                }
2059                /* Ok, we need to write this bio, either to correct an
2060                 * inconsistency or to correct an unreadable block.
2061                 * First we need to fixup bv_offset, bv_len and
2062                 * bi_vecs, as the read request might have corrupted these
2063                 */
2064                rp = get_resync_pages(tbio);
2065                bio_reset(tbio);
2066
2067                md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2068
2069                rp->raid_bio = r10_bio;
2070                tbio->bi_private = rp;
2071                tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2072                tbio->bi_end_io = end_sync_write;
2073                bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2074
2075                bio_copy_data(tbio, fbio);
2076
2077                atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2078                atomic_inc(&r10_bio->remaining);
2079                md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2080
2081                if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2082                        tbio->bi_opf |= MD_FAILFAST;
2083                tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2084                bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2085                submit_bio_noacct(tbio);
2086        }
2087
2088        /* Now write out to any replacement devices
2089         * that are active
2090         */
2091        for (i = 0; i < conf->copies; i++) {
2092                int d;
2093
2094                tbio = r10_bio->devs[i].repl_bio;
2095                if (!tbio || !tbio->bi_end_io)
2096                        continue;
2097                if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2098                    && r10_bio->devs[i].bio != fbio)
2099                        bio_copy_data(tbio, fbio);
2100                d = r10_bio->devs[i].devnum;
2101                atomic_inc(&r10_bio->remaining);
2102                md_sync_acct(conf->mirrors[d].replacement->bdev,
2103                             bio_sectors(tbio));
2104                submit_bio_noacct(tbio);
2105        }
2106
2107done:
2108        if (atomic_dec_and_test(&r10_bio->remaining)) {
2109                md_done_sync(mddev, r10_bio->sectors, 1);
2110                put_buf(r10_bio);
2111        }
2112}
2113
2114/*
2115 * Now for the recovery code.
2116 * Recovery happens across physical sectors.
2117 * We recover all non-is_sync drives by finding the virtual address of
2118 * each, and then choose a working drive that also has that virt address.
2119 * There is a separate r10_bio for each non-in_sync drive.
2120 * Only the first two slots are in use. The first for reading,
2121 * The second for writing.
2122 *
2123 */
2124static void fix_recovery_read_error(struct r10bio *r10_bio)
2125{
2126        /* We got a read error during recovery.
2127         * We repeat the read in smaller page-sized sections.
2128         * If a read succeeds, write it to the new device or record
2129         * a bad block if we cannot.
2130         * If a read fails, record a bad block on both old and
2131         * new devices.
2132         */
2133        struct mddev *mddev = r10_bio->mddev;
2134        struct r10conf *conf = mddev->private;
2135        struct bio *bio = r10_bio->devs[0].bio;
2136        sector_t sect = 0;
2137        int sectors = r10_bio->sectors;
2138        int idx = 0;
2139        int dr = r10_bio->devs[0].devnum;
2140        int dw = r10_bio->devs[1].devnum;
2141        struct page **pages = get_resync_pages(bio)->pages;
2142
2143        while (sectors) {
2144                int s = sectors;
2145                struct md_rdev *rdev;
2146                sector_t addr;
2147                int ok;
2148
2149                if (s > (PAGE_SIZE>>9))
2150                        s = PAGE_SIZE >> 9;
2151
2152                rdev = conf->mirrors[dr].rdev;
2153                addr = r10_bio->devs[0].addr + sect,
2154                ok = sync_page_io(rdev,
2155                                  addr,
2156                                  s << 9,
2157                                  pages[idx],
2158                                  REQ_OP_READ, 0, false);
2159                if (ok) {
2160                        rdev = conf->mirrors[dw].rdev;
2161                        addr = r10_bio->devs[1].addr + sect;
2162                        ok = sync_page_io(rdev,
2163                                          addr,
2164                                          s << 9,
2165                                          pages[idx],
2166                                          REQ_OP_WRITE, 0, false);
2167                        if (!ok) {
2168                                set_bit(WriteErrorSeen, &rdev->flags);
2169                                if (!test_and_set_bit(WantReplacement,
2170                                                      &rdev->flags))
2171                                        set_bit(MD_RECOVERY_NEEDED,
2172                                                &rdev->mddev->recovery);
2173                        }
2174                }
2175                if (!ok) {
2176                        /* We don't worry if we cannot set a bad block -
2177                         * it really is bad so there is no loss in not
2178                         * recording it yet
2179                         */
2180                        rdev_set_badblocks(rdev, addr, s, 0);
2181
2182                        if (rdev != conf->mirrors[dw].rdev) {
2183                                /* need bad block on destination too */
2184                                struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2185                                addr = r10_bio->devs[1].addr + sect;
2186                                ok = rdev_set_badblocks(rdev2, addr, s, 0);
2187                                if (!ok) {
2188                                        /* just abort the recovery */
2189                                        pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2190                                                  mdname(mddev));
2191
2192                                        conf->mirrors[dw].recovery_disabled
2193                                                = mddev->recovery_disabled;
2194                                        set_bit(MD_RECOVERY_INTR,
2195                                                &mddev->recovery);
2196                                        break;
2197                                }
2198                        }
2199                }
2200
2201                sectors -= s;
2202                sect += s;
2203                idx++;
2204        }
2205}
2206
2207static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2208{
2209        struct r10conf *conf = mddev->private;
2210        int d;
2211        struct bio *wbio, *wbio2;
2212
2213        if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2214                fix_recovery_read_error(r10_bio);
2215                end_sync_request(r10_bio);
2216                return;
2217        }
2218
2219        /*
2220         * share the pages with the first bio
2221         * and submit the write request
2222         */
2223        d = r10_bio->devs[1].devnum;
2224        wbio = r10_bio->devs[1].bio;
2225        wbio2 = r10_bio->devs[1].repl_bio;
2226        /* Need to test wbio2->bi_end_io before we call
2227         * submit_bio_noacct as if the former is NULL,
2228         * the latter is free to free wbio2.
2229         */
2230        if (wbio2 && !wbio2->bi_end_io)
2231                wbio2 = NULL;
2232        if (wbio->bi_end_io) {
2233                atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2234                md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2235                submit_bio_noacct(wbio);
2236        }
2237        if (wbio2) {
2238                atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2239                md_sync_acct(conf->mirrors[d].replacement->bdev,
2240                             bio_sectors(wbio2));
2241                submit_bio_noacct(wbio2);
2242        }
2243}
2244
2245/*
2246 * Used by fix_read_error() to decay the per rdev read_errors.
2247 * We halve the read error count for every hour that has elapsed
2248 * since the last recorded read error.
2249 *
2250 */
2251static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2252{
2253        long cur_time_mon;
2254        unsigned long hours_since_last;
2255        unsigned int read_errors = atomic_read(&rdev->read_errors);
2256
2257        cur_time_mon = ktime_get_seconds();
2258
2259        if (rdev->last_read_error == 0) {
2260                /* first time we've seen a read error */
2261                rdev->last_read_error = cur_time_mon;
2262                return;
2263        }
2264
2265        hours_since_last = (long)(cur_time_mon -
2266                            rdev->last_read_error) / 3600;
2267
2268        rdev->last_read_error = cur_time_mon;
2269
2270        /*
2271         * if hours_since_last is > the number of bits in read_errors
2272         * just set read errors to 0. We do this to avoid
2273         * overflowing the shift of read_errors by hours_since_last.
2274         */
2275        if (hours_since_last >= 8 * sizeof(read_errors))
2276                atomic_set(&rdev->read_errors, 0);
2277        else
2278                atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2279}
2280
2281static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2282                            int sectors, struct page *page, int rw)
2283{
2284        sector_t first_bad;
2285        int bad_sectors;
2286
2287        if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2288            && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2289                return -1;
2290        if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2291                /* success */
2292                return 1;
2293        if (rw == WRITE) {
2294                set_bit(WriteErrorSeen, &rdev->flags);
2295                if (!test_and_set_bit(WantReplacement, &rdev->flags))
2296                        set_bit(MD_RECOVERY_NEEDED,
2297                                &rdev->mddev->recovery);
2298        }
2299        /* need to record an error - either for the block or the device */
2300        if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2301                md_error(rdev->mddev, rdev);
2302        return 0;
2303}
2304
2305/*
2306 * This is a kernel thread which:
2307 *
2308 *      1.      Retries failed read operations on working mirrors.
2309 *      2.      Updates the raid superblock when problems encounter.
2310 *      3.      Performs writes following reads for array synchronising.
2311 */
2312
2313static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2314{
2315        int sect = 0; /* Offset from r10_bio->sector */
2316        int sectors = r10_bio->sectors;
2317        struct md_rdev *rdev;
2318        int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2319        int d = r10_bio->devs[r10_bio->read_slot].devnum;
2320
2321        /* still own a reference to this rdev, so it cannot
2322         * have been cleared recently.
2323         */
2324        rdev = conf->mirrors[d].rdev;
2325
2326        if (test_bit(Faulty, &rdev->flags))
2327                /* drive has already been failed, just ignore any
2328                   more fix_read_error() attempts */
2329                return;
2330
2331        check_decay_read_errors(mddev, rdev);
2332        atomic_inc(&rdev->read_errors);
2333        if (atomic_read(&rdev->read_errors) > max_read_errors) {
2334                char b[BDEVNAME_SIZE];
2335                bdevname(rdev->bdev, b);
2336
2337                pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2338                          mdname(mddev), b,
2339                          atomic_read(&rdev->read_errors), max_read_errors);
2340                pr_notice("md/raid10:%s: %s: Failing raid device\n",
2341                          mdname(mddev), b);
2342                md_error(mddev, rdev);
2343                r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2344                return;
2345        }
2346
2347        while(sectors) {
2348                int s = sectors;
2349                int sl = r10_bio->read_slot;
2350                int success = 0;
2351                int start;
2352
2353                if (s > (PAGE_SIZE>>9))
2354                        s = PAGE_SIZE >> 9;
2355
2356                rcu_read_lock();
2357                do {
2358                        sector_t first_bad;
2359                        int bad_sectors;
2360
2361                        d = r10_bio->devs[sl].devnum;
2362                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2363                        if (rdev &&
2364                            test_bit(In_sync, &rdev->flags) &&
2365                            !test_bit(Faulty, &rdev->flags) &&
2366                            is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2367                                        &first_bad, &bad_sectors) == 0) {
2368                                atomic_inc(&rdev->nr_pending);
2369                                rcu_read_unlock();
2370                                success = sync_page_io(rdev,
2371                                                       r10_bio->devs[sl].addr +
2372                                                       sect,
2373                                                       s<<9,
2374                                                       conf->tmppage,
2375                                                       REQ_OP_READ, 0, false);
2376                                rdev_dec_pending(rdev, mddev);
2377                                rcu_read_lock();
2378                                if (success)
2379                                        break;
2380                        }
2381                        sl++;
2382                        if (sl == conf->copies)
2383                                sl = 0;
2384                } while (!success && sl != r10_bio->read_slot);
2385                rcu_read_unlock();
2386
2387                if (!success) {
2388                        /* Cannot read from anywhere, just mark the block
2389                         * as bad on the first device to discourage future
2390                         * reads.
2391                         */
2392                        int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2393                        rdev = conf->mirrors[dn].rdev;
2394
2395                        if (!rdev_set_badblocks(
2396                                    rdev,
2397                                    r10_bio->devs[r10_bio->read_slot].addr
2398                                    + sect,
2399                                    s, 0)) {
2400                                md_error(mddev, rdev);
2401                                r10_bio->devs[r10_bio->read_slot].bio
2402                                        = IO_BLOCKED;
2403                        }
2404                        break;
2405                }
2406
2407                start = sl;
2408                /* write it back and re-read */
2409                rcu_read_lock();
2410                while (sl != r10_bio->read_slot) {
2411                        char b[BDEVNAME_SIZE];
2412
2413                        if (sl==0)
2414                                sl = conf->copies;
2415                        sl--;
2416                        d = r10_bio->devs[sl].devnum;
2417                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2418                        if (!rdev ||
2419                            test_bit(Faulty, &rdev->flags) ||
2420                            !test_bit(In_sync, &rdev->flags))
2421                                continue;
2422
2423                        atomic_inc(&rdev->nr_pending);
2424                        rcu_read_unlock();
2425                        if (r10_sync_page_io(rdev,
2426                                             r10_bio->devs[sl].addr +
2427                                             sect,
2428                                             s, conf->tmppage, WRITE)
2429                            == 0) {
2430                                /* Well, this device is dead */
2431                                pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2432                                          mdname(mddev), s,
2433                                          (unsigned long long)(
2434                                                  sect +
2435                                                  choose_data_offset(r10_bio,
2436                                                                     rdev)),
2437                                          bdevname(rdev->bdev, b));
2438                                pr_notice("md/raid10:%s: %s: failing drive\n",
2439                                          mdname(mddev),
2440                                          bdevname(rdev->bdev, b));
2441                        }
2442                        rdev_dec_pending(rdev, mddev);
2443                        rcu_read_lock();
2444                }
2445                sl = start;
2446                while (sl != r10_bio->read_slot) {
2447                        char b[BDEVNAME_SIZE];
2448
2449                        if (sl==0)
2450                                sl = conf->copies;
2451                        sl--;
2452                        d = r10_bio->devs[sl].devnum;
2453                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2454                        if (!rdev ||
2455                            test_bit(Faulty, &rdev->flags) ||
2456                            !test_bit(In_sync, &rdev->flags))
2457                                continue;
2458
2459                        atomic_inc(&rdev->nr_pending);
2460                        rcu_read_unlock();
2461                        switch (r10_sync_page_io(rdev,
2462                                             r10_bio->devs[sl].addr +
2463                                             sect,
2464                                             s, conf->tmppage,
2465                                                 READ)) {
2466                        case 0:
2467                                /* Well, this device is dead */
2468                                pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2469                                       mdname(mddev), s,
2470                                       (unsigned long long)(
2471                                               sect +
2472                                               choose_data_offset(r10_bio, rdev)),
2473                                       bdevname(rdev->bdev, b));
2474                                pr_notice("md/raid10:%s: %s: failing drive\n",
2475                                       mdname(mddev),
2476                                       bdevname(rdev->bdev, b));
2477                                break;
2478                        case 1:
2479                                pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2480                                       mdname(mddev), s,
2481                                       (unsigned long long)(
2482                                               sect +
2483                                               choose_data_offset(r10_bio, rdev)),
2484                                       bdevname(rdev->bdev, b));
2485                                atomic_add(s, &rdev->corrected_errors);
2486                        }
2487
2488                        rdev_dec_pending(rdev, mddev);
2489                        rcu_read_lock();
2490                }
2491                rcu_read_unlock();
2492
2493                sectors -= s;
2494                sect += s;
2495        }
2496}
2497
2498static int narrow_write_error(struct r10bio *r10_bio, int i)
2499{
2500        struct bio *bio = r10_bio->master_bio;
2501        struct mddev *mddev = r10_bio->mddev;
2502        struct r10conf *conf = mddev->private;
2503        struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2504        /* bio has the data to be written to slot 'i' where
2505         * we just recently had a write error.
2506         * We repeatedly clone the bio and trim down to one block,
2507         * then try the write.  Where the write fails we record
2508         * a bad block.
2509         * It is conceivable that the bio doesn't exactly align with
2510         * blocks.  We must handle this.
2511         *
2512         * We currently own a reference to the rdev.
2513         */
2514
2515        int block_sectors;
2516        sector_t sector;
2517        int sectors;
2518        int sect_to_write = r10_bio->sectors;
2519        int ok = 1;
2520
2521        if (rdev->badblocks.shift < 0)
2522                return 0;
2523
2524        block_sectors = roundup(1 << rdev->badblocks.shift,
2525                                bdev_logical_block_size(rdev->bdev) >> 9);
2526        sector = r10_bio->sector;
2527        sectors = ((r10_bio->sector + block_sectors)
2528                   & ~(sector_t)(block_sectors - 1))
2529                - sector;
2530
2531        while (sect_to_write) {
2532                struct bio *wbio;
2533                sector_t wsector;
2534                if (sectors > sect_to_write)
2535                        sectors = sect_to_write;
2536                /* Write at 'sector' for 'sectors' */
2537                wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
2538                bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2539                wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2540                wbio->bi_iter.bi_sector = wsector +
2541                                   choose_data_offset(r10_bio, rdev);
2542                bio_set_dev(wbio, rdev->bdev);
2543                bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2544
2545                if (submit_bio_wait(wbio) < 0)
2546                        /* Failure! */
2547                        ok = rdev_set_badblocks(rdev, wsector,
2548                                                sectors, 0)
2549                                && ok;
2550
2551                bio_put(wbio);
2552                sect_to_write -= sectors;
2553                sector += sectors;
2554                sectors = block_sectors;
2555        }
2556        return ok;
2557}
2558
2559static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2560{
2561        int slot = r10_bio->read_slot;
2562        struct bio *bio;
2563        struct r10conf *conf = mddev->private;
2564        struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2565
2566        /* we got a read error. Maybe the drive is bad.  Maybe just
2567         * the block and we can fix it.
2568         * We freeze all other IO, and try reading the block from
2569         * other devices.  When we find one, we re-write
2570         * and check it that fixes the read error.
2571         * This is all done synchronously while the array is
2572         * frozen.
2573         */
2574        bio = r10_bio->devs[slot].bio;
2575        bio_put(bio);
2576        r10_bio->devs[slot].bio = NULL;
2577
2578        if (mddev->ro)
2579                r10_bio->devs[slot].bio = IO_BLOCKED;
2580        else if (!test_bit(FailFast, &rdev->flags)) {
2581                freeze_array(conf, 1);
2582                fix_read_error(conf, mddev, r10_bio);
2583                unfreeze_array(conf);
2584        } else
2585                md_error(mddev, rdev);
2586
2587        rdev_dec_pending(rdev, mddev);
2588        allow_barrier(conf);
2589        r10_bio->state = 0;
2590        raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2591}
2592
2593static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2594{
2595        /* Some sort of write request has finished and it
2596         * succeeded in writing where we thought there was a
2597         * bad block.  So forget the bad block.
2598         * Or possibly if failed and we need to record
2599         * a bad block.
2600         */
2601        int m;
2602        struct md_rdev *rdev;
2603
2604        if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2605            test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2606                for (m = 0; m < conf->copies; m++) {
2607                        int dev = r10_bio->devs[m].devnum;
2608                        rdev = conf->mirrors[dev].rdev;
2609                        if (r10_bio->devs[m].bio == NULL ||
2610                                r10_bio->devs[m].bio->bi_end_io == NULL)
2611                                continue;
2612                        if (!r10_bio->devs[m].bio->bi_status) {
2613                                rdev_clear_badblocks(
2614                                        rdev,
2615                                        r10_bio->devs[m].addr,
2616                                        r10_bio->sectors, 0);
2617                        } else {
2618                                if (!rdev_set_badblocks(
2619                                            rdev,
2620                                            r10_bio->devs[m].addr,
2621                                            r10_bio->sectors, 0))
2622                                        md_error(conf->mddev, rdev);
2623                        }
2624                        rdev = conf->mirrors[dev].replacement;
2625                        if (r10_bio->devs[m].repl_bio == NULL ||
2626                                r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2627                                continue;
2628
2629                        if (!r10_bio->devs[m].repl_bio->bi_status) {
2630                                rdev_clear_badblocks(
2631                                        rdev,
2632                                        r10_bio->devs[m].addr,
2633                                        r10_bio->sectors, 0);
2634                        } else {
2635                                if (!rdev_set_badblocks(
2636                                            rdev,
2637                                            r10_bio->devs[m].addr,
2638                                            r10_bio->sectors, 0))
2639                                        md_error(conf->mddev, rdev);
2640                        }
2641                }
2642                put_buf(r10_bio);
2643        } else {
2644                bool fail = false;
2645                for (m = 0; m < conf->copies; m++) {
2646                        int dev = r10_bio->devs[m].devnum;
2647                        struct bio *bio = r10_bio->devs[m].bio;
2648                        rdev = conf->mirrors[dev].rdev;
2649                        if (bio == IO_MADE_GOOD) {
2650                                rdev_clear_badblocks(
2651                                        rdev,
2652                                        r10_bio->devs[m].addr,
2653                                        r10_bio->sectors, 0);
2654                                rdev_dec_pending(rdev, conf->mddev);
2655                        } else if (bio != NULL && bio->bi_status) {
2656                                fail = true;
2657                                if (!narrow_write_error(r10_bio, m)) {
2658                                        md_error(conf->mddev, rdev);
2659                                        set_bit(R10BIO_Degraded,
2660                                                &r10_bio->state);
2661                                }
2662                                rdev_dec_pending(rdev, conf->mddev);
2663                        }
2664                        bio = r10_bio->devs[m].repl_bio;
2665                        rdev = conf->mirrors[dev].replacement;
2666                        if (rdev && bio == IO_MADE_GOOD) {
2667                                rdev_clear_badblocks(
2668                                        rdev,
2669                                        r10_bio->devs[m].addr,
2670                                        r10_bio->sectors, 0);
2671                                rdev_dec_pending(rdev, conf->mddev);
2672                        }
2673                }
2674                if (fail) {
2675                        spin_lock_irq(&conf->device_lock);
2676                        list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2677                        conf->nr_queued++;
2678                        spin_unlock_irq(&conf->device_lock);
2679                        /*
2680                         * In case freeze_array() is waiting for condition
2681                         * nr_pending == nr_queued + extra to be true.
2682                         */
2683                        wake_up(&conf->wait_barrier);
2684                        md_wakeup_thread(conf->mddev->thread);
2685                } else {
2686                        if (test_bit(R10BIO_WriteError,
2687                                     &r10_bio->state))
2688                                close_write(r10_bio);
2689                        raid_end_bio_io(r10_bio);
2690                }
2691        }
2692}
2693
2694static void raid10d(struct md_thread *thread)
2695{
2696        struct mddev *mddev = thread->mddev;
2697        struct r10bio *r10_bio;
2698        unsigned long flags;
2699        struct r10conf *conf = mddev->private;
2700        struct list_head *head = &conf->retry_list;
2701        struct blk_plug plug;
2702
2703        md_check_recovery(mddev);
2704
2705        if (!list_empty_careful(&conf->bio_end_io_list) &&
2706            !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2707                LIST_HEAD(tmp);
2708                spin_lock_irqsave(&conf->device_lock, flags);
2709                if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2710                        while (!list_empty(&conf->bio_end_io_list)) {
2711                                list_move(conf->bio_end_io_list.prev, &tmp);
2712                                conf->nr_queued--;
2713                        }
2714                }
2715                spin_unlock_irqrestore(&conf->device_lock, flags);
2716                while (!list_empty(&tmp)) {
2717                        r10_bio = list_first_entry(&tmp, struct r10bio,
2718                                                   retry_list);
2719                        list_del(&r10_bio->retry_list);
2720                        if (mddev->degraded)
2721                                set_bit(R10BIO_Degraded, &r10_bio->state);
2722
2723                        if (test_bit(R10BIO_WriteError,
2724                                     &r10_bio->state))
2725                                close_write(r10_bio);
2726                        raid_end_bio_io(r10_bio);
2727                }
2728        }
2729
2730        blk_start_plug(&plug);
2731        for (;;) {
2732
2733                flush_pending_writes(conf);
2734
2735                spin_lock_irqsave(&conf->device_lock, flags);
2736                if (list_empty(head)) {
2737                        spin_unlock_irqrestore(&conf->device_lock, flags);
2738                        break;
2739                }
2740                r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2741                list_del(head->prev);
2742                conf->nr_queued--;
2743                spin_unlock_irqrestore(&conf->device_lock, flags);
2744
2745                mddev = r10_bio->mddev;
2746                conf = mddev->private;
2747                if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2748                    test_bit(R10BIO_WriteError, &r10_bio->state))
2749                        handle_write_completed(conf, r10_bio);
2750                else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2751                        reshape_request_write(mddev, r10_bio);
2752                else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2753                        sync_request_write(mddev, r10_bio);
2754                else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2755                        recovery_request_write(mddev, r10_bio);
2756                else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2757                        handle_read_error(mddev, r10_bio);
2758                else
2759                        WARN_ON_ONCE(1);
2760
2761                cond_resched();
2762                if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2763                        md_check_recovery(mddev);
2764        }
2765        blk_finish_plug(&plug);
2766}
2767
2768static int init_resync(struct r10conf *conf)
2769{
2770        int ret, buffs, i;
2771
2772        buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2773        BUG_ON(mempool_initialized(&conf->r10buf_pool));
2774        conf->have_replacement = 0;
2775        for (i = 0; i < conf->geo.raid_disks; i++)
2776                if (conf->mirrors[i].replacement)
2777                        conf->have_replacement = 1;
2778        ret = mempool_init(&conf->r10buf_pool, buffs,
2779                           r10buf_pool_alloc, r10buf_pool_free, conf);
2780        if (ret)
2781                return ret;
2782        conf->next_resync = 0;
2783        return 0;
2784}
2785
2786static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2787{
2788        struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
2789        struct rsync_pages *rp;
2790        struct bio *bio;
2791        int nalloc;
2792        int i;
2793
2794        if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2795            test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2796                nalloc = conf->copies; /* resync */
2797        else
2798                nalloc = 2; /* recovery */
2799
2800        for (i = 0; i < nalloc; i++) {
2801                bio = r10bio->devs[i].bio;
2802                rp = bio->bi_private;
2803                bio_reset(bio);
2804                bio->bi_private = rp;
2805                bio = r10bio->devs[i].repl_bio;
2806                if (bio) {
2807                        rp = bio->bi_private;
2808                        bio_reset(bio);
2809                        bio->bi_private = rp;
2810                }
2811        }
2812        return r10bio;
2813}
2814
2815/*
2816 * Set cluster_sync_high since we need other nodes to add the
2817 * range [cluster_sync_low, cluster_sync_high] to suspend list.
2818 */
2819static void raid10_set_cluster_sync_high(struct r10conf *conf)
2820{
2821        sector_t window_size;
2822        int extra_chunk, chunks;
2823
2824        /*
2825         * First, here we define "stripe" as a unit which across
2826         * all member devices one time, so we get chunks by use
2827         * raid_disks / near_copies. Otherwise, if near_copies is
2828         * close to raid_disks, then resync window could increases
2829         * linearly with the increase of raid_disks, which means
2830         * we will suspend a really large IO window while it is not
2831         * necessary. If raid_disks is not divisible by near_copies,
2832         * an extra chunk is needed to ensure the whole "stripe" is
2833         * covered.
2834         */
2835
2836        chunks = conf->geo.raid_disks / conf->geo.near_copies;
2837        if (conf->geo.raid_disks % conf->geo.near_copies == 0)
2838                extra_chunk = 0;
2839        else
2840                extra_chunk = 1;
2841        window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
2842
2843        /*
2844         * At least use a 32M window to align with raid1's resync window
2845         */
2846        window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
2847                        CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
2848
2849        conf->cluster_sync_high = conf->cluster_sync_low + window_size;
2850}
2851
2852/*
2853 * perform a "sync" on one "block"
2854 *
2855 * We need to make sure that no normal I/O request - particularly write
2856 * requests - conflict with active sync requests.
2857 *
2858 * This is achieved by tracking pending requests and a 'barrier' concept
2859 * that can be installed to exclude normal IO requests.
2860 *
2861 * Resync and recovery are handled very differently.
2862 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2863 *
2864 * For resync, we iterate over virtual addresses, read all copies,
2865 * and update if there are differences.  If only one copy is live,
2866 * skip it.
2867 * For recovery, we iterate over physical addresses, read a good
2868 * value for each non-in_sync drive, and over-write.
2869 *
2870 * So, for recovery we may have several outstanding complex requests for a
2871 * given address, one for each out-of-sync device.  We model this by allocating
2872 * a number of r10_bio structures, one for each out-of-sync device.
2873 * As we setup these structures, we collect all bio's together into a list
2874 * which we then process collectively to add pages, and then process again
2875 * to pass to submit_bio_noacct.
2876 *
2877 * The r10_bio structures are linked using a borrowed master_bio pointer.
2878 * This link is counted in ->remaining.  When the r10_bio that points to NULL
2879 * has its remaining count decremented to 0, the whole complex operation
2880 * is complete.
2881 *
2882 */
2883
2884static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2885                             int *skipped)
2886{
2887        struct r10conf *conf = mddev->private;
2888        struct r10bio *r10_bio;
2889        struct bio *biolist = NULL, *bio;
2890        sector_t max_sector, nr_sectors;
2891        int i;
2892        int max_sync;
2893        sector_t sync_blocks;
2894        sector_t sectors_skipped = 0;
2895        int chunks_skipped = 0;
2896        sector_t chunk_mask = conf->geo.chunk_mask;
2897        int page_idx = 0;
2898
2899        if (!mempool_initialized(&conf->r10buf_pool))
2900                if (init_resync(conf))
2901                        return 0;
2902
2903        /*
2904         * Allow skipping a full rebuild for incremental assembly
2905         * of a clean array, like RAID1 does.
2906         */
2907        if (mddev->bitmap == NULL &&
2908            mddev->recovery_cp == MaxSector &&
2909            mddev->reshape_position == MaxSector &&
2910            !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2911            !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2912            !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2913            conf->fullsync == 0) {
2914                *skipped = 1;
2915                return mddev->dev_sectors - sector_nr;
2916        }
2917
2918 skipped:
2919        max_sector = mddev->dev_sectors;
2920        if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2921            test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2922                max_sector = mddev->resync_max_sectors;
2923        if (sector_nr >= max_sector) {
2924                conf->cluster_sync_low = 0;
2925                conf->cluster_sync_high = 0;
2926
2927                /* If we aborted, we need to abort the
2928                 * sync on the 'current' bitmap chucks (there can
2929                 * be several when recovering multiple devices).
2930                 * as we may have started syncing it but not finished.
2931                 * We can find the current address in
2932                 * mddev->curr_resync, but for recovery,
2933                 * we need to convert that to several
2934                 * virtual addresses.
2935                 */
2936                if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2937                        end_reshape(conf);
2938                        close_sync(conf);
2939                        return 0;
2940                }
2941
2942                if (mddev->curr_resync < max_sector) { /* aborted */
2943                        if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2944                                md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2945                                                   &sync_blocks, 1);
2946                        else for (i = 0; i < conf->geo.raid_disks; i++) {
2947                                sector_t sect =
2948                                        raid10_find_virt(conf, mddev->curr_resync, i);
2949                                md_bitmap_end_sync(mddev->bitmap, sect,
2950                                                   &sync_blocks, 1);
2951                        }
2952                } else {
2953                        /* completed sync */
2954                        if ((!mddev->bitmap || conf->fullsync)
2955                            && conf->have_replacement
2956                            && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2957                                /* Completed a full sync so the replacements
2958                                 * are now fully recovered.
2959                                 */
2960                                rcu_read_lock();
2961                                for (i = 0; i < conf->geo.raid_disks; i++) {
2962                                        struct md_rdev *rdev =
2963                                                rcu_dereference(conf->mirrors[i].replacement);
2964                                        if (rdev)
2965                                                rdev->recovery_offset = MaxSector;
2966                                }
2967                                rcu_read_unlock();
2968                        }
2969                        conf->fullsync = 0;
2970                }
2971                md_bitmap_close_sync(mddev->bitmap);
2972                close_sync(conf);
2973                *skipped = 1;
2974                return sectors_skipped;
2975        }
2976
2977        if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2978                return reshape_request(mddev, sector_nr, skipped);
2979
2980        if (chunks_skipped >= conf->geo.raid_disks) {
2981                /* if there has been nothing to do on any drive,
2982                 * then there is nothing to do at all..
2983                 */
2984                *skipped = 1;
2985                return (max_sector - sector_nr) + sectors_skipped;
2986        }
2987
2988        if (max_sector > mddev->resync_max)
2989                max_sector = mddev->resync_max; /* Don't do IO beyond here */
2990
2991        /* make sure whole request will fit in a chunk - if chunks
2992         * are meaningful
2993         */
2994        if (conf->geo.near_copies < conf->geo.raid_disks &&
2995            max_sector > (sector_nr | chunk_mask))
2996                max_sector = (sector_nr | chunk_mask) + 1;
2997
2998        /*
2999         * If there is non-resync activity waiting for a turn, then let it
3000         * though before starting on this new sync request.
3001         */
3002        if (conf->nr_waiting)
3003                schedule_timeout_uninterruptible(1);
3004
3005        /* Again, very different code for resync and recovery.
3006         * Both must result in an r10bio with a list of bios that
3007         * have bi_end_io, bi_sector, bi_disk set,
3008         * and bi_private set to the r10bio.
3009         * For recovery, we may actually create several r10bios
3010         * with 2 bios in each, that correspond to the bios in the main one.
3011         * In this case, the subordinate r10bios link back through a
3012         * borrowed master_bio pointer, and the counter in the master
3013         * includes a ref from each subordinate.
3014         */
3015        /* First, we decide what to do and set ->bi_end_io
3016         * To end_sync_read if we want to read, and
3017         * end_sync_write if we will want to write.
3018         */
3019
3020        max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3021        if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3022                /* recovery... the complicated one */
3023                int j;
3024                r10_bio = NULL;
3025
3026                for (i = 0 ; i < conf->geo.raid_disks; i++) {
3027                        int still_degraded;
3028                        struct r10bio *rb2;
3029                        sector_t sect;
3030                        int must_sync;
3031                        int any_working;
3032                        int need_recover = 0;
3033                        int need_replace = 0;
3034                        struct raid10_info *mirror = &conf->mirrors[i];
3035                        struct md_rdev *mrdev, *mreplace;
3036
3037                        rcu_read_lock();
3038                        mrdev = rcu_dereference(mirror->rdev);
3039                        mreplace = rcu_dereference(mirror->replacement);
3040
3041                        if (mrdev != NULL &&
3042                            !test_bit(Faulty, &mrdev->flags) &&
3043                            !test_bit(In_sync, &mrdev->flags))
3044                                need_recover = 1;
3045                        if (mreplace != NULL &&
3046                            !test_bit(Faulty, &mreplace->flags))
3047                                need_replace = 1;
3048
3049                        if (!need_recover && !need_replace) {
3050                                rcu_read_unlock();
3051                                continue;
3052                        }
3053
3054                        still_degraded = 0;
3055                        /* want to reconstruct this device */
3056                        rb2 = r10_bio;
3057                        sect = raid10_find_virt(conf, sector_nr, i);
3058                        if (sect >= mddev->resync_max_sectors) {
3059                                /* last stripe is not complete - don't
3060                                 * try to recover this sector.
3061                                 */
3062                                rcu_read_unlock();
3063                                continue;
3064                        }
3065                        if (mreplace && test_bit(Faulty, &mreplace->flags))
3066                                mreplace = NULL;
3067                        /* Unless we are doing a full sync, or a replacement
3068                         * we only need to recover the block if it is set in
3069                         * the bitmap
3070                         */
3071                        must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3072                                                         &sync_blocks, 1);
3073                        if (sync_blocks < max_sync)
3074                                max_sync = sync_blocks;
3075                        if (!must_sync &&
3076                            mreplace == NULL &&
3077                            !conf->fullsync) {
3078                                /* yep, skip the sync_blocks here, but don't assume
3079                                 * that there will never be anything to do here
3080                                 */
3081                                chunks_skipped = -1;
3082                                rcu_read_unlock();
3083                                continue;
3084                        }
3085                        atomic_inc(&mrdev->nr_pending);
3086                        if (mreplace)
3087                                atomic_inc(&mreplace->nr_pending);
3088                        rcu_read_unlock();
3089
3090                        r10_bio = raid10_alloc_init_r10buf(conf);
3091                        r10_bio->state = 0;
3092                        raise_barrier(conf, rb2 != NULL);
3093                        atomic_set(&r10_bio->remaining, 0);
3094
3095                        r10_bio->master_bio = (struct bio*)rb2;
3096                        if (rb2)
3097                                atomic_inc(&rb2->remaining);
3098                        r10_bio->mddev = mddev;
3099                        set_bit(R10BIO_IsRecover, &r10_bio->state);
3100                        r10_bio->sector = sect;
3101
3102                        raid10_find_phys(conf, r10_bio);
3103
3104                        /* Need to check if the array will still be
3105                         * degraded
3106                         */
3107                        rcu_read_lock();
3108                        for (j = 0; j < conf->geo.raid_disks; j++) {
3109                                struct md_rdev *rdev = rcu_dereference(
3110                                        conf->mirrors[j].rdev);
3111                                if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3112                                        still_degraded = 1;
3113                                        break;
3114                                }
3115                        }
3116
3117                        must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3118                                                         &sync_blocks, still_degraded);
3119
3120                        any_working = 0;
3121                        for (j=0; j<conf->copies;j++) {
3122                                int k;
3123                                int d = r10_bio->devs[j].devnum;
3124                                sector_t from_addr, to_addr;
3125                                struct md_rdev *rdev =
3126                                        rcu_dereference(conf->mirrors[d].rdev);
3127                                sector_t sector, first_bad;
3128                                int bad_sectors;
3129                                if (!rdev ||
3130                                    !test_bit(In_sync, &rdev->flags))
3131                                        continue;
3132                                /* This is where we read from */
3133                                any_working = 1;
3134                                sector = r10_bio->devs[j].addr;
3135
3136                                if (is_badblock(rdev, sector, max_sync,
3137                                                &first_bad, &bad_sectors)) {
3138                                        if (first_bad > sector)
3139                                                max_sync = first_bad - sector;
3140                                        else {
3141                                                bad_sectors -= (sector
3142                                                                - first_bad);
3143                                                if (max_sync > bad_sectors)
3144                                                        max_sync = bad_sectors;
3145                                                continue;
3146                                        }
3147                                }
3148                                bio = r10_bio->devs[0].bio;
3149                                bio->bi_next = biolist;
3150                                biolist = bio;
3151                                bio->bi_end_io = end_sync_read;
3152                                bio_set_op_attrs(bio, REQ_OP_READ, 0);
3153                                if (test_bit(FailFast, &rdev->flags))
3154                                        bio->bi_opf |= MD_FAILFAST;
3155                                from_addr = r10_bio->devs[j].addr;
3156                                bio->bi_iter.bi_sector = from_addr +
3157                                        rdev->data_offset;
3158                                bio_set_dev(bio, rdev->bdev);
3159                                atomic_inc(&rdev->nr_pending);
3160                                /* and we write to 'i' (if not in_sync) */
3161
3162                                for (k=0; k<conf->copies; k++)
3163                                        if (r10_bio->devs[k].devnum == i)
3164                                                break;
3165                                BUG_ON(k == conf->copies);
3166                                to_addr = r10_bio->devs[k].addr;
3167                                r10_bio->devs[0].devnum = d;
3168                                r10_bio->devs[0].addr = from_addr;
3169                                r10_bio->devs[1].devnum = i;
3170                                r10_bio->devs[1].addr = to_addr;
3171
3172                                if (need_recover) {
3173                                        bio = r10_bio->devs[1].bio;
3174                                        bio->bi_next = biolist;
3175                                        biolist = bio;
3176                                        bio->bi_end_io = end_sync_write;
3177                                        bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3178                                        bio->bi_iter.bi_sector = to_addr
3179                                                + mrdev->data_offset;
3180                                        bio_set_dev(bio, mrdev->bdev);
3181                                        atomic_inc(&r10_bio->remaining);
3182                                } else
3183                                        r10_bio->devs[1].bio->bi_end_io = NULL;
3184
3185                                /* and maybe write to replacement */
3186                                bio = r10_bio->devs[1].repl_bio;
3187                                if (bio)
3188                                        bio->bi_end_io = NULL;
3189                                /* Note: if need_replace, then bio
3190                                 * cannot be NULL as r10buf_pool_alloc will
3191                                 * have allocated it.
3192                                 */
3193                                if (!need_replace)
3194                                        break;
3195                                bio->bi_next = biolist;
3196                                biolist = bio;
3197                                bio->bi_end_io = end_sync_write;
3198                                bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3199                                bio->bi_iter.bi_sector = to_addr +
3200                                        mreplace->data_offset;
3201                                bio_set_dev(bio, mreplace->bdev);
3202                                atomic_inc(&r10_bio->remaining);
3203                                break;
3204                        }
3205                        rcu_read_unlock();
3206                        if (j == conf->copies) {
3207                                /* Cannot recover, so abort the recovery or
3208                                 * record a bad block */
3209                                if (any_working) {
3210                                        /* problem is that there are bad blocks
3211                                         * on other device(s)
3212                                         */
3213                                        int k;
3214                                        for (k = 0; k < conf->copies; k++)
3215                                                if (r10_bio->devs[k].devnum == i)
3216                                                        break;
3217                                        if (!test_bit(In_sync,
3218                                                      &mrdev->flags)
3219                                            && !rdev_set_badblocks(
3220                                                    mrdev,
3221                                                    r10_bio->devs[k].addr,
3222                                                    max_sync, 0))
3223                                                any_working = 0;
3224                                        if (mreplace &&
3225                                            !rdev_set_badblocks(
3226                                                    mreplace,
3227                                                    r10_bio->devs[k].addr,
3228                                                    max_sync, 0))
3229                                                any_working = 0;
3230                                }
3231                                if (!any_working)  {
3232                                        if (!test_and_set_bit(MD_RECOVERY_INTR,
3233                                                              &mddev->recovery))
3234                                                pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3235                                                       mdname(mddev));
3236                                        mirror->recovery_disabled
3237                                                = mddev->recovery_disabled;
3238                                }
3239                                put_buf(r10_bio);
3240                                if (rb2)
3241                                        atomic_dec(&rb2->remaining);
3242                                r10_bio = rb2;
3243                                rdev_dec_pending(mrdev, mddev);
3244                                if (mreplace)
3245                                        rdev_dec_pending(mreplace, mddev);
3246                                break;
3247                        }
3248                        rdev_dec_pending(mrdev, mddev);
3249                        if (mreplace)
3250                                rdev_dec_pending(mreplace, mddev);
3251                        if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3252                                /* Only want this if there is elsewhere to
3253                                 * read from. 'j' is currently the first
3254                                 * readable copy.
3255                                 */
3256                                int targets = 1;
3257                                for (; j < conf->copies; j++) {
3258                                        int d = r10_bio->devs[j].devnum;
3259                                        if (conf->mirrors[d].rdev &&
3260                                            test_bit(In_sync,
3261                                                      &conf->mirrors[d].rdev->flags))
3262                                                targets++;
3263                                }
3264                                if (targets == 1)
3265                                        r10_bio->devs[0].bio->bi_opf
3266                                                &= ~MD_FAILFAST;
3267                        }
3268                }
3269                if (biolist == NULL) {
3270                        while (r10_bio) {
3271                                struct r10bio *rb2 = r10_bio;
3272                                r10_bio = (struct r10bio*) rb2->master_bio;
3273                                rb2->master_bio = NULL;
3274                                put_buf(rb2);
3275                        }
3276                        goto giveup;
3277                }
3278        } else {
3279                /* resync. Schedule a read for every block at this virt offset */
3280                int count = 0;
3281
3282                /*
3283                 * Since curr_resync_completed could probably not update in
3284                 * time, and we will set cluster_sync_low based on it.
3285                 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3286                 * safety reason, which ensures curr_resync_completed is
3287                 * updated in bitmap_cond_end_sync.
3288                 */
3289                md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3290                                        mddev_is_clustered(mddev) &&
3291                                        (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3292
3293                if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3294                                          &sync_blocks, mddev->degraded) &&
3295                    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3296                                                 &mddev->recovery)) {
3297                        /* We can skip this block */
3298                        *skipped = 1;
3299                        return sync_blocks + sectors_skipped;
3300                }
3301                if (sync_blocks < max_sync)
3302                        max_sync = sync_blocks;
3303                r10_bio = raid10_alloc_init_r10buf(conf);
3304                r10_bio->state = 0;
3305
3306                r10_bio->mddev = mddev;
3307                atomic_set(&r10_bio->remaining, 0);
3308                raise_barrier(conf, 0);
3309                conf->next_resync = sector_nr;
3310
3311                r10_bio->master_bio = NULL;
3312                r10_bio->sector = sector_nr;
3313                set_bit(R10BIO_IsSync, &r10_bio->state);
3314                raid10_find_phys(conf, r10_bio);
3315                r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3316
3317                for (i = 0; i < conf->copies; i++) {
3318                        int d = r10_bio->devs[i].devnum;
3319                        sector_t first_bad, sector;
3320                        int bad_sectors;
3321                        struct md_rdev *rdev;
3322
3323                        if (r10_bio->devs[i].repl_bio)
3324                                r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3325
3326                        bio = r10_bio->devs[i].bio;
3327                        bio->bi_status = BLK_STS_IOERR;
3328                        rcu_read_lock();
3329                        rdev = rcu_dereference(conf->mirrors[d].rdev);
3330                        if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3331                                rcu_read_unlock();
3332                                continue;
3333                        }
3334                        sector = r10_bio->devs[i].addr;
3335                        if (is_badblock(rdev, sector, max_sync,
3336                                        &first_bad, &bad_sectors)) {
3337                                if (first_bad > sector)
3338                                        max_sync = first_bad - sector;
3339                                else {
3340                                        bad_sectors -= (sector - first_bad);
3341                                        if (max_sync > bad_sectors)
3342                                                max_sync = bad_sectors;
3343                                        rcu_read_unlock();
3344                                        continue;
3345                                }
3346                        }
3347                        atomic_inc(&rdev->nr_pending);
3348                        atomic_inc(&r10_bio->remaining);
3349                        bio->bi_next = biolist;
3350                        biolist = bio;
3351                        bio->bi_end_io = end_sync_read;
3352                        bio_set_op_attrs(bio, REQ_OP_READ, 0);
3353                        if (test_bit(FailFast, &rdev->flags))
3354                                bio->bi_opf |= MD_FAILFAST;
3355                        bio->bi_iter.bi_sector = sector + rdev->data_offset;
3356                        bio_set_dev(bio, rdev->bdev);
3357                        count++;
3358
3359                        rdev = rcu_dereference(conf->mirrors[d].replacement);
3360                        if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3361                                rcu_read_unlock();
3362                                continue;
3363                        }
3364                        atomic_inc(&rdev->nr_pending);
3365
3366                        /* Need to set up for writing to the replacement */
3367                        bio = r10_bio->devs[i].repl_bio;
3368                        bio->bi_status = BLK_STS_IOERR;
3369
3370                        sector = r10_bio->devs[i].addr;
3371                        bio->bi_next = biolist;
3372                        biolist = bio;
3373                        bio->bi_end_io = end_sync_write;
3374                        bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3375                        if (test_bit(FailFast, &rdev->flags))
3376                                bio->bi_opf |= MD_FAILFAST;
3377                        bio->bi_iter.bi_sector = sector + rdev->data_offset;
3378                        bio_set_dev(bio, rdev->bdev);
3379                        count++;
3380                        rcu_read_unlock();
3381                }
3382
3383                if (count < 2) {
3384                        for (i=0; i<conf->copies; i++) {
3385                                int d = r10_bio->devs[i].devnum;
3386                                if (r10_bio->devs[i].bio->bi_end_io)
3387                                        rdev_dec_pending(conf->mirrors[d].rdev,
3388                                                         mddev);
3389                                if (r10_bio->devs[i].repl_bio &&
3390                                    r10_bio->devs[i].repl_bio->bi_end_io)
3391                                        rdev_dec_pending(
3392                                                conf->mirrors[d].replacement,
3393                                                mddev);
3394                        }
3395                        put_buf(r10_bio);
3396                        biolist = NULL;
3397                        goto giveup;
3398                }
3399        }
3400
3401        nr_sectors = 0;
3402        if (sector_nr + max_sync < max_sector)
3403                max_sector = sector_nr + max_sync;
3404        do {
3405                struct page *page;
3406                int len = PAGE_SIZE;
3407                if (sector_nr + (len>>9) > max_sector)
3408                        len = (max_sector - sector_nr) << 9;
3409                if (len == 0)
3410                        break;
3411                for (bio= biolist ; bio ; bio=bio->bi_next) {
3412                        struct resync_pages *rp = get_resync_pages(bio);
3413                        page = resync_fetch_page(rp, page_idx);
3414                        /*
3415                         * won't fail because the vec table is big enough
3416                         * to hold all these pages
3417                         */
3418                        bio_add_page(bio, page, len, 0);
3419                }
3420                nr_sectors += len>>9;
3421                sector_nr += len>>9;
3422        } while (++page_idx < RESYNC_PAGES);
3423        r10_bio->sectors = nr_sectors;
3424
3425        if (mddev_is_clustered(mddev) &&
3426            test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3427                /* It is resync not recovery */
3428                if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3429                        conf->cluster_sync_low = mddev->curr_resync_completed;
3430                        raid10_set_cluster_sync_high(conf);
3431                        /* Send resync message */
3432                        md_cluster_ops->resync_info_update(mddev,
3433                                                conf->cluster_sync_low,
3434                                                conf->cluster_sync_high);
3435                }
3436        } else if (mddev_is_clustered(mddev)) {
3437                /* This is recovery not resync */
3438                sector_t sect_va1, sect_va2;
3439                bool broadcast_msg = false;
3440
3441                for (i = 0; i < conf->geo.raid_disks; i++) {
3442                        /*
3443                         * sector_nr is a device address for recovery, so we
3444                         * need translate it to array address before compare
3445                         * with cluster_sync_high.
3446                         */
3447                        sect_va1 = raid10_find_virt(conf, sector_nr, i);
3448
3449                        if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3450                                broadcast_msg = true;
3451                                /*
3452                                 * curr_resync_completed is similar as
3453                                 * sector_nr, so make the translation too.
3454                                 */
3455                                sect_va2 = raid10_find_virt(conf,
3456                                        mddev->curr_resync_completed, i);
3457
3458                                if (conf->cluster_sync_low == 0 ||
3459                                    conf->cluster_sync_low > sect_va2)
3460                                        conf->cluster_sync_low = sect_va2;
3461                        }
3462                }
3463                if (broadcast_msg) {
3464                        raid10_set_cluster_sync_high(conf);
3465                        md_cluster_ops->resync_info_update(mddev,
3466                                                conf->cluster_sync_low,
3467                                                conf->cluster_sync_high);
3468                }
3469        }
3470
3471        while (biolist) {
3472                bio = biolist;
3473                biolist = biolist->bi_next;
3474
3475                bio->bi_next = NULL;
3476                r10_bio = get_resync_r10bio(bio);
3477                r10_bio->sectors = nr_sectors;
3478
3479                if (bio->bi_end_io == end_sync_read) {
3480                        md_sync_acct_bio(bio, nr_sectors);
3481                        bio->bi_status = 0;
3482                        submit_bio_noacct(bio);
3483                }
3484        }
3485
3486        if (sectors_skipped)
3487                /* pretend they weren't skipped, it makes
3488                 * no important difference in this case
3489                 */
3490                md_done_sync(mddev, sectors_skipped, 1);
3491
3492        return sectors_skipped + nr_sectors;
3493 giveup:
3494        /* There is nowhere to write, so all non-sync
3495         * drives must be failed or in resync, all drives
3496         * have a bad block, so try the next chunk...
3497         */
3498        if (sector_nr + max_sync < max_sector)
3499                max_sector = sector_nr + max_sync;
3500
3501        sectors_skipped += (max_sector - sector_nr);
3502        chunks_skipped ++;
3503        sector_nr = max_sector;
3504        goto skipped;
3505}
3506
3507static sector_t
3508raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3509{
3510        sector_t size;
3511        struct r10conf *conf = mddev->private;
3512
3513        if (!raid_disks)
3514                raid_disks = min(conf->geo.raid_disks,
3515                                 conf->prev.raid_disks);
3516        if (!sectors)
3517                sectors = conf->dev_sectors;
3518
3519        size = sectors >> conf->geo.chunk_shift;
3520        sector_div(size, conf->geo.far_copies);
3521        size = size * raid_disks;
3522        sector_div(size, conf->geo.near_copies);
3523
3524        return size << conf->geo.chunk_shift;
3525}
3526
3527static void calc_sectors(struct r10conf *conf, sector_t size)
3528{
3529        /* Calculate the number of sectors-per-device that will
3530         * actually be used, and set conf->dev_sectors and
3531         * conf->stride
3532         */
3533
3534        size = size >> conf->geo.chunk_shift;
3535        sector_div(size, conf->geo.far_copies);
3536        size = size * conf->geo.raid_disks;
3537        sector_div(size, conf->geo.near_copies);
3538        /* 'size' is now the number of chunks in the array */
3539        /* calculate "used chunks per device" */
3540        size = size * conf->copies;
3541
3542        /* We need to round up when dividing by raid_disks to
3543         * get the stride size.
3544         */
3545        size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3546
3547        conf->dev_sectors = size << conf->geo.chunk_shift;
3548
3549        if (conf->geo.far_offset)
3550                conf->geo.stride = 1 << conf->geo.chunk_shift;
3551        else {
3552                sector_div(size, conf->geo.far_copies);
3553                conf->geo.stride = size << conf->geo.chunk_shift;
3554        }
3555}
3556
3557enum geo_type {geo_new, geo_old, geo_start};
3558static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3559{
3560        int nc, fc, fo;
3561        int layout, chunk, disks;
3562        switch (new) {
3563        case geo_old:
3564                layout = mddev->layout;
3565                chunk = mddev->chunk_sectors;
3566                disks = mddev->raid_disks - mddev->delta_disks;
3567                break;
3568        case geo_new:
3569                layout = mddev->new_layout;
3570                chunk = mddev->new_chunk_sectors;
3571                disks = mddev->raid_disks;
3572                break;
3573        default: /* avoid 'may be unused' warnings */
3574        case geo_start: /* new when starting reshape - raid_disks not
3575                         * updated yet. */
3576                layout = mddev->new_layout;
3577                chunk = mddev->new_chunk_sectors;
3578                disks = mddev->raid_disks + mddev->delta_disks;
3579                break;
3580        }
3581        if (layout >> 19)
3582                return -1;
3583        if (chunk < (PAGE_SIZE >> 9) ||
3584            !is_power_of_2(chunk))
3585                return -2;
3586        nc = layout & 255;
3587        fc = (layout >> 8) & 255;
3588        fo = layout & (1<<16);
3589        geo->raid_disks = disks;
3590        geo->near_copies = nc;
3591        geo->far_copies = fc;
3592        geo->far_offset = fo;
3593        switch (layout >> 17) {
3594        case 0: /* original layout.  simple but not always optimal */
3595                geo->far_set_size = disks;
3596                break;
3597        case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3598                 * actually using this, but leave code here just in case.*/
3599                geo->far_set_size = disks/fc;
3600                WARN(geo->far_set_size < fc,
3601                     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3602                break;
3603        case 2: /* "improved" layout fixed to match documentation */
3604                geo->far_set_size = fc * nc;
3605                break;
3606        default: /* Not a valid layout */
3607                return -1;
3608        }
3609        geo->chunk_mask = chunk - 1;
3610        geo->chunk_shift = ffz(~chunk);
3611        return nc*fc;
3612}
3613
3614static struct r10conf *setup_conf(struct mddev *mddev)
3615{
3616        struct r10conf *conf = NULL;
3617        int err = -EINVAL;
3618        struct geom geo;
3619        int copies;
3620
3621        copies = setup_geo(&geo, mddev, geo_new);
3622
3623        if (copies == -2) {
3624                pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3625                        mdname(mddev), PAGE_SIZE);
3626                goto out;
3627        }
3628
3629        if (copies < 2 || copies > mddev->raid_disks) {
3630                pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3631                        mdname(mddev), mddev->new_layout);
3632                goto out;
3633        }
3634
3635        err = -ENOMEM;
3636        conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3637        if (!conf)
3638                goto out;
3639
3640        /* FIXME calc properly */
3641        conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3642                                sizeof(struct raid10_info),
3643                                GFP_KERNEL);
3644        if (!conf->mirrors)
3645                goto out;
3646
3647        conf->tmppage = alloc_page(GFP_KERNEL);
3648        if (!conf->tmppage)
3649                goto out;
3650
3651        conf->geo = geo;
3652        conf->copies = copies;
3653        err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3654                           rbio_pool_free, conf);
3655        if (err)
3656                goto out;
3657
3658        err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3659        if (err)
3660                goto out;
3661
3662        calc_sectors(conf, mddev->dev_sectors);
3663        if (mddev->reshape_position == MaxSector) {
3664                conf->prev = conf->geo;
3665                conf->reshape_progress = MaxSector;
3666        } else {
3667                if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3668                        err = -EINVAL;
3669                        goto out;
3670                }
3671                conf->reshape_progress = mddev->reshape_position;
3672                if (conf->prev.far_offset)
3673                        conf->prev.stride = 1 << conf->prev.chunk_shift;
3674                else
3675                        /* far_copies must be 1 */
3676                        conf->prev.stride = conf->dev_sectors;
3677        }
3678        conf->reshape_safe = conf->reshape_progress;
3679        spin_lock_init(&conf->device_lock);
3680        INIT_LIST_HEAD(&conf->retry_list);
3681        INIT_LIST_HEAD(&conf->bio_end_io_list);
3682
3683        spin_lock_init(&conf->resync_lock);
3684        init_waitqueue_head(&conf->wait_barrier);
3685        atomic_set(&conf->nr_pending, 0);
3686
3687        err = -ENOMEM;
3688        conf->thread = md_register_thread(raid10d, mddev, "raid10");
3689        if (!conf->thread)
3690                goto out;
3691
3692        conf->mddev = mddev;
3693        return conf;
3694
3695 out:
3696        if (conf) {
3697                mempool_exit(&conf->r10bio_pool);
3698                kfree(conf->mirrors);
3699                safe_put_page(conf->tmppage);
3700                bioset_exit(&conf->bio_split);
3701                kfree(conf);
3702        }
3703        return ERR_PTR(err);
3704}
3705
3706static int raid10_run(struct mddev *mddev)
3707{
3708        struct r10conf *conf;
3709        int i, disk_idx, chunk_size;
3710        struct raid10_info *disk;
3711        struct md_rdev *rdev;
3712        sector_t size;
3713        sector_t min_offset_diff = 0;
3714        int first = 1;
3715        bool discard_supported = false;
3716
3717        if (mddev_init_writes_pending(mddev) < 0)
3718                return -ENOMEM;
3719
3720        if (mddev->private == NULL) {
3721                conf = setup_conf(mddev);
3722                if (IS_ERR(conf))
3723                        return PTR_ERR(conf);
3724                mddev->private = conf;
3725        }
3726        conf = mddev->private;
3727        if (!conf)
3728                goto out;
3729
3730        if (mddev_is_clustered(conf->mddev)) {
3731                int fc, fo;
3732
3733                fc = (mddev->layout >> 8) & 255;
3734                fo = mddev->layout & (1<<16);
3735                if (fc > 1 || fo > 0) {
3736                        pr_err("only near layout is supported by clustered"
3737                                " raid10\n");
3738                        goto out_free_conf;
3739                }
3740        }
3741
3742        mddev->thread = conf->thread;
3743        conf->thread = NULL;
3744
3745        chunk_size = mddev->chunk_sectors << 9;
3746        if (mddev->queue) {
3747                blk_queue_max_discard_sectors(mddev->queue,
3748                                              mddev->chunk_sectors);
3749                blk_queue_max_write_same_sectors(mddev->queue, 0);
3750                blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3751                blk_queue_io_min(mddev->queue, chunk_size);
3752                if (conf->geo.raid_disks % conf->geo.near_copies)
3753                        blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3754                else
3755                        blk_queue_io_opt(mddev->queue, chunk_size *
3756                                         (conf->geo.raid_disks / conf->geo.near_copies));
3757        }
3758
3759        rdev_for_each(rdev, mddev) {
3760                long long diff;
3761
3762                disk_idx = rdev->raid_disk;
3763                if (disk_idx < 0)
3764                        continue;
3765                if (disk_idx >= conf->geo.raid_disks &&
3766                    disk_idx >= conf->prev.raid_disks)
3767                        continue;
3768                disk = conf->mirrors + disk_idx;
3769
3770                if (test_bit(Replacement, &rdev->flags)) {
3771                        if (disk->replacement)
3772                                goto out_free_conf;
3773                        disk->replacement = rdev;
3774                } else {
3775                        if (disk->rdev)
3776                                goto out_free_conf;
3777                        disk->rdev = rdev;
3778                }
3779                diff = (rdev->new_data_offset - rdev->data_offset);
3780                if (!mddev->reshape_backwards)
3781                        diff = -diff;
3782                if (diff < 0)
3783                        diff = 0;
3784                if (first || diff < min_offset_diff)
3785                        min_offset_diff = diff;
3786
3787                if (mddev->gendisk)
3788                        disk_stack_limits(mddev->gendisk, rdev->bdev,
3789                                          rdev->data_offset << 9);
3790
3791                disk->head_position = 0;
3792
3793                if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3794                        discard_supported = true;
3795                first = 0;
3796        }
3797
3798        if (mddev->queue) {
3799                if (discard_supported)
3800                        blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3801                                                mddev->queue);
3802                else
3803                        blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3804                                                  mddev->queue);
3805        }
3806        /* need to check that every block has at least one working mirror */
3807        if (!enough(conf, -1)) {
3808                pr_err("md/raid10:%s: not enough operational mirrors.\n",
3809                       mdname(mddev));
3810                goto out_free_conf;
3811        }
3812
3813        if (conf->reshape_progress != MaxSector) {
3814                /* must ensure that shape change is supported */
3815                if (conf->geo.far_copies != 1 &&
3816                    conf->geo.far_offset == 0)
3817                        goto out_free_conf;
3818                if (conf->prev.far_copies != 1 &&
3819                    conf->prev.far_offset == 0)
3820                        goto out_free_conf;
3821        }
3822
3823        mddev->degraded = 0;
3824        for (i = 0;
3825             i < conf->geo.raid_disks
3826                     || i < conf->prev.raid_disks;
3827             i++) {
3828
3829                disk = conf->mirrors + i;
3830
3831                if (!disk->rdev && disk->replacement) {
3832                        /* The replacement is all we have - use it */
3833                        disk->rdev = disk->replacement;
3834                        disk->replacement = NULL;
3835                        clear_bit(Replacement, &disk->rdev->flags);
3836                }
3837
3838                if (!disk->rdev ||
3839                    !test_bit(In_sync, &disk->rdev->flags)) {
3840                        disk->head_position = 0;
3841                        mddev->degraded++;
3842                        if (disk->rdev &&
3843                            disk->rdev->saved_raid_disk < 0)
3844                                conf->fullsync = 1;
3845                }
3846
3847                if (disk->replacement &&
3848                    !test_bit(In_sync, &disk->replacement->flags) &&
3849                    disk->replacement->saved_raid_disk < 0) {
3850                        conf->fullsync = 1;
3851                }
3852
3853                disk->recovery_disabled = mddev->recovery_disabled - 1;
3854        }
3855
3856        if (mddev->recovery_cp != MaxSector)
3857                pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3858                          mdname(mddev));
3859        pr_info("md/raid10:%s: active with %d out of %d devices\n",
3860                mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3861                conf->geo.raid_disks);
3862        /*
3863         * Ok, everything is just fine now
3864         */
3865        mddev->dev_sectors = conf->dev_sectors;
3866        size = raid10_size(mddev, 0, 0);
3867        md_set_array_sectors(mddev, size);
3868        mddev->resync_max_sectors = size;
3869        set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3870
3871        if (mddev->queue) {
3872                int stripe = conf->geo.raid_disks *
3873                        ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3874
3875                /* Calculate max read-ahead size.
3876                 * We need to readahead at least twice a whole stripe....
3877                 * maybe...
3878                 */
3879                stripe /= conf->geo.near_copies;
3880                if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3881                        mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3882        }
3883
3884        if (md_integrity_register(mddev))
3885                goto out_free_conf;
3886
3887        if (conf->reshape_progress != MaxSector) {
3888                unsigned long before_length, after_length;
3889
3890                before_length = ((1 << conf->prev.chunk_shift) *
3891                                 conf->prev.far_copies);
3892                after_length = ((1 << conf->geo.chunk_shift) *
3893                                conf->geo.far_copies);
3894
3895                if (max(before_length, after_length) > min_offset_diff) {
3896                        /* This cannot work */
3897                        pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3898                        goto out_free_conf;
3899                }
3900                conf->offset_diff = min_offset_diff;
3901
3902                clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3903                clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3904                set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3905                set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3906                mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3907                                                        "reshape");
3908                if (!mddev->sync_thread)
3909                        goto out_free_conf;
3910        }
3911
3912        return 0;
3913
3914out_free_conf:
3915        md_unregister_thread(&mddev->thread);
3916        mempool_exit(&conf->r10bio_pool);
3917        safe_put_page(conf->tmppage);
3918        kfree(conf->mirrors);
3919        kfree(conf);
3920        mddev->private = NULL;
3921out:
3922        return -EIO;
3923}
3924
3925static void raid10_free(struct mddev *mddev, void *priv)
3926{
3927        struct r10conf *conf = priv;
3928
3929        mempool_exit(&conf->r10bio_pool);
3930        safe_put_page(conf->tmppage);
3931        kfree(conf->mirrors);
3932        kfree(conf->mirrors_old);
3933        kfree(conf->mirrors_new);
3934        bioset_exit(&conf->bio_split);
3935        kfree(conf);
3936}
3937
3938static void raid10_quiesce(struct mddev *mddev, int quiesce)
3939{
3940        struct r10conf *conf = mddev->private;
3941
3942        if (quiesce)
3943                raise_barrier(conf, 0);
3944        else
3945                lower_barrier(conf);
3946}
3947
3948static int raid10_resize(struct mddev *mddev, sector_t sectors)
3949{
3950        /* Resize of 'far' arrays is not supported.
3951         * For 'near' and 'offset' arrays we can set the
3952         * number of sectors used to be an appropriate multiple
3953         * of the chunk size.
3954         * For 'offset', this is far_copies*chunksize.
3955         * For 'near' the multiplier is the LCM of
3956         * near_copies and raid_disks.
3957         * So if far_copies > 1 && !far_offset, fail.
3958         * Else find LCM(raid_disks, near_copy)*far_copies and
3959         * multiply by chunk_size.  Then round to this number.
3960         * This is mostly done by raid10_size()
3961         */
3962        struct r10conf *conf = mddev->private;
3963        sector_t oldsize, size;
3964
3965        if (mddev->reshape_position != MaxSector)
3966                return -EBUSY;
3967
3968        if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3969                return -EINVAL;
3970
3971        oldsize = raid10_size(mddev, 0, 0);
3972        size = raid10_size(mddev, sectors, 0);
3973        if (mddev->external_size &&
3974            mddev->array_sectors > size)
3975                return -EINVAL;
3976        if (mddev->bitmap) {
3977                int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
3978                if (ret)
3979                        return ret;
3980        }
3981        md_set_array_sectors(mddev, size);
3982        if (sectors > mddev->dev_sectors &&
3983            mddev->recovery_cp > oldsize) {
3984                mddev->recovery_cp = oldsize;
3985                set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3986        }
3987        calc_sectors(conf, sectors);
3988        mddev->dev_sectors = conf->dev_sectors;
3989        mddev->resync_max_sectors = size;
3990        return 0;
3991}
3992
3993static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3994{
3995        struct md_rdev *rdev;
3996        struct r10conf *conf;
3997
3998        if (mddev->degraded > 0) {
3999                pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4000                        mdname(mddev));
4001                return ERR_PTR(-EINVAL);
4002        }
4003        sector_div(size, devs);
4004
4005        /* Set new parameters */
4006        mddev->new_level = 10;
4007        /* new layout: far_copies = 1, near_copies = 2 */
4008        mddev->new_layout = (1<<8) + 2;
4009        mddev->new_chunk_sectors = mddev->chunk_sectors;
4010        mddev->delta_disks = mddev->raid_disks;
4011        mddev->raid_disks *= 2;
4012        /* make sure it will be not marked as dirty */
4013        mddev->recovery_cp = MaxSector;
4014        mddev->dev_sectors = size;
4015
4016        conf = setup_conf(mddev);
4017        if (!IS_ERR(conf)) {
4018                rdev_for_each(rdev, mddev)
4019                        if (rdev->raid_disk >= 0) {
4020                                rdev->new_raid_disk = rdev->raid_disk * 2;
4021                                rdev->sectors = size;
4022                        }
4023                conf->barrier = 1;
4024        }
4025
4026        return conf;
4027}
4028
4029static void *raid10_takeover(struct mddev *mddev)
4030{
4031        struct r0conf *raid0_conf;
4032
4033        /* raid10 can take over:
4034         *  raid0 - providing it has only two drives
4035         */
4036        if (mddev->level == 0) {
4037                /* for raid0 takeover only one zone is supported */
4038                raid0_conf = mddev->private;
4039                if (raid0_conf->nr_strip_zones > 1) {
4040                        pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4041                                mdname(mddev));
4042                        return ERR_PTR(-EINVAL);
4043                }
4044                return raid10_takeover_raid0(mddev,
4045                        raid0_conf->strip_zone->zone_end,
4046                        raid0_conf->strip_zone->nb_dev);
4047        }
4048        return ERR_PTR(-EINVAL);
4049}
4050
4051static int raid10_check_reshape(struct mddev *mddev)
4052{
4053        /* Called when there is a request to change
4054         * - layout (to ->new_layout)
4055         * - chunk size (to ->new_chunk_sectors)
4056         * - raid_disks (by delta_disks)
4057         * or when trying to restart a reshape that was ongoing.
4058         *
4059         * We need to validate the request and possibly allocate
4060         * space if that might be an issue later.
4061         *
4062         * Currently we reject any reshape of a 'far' mode array,
4063         * allow chunk size to change if new is generally acceptable,
4064         * allow raid_disks to increase, and allow
4065         * a switch between 'near' mode and 'offset' mode.
4066         */
4067        struct r10conf *conf = mddev->private;
4068        struct geom geo;
4069
4070        if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4071                return -EINVAL;
4072
4073        if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4074                /* mustn't change number of copies */
4075                return -EINVAL;
4076        if (geo.far_copies > 1 && !geo.far_offset)
4077                /* Cannot switch to 'far' mode */
4078                return -EINVAL;
4079
4080        if (mddev->array_sectors & geo.chunk_mask)
4081                        /* not factor of array size */
4082                        return -EINVAL;
4083
4084        if (!enough(conf, -1))
4085                return -EINVAL;
4086
4087        kfree(conf->mirrors_new);
4088        conf->mirrors_new = NULL;
4089        if (mddev->delta_disks > 0) {
4090                /* allocate new 'mirrors' list */
4091                conf->mirrors_new =
4092                        kcalloc(mddev->raid_disks + mddev->delta_disks,
4093                                sizeof(struct raid10_info),
4094                                GFP_KERNEL);
4095                if (!conf->mirrors_new)
4096                        return -ENOMEM;
4097        }
4098        return 0;
4099}
4100
4101/*
4102 * Need to check if array has failed when deciding whether to:
4103 *  - start an array
4104 *  - remove non-faulty devices
4105 *  - add a spare
4106 *  - allow a reshape
4107 * This determination is simple when no reshape is happening.
4108 * However if there is a reshape, we need to carefully check
4109 * both the before and after sections.
4110 * This is because some failed devices may only affect one
4111 * of the two sections, and some non-in_sync devices may
4112 * be insync in the section most affected by failed devices.
4113 */
4114static int calc_degraded(struct r10conf *conf)
4115{
4116        int degraded, degraded2;
4117        int i;
4118
4119        rcu_read_lock();
4120        degraded = 0;
4121        /* 'prev' section first */
4122        for (i = 0; i < conf->prev.raid_disks; i++) {
4123                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4124                if (!rdev || test_bit(Faulty, &rdev->flags))
4125                        degraded++;
4126                else if (!test_bit(In_sync, &rdev->flags))
4127                        /* When we can reduce the number of devices in
4128                         * an array, this might not contribute to
4129                         * 'degraded'.  It does now.
4130                         */
4131                        degraded++;
4132        }
4133        rcu_read_unlock();
4134        if (conf->geo.raid_disks == conf->prev.raid_disks)
4135                return degraded;
4136        rcu_read_lock();
4137        degraded2 = 0;
4138        for (i = 0; i < conf->geo.raid_disks; i++) {
4139                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4140                if (!rdev || test_bit(Faulty, &rdev->flags))
4141                        degraded2++;
4142                else if (!test_bit(In_sync, &rdev->flags)) {
4143                        /* If reshape is increasing the number of devices,
4144                         * this section has already been recovered, so
4145                         * it doesn't contribute to degraded.
4146                         * else it does.
4147                         */
4148                        if (conf->geo.raid_disks <= conf->prev.raid_disks)
4149                                degraded2++;
4150                }
4151        }
4152        rcu_read_unlock();
4153        if (degraded2 > degraded)
4154                return degraded2;
4155        return degraded;
4156}
4157
4158static int raid10_start_reshape(struct mddev *mddev)
4159{
4160        /* A 'reshape' has been requested. This commits
4161         * the various 'new' fields and sets MD_RECOVER_RESHAPE
4162         * This also checks if there are enough spares and adds them
4163         * to the array.
4164         * We currently require enough spares to make the final
4165         * array non-degraded.  We also require that the difference
4166         * between old and new data_offset - on each device - is
4167         * enough that we never risk over-writing.
4168         */
4169
4170        unsigned long before_length, after_length;
4171        sector_t min_offset_diff = 0;
4172        int first = 1;
4173        struct geom new;
4174        struct r10conf *conf = mddev->private;
4175        struct md_rdev *rdev;
4176        int spares = 0;
4177        int ret;
4178
4179        if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4180                return -EBUSY;
4181
4182        if (setup_geo(&new, mddev, geo_start) != conf->copies)
4183                return -EINVAL;
4184
4185        before_length = ((1 << conf->prev.chunk_shift) *
4186                         conf->prev.far_copies);
4187        after_length = ((1 << conf->geo.chunk_shift) *
4188                        conf->geo.far_copies);
4189
4190        rdev_for_each(rdev, mddev) {
4191                if (!test_bit(In_sync, &rdev->flags)
4192                    && !test_bit(Faulty, &rdev->flags))
4193                        spares++;
4194                if (rdev->raid_disk >= 0) {
4195                        long long diff = (rdev->new_data_offset
4196                                          - rdev->data_offset);
4197                        if (!mddev->reshape_backwards)
4198                                diff = -diff;
4199                        if (diff < 0)
4200                                diff = 0;
4201                        if (first || diff < min_offset_diff)
4202                                min_offset_diff = diff;
4203                        first = 0;
4204                }
4205        }
4206
4207        if (max(before_length, after_length) > min_offset_diff)
4208                return -EINVAL;
4209
4210        if (spares < mddev->delta_disks)
4211                return -EINVAL;
4212
4213        conf->offset_diff = min_offset_diff;
4214        spin_lock_irq(&conf->device_lock);
4215        if (conf->mirrors_new) {
4216                memcpy(conf->mirrors_new, conf->mirrors,
4217                       sizeof(struct raid10_info)*conf->prev.raid_disks);
4218                smp_mb();
4219                kfree(conf->mirrors_old);
4220                conf->mirrors_old = conf->mirrors;
4221                conf->mirrors = conf->mirrors_new;
4222                conf->mirrors_new = NULL;
4223        }
4224        setup_geo(&conf->geo, mddev, geo_start);
4225        smp_mb();
4226        if (mddev->reshape_backwards) {
4227                sector_t size = raid10_size(mddev, 0, 0);
4228                if (size < mddev->array_sectors) {
4229                        spin_unlock_irq(&conf->device_lock);
4230                        pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4231                                mdname(mddev));
4232                        return -EINVAL;
4233                }
4234                mddev->resync_max_sectors = size;
4235                conf->reshape_progress = size;
4236        } else
4237                conf->reshape_progress = 0;
4238        conf->reshape_safe = conf->reshape_progress;
4239        spin_unlock_irq(&conf->device_lock);
4240
4241        if (mddev->delta_disks && mddev->bitmap) {
4242                struct mdp_superblock_1 *sb = NULL;
4243                sector_t oldsize, newsize;
4244
4245                oldsize = raid10_size(mddev, 0, 0);
4246                newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4247
4248                if (!mddev_is_clustered(mddev)) {
4249                        ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4250                        if (ret)
4251                                goto abort;
4252                        else
4253                                goto out;
4254                }
4255
4256                rdev_for_each(rdev, mddev) {
4257                        if (rdev->raid_disk > -1 &&
4258                            !test_bit(Faulty, &rdev->flags))
4259                                sb = page_address(rdev->sb_page);
4260                }
4261
4262                /*
4263                 * some node is already performing reshape, and no need to
4264                 * call md_bitmap_resize again since it should be called when
4265                 * receiving BITMAP_RESIZE msg
4266                 */
4267                if ((sb && (le32_to_cpu(sb->feature_map) &
4268                            MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4269                        goto out;
4270
4271                ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4272                if (ret)
4273                        goto abort;
4274
4275                ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4276                if (ret) {
4277                        md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4278                        goto abort;
4279                }
4280        }
4281out:
4282        if (mddev->delta_disks > 0) {
4283                rdev_for_each(rdev, mddev)
4284                        if (rdev->raid_disk < 0 &&
4285                            !test_bit(Faulty, &rdev->flags)) {
4286                                if (raid10_add_disk(mddev, rdev) == 0) {
4287                                        if (rdev->raid_disk >=
4288                                            conf->prev.raid_disks)
4289                                                set_bit(In_sync, &rdev->flags);
4290                                        else
4291                                                rdev->recovery_offset = 0;
4292
4293                                        /* Failure here is OK */
4294                                        sysfs_link_rdev(mddev, rdev);
4295                                }
4296                        } else if (rdev->raid_disk >= conf->prev.raid_disks
4297                                   && !test_bit(Faulty, &rdev->flags)) {
4298                                /* This is a spare that was manually added */
4299                                set_bit(In_sync, &rdev->flags);
4300                        }
4301        }
4302        /* When a reshape changes the number of devices,
4303         * ->degraded is measured against the larger of the
4304         * pre and  post numbers.
4305         */
4306        spin_lock_irq(&conf->device_lock);
4307        mddev->degraded = calc_degraded(conf);
4308        spin_unlock_irq(&conf->device_lock);
4309        mddev->raid_disks = conf->geo.raid_disks;
4310        mddev->reshape_position = conf->reshape_progress;
4311        set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4312
4313        clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4314        clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4315        clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4316        set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4317        set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4318
4319        mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4320                                                "reshape");
4321        if (!mddev->sync_thread) {
4322                ret = -EAGAIN;
4323                goto abort;
4324        }
4325        conf->reshape_checkpoint = jiffies;
4326        md_wakeup_thread(mddev->sync_thread);
4327        md_new_event(mddev);
4328        return 0;
4329
4330abort:
4331        mddev->recovery = 0;
4332        spin_lock_irq(&conf->device_lock);
4333        conf->geo = conf->prev;
4334        mddev->raid_disks = conf->geo.raid_disks;
4335        rdev_for_each(rdev, mddev)
4336                rdev->new_data_offset = rdev->data_offset;
4337        smp_wmb();
4338        conf->reshape_progress = MaxSector;
4339        conf->reshape_safe = MaxSector;
4340        mddev->reshape_position = MaxSector;
4341        spin_unlock_irq(&conf->device_lock);
4342        return ret;
4343}
4344
4345/* Calculate the last device-address that could contain
4346 * any block from the chunk that includes the array-address 's'
4347 * and report the next address.
4348 * i.e. the address returned will be chunk-aligned and after
4349 * any data that is in the chunk containing 's'.
4350 */
4351static sector_t last_dev_address(sector_t s, struct geom *geo)
4352{
4353        s = (s | geo->chunk_mask) + 1;
4354        s >>= geo->chunk_shift;
4355        s *= geo->near_copies;
4356        s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4357        s *= geo->far_copies;
4358        s <<= geo->chunk_shift;
4359        return s;
4360}
4361
4362/* Calculate the first device-address that could contain
4363 * any block from the chunk that includes the array-address 's'.
4364 * This too will be the start of a chunk
4365 */
4366static sector_t first_dev_address(sector_t s, struct geom *geo)
4367{
4368        s >>= geo->chunk_shift;
4369        s *= geo->near_copies;
4370        sector_div(s, geo->raid_disks);
4371        s *= geo->far_copies;
4372        s <<= geo->chunk_shift;
4373        return s;
4374}
4375
4376static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4377                                int *skipped)
4378{
4379        /* We simply copy at most one chunk (smallest of old and new)
4380         * at a time, possibly less if that exceeds RESYNC_PAGES,
4381         * or we hit a bad block or something.
4382         * This might mean we pause for normal IO in the middle of
4383         * a chunk, but that is not a problem as mddev->reshape_position
4384         * can record any location.
4385         *
4386         * If we will want to write to a location that isn't
4387         * yet recorded as 'safe' (i.e. in metadata on disk) then
4388         * we need to flush all reshape requests and update the metadata.
4389         *
4390         * When reshaping forwards (e.g. to more devices), we interpret
4391         * 'safe' as the earliest block which might not have been copied
4392         * down yet.  We divide this by previous stripe size and multiply
4393         * by previous stripe length to get lowest device offset that we
4394         * cannot write to yet.
4395         * We interpret 'sector_nr' as an address that we want to write to.
4396         * From this we use last_device_address() to find where we might
4397         * write to, and first_device_address on the  'safe' position.
4398         * If this 'next' write position is after the 'safe' position,
4399         * we must update the metadata to increase the 'safe' position.
4400         *
4401         * When reshaping backwards, we round in the opposite direction
4402         * and perform the reverse test:  next write position must not be
4403         * less than current safe position.
4404         *
4405         * In all this the minimum difference in data offsets
4406         * (conf->offset_diff - always positive) allows a bit of slack,
4407         * so next can be after 'safe', but not by more than offset_diff
4408         *
4409         * We need to prepare all the bios here before we start any IO
4410         * to ensure the size we choose is acceptable to all devices.
4411         * The means one for each copy for write-out and an extra one for
4412         * read-in.
4413         * We store the read-in bio in ->master_bio and the others in
4414         * ->devs[x].bio and ->devs[x].repl_bio.
4415         */
4416        struct r10conf *conf = mddev->private;
4417        struct r10bio *r10_bio;
4418        sector_t next, safe, last;
4419        int max_sectors;
4420        int nr_sectors;
4421        int s;
4422        struct md_rdev *rdev;
4423        int need_flush = 0;
4424        struct bio *blist;
4425        struct bio *bio, *read_bio;
4426        int sectors_done = 0;
4427        struct page **pages;
4428
4429        if (sector_nr == 0) {
4430                /* If restarting in the middle, skip the initial sectors */
4431                if (mddev->reshape_backwards &&
4432                    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4433                        sector_nr = (raid10_size(mddev, 0, 0)
4434                                     - conf->reshape_progress);
4435                } else if (!mddev->reshape_backwards &&
4436                           conf->reshape_progress > 0)
4437                        sector_nr = conf->reshape_progress;
4438                if (sector_nr) {
4439                        mddev->curr_resync_completed = sector_nr;
4440                        sysfs_notify_dirent_safe(mddev->sysfs_completed);
4441                        *skipped = 1;
4442                        return sector_nr;
4443                }
4444        }
4445
4446        /* We don't use sector_nr to track where we are up to
4447         * as that doesn't work well for ->reshape_backwards.
4448         * So just use ->reshape_progress.
4449         */
4450        if (mddev->reshape_backwards) {
4451                /* 'next' is the earliest device address that we might
4452                 * write to for this chunk in the new layout
4453                 */
4454                next = first_dev_address(conf->reshape_progress - 1,
4455                                         &conf->geo);
4456
4457                /* 'safe' is the last device address that we might read from
4458                 * in the old layout after a restart
4459                 */
4460                safe = last_dev_address(conf->reshape_safe - 1,
4461                                        &conf->prev);
4462
4463                if (next + conf->offset_diff < safe)
4464                        need_flush = 1;
4465
4466                last = conf->reshape_progress - 1;
4467                sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4468                                               & conf->prev.chunk_mask);
4469                if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4470                        sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4471        } else {
4472                /* 'next' is after the last device address that we
4473                 * might write to for this chunk in the new layout
4474                 */
4475                next = last_dev_address(conf->reshape_progress, &conf->geo);
4476
4477                /* 'safe' is the earliest device address that we might
4478                 * read from in the old layout after a restart
4479                 */
4480                safe = first_dev_address(conf->reshape_safe, &conf->prev);
4481
4482                /* Need to update metadata if 'next' might be beyond 'safe'
4483                 * as that would possibly corrupt data
4484                 */
4485                if (next > safe + conf->offset_diff)
4486                        need_flush = 1;
4487
4488                sector_nr = conf->reshape_progress;
4489                last  = sector_nr | (conf->geo.chunk_mask
4490                                     & conf->prev.chunk_mask);
4491
4492                if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4493                        last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4494        }
4495
4496        if (need_flush ||
4497            time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4498                /* Need to update reshape_position in metadata */
4499                wait_barrier(conf);
4500                mddev->reshape_position = conf->reshape_progress;
4501                if (mddev->reshape_backwards)
4502                        mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4503                                - conf->reshape_progress;
4504                else
4505                        mddev->curr_resync_completed = conf->reshape_progress;
4506                conf->reshape_checkpoint = jiffies;
4507                set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4508                md_wakeup_thread(mddev->thread);
4509                wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4510                           test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4511                if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4512                        allow_barrier(conf);
4513                        return sectors_done;
4514                }
4515                conf->reshape_safe = mddev->reshape_position;
4516                allow_barrier(conf);
4517        }
4518
4519        raise_barrier(conf, 0);
4520read_more:
4521        /* Now schedule reads for blocks from sector_nr to last */
4522        r10_bio = raid10_alloc_init_r10buf(conf);
4523        r10_bio->state = 0;
4524        raise_barrier(conf, 1);
4525        atomic_set(&r10_bio->remaining, 0);
4526        r10_bio->mddev = mddev;
4527        r10_bio->sector = sector_nr;
4528        set_bit(R10BIO_IsReshape, &r10_bio->state);
4529        r10_bio->sectors = last - sector_nr + 1;
4530        rdev = read_balance(conf, r10_bio, &max_sectors);
4531        BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4532
4533        if (!rdev) {
4534                /* Cannot read from here, so need to record bad blocks
4535                 * on all the target devices.
4536                 */
4537                // FIXME
4538                mempool_free(r10_bio, &conf->r10buf_pool);
4539                set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4540                return sectors_done;
4541        }
4542
4543        read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4544
4545        bio_set_dev(read_bio, rdev->bdev);
4546        read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4547                               + rdev->data_offset);
4548        read_bio->bi_private = r10_bio;
4549        read_bio->bi_end_io = end_reshape_read;
4550        bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4551        read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4552        read_bio->bi_status = 0;
4553        read_bio->bi_vcnt = 0;
4554        read_bio->bi_iter.bi_size = 0;
4555        r10_bio->master_bio = read_bio;
4556        r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4557
4558        /*
4559         * Broadcast RESYNC message to other nodes, so all nodes would not
4560         * write to the region to avoid conflict.
4561        */
4562        if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4563                struct mdp_superblock_1 *sb = NULL;
4564                int sb_reshape_pos = 0;
4565
4566                conf->cluster_sync_low = sector_nr;
4567                conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4568                sb = page_address(rdev->sb_page);
4569                if (sb) {
4570                        sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4571                        /*
4572                         * Set cluster_sync_low again if next address for array
4573                         * reshape is less than cluster_sync_low. Since we can't
4574                         * update cluster_sync_low until it has finished reshape.
4575                         */
4576                        if (sb_reshape_pos < conf->cluster_sync_low)
4577                                conf->cluster_sync_low = sb_reshape_pos;
4578                }
4579
4580                md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4581                                                          conf->cluster_sync_high);
4582        }
4583
4584        /* Now find the locations in the new layout */
4585        __raid10_find_phys(&conf->geo, r10_bio);
4586
4587        blist = read_bio;
4588        read_bio->bi_next = NULL;
4589
4590        rcu_read_lock();
4591        for (s = 0; s < conf->copies*2; s++) {
4592                struct bio *b;
4593                int d = r10_bio->devs[s/2].devnum;
4594                struct md_rdev *rdev2;
4595                if (s&1) {
4596                        rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4597                        b = r10_bio->devs[s/2].repl_bio;
4598                } else {
4599                        rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4600                        b = r10_bio->devs[s/2].bio;
4601                }
4602                if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4603                        continue;
4604
4605                bio_set_dev(b, rdev2->bdev);
4606                b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4607                        rdev2->new_data_offset;
4608                b->bi_end_io = end_reshape_write;
4609                bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4610                b->bi_next = blist;
4611                blist = b;
4612        }
4613
4614        /* Now add as many pages as possible to all of these bios. */
4615
4616        nr_sectors = 0;
4617        pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4618        for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4619                struct page *page = pages[s / (PAGE_SIZE >> 9)];
4620                int len = (max_sectors - s) << 9;
4621                if (len > PAGE_SIZE)
4622                        len = PAGE_SIZE;
4623                for (bio = blist; bio ; bio = bio->bi_next) {
4624                        /*
4625                         * won't fail because the vec table is big enough
4626                         * to hold all these pages
4627                         */
4628                        bio_add_page(bio, page, len, 0);
4629                }
4630                sector_nr += len >> 9;
4631                nr_sectors += len >> 9;
4632        }
4633        rcu_read_unlock();
4634        r10_bio->sectors = nr_sectors;
4635
4636        /* Now submit the read */
4637        md_sync_acct_bio(read_bio, r10_bio->sectors);
4638        atomic_inc(&r10_bio->remaining);
4639        read_bio->bi_next = NULL;
4640        submit_bio_noacct(read_bio);
4641        sectors_done += nr_sectors;
4642        if (sector_nr <= last)
4643                goto read_more;
4644
4645        lower_barrier(conf);
4646
4647        /* Now that we have done the whole section we can
4648         * update reshape_progress
4649         */
4650        if (mddev->reshape_backwards)
4651                conf->reshape_progress -= sectors_done;
4652        else
4653                conf->reshape_progress += sectors_done;
4654
4655        return sectors_done;
4656}
4657
4658static void end_reshape_request(struct r10bio *r10_bio);
4659static int handle_reshape_read_error(struct mddev *mddev,
4660                                     struct r10bio *r10_bio);
4661static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4662{
4663        /* Reshape read completed.  Hopefully we have a block
4664         * to write out.
4665         * If we got a read error then we do sync 1-page reads from
4666         * elsewhere until we find the data - or give up.
4667         */
4668        struct r10conf *conf = mddev->private;
4669        int s;
4670
4671        if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4672                if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4673                        /* Reshape has been aborted */
4674                        md_done_sync(mddev, r10_bio->sectors, 0);
4675                        return;
4676                }
4677
4678        /* We definitely have the data in the pages, schedule the
4679         * writes.
4680         */
4681        atomic_set(&r10_bio->remaining, 1);
4682        for (s = 0; s < conf->copies*2; s++) {
4683                struct bio *b;
4684                int d = r10_bio->devs[s/2].devnum;
4685                struct md_rdev *rdev;
4686                rcu_read_lock();
4687                if (s&1) {
4688                        rdev = rcu_dereference(conf->mirrors[d].replacement);
4689                        b = r10_bio->devs[s/2].repl_bio;
4690                } else {
4691                        rdev = rcu_dereference(conf->mirrors[d].rdev);
4692                        b = r10_bio->devs[s/2].bio;
4693                }
4694                if (!rdev || test_bit(Faulty, &rdev->flags)) {
4695                        rcu_read_unlock();
4696                        continue;
4697                }
4698                atomic_inc(&rdev->nr_pending);
4699                rcu_read_unlock();
4700                md_sync_acct_bio(b, r10_bio->sectors);
4701                atomic_inc(&r10_bio->remaining);
4702                b->bi_next = NULL;
4703                submit_bio_noacct(b);
4704        }
4705        end_reshape_request(r10_bio);
4706}
4707
4708static void end_reshape(struct r10conf *conf)
4709{
4710        if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4711                return;
4712
4713        spin_lock_irq(&conf->device_lock);
4714        conf->prev = conf->geo;
4715        md_finish_reshape(conf->mddev);
4716        smp_wmb();
4717        conf->reshape_progress = MaxSector;
4718        conf->reshape_safe = MaxSector;
4719        spin_unlock_irq(&conf->device_lock);
4720
4721        /* read-ahead size must cover two whole stripes, which is
4722         * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4723         */
4724        if (conf->mddev->queue) {
4725                int stripe = conf->geo.raid_disks *
4726                        ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4727                stripe /= conf->geo.near_copies;
4728                if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4729                        conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4730        }
4731        conf->fullsync = 0;
4732}
4733
4734static void raid10_update_reshape_pos(struct mddev *mddev)
4735{
4736        struct r10conf *conf = mddev->private;
4737        sector_t lo, hi;
4738
4739        md_cluster_ops->resync_info_get(mddev, &lo, &hi);
4740        if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
4741            || mddev->reshape_position == MaxSector)
4742                conf->reshape_progress = mddev->reshape_position;
4743        else
4744                WARN_ON_ONCE(1);
4745}
4746
4747static int handle_reshape_read_error(struct mddev *mddev,
4748                                     struct r10bio *r10_bio)
4749{
4750        /* Use sync reads to get the blocks from somewhere else */
4751        int sectors = r10_bio->sectors;
4752        struct r10conf *conf = mddev->private;
4753        struct r10bio *r10b;
4754        int slot = 0;
4755        int idx = 0;
4756        struct page **pages;
4757
4758        r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
4759        if (!r10b) {
4760                set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4761                return -ENOMEM;
4762        }
4763
4764        /* reshape IOs share pages from .devs[0].bio */
4765        pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4766
4767        r10b->sector = r10_bio->sector;
4768        __raid10_find_phys(&conf->prev, r10b);
4769
4770        while (sectors) {
4771                int s = sectors;
4772                int success = 0;
4773                int first_slot = slot;
4774
4775                if (s > (PAGE_SIZE >> 9))
4776                        s = PAGE_SIZE >> 9;
4777
4778                rcu_read_lock();
4779                while (!success) {
4780                        int d = r10b->devs[slot].devnum;
4781                        struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4782                        sector_t addr;
4783                        if (rdev == NULL ||
4784                            test_bit(Faulty, &rdev->flags) ||
4785                            !test_bit(In_sync, &rdev->flags))
4786                                goto failed;
4787
4788                        addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4789                        atomic_inc(&rdev->nr_pending);
4790                        rcu_read_unlock();
4791                        success = sync_page_io(rdev,
4792                                               addr,
4793                                               s << 9,
4794                                               pages[idx],
4795                                               REQ_OP_READ, 0, false);
4796                        rdev_dec_pending(rdev, mddev);
4797                        rcu_read_lock();
4798                        if (success)
4799                                break;
4800                failed:
4801                        slot++;
4802                        if (slot >= conf->copies)
4803                                slot = 0;
4804                        if (slot == first_slot)
4805                                break;
4806                }
4807                rcu_read_unlock();
4808                if (!success) {
4809                        /* couldn't read this block, must give up */
4810                        set_bit(MD_RECOVERY_INTR,
4811                                &mddev->recovery);
4812                        kfree(r10b);
4813                        return -EIO;
4814                }
4815                sectors -= s;
4816                idx++;
4817        }
4818        kfree(r10b);
4819        return 0;
4820}
4821
4822static void end_reshape_write(struct bio *bio)
4823{
4824        struct r10bio *r10_bio = get_resync_r10bio(bio);
4825        struct mddev *mddev = r10_bio->mddev;
4826        struct r10conf *conf = mddev->private;
4827        int d;
4828        int slot;
4829        int repl;
4830        struct md_rdev *rdev = NULL;
4831
4832        d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4833        if (repl)
4834                rdev = conf->mirrors[d].replacement;
4835        if (!rdev) {
4836                smp_mb();
4837                rdev = conf->mirrors[d].rdev;
4838        }
4839
4840        if (bio->bi_status) {
4841                /* FIXME should record badblock */
4842                md_error(mddev, rdev);
4843        }
4844
4845        rdev_dec_pending(rdev, mddev);
4846        end_reshape_request(r10_bio);
4847}
4848
4849static void end_reshape_request(struct r10bio *r10_bio)
4850{
4851        if (!atomic_dec_and_test(&r10_bio->remaining))
4852                return;
4853        md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4854        bio_put(r10_bio->master_bio);
4855        put_buf(r10_bio);
4856}
4857
4858static void raid10_finish_reshape(struct mddev *mddev)
4859{
4860        struct r10conf *conf = mddev->private;
4861
4862        if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4863                return;
4864
4865        if (mddev->delta_disks > 0) {
4866                if (mddev->recovery_cp > mddev->resync_max_sectors) {
4867                        mddev->recovery_cp = mddev->resync_max_sectors;
4868                        set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4869                }
4870                mddev->resync_max_sectors = mddev->array_sectors;
4871        } else {
4872                int d;
4873                rcu_read_lock();
4874                for (d = conf->geo.raid_disks ;
4875                     d < conf->geo.raid_disks - mddev->delta_disks;
4876                     d++) {
4877                        struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4878                        if (rdev)
4879                                clear_bit(In_sync, &rdev->flags);
4880                        rdev = rcu_dereference(conf->mirrors[d].replacement);
4881                        if (rdev)
4882                                clear_bit(In_sync, &rdev->flags);
4883                }
4884                rcu_read_unlock();
4885        }
4886        mddev->layout = mddev->new_layout;
4887        mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4888        mddev->reshape_position = MaxSector;
4889        mddev->delta_disks = 0;
4890        mddev->reshape_backwards = 0;
4891}
4892
4893static struct md_personality raid10_personality =
4894{
4895        .name           = "raid10",
4896        .level          = 10,
4897        .owner          = THIS_MODULE,
4898        .make_request   = raid10_make_request,
4899        .run            = raid10_run,
4900        .free           = raid10_free,
4901        .status         = raid10_status,
4902        .error_handler  = raid10_error,
4903        .hot_add_disk   = raid10_add_disk,
4904        .hot_remove_disk= raid10_remove_disk,
4905        .spare_active   = raid10_spare_active,
4906        .sync_request   = raid10_sync_request,
4907        .quiesce        = raid10_quiesce,
4908        .size           = raid10_size,
4909        .resize         = raid10_resize,
4910        .takeover       = raid10_takeover,
4911        .check_reshape  = raid10_check_reshape,
4912        .start_reshape  = raid10_start_reshape,
4913        .finish_reshape = raid10_finish_reshape,
4914        .update_reshape_pos = raid10_update_reshape_pos,
4915};
4916
4917static int __init raid_init(void)
4918{
4919        return register_md_personality(&raid10_personality);
4920}
4921
4922static void raid_exit(void)
4923{
4924        unregister_md_personality(&raid10_personality);
4925}
4926
4927module_init(raid_init);
4928module_exit(raid_exit);
4929MODULE_LICENSE("GPL");
4930MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4931MODULE_ALIAS("md-personality-9"); /* RAID10 */
4932MODULE_ALIAS("md-raid10");
4933MODULE_ALIAS("md-level-10");
4934
4935module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4936