linux/drivers/md/raid5.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * raid5.c : Multiple Devices driver for Linux
   4 *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   5 *         Copyright (C) 1999, 2000 Ingo Molnar
   6 *         Copyright (C) 2002, 2003 H. Peter Anvin
   7 *
   8 * RAID-4/5/6 management functions.
   9 * Thanks to Penguin Computing for making the RAID-6 development possible
  10 * by donating a test server!
  11 */
  12
  13/*
  14 * BITMAP UNPLUGGING:
  15 *
  16 * The sequencing for updating the bitmap reliably is a little
  17 * subtle (and I got it wrong the first time) so it deserves some
  18 * explanation.
  19 *
  20 * We group bitmap updates into batches.  Each batch has a number.
  21 * We may write out several batches at once, but that isn't very important.
  22 * conf->seq_write is the number of the last batch successfully written.
  23 * conf->seq_flush is the number of the last batch that was closed to
  24 *    new additions.
  25 * When we discover that we will need to write to any block in a stripe
  26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
  27 * the number of the batch it will be in. This is seq_flush+1.
  28 * When we are ready to do a write, if that batch hasn't been written yet,
  29 *   we plug the array and queue the stripe for later.
  30 * When an unplug happens, we increment bm_flush, thus closing the current
  31 *   batch.
  32 * When we notice that bm_flush > bm_write, we write out all pending updates
  33 * to the bitmap, and advance bm_write to where bm_flush was.
  34 * This may occasionally write a bit out twice, but is sure never to
  35 * miss any bits.
  36 */
  37
  38#include <linux/blkdev.h>
  39#include <linux/kthread.h>
  40#include <linux/raid/pq.h>
  41#include <linux/async_tx.h>
  42#include <linux/module.h>
  43#include <linux/async.h>
  44#include <linux/seq_file.h>
  45#include <linux/cpu.h>
  46#include <linux/slab.h>
  47#include <linux/ratelimit.h>
  48#include <linux/nodemask.h>
  49
  50#include <trace/events/block.h>
  51#include <linux/list_sort.h>
  52
  53#include "md.h"
  54#include "raid5.h"
  55#include "raid0.h"
  56#include "md-bitmap.h"
  57#include "raid5-log.h"
  58
  59#define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
  60
  61#define cpu_to_group(cpu) cpu_to_node(cpu)
  62#define ANY_GROUP NUMA_NO_NODE
  63
  64static bool devices_handle_discard_safely = false;
  65module_param(devices_handle_discard_safely, bool, 0644);
  66MODULE_PARM_DESC(devices_handle_discard_safely,
  67                 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
  68static struct workqueue_struct *raid5_wq;
  69
  70static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
  71{
  72        int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK;
  73        return &conf->stripe_hashtbl[hash];
  74}
  75
  76static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect)
  77{
  78        return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK;
  79}
  80
  81static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
  82{
  83        spin_lock_irq(conf->hash_locks + hash);
  84        spin_lock(&conf->device_lock);
  85}
  86
  87static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
  88{
  89        spin_unlock(&conf->device_lock);
  90        spin_unlock_irq(conf->hash_locks + hash);
  91}
  92
  93static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
  94{
  95        int i;
  96        spin_lock_irq(conf->hash_locks);
  97        for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
  98                spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
  99        spin_lock(&conf->device_lock);
 100}
 101
 102static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
 103{
 104        int i;
 105        spin_unlock(&conf->device_lock);
 106        for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
 107                spin_unlock(conf->hash_locks + i);
 108        spin_unlock_irq(conf->hash_locks);
 109}
 110
 111/* Find first data disk in a raid6 stripe */
 112static inline int raid6_d0(struct stripe_head *sh)
 113{
 114        if (sh->ddf_layout)
 115                /* ddf always start from first device */
 116                return 0;
 117        /* md starts just after Q block */
 118        if (sh->qd_idx == sh->disks - 1)
 119                return 0;
 120        else
 121                return sh->qd_idx + 1;
 122}
 123static inline int raid6_next_disk(int disk, int raid_disks)
 124{
 125        disk++;
 126        return (disk < raid_disks) ? disk : 0;
 127}
 128
 129/* When walking through the disks in a raid5, starting at raid6_d0,
 130 * We need to map each disk to a 'slot', where the data disks are slot
 131 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 132 * is raid_disks-1.  This help does that mapping.
 133 */
 134static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
 135                             int *count, int syndrome_disks)
 136{
 137        int slot = *count;
 138
 139        if (sh->ddf_layout)
 140                (*count)++;
 141        if (idx == sh->pd_idx)
 142                return syndrome_disks;
 143        if (idx == sh->qd_idx)
 144                return syndrome_disks + 1;
 145        if (!sh->ddf_layout)
 146                (*count)++;
 147        return slot;
 148}
 149
 150static void print_raid5_conf (struct r5conf *conf);
 151
 152static int stripe_operations_active(struct stripe_head *sh)
 153{
 154        return sh->check_state || sh->reconstruct_state ||
 155               test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
 156               test_bit(STRIPE_COMPUTE_RUN, &sh->state);
 157}
 158
 159static bool stripe_is_lowprio(struct stripe_head *sh)
 160{
 161        return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
 162                test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
 163               !test_bit(STRIPE_R5C_CACHING, &sh->state);
 164}
 165
 166static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
 167{
 168        struct r5conf *conf = sh->raid_conf;
 169        struct r5worker_group *group;
 170        int thread_cnt;
 171        int i, cpu = sh->cpu;
 172
 173        if (!cpu_online(cpu)) {
 174                cpu = cpumask_any(cpu_online_mask);
 175                sh->cpu = cpu;
 176        }
 177
 178        if (list_empty(&sh->lru)) {
 179                struct r5worker_group *group;
 180                group = conf->worker_groups + cpu_to_group(cpu);
 181                if (stripe_is_lowprio(sh))
 182                        list_add_tail(&sh->lru, &group->loprio_list);
 183                else
 184                        list_add_tail(&sh->lru, &group->handle_list);
 185                group->stripes_cnt++;
 186                sh->group = group;
 187        }
 188
 189        if (conf->worker_cnt_per_group == 0) {
 190                md_wakeup_thread(conf->mddev->thread);
 191                return;
 192        }
 193
 194        group = conf->worker_groups + cpu_to_group(sh->cpu);
 195
 196        group->workers[0].working = true;
 197        /* at least one worker should run to avoid race */
 198        queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
 199
 200        thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
 201        /* wakeup more workers */
 202        for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
 203                if (group->workers[i].working == false) {
 204                        group->workers[i].working = true;
 205                        queue_work_on(sh->cpu, raid5_wq,
 206                                      &group->workers[i].work);
 207                        thread_cnt--;
 208                }
 209        }
 210}
 211
 212static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
 213                              struct list_head *temp_inactive_list)
 214{
 215        int i;
 216        int injournal = 0;      /* number of date pages with R5_InJournal */
 217
 218        BUG_ON(!list_empty(&sh->lru));
 219        BUG_ON(atomic_read(&conf->active_stripes)==0);
 220
 221        if (r5c_is_writeback(conf->log))
 222                for (i = sh->disks; i--; )
 223                        if (test_bit(R5_InJournal, &sh->dev[i].flags))
 224                                injournal++;
 225        /*
 226         * In the following cases, the stripe cannot be released to cached
 227         * lists. Therefore, we make the stripe write out and set
 228         * STRIPE_HANDLE:
 229         *   1. when quiesce in r5c write back;
 230         *   2. when resync is requested fot the stripe.
 231         */
 232        if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
 233            (conf->quiesce && r5c_is_writeback(conf->log) &&
 234             !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
 235                if (test_bit(STRIPE_R5C_CACHING, &sh->state))
 236                        r5c_make_stripe_write_out(sh);
 237                set_bit(STRIPE_HANDLE, &sh->state);
 238        }
 239
 240        if (test_bit(STRIPE_HANDLE, &sh->state)) {
 241                if (test_bit(STRIPE_DELAYED, &sh->state) &&
 242                    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
 243                        list_add_tail(&sh->lru, &conf->delayed_list);
 244                else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
 245                           sh->bm_seq - conf->seq_write > 0)
 246                        list_add_tail(&sh->lru, &conf->bitmap_list);
 247                else {
 248                        clear_bit(STRIPE_DELAYED, &sh->state);
 249                        clear_bit(STRIPE_BIT_DELAY, &sh->state);
 250                        if (conf->worker_cnt_per_group == 0) {
 251                                if (stripe_is_lowprio(sh))
 252                                        list_add_tail(&sh->lru,
 253                                                        &conf->loprio_list);
 254                                else
 255                                        list_add_tail(&sh->lru,
 256                                                        &conf->handle_list);
 257                        } else {
 258                                raid5_wakeup_stripe_thread(sh);
 259                                return;
 260                        }
 261                }
 262                md_wakeup_thread(conf->mddev->thread);
 263        } else {
 264                BUG_ON(stripe_operations_active(sh));
 265                if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
 266                        if (atomic_dec_return(&conf->preread_active_stripes)
 267                            < IO_THRESHOLD)
 268                                md_wakeup_thread(conf->mddev->thread);
 269                atomic_dec(&conf->active_stripes);
 270                if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
 271                        if (!r5c_is_writeback(conf->log))
 272                                list_add_tail(&sh->lru, temp_inactive_list);
 273                        else {
 274                                WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
 275                                if (injournal == 0)
 276                                        list_add_tail(&sh->lru, temp_inactive_list);
 277                                else if (injournal == conf->raid_disks - conf->max_degraded) {
 278                                        /* full stripe */
 279                                        if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
 280                                                atomic_inc(&conf->r5c_cached_full_stripes);
 281                                        if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
 282                                                atomic_dec(&conf->r5c_cached_partial_stripes);
 283                                        list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
 284                                        r5c_check_cached_full_stripe(conf);
 285                                } else
 286                                        /*
 287                                         * STRIPE_R5C_PARTIAL_STRIPE is set in
 288                                         * r5c_try_caching_write(). No need to
 289                                         * set it again.
 290                                         */
 291                                        list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
 292                        }
 293                }
 294        }
 295}
 296
 297static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
 298                             struct list_head *temp_inactive_list)
 299{
 300        if (atomic_dec_and_test(&sh->count))
 301                do_release_stripe(conf, sh, temp_inactive_list);
 302}
 303
 304/*
 305 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
 306 *
 307 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
 308 * given time. Adding stripes only takes device lock, while deleting stripes
 309 * only takes hash lock.
 310 */
 311static void release_inactive_stripe_list(struct r5conf *conf,
 312                                         struct list_head *temp_inactive_list,
 313                                         int hash)
 314{
 315        int size;
 316        bool do_wakeup = false;
 317        unsigned long flags;
 318
 319        if (hash == NR_STRIPE_HASH_LOCKS) {
 320                size = NR_STRIPE_HASH_LOCKS;
 321                hash = NR_STRIPE_HASH_LOCKS - 1;
 322        } else
 323                size = 1;
 324        while (size) {
 325                struct list_head *list = &temp_inactive_list[size - 1];
 326
 327                /*
 328                 * We don't hold any lock here yet, raid5_get_active_stripe() might
 329                 * remove stripes from the list
 330                 */
 331                if (!list_empty_careful(list)) {
 332                        spin_lock_irqsave(conf->hash_locks + hash, flags);
 333                        if (list_empty(conf->inactive_list + hash) &&
 334                            !list_empty(list))
 335                                atomic_dec(&conf->empty_inactive_list_nr);
 336                        list_splice_tail_init(list, conf->inactive_list + hash);
 337                        do_wakeup = true;
 338                        spin_unlock_irqrestore(conf->hash_locks + hash, flags);
 339                }
 340                size--;
 341                hash--;
 342        }
 343
 344        if (do_wakeup) {
 345                wake_up(&conf->wait_for_stripe);
 346                if (atomic_read(&conf->active_stripes) == 0)
 347                        wake_up(&conf->wait_for_quiescent);
 348                if (conf->retry_read_aligned)
 349                        md_wakeup_thread(conf->mddev->thread);
 350        }
 351}
 352
 353/* should hold conf->device_lock already */
 354static int release_stripe_list(struct r5conf *conf,
 355                               struct list_head *temp_inactive_list)
 356{
 357        struct stripe_head *sh, *t;
 358        int count = 0;
 359        struct llist_node *head;
 360
 361        head = llist_del_all(&conf->released_stripes);
 362        head = llist_reverse_order(head);
 363        llist_for_each_entry_safe(sh, t, head, release_list) {
 364                int hash;
 365
 366                /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
 367                smp_mb();
 368                clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
 369                /*
 370                 * Don't worry the bit is set here, because if the bit is set
 371                 * again, the count is always > 1. This is true for
 372                 * STRIPE_ON_UNPLUG_LIST bit too.
 373                 */
 374                hash = sh->hash_lock_index;
 375                __release_stripe(conf, sh, &temp_inactive_list[hash]);
 376                count++;
 377        }
 378
 379        return count;
 380}
 381
 382void raid5_release_stripe(struct stripe_head *sh)
 383{
 384        struct r5conf *conf = sh->raid_conf;
 385        unsigned long flags;
 386        struct list_head list;
 387        int hash;
 388        bool wakeup;
 389
 390        /* Avoid release_list until the last reference.
 391         */
 392        if (atomic_add_unless(&sh->count, -1, 1))
 393                return;
 394
 395        if (unlikely(!conf->mddev->thread) ||
 396                test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
 397                goto slow_path;
 398        wakeup = llist_add(&sh->release_list, &conf->released_stripes);
 399        if (wakeup)
 400                md_wakeup_thread(conf->mddev->thread);
 401        return;
 402slow_path:
 403        /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
 404        if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
 405                INIT_LIST_HEAD(&list);
 406                hash = sh->hash_lock_index;
 407                do_release_stripe(conf, sh, &list);
 408                spin_unlock_irqrestore(&conf->device_lock, flags);
 409                release_inactive_stripe_list(conf, &list, hash);
 410        }
 411}
 412
 413static inline void remove_hash(struct stripe_head *sh)
 414{
 415        pr_debug("remove_hash(), stripe %llu\n",
 416                (unsigned long long)sh->sector);
 417
 418        hlist_del_init(&sh->hash);
 419}
 420
 421static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
 422{
 423        struct hlist_head *hp = stripe_hash(conf, sh->sector);
 424
 425        pr_debug("insert_hash(), stripe %llu\n",
 426                (unsigned long long)sh->sector);
 427
 428        hlist_add_head(&sh->hash, hp);
 429}
 430
 431/* find an idle stripe, make sure it is unhashed, and return it. */
 432static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
 433{
 434        struct stripe_head *sh = NULL;
 435        struct list_head *first;
 436
 437        if (list_empty(conf->inactive_list + hash))
 438                goto out;
 439        first = (conf->inactive_list + hash)->next;
 440        sh = list_entry(first, struct stripe_head, lru);
 441        list_del_init(first);
 442        remove_hash(sh);
 443        atomic_inc(&conf->active_stripes);
 444        BUG_ON(hash != sh->hash_lock_index);
 445        if (list_empty(conf->inactive_list + hash))
 446                atomic_inc(&conf->empty_inactive_list_nr);
 447out:
 448        return sh;
 449}
 450
 451static void shrink_buffers(struct stripe_head *sh)
 452{
 453        struct page *p;
 454        int i;
 455        int num = sh->raid_conf->pool_size;
 456
 457        for (i = 0; i < num ; i++) {
 458                WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
 459                p = sh->dev[i].page;
 460                if (!p)
 461                        continue;
 462                sh->dev[i].page = NULL;
 463                put_page(p);
 464        }
 465}
 466
 467static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
 468{
 469        int i;
 470        int num = sh->raid_conf->pool_size;
 471
 472        for (i = 0; i < num; i++) {
 473                struct page *page;
 474
 475                if (!(page = alloc_page(gfp))) {
 476                        return 1;
 477                }
 478                sh->dev[i].page = page;
 479                sh->dev[i].orig_page = page;
 480        }
 481
 482        return 0;
 483}
 484
 485static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
 486                            struct stripe_head *sh);
 487
 488static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
 489{
 490        struct r5conf *conf = sh->raid_conf;
 491        int i, seq;
 492
 493        BUG_ON(atomic_read(&sh->count) != 0);
 494        BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
 495        BUG_ON(stripe_operations_active(sh));
 496        BUG_ON(sh->batch_head);
 497
 498        pr_debug("init_stripe called, stripe %llu\n",
 499                (unsigned long long)sector);
 500retry:
 501        seq = read_seqcount_begin(&conf->gen_lock);
 502        sh->generation = conf->generation - previous;
 503        sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
 504        sh->sector = sector;
 505        stripe_set_idx(sector, conf, previous, sh);
 506        sh->state = 0;
 507
 508        for (i = sh->disks; i--; ) {
 509                struct r5dev *dev = &sh->dev[i];
 510
 511                if (dev->toread || dev->read || dev->towrite || dev->written ||
 512                    test_bit(R5_LOCKED, &dev->flags)) {
 513                        pr_err("sector=%llx i=%d %p %p %p %p %d\n",
 514                               (unsigned long long)sh->sector, i, dev->toread,
 515                               dev->read, dev->towrite, dev->written,
 516                               test_bit(R5_LOCKED, &dev->flags));
 517                        WARN_ON(1);
 518                }
 519                dev->flags = 0;
 520                dev->sector = raid5_compute_blocknr(sh, i, previous);
 521        }
 522        if (read_seqcount_retry(&conf->gen_lock, seq))
 523                goto retry;
 524        sh->overwrite_disks = 0;
 525        insert_hash(conf, sh);
 526        sh->cpu = smp_processor_id();
 527        set_bit(STRIPE_BATCH_READY, &sh->state);
 528}
 529
 530static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
 531                                         short generation)
 532{
 533        struct stripe_head *sh;
 534
 535        pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
 536        hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
 537                if (sh->sector == sector && sh->generation == generation)
 538                        return sh;
 539        pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
 540        return NULL;
 541}
 542
 543/*
 544 * Need to check if array has failed when deciding whether to:
 545 *  - start an array
 546 *  - remove non-faulty devices
 547 *  - add a spare
 548 *  - allow a reshape
 549 * This determination is simple when no reshape is happening.
 550 * However if there is a reshape, we need to carefully check
 551 * both the before and after sections.
 552 * This is because some failed devices may only affect one
 553 * of the two sections, and some non-in_sync devices may
 554 * be insync in the section most affected by failed devices.
 555 */
 556int raid5_calc_degraded(struct r5conf *conf)
 557{
 558        int degraded, degraded2;
 559        int i;
 560
 561        rcu_read_lock();
 562        degraded = 0;
 563        for (i = 0; i < conf->previous_raid_disks; i++) {
 564                struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
 565                if (rdev && test_bit(Faulty, &rdev->flags))
 566                        rdev = rcu_dereference(conf->disks[i].replacement);
 567                if (!rdev || test_bit(Faulty, &rdev->flags))
 568                        degraded++;
 569                else if (test_bit(In_sync, &rdev->flags))
 570                        ;
 571                else
 572                        /* not in-sync or faulty.
 573                         * If the reshape increases the number of devices,
 574                         * this is being recovered by the reshape, so
 575                         * this 'previous' section is not in_sync.
 576                         * If the number of devices is being reduced however,
 577                         * the device can only be part of the array if
 578                         * we are reverting a reshape, so this section will
 579                         * be in-sync.
 580                         */
 581                        if (conf->raid_disks >= conf->previous_raid_disks)
 582                                degraded++;
 583        }
 584        rcu_read_unlock();
 585        if (conf->raid_disks == conf->previous_raid_disks)
 586                return degraded;
 587        rcu_read_lock();
 588        degraded2 = 0;
 589        for (i = 0; i < conf->raid_disks; i++) {
 590                struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
 591                if (rdev && test_bit(Faulty, &rdev->flags))
 592                        rdev = rcu_dereference(conf->disks[i].replacement);
 593                if (!rdev || test_bit(Faulty, &rdev->flags))
 594                        degraded2++;
 595                else if (test_bit(In_sync, &rdev->flags))
 596                        ;
 597                else
 598                        /* not in-sync or faulty.
 599                         * If reshape increases the number of devices, this
 600                         * section has already been recovered, else it
 601                         * almost certainly hasn't.
 602                         */
 603                        if (conf->raid_disks <= conf->previous_raid_disks)
 604                                degraded2++;
 605        }
 606        rcu_read_unlock();
 607        if (degraded2 > degraded)
 608                return degraded2;
 609        return degraded;
 610}
 611
 612static int has_failed(struct r5conf *conf)
 613{
 614        int degraded;
 615
 616        if (conf->mddev->reshape_position == MaxSector)
 617                return conf->mddev->degraded > conf->max_degraded;
 618
 619        degraded = raid5_calc_degraded(conf);
 620        if (degraded > conf->max_degraded)
 621                return 1;
 622        return 0;
 623}
 624
 625struct stripe_head *
 626raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
 627                        int previous, int noblock, int noquiesce)
 628{
 629        struct stripe_head *sh;
 630        int hash = stripe_hash_locks_hash(conf, sector);
 631        int inc_empty_inactive_list_flag;
 632
 633        pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
 634
 635        spin_lock_irq(conf->hash_locks + hash);
 636
 637        do {
 638                wait_event_lock_irq(conf->wait_for_quiescent,
 639                                    conf->quiesce == 0 || noquiesce,
 640                                    *(conf->hash_locks + hash));
 641                sh = __find_stripe(conf, sector, conf->generation - previous);
 642                if (!sh) {
 643                        if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
 644                                sh = get_free_stripe(conf, hash);
 645                                if (!sh && !test_bit(R5_DID_ALLOC,
 646                                                     &conf->cache_state))
 647                                        set_bit(R5_ALLOC_MORE,
 648                                                &conf->cache_state);
 649                        }
 650                        if (noblock && sh == NULL)
 651                                break;
 652
 653                        r5c_check_stripe_cache_usage(conf);
 654                        if (!sh) {
 655                                set_bit(R5_INACTIVE_BLOCKED,
 656                                        &conf->cache_state);
 657                                r5l_wake_reclaim(conf->log, 0);
 658                                wait_event_lock_irq(
 659                                        conf->wait_for_stripe,
 660                                        !list_empty(conf->inactive_list + hash) &&
 661                                        (atomic_read(&conf->active_stripes)
 662                                         < (conf->max_nr_stripes * 3 / 4)
 663                                         || !test_bit(R5_INACTIVE_BLOCKED,
 664                                                      &conf->cache_state)),
 665                                        *(conf->hash_locks + hash));
 666                                clear_bit(R5_INACTIVE_BLOCKED,
 667                                          &conf->cache_state);
 668                        } else {
 669                                init_stripe(sh, sector, previous);
 670                                atomic_inc(&sh->count);
 671                        }
 672                } else if (!atomic_inc_not_zero(&sh->count)) {
 673                        spin_lock(&conf->device_lock);
 674                        if (!atomic_read(&sh->count)) {
 675                                if (!test_bit(STRIPE_HANDLE, &sh->state))
 676                                        atomic_inc(&conf->active_stripes);
 677                                BUG_ON(list_empty(&sh->lru) &&
 678                                       !test_bit(STRIPE_EXPANDING, &sh->state));
 679                                inc_empty_inactive_list_flag = 0;
 680                                if (!list_empty(conf->inactive_list + hash))
 681                                        inc_empty_inactive_list_flag = 1;
 682                                list_del_init(&sh->lru);
 683                                if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
 684                                        atomic_inc(&conf->empty_inactive_list_nr);
 685                                if (sh->group) {
 686                                        sh->group->stripes_cnt--;
 687                                        sh->group = NULL;
 688                                }
 689                        }
 690                        atomic_inc(&sh->count);
 691                        spin_unlock(&conf->device_lock);
 692                }
 693        } while (sh == NULL);
 694
 695        spin_unlock_irq(conf->hash_locks + hash);
 696        return sh;
 697}
 698
 699static bool is_full_stripe_write(struct stripe_head *sh)
 700{
 701        BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
 702        return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
 703}
 704
 705static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
 706                __acquires(&sh1->stripe_lock)
 707                __acquires(&sh2->stripe_lock)
 708{
 709        if (sh1 > sh2) {
 710                spin_lock_irq(&sh2->stripe_lock);
 711                spin_lock_nested(&sh1->stripe_lock, 1);
 712        } else {
 713                spin_lock_irq(&sh1->stripe_lock);
 714                spin_lock_nested(&sh2->stripe_lock, 1);
 715        }
 716}
 717
 718static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
 719                __releases(&sh1->stripe_lock)
 720                __releases(&sh2->stripe_lock)
 721{
 722        spin_unlock(&sh1->stripe_lock);
 723        spin_unlock_irq(&sh2->stripe_lock);
 724}
 725
 726/* Only freshly new full stripe normal write stripe can be added to a batch list */
 727static bool stripe_can_batch(struct stripe_head *sh)
 728{
 729        struct r5conf *conf = sh->raid_conf;
 730
 731        if (raid5_has_log(conf) || raid5_has_ppl(conf))
 732                return false;
 733        return test_bit(STRIPE_BATCH_READY, &sh->state) &&
 734                !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
 735                is_full_stripe_write(sh);
 736}
 737
 738/* we only do back search */
 739static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
 740{
 741        struct stripe_head *head;
 742        sector_t head_sector, tmp_sec;
 743        int hash;
 744        int dd_idx;
 745        int inc_empty_inactive_list_flag;
 746
 747        /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
 748        tmp_sec = sh->sector;
 749        if (!sector_div(tmp_sec, conf->chunk_sectors))
 750                return;
 751        head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf);
 752
 753        hash = stripe_hash_locks_hash(conf, head_sector);
 754        spin_lock_irq(conf->hash_locks + hash);
 755        head = __find_stripe(conf, head_sector, conf->generation);
 756        if (head && !atomic_inc_not_zero(&head->count)) {
 757                spin_lock(&conf->device_lock);
 758                if (!atomic_read(&head->count)) {
 759                        if (!test_bit(STRIPE_HANDLE, &head->state))
 760                                atomic_inc(&conf->active_stripes);
 761                        BUG_ON(list_empty(&head->lru) &&
 762                               !test_bit(STRIPE_EXPANDING, &head->state));
 763                        inc_empty_inactive_list_flag = 0;
 764                        if (!list_empty(conf->inactive_list + hash))
 765                                inc_empty_inactive_list_flag = 1;
 766                        list_del_init(&head->lru);
 767                        if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
 768                                atomic_inc(&conf->empty_inactive_list_nr);
 769                        if (head->group) {
 770                                head->group->stripes_cnt--;
 771                                head->group = NULL;
 772                        }
 773                }
 774                atomic_inc(&head->count);
 775                spin_unlock(&conf->device_lock);
 776        }
 777        spin_unlock_irq(conf->hash_locks + hash);
 778
 779        if (!head)
 780                return;
 781        if (!stripe_can_batch(head))
 782                goto out;
 783
 784        lock_two_stripes(head, sh);
 785        /* clear_batch_ready clear the flag */
 786        if (!stripe_can_batch(head) || !stripe_can_batch(sh))
 787                goto unlock_out;
 788
 789        if (sh->batch_head)
 790                goto unlock_out;
 791
 792        dd_idx = 0;
 793        while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
 794                dd_idx++;
 795        if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
 796            bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
 797                goto unlock_out;
 798
 799        if (head->batch_head) {
 800                spin_lock(&head->batch_head->batch_lock);
 801                /* This batch list is already running */
 802                if (!stripe_can_batch(head)) {
 803                        spin_unlock(&head->batch_head->batch_lock);
 804                        goto unlock_out;
 805                }
 806                /*
 807                 * We must assign batch_head of this stripe within the
 808                 * batch_lock, otherwise clear_batch_ready of batch head
 809                 * stripe could clear BATCH_READY bit of this stripe and
 810                 * this stripe->batch_head doesn't get assigned, which
 811                 * could confuse clear_batch_ready for this stripe
 812                 */
 813                sh->batch_head = head->batch_head;
 814
 815                /*
 816                 * at this point, head's BATCH_READY could be cleared, but we
 817                 * can still add the stripe to batch list
 818                 */
 819                list_add(&sh->batch_list, &head->batch_list);
 820                spin_unlock(&head->batch_head->batch_lock);
 821        } else {
 822                head->batch_head = head;
 823                sh->batch_head = head->batch_head;
 824                spin_lock(&head->batch_lock);
 825                list_add_tail(&sh->batch_list, &head->batch_list);
 826                spin_unlock(&head->batch_lock);
 827        }
 828
 829        if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
 830                if (atomic_dec_return(&conf->preread_active_stripes)
 831                    < IO_THRESHOLD)
 832                        md_wakeup_thread(conf->mddev->thread);
 833
 834        if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
 835                int seq = sh->bm_seq;
 836                if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
 837                    sh->batch_head->bm_seq > seq)
 838                        seq = sh->batch_head->bm_seq;
 839                set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
 840                sh->batch_head->bm_seq = seq;
 841        }
 842
 843        atomic_inc(&sh->count);
 844unlock_out:
 845        unlock_two_stripes(head, sh);
 846out:
 847        raid5_release_stripe(head);
 848}
 849
 850/* Determine if 'data_offset' or 'new_data_offset' should be used
 851 * in this stripe_head.
 852 */
 853static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
 854{
 855        sector_t progress = conf->reshape_progress;
 856        /* Need a memory barrier to make sure we see the value
 857         * of conf->generation, or ->data_offset that was set before
 858         * reshape_progress was updated.
 859         */
 860        smp_rmb();
 861        if (progress == MaxSector)
 862                return 0;
 863        if (sh->generation == conf->generation - 1)
 864                return 0;
 865        /* We are in a reshape, and this is a new-generation stripe,
 866         * so use new_data_offset.
 867         */
 868        return 1;
 869}
 870
 871static void dispatch_bio_list(struct bio_list *tmp)
 872{
 873        struct bio *bio;
 874
 875        while ((bio = bio_list_pop(tmp)))
 876                submit_bio_noacct(bio);
 877}
 878
 879static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
 880{
 881        const struct r5pending_data *da = list_entry(a,
 882                                struct r5pending_data, sibling);
 883        const struct r5pending_data *db = list_entry(b,
 884                                struct r5pending_data, sibling);
 885        if (da->sector > db->sector)
 886                return 1;
 887        if (da->sector < db->sector)
 888                return -1;
 889        return 0;
 890}
 891
 892static void dispatch_defer_bios(struct r5conf *conf, int target,
 893                                struct bio_list *list)
 894{
 895        struct r5pending_data *data;
 896        struct list_head *first, *next = NULL;
 897        int cnt = 0;
 898
 899        if (conf->pending_data_cnt == 0)
 900                return;
 901
 902        list_sort(NULL, &conf->pending_list, cmp_stripe);
 903
 904        first = conf->pending_list.next;
 905
 906        /* temporarily move the head */
 907        if (conf->next_pending_data)
 908                list_move_tail(&conf->pending_list,
 909                                &conf->next_pending_data->sibling);
 910
 911        while (!list_empty(&conf->pending_list)) {
 912                data = list_first_entry(&conf->pending_list,
 913                        struct r5pending_data, sibling);
 914                if (&data->sibling == first)
 915                        first = data->sibling.next;
 916                next = data->sibling.next;
 917
 918                bio_list_merge(list, &data->bios);
 919                list_move(&data->sibling, &conf->free_list);
 920                cnt++;
 921                if (cnt >= target)
 922                        break;
 923        }
 924        conf->pending_data_cnt -= cnt;
 925        BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
 926
 927        if (next != &conf->pending_list)
 928                conf->next_pending_data = list_entry(next,
 929                                struct r5pending_data, sibling);
 930        else
 931                conf->next_pending_data = NULL;
 932        /* list isn't empty */
 933        if (first != &conf->pending_list)
 934                list_move_tail(&conf->pending_list, first);
 935}
 936
 937static void flush_deferred_bios(struct r5conf *conf)
 938{
 939        struct bio_list tmp = BIO_EMPTY_LIST;
 940
 941        if (conf->pending_data_cnt == 0)
 942                return;
 943
 944        spin_lock(&conf->pending_bios_lock);
 945        dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
 946        BUG_ON(conf->pending_data_cnt != 0);
 947        spin_unlock(&conf->pending_bios_lock);
 948
 949        dispatch_bio_list(&tmp);
 950}
 951
 952static void defer_issue_bios(struct r5conf *conf, sector_t sector,
 953                                struct bio_list *bios)
 954{
 955        struct bio_list tmp = BIO_EMPTY_LIST;
 956        struct r5pending_data *ent;
 957
 958        spin_lock(&conf->pending_bios_lock);
 959        ent = list_first_entry(&conf->free_list, struct r5pending_data,
 960                                                        sibling);
 961        list_move_tail(&ent->sibling, &conf->pending_list);
 962        ent->sector = sector;
 963        bio_list_init(&ent->bios);
 964        bio_list_merge(&ent->bios, bios);
 965        conf->pending_data_cnt++;
 966        if (conf->pending_data_cnt >= PENDING_IO_MAX)
 967                dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
 968
 969        spin_unlock(&conf->pending_bios_lock);
 970
 971        dispatch_bio_list(&tmp);
 972}
 973
 974static void
 975raid5_end_read_request(struct bio *bi);
 976static void
 977raid5_end_write_request(struct bio *bi);
 978
 979static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
 980{
 981        struct r5conf *conf = sh->raid_conf;
 982        int i, disks = sh->disks;
 983        struct stripe_head *head_sh = sh;
 984        struct bio_list pending_bios = BIO_EMPTY_LIST;
 985        bool should_defer;
 986
 987        might_sleep();
 988
 989        if (log_stripe(sh, s) == 0)
 990                return;
 991
 992        should_defer = conf->batch_bio_dispatch && conf->group_cnt;
 993
 994        for (i = disks; i--; ) {
 995                int op, op_flags = 0;
 996                int replace_only = 0;
 997                struct bio *bi, *rbi;
 998                struct md_rdev *rdev, *rrdev = NULL;
 999
1000                sh = head_sh;
1001                if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1002                        op = REQ_OP_WRITE;
1003                        if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1004                                op_flags = REQ_FUA;
1005                        if (test_bit(R5_Discard, &sh->dev[i].flags))
1006                                op = REQ_OP_DISCARD;
1007                } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1008                        op = REQ_OP_READ;
1009                else if (test_and_clear_bit(R5_WantReplace,
1010                                            &sh->dev[i].flags)) {
1011                        op = REQ_OP_WRITE;
1012                        replace_only = 1;
1013                } else
1014                        continue;
1015                if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1016                        op_flags |= REQ_SYNC;
1017
1018again:
1019                bi = &sh->dev[i].req;
1020                rbi = &sh->dev[i].rreq; /* For writing to replacement */
1021
1022                rcu_read_lock();
1023                rrdev = rcu_dereference(conf->disks[i].replacement);
1024                smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1025                rdev = rcu_dereference(conf->disks[i].rdev);
1026                if (!rdev) {
1027                        rdev = rrdev;
1028                        rrdev = NULL;
1029                }
1030                if (op_is_write(op)) {
1031                        if (replace_only)
1032                                rdev = NULL;
1033                        if (rdev == rrdev)
1034                                /* We raced and saw duplicates */
1035                                rrdev = NULL;
1036                } else {
1037                        if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1038                                rdev = rrdev;
1039                        rrdev = NULL;
1040                }
1041
1042                if (rdev && test_bit(Faulty, &rdev->flags))
1043                        rdev = NULL;
1044                if (rdev)
1045                        atomic_inc(&rdev->nr_pending);
1046                if (rrdev && test_bit(Faulty, &rrdev->flags))
1047                        rrdev = NULL;
1048                if (rrdev)
1049                        atomic_inc(&rrdev->nr_pending);
1050                rcu_read_unlock();
1051
1052                /* We have already checked bad blocks for reads.  Now
1053                 * need to check for writes.  We never accept write errors
1054                 * on the replacement, so we don't to check rrdev.
1055                 */
1056                while (op_is_write(op) && rdev &&
1057                       test_bit(WriteErrorSeen, &rdev->flags)) {
1058                        sector_t first_bad;
1059                        int bad_sectors;
1060                        int bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
1061                                              &first_bad, &bad_sectors);
1062                        if (!bad)
1063                                break;
1064
1065                        if (bad < 0) {
1066                                set_bit(BlockedBadBlocks, &rdev->flags);
1067                                if (!conf->mddev->external &&
1068                                    conf->mddev->sb_flags) {
1069                                        /* It is very unlikely, but we might
1070                                         * still need to write out the
1071                                         * bad block log - better give it
1072                                         * a chance*/
1073                                        md_check_recovery(conf->mddev);
1074                                }
1075                                /*
1076                                 * Because md_wait_for_blocked_rdev
1077                                 * will dec nr_pending, we must
1078                                 * increment it first.
1079                                 */
1080                                atomic_inc(&rdev->nr_pending);
1081                                md_wait_for_blocked_rdev(rdev, conf->mddev);
1082                        } else {
1083                                /* Acknowledged bad block - skip the write */
1084                                rdev_dec_pending(rdev, conf->mddev);
1085                                rdev = NULL;
1086                        }
1087                }
1088
1089                if (rdev) {
1090                        if (s->syncing || s->expanding || s->expanded
1091                            || s->replacing)
1092                                md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf));
1093
1094                        set_bit(STRIPE_IO_STARTED, &sh->state);
1095
1096                        bio_set_dev(bi, rdev->bdev);
1097                        bio_set_op_attrs(bi, op, op_flags);
1098                        bi->bi_end_io = op_is_write(op)
1099                                ? raid5_end_write_request
1100                                : raid5_end_read_request;
1101                        bi->bi_private = sh;
1102
1103                        pr_debug("%s: for %llu schedule op %d on disc %d\n",
1104                                __func__, (unsigned long long)sh->sector,
1105                                bi->bi_opf, i);
1106                        atomic_inc(&sh->count);
1107                        if (sh != head_sh)
1108                                atomic_inc(&head_sh->count);
1109                        if (use_new_offset(conf, sh))
1110                                bi->bi_iter.bi_sector = (sh->sector
1111                                                 + rdev->new_data_offset);
1112                        else
1113                                bi->bi_iter.bi_sector = (sh->sector
1114                                                 + rdev->data_offset);
1115                        if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1116                                bi->bi_opf |= REQ_NOMERGE;
1117
1118                        if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1119                                WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1120
1121                        if (!op_is_write(op) &&
1122                            test_bit(R5_InJournal, &sh->dev[i].flags))
1123                                /*
1124                                 * issuing read for a page in journal, this
1125                                 * must be preparing for prexor in rmw; read
1126                                 * the data into orig_page
1127                                 */
1128                                sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1129                        else
1130                                sh->dev[i].vec.bv_page = sh->dev[i].page;
1131                        bi->bi_vcnt = 1;
1132                        bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1133                        bi->bi_io_vec[0].bv_offset = 0;
1134                        bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1135                        bi->bi_write_hint = sh->dev[i].write_hint;
1136                        if (!rrdev)
1137                                sh->dev[i].write_hint = RWH_WRITE_LIFE_NOT_SET;
1138                        /*
1139                         * If this is discard request, set bi_vcnt 0. We don't
1140                         * want to confuse SCSI because SCSI will replace payload
1141                         */
1142                        if (op == REQ_OP_DISCARD)
1143                                bi->bi_vcnt = 0;
1144                        if (rrdev)
1145                                set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1146
1147                        if (conf->mddev->gendisk)
1148                                trace_block_bio_remap(bi->bi_disk->queue,
1149                                                      bi, disk_devt(conf->mddev->gendisk),
1150                                                      sh->dev[i].sector);
1151                        if (should_defer && op_is_write(op))
1152                                bio_list_add(&pending_bios, bi);
1153                        else
1154                                submit_bio_noacct(bi);
1155                }
1156                if (rrdev) {
1157                        if (s->syncing || s->expanding || s->expanded
1158                            || s->replacing)
1159                                md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf));
1160
1161                        set_bit(STRIPE_IO_STARTED, &sh->state);
1162
1163                        bio_set_dev(rbi, rrdev->bdev);
1164                        bio_set_op_attrs(rbi, op, op_flags);
1165                        BUG_ON(!op_is_write(op));
1166                        rbi->bi_end_io = raid5_end_write_request;
1167                        rbi->bi_private = sh;
1168
1169                        pr_debug("%s: for %llu schedule op %d on "
1170                                 "replacement disc %d\n",
1171                                __func__, (unsigned long long)sh->sector,
1172                                rbi->bi_opf, i);
1173                        atomic_inc(&sh->count);
1174                        if (sh != head_sh)
1175                                atomic_inc(&head_sh->count);
1176                        if (use_new_offset(conf, sh))
1177                                rbi->bi_iter.bi_sector = (sh->sector
1178                                                  + rrdev->new_data_offset);
1179                        else
1180                                rbi->bi_iter.bi_sector = (sh->sector
1181                                                  + rrdev->data_offset);
1182                        if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1183                                WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1184                        sh->dev[i].rvec.bv_page = sh->dev[i].page;
1185                        rbi->bi_vcnt = 1;
1186                        rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1187                        rbi->bi_io_vec[0].bv_offset = 0;
1188                        rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1189                        rbi->bi_write_hint = sh->dev[i].write_hint;
1190                        sh->dev[i].write_hint = RWH_WRITE_LIFE_NOT_SET;
1191                        /*
1192                         * If this is discard request, set bi_vcnt 0. We don't
1193                         * want to confuse SCSI because SCSI will replace payload
1194                         */
1195                        if (op == REQ_OP_DISCARD)
1196                                rbi->bi_vcnt = 0;
1197                        if (conf->mddev->gendisk)
1198                                trace_block_bio_remap(rbi->bi_disk->queue,
1199                                                      rbi, disk_devt(conf->mddev->gendisk),
1200                                                      sh->dev[i].sector);
1201                        if (should_defer && op_is_write(op))
1202                                bio_list_add(&pending_bios, rbi);
1203                        else
1204                                submit_bio_noacct(rbi);
1205                }
1206                if (!rdev && !rrdev) {
1207                        if (op_is_write(op))
1208                                set_bit(STRIPE_DEGRADED, &sh->state);
1209                        pr_debug("skip op %d on disc %d for sector %llu\n",
1210                                bi->bi_opf, i, (unsigned long long)sh->sector);
1211                        clear_bit(R5_LOCKED, &sh->dev[i].flags);
1212                        set_bit(STRIPE_HANDLE, &sh->state);
1213                }
1214
1215                if (!head_sh->batch_head)
1216                        continue;
1217                sh = list_first_entry(&sh->batch_list, struct stripe_head,
1218                                      batch_list);
1219                if (sh != head_sh)
1220                        goto again;
1221        }
1222
1223        if (should_defer && !bio_list_empty(&pending_bios))
1224                defer_issue_bios(conf, head_sh->sector, &pending_bios);
1225}
1226
1227static struct dma_async_tx_descriptor *
1228async_copy_data(int frombio, struct bio *bio, struct page **page,
1229        sector_t sector, struct dma_async_tx_descriptor *tx,
1230        struct stripe_head *sh, int no_skipcopy)
1231{
1232        struct bio_vec bvl;
1233        struct bvec_iter iter;
1234        struct page *bio_page;
1235        int page_offset;
1236        struct async_submit_ctl submit;
1237        enum async_tx_flags flags = 0;
1238        struct r5conf *conf = sh->raid_conf;
1239
1240        if (bio->bi_iter.bi_sector >= sector)
1241                page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1242        else
1243                page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1244
1245        if (frombio)
1246                flags |= ASYNC_TX_FENCE;
1247        init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1248
1249        bio_for_each_segment(bvl, bio, iter) {
1250                int len = bvl.bv_len;
1251                int clen;
1252                int b_offset = 0;
1253
1254                if (page_offset < 0) {
1255                        b_offset = -page_offset;
1256                        page_offset += b_offset;
1257                        len -= b_offset;
1258                }
1259
1260                if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf))
1261                        clen = RAID5_STRIPE_SIZE(conf) - page_offset;
1262                else
1263                        clen = len;
1264
1265                if (clen > 0) {
1266                        b_offset += bvl.bv_offset;
1267                        bio_page = bvl.bv_page;
1268                        if (frombio) {
1269                                if (conf->skip_copy &&
1270                                    b_offset == 0 && page_offset == 0 &&
1271                                    clen == RAID5_STRIPE_SIZE(conf) &&
1272                                    !no_skipcopy)
1273                                        *page = bio_page;
1274                                else
1275                                        tx = async_memcpy(*page, bio_page, page_offset,
1276                                                  b_offset, clen, &submit);
1277                        } else
1278                                tx = async_memcpy(bio_page, *page, b_offset,
1279                                                  page_offset, clen, &submit);
1280                }
1281                /* chain the operations */
1282                submit.depend_tx = tx;
1283
1284                if (clen < len) /* hit end of page */
1285                        break;
1286                page_offset +=  len;
1287        }
1288
1289        return tx;
1290}
1291
1292static void ops_complete_biofill(void *stripe_head_ref)
1293{
1294        struct stripe_head *sh = stripe_head_ref;
1295        int i;
1296        struct r5conf *conf = sh->raid_conf;
1297
1298        pr_debug("%s: stripe %llu\n", __func__,
1299                (unsigned long long)sh->sector);
1300
1301        /* clear completed biofills */
1302        for (i = sh->disks; i--; ) {
1303                struct r5dev *dev = &sh->dev[i];
1304
1305                /* acknowledge completion of a biofill operation */
1306                /* and check if we need to reply to a read request,
1307                 * new R5_Wantfill requests are held off until
1308                 * !STRIPE_BIOFILL_RUN
1309                 */
1310                if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1311                        struct bio *rbi, *rbi2;
1312
1313                        BUG_ON(!dev->read);
1314                        rbi = dev->read;
1315                        dev->read = NULL;
1316                        while (rbi && rbi->bi_iter.bi_sector <
1317                                dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1318                                rbi2 = r5_next_bio(conf, rbi, dev->sector);
1319                                bio_endio(rbi);
1320                                rbi = rbi2;
1321                        }
1322                }
1323        }
1324        clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1325
1326        set_bit(STRIPE_HANDLE, &sh->state);
1327        raid5_release_stripe(sh);
1328}
1329
1330static void ops_run_biofill(struct stripe_head *sh)
1331{
1332        struct dma_async_tx_descriptor *tx = NULL;
1333        struct async_submit_ctl submit;
1334        int i;
1335        struct r5conf *conf = sh->raid_conf;
1336
1337        BUG_ON(sh->batch_head);
1338        pr_debug("%s: stripe %llu\n", __func__,
1339                (unsigned long long)sh->sector);
1340
1341        for (i = sh->disks; i--; ) {
1342                struct r5dev *dev = &sh->dev[i];
1343                if (test_bit(R5_Wantfill, &dev->flags)) {
1344                        struct bio *rbi;
1345                        spin_lock_irq(&sh->stripe_lock);
1346                        dev->read = rbi = dev->toread;
1347                        dev->toread = NULL;
1348                        spin_unlock_irq(&sh->stripe_lock);
1349                        while (rbi && rbi->bi_iter.bi_sector <
1350                                dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1351                                tx = async_copy_data(0, rbi, &dev->page,
1352                                                     dev->sector, tx, sh, 0);
1353                                rbi = r5_next_bio(conf, rbi, dev->sector);
1354                        }
1355                }
1356        }
1357
1358        atomic_inc(&sh->count);
1359        init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1360        async_trigger_callback(&submit);
1361}
1362
1363static void mark_target_uptodate(struct stripe_head *sh, int target)
1364{
1365        struct r5dev *tgt;
1366
1367        if (target < 0)
1368                return;
1369
1370        tgt = &sh->dev[target];
1371        set_bit(R5_UPTODATE, &tgt->flags);
1372        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1373        clear_bit(R5_Wantcompute, &tgt->flags);
1374}
1375
1376static void ops_complete_compute(void *stripe_head_ref)
1377{
1378        struct stripe_head *sh = stripe_head_ref;
1379
1380        pr_debug("%s: stripe %llu\n", __func__,
1381                (unsigned long long)sh->sector);
1382
1383        /* mark the computed target(s) as uptodate */
1384        mark_target_uptodate(sh, sh->ops.target);
1385        mark_target_uptodate(sh, sh->ops.target2);
1386
1387        clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1388        if (sh->check_state == check_state_compute_run)
1389                sh->check_state = check_state_compute_result;
1390        set_bit(STRIPE_HANDLE, &sh->state);
1391        raid5_release_stripe(sh);
1392}
1393
1394/* return a pointer to the address conversion region of the scribble buffer */
1395static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1396{
1397        return percpu->scribble + i * percpu->scribble_obj_size;
1398}
1399
1400/* return a pointer to the address conversion region of the scribble buffer */
1401static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1402                                 struct raid5_percpu *percpu, int i)
1403{
1404        return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
1405}
1406
1407static struct dma_async_tx_descriptor *
1408ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1409{
1410        int disks = sh->disks;
1411        struct page **xor_srcs = to_addr_page(percpu, 0);
1412        int target = sh->ops.target;
1413        struct r5dev *tgt = &sh->dev[target];
1414        struct page *xor_dest = tgt->page;
1415        int count = 0;
1416        struct dma_async_tx_descriptor *tx;
1417        struct async_submit_ctl submit;
1418        int i;
1419
1420        BUG_ON(sh->batch_head);
1421
1422        pr_debug("%s: stripe %llu block: %d\n",
1423                __func__, (unsigned long long)sh->sector, target);
1424        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1425
1426        for (i = disks; i--; )
1427                if (i != target)
1428                        xor_srcs[count++] = sh->dev[i].page;
1429
1430        atomic_inc(&sh->count);
1431
1432        init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1433                          ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1434        if (unlikely(count == 1))
1435                tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0,
1436                                RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1437        else
1438                tx = async_xor(xor_dest, xor_srcs, 0, count,
1439                                RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1440
1441        return tx;
1442}
1443
1444/* set_syndrome_sources - populate source buffers for gen_syndrome
1445 * @srcs - (struct page *) array of size sh->disks
1446 * @sh - stripe_head to parse
1447 *
1448 * Populates srcs in proper layout order for the stripe and returns the
1449 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1450 * destination buffer is recorded in srcs[count] and the Q destination
1451 * is recorded in srcs[count+1]].
1452 */
1453static int set_syndrome_sources(struct page **srcs,
1454                                struct stripe_head *sh,
1455                                int srctype)
1456{
1457        int disks = sh->disks;
1458        int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1459        int d0_idx = raid6_d0(sh);
1460        int count;
1461        int i;
1462
1463        for (i = 0; i < disks; i++)
1464                srcs[i] = NULL;
1465
1466        count = 0;
1467        i = d0_idx;
1468        do {
1469                int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1470                struct r5dev *dev = &sh->dev[i];
1471
1472                if (i == sh->qd_idx || i == sh->pd_idx ||
1473                    (srctype == SYNDROME_SRC_ALL) ||
1474                    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1475                     (test_bit(R5_Wantdrain, &dev->flags) ||
1476                      test_bit(R5_InJournal, &dev->flags))) ||
1477                    (srctype == SYNDROME_SRC_WRITTEN &&
1478                     (dev->written ||
1479                      test_bit(R5_InJournal, &dev->flags)))) {
1480                        if (test_bit(R5_InJournal, &dev->flags))
1481                                srcs[slot] = sh->dev[i].orig_page;
1482                        else
1483                                srcs[slot] = sh->dev[i].page;
1484                }
1485                i = raid6_next_disk(i, disks);
1486        } while (i != d0_idx);
1487
1488        return syndrome_disks;
1489}
1490
1491static struct dma_async_tx_descriptor *
1492ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1493{
1494        int disks = sh->disks;
1495        struct page **blocks = to_addr_page(percpu, 0);
1496        int target;
1497        int qd_idx = sh->qd_idx;
1498        struct dma_async_tx_descriptor *tx;
1499        struct async_submit_ctl submit;
1500        struct r5dev *tgt;
1501        struct page *dest;
1502        int i;
1503        int count;
1504
1505        BUG_ON(sh->batch_head);
1506        if (sh->ops.target < 0)
1507                target = sh->ops.target2;
1508        else if (sh->ops.target2 < 0)
1509                target = sh->ops.target;
1510        else
1511                /* we should only have one valid target */
1512                BUG();
1513        BUG_ON(target < 0);
1514        pr_debug("%s: stripe %llu block: %d\n",
1515                __func__, (unsigned long long)sh->sector, target);
1516
1517        tgt = &sh->dev[target];
1518        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1519        dest = tgt->page;
1520
1521        atomic_inc(&sh->count);
1522
1523        if (target == qd_idx) {
1524                count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1525                blocks[count] = NULL; /* regenerating p is not necessary */
1526                BUG_ON(blocks[count+1] != dest); /* q should already be set */
1527                init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1528                                  ops_complete_compute, sh,
1529                                  to_addr_conv(sh, percpu, 0));
1530                tx = async_gen_syndrome(blocks, 0, count+2,
1531                                RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1532        } else {
1533                /* Compute any data- or p-drive using XOR */
1534                count = 0;
1535                for (i = disks; i-- ; ) {
1536                        if (i == target || i == qd_idx)
1537                                continue;
1538                        blocks[count++] = sh->dev[i].page;
1539                }
1540
1541                init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1542                                  NULL, ops_complete_compute, sh,
1543                                  to_addr_conv(sh, percpu, 0));
1544                tx = async_xor(dest, blocks, 0, count,
1545                                RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1546        }
1547
1548        return tx;
1549}
1550
1551static struct dma_async_tx_descriptor *
1552ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1553{
1554        int i, count, disks = sh->disks;
1555        int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1556        int d0_idx = raid6_d0(sh);
1557        int faila = -1, failb = -1;
1558        int target = sh->ops.target;
1559        int target2 = sh->ops.target2;
1560        struct r5dev *tgt = &sh->dev[target];
1561        struct r5dev *tgt2 = &sh->dev[target2];
1562        struct dma_async_tx_descriptor *tx;
1563        struct page **blocks = to_addr_page(percpu, 0);
1564        struct async_submit_ctl submit;
1565
1566        BUG_ON(sh->batch_head);
1567        pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1568                 __func__, (unsigned long long)sh->sector, target, target2);
1569        BUG_ON(target < 0 || target2 < 0);
1570        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1571        BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1572
1573        /* we need to open-code set_syndrome_sources to handle the
1574         * slot number conversion for 'faila' and 'failb'
1575         */
1576        for (i = 0; i < disks ; i++)
1577                blocks[i] = NULL;
1578        count = 0;
1579        i = d0_idx;
1580        do {
1581                int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1582
1583                blocks[slot] = sh->dev[i].page;
1584
1585                if (i == target)
1586                        faila = slot;
1587                if (i == target2)
1588                        failb = slot;
1589                i = raid6_next_disk(i, disks);
1590        } while (i != d0_idx);
1591
1592        BUG_ON(faila == failb);
1593        if (failb < faila)
1594                swap(faila, failb);
1595        pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1596                 __func__, (unsigned long long)sh->sector, faila, failb);
1597
1598        atomic_inc(&sh->count);
1599
1600        if (failb == syndrome_disks+1) {
1601                /* Q disk is one of the missing disks */
1602                if (faila == syndrome_disks) {
1603                        /* Missing P+Q, just recompute */
1604                        init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1605                                          ops_complete_compute, sh,
1606                                          to_addr_conv(sh, percpu, 0));
1607                        return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1608                                                  RAID5_STRIPE_SIZE(sh->raid_conf),
1609                                                  &submit);
1610                } else {
1611                        struct page *dest;
1612                        int data_target;
1613                        int qd_idx = sh->qd_idx;
1614
1615                        /* Missing D+Q: recompute D from P, then recompute Q */
1616                        if (target == qd_idx)
1617                                data_target = target2;
1618                        else
1619                                data_target = target;
1620
1621                        count = 0;
1622                        for (i = disks; i-- ; ) {
1623                                if (i == data_target || i == qd_idx)
1624                                        continue;
1625                                blocks[count++] = sh->dev[i].page;
1626                        }
1627                        dest = sh->dev[data_target].page;
1628                        init_async_submit(&submit,
1629                                          ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1630                                          NULL, NULL, NULL,
1631                                          to_addr_conv(sh, percpu, 0));
1632                        tx = async_xor(dest, blocks, 0, count,
1633                                       RAID5_STRIPE_SIZE(sh->raid_conf),
1634                                       &submit);
1635
1636                        count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1637                        init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1638                                          ops_complete_compute, sh,
1639                                          to_addr_conv(sh, percpu, 0));
1640                        return async_gen_syndrome(blocks, 0, count+2,
1641                                                  RAID5_STRIPE_SIZE(sh->raid_conf),
1642                                                  &submit);
1643                }
1644        } else {
1645                init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1646                                  ops_complete_compute, sh,
1647                                  to_addr_conv(sh, percpu, 0));
1648                if (failb == syndrome_disks) {
1649                        /* We're missing D+P. */
1650                        return async_raid6_datap_recov(syndrome_disks+2,
1651                                                RAID5_STRIPE_SIZE(sh->raid_conf),
1652                                                faila,
1653                                                blocks, &submit);
1654                } else {
1655                        /* We're missing D+D. */
1656                        return async_raid6_2data_recov(syndrome_disks+2,
1657                                                RAID5_STRIPE_SIZE(sh->raid_conf),
1658                                                faila, failb,
1659                                                blocks, &submit);
1660                }
1661        }
1662}
1663
1664static void ops_complete_prexor(void *stripe_head_ref)
1665{
1666        struct stripe_head *sh = stripe_head_ref;
1667
1668        pr_debug("%s: stripe %llu\n", __func__,
1669                (unsigned long long)sh->sector);
1670
1671        if (r5c_is_writeback(sh->raid_conf->log))
1672                /*
1673                 * raid5-cache write back uses orig_page during prexor.
1674                 * After prexor, it is time to free orig_page
1675                 */
1676                r5c_release_extra_page(sh);
1677}
1678
1679static struct dma_async_tx_descriptor *
1680ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1681                struct dma_async_tx_descriptor *tx)
1682{
1683        int disks = sh->disks;
1684        struct page **xor_srcs = to_addr_page(percpu, 0);
1685        int count = 0, pd_idx = sh->pd_idx, i;
1686        struct async_submit_ctl submit;
1687
1688        /* existing parity data subtracted */
1689        struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1690
1691        BUG_ON(sh->batch_head);
1692        pr_debug("%s: stripe %llu\n", __func__,
1693                (unsigned long long)sh->sector);
1694
1695        for (i = disks; i--; ) {
1696                struct r5dev *dev = &sh->dev[i];
1697                /* Only process blocks that are known to be uptodate */
1698                if (test_bit(R5_InJournal, &dev->flags))
1699                        xor_srcs[count++] = dev->orig_page;
1700                else if (test_bit(R5_Wantdrain, &dev->flags))
1701                        xor_srcs[count++] = dev->page;
1702        }
1703
1704        init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1705                          ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1706        tx = async_xor(xor_dest, xor_srcs, 0, count,
1707                        RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1708
1709        return tx;
1710}
1711
1712static struct dma_async_tx_descriptor *
1713ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1714                struct dma_async_tx_descriptor *tx)
1715{
1716        struct page **blocks = to_addr_page(percpu, 0);
1717        int count;
1718        struct async_submit_ctl submit;
1719
1720        pr_debug("%s: stripe %llu\n", __func__,
1721                (unsigned long long)sh->sector);
1722
1723        count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1724
1725        init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1726                          ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1727        tx = async_gen_syndrome(blocks, 0, count+2,
1728                        RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1729
1730        return tx;
1731}
1732
1733static struct dma_async_tx_descriptor *
1734ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1735{
1736        struct r5conf *conf = sh->raid_conf;
1737        int disks = sh->disks;
1738        int i;
1739        struct stripe_head *head_sh = sh;
1740
1741        pr_debug("%s: stripe %llu\n", __func__,
1742                (unsigned long long)sh->sector);
1743
1744        for (i = disks; i--; ) {
1745                struct r5dev *dev;
1746                struct bio *chosen;
1747
1748                sh = head_sh;
1749                if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1750                        struct bio *wbi;
1751
1752again:
1753                        dev = &sh->dev[i];
1754                        /*
1755                         * clear R5_InJournal, so when rewriting a page in
1756                         * journal, it is not skipped by r5l_log_stripe()
1757                         */
1758                        clear_bit(R5_InJournal, &dev->flags);
1759                        spin_lock_irq(&sh->stripe_lock);
1760                        chosen = dev->towrite;
1761                        dev->towrite = NULL;
1762                        sh->overwrite_disks = 0;
1763                        BUG_ON(dev->written);
1764                        wbi = dev->written = chosen;
1765                        spin_unlock_irq(&sh->stripe_lock);
1766                        WARN_ON(dev->page != dev->orig_page);
1767
1768                        while (wbi && wbi->bi_iter.bi_sector <
1769                                dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1770                                if (wbi->bi_opf & REQ_FUA)
1771                                        set_bit(R5_WantFUA, &dev->flags);
1772                                if (wbi->bi_opf & REQ_SYNC)
1773                                        set_bit(R5_SyncIO, &dev->flags);
1774                                if (bio_op(wbi) == REQ_OP_DISCARD)
1775                                        set_bit(R5_Discard, &dev->flags);
1776                                else {
1777                                        tx = async_copy_data(1, wbi, &dev->page,
1778                                                             dev->sector, tx, sh,
1779                                                             r5c_is_writeback(conf->log));
1780                                        if (dev->page != dev->orig_page &&
1781                                            !r5c_is_writeback(conf->log)) {
1782                                                set_bit(R5_SkipCopy, &dev->flags);
1783                                                clear_bit(R5_UPTODATE, &dev->flags);
1784                                                clear_bit(R5_OVERWRITE, &dev->flags);
1785                                        }
1786                                }
1787                                wbi = r5_next_bio(conf, wbi, dev->sector);
1788                        }
1789
1790                        if (head_sh->batch_head) {
1791                                sh = list_first_entry(&sh->batch_list,
1792                                                      struct stripe_head,
1793                                                      batch_list);
1794                                if (sh == head_sh)
1795                                        continue;
1796                                goto again;
1797                        }
1798                }
1799        }
1800
1801        return tx;
1802}
1803
1804static void ops_complete_reconstruct(void *stripe_head_ref)
1805{
1806        struct stripe_head *sh = stripe_head_ref;
1807        int disks = sh->disks;
1808        int pd_idx = sh->pd_idx;
1809        int qd_idx = sh->qd_idx;
1810        int i;
1811        bool fua = false, sync = false, discard = false;
1812
1813        pr_debug("%s: stripe %llu\n", __func__,
1814                (unsigned long long)sh->sector);
1815
1816        for (i = disks; i--; ) {
1817                fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1818                sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1819                discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1820        }
1821
1822        for (i = disks; i--; ) {
1823                struct r5dev *dev = &sh->dev[i];
1824
1825                if (dev->written || i == pd_idx || i == qd_idx) {
1826                        if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
1827                                set_bit(R5_UPTODATE, &dev->flags);
1828                                if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1829                                        set_bit(R5_Expanded, &dev->flags);
1830                        }
1831                        if (fua)
1832                                set_bit(R5_WantFUA, &dev->flags);
1833                        if (sync)
1834                                set_bit(R5_SyncIO, &dev->flags);
1835                }
1836        }
1837
1838        if (sh->reconstruct_state == reconstruct_state_drain_run)
1839                sh->reconstruct_state = reconstruct_state_drain_result;
1840        else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1841                sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1842        else {
1843                BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1844                sh->reconstruct_state = reconstruct_state_result;
1845        }
1846
1847        set_bit(STRIPE_HANDLE, &sh->state);
1848        raid5_release_stripe(sh);
1849}
1850
1851static void
1852ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1853                     struct dma_async_tx_descriptor *tx)
1854{
1855        int disks = sh->disks;
1856        struct page **xor_srcs;
1857        struct async_submit_ctl submit;
1858        int count, pd_idx = sh->pd_idx, i;
1859        struct page *xor_dest;
1860        int prexor = 0;
1861        unsigned long flags;
1862        int j = 0;
1863        struct stripe_head *head_sh = sh;
1864        int last_stripe;
1865
1866        pr_debug("%s: stripe %llu\n", __func__,
1867                (unsigned long long)sh->sector);
1868
1869        for (i = 0; i < sh->disks; i++) {
1870                if (pd_idx == i)
1871                        continue;
1872                if (!test_bit(R5_Discard, &sh->dev[i].flags))
1873                        break;
1874        }
1875        if (i >= sh->disks) {
1876                atomic_inc(&sh->count);
1877                set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1878                ops_complete_reconstruct(sh);
1879                return;
1880        }
1881again:
1882        count = 0;
1883        xor_srcs = to_addr_page(percpu, j);
1884        /* check if prexor is active which means only process blocks
1885         * that are part of a read-modify-write (written)
1886         */
1887        if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1888                prexor = 1;
1889                xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1890                for (i = disks; i--; ) {
1891                        struct r5dev *dev = &sh->dev[i];
1892                        if (head_sh->dev[i].written ||
1893                            test_bit(R5_InJournal, &head_sh->dev[i].flags))
1894                                xor_srcs[count++] = dev->page;
1895                }
1896        } else {
1897                xor_dest = sh->dev[pd_idx].page;
1898                for (i = disks; i--; ) {
1899                        struct r5dev *dev = &sh->dev[i];
1900                        if (i != pd_idx)
1901                                xor_srcs[count++] = dev->page;
1902                }
1903        }
1904
1905        /* 1/ if we prexor'd then the dest is reused as a source
1906         * 2/ if we did not prexor then we are redoing the parity
1907         * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1908         * for the synchronous xor case
1909         */
1910        last_stripe = !head_sh->batch_head ||
1911                list_first_entry(&sh->batch_list,
1912                                 struct stripe_head, batch_list) == head_sh;
1913        if (last_stripe) {
1914                flags = ASYNC_TX_ACK |
1915                        (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1916
1917                atomic_inc(&head_sh->count);
1918                init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1919                                  to_addr_conv(sh, percpu, j));
1920        } else {
1921                flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1922                init_async_submit(&submit, flags, tx, NULL, NULL,
1923                                  to_addr_conv(sh, percpu, j));
1924        }
1925
1926        if (unlikely(count == 1))
1927                tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0,
1928                                RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1929        else
1930                tx = async_xor(xor_dest, xor_srcs, 0, count,
1931                                RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1932        if (!last_stripe) {
1933                j++;
1934                sh = list_first_entry(&sh->batch_list, struct stripe_head,
1935                                      batch_list);
1936                goto again;
1937        }
1938}
1939
1940static void
1941ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1942                     struct dma_async_tx_descriptor *tx)
1943{
1944        struct async_submit_ctl submit;
1945        struct page **blocks;
1946        int count, i, j = 0;
1947        struct stripe_head *head_sh = sh;
1948        int last_stripe;
1949        int synflags;
1950        unsigned long txflags;
1951
1952        pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1953
1954        for (i = 0; i < sh->disks; i++) {
1955                if (sh->pd_idx == i || sh->qd_idx == i)
1956                        continue;
1957                if (!test_bit(R5_Discard, &sh->dev[i].flags))
1958                        break;
1959        }
1960        if (i >= sh->disks) {
1961                atomic_inc(&sh->count);
1962                set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1963                set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1964                ops_complete_reconstruct(sh);
1965                return;
1966        }
1967
1968again:
1969        blocks = to_addr_page(percpu, j);
1970
1971        if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1972                synflags = SYNDROME_SRC_WRITTEN;
1973                txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1974        } else {
1975                synflags = SYNDROME_SRC_ALL;
1976                txflags = ASYNC_TX_ACK;
1977        }
1978
1979        count = set_syndrome_sources(blocks, sh, synflags);
1980        last_stripe = !head_sh->batch_head ||
1981                list_first_entry(&sh->batch_list,
1982                                 struct stripe_head, batch_list) == head_sh;
1983
1984        if (last_stripe) {
1985                atomic_inc(&head_sh->count);
1986                init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1987                                  head_sh, to_addr_conv(sh, percpu, j));
1988        } else
1989                init_async_submit(&submit, 0, tx, NULL, NULL,
1990                                  to_addr_conv(sh, percpu, j));
1991        tx = async_gen_syndrome(blocks, 0, count+2,
1992                        RAID5_STRIPE_SIZE(sh->raid_conf),  &submit);
1993        if (!last_stripe) {
1994                j++;
1995                sh = list_first_entry(&sh->batch_list, struct stripe_head,
1996                                      batch_list);
1997                goto again;
1998        }
1999}
2000
2001static void ops_complete_check(void *stripe_head_ref)
2002{
2003        struct stripe_head *sh = stripe_head_ref;
2004
2005        pr_debug("%s: stripe %llu\n", __func__,
2006                (unsigned long long)sh->sector);
2007
2008        sh->check_state = check_state_check_result;
2009        set_bit(STRIPE_HANDLE, &sh->state);
2010        raid5_release_stripe(sh);
2011}
2012
2013static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2014{
2015        int disks = sh->disks;
2016        int pd_idx = sh->pd_idx;
2017        int qd_idx = sh->qd_idx;
2018        struct page *xor_dest;
2019        struct page **xor_srcs = to_addr_page(percpu, 0);
2020        struct dma_async_tx_descriptor *tx;
2021        struct async_submit_ctl submit;
2022        int count;
2023        int i;
2024
2025        pr_debug("%s: stripe %llu\n", __func__,
2026                (unsigned long long)sh->sector);
2027
2028        BUG_ON(sh->batch_head);
2029        count = 0;
2030        xor_dest = sh->dev[pd_idx].page;
2031        xor_srcs[count++] = xor_dest;
2032        for (i = disks; i--; ) {
2033                if (i == pd_idx || i == qd_idx)
2034                        continue;
2035                xor_srcs[count++] = sh->dev[i].page;
2036        }
2037
2038        init_async_submit(&submit, 0, NULL, NULL, NULL,
2039                          to_addr_conv(sh, percpu, 0));
2040        tx = async_xor_val(xor_dest, xor_srcs, 0, count,
2041                           RAID5_STRIPE_SIZE(sh->raid_conf),
2042                           &sh->ops.zero_sum_result, &submit);
2043
2044        atomic_inc(&sh->count);
2045        init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2046        tx = async_trigger_callback(&submit);
2047}
2048
2049static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2050{
2051        struct page **srcs = to_addr_page(percpu, 0);
2052        struct async_submit_ctl submit;
2053        int count;
2054
2055        pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2056                (unsigned long long)sh->sector, checkp);
2057
2058        BUG_ON(sh->batch_head);
2059        count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
2060        if (!checkp)
2061                srcs[count] = NULL;
2062
2063        atomic_inc(&sh->count);
2064        init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2065                          sh, to_addr_conv(sh, percpu, 0));
2066        async_syndrome_val(srcs, 0, count+2,
2067                           RAID5_STRIPE_SIZE(sh->raid_conf),
2068                           &sh->ops.zero_sum_result, percpu->spare_page, &submit);
2069}
2070
2071static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2072{
2073        int overlap_clear = 0, i, disks = sh->disks;
2074        struct dma_async_tx_descriptor *tx = NULL;
2075        struct r5conf *conf = sh->raid_conf;
2076        int level = conf->level;
2077        struct raid5_percpu *percpu;
2078        unsigned long cpu;
2079
2080        cpu = get_cpu();
2081        percpu = per_cpu_ptr(conf->percpu, cpu);
2082        if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2083                ops_run_biofill(sh);
2084                overlap_clear++;
2085        }
2086
2087        if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2088                if (level < 6)
2089                        tx = ops_run_compute5(sh, percpu);
2090                else {
2091                        if (sh->ops.target2 < 0 || sh->ops.target < 0)
2092                                tx = ops_run_compute6_1(sh, percpu);
2093                        else
2094                                tx = ops_run_compute6_2(sh, percpu);
2095                }
2096                /* terminate the chain if reconstruct is not set to be run */
2097                if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2098                        async_tx_ack(tx);
2099        }
2100
2101        if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2102                if (level < 6)
2103                        tx = ops_run_prexor5(sh, percpu, tx);
2104                else
2105                        tx = ops_run_prexor6(sh, percpu, tx);
2106        }
2107
2108        if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2109                tx = ops_run_partial_parity(sh, percpu, tx);
2110
2111        if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2112                tx = ops_run_biodrain(sh, tx);
2113                overlap_clear++;
2114        }
2115
2116        if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2117                if (level < 6)
2118                        ops_run_reconstruct5(sh, percpu, tx);
2119                else
2120                        ops_run_reconstruct6(sh, percpu, tx);
2121        }
2122
2123        if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2124                if (sh->check_state == check_state_run)
2125                        ops_run_check_p(sh, percpu);
2126                else if (sh->check_state == check_state_run_q)
2127                        ops_run_check_pq(sh, percpu, 0);
2128                else if (sh->check_state == check_state_run_pq)
2129                        ops_run_check_pq(sh, percpu, 1);
2130                else
2131                        BUG();
2132        }
2133
2134        if (overlap_clear && !sh->batch_head)
2135                for (i = disks; i--; ) {
2136                        struct r5dev *dev = &sh->dev[i];
2137                        if (test_and_clear_bit(R5_Overlap, &dev->flags))
2138                                wake_up(&sh->raid_conf->wait_for_overlap);
2139                }
2140        put_cpu();
2141}
2142
2143static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2144{
2145        if (sh->ppl_page)
2146                __free_page(sh->ppl_page);
2147        kmem_cache_free(sc, sh);
2148}
2149
2150static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2151        int disks, struct r5conf *conf)
2152{
2153        struct stripe_head *sh;
2154        int i;
2155
2156        sh = kmem_cache_zalloc(sc, gfp);
2157        if (sh) {
2158                spin_lock_init(&sh->stripe_lock);
2159                spin_lock_init(&sh->batch_lock);
2160                INIT_LIST_HEAD(&sh->batch_list);
2161                INIT_LIST_HEAD(&sh->lru);
2162                INIT_LIST_HEAD(&sh->r5c);
2163                INIT_LIST_HEAD(&sh->log_list);
2164                atomic_set(&sh->count, 1);
2165                sh->raid_conf = conf;
2166                sh->log_start = MaxSector;
2167                for (i = 0; i < disks; i++) {
2168                        struct r5dev *dev = &sh->dev[i];
2169
2170                        bio_init(&dev->req, &dev->vec, 1);
2171                        bio_init(&dev->rreq, &dev->rvec, 1);
2172                }
2173
2174                if (raid5_has_ppl(conf)) {
2175                        sh->ppl_page = alloc_page(gfp);
2176                        if (!sh->ppl_page) {
2177                                free_stripe(sc, sh);
2178                                sh = NULL;
2179                        }
2180                }
2181        }
2182        return sh;
2183}
2184static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2185{
2186        struct stripe_head *sh;
2187
2188        sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2189        if (!sh)
2190                return 0;
2191
2192        if (grow_buffers(sh, gfp)) {
2193                shrink_buffers(sh);
2194                free_stripe(conf->slab_cache, sh);
2195                return 0;
2196        }
2197        sh->hash_lock_index =
2198                conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2199        /* we just created an active stripe so... */
2200        atomic_inc(&conf->active_stripes);
2201
2202        raid5_release_stripe(sh);
2203        conf->max_nr_stripes++;
2204        return 1;
2205}
2206
2207static int grow_stripes(struct r5conf *conf, int num)
2208{
2209        struct kmem_cache *sc;
2210        size_t namelen = sizeof(conf->cache_name[0]);
2211        int devs = max(conf->raid_disks, conf->previous_raid_disks);
2212
2213        if (conf->mddev->gendisk)
2214                snprintf(conf->cache_name[0], namelen,
2215                        "raid%d-%s", conf->level, mdname(conf->mddev));
2216        else
2217                snprintf(conf->cache_name[0], namelen,
2218                        "raid%d-%p", conf->level, conf->mddev);
2219        snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2220
2221        conf->active_name = 0;
2222        sc = kmem_cache_create(conf->cache_name[conf->active_name],
2223                               sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2224                               0, 0, NULL);
2225        if (!sc)
2226                return 1;
2227        conf->slab_cache = sc;
2228        conf->pool_size = devs;
2229        while (num--)
2230                if (!grow_one_stripe(conf, GFP_KERNEL))
2231                        return 1;
2232
2233        return 0;
2234}
2235
2236/**
2237 * scribble_alloc - allocate percpu scribble buffer for required size
2238 *                  of the scribble region
2239 * @percpu: from for_each_present_cpu() of the caller
2240 * @num: total number of disks in the array
2241 * @cnt: scribble objs count for required size of the scribble region
2242 *
2243 * The scribble buffer size must be enough to contain:
2244 * 1/ a struct page pointer for each device in the array +2
2245 * 2/ room to convert each entry in (1) to its corresponding dma
2246 *    (dma_map_page()) or page (page_address()) address.
2247 *
2248 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2249 * calculate over all devices (not just the data blocks), using zeros in place
2250 * of the P and Q blocks.
2251 */
2252static int scribble_alloc(struct raid5_percpu *percpu,
2253                          int num, int cnt)
2254{
2255        size_t obj_size =
2256                sizeof(struct page *) * (num+2) +
2257                sizeof(addr_conv_t) * (num+2);
2258        void *scribble;
2259
2260        /*
2261         * If here is in raid array suspend context, it is in memalloc noio
2262         * context as well, there is no potential recursive memory reclaim
2263         * I/Os with the GFP_KERNEL flag.
2264         */
2265        scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL);
2266        if (!scribble)
2267                return -ENOMEM;
2268
2269        kvfree(percpu->scribble);
2270
2271        percpu->scribble = scribble;
2272        percpu->scribble_obj_size = obj_size;
2273        return 0;
2274}
2275
2276static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2277{
2278        unsigned long cpu;
2279        int err = 0;
2280
2281        /*
2282         * Never shrink. And mddev_suspend() could deadlock if this is called
2283         * from raid5d. In that case, scribble_disks and scribble_sectors
2284         * should equal to new_disks and new_sectors
2285         */
2286        if (conf->scribble_disks >= new_disks &&
2287            conf->scribble_sectors >= new_sectors)
2288                return 0;
2289        mddev_suspend(conf->mddev);
2290        get_online_cpus();
2291
2292        for_each_present_cpu(cpu) {
2293                struct raid5_percpu *percpu;
2294
2295                percpu = per_cpu_ptr(conf->percpu, cpu);
2296                err = scribble_alloc(percpu, new_disks,
2297                                     new_sectors / RAID5_STRIPE_SECTORS(conf));
2298                if (err)
2299                        break;
2300        }
2301
2302        put_online_cpus();
2303        mddev_resume(conf->mddev);
2304        if (!err) {
2305                conf->scribble_disks = new_disks;
2306                conf->scribble_sectors = new_sectors;
2307        }
2308        return err;
2309}
2310
2311static int resize_stripes(struct r5conf *conf, int newsize)
2312{
2313        /* Make all the stripes able to hold 'newsize' devices.
2314         * New slots in each stripe get 'page' set to a new page.
2315         *
2316         * This happens in stages:
2317         * 1/ create a new kmem_cache and allocate the required number of
2318         *    stripe_heads.
2319         * 2/ gather all the old stripe_heads and transfer the pages across
2320         *    to the new stripe_heads.  This will have the side effect of
2321         *    freezing the array as once all stripe_heads have been collected,
2322         *    no IO will be possible.  Old stripe heads are freed once their
2323         *    pages have been transferred over, and the old kmem_cache is
2324         *    freed when all stripes are done.
2325         * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2326         *    we simple return a failure status - no need to clean anything up.
2327         * 4/ allocate new pages for the new slots in the new stripe_heads.
2328         *    If this fails, we don't bother trying the shrink the
2329         *    stripe_heads down again, we just leave them as they are.
2330         *    As each stripe_head is processed the new one is released into
2331         *    active service.
2332         *
2333         * Once step2 is started, we cannot afford to wait for a write,
2334         * so we use GFP_NOIO allocations.
2335         */
2336        struct stripe_head *osh, *nsh;
2337        LIST_HEAD(newstripes);
2338        struct disk_info *ndisks;
2339        int err = 0;
2340        struct kmem_cache *sc;
2341        int i;
2342        int hash, cnt;
2343
2344        md_allow_write(conf->mddev);
2345
2346        /* Step 1 */
2347        sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2348                               sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2349                               0, 0, NULL);
2350        if (!sc)
2351                return -ENOMEM;
2352
2353        /* Need to ensure auto-resizing doesn't interfere */
2354        mutex_lock(&conf->cache_size_mutex);
2355
2356        for (i = conf->max_nr_stripes; i; i--) {
2357                nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2358                if (!nsh)
2359                        break;
2360
2361                list_add(&nsh->lru, &newstripes);
2362        }
2363        if (i) {
2364                /* didn't get enough, give up */
2365                while (!list_empty(&newstripes)) {
2366                        nsh = list_entry(newstripes.next, struct stripe_head, lru);
2367                        list_del(&nsh->lru);
2368                        free_stripe(sc, nsh);
2369                }
2370                kmem_cache_destroy(sc);
2371                mutex_unlock(&conf->cache_size_mutex);
2372                return -ENOMEM;
2373        }
2374        /* Step 2 - Must use GFP_NOIO now.
2375         * OK, we have enough stripes, start collecting inactive
2376         * stripes and copying them over
2377         */
2378        hash = 0;
2379        cnt = 0;
2380        list_for_each_entry(nsh, &newstripes, lru) {
2381                lock_device_hash_lock(conf, hash);
2382                wait_event_cmd(conf->wait_for_stripe,
2383                                    !list_empty(conf->inactive_list + hash),
2384                                    unlock_device_hash_lock(conf, hash),
2385                                    lock_device_hash_lock(conf, hash));
2386                osh = get_free_stripe(conf, hash);
2387                unlock_device_hash_lock(conf, hash);
2388
2389                for(i=0; i<conf->pool_size; i++) {
2390                        nsh->dev[i].page = osh->dev[i].page;
2391                        nsh->dev[i].orig_page = osh->dev[i].page;
2392                }
2393                nsh->hash_lock_index = hash;
2394                free_stripe(conf->slab_cache, osh);
2395                cnt++;
2396                if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2397                    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2398                        hash++;
2399                        cnt = 0;
2400                }
2401        }
2402        kmem_cache_destroy(conf->slab_cache);
2403
2404        /* Step 3.
2405         * At this point, we are holding all the stripes so the array
2406         * is completely stalled, so now is a good time to resize
2407         * conf->disks and the scribble region
2408         */
2409        ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2410        if (ndisks) {
2411                for (i = 0; i < conf->pool_size; i++)
2412                        ndisks[i] = conf->disks[i];
2413
2414                for (i = conf->pool_size; i < newsize; i++) {
2415                        ndisks[i].extra_page = alloc_page(GFP_NOIO);
2416                        if (!ndisks[i].extra_page)
2417                                err = -ENOMEM;
2418                }
2419
2420                if (err) {
2421                        for (i = conf->pool_size; i < newsize; i++)
2422                                if (ndisks[i].extra_page)
2423                                        put_page(ndisks[i].extra_page);
2424                        kfree(ndisks);
2425                } else {
2426                        kfree(conf->disks);
2427                        conf->disks = ndisks;
2428                }
2429        } else
2430                err = -ENOMEM;
2431
2432        mutex_unlock(&conf->cache_size_mutex);
2433
2434        conf->slab_cache = sc;
2435        conf->active_name = 1-conf->active_name;
2436
2437        /* Step 4, return new stripes to service */
2438        while(!list_empty(&newstripes)) {
2439                nsh = list_entry(newstripes.next, struct stripe_head, lru);
2440                list_del_init(&nsh->lru);
2441
2442                for (i=conf->raid_disks; i < newsize; i++)
2443                        if (nsh->dev[i].page == NULL) {
2444                                struct page *p = alloc_page(GFP_NOIO);
2445                                nsh->dev[i].page = p;
2446                                nsh->dev[i].orig_page = p;
2447                                if (!p)
2448                                        err = -ENOMEM;
2449                        }
2450                raid5_release_stripe(nsh);
2451        }
2452        /* critical section pass, GFP_NOIO no longer needed */
2453
2454        if (!err)
2455                conf->pool_size = newsize;
2456        return err;
2457}
2458
2459static int drop_one_stripe(struct r5conf *conf)
2460{
2461        struct stripe_head *sh;
2462        int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2463
2464        spin_lock_irq(conf->hash_locks + hash);
2465        sh = get_free_stripe(conf, hash);
2466        spin_unlock_irq(conf->hash_locks + hash);
2467        if (!sh)
2468                return 0;
2469        BUG_ON(atomic_read(&sh->count));
2470        shrink_buffers(sh);
2471        free_stripe(conf->slab_cache, sh);
2472        atomic_dec(&conf->active_stripes);
2473        conf->max_nr_stripes--;
2474        return 1;
2475}
2476
2477static void shrink_stripes(struct r5conf *conf)
2478{
2479        while (conf->max_nr_stripes &&
2480               drop_one_stripe(conf))
2481                ;
2482
2483        kmem_cache_destroy(conf->slab_cache);
2484        conf->slab_cache = NULL;
2485}
2486
2487static void raid5_end_read_request(struct bio * bi)
2488{
2489        struct stripe_head *sh = bi->bi_private;
2490        struct r5conf *conf = sh->raid_conf;
2491        int disks = sh->disks, i;
2492        char b[BDEVNAME_SIZE];
2493        struct md_rdev *rdev = NULL;
2494        sector_t s;
2495
2496        for (i=0 ; i<disks; i++)
2497                if (bi == &sh->dev[i].req)
2498                        break;
2499
2500        pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2501                (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2502                bi->bi_status);
2503        if (i == disks) {
2504                bio_reset(bi);
2505                BUG();
2506                return;
2507        }
2508        if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2509                /* If replacement finished while this request was outstanding,
2510                 * 'replacement' might be NULL already.
2511                 * In that case it moved down to 'rdev'.
2512                 * rdev is not removed until all requests are finished.
2513                 */
2514                rdev = conf->disks[i].replacement;
2515        if (!rdev)
2516                rdev = conf->disks[i].rdev;
2517
2518        if (use_new_offset(conf, sh))
2519                s = sh->sector + rdev->new_data_offset;
2520        else
2521                s = sh->sector + rdev->data_offset;
2522        if (!bi->bi_status) {
2523                set_bit(R5_UPTODATE, &sh->dev[i].flags);
2524                if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2525                        /* Note that this cannot happen on a
2526                         * replacement device.  We just fail those on
2527                         * any error
2528                         */
2529                        pr_info_ratelimited(
2530                                "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2531                                mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf),
2532                                (unsigned long long)s,
2533                                bdevname(rdev->bdev, b));
2534                        atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors);
2535                        clear_bit(R5_ReadError, &sh->dev[i].flags);
2536                        clear_bit(R5_ReWrite, &sh->dev[i].flags);
2537                } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2538                        clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2539
2540                if (test_bit(R5_InJournal, &sh->dev[i].flags))
2541                        /*
2542                         * end read for a page in journal, this
2543                         * must be preparing for prexor in rmw
2544                         */
2545                        set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2546
2547                if (atomic_read(&rdev->read_errors))
2548                        atomic_set(&rdev->read_errors, 0);
2549        } else {
2550                const char *bdn = bdevname(rdev->bdev, b);
2551                int retry = 0;
2552                int set_bad = 0;
2553
2554                clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2555                if (!(bi->bi_status == BLK_STS_PROTECTION))
2556                        atomic_inc(&rdev->read_errors);
2557                if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2558                        pr_warn_ratelimited(
2559                                "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2560                                mdname(conf->mddev),
2561                                (unsigned long long)s,
2562                                bdn);
2563                else if (conf->mddev->degraded >= conf->max_degraded) {
2564                        set_bad = 1;
2565                        pr_warn_ratelimited(
2566                                "md/raid:%s: read error not correctable (sector %llu on %s).\n",
2567                                mdname(conf->mddev),
2568                                (unsigned long long)s,
2569                                bdn);
2570                } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2571                        /* Oh, no!!! */
2572                        set_bad = 1;
2573                        pr_warn_ratelimited(
2574                                "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2575                                mdname(conf->mddev),
2576                                (unsigned long long)s,
2577                                bdn);
2578                } else if (atomic_read(&rdev->read_errors)
2579                         > conf->max_nr_stripes) {
2580                        if (!test_bit(Faulty, &rdev->flags)) {
2581                                pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2582                                    mdname(conf->mddev),
2583                                    atomic_read(&rdev->read_errors),
2584                                    conf->max_nr_stripes);
2585                                pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2586                                    mdname(conf->mddev), bdn);
2587                        }
2588                } else
2589                        retry = 1;
2590                if (set_bad && test_bit(In_sync, &rdev->flags)
2591                    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2592                        retry = 1;
2593                if (retry)
2594                        if (sh->qd_idx >= 0 && sh->pd_idx == i)
2595                                set_bit(R5_ReadError, &sh->dev[i].flags);
2596                        else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2597                                set_bit(R5_ReadError, &sh->dev[i].flags);
2598                                clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2599                        } else
2600                                set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2601                else {
2602                        clear_bit(R5_ReadError, &sh->dev[i].flags);
2603                        clear_bit(R5_ReWrite, &sh->dev[i].flags);
2604                        if (!(set_bad
2605                              && test_bit(In_sync, &rdev->flags)
2606                              && rdev_set_badblocks(
2607                                      rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0)))
2608                                md_error(conf->mddev, rdev);
2609                }
2610        }
2611        rdev_dec_pending(rdev, conf->mddev);
2612        bio_reset(bi);
2613        clear_bit(R5_LOCKED, &sh->dev[i].flags);
2614        set_bit(STRIPE_HANDLE, &sh->state);
2615        raid5_release_stripe(sh);
2616}
2617
2618static void raid5_end_write_request(struct bio *bi)
2619{
2620        struct stripe_head *sh = bi->bi_private;
2621        struct r5conf *conf = sh->raid_conf;
2622        int disks = sh->disks, i;
2623        struct md_rdev *rdev;
2624        sector_t first_bad;
2625        int bad_sectors;
2626        int replacement = 0;
2627
2628        for (i = 0 ; i < disks; i++) {
2629                if (bi == &sh->dev[i].req) {
2630                        rdev = conf->disks[i].rdev;
2631                        break;
2632                }
2633                if (bi == &sh->dev[i].rreq) {
2634                        rdev = conf->disks[i].replacement;
2635                        if (rdev)
2636                                replacement = 1;
2637                        else
2638                                /* rdev was removed and 'replacement'
2639                                 * replaced it.  rdev is not removed
2640                                 * until all requests are finished.
2641                                 */
2642                                rdev = conf->disks[i].rdev;
2643                        break;
2644                }
2645        }
2646        pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2647                (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2648                bi->bi_status);
2649        if (i == disks) {
2650                bio_reset(bi);
2651                BUG();
2652                return;
2653        }
2654
2655        if (replacement) {
2656                if (bi->bi_status)
2657                        md_error(conf->mddev, rdev);
2658                else if (is_badblock(rdev, sh->sector,
2659                                     RAID5_STRIPE_SECTORS(conf),
2660                                     &first_bad, &bad_sectors))
2661                        set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2662        } else {
2663                if (bi->bi_status) {
2664                        set_bit(STRIPE_DEGRADED, &sh->state);
2665                        set_bit(WriteErrorSeen, &rdev->flags);
2666                        set_bit(R5_WriteError, &sh->dev[i].flags);
2667                        if (!test_and_set_bit(WantReplacement, &rdev->flags))
2668                                set_bit(MD_RECOVERY_NEEDED,
2669                                        &rdev->mddev->recovery);
2670                } else if (is_badblock(rdev, sh->sector,
2671                                       RAID5_STRIPE_SECTORS(conf),
2672                                       &first_bad, &bad_sectors)) {
2673                        set_bit(R5_MadeGood, &sh->dev[i].flags);
2674                        if (test_bit(R5_ReadError, &sh->dev[i].flags))
2675                                /* That was a successful write so make
2676                                 * sure it looks like we already did
2677                                 * a re-write.
2678                                 */
2679                                set_bit(R5_ReWrite, &sh->dev[i].flags);
2680                }
2681        }
2682        rdev_dec_pending(rdev, conf->mddev);
2683
2684        if (sh->batch_head && bi->bi_status && !replacement)
2685                set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2686
2687        bio_reset(bi);
2688        if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2689                clear_bit(R5_LOCKED, &sh->dev[i].flags);
2690        set_bit(STRIPE_HANDLE, &sh->state);
2691        raid5_release_stripe(sh);
2692
2693        if (sh->batch_head && sh != sh->batch_head)
2694                raid5_release_stripe(sh->batch_head);
2695}
2696
2697static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2698{
2699        char b[BDEVNAME_SIZE];
2700        struct r5conf *conf = mddev->private;
2701        unsigned long flags;
2702        pr_debug("raid456: error called\n");
2703
2704        spin_lock_irqsave(&conf->device_lock, flags);
2705
2706        if (test_bit(In_sync, &rdev->flags) &&
2707            mddev->degraded == conf->max_degraded) {
2708                /*
2709                 * Don't allow to achieve failed state
2710                 * Don't try to recover this device
2711                 */
2712                conf->recovery_disabled = mddev->recovery_disabled;
2713                spin_unlock_irqrestore(&conf->device_lock, flags);
2714                return;
2715        }
2716
2717        set_bit(Faulty, &rdev->flags);
2718        clear_bit(In_sync, &rdev->flags);
2719        mddev->degraded = raid5_calc_degraded(conf);
2720        spin_unlock_irqrestore(&conf->device_lock, flags);
2721        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2722
2723        set_bit(Blocked, &rdev->flags);
2724        set_mask_bits(&mddev->sb_flags, 0,
2725                      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2726        pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2727                "md/raid:%s: Operation continuing on %d devices.\n",
2728                mdname(mddev),
2729                bdevname(rdev->bdev, b),
2730                mdname(mddev),
2731                conf->raid_disks - mddev->degraded);
2732        r5c_update_on_rdev_error(mddev, rdev);
2733}
2734
2735/*
2736 * Input: a 'big' sector number,
2737 * Output: index of the data and parity disk, and the sector # in them.
2738 */
2739sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2740                              int previous, int *dd_idx,
2741                              struct stripe_head *sh)
2742{
2743        sector_t stripe, stripe2;
2744        sector_t chunk_number;
2745        unsigned int chunk_offset;
2746        int pd_idx, qd_idx;
2747        int ddf_layout = 0;
2748        sector_t new_sector;
2749        int algorithm = previous ? conf->prev_algo
2750                                 : conf->algorithm;
2751        int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2752                                         : conf->chunk_sectors;
2753        int raid_disks = previous ? conf->previous_raid_disks
2754                                  : conf->raid_disks;
2755        int data_disks = raid_disks - conf->max_degraded;
2756
2757        /* First compute the information on this sector */
2758
2759        /*
2760         * Compute the chunk number and the sector offset inside the chunk
2761         */
2762        chunk_offset = sector_div(r_sector, sectors_per_chunk);
2763        chunk_number = r_sector;
2764
2765        /*
2766         * Compute the stripe number
2767         */
2768        stripe = chunk_number;
2769        *dd_idx = sector_div(stripe, data_disks);
2770        stripe2 = stripe;
2771        /*
2772         * Select the parity disk based on the user selected algorithm.
2773         */
2774        pd_idx = qd_idx = -1;
2775        switch(conf->level) {
2776        case 4:
2777                pd_idx = data_disks;
2778                break;
2779        case 5:
2780                switch (algorithm) {
2781                case ALGORITHM_LEFT_ASYMMETRIC:
2782                        pd_idx = data_disks - sector_div(stripe2, raid_disks);
2783                        if (*dd_idx >= pd_idx)
2784                                (*dd_idx)++;
2785                        break;
2786                case ALGORITHM_RIGHT_ASYMMETRIC:
2787                        pd_idx = sector_div(stripe2, raid_disks);
2788                        if (*dd_idx >= pd_idx)
2789                                (*dd_idx)++;
2790                        break;
2791                case ALGORITHM_LEFT_SYMMETRIC:
2792                        pd_idx = data_disks - sector_div(stripe2, raid_disks);
2793                        *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2794                        break;
2795                case ALGORITHM_RIGHT_SYMMETRIC:
2796                        pd_idx = sector_div(stripe2, raid_disks);
2797                        *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2798                        break;
2799                case ALGORITHM_PARITY_0:
2800                        pd_idx = 0;
2801                        (*dd_idx)++;
2802                        break;
2803                case ALGORITHM_PARITY_N:
2804                        pd_idx = data_disks;
2805                        break;
2806                default:
2807                        BUG();
2808                }
2809                break;
2810        case 6:
2811
2812                switch (algorithm) {
2813                case ALGORITHM_LEFT_ASYMMETRIC:
2814                        pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2815                        qd_idx = pd_idx + 1;
2816                        if (pd_idx == raid_disks-1) {
2817                                (*dd_idx)++;    /* Q D D D P */
2818                                qd_idx = 0;
2819                        } else if (*dd_idx >= pd_idx)
2820                                (*dd_idx) += 2; /* D D P Q D */
2821                        break;
2822                case ALGORITHM_RIGHT_ASYMMETRIC:
2823                        pd_idx = sector_div(stripe2, raid_disks);
2824                        qd_idx = pd_idx + 1;
2825                        if (pd_idx == raid_disks-1) {
2826                                (*dd_idx)++;    /* Q D D D P */
2827                                qd_idx = 0;
2828                        } else if (*dd_idx >= pd_idx)
2829                                (*dd_idx) += 2; /* D D P Q D */
2830                        break;
2831                case ALGORITHM_LEFT_SYMMETRIC:
2832                        pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2833                        qd_idx = (pd_idx + 1) % raid_disks;
2834                        *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2835                        break;
2836                case ALGORITHM_RIGHT_SYMMETRIC:
2837                        pd_idx = sector_div(stripe2, raid_disks);
2838                        qd_idx = (pd_idx + 1) % raid_disks;
2839                        *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2840                        break;
2841
2842                case ALGORITHM_PARITY_0:
2843                        pd_idx = 0;
2844                        qd_idx = 1;
2845                        (*dd_idx) += 2;
2846                        break;
2847                case ALGORITHM_PARITY_N:
2848                        pd_idx = data_disks;
2849                        qd_idx = data_disks + 1;
2850                        break;
2851
2852                case ALGORITHM_ROTATING_ZERO_RESTART:
2853                        /* Exactly the same as RIGHT_ASYMMETRIC, but or
2854                         * of blocks for computing Q is different.
2855                         */
2856                        pd_idx = sector_div(stripe2, raid_disks);
2857                        qd_idx = pd_idx + 1;
2858                        if (pd_idx == raid_disks-1) {
2859                                (*dd_idx)++;    /* Q D D D P */
2860                                qd_idx = 0;
2861                        } else if (*dd_idx >= pd_idx)
2862                                (*dd_idx) += 2; /* D D P Q D */
2863                        ddf_layout = 1;
2864                        break;
2865
2866                case ALGORITHM_ROTATING_N_RESTART:
2867                        /* Same a left_asymmetric, by first stripe is
2868                         * D D D P Q  rather than
2869                         * Q D D D P
2870                         */
2871                        stripe2 += 1;
2872                        pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2873                        qd_idx = pd_idx + 1;
2874                        if (pd_idx == raid_disks-1) {
2875                                (*dd_idx)++;    /* Q D D D P */
2876                                qd_idx = 0;
2877                        } else if (*dd_idx >= pd_idx)
2878                                (*dd_idx) += 2; /* D D P Q D */
2879                        ddf_layout = 1;
2880                        break;
2881
2882                case ALGORITHM_ROTATING_N_CONTINUE:
2883                        /* Same as left_symmetric but Q is before P */
2884                        pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2885                        qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2886                        *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2887                        ddf_layout = 1;
2888                        break;
2889
2890                case ALGORITHM_LEFT_ASYMMETRIC_6:
2891                        /* RAID5 left_asymmetric, with Q on last device */
2892                        pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2893                        if (*dd_idx >= pd_idx)
2894                                (*dd_idx)++;
2895                        qd_idx = raid_disks - 1;
2896                        break;
2897
2898                case ALGORITHM_RIGHT_ASYMMETRIC_6:
2899                        pd_idx = sector_div(stripe2, raid_disks-1);
2900                        if (*dd_idx >= pd_idx)
2901                                (*dd_idx)++;
2902                        qd_idx = raid_disks - 1;
2903                        break;
2904
2905                case ALGORITHM_LEFT_SYMMETRIC_6:
2906                        pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2907                        *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2908                        qd_idx = raid_disks - 1;
2909                        break;
2910
2911                case ALGORITHM_RIGHT_SYMMETRIC_6:
2912                        pd_idx = sector_div(stripe2, raid_disks-1);
2913                        *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2914                        qd_idx = raid_disks - 1;
2915                        break;
2916
2917                case ALGORITHM_PARITY_0_6:
2918                        pd_idx = 0;
2919                        (*dd_idx)++;
2920                        qd_idx = raid_disks - 1;
2921                        break;
2922
2923                default:
2924                        BUG();
2925                }
2926                break;
2927        }
2928
2929        if (sh) {
2930                sh->pd_idx = pd_idx;
2931                sh->qd_idx = qd_idx;
2932                sh->ddf_layout = ddf_layout;
2933        }
2934        /*
2935         * Finally, compute the new sector number
2936         */
2937        new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2938        return new_sector;
2939}
2940
2941sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2942{
2943        struct r5conf *conf = sh->raid_conf;
2944        int raid_disks = sh->disks;
2945        int data_disks = raid_disks - conf->max_degraded;
2946        sector_t new_sector = sh->sector, check;
2947        int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2948                                         : conf->chunk_sectors;
2949        int algorithm = previous ? conf->prev_algo
2950                                 : conf->algorithm;
2951        sector_t stripe;
2952        int chunk_offset;
2953        sector_t chunk_number;
2954        int dummy1, dd_idx = i;
2955        sector_t r_sector;
2956        struct stripe_head sh2;
2957
2958        chunk_offset = sector_div(new_sector, sectors_per_chunk);
2959        stripe = new_sector;
2960
2961        if (i == sh->pd_idx)
2962                return 0;
2963        switch(conf->level) {
2964        case 4: break;
2965        case 5:
2966                switch (algorithm) {
2967                case ALGORITHM_LEFT_ASYMMETRIC:
2968                case ALGORITHM_RIGHT_ASYMMETRIC:
2969                        if (i > sh->pd_idx)
2970                                i--;
2971                        break;
2972                case ALGORITHM_LEFT_SYMMETRIC:
2973                case ALGORITHM_RIGHT_SYMMETRIC:
2974                        if (i < sh->pd_idx)
2975                                i += raid_disks;
2976                        i -= (sh->pd_idx + 1);
2977                        break;
2978                case ALGORITHM_PARITY_0:
2979                        i -= 1;
2980                        break;
2981                case ALGORITHM_PARITY_N:
2982                        break;
2983                default:
2984                        BUG();
2985                }
2986                break;
2987        case 6:
2988                if (i == sh->qd_idx)
2989                        return 0; /* It is the Q disk */
2990                switch (algorithm) {
2991                case ALGORITHM_LEFT_ASYMMETRIC:
2992                case ALGORITHM_RIGHT_ASYMMETRIC:
2993                case ALGORITHM_ROTATING_ZERO_RESTART:
2994                case ALGORITHM_ROTATING_N_RESTART:
2995                        if (sh->pd_idx == raid_disks-1)
2996                                i--;    /* Q D D D P */
2997                        else if (i > sh->pd_idx)
2998                                i -= 2; /* D D P Q D */
2999                        break;
3000                case ALGORITHM_LEFT_SYMMETRIC:
3001                case ALGORITHM_RIGHT_SYMMETRIC:
3002                        if (sh->pd_idx == raid_disks-1)
3003                                i--; /* Q D D D P */
3004                        else {
3005                                /* D D P Q D */
3006                                if (i < sh->pd_idx)
3007                                        i += raid_disks;
3008                                i -= (sh->pd_idx + 2);
3009                        }
3010                        break;
3011                case ALGORITHM_PARITY_0:
3012                        i -= 2;
3013                        break;
3014                case ALGORITHM_PARITY_N:
3015                        break;
3016                case ALGORITHM_ROTATING_N_CONTINUE:
3017                        /* Like left_symmetric, but P is before Q */
3018                        if (sh->pd_idx == 0)
3019                                i--;    /* P D D D Q */
3020                        else {
3021                                /* D D Q P D */
3022                                if (i < sh->pd_idx)
3023                                        i += raid_disks;
3024                                i -= (sh->pd_idx + 1);
3025                        }
3026                        break;
3027                case ALGORITHM_LEFT_ASYMMETRIC_6:
3028                case ALGORITHM_RIGHT_ASYMMETRIC_6:
3029                        if (i > sh->pd_idx)
3030                                i--;
3031                        break;
3032                case ALGORITHM_LEFT_SYMMETRIC_6:
3033                case ALGORITHM_RIGHT_SYMMETRIC_6:
3034                        if (i < sh->pd_idx)
3035                                i += data_disks + 1;
3036                        i -= (sh->pd_idx + 1);
3037                        break;
3038                case ALGORITHM_PARITY_0_6:
3039                        i -= 1;
3040                        break;
3041                default:
3042                        BUG();
3043                }
3044                break;
3045        }
3046
3047        chunk_number = stripe * data_disks + i;
3048        r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3049
3050        check = raid5_compute_sector(conf, r_sector,
3051                                     previous, &dummy1, &sh2);
3052        if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3053                || sh2.qd_idx != sh->qd_idx) {
3054                pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3055                        mdname(conf->mddev));
3056                return 0;
3057        }
3058        return r_sector;
3059}
3060
3061/*
3062 * There are cases where we want handle_stripe_dirtying() and
3063 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3064 *
3065 * This function checks whether we want to delay the towrite. Specifically,
3066 * we delay the towrite when:
3067 *
3068 *   1. degraded stripe has a non-overwrite to the missing dev, AND this
3069 *      stripe has data in journal (for other devices).
3070 *
3071 *      In this case, when reading data for the non-overwrite dev, it is
3072 *      necessary to handle complex rmw of write back cache (prexor with
3073 *      orig_page, and xor with page). To keep read path simple, we would
3074 *      like to flush data in journal to RAID disks first, so complex rmw
3075 *      is handled in the write patch (handle_stripe_dirtying).
3076 *
3077 *   2. when journal space is critical (R5C_LOG_CRITICAL=1)
3078 *
3079 *      It is important to be able to flush all stripes in raid5-cache.
3080 *      Therefore, we need reserve some space on the journal device for
3081 *      these flushes. If flush operation includes pending writes to the
3082 *      stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3083 *      for the flush out. If we exclude these pending writes from flush
3084 *      operation, we only need (conf->max_degraded + 1) pages per stripe.
3085 *      Therefore, excluding pending writes in these cases enables more
3086 *      efficient use of the journal device.
3087 *
3088 *      Note: To make sure the stripe makes progress, we only delay
3089 *      towrite for stripes with data already in journal (injournal > 0).
3090 *      When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3091 *      no_space_stripes list.
3092 *
3093 *   3. during journal failure
3094 *      In journal failure, we try to flush all cached data to raid disks
3095 *      based on data in stripe cache. The array is read-only to upper
3096 *      layers, so we would skip all pending writes.
3097 *
3098 */
3099static inline bool delay_towrite(struct r5conf *conf,
3100                                 struct r5dev *dev,
3101                                 struct stripe_head_state *s)
3102{
3103        /* case 1 above */
3104        if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3105            !test_bit(R5_Insync, &dev->flags) && s->injournal)
3106                return true;
3107        /* case 2 above */
3108        if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3109            s->injournal > 0)
3110                return true;
3111        /* case 3 above */
3112        if (s->log_failed && s->injournal)
3113                return true;
3114        return false;
3115}
3116
3117static void
3118schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3119                         int rcw, int expand)
3120{
3121        int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3122        struct r5conf *conf = sh->raid_conf;
3123        int level = conf->level;
3124
3125        if (rcw) {
3126                /*
3127                 * In some cases, handle_stripe_dirtying initially decided to
3128                 * run rmw and allocates extra page for prexor. However, rcw is
3129                 * cheaper later on. We need to free the extra page now,
3130                 * because we won't be able to do that in ops_complete_prexor().
3131                 */
3132                r5c_release_extra_page(sh);
3133
3134                for (i = disks; i--; ) {
3135                        struct r5dev *dev = &sh->dev[i];
3136
3137                        if (dev->towrite && !delay_towrite(conf, dev, s)) {
3138                                set_bit(R5_LOCKED, &dev->flags);
3139                                set_bit(R5_Wantdrain, &dev->flags);
3140                                if (!expand)
3141                                        clear_bit(R5_UPTODATE, &dev->flags);
3142                                s->locked++;
3143                        } else if (test_bit(R5_InJournal, &dev->flags)) {
3144                                set_bit(R5_LOCKED, &dev->flags);
3145                                s->locked++;
3146                        }
3147                }
3148                /* if we are not expanding this is a proper write request, and
3149                 * there will be bios with new data to be drained into the
3150                 * stripe cache
3151                 */
3152                if (!expand) {
3153                        if (!s->locked)
3154                                /* False alarm, nothing to do */
3155                                return;
3156                        sh->reconstruct_state = reconstruct_state_drain_run;
3157                        set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3158                } else
3159                        sh->reconstruct_state = reconstruct_state_run;
3160
3161                set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3162
3163                if (s->locked + conf->max_degraded == disks)
3164                        if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3165                                atomic_inc(&conf->pending_full_writes);
3166        } else {
3167                BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3168                        test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3169                BUG_ON(level == 6 &&
3170                        (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3171                           test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3172
3173                for (i = disks; i--; ) {
3174                        struct r5dev *dev = &sh->dev[i];
3175                        if (i == pd_idx || i == qd_idx)
3176                                continue;
3177
3178                        if (dev->towrite &&
3179                            (test_bit(R5_UPTODATE, &dev->flags) ||
3180                             test_bit(R5_Wantcompute, &dev->flags))) {
3181                                set_bit(R5_Wantdrain, &dev->flags);
3182                                set_bit(R5_LOCKED, &dev->flags);
3183                                clear_bit(R5_UPTODATE, &dev->flags);
3184                                s->locked++;
3185                        } else if (test_bit(R5_InJournal, &dev->flags)) {
3186                                set_bit(R5_LOCKED, &dev->flags);
3187                                s->locked++;
3188                        }
3189                }
3190                if (!s->locked)
3191                        /* False alarm - nothing to do */
3192                        return;
3193                sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3194                set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3195                set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3196                set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3197        }
3198
3199        /* keep the parity disk(s) locked while asynchronous operations
3200         * are in flight
3201         */
3202        set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3203        clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3204        s->locked++;
3205
3206        if (level == 6) {
3207                int qd_idx = sh->qd_idx;
3208                struct r5dev *dev = &sh->dev[qd_idx];
3209
3210                set_bit(R5_LOCKED, &dev->flags);
3211                clear_bit(R5_UPTODATE, &dev->flags);
3212                s->locked++;
3213        }
3214
3215        if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3216            test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3217            !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3218            test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3219                set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3220
3221        pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3222                __func__, (unsigned long long)sh->sector,
3223                s->locked, s->ops_request);
3224}
3225
3226/*
3227 * Each stripe/dev can have one or more bion attached.
3228 * toread/towrite point to the first in a chain.
3229 * The bi_next chain must be in order.
3230 */
3231static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3232                          int forwrite, int previous)
3233{
3234        struct bio **bip;
3235        struct r5conf *conf = sh->raid_conf;
3236        int firstwrite=0;
3237
3238        pr_debug("adding bi b#%llu to stripe s#%llu\n",
3239                (unsigned long long)bi->bi_iter.bi_sector,
3240                (unsigned long long)sh->sector);
3241
3242        spin_lock_irq(&sh->stripe_lock);
3243        sh->dev[dd_idx].write_hint = bi->bi_write_hint;
3244        /* Don't allow new IO added to stripes in batch list */
3245        if (sh->batch_head)
3246                goto overlap;
3247        if (forwrite) {
3248                bip = &sh->dev[dd_idx].towrite;
3249                if (*bip == NULL)
3250                        firstwrite = 1;
3251        } else
3252                bip = &sh->dev[dd_idx].toread;
3253        while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3254                if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3255                        goto overlap;
3256                bip = & (*bip)->bi_next;
3257        }
3258        if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3259                goto overlap;
3260
3261        if (forwrite && raid5_has_ppl(conf)) {
3262                /*
3263                 * With PPL only writes to consecutive data chunks within a
3264                 * stripe are allowed because for a single stripe_head we can
3265                 * only have one PPL entry at a time, which describes one data
3266                 * range. Not really an overlap, but wait_for_overlap can be
3267                 * used to handle this.
3268                 */
3269                sector_t sector;
3270                sector_t first = 0;
3271                sector_t last = 0;
3272                int count = 0;
3273                int i;
3274
3275                for (i = 0; i < sh->disks; i++) {
3276                        if (i != sh->pd_idx &&
3277                            (i == dd_idx || sh->dev[i].towrite)) {
3278                                sector = sh->dev[i].sector;
3279                                if (count == 0 || sector < first)
3280                                        first = sector;
3281                                if (sector > last)
3282                                        last = sector;
3283                                count++;
3284                        }
3285                }
3286
3287                if (first + conf->chunk_sectors * (count - 1) != last)
3288                        goto overlap;
3289        }
3290
3291        if (!forwrite || previous)
3292                clear_bit(STRIPE_BATCH_READY, &sh->state);
3293
3294        BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3295        if (*bip)
3296                bi->bi_next = *bip;
3297        *bip = bi;
3298        bio_inc_remaining(bi);
3299        md_write_inc(conf->mddev, bi);
3300
3301        if (forwrite) {
3302                /* check if page is covered */
3303                sector_t sector = sh->dev[dd_idx].sector;
3304                for (bi=sh->dev[dd_idx].towrite;
3305                     sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) &&
3306                             bi && bi->bi_iter.bi_sector <= sector;
3307                     bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) {
3308                        if (bio_end_sector(bi) >= sector)
3309                                sector = bio_end_sector(bi);
3310                }
3311                if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf))
3312                        if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3313                                sh->overwrite_disks++;
3314        }
3315
3316        pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3317                (unsigned long long)(*bip)->bi_iter.bi_sector,
3318                (unsigned long long)sh->sector, dd_idx);
3319
3320        if (conf->mddev->bitmap && firstwrite) {
3321                /* Cannot hold spinlock over bitmap_startwrite,
3322                 * but must ensure this isn't added to a batch until
3323                 * we have added to the bitmap and set bm_seq.
3324                 * So set STRIPE_BITMAP_PENDING to prevent
3325                 * batching.
3326                 * If multiple add_stripe_bio() calls race here they
3327                 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3328                 * to complete "bitmap_startwrite" gets to set
3329                 * STRIPE_BIT_DELAY.  This is important as once a stripe
3330                 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3331                 * any more.
3332                 */
3333                set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3334                spin_unlock_irq(&sh->stripe_lock);
3335                md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3336                                     RAID5_STRIPE_SECTORS(conf), 0);
3337                spin_lock_irq(&sh->stripe_lock);
3338                clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3339                if (!sh->batch_head) {
3340                        sh->bm_seq = conf->seq_flush+1;
3341                        set_bit(STRIPE_BIT_DELAY, &sh->state);
3342                }
3343        }
3344        spin_unlock_irq(&sh->stripe_lock);
3345
3346        if (stripe_can_batch(sh))
3347                stripe_add_to_batch_list(conf, sh);
3348        return 1;
3349
3350 overlap:
3351        set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3352        spin_unlock_irq(&sh->stripe_lock);
3353        return 0;
3354}
3355
3356static void end_reshape(struct r5conf *conf);
3357
3358static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3359                            struct stripe_head *sh)
3360{
3361        int sectors_per_chunk =
3362                previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3363        int dd_idx;
3364        int chunk_offset = sector_div(stripe, sectors_per_chunk);
3365        int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3366
3367        raid5_compute_sector(conf,
3368                             stripe * (disks - conf->max_degraded)
3369                             *sectors_per_chunk + chunk_offset,
3370                             previous,
3371                             &dd_idx, sh);
3372}
3373
3374static void
3375handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3376                     struct stripe_head_state *s, int disks)
3377{
3378        int i;
3379        BUG_ON(sh->batch_head);
3380        for (i = disks; i--; ) {
3381                struct bio *bi;
3382                int bitmap_end = 0;
3383
3384                if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3385                        struct md_rdev *rdev;
3386                        rcu_read_lock();
3387                        rdev = rcu_dereference(conf->disks[i].rdev);
3388                        if (rdev && test_bit(In_sync, &rdev->flags) &&
3389                            !test_bit(Faulty, &rdev->flags))
3390                                atomic_inc(&rdev->nr_pending);
3391                        else
3392                                rdev = NULL;
3393                        rcu_read_unlock();
3394                        if (rdev) {
3395                                if (!rdev_set_badblocks(
3396                                            rdev,
3397                                            sh->sector,
3398                                            RAID5_STRIPE_SECTORS(conf), 0))
3399                                        md_error(conf->mddev, rdev);
3400                                rdev_dec_pending(rdev, conf->mddev);
3401                        }
3402                }
3403                spin_lock_irq(&sh->stripe_lock);
3404                /* fail all writes first */
3405                bi = sh->dev[i].towrite;
3406                sh->dev[i].towrite = NULL;
3407                sh->overwrite_disks = 0;
3408                spin_unlock_irq(&sh->stripe_lock);
3409                if (bi)
3410                        bitmap_end = 1;
3411
3412                log_stripe_write_finished(sh);
3413
3414                if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3415                        wake_up(&conf->wait_for_overlap);
3416
3417                while (bi && bi->bi_iter.bi_sector <
3418                        sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3419                        struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector);
3420
3421                        md_write_end(conf->mddev);
3422                        bio_io_error(bi);
3423                        bi = nextbi;
3424                }
3425                if (bitmap_end)
3426                        md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3427                                           RAID5_STRIPE_SECTORS(conf), 0, 0);
3428                bitmap_end = 0;
3429                /* and fail all 'written' */
3430                bi = sh->dev[i].written;
3431                sh->dev[i].written = NULL;
3432                if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3433                        WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3434                        sh->dev[i].page = sh->dev[i].orig_page;
3435                }
3436
3437                if (bi) bitmap_end = 1;
3438                while (bi && bi->bi_iter.bi_sector <
3439                       sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3440                        struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector);
3441
3442                        md_write_end(conf->mddev);
3443                        bio_io_error(bi);
3444                        bi = bi2;
3445                }
3446
3447                /* fail any reads if this device is non-operational and
3448                 * the data has not reached the cache yet.
3449                 */
3450                if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3451                    s->failed > conf->max_degraded &&
3452                    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3453                      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3454                        spin_lock_irq(&sh->stripe_lock);
3455                        bi = sh->dev[i].toread;
3456                        sh->dev[i].toread = NULL;
3457                        spin_unlock_irq(&sh->stripe_lock);
3458                        if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3459                                wake_up(&conf->wait_for_overlap);
3460                        if (bi)
3461                                s->to_read--;
3462                        while (bi && bi->bi_iter.bi_sector <
3463                               sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3464                                struct bio *nextbi =
3465                                        r5_next_bio(conf, bi, sh->dev[i].sector);
3466
3467                                bio_io_error(bi);
3468                                bi = nextbi;
3469                        }
3470                }
3471                if (bitmap_end)
3472                        md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3473                                           RAID5_STRIPE_SECTORS(conf), 0, 0);
3474                /* If we were in the middle of a write the parity block might
3475                 * still be locked - so just clear all R5_LOCKED flags
3476                 */
3477                clear_bit(R5_LOCKED, &sh->dev[i].flags);
3478        }
3479        s->to_write = 0;
3480        s->written = 0;
3481
3482        if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3483                if (atomic_dec_and_test(&conf->pending_full_writes))
3484                        md_wakeup_thread(conf->mddev->thread);
3485}
3486
3487static void
3488handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3489                   struct stripe_head_state *s)
3490{
3491        int abort = 0;
3492        int i;
3493
3494        BUG_ON(sh->batch_head);
3495        clear_bit(STRIPE_SYNCING, &sh->state);
3496        if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3497                wake_up(&conf->wait_for_overlap);
3498        s->syncing = 0;
3499        s->replacing = 0;
3500        /* There is nothing more to do for sync/check/repair.
3501         * Don't even need to abort as that is handled elsewhere
3502         * if needed, and not always wanted e.g. if there is a known
3503         * bad block here.
3504         * For recover/replace we need to record a bad block on all
3505         * non-sync devices, or abort the recovery
3506         */
3507        if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3508                /* During recovery devices cannot be removed, so
3509                 * locking and refcounting of rdevs is not needed
3510                 */
3511                rcu_read_lock();
3512                for (i = 0; i < conf->raid_disks; i++) {
3513                        struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3514                        if (rdev
3515                            && !test_bit(Faulty, &rdev->flags)
3516                            && !test_bit(In_sync, &rdev->flags)
3517                            && !rdev_set_badblocks(rdev, sh->sector,
3518                                                   RAID5_STRIPE_SECTORS(conf), 0))
3519                                abort = 1;
3520                        rdev = rcu_dereference(conf->disks[i].replacement);
3521                        if (rdev
3522                            && !test_bit(Faulty, &rdev->flags)
3523                            && !test_bit(In_sync, &rdev->flags)
3524                            && !rdev_set_badblocks(rdev, sh->sector,
3525                                                   RAID5_STRIPE_SECTORS(conf), 0))
3526                                abort = 1;
3527                }
3528                rcu_read_unlock();
3529                if (abort)
3530                        conf->recovery_disabled =
3531                                conf->mddev->recovery_disabled;
3532        }
3533        md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort);
3534}
3535
3536static int want_replace(struct stripe_head *sh, int disk_idx)
3537{
3538        struct md_rdev *rdev;
3539        int rv = 0;
3540
3541        rcu_read_lock();
3542        rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3543        if (rdev
3544            && !test_bit(Faulty, &rdev->flags)
3545            && !test_bit(In_sync, &rdev->flags)
3546            && (rdev->recovery_offset <= sh->sector
3547                || rdev->mddev->recovery_cp <= sh->sector))
3548                rv = 1;
3549        rcu_read_unlock();
3550        return rv;
3551}
3552
3553static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3554                           int disk_idx, int disks)
3555{
3556        struct r5dev *dev = &sh->dev[disk_idx];
3557        struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3558                                  &sh->dev[s->failed_num[1]] };
3559        int i;
3560        bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW);
3561
3562
3563        if (test_bit(R5_LOCKED, &dev->flags) ||
3564            test_bit(R5_UPTODATE, &dev->flags))
3565                /* No point reading this as we already have it or have
3566                 * decided to get it.
3567                 */
3568                return 0;
3569
3570        if (dev->toread ||
3571            (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3572                /* We need this block to directly satisfy a request */
3573                return 1;
3574
3575        if (s->syncing || s->expanding ||
3576            (s->replacing && want_replace(sh, disk_idx)))
3577                /* When syncing, or expanding we read everything.
3578                 * When replacing, we need the replaced block.
3579                 */
3580                return 1;
3581
3582        if ((s->failed >= 1 && fdev[0]->toread) ||
3583            (s->failed >= 2 && fdev[1]->toread))
3584                /* If we want to read from a failed device, then
3585                 * we need to actually read every other device.
3586                 */
3587                return 1;
3588
3589        /* Sometimes neither read-modify-write nor reconstruct-write
3590         * cycles can work.  In those cases we read every block we
3591         * can.  Then the parity-update is certain to have enough to
3592         * work with.
3593         * This can only be a problem when we need to write something,
3594         * and some device has failed.  If either of those tests
3595         * fail we need look no further.
3596         */
3597        if (!s->failed || !s->to_write)
3598                return 0;
3599
3600        if (test_bit(R5_Insync, &dev->flags) &&
3601            !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3602                /* Pre-reads at not permitted until after short delay
3603                 * to gather multiple requests.  However if this
3604                 * device is no Insync, the block could only be computed
3605                 * and there is no need to delay that.
3606                 */
3607                return 0;
3608
3609        for (i = 0; i < s->failed && i < 2; i++) {
3610                if (fdev[i]->towrite &&
3611                    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3612                    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3613                        /* If we have a partial write to a failed
3614                         * device, then we will need to reconstruct
3615                         * the content of that device, so all other
3616                         * devices must be read.
3617                         */
3618                        return 1;
3619
3620                if (s->failed >= 2 &&
3621                    (fdev[i]->towrite ||
3622                     s->failed_num[i] == sh->pd_idx ||
3623                     s->failed_num[i] == sh->qd_idx) &&
3624                    !test_bit(R5_UPTODATE, &fdev[i]->flags))
3625                        /* In max degraded raid6, If the failed disk is P, Q,
3626                         * or we want to read the failed disk, we need to do
3627                         * reconstruct-write.
3628                         */
3629                        force_rcw = true;
3630        }
3631
3632        /* If we are forced to do a reconstruct-write, because parity
3633         * cannot be trusted and we are currently recovering it, there
3634         * is extra need to be careful.
3635         * If one of the devices that we would need to read, because
3636         * it is not being overwritten (and maybe not written at all)
3637         * is missing/faulty, then we need to read everything we can.
3638         */
3639        if (!force_rcw &&
3640            sh->sector < sh->raid_conf->mddev->recovery_cp)
3641                /* reconstruct-write isn't being forced */
3642                return 0;
3643        for (i = 0; i < s->failed && i < 2; i++) {
3644                if (s->failed_num[i] != sh->pd_idx &&
3645                    s->failed_num[i] != sh->qd_idx &&
3646                    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3647                    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3648                        return 1;
3649        }
3650
3651        return 0;
3652}
3653
3654/* fetch_block - checks the given member device to see if its data needs
3655 * to be read or computed to satisfy a request.
3656 *
3657 * Returns 1 when no more member devices need to be checked, otherwise returns
3658 * 0 to tell the loop in handle_stripe_fill to continue
3659 */
3660static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3661                       int disk_idx, int disks)
3662{
3663        struct r5dev *dev = &sh->dev[disk_idx];
3664
3665        /* is the data in this block needed, and can we get it? */
3666        if (need_this_block(sh, s, disk_idx, disks)) {
3667                /* we would like to get this block, possibly by computing it,
3668                 * otherwise read it if the backing disk is insync
3669                 */
3670                BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3671                BUG_ON(test_bit(R5_Wantread, &dev->flags));
3672                BUG_ON(sh->batch_head);
3673
3674                /*
3675                 * In the raid6 case if the only non-uptodate disk is P
3676                 * then we already trusted P to compute the other failed
3677                 * drives. It is safe to compute rather than re-read P.
3678                 * In other cases we only compute blocks from failed
3679                 * devices, otherwise check/repair might fail to detect
3680                 * a real inconsistency.
3681                 */
3682
3683                if ((s->uptodate == disks - 1) &&
3684                    ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3685                    (s->failed && (disk_idx == s->failed_num[0] ||
3686                                   disk_idx == s->failed_num[1])))) {
3687                        /* have disk failed, and we're requested to fetch it;
3688                         * do compute it
3689                         */
3690                        pr_debug("Computing stripe %llu block %d\n",
3691                               (unsigned long long)sh->sector, disk_idx);
3692                        set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3693                        set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3694                        set_bit(R5_Wantcompute, &dev->flags);
3695                        sh->ops.target = disk_idx;
3696                        sh->ops.target2 = -1; /* no 2nd target */
3697                        s->req_compute = 1;
3698                        /* Careful: from this point on 'uptodate' is in the eye
3699                         * of raid_run_ops which services 'compute' operations
3700                         * before writes. R5_Wantcompute flags a block that will
3701                         * be R5_UPTODATE by the time it is needed for a
3702                         * subsequent operation.
3703                         */
3704                        s->uptodate++;
3705                        return 1;
3706                } else if (s->uptodate == disks-2 && s->failed >= 2) {
3707                        /* Computing 2-failure is *very* expensive; only
3708                         * do it if failed >= 2
3709                         */
3710                        int other;
3711                        for (other = disks; other--; ) {
3712                                if (other == disk_idx)
3713                                        continue;
3714                                if (!test_bit(R5_UPTODATE,
3715                                      &sh->dev[other].flags))
3716                                        break;
3717                        }
3718                        BUG_ON(other < 0);
3719                        pr_debug("Computing stripe %llu blocks %d,%d\n",
3720                               (unsigned long long)sh->sector,
3721                               disk_idx, other);
3722                        set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3723                        set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3724                        set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3725                        set_bit(R5_Wantcompute, &sh->dev[other].flags);
3726                        sh->ops.target = disk_idx;
3727                        sh->ops.target2 = other;
3728                        s->uptodate += 2;
3729                        s->req_compute = 1;
3730                        return 1;
3731                } else if (test_bit(R5_Insync, &dev->flags)) {
3732                        set_bit(R5_LOCKED, &dev->flags);
3733                        set_bit(R5_Wantread, &dev->flags);
3734                        s->locked++;
3735                        pr_debug("Reading block %d (sync=%d)\n",
3736                                disk_idx, s->syncing);
3737                }
3738        }
3739
3740        return 0;
3741}
3742
3743/*
3744 * handle_stripe_fill - read or compute data to satisfy pending requests.
3745 */
3746static void handle_stripe_fill(struct stripe_head *sh,
3747                               struct stripe_head_state *s,
3748                               int disks)
3749{
3750        int i;
3751
3752        /* look for blocks to read/compute, skip this if a compute
3753         * is already in flight, or if the stripe contents are in the
3754         * midst of changing due to a write
3755         */
3756        if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3757            !sh->reconstruct_state) {
3758
3759                /*
3760                 * For degraded stripe with data in journal, do not handle
3761                 * read requests yet, instead, flush the stripe to raid
3762                 * disks first, this avoids handling complex rmw of write
3763                 * back cache (prexor with orig_page, and then xor with
3764                 * page) in the read path
3765                 */
3766                if (s->injournal && s->failed) {
3767                        if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3768                                r5c_make_stripe_write_out(sh);
3769                        goto out;
3770                }
3771
3772                for (i = disks; i--; )
3773                        if (fetch_block(sh, s, i, disks))
3774                                break;
3775        }
3776out:
3777        set_bit(STRIPE_HANDLE, &sh->state);
3778}
3779
3780static void break_stripe_batch_list(struct stripe_head *head_sh,
3781                                    unsigned long handle_flags);
3782/* handle_stripe_clean_event
3783 * any written block on an uptodate or failed drive can be returned.
3784 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3785 * never LOCKED, so we don't need to test 'failed' directly.
3786 */
3787static void handle_stripe_clean_event(struct r5conf *conf,
3788        struct stripe_head *sh, int disks)
3789{
3790        int i;
3791        struct r5dev *dev;
3792        int discard_pending = 0;
3793        struct stripe_head *head_sh = sh;
3794        bool do_endio = false;
3795
3796        for (i = disks; i--; )
3797                if (sh->dev[i].written) {
3798                        dev = &sh->dev[i];
3799                        if (!test_bit(R5_LOCKED, &dev->flags) &&
3800                            (test_bit(R5_UPTODATE, &dev->flags) ||
3801                             test_bit(R5_Discard, &dev->flags) ||
3802                             test_bit(R5_SkipCopy, &dev->flags))) {
3803                                /* We can return any write requests */
3804                                struct bio *wbi, *wbi2;
3805                                pr_debug("Return write for disc %d\n", i);
3806                                if (test_and_clear_bit(R5_Discard, &dev->flags))
3807                                        clear_bit(R5_UPTODATE, &dev->flags);
3808                                if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3809                                        WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3810                                }
3811                                do_endio = true;
3812
3813returnbi:
3814                                dev->page = dev->orig_page;
3815                                wbi = dev->written;
3816                                dev->written = NULL;
3817                                while (wbi && wbi->bi_iter.bi_sector <
3818                                        dev->sector + RAID5_STRIPE_SECTORS(conf)) {
3819                                        wbi2 = r5_next_bio(conf, wbi, dev->sector);
3820                                        md_write_end(conf->mddev);
3821                                        bio_endio(wbi);
3822                                        wbi = wbi2;
3823                                }
3824                                md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3825                                                   RAID5_STRIPE_SECTORS(conf),
3826                                                   !test_bit(STRIPE_DEGRADED, &sh->state),
3827                                                   0);
3828                                if (head_sh->batch_head) {
3829                                        sh = list_first_entry(&sh->batch_list,
3830                                                              struct stripe_head,
3831                                                              batch_list);
3832                                        if (sh != head_sh) {
3833                                                dev = &sh->dev[i];
3834                                                goto returnbi;
3835                                        }
3836                                }
3837                                sh = head_sh;
3838                                dev = &sh->dev[i];
3839                        } else if (test_bit(R5_Discard, &dev->flags))
3840                                discard_pending = 1;
3841                }
3842
3843        log_stripe_write_finished(sh);
3844
3845        if (!discard_pending &&
3846            test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3847                int hash;
3848                clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3849                clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3850                if (sh->qd_idx >= 0) {
3851                        clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3852                        clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3853                }
3854                /* now that discard is done we can proceed with any sync */
3855                clear_bit(STRIPE_DISCARD, &sh->state);
3856                /*
3857                 * SCSI discard will change some bio fields and the stripe has
3858                 * no updated data, so remove it from hash list and the stripe
3859                 * will be reinitialized
3860                 */
3861unhash:
3862                hash = sh->hash_lock_index;
3863                spin_lock_irq(conf->hash_locks + hash);
3864                remove_hash(sh);
3865                spin_unlock_irq(conf->hash_locks + hash);
3866                if (head_sh->batch_head) {
3867                        sh = list_first_entry(&sh->batch_list,
3868                                              struct stripe_head, batch_list);
3869                        if (sh != head_sh)
3870                                        goto unhash;
3871                }
3872                sh = head_sh;
3873
3874                if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3875                        set_bit(STRIPE_HANDLE, &sh->state);
3876
3877        }
3878
3879        if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3880                if (atomic_dec_and_test(&conf->pending_full_writes))
3881                        md_wakeup_thread(conf->mddev->thread);
3882
3883        if (head_sh->batch_head && do_endio)
3884                break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3885}
3886
3887/*
3888 * For RMW in write back cache, we need extra page in prexor to store the
3889 * old data. This page is stored in dev->orig_page.
3890 *
3891 * This function checks whether we have data for prexor. The exact logic
3892 * is:
3893 *       R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3894 */
3895static inline bool uptodate_for_rmw(struct r5dev *dev)
3896{
3897        return (test_bit(R5_UPTODATE, &dev->flags)) &&
3898                (!test_bit(R5_InJournal, &dev->flags) ||
3899                 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3900}
3901
3902static int handle_stripe_dirtying(struct r5conf *conf,
3903                                  struct stripe_head *sh,
3904                                  struct stripe_head_state *s,
3905                                  int disks)
3906{
3907        int rmw = 0, rcw = 0, i;
3908        sector_t recovery_cp = conf->mddev->recovery_cp;
3909
3910        /* Check whether resync is now happening or should start.
3911         * If yes, then the array is dirty (after unclean shutdown or
3912         * initial creation), so parity in some stripes might be inconsistent.
3913         * In this case, we need to always do reconstruct-write, to ensure
3914         * that in case of drive failure or read-error correction, we
3915         * generate correct data from the parity.
3916         */
3917        if (conf->rmw_level == PARITY_DISABLE_RMW ||
3918            (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3919             s->failed == 0)) {
3920                /* Calculate the real rcw later - for now make it
3921                 * look like rcw is cheaper
3922                 */
3923                rcw = 1; rmw = 2;
3924                pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3925                         conf->rmw_level, (unsigned long long)recovery_cp,
3926                         (unsigned long long)sh->sector);
3927        } else for (i = disks; i--; ) {
3928                /* would I have to read this buffer for read_modify_write */
3929                struct r5dev *dev = &sh->dev[i];
3930                if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3931                     i == sh->pd_idx || i == sh->qd_idx ||
3932                     test_bit(R5_InJournal, &dev->flags)) &&
3933                    !test_bit(R5_LOCKED, &dev->flags) &&
3934                    !(uptodate_for_rmw(dev) ||
3935                      test_bit(R5_Wantcompute, &dev->flags))) {
3936                        if (test_bit(R5_Insync, &dev->flags))
3937                                rmw++;
3938                        else
3939                                rmw += 2*disks;  /* cannot read it */
3940                }
3941                /* Would I have to read this buffer for reconstruct_write */
3942                if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3943                    i != sh->pd_idx && i != sh->qd_idx &&
3944                    !test_bit(R5_LOCKED, &dev->flags) &&
3945                    !(test_bit(R5_UPTODATE, &dev->flags) ||
3946                      test_bit(R5_Wantcompute, &dev->flags))) {
3947                        if (test_bit(R5_Insync, &dev->flags))
3948                                rcw++;
3949                        else
3950                                rcw += 2*disks;
3951                }
3952        }
3953
3954        pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3955                 (unsigned long long)sh->sector, sh->state, rmw, rcw);
3956        set_bit(STRIPE_HANDLE, &sh->state);
3957        if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3958                /* prefer read-modify-write, but need to get some data */
3959                if (conf->mddev->queue)
3960                        blk_add_trace_msg(conf->mddev->queue,
3961                                          "raid5 rmw %llu %d",
3962                                          (unsigned long long)sh->sector, rmw);
3963                for (i = disks; i--; ) {
3964                        struct r5dev *dev = &sh->dev[i];
3965                        if (test_bit(R5_InJournal, &dev->flags) &&
3966                            dev->page == dev->orig_page &&
3967                            !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3968                                /* alloc page for prexor */
3969                                struct page *p = alloc_page(GFP_NOIO);
3970
3971                                if (p) {
3972                                        dev->orig_page = p;
3973                                        continue;
3974                                }
3975
3976                                /*
3977                                 * alloc_page() failed, try use
3978                                 * disk_info->extra_page
3979                                 */
3980                                if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3981                                                      &conf->cache_state)) {
3982                                        r5c_use_extra_page(sh);
3983                                        break;
3984                                }
3985
3986                                /* extra_page in use, add to delayed_list */
3987                                set_bit(STRIPE_DELAYED, &sh->state);
3988                                s->waiting_extra_page = 1;
3989                                return -EAGAIN;
3990                        }
3991                }
3992
3993                for (i = disks; i--; ) {
3994                        struct r5dev *dev = &sh->dev[i];
3995                        if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3996                             i == sh->pd_idx || i == sh->qd_idx ||
3997                             test_bit(R5_InJournal, &dev->flags)) &&
3998                            !test_bit(R5_LOCKED, &dev->flags) &&
3999                            !(uptodate_for_rmw(dev) ||
4000                              test_bit(R5_Wantcompute, &dev->flags)) &&
4001                            test_bit(R5_Insync, &dev->flags)) {
4002                                if (test_bit(STRIPE_PREREAD_ACTIVE,
4003                                             &sh->state)) {
4004                                        pr_debug("Read_old block %d for r-m-w\n",
4005                                                 i);
4006                                        set_bit(R5_LOCKED, &dev->flags);
4007                                        set_bit(R5_Wantread, &dev->flags);
4008                                        s->locked++;
4009                                } else
4010                                        set_bit(STRIPE_DELAYED, &sh->state);
4011                        }
4012                }
4013        }
4014        if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
4015                /* want reconstruct write, but need to get some data */
4016                int qread =0;
4017                rcw = 0;
4018                for (i = disks; i--; ) {
4019                        struct r5dev *dev = &sh->dev[i];
4020                        if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4021                            i != sh->pd_idx && i != sh->qd_idx &&
4022                            !test_bit(R5_LOCKED, &dev->flags) &&
4023                            !(test_bit(R5_UPTODATE, &dev->flags) ||
4024                              test_bit(R5_Wantcompute, &dev->flags))) {
4025                                rcw++;
4026                                if (test_bit(R5_Insync, &dev->flags) &&
4027                                    test_bit(STRIPE_PREREAD_ACTIVE,
4028                                             &sh->state)) {
4029                                        pr_debug("Read_old block "
4030                                                "%d for Reconstruct\n", i);
4031                                        set_bit(R5_LOCKED, &dev->flags);
4032                                        set_bit(R5_Wantread, &dev->flags);
4033                                        s->locked++;
4034                                        qread++;
4035                                } else
4036                                        set_bit(STRIPE_DELAYED, &sh->state);
4037                        }
4038                }
4039                if (rcw && conf->mddev->queue)
4040                        blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4041                                          (unsigned long long)sh->sector,
4042                                          rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4043        }
4044
4045        if (rcw > disks && rmw > disks &&
4046            !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4047                set_bit(STRIPE_DELAYED, &sh->state);
4048
4049        /* now if nothing is locked, and if we have enough data,
4050         * we can start a write request
4051         */
4052        /* since handle_stripe can be called at any time we need to handle the
4053         * case where a compute block operation has been submitted and then a
4054         * subsequent call wants to start a write request.  raid_run_ops only
4055         * handles the case where compute block and reconstruct are requested
4056         * simultaneously.  If this is not the case then new writes need to be
4057         * held off until the compute completes.
4058         */
4059        if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4060            (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4061             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4062                schedule_reconstruction(sh, s, rcw == 0, 0);
4063        return 0;
4064}
4065
4066static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4067                                struct stripe_head_state *s, int disks)
4068{
4069        struct r5dev *dev = NULL;
4070
4071        BUG_ON(sh->batch_head);
4072        set_bit(STRIPE_HANDLE, &sh->state);
4073
4074        switch (sh->check_state) {
4075        case check_state_idle:
4076                /* start a new check operation if there are no failures */
4077                if (s->failed == 0) {
4078                        BUG_ON(s->uptodate != disks);
4079                        sh->check_state = check_state_run;
4080                        set_bit(STRIPE_OP_CHECK, &s->ops_request);
4081                        clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4082                        s->uptodate--;
4083                        break;
4084                }
4085                dev = &sh->dev[s->failed_num[0]];
4086                fallthrough;
4087        case check_state_compute_result:
4088                sh->check_state = check_state_idle;
4089                if (!dev)
4090                        dev = &sh->dev[sh->pd_idx];
4091
4092                /* check that a write has not made the stripe insync */
4093                if (test_bit(STRIPE_INSYNC, &sh->state))
4094                        break;
4095
4096                /* either failed parity check, or recovery is happening */
4097                BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4098                BUG_ON(s->uptodate != disks);
4099
4100                set_bit(R5_LOCKED, &dev->flags);
4101                s->locked++;
4102                set_bit(R5_Wantwrite, &dev->flags);
4103
4104                clear_bit(STRIPE_DEGRADED, &sh->state);
4105                set_bit(STRIPE_INSYNC, &sh->state);
4106                break;
4107        case check_state_run:
4108                break; /* we will be called again upon completion */
4109        case check_state_check_result:
4110                sh->check_state = check_state_idle;
4111
4112                /* if a failure occurred during the check operation, leave
4113                 * STRIPE_INSYNC not set and let the stripe be handled again
4114                 */
4115                if (s->failed)
4116                        break;
4117
4118                /* handle a successful check operation, if parity is correct
4119                 * we are done.  Otherwise update the mismatch count and repair
4120                 * parity if !MD_RECOVERY_CHECK
4121                 */
4122                if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4123                        /* parity is correct (on disc,
4124                         * not in buffer any more)
4125                         */
4126                        set_bit(STRIPE_INSYNC, &sh->state);
4127                else {
4128                        atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4129                        if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4130                                /* don't try to repair!! */
4131                                set_bit(STRIPE_INSYNC, &sh->state);
4132                                pr_warn_ratelimited("%s: mismatch sector in range "
4133                                                    "%llu-%llu\n", mdname(conf->mddev),
4134                                                    (unsigned long long) sh->sector,
4135                                                    (unsigned long long) sh->sector +
4136                                                    RAID5_STRIPE_SECTORS(conf));
4137                        } else {
4138                                sh->check_state = check_state_compute_run;
4139                                set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4140                                set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4141                                set_bit(R5_Wantcompute,
4142                                        &sh->dev[sh->pd_idx].flags);
4143                                sh->ops.target = sh->pd_idx;
4144                                sh->ops.target2 = -1;
4145                                s->uptodate++;
4146                        }
4147                }
4148                break;
4149        case check_state_compute_run:
4150                break;
4151        default:
4152                pr_err("%s: unknown check_state: %d sector: %llu\n",
4153                       __func__, sh->check_state,
4154                       (unsigned long long) sh->sector);
4155                BUG();
4156        }
4157}
4158
4159static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4160                                  struct stripe_head_state *s,
4161                                  int disks)
4162{
4163        int pd_idx = sh->pd_idx;
4164        int qd_idx = sh->qd_idx;
4165        struct r5dev *dev;
4166
4167        BUG_ON(sh->batch_head);
4168        set_bit(STRIPE_HANDLE, &sh->state);
4169
4170        BUG_ON(s->failed > 2);
4171
4172        /* Want to check and possibly repair P and Q.
4173         * However there could be one 'failed' device, in which
4174         * case we can only check one of them, possibly using the
4175         * other to generate missing data
4176         */
4177
4178        switch (sh->check_state) {
4179        case check_state_idle:
4180                /* start a new check operation if there are < 2 failures */
4181                if (s->failed == s->q_failed) {
4182                        /* The only possible failed device holds Q, so it
4183                         * makes sense to check P (If anything else were failed,
4184                         * we would have used P to recreate it).
4185                         */
4186                        sh->check_state = check_state_run;
4187                }
4188                if (!s->q_failed && s->failed < 2) {
4189                        /* Q is not failed, and we didn't use it to generate
4190                         * anything, so it makes sense to check it
4191                         */
4192                        if (sh->check_state == check_state_run)
4193                                sh->check_state = check_state_run_pq;
4194                        else
4195                                sh->check_state = check_state_run_q;
4196                }
4197
4198                /* discard potentially stale zero_sum_result */
4199                sh->ops.zero_sum_result = 0;
4200
4201                if (sh->check_state == check_state_run) {
4202                        /* async_xor_zero_sum destroys the contents of P */
4203                        clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4204                        s->uptodate--;
4205                }
4206                if (sh->check_state >= check_state_run &&
4207                    sh->check_state <= check_state_run_pq) {
4208                        /* async_syndrome_zero_sum preserves P and Q, so
4209                         * no need to mark them !uptodate here
4210                         */
4211                        set_bit(STRIPE_OP_CHECK, &s->ops_request);
4212                        break;
4213                }
4214
4215                /* we have 2-disk failure */
4216                BUG_ON(s->failed != 2);
4217                fallthrough;
4218        case check_state_compute_result:
4219                sh->check_state = check_state_idle;
4220
4221                /* check that a write has not made the stripe insync */
4222                if (test_bit(STRIPE_INSYNC, &sh->state))
4223                        break;
4224
4225                /* now write out any block on a failed drive,
4226                 * or P or Q if they were recomputed
4227                 */
4228                dev = NULL;
4229                if (s->failed == 2) {
4230                        dev = &sh->dev[s->failed_num[1]];
4231                        s->locked++;
4232                        set_bit(R5_LOCKED, &dev->flags);
4233                        set_bit(R5_Wantwrite, &dev->flags);
4234                }
4235                if (s->failed >= 1) {
4236                        dev = &sh->dev[s->failed_num[0]];
4237                        s->locked++;
4238                        set_bit(R5_LOCKED, &dev->flags);
4239                        set_bit(R5_Wantwrite, &dev->flags);
4240                }
4241                if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4242                        dev = &sh->dev[pd_idx];
4243                        s->locked++;
4244                        set_bit(R5_LOCKED, &dev->flags);
4245                        set_bit(R5_Wantwrite, &dev->flags);
4246                }
4247                if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4248                        dev = &sh->dev[qd_idx];
4249                        s->locked++;
4250                        set_bit(R5_LOCKED, &dev->flags);
4251                        set_bit(R5_Wantwrite, &dev->flags);
4252                }
4253                if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4254                              "%s: disk%td not up to date\n",
4255                              mdname(conf->mddev),
4256                              dev - (struct r5dev *) &sh->dev)) {
4257                        clear_bit(R5_LOCKED, &dev->flags);
4258                        clear_bit(R5_Wantwrite, &dev->flags);
4259                        s->locked--;
4260                }
4261                clear_bit(STRIPE_DEGRADED, &sh->state);
4262
4263                set_bit(STRIPE_INSYNC, &sh->state);
4264                break;
4265        case check_state_run:
4266        case check_state_run_q:
4267        case check_state_run_pq:
4268                break; /* we will be called again upon completion */
4269        case check_state_check_result:
4270                sh->check_state = check_state_idle;
4271
4272                /* handle a successful check operation, if parity is correct
4273                 * we are done.  Otherwise update the mismatch count and repair
4274                 * parity if !MD_RECOVERY_CHECK
4275                 */
4276                if (sh->ops.zero_sum_result == 0) {
4277                        /* both parities are correct */
4278                        if (!s->failed)
4279                                set_bit(STRIPE_INSYNC, &sh->state);
4280                        else {
4281                                /* in contrast to the raid5 case we can validate
4282                                 * parity, but still have a failure to write
4283                                 * back
4284                                 */
4285                                sh->check_state = check_state_compute_result;
4286                                /* Returning at this point means that we may go
4287                                 * off and bring p and/or q uptodate again so
4288                                 * we make sure to check zero_sum_result again
4289                                 * to verify if p or q need writeback
4290                                 */
4291                        }
4292                } else {
4293                        atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4294                        if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4295                                /* don't try to repair!! */
4296                                set_bit(STRIPE_INSYNC, &sh->state);
4297                                pr_warn_ratelimited("%s: mismatch sector in range "
4298                                                    "%llu-%llu\n", mdname(conf->mddev),
4299                                                    (unsigned long long) sh->sector,
4300                                                    (unsigned long long) sh->sector +
4301                                                    RAID5_STRIPE_SECTORS(conf));
4302                        } else {
4303                                int *target = &sh->ops.target;
4304
4305                                sh->ops.target = -1;
4306                                sh->ops.target2 = -1;
4307                                sh->check_state = check_state_compute_run;
4308                                set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4309                                set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4310                                if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4311                                        set_bit(R5_Wantcompute,
4312                                                &sh->dev[pd_idx].flags);
4313                                        *target = pd_idx;
4314                                        target = &sh->ops.target2;
4315                                        s->uptodate++;
4316                                }
4317                                if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4318                                        set_bit(R5_Wantcompute,
4319                                                &sh->dev[qd_idx].flags);
4320                                        *target = qd_idx;
4321                                        s->uptodate++;
4322                                }
4323                        }
4324                }
4325                break;
4326        case check_state_compute_run:
4327                break;
4328        default:
4329                pr_warn("%s: unknown check_state: %d sector: %llu\n",
4330                        __func__, sh->check_state,
4331                        (unsigned long long) sh->sector);
4332                BUG();
4333        }
4334}
4335
4336static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4337{
4338        int i;
4339
4340        /* We have read all the blocks in this stripe and now we need to
4341         * copy some of them into a target stripe for expand.
4342         */
4343        struct dma_async_tx_descriptor *tx = NULL;
4344        BUG_ON(sh->batch_head);
4345        clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4346        for (i = 0; i < sh->disks; i++)
4347                if (i != sh->pd_idx && i != sh->qd_idx) {
4348                        int dd_idx, j;
4349                        struct stripe_head *sh2;
4350                        struct async_submit_ctl submit;
4351
4352                        sector_t bn = raid5_compute_blocknr(sh, i, 1);
4353                        sector_t s = raid5_compute_sector(conf, bn, 0,
4354                                                          &dd_idx, NULL);
4355                        sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4356                        if (sh2 == NULL)
4357                                /* so far only the early blocks of this stripe
4358                                 * have been requested.  When later blocks
4359                                 * get requested, we will try again
4360                                 */
4361                                continue;
4362                        if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4363                           test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4364                                /* must have already done this block */
4365                                raid5_release_stripe(sh2);
4366                                continue;
4367                        }
4368
4369                        /* place all the copies on one channel */
4370                        init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4371                        tx = async_memcpy(sh2->dev[dd_idx].page,
4372                                          sh->dev[i].page, 0, 0, RAID5_STRIPE_SIZE(conf),
4373                                          &submit);
4374
4375                        set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4376                        set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4377                        for (j = 0; j < conf->raid_disks; j++)
4378                                if (j != sh2->pd_idx &&
4379                                    j != sh2->qd_idx &&
4380                                    !test_bit(R5_Expanded, &sh2->dev[j].flags))
4381                                        break;
4382                        if (j == conf->raid_disks) {
4383                                set_bit(STRIPE_EXPAND_READY, &sh2->state);
4384                                set_bit(STRIPE_HANDLE, &sh2->state);
4385                        }
4386                        raid5_release_stripe(sh2);
4387
4388                }
4389        /* done submitting copies, wait for them to complete */
4390        async_tx_quiesce(&tx);
4391}
4392
4393/*
4394 * handle_stripe - do things to a stripe.
4395 *
4396 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4397 * state of various bits to see what needs to be done.
4398 * Possible results:
4399 *    return some read requests which now have data
4400 *    return some write requests which are safely on storage
4401 *    schedule a read on some buffers
4402 *    schedule a write of some buffers
4403 *    return confirmation of parity correctness
4404 *
4405 */
4406
4407static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4408{
4409        struct r5conf *conf = sh->raid_conf;
4410        int disks = sh->disks;
4411        struct r5dev *dev;
4412        int i;
4413        int do_recovery = 0;
4414
4415        memset(s, 0, sizeof(*s));
4416
4417        s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4418        s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4419        s->failed_num[0] = -1;
4420        s->failed_num[1] = -1;
4421        s->log_failed = r5l_log_disk_error(conf);
4422
4423        /* Now to look around and see what can be done */
4424        rcu_read_lock();
4425        for (i=disks; i--; ) {
4426                struct md_rdev *rdev;
4427                sector_t first_bad;
4428                int bad_sectors;
4429                int is_bad = 0;
4430
4431                dev = &sh->dev[i];
4432
4433                pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4434                         i, dev->flags,
4435                         dev->toread, dev->towrite, dev->written);
4436                /* maybe we can reply to a read
4437                 *
4438                 * new wantfill requests are only permitted while
4439                 * ops_complete_biofill is guaranteed to be inactive
4440                 */
4441                if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4442                    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4443                        set_bit(R5_Wantfill, &dev->flags);
4444
4445                /* now count some things */
4446                if (test_bit(R5_LOCKED, &dev->flags))
4447                        s->locked++;
4448                if (test_bit(R5_UPTODATE, &dev->flags))
4449                        s->uptodate++;
4450                if (test_bit(R5_Wantcompute, &dev->flags)) {
4451                        s->compute++;
4452                        BUG_ON(s->compute > 2);
4453                }
4454
4455                if (test_bit(R5_Wantfill, &dev->flags))
4456                        s->to_fill++;
4457                else if (dev->toread)
4458                        s->to_read++;
4459                if (dev->towrite) {
4460                        s->to_write++;
4461                        if (!test_bit(R5_OVERWRITE, &dev->flags))
4462                                s->non_overwrite++;
4463                }
4464                if (dev->written)
4465                        s->written++;
4466                /* Prefer to use the replacement for reads, but only
4467                 * if it is recovered enough and has no bad blocks.
4468                 */
4469                rdev = rcu_dereference(conf->disks[i].replacement);
4470                if (rdev && !test_bit(Faulty, &rdev->flags) &&
4471                    rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) &&
4472                    !is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
4473                                 &first_bad, &bad_sectors))
4474                        set_bit(R5_ReadRepl, &dev->flags);
4475                else {
4476                        if (rdev && !test_bit(Faulty, &rdev->flags))
4477                                set_bit(R5_NeedReplace, &dev->flags);
4478                        else
4479                                clear_bit(R5_NeedReplace, &dev->flags);
4480                        rdev = rcu_dereference(conf->disks[i].rdev);
4481                        clear_bit(R5_ReadRepl, &dev->flags);
4482                }
4483                if (rdev && test_bit(Faulty, &rdev->flags))
4484                        rdev = NULL;
4485                if (rdev) {
4486                        is_bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
4487                                             &first_bad, &bad_sectors);
4488                        if (s->blocked_rdev == NULL
4489                            && (test_bit(Blocked, &rdev->flags)
4490                                || is_bad < 0)) {
4491                                if (is_bad < 0)
4492                                        set_bit(BlockedBadBlocks,
4493                                                &rdev->flags);
4494                                s->blocked_rdev = rdev;
4495                                atomic_inc(&rdev->nr_pending);
4496                        }
4497                }
4498                clear_bit(R5_Insync, &dev->flags);
4499                if (!rdev)
4500                        /* Not in-sync */;
4501                else if (is_bad) {
4502                        /* also not in-sync */
4503                        if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4504                            test_bit(R5_UPTODATE, &dev->flags)) {
4505                                /* treat as in-sync, but with a read error
4506                                 * which we can now try to correct
4507                                 */
4508                                set_bit(R5_Insync, &dev->flags);
4509                                set_bit(R5_ReadError, &dev->flags);
4510                        }
4511                } else if (test_bit(In_sync, &rdev->flags))
4512                        set_bit(R5_Insync, &dev->flags);
4513                else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset)
4514                        /* in sync if before recovery_offset */
4515                        set_bit(R5_Insync, &dev->flags);
4516                else if (test_bit(R5_UPTODATE, &dev->flags) &&
4517                         test_bit(R5_Expanded, &dev->flags))
4518                        /* If we've reshaped into here, we assume it is Insync.
4519                         * We will shortly update recovery_offset to make
4520                         * it official.
4521                         */
4522                        set_bit(R5_Insync, &dev->flags);
4523
4524                if (test_bit(R5_WriteError, &dev->flags)) {
4525                        /* This flag does not apply to '.replacement'
4526                         * only to .rdev, so make sure to check that*/
4527                        struct md_rdev *rdev2 = rcu_dereference(
4528                                conf->disks[i].rdev);
4529                        if (rdev2 == rdev)
4530                                clear_bit(R5_Insync, &dev->flags);
4531                        if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4532                                s->handle_bad_blocks = 1;
4533                                atomic_inc(&rdev2->nr_pending);
4534                        } else
4535                                clear_bit(R5_WriteError, &dev->flags);
4536                }
4537                if (test_bit(R5_MadeGood, &dev->flags)) {
4538                        /* This flag does not apply to '.replacement'
4539                         * only to .rdev, so make sure to check that*/
4540                        struct md_rdev *rdev2 = rcu_dereference(
4541                                conf->disks[i].rdev);
4542                        if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4543                                s->handle_bad_blocks = 1;
4544                                atomic_inc(&rdev2->nr_pending);
4545                        } else
4546                                clear_bit(R5_MadeGood, &dev->flags);
4547                }
4548                if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4549                        struct md_rdev *rdev2 = rcu_dereference(
4550                                conf->disks[i].replacement);
4551                        if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4552                                s->handle_bad_blocks = 1;
4553                                atomic_inc(&rdev2->nr_pending);
4554                        } else
4555                                clear_bit(R5_MadeGoodRepl, &dev->flags);
4556                }
4557                if (!test_bit(R5_Insync, &dev->flags)) {
4558                        /* The ReadError flag will just be confusing now */
4559                        clear_bit(R5_ReadError, &dev->flags);
4560                        clear_bit(R5_ReWrite, &dev->flags);
4561                }
4562                if (test_bit(R5_ReadError, &dev->flags))
4563                        clear_bit(R5_Insync, &dev->flags);
4564                if (!test_bit(R5_Insync, &dev->flags)) {
4565                        if (s->failed < 2)
4566                                s->failed_num[s->failed] = i;
4567                        s->failed++;
4568                        if (rdev && !test_bit(Faulty, &rdev->flags))
4569                                do_recovery = 1;
4570                        else if (!rdev) {
4571                                rdev = rcu_dereference(
4572                                    conf->disks[i].replacement);
4573                                if (rdev && !test_bit(Faulty, &rdev->flags))
4574                                        do_recovery = 1;
4575                        }
4576                }
4577
4578                if (test_bit(R5_InJournal, &dev->flags))
4579                        s->injournal++;
4580                if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4581                        s->just_cached++;
4582        }
4583        if (test_bit(STRIPE_SYNCING, &sh->state)) {
4584                /* If there is a failed device being replaced,
4585                 *     we must be recovering.
4586                 * else if we are after recovery_cp, we must be syncing
4587                 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4588                 * else we can only be replacing
4589                 * sync and recovery both need to read all devices, and so
4590                 * use the same flag.
4591                 */
4592                if (do_recovery ||
4593                    sh->sector >= conf->mddev->recovery_cp ||
4594                    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4595                        s->syncing = 1;
4596                else
4597                        s->replacing = 1;
4598        }
4599        rcu_read_unlock();
4600}
4601
4602/*
4603 * Return '1' if this is a member of batch, or '0' if it is a lone stripe or
4604 * a head which can now be handled.
4605 */
4606static int clear_batch_ready(struct stripe_head *sh)
4607{
4608        struct stripe_head *tmp;
4609        if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4610                return (sh->batch_head && sh->batch_head != sh);
4611        spin_lock(&sh->stripe_lock);
4612        if (!sh->batch_head) {
4613                spin_unlock(&sh->stripe_lock);
4614                return 0;
4615        }
4616
4617        /*
4618         * this stripe could be added to a batch list before we check
4619         * BATCH_READY, skips it
4620         */
4621        if (sh->batch_head != sh) {
4622                spin_unlock(&sh->stripe_lock);
4623                return 1;
4624        }
4625        spin_lock(&sh->batch_lock);
4626        list_for_each_entry(tmp, &sh->batch_list, batch_list)
4627                clear_bit(STRIPE_BATCH_READY, &tmp->state);
4628        spin_unlock(&sh->batch_lock);
4629        spin_unlock(&sh->stripe_lock);
4630
4631        /*
4632         * BATCH_READY is cleared, no new stripes can be added.
4633         * batch_list can be accessed without lock
4634         */
4635        return 0;
4636}
4637
4638static void break_stripe_batch_list(struct stripe_head *head_sh,
4639                                    unsigned long handle_flags)
4640{
4641        struct stripe_head *sh, *next;
4642        int i;
4643        int do_wakeup = 0;
4644
4645        list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4646
4647                list_del_init(&sh->batch_list);
4648
4649                WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4650                                          (1 << STRIPE_SYNCING) |
4651                                          (1 << STRIPE_REPLACED) |
4652                                          (1 << STRIPE_DELAYED) |
4653                                          (1 << STRIPE_BIT_DELAY) |
4654                                          (1 << STRIPE_FULL_WRITE) |
4655                                          (1 << STRIPE_BIOFILL_RUN) |
4656                                          (1 << STRIPE_COMPUTE_RUN)  |
4657                                          (1 << STRIPE_DISCARD) |
4658                                          (1 << STRIPE_BATCH_READY) |
4659                                          (1 << STRIPE_BATCH_ERR) |
4660                                          (1 << STRIPE_BITMAP_PENDING)),
4661                        "stripe state: %lx\n", sh->state);
4662                WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4663                                              (1 << STRIPE_REPLACED)),
4664                        "head stripe state: %lx\n", head_sh->state);
4665
4666                set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4667                                            (1 << STRIPE_PREREAD_ACTIVE) |
4668                                            (1 << STRIPE_DEGRADED) |
4669                                            (1 << STRIPE_ON_UNPLUG_LIST)),
4670                              head_sh->state & (1 << STRIPE_INSYNC));
4671
4672                sh->check_state = head_sh->check_state;
4673                sh->reconstruct_state = head_sh->reconstruct_state;
4674                spin_lock_irq(&sh->stripe_lock);
4675                sh->batch_head = NULL;
4676                spin_unlock_irq(&sh->stripe_lock);
4677                for (i = 0; i < sh->disks; i++) {
4678                        if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4679                                do_wakeup = 1;
4680                        sh->dev[i].flags = head_sh->dev[i].flags &
4681                                (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4682                }
4683                if (handle_flags == 0 ||
4684                    sh->state & handle_flags)
4685                        set_bit(STRIPE_HANDLE, &sh->state);
4686                raid5_release_stripe(sh);
4687        }
4688        spin_lock_irq(&head_sh->stripe_lock);
4689        head_sh->batch_head = NULL;
4690        spin_unlock_irq(&head_sh->stripe_lock);
4691        for (i = 0; i < head_sh->disks; i++)
4692                if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4693                        do_wakeup = 1;
4694        if (head_sh->state & handle_flags)
4695                set_bit(STRIPE_HANDLE, &head_sh->state);
4696
4697        if (do_wakeup)
4698                wake_up(&head_sh->raid_conf->wait_for_overlap);
4699}
4700
4701static void handle_stripe(struct stripe_head *sh)
4702{
4703        struct stripe_head_state s;
4704        struct r5conf *conf = sh->raid_conf;
4705        int i;
4706        int prexor;
4707        int disks = sh->disks;
4708        struct r5dev *pdev, *qdev;
4709
4710        clear_bit(STRIPE_HANDLE, &sh->state);
4711
4712        /*
4713         * handle_stripe should not continue handle the batched stripe, only
4714         * the head of batch list or lone stripe can continue. Otherwise we
4715         * could see break_stripe_batch_list warns about the STRIPE_ACTIVE
4716         * is set for the batched stripe.
4717         */
4718        if (clear_batch_ready(sh))
4719                return;
4720
4721        if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4722                /* already being handled, ensure it gets handled
4723                 * again when current action finishes */
4724                set_bit(STRIPE_HANDLE, &sh->state);
4725                return;
4726        }
4727
4728        if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4729                break_stripe_batch_list(sh, 0);
4730
4731        if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4732                spin_lock(&sh->stripe_lock);
4733                /*
4734                 * Cannot process 'sync' concurrently with 'discard'.
4735                 * Flush data in r5cache before 'sync'.
4736                 */
4737                if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4738                    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4739                    !test_bit(STRIPE_DISCARD, &sh->state) &&
4740                    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4741                        set_bit(STRIPE_SYNCING, &sh->state);
4742                        clear_bit(STRIPE_INSYNC, &sh->state);
4743                        clear_bit(STRIPE_REPLACED, &sh->state);
4744                }
4745                spin_unlock(&sh->stripe_lock);
4746        }
4747        clear_bit(STRIPE_DELAYED, &sh->state);
4748
4749        pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4750                "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4751               (unsigned long long)sh->sector, sh->state,
4752               atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4753               sh->check_state, sh->reconstruct_state);
4754
4755        analyse_stripe(sh, &s);
4756
4757        if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4758                goto finish;
4759
4760        if (s.handle_bad_blocks ||
4761            test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4762                set_bit(STRIPE_HANDLE, &sh->state);
4763                goto finish;
4764        }
4765
4766        if (unlikely(s.blocked_rdev)) {
4767                if (s.syncing || s.expanding || s.expanded ||
4768                    s.replacing || s.to_write || s.written) {
4769                        set_bit(STRIPE_HANDLE, &sh->state);
4770                        goto finish;
4771                }
4772                /* There is nothing for the blocked_rdev to block */
4773                rdev_dec_pending(s.blocked_rdev, conf->mddev);
4774                s.blocked_rdev = NULL;
4775        }
4776
4777        if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4778                set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4779                set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4780        }
4781
4782        pr_debug("locked=%d uptodate=%d to_read=%d"
4783               " to_write=%d failed=%d failed_num=%d,%d\n",
4784               s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4785               s.failed_num[0], s.failed_num[1]);
4786        /*
4787         * check if the array has lost more than max_degraded devices and,
4788         * if so, some requests might need to be failed.
4789         *
4790         * When journal device failed (log_failed), we will only process
4791         * the stripe if there is data need write to raid disks
4792         */
4793        if (s.failed > conf->max_degraded ||
4794            (s.log_failed && s.injournal == 0)) {
4795                sh->check_state = 0;
4796                sh->reconstruct_state = 0;
4797                break_stripe_batch_list(sh, 0);
4798                if (s.to_read+s.to_write+s.written)
4799                        handle_failed_stripe(conf, sh, &s, disks);
4800                if (s.syncing + s.replacing)
4801                        handle_failed_sync(conf, sh, &s);
4802        }
4803
4804        /* Now we check to see if any write operations have recently
4805         * completed
4806         */
4807        prexor = 0;
4808        if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4809                prexor = 1;
4810        if (sh->reconstruct_state == reconstruct_state_drain_result ||
4811            sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4812                sh->reconstruct_state = reconstruct_state_idle;
4813
4814                /* All the 'written' buffers and the parity block are ready to
4815                 * be written back to disk
4816                 */
4817                BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4818                       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4819                BUG_ON(sh->qd_idx >= 0 &&
4820                       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4821                       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4822                for (i = disks; i--; ) {
4823                        struct r5dev *dev = &sh->dev[i];
4824                        if (test_bit(R5_LOCKED, &dev->flags) &&
4825                                (i == sh->pd_idx || i == sh->qd_idx ||
4826                                 dev->written || test_bit(R5_InJournal,
4827                                                          &dev->flags))) {
4828                                pr_debug("Writing block %d\n", i);
4829                                set_bit(R5_Wantwrite, &dev->flags);
4830                                if (prexor)
4831                                        continue;
4832                                if (s.failed > 1)
4833                                        continue;
4834                                if (!test_bit(R5_Insync, &dev->flags) ||
4835                                    ((i == sh->pd_idx || i == sh->qd_idx)  &&
4836                                     s.failed == 0))
4837                                        set_bit(STRIPE_INSYNC, &sh->state);
4838                        }
4839                }
4840                if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4841                        s.dec_preread_active = 1;
4842        }
4843
4844        /*
4845         * might be able to return some write requests if the parity blocks
4846         * are safe, or on a failed drive
4847         */
4848        pdev = &sh->dev[sh->pd_idx];
4849        s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4850                || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4851        qdev = &sh->dev[sh->qd_idx];
4852        s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4853                || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4854                || conf->level < 6;
4855
4856        if (s.written &&
4857            (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4858                             && !test_bit(R5_LOCKED, &pdev->flags)
4859                             && (test_bit(R5_UPTODATE, &pdev->flags) ||
4860                                 test_bit(R5_Discard, &pdev->flags))))) &&
4861            (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4862                             && !test_bit(R5_LOCKED, &qdev->flags)
4863                             && (test_bit(R5_UPTODATE, &qdev->flags) ||
4864                                 test_bit(R5_Discard, &qdev->flags))))))
4865                handle_stripe_clean_event(conf, sh, disks);
4866
4867        if (s.just_cached)
4868                r5c_handle_cached_data_endio(conf, sh, disks);
4869        log_stripe_write_finished(sh);
4870
4871        /* Now we might consider reading some blocks, either to check/generate
4872         * parity, or to satisfy requests
4873         * or to load a block that is being partially written.
4874         */
4875        if (s.to_read || s.non_overwrite
4876            || (s.to_write && s.failed)
4877            || (s.syncing && (s.uptodate + s.compute < disks))
4878            || s.replacing
4879            || s.expanding)
4880                handle_stripe_fill(sh, &s, disks);
4881
4882        /*
4883         * When the stripe finishes full journal write cycle (write to journal
4884         * and raid disk), this is the clean up procedure so it is ready for
4885         * next operation.
4886         */
4887        r5c_finish_stripe_write_out(conf, sh, &s);
4888
4889        /*
4890         * Now to consider new write requests, cache write back and what else,
4891         * if anything should be read.  We do not handle new writes when:
4892         * 1/ A 'write' operation (copy+xor) is already in flight.
4893         * 2/ A 'check' operation is in flight, as it may clobber the parity
4894         *    block.
4895         * 3/ A r5c cache log write is in flight.
4896         */
4897
4898        if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4899                if (!r5c_is_writeback(conf->log)) {
4900                        if (s.to_write)
4901                                handle_stripe_dirtying(conf, sh, &s, disks);
4902                } else { /* write back cache */
4903                        int ret = 0;
4904
4905                        /* First, try handle writes in caching phase */
4906                        if (s.to_write)
4907                                ret = r5c_try_caching_write(conf, sh, &s,
4908                                                            disks);
4909                        /*
4910                         * If caching phase failed: ret == -EAGAIN
4911                         *    OR
4912                         * stripe under reclaim: !caching && injournal
4913                         *
4914                         * fall back to handle_stripe_dirtying()
4915                         */
4916                        if (ret == -EAGAIN ||
4917                            /* stripe under reclaim: !caching && injournal */
4918                            (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4919                             s.injournal > 0)) {
4920                                ret = handle_stripe_dirtying(conf, sh, &s,
4921                                                             disks);
4922                                if (ret == -EAGAIN)
4923                                        goto finish;
4924                        }
4925                }
4926        }
4927
4928        /* maybe we need to check and possibly fix the parity for this stripe
4929         * Any reads will already have been scheduled, so we just see if enough
4930         * data is available.  The parity check is held off while parity
4931         * dependent operations are in flight.
4932         */
4933        if (sh->check_state ||
4934            (s.syncing && s.locked == 0 &&
4935             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4936             !test_bit(STRIPE_INSYNC, &sh->state))) {
4937                if (conf->level == 6)
4938                        handle_parity_checks6(conf, sh, &s, disks);
4939                else
4940                        handle_parity_checks5(conf, sh, &s, disks);
4941        }
4942
4943        if ((s.replacing || s.syncing) && s.locked == 0
4944            && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4945            && !test_bit(STRIPE_REPLACED, &sh->state)) {
4946                /* Write out to replacement devices where possible */
4947                for (i = 0; i < conf->raid_disks; i++)
4948                        if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4949                                WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4950                                set_bit(R5_WantReplace, &sh->dev[i].flags);
4951                                set_bit(R5_LOCKED, &sh->dev[i].flags);
4952                                s.locked++;
4953                        }
4954                if (s.replacing)
4955                        set_bit(STRIPE_INSYNC, &sh->state);
4956                set_bit(STRIPE_REPLACED, &sh->state);
4957        }
4958        if ((s.syncing || s.replacing) && s.locked == 0 &&
4959            !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4960            test_bit(STRIPE_INSYNC, &sh->state)) {
4961                md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
4962                clear_bit(STRIPE_SYNCING, &sh->state);
4963                if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4964                        wake_up(&conf->wait_for_overlap);
4965        }
4966
4967        /* If the failed drives are just a ReadError, then we might need
4968         * to progress the repair/check process
4969         */
4970        if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4971                for (i = 0; i < s.failed; i++) {
4972                        struct r5dev *dev = &sh->dev[s.failed_num[i]];
4973                        if (test_bit(R5_ReadError, &dev->flags)
4974                            && !test_bit(R5_LOCKED, &dev->flags)
4975                            && test_bit(R5_UPTODATE, &dev->flags)
4976                                ) {
4977                                if (!test_bit(R5_ReWrite, &dev->flags)) {
4978                                        set_bit(R5_Wantwrite, &dev->flags);
4979                                        set_bit(R5_ReWrite, &dev->flags);
4980                                } else
4981                                        /* let's read it back */
4982                                        set_bit(R5_Wantread, &dev->flags);
4983                                set_bit(R5_LOCKED, &dev->flags);
4984                                s.locked++;
4985                        }
4986                }
4987
4988        /* Finish reconstruct operations initiated by the expansion process */
4989        if (sh->reconstruct_state == reconstruct_state_result) {
4990                struct stripe_head *sh_src
4991                        = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4992                if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4993                        /* sh cannot be written until sh_src has been read.
4994                         * so arrange for sh to be delayed a little
4995                         */
4996                        set_bit(STRIPE_DELAYED, &sh->state);
4997                        set_bit(STRIPE_HANDLE, &sh->state);
4998                        if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4999                                              &sh_src->state))
5000                                atomic_inc(&conf->preread_active_stripes);
5001                        raid5_release_stripe(sh_src);
5002                        goto finish;
5003                }
5004                if (sh_src)
5005                        raid5_release_stripe(sh_src);
5006
5007                sh->reconstruct_state = reconstruct_state_idle;
5008                clear_bit(STRIPE_EXPANDING, &sh->state);
5009                for (i = conf->raid_disks; i--; ) {
5010                        set_bit(R5_Wantwrite, &sh->dev[i].flags);
5011                        set_bit(R5_LOCKED, &sh->dev[i].flags);
5012                        s.locked++;
5013                }
5014        }
5015
5016        if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
5017            !sh->reconstruct_state) {
5018                /* Need to write out all blocks after computing parity */
5019                sh->disks = conf->raid_disks;
5020                stripe_set_idx(sh->sector, conf, 0, sh);
5021                schedule_reconstruction(sh, &s, 1, 1);
5022        } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
5023                clear_bit(STRIPE_EXPAND_READY, &sh->state);
5024                atomic_dec(&conf->reshape_stripes);
5025                wake_up(&conf->wait_for_overlap);
5026                md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5027        }
5028
5029        if (s.expanding && s.locked == 0 &&
5030            !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
5031                handle_stripe_expansion(conf, sh);
5032
5033finish:
5034        /* wait for this device to become unblocked */
5035        if (unlikely(s.blocked_rdev)) {
5036                if (conf->mddev->external)
5037                        md_wait_for_blocked_rdev(s.blocked_rdev,
5038                                                 conf->mddev);
5039                else
5040                        /* Internal metadata will immediately
5041                         * be written by raid5d, so we don't
5042                         * need to wait here.
5043                         */
5044                        rdev_dec_pending(s.blocked_rdev,
5045                                         conf->mddev);
5046        }
5047
5048        if (s.handle_bad_blocks)
5049                for (i = disks; i--; ) {
5050                        struct md_rdev *rdev;
5051                        struct r5dev *dev = &sh->dev[i];
5052                        if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5053                                /* We own a safe reference to the rdev */
5054                                rdev = conf->disks[i].rdev;
5055                                if (!rdev_set_badblocks(rdev, sh->sector,
5056                                                        RAID5_STRIPE_SECTORS(conf), 0))
5057                                        md_error(conf->mddev, rdev);
5058                                rdev_dec_pending(rdev, conf->mddev);
5059                        }
5060                        if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5061                                rdev = conf->disks[i].rdev;
5062                                rdev_clear_badblocks(rdev, sh->sector,
5063                                                     RAID5_STRIPE_SECTORS(conf), 0);
5064                                rdev_dec_pending(rdev, conf->mddev);
5065                        }
5066                        if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5067                                rdev = conf->disks[i].replacement;
5068                                if (!rdev)
5069                                        /* rdev have been moved down */
5070                                        rdev = conf->disks[i].rdev;
5071                                rdev_clear_badblocks(rdev, sh->sector,
5072                                                     RAID5_STRIPE_SECTORS(conf), 0);
5073                                rdev_dec_pending(rdev, conf->mddev);
5074                        }
5075                }
5076
5077        if (s.ops_request)
5078                raid_run_ops(sh, s.ops_request);
5079
5080        ops_run_io(sh, &s);
5081
5082        if (s.dec_preread_active) {
5083                /* We delay this until after ops_run_io so that if make_request
5084                 * is waiting on a flush, it won't continue until the writes
5085                 * have actually been submitted.
5086                 */
5087                atomic_dec(&conf->preread_active_stripes);
5088                if (atomic_read(&conf->preread_active_stripes) <
5089                    IO_THRESHOLD)
5090                        md_wakeup_thread(conf->mddev->thread);
5091        }
5092
5093        clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5094}
5095
5096static void raid5_activate_delayed(struct r5conf *conf)
5097{
5098        if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5099                while (!list_empty(&conf->delayed_list)) {
5100                        struct list_head *l = conf->delayed_list.next;
5101                        struct stripe_head *sh;
5102                        sh = list_entry(l, struct stripe_head, lru);
5103                        list_del_init(l);
5104                        clear_bit(STRIPE_DELAYED, &sh->state);
5105                        if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5106                                atomic_inc(&conf->preread_active_stripes);
5107                        list_add_tail(&sh->lru, &conf->hold_list);
5108                        raid5_wakeup_stripe_thread(sh);
5109                }
5110        }
5111}
5112
5113static void activate_bit_delay(struct r5conf *conf,
5114        struct list_head *temp_inactive_list)
5115{
5116        /* device_lock is held */
5117        struct list_head head;
5118        list_add(&head, &conf->bitmap_list);
5119        list_del_init(&conf->bitmap_list);
5120        while (!list_empty(&head)) {
5121                struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5122                int hash;
5123                list_del_init(&sh->lru);
5124                atomic_inc(&sh->count);
5125                hash = sh->hash_lock_index;
5126                __release_stripe(conf, sh, &temp_inactive_list[hash]);
5127        }
5128}
5129
5130static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5131{
5132        struct r5conf *conf = mddev->private;
5133        sector_t sector = bio->bi_iter.bi_sector;
5134        unsigned int chunk_sectors;
5135        unsigned int bio_sectors = bio_sectors(bio);
5136
5137        WARN_ON_ONCE(bio->bi_partno);
5138
5139        chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5140        return  chunk_sectors >=
5141                ((sector & (chunk_sectors - 1)) + bio_sectors);
5142}
5143
5144/*
5145 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
5146 *  later sampled by raid5d.
5147 */
5148static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5149{
5150        unsigned long flags;
5151
5152        spin_lock_irqsave(&conf->device_lock, flags);
5153
5154        bi->bi_next = conf->retry_read_aligned_list;
5155        conf->retry_read_aligned_list = bi;
5156
5157        spin_unlock_irqrestore(&conf->device_lock, flags);
5158        md_wakeup_thread(conf->mddev->thread);
5159}
5160
5161static struct bio *remove_bio_from_retry(struct r5conf *conf,
5162                                         unsigned int *offset)
5163{
5164        struct bio *bi;
5165
5166        bi = conf->retry_read_aligned;
5167        if (bi) {
5168                *offset = conf->retry_read_offset;
5169                conf->retry_read_aligned = NULL;
5170                return bi;
5171        }
5172        bi = conf->retry_read_aligned_list;
5173        if(bi) {
5174                conf->retry_read_aligned_list = bi->bi_next;
5175                bi->bi_next = NULL;
5176                *offset = 0;
5177        }
5178
5179        return bi;
5180}
5181
5182/*
5183 *  The "raid5_align_endio" should check if the read succeeded and if it
5184 *  did, call bio_endio on the original bio (having bio_put the new bio
5185 *  first).
5186 *  If the read failed..
5187 */
5188static void raid5_align_endio(struct bio *bi)
5189{
5190        struct bio* raid_bi  = bi->bi_private;
5191        struct mddev *mddev;
5192        struct r5conf *conf;
5193        struct md_rdev *rdev;
5194        blk_status_t error = bi->bi_status;
5195
5196        bio_put(bi);
5197
5198        rdev = (void*)raid_bi->bi_next;
5199        raid_bi->bi_next = NULL;
5200        mddev = rdev->mddev;
5201        conf = mddev->private;
5202
5203        rdev_dec_pending(rdev, conf->mddev);
5204
5205        if (!error) {
5206                bio_endio(raid_bi);
5207                if (atomic_dec_and_test(&conf->active_aligned_reads))
5208                        wake_up(&conf->wait_for_quiescent);
5209                return;
5210        }
5211
5212        pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5213
5214        add_bio_to_retry(raid_bi, conf);
5215}
5216
5217static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5218{
5219        struct r5conf *conf = mddev->private;
5220        int dd_idx;
5221        struct bio* align_bi;
5222        struct md_rdev *rdev;
5223        sector_t end_sector;
5224
5225        if (!in_chunk_boundary(mddev, raid_bio)) {
5226                pr_debug("%s: non aligned\n", __func__);
5227                return 0;
5228        }
5229        /*
5230         * use bio_clone_fast to make a copy of the bio
5231         */
5232        align_bi = bio_clone_fast(raid_bio, GFP_NOIO, &mddev->bio_set);
5233        if (!align_bi)
5234                return 0;
5235        /*
5236         *   set bi_end_io to a new function, and set bi_private to the
5237         *     original bio.
5238         */
5239        align_bi->bi_end_io  = raid5_align_endio;
5240        align_bi->bi_private = raid_bio;
5241        /*
5242         *      compute position
5243         */
5244        align_bi->bi_iter.bi_sector =
5245                raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5246                                     0, &dd_idx, NULL);
5247
5248        end_sector = bio_end_sector(align_bi);
5249        rcu_read_lock();
5250        rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5251        if (!rdev || test_bit(Faulty, &rdev->flags) ||
5252            rdev->recovery_offset < end_sector) {
5253                rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5254                if (rdev &&
5255                    (test_bit(Faulty, &rdev->flags) ||
5256                    !(test_bit(In_sync, &rdev->flags) ||
5257                      rdev->recovery_offset >= end_sector)))
5258                        rdev = NULL;
5259        }
5260
5261        if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5262                rcu_read_unlock();
5263                bio_put(align_bi);
5264                return 0;
5265        }
5266
5267        if (rdev) {
5268                sector_t first_bad;
5269                int bad_sectors;
5270
5271                atomic_inc(&rdev->nr_pending);
5272                rcu_read_unlock();
5273                raid_bio->bi_next = (void*)rdev;
5274                bio_set_dev(align_bi, rdev->bdev);
5275
5276                if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
5277                                bio_sectors(align_bi),
5278                                &first_bad, &bad_sectors)) {
5279                        bio_put(align_bi);
5280                        rdev_dec_pending(rdev, mddev);
5281                        return 0;
5282                }
5283
5284                /* No reshape active, so we can trust rdev->data_offset */
5285                align_bi->bi_iter.bi_sector += rdev->data_offset;
5286
5287                spin_lock_irq(&conf->device_lock);
5288                wait_event_lock_irq(conf->wait_for_quiescent,
5289                                    conf->quiesce == 0,
5290                                    conf->device_lock);
5291                atomic_inc(&conf->active_aligned_reads);
5292                spin_unlock_irq(&conf->device_lock);
5293
5294                if (mddev->gendisk)
5295                        trace_block_bio_remap(align_bi->bi_disk->queue,
5296                                              align_bi, disk_devt(mddev->gendisk),
5297                                              raid_bio->bi_iter.bi_sector);
5298                submit_bio_noacct(align_bi);
5299                return 1;
5300        } else {
5301                rcu_read_unlock();
5302                bio_put(align_bi);
5303                return 0;
5304        }
5305}
5306
5307static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5308{
5309        struct bio *split;
5310        sector_t sector = raid_bio->bi_iter.bi_sector;
5311        unsigned chunk_sects = mddev->chunk_sectors;
5312        unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5313
5314        if (sectors < bio_sectors(raid_bio)) {
5315                struct r5conf *conf = mddev->private;
5316                split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5317                bio_chain(split, raid_bio);
5318                submit_bio_noacct(raid_bio);
5319                raid_bio = split;
5320        }
5321
5322        if (!raid5_read_one_chunk(mddev, raid_bio))
5323                return raid_bio;
5324
5325        return NULL;
5326}
5327
5328/* __get_priority_stripe - get the next stripe to process
5329 *
5330 * Full stripe writes are allowed to pass preread active stripes up until
5331 * the bypass_threshold is exceeded.  In general the bypass_count
5332 * increments when the handle_list is handled before the hold_list; however, it
5333 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5334 * stripe with in flight i/o.  The bypass_count will be reset when the
5335 * head of the hold_list has changed, i.e. the head was promoted to the
5336 * handle_list.
5337 */
5338static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5339{
5340        struct stripe_head *sh, *tmp;
5341        struct list_head *handle_list = NULL;
5342        struct r5worker_group *wg;
5343        bool second_try = !r5c_is_writeback(conf->log) &&
5344                !r5l_log_disk_error(conf);
5345        bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5346                r5l_log_disk_error(conf);
5347
5348again:
5349        wg = NULL;
5350        sh = NULL;
5351        if (conf->worker_cnt_per_group == 0) {
5352                handle_list = try_loprio ? &conf->loprio_list :
5353                                        &conf->handle_list;
5354        } else if (group != ANY_GROUP) {
5355                handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5356                                &conf->worker_groups[group].handle_list;
5357                wg = &conf->worker_groups[group];
5358        } else {
5359                int i;
5360                for (i = 0; i < conf->group_cnt; i++) {
5361                        handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5362                                &conf->worker_groups[i].handle_list;
5363                        wg = &conf->worker_groups[i];
5364                        if (!list_empty(handle_list))
5365                                break;
5366                }
5367        }
5368
5369        pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5370                  __func__,
5371                  list_empty(handle_list) ? "empty" : "busy",
5372                  list_empty(&conf->hold_list) ? "empty" : "busy",
5373                  atomic_read(&conf->pending_full_writes), conf->bypass_count);
5374
5375        if (!list_empty(handle_list)) {
5376                sh = list_entry(handle_list->next, typeof(*sh), lru);
5377
5378                if (list_empty(&conf->hold_list))
5379                        conf->bypass_count = 0;
5380                else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5381                        if (conf->hold_list.next == conf->last_hold)
5382                                conf->bypass_count++;
5383                        else {
5384                                conf->last_hold = conf->hold_list.next;
5385                                conf->bypass_count -= conf->bypass_threshold;
5386                                if (conf->bypass_count < 0)
5387                                        conf->bypass_count = 0;
5388                        }
5389                }
5390        } else if (!list_empty(&conf->hold_list) &&
5391                   ((conf->bypass_threshold &&
5392                     conf->bypass_count > conf->bypass_threshold) ||
5393                    atomic_read(&conf->pending_full_writes) == 0)) {
5394
5395                list_for_each_entry(tmp, &conf->hold_list,  lru) {
5396                        if (conf->worker_cnt_per_group == 0 ||
5397                            group == ANY_GROUP ||
5398                            !cpu_online(tmp->cpu) ||
5399                            cpu_to_group(tmp->cpu) == group) {
5400                                sh = tmp;
5401                                break;
5402                        }
5403                }
5404
5405                if (sh) {
5406                        conf->bypass_count -= conf->bypass_threshold;
5407                        if (conf->bypass_count < 0)
5408                                conf->bypass_count = 0;
5409                }
5410                wg = NULL;
5411        }
5412
5413        if (!sh) {
5414                if (second_try)
5415                        return NULL;
5416                second_try = true;
5417                try_loprio = !try_loprio;
5418                goto again;
5419        }
5420
5421        if (wg) {
5422                wg->stripes_cnt--;
5423                sh->group = NULL;
5424        }
5425        list_del_init(&sh->lru);
5426        BUG_ON(atomic_inc_return(&sh->count) != 1);
5427        return sh;
5428}
5429
5430struct raid5_plug_cb {
5431        struct blk_plug_cb      cb;
5432        struct list_head        list;
5433        struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5434};
5435
5436static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5437{
5438        struct raid5_plug_cb *cb = container_of(
5439                blk_cb, struct raid5_plug_cb, cb);
5440        struct stripe_head *sh;
5441        struct mddev *mddev = cb->cb.data;
5442        struct r5conf *conf = mddev->private;
5443        int cnt = 0;
5444        int hash;
5445
5446        if (cb->list.next && !list_empty(&cb->list)) {
5447                spin_lock_irq(&conf->device_lock);
5448                while (!list_empty(&cb->list)) {
5449                        sh = list_first_entry(&cb->list, struct stripe_head, lru);
5450                        list_del_init(&sh->lru);
5451                        /*
5452                         * avoid race release_stripe_plug() sees
5453                         * STRIPE_ON_UNPLUG_LIST clear but the stripe
5454                         * is still in our list
5455                         */
5456                        smp_mb__before_atomic();
5457                        clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5458                        /*
5459                         * STRIPE_ON_RELEASE_LIST could be set here. In that
5460                         * case, the count is always > 1 here
5461                         */
5462                        hash = sh->hash_lock_index;
5463                        __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5464                        cnt++;
5465                }
5466                spin_unlock_irq(&conf->device_lock);
5467        }
5468        release_inactive_stripe_list(conf, cb->temp_inactive_list,
5469                                     NR_STRIPE_HASH_LOCKS);
5470        if (mddev->queue)
5471                trace_block_unplug(mddev->queue, cnt, !from_schedule);
5472        kfree(cb);
5473}
5474
5475static void release_stripe_plug(struct mddev *mddev,
5476                                struct stripe_head *sh)
5477{
5478        struct blk_plug_cb *blk_cb = blk_check_plugged(
5479                raid5_unplug, mddev,
5480                sizeof(struct raid5_plug_cb));
5481        struct raid5_plug_cb *cb;
5482
5483        if (!blk_cb) {
5484                raid5_release_stripe(sh);
5485                return;
5486        }
5487
5488        cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5489
5490        if (cb->list.next == NULL) {
5491                int i;
5492                INIT_LIST_HEAD(&cb->list);
5493                for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5494                        INIT_LIST_HEAD(cb->temp_inactive_list + i);
5495        }
5496
5497        if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5498                list_add_tail(&sh->lru, &cb->list);
5499        else
5500                raid5_release_stripe(sh);
5501}
5502
5503static void make_discard_request(struct mddev *mddev, struct bio *bi)
5504{
5505        struct r5conf *conf = mddev->private;
5506        sector_t logical_sector, last_sector;
5507        struct stripe_head *sh;
5508        int stripe_sectors;
5509
5510        if (mddev->reshape_position != MaxSector)
5511                /* Skip discard while reshape is happening */
5512                return;
5513
5514        logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5515        last_sector = bio_end_sector(bi);
5516
5517        bi->bi_next = NULL;
5518
5519        stripe_sectors = conf->chunk_sectors *
5520                (conf->raid_disks - conf->max_degraded);
5521        logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5522                                               stripe_sectors);
5523        sector_div(last_sector, stripe_sectors);
5524
5525        logical_sector *= conf->chunk_sectors;
5526        last_sector *= conf->chunk_sectors;
5527
5528        for (; logical_sector < last_sector;
5529             logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5530                DEFINE_WAIT(w);
5531                int d;
5532        again:
5533                sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5534                prepare_to_wait(&conf->wait_for_overlap, &w,
5535                                TASK_UNINTERRUPTIBLE);
5536                set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5537                if (test_bit(STRIPE_SYNCING, &sh->state)) {
5538                        raid5_release_stripe(sh);
5539                        schedule();
5540                        goto again;
5541                }
5542                clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5543                spin_lock_irq(&sh->stripe_lock);
5544                for (d = 0; d < conf->raid_disks; d++) {
5545                        if (d == sh->pd_idx || d == sh->qd_idx)
5546                                continue;
5547                        if (sh->dev[d].towrite || sh->dev[d].toread) {
5548                                set_bit(R5_Overlap, &sh->dev[d].flags);
5549                                spin_unlock_irq(&sh->stripe_lock);
5550                                raid5_release_stripe(sh);
5551                                schedule();
5552                                goto again;
5553                        }
5554                }
5555                set_bit(STRIPE_DISCARD, &sh->state);
5556                finish_wait(&conf->wait_for_overlap, &w);
5557                sh->overwrite_disks = 0;
5558                for (d = 0; d < conf->raid_disks; d++) {
5559                        if (d == sh->pd_idx || d == sh->qd_idx)
5560                                continue;
5561                        sh->dev[d].towrite = bi;
5562                        set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5563                        bio_inc_remaining(bi);
5564                        md_write_inc(mddev, bi);
5565                        sh->overwrite_disks++;
5566                }
5567                spin_unlock_irq(&sh->stripe_lock);
5568                if (conf->mddev->bitmap) {
5569                        for (d = 0;
5570                             d < conf->raid_disks - conf->max_degraded;
5571                             d++)
5572                                md_bitmap_startwrite(mddev->bitmap,
5573                                                     sh->sector,
5574                                                     RAID5_STRIPE_SECTORS(conf),
5575                                                     0);
5576                        sh->bm_seq = conf->seq_flush + 1;
5577                        set_bit(STRIPE_BIT_DELAY, &sh->state);
5578                }
5579
5580                set_bit(STRIPE_HANDLE, &sh->state);
5581                clear_bit(STRIPE_DELAYED, &sh->state);
5582                if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5583                        atomic_inc(&conf->preread_active_stripes);
5584                release_stripe_plug(mddev, sh);
5585        }
5586
5587        bio_endio(bi);
5588}
5589
5590static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
5591{
5592        struct r5conf *conf = mddev->private;
5593        int dd_idx;
5594        sector_t new_sector;
5595        sector_t logical_sector, last_sector;
5596        struct stripe_head *sh;
5597        const int rw = bio_data_dir(bi);
5598        DEFINE_WAIT(w);
5599        bool do_prepare;
5600        bool do_flush = false;
5601
5602        if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5603                int ret = log_handle_flush_request(conf, bi);
5604
5605                if (ret == 0)
5606                        return true;
5607                if (ret == -ENODEV) {
5608                        if (md_flush_request(mddev, bi))
5609                                return true;
5610                }
5611                /* ret == -EAGAIN, fallback */
5612                /*
5613                 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5614                 * we need to flush journal device
5615                 */
5616                do_flush = bi->bi_opf & REQ_PREFLUSH;
5617        }
5618
5619        if (!md_write_start(mddev, bi))
5620                return false;
5621        /*
5622         * If array is degraded, better not do chunk aligned read because
5623         * later we might have to read it again in order to reconstruct
5624         * data on failed drives.
5625         */
5626        if (rw == READ && mddev->degraded == 0 &&
5627            mddev->reshape_position == MaxSector) {
5628                bi = chunk_aligned_read(mddev, bi);
5629                if (!bi)
5630                        return true;
5631        }
5632
5633        if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5634                make_discard_request(mddev, bi);
5635                md_write_end(mddev);
5636                return true;
5637        }
5638
5639        logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5640        last_sector = bio_end_sector(bi);
5641        bi->bi_next = NULL;
5642
5643        prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5644        for (; logical_sector < last_sector; logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5645                int previous;
5646                int seq;
5647
5648                do_prepare = false;
5649        retry:
5650                seq = read_seqcount_begin(&conf->gen_lock);
5651                previous = 0;
5652                if (do_prepare)
5653                        prepare_to_wait(&conf->wait_for_overlap, &w,
5654                                TASK_UNINTERRUPTIBLE);
5655                if (unlikely(conf->reshape_progress != MaxSector)) {
5656                        /* spinlock is needed as reshape_progress may be
5657                         * 64bit on a 32bit platform, and so it might be
5658                         * possible to see a half-updated value
5659                         * Of course reshape_progress could change after
5660                         * the lock is dropped, so once we get a reference
5661                         * to the stripe that we think it is, we will have
5662                         * to check again.
5663                         */
5664                        spin_lock_irq(&conf->device_lock);
5665                        if (mddev->reshape_backwards
5666                            ? logical_sector < conf->reshape_progress
5667                            : logical_sector >= conf->reshape_progress) {
5668                                previous = 1;
5669                        } else {
5670                                if (mddev->reshape_backwards
5671                                    ? logical_sector < conf->reshape_safe
5672                                    : logical_sector >= conf->reshape_safe) {
5673                                        spin_unlock_irq(&conf->device_lock);
5674                                        schedule();
5675                                        do_prepare = true;
5676                                        goto retry;
5677                                }
5678                        }
5679                        spin_unlock_irq(&conf->device_lock);
5680                }
5681
5682                new_sector = raid5_compute_sector(conf, logical_sector,
5683                                                  previous,
5684                                                  &dd_idx, NULL);
5685                pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5686                        (unsigned long long)new_sector,
5687                        (unsigned long long)logical_sector);
5688
5689                sh = raid5_get_active_stripe(conf, new_sector, previous,
5690                                       (bi->bi_opf & REQ_RAHEAD), 0);
5691                if (sh) {
5692                        if (unlikely(previous)) {
5693                                /* expansion might have moved on while waiting for a
5694                                 * stripe, so we must do the range check again.
5695                                 * Expansion could still move past after this
5696                                 * test, but as we are holding a reference to
5697                                 * 'sh', we know that if that happens,
5698                                 *  STRIPE_EXPANDING will get set and the expansion
5699                                 * won't proceed until we finish with the stripe.
5700                                 */
5701                                int must_retry = 0;
5702                                spin_lock_irq(&conf->device_lock);
5703                                if (mddev->reshape_backwards
5704                                    ? logical_sector >= conf->reshape_progress
5705                                    : logical_sector < conf->reshape_progress)
5706                                        /* mismatch, need to try again */
5707                                        must_retry = 1;
5708                                spin_unlock_irq(&conf->device_lock);
5709                                if (must_retry) {
5710                                        raid5_release_stripe(sh);
5711                                        schedule();
5712                                        do_prepare = true;
5713                                        goto retry;
5714                                }
5715                        }
5716                        if (read_seqcount_retry(&conf->gen_lock, seq)) {
5717                                /* Might have got the wrong stripe_head
5718                                 * by accident
5719                                 */
5720                                raid5_release_stripe(sh);
5721                                goto retry;
5722                        }
5723
5724                        if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5725                            !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5726                                /* Stripe is busy expanding or
5727                                 * add failed due to overlap.  Flush everything
5728                                 * and wait a while
5729                                 */
5730                                md_wakeup_thread(mddev->thread);
5731                                raid5_release_stripe(sh);
5732                                schedule();
5733                                do_prepare = true;
5734                                goto retry;
5735                        }
5736                        if (do_flush) {
5737                                set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5738                                /* we only need flush for one stripe */
5739                                do_flush = false;
5740                        }
5741
5742                        set_bit(STRIPE_HANDLE, &sh->state);
5743                        clear_bit(STRIPE_DELAYED, &sh->state);
5744                        if ((!sh->batch_head || sh == sh->batch_head) &&
5745                            (bi->bi_opf & REQ_SYNC) &&
5746                            !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5747                                atomic_inc(&conf->preread_active_stripes);
5748                        release_stripe_plug(mddev, sh);
5749                } else {
5750                        /* cannot get stripe for read-ahead, just give-up */
5751                        bi->bi_status = BLK_STS_IOERR;
5752                        break;
5753                }
5754        }
5755        finish_wait(&conf->wait_for_overlap, &w);
5756
5757        if (rw == WRITE)
5758                md_write_end(mddev);
5759        bio_endio(bi);
5760        return true;
5761}
5762
5763static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5764
5765static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5766{
5767        /* reshaping is quite different to recovery/resync so it is
5768         * handled quite separately ... here.
5769         *
5770         * On each call to sync_request, we gather one chunk worth of
5771         * destination stripes and flag them as expanding.
5772         * Then we find all the source stripes and request reads.
5773         * As the reads complete, handle_stripe will copy the data
5774         * into the destination stripe and release that stripe.
5775         */
5776        struct r5conf *conf = mddev->private;
5777        struct stripe_head *sh;
5778        struct md_rdev *rdev;
5779        sector_t first_sector, last_sector;
5780        int raid_disks = conf->previous_raid_disks;
5781        int data_disks = raid_disks - conf->max_degraded;
5782        int new_data_disks = conf->raid_disks - conf->max_degraded;
5783        int i;
5784        int dd_idx;
5785        sector_t writepos, readpos, safepos;
5786        sector_t stripe_addr;
5787        int reshape_sectors;
5788        struct list_head stripes;
5789        sector_t retn;
5790
5791        if (sector_nr == 0) {
5792                /* If restarting in the middle, skip the initial sectors */
5793                if (mddev->reshape_backwards &&
5794                    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5795                        sector_nr = raid5_size(mddev, 0, 0)
5796                                - conf->reshape_progress;
5797                } else if (mddev->reshape_backwards &&
5798                           conf->reshape_progress == MaxSector) {
5799                        /* shouldn't happen, but just in case, finish up.*/
5800                        sector_nr = MaxSector;
5801                } else if (!mddev->reshape_backwards &&
5802                           conf->reshape_progress > 0)
5803                        sector_nr = conf->reshape_progress;
5804                sector_div(sector_nr, new_data_disks);
5805                if (sector_nr) {
5806                        mddev->curr_resync_completed = sector_nr;
5807                        sysfs_notify_dirent_safe(mddev->sysfs_completed);
5808                        *skipped = 1;
5809                        retn = sector_nr;
5810                        goto finish;
5811                }
5812        }
5813
5814        /* We need to process a full chunk at a time.
5815         * If old and new chunk sizes differ, we need to process the
5816         * largest of these
5817         */
5818
5819        reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5820
5821        /* We update the metadata at least every 10 seconds, or when
5822         * the data about to be copied would over-write the source of
5823         * the data at the front of the range.  i.e. one new_stripe
5824         * along from reshape_progress new_maps to after where
5825         * reshape_safe old_maps to
5826         */
5827        writepos = conf->reshape_progress;
5828        sector_div(writepos, new_data_disks);
5829        readpos = conf->reshape_progress;
5830        sector_div(readpos, data_disks);
5831        safepos = conf->reshape_safe;
5832        sector_div(safepos, data_disks);
5833        if (mddev->reshape_backwards) {
5834                BUG_ON(writepos < reshape_sectors);
5835                writepos -= reshape_sectors;
5836                readpos += reshape_sectors;
5837                safepos += reshape_sectors;
5838        } else {
5839                writepos += reshape_sectors;
5840                /* readpos and safepos are worst-case calculations.
5841                 * A negative number is overly pessimistic, and causes
5842                 * obvious problems for unsigned storage.  So clip to 0.
5843                 */
5844                readpos -= min_t(sector_t, reshape_sectors, readpos);
5845                safepos -= min_t(sector_t, reshape_sectors, safepos);
5846        }
5847
5848        /* Having calculated the 'writepos' possibly use it
5849         * to set 'stripe_addr' which is where we will write to.
5850         */
5851        if (mddev->reshape_backwards) {
5852                BUG_ON(conf->reshape_progress == 0);
5853                stripe_addr = writepos;
5854                BUG_ON((mddev->dev_sectors &
5855                        ~((sector_t)reshape_sectors - 1))
5856                       - reshape_sectors - stripe_addr
5857                       != sector_nr);
5858        } else {
5859                BUG_ON(writepos != sector_nr + reshape_sectors);
5860                stripe_addr = sector_nr;
5861        }
5862
5863        /* 'writepos' is the most advanced device address we might write.
5864         * 'readpos' is the least advanced device address we might read.
5865         * 'safepos' is the least address recorded in the metadata as having
5866         *     been reshaped.
5867         * If there is a min_offset_diff, these are adjusted either by
5868         * increasing the safepos/readpos if diff is negative, or
5869         * increasing writepos if diff is positive.
5870         * If 'readpos' is then behind 'writepos', there is no way that we can
5871         * ensure safety in the face of a crash - that must be done by userspace
5872         * making a backup of the data.  So in that case there is no particular
5873         * rush to update metadata.
5874         * Otherwise if 'safepos' is behind 'writepos', then we really need to
5875         * update the metadata to advance 'safepos' to match 'readpos' so that
5876         * we can be safe in the event of a crash.
5877         * So we insist on updating metadata if safepos is behind writepos and
5878         * readpos is beyond writepos.
5879         * In any case, update the metadata every 10 seconds.
5880         * Maybe that number should be configurable, but I'm not sure it is
5881         * worth it.... maybe it could be a multiple of safemode_delay???
5882         */
5883        if (conf->min_offset_diff < 0) {
5884                safepos += -conf->min_offset_diff;
5885                readpos += -conf->min_offset_diff;
5886        } else
5887                writepos += conf->min_offset_diff;
5888
5889        if ((mddev->reshape_backwards
5890             ? (safepos > writepos && readpos < writepos)
5891             : (safepos < writepos && readpos > writepos)) ||
5892            time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5893                /* Cannot proceed until we've updated the superblock... */
5894                wait_event(conf->wait_for_overlap,
5895                           atomic_read(&conf->reshape_stripes)==0
5896                           || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5897                if (atomic_read(&conf->reshape_stripes) != 0)
5898                        return 0;
5899                mddev->reshape_position = conf->reshape_progress;
5900                mddev->curr_resync_completed = sector_nr;
5901                if (!mddev->reshape_backwards)
5902                        /* Can update recovery_offset */
5903                        rdev_for_each(rdev, mddev)
5904                                if (rdev->raid_disk >= 0 &&
5905                                    !test_bit(Journal, &rdev->flags) &&
5906                                    !test_bit(In_sync, &rdev->flags) &&
5907                                    rdev->recovery_offset < sector_nr)
5908                                        rdev->recovery_offset = sector_nr;
5909
5910                conf->reshape_checkpoint = jiffies;
5911                set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5912                md_wakeup_thread(mddev->thread);
5913                wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
5914                           test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5915                if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5916                        return 0;
5917                spin_lock_irq(&conf->device_lock);
5918                conf->reshape_safe = mddev->reshape_position;
5919                spin_unlock_irq(&conf->device_lock);
5920                wake_up(&conf->wait_for_overlap);
5921                sysfs_notify_dirent_safe(mddev->sysfs_completed);
5922        }
5923
5924        INIT_LIST_HEAD(&stripes);
5925        for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) {
5926                int j;
5927                int skipped_disk = 0;
5928                sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5929                set_bit(STRIPE_EXPANDING, &sh->state);
5930                atomic_inc(&conf->reshape_stripes);
5931                /* If any of this stripe is beyond the end of the old
5932                 * array, then we need to zero those blocks
5933                 */
5934                for (j=sh->disks; j--;) {
5935                        sector_t s;
5936                        if (j == sh->pd_idx)
5937                                continue;
5938                        if (conf->level == 6 &&
5939                            j == sh->qd_idx)
5940                                continue;
5941                        s = raid5_compute_blocknr(sh, j, 0);
5942                        if (s < raid5_size(mddev, 0, 0)) {
5943                                skipped_disk = 1;
5944                                continue;
5945                        }
5946                        memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf));
5947                        set_bit(R5_Expanded, &sh->dev[j].flags);
5948                        set_bit(R5_UPTODATE, &sh->dev[j].flags);
5949                }
5950                if (!skipped_disk) {
5951                        set_bit(STRIPE_EXPAND_READY, &sh->state);
5952                        set_bit(STRIPE_HANDLE, &sh->state);
5953                }
5954                list_add(&sh->lru, &stripes);
5955        }
5956        spin_lock_irq(&conf->device_lock);
5957        if (mddev->reshape_backwards)
5958                conf->reshape_progress -= reshape_sectors * new_data_disks;
5959        else
5960                conf->reshape_progress += reshape_sectors * new_data_disks;
5961        spin_unlock_irq(&conf->device_lock);
5962        /* Ok, those stripe are ready. We can start scheduling
5963         * reads on the source stripes.
5964         * The source stripes are determined by mapping the first and last
5965         * block on the destination stripes.
5966         */
5967        first_sector =
5968                raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5969                                     1, &dd_idx, NULL);
5970        last_sector =
5971                raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5972                                            * new_data_disks - 1),
5973                                     1, &dd_idx, NULL);
5974        if (last_sector >= mddev->dev_sectors)
5975                last_sector = mddev->dev_sectors - 1;
5976        while (first_sector <= last_sector) {
5977                sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5978                set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5979                set_bit(STRIPE_HANDLE, &sh->state);
5980                raid5_release_stripe(sh);
5981                first_sector += RAID5_STRIPE_SECTORS(conf);
5982        }
5983        /* Now that the sources are clearly marked, we can release
5984         * the destination stripes
5985         */
5986        while (!list_empty(&stripes)) {
5987                sh = list_entry(stripes.next, struct stripe_head, lru);
5988                list_del_init(&sh->lru);
5989                raid5_release_stripe(sh);
5990        }
5991        /* If this takes us to the resync_max point where we have to pause,
5992         * then we need to write out the superblock.
5993         */
5994        sector_nr += reshape_sectors;
5995        retn = reshape_sectors;
5996finish:
5997        if (mddev->curr_resync_completed > mddev->resync_max ||
5998            (sector_nr - mddev->curr_resync_completed) * 2
5999            >= mddev->resync_max - mddev->curr_resync_completed) {
6000                /* Cannot proceed until we've updated the superblock... */
6001                wait_event(conf->wait_for_overlap,
6002                           atomic_read(&conf->reshape_stripes) == 0
6003                           || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6004                if (atomic_read(&conf->reshape_stripes) != 0)
6005                        goto ret;
6006                mddev->reshape_position = conf->reshape_progress;
6007                mddev->curr_resync_completed = sector_nr;
6008                if (!mddev->reshape_backwards)
6009                        /* Can update recovery_offset */
6010                        rdev_for_each(rdev, mddev)
6011                                if (rdev->raid_disk >= 0 &&
6012                                    !test_bit(Journal, &rdev->flags) &&
6013                                    !test_bit(In_sync, &rdev->flags) &&
6014                                    rdev->recovery_offset < sector_nr)
6015                                        rdev->recovery_offset = sector_nr;
6016                conf->reshape_checkpoint = jiffies;
6017                set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6018                md_wakeup_thread(mddev->thread);
6019                wait_event(mddev->sb_wait,
6020                           !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6021                           || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6022                if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6023                        goto ret;
6024                spin_lock_irq(&conf->device_lock);
6025                conf->reshape_safe = mddev->reshape_position;
6026                spin_unlock_irq(&conf->device_lock);
6027                wake_up(&conf->wait_for_overlap);
6028                sysfs_notify_dirent_safe(mddev->sysfs_completed);
6029        }
6030ret:
6031        return retn;
6032}
6033
6034static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6035                                          int *skipped)
6036{
6037        struct r5conf *conf = mddev->private;
6038        struct stripe_head *sh;
6039        sector_t max_sector = mddev->dev_sectors;
6040        sector_t sync_blocks;
6041        int still_degraded = 0;
6042        int i;
6043
6044        if (sector_nr >= max_sector) {
6045                /* just being told to finish up .. nothing much to do */
6046
6047                if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6048                        end_reshape(conf);
6049                        return 0;
6050                }
6051
6052                if (mddev->curr_resync < max_sector) /* aborted */
6053                        md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6054                                           &sync_blocks, 1);
6055                else /* completed sync */
6056                        conf->fullsync = 0;
6057                md_bitmap_close_sync(mddev->bitmap);
6058
6059                return 0;
6060        }
6061
6062        /* Allow raid5_quiesce to complete */
6063        wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6064
6065        if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6066                return reshape_request(mddev, sector_nr, skipped);
6067
6068        /* No need to check resync_max as we never do more than one
6069         * stripe, and as resync_max will always be on a chunk boundary,
6070         * if the check in md_do_sync didn't fire, there is no chance
6071         * of overstepping resync_max here
6072         */
6073
6074        /* if there is too many failed drives and we are trying
6075         * to resync, then assert that we are finished, because there is
6076         * nothing we can do.
6077         */
6078        if (mddev->degraded >= conf->max_degraded &&
6079            test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6080                sector_t rv = mddev->dev_sectors - sector_nr;
6081                *skipped = 1;
6082                return rv;
6083        }
6084        if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6085            !conf->fullsync &&
6086            !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6087            sync_blocks >= RAID5_STRIPE_SECTORS(conf)) {
6088                /* we can skip this block, and probably more */
6089                do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf));
6090                *skipped = 1;
6091                /* keep things rounded to whole stripes */
6092                return sync_blocks * RAID5_STRIPE_SECTORS(conf);
6093        }
6094
6095        md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6096
6097        sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6098        if (sh == NULL) {
6099                sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6100                /* make sure we don't swamp the stripe cache if someone else
6101                 * is trying to get access
6102                 */
6103                schedule_timeout_uninterruptible(1);
6104        }
6105        /* Need to check if array will still be degraded after recovery/resync
6106         * Note in case of > 1 drive failures it's possible we're rebuilding
6107         * one drive while leaving another faulty drive in array.
6108         */
6109        rcu_read_lock();
6110        for (i = 0; i < conf->raid_disks; i++) {
6111                struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
6112
6113                if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6114                        still_degraded = 1;
6115        }
6116        rcu_read_unlock();
6117
6118        md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6119
6120        set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6121        set_bit(STRIPE_HANDLE, &sh->state);
6122
6123        raid5_release_stripe(sh);
6124
6125        return RAID5_STRIPE_SECTORS(conf);
6126}
6127
6128static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6129                               unsigned int offset)
6130{
6131        /* We may not be able to submit a whole bio at once as there
6132         * may not be enough stripe_heads available.
6133         * We cannot pre-allocate enough stripe_heads as we may need
6134         * more than exist in the cache (if we allow ever large chunks).
6135         * So we do one stripe head at a time and record in
6136         * ->bi_hw_segments how many have been done.
6137         *
6138         * We *know* that this entire raid_bio is in one chunk, so
6139         * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6140         */
6141        struct stripe_head *sh;
6142        int dd_idx;
6143        sector_t sector, logical_sector, last_sector;
6144        int scnt = 0;
6145        int handled = 0;
6146
6147        logical_sector = raid_bio->bi_iter.bi_sector &
6148                ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6149        sector = raid5_compute_sector(conf, logical_sector,
6150                                      0, &dd_idx, NULL);
6151        last_sector = bio_end_sector(raid_bio);
6152
6153        for (; logical_sector < last_sector;
6154             logical_sector += RAID5_STRIPE_SECTORS(conf),
6155                     sector += RAID5_STRIPE_SECTORS(conf),
6156                     scnt++) {
6157
6158                if (scnt < offset)
6159                        /* already done this stripe */
6160                        continue;
6161
6162                sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6163
6164                if (!sh) {
6165                        /* failed to get a stripe - must wait */
6166                        conf->retry_read_aligned = raid_bio;
6167                        conf->retry_read_offset = scnt;
6168                        return handled;
6169                }
6170
6171                if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6172                        raid5_release_stripe(sh);
6173                        conf->retry_read_aligned = raid_bio;
6174                        conf->retry_read_offset = scnt;
6175                        return handled;
6176                }
6177
6178                set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6179                handle_stripe(sh);
6180                raid5_release_stripe(sh);
6181                handled++;
6182        }
6183
6184        bio_endio(raid_bio);
6185
6186        if (atomic_dec_and_test(&conf->active_aligned_reads))
6187                wake_up(&conf->wait_for_quiescent);
6188        return handled;
6189}
6190
6191static int handle_active_stripes(struct r5conf *conf, int group,
6192                                 struct r5worker *worker,
6193                                 struct list_head *temp_inactive_list)
6194                __releases(&conf->device_lock)
6195                __acquires(&conf->device_lock)
6196{
6197        struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6198        int i, batch_size = 0, hash;
6199        bool release_inactive = false;
6200
6201        while (batch_size < MAX_STRIPE_BATCH &&
6202                        (sh = __get_priority_stripe(conf, group)) != NULL)
6203                batch[batch_size++] = sh;
6204
6205        if (batch_size == 0) {
6206                for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6207                        if (!list_empty(temp_inactive_list + i))
6208                                break;
6209                if (i == NR_STRIPE_HASH_LOCKS) {
6210                        spin_unlock_irq(&conf->device_lock);
6211                        log_flush_stripe_to_raid(conf);
6212                        spin_lock_irq(&conf->device_lock);
6213                        return batch_size;
6214                }
6215                release_inactive = true;
6216        }
6217        spin_unlock_irq(&conf->device_lock);
6218
6219        release_inactive_stripe_list(conf, temp_inactive_list,
6220                                     NR_STRIPE_HASH_LOCKS);
6221
6222        r5l_flush_stripe_to_raid(conf->log);
6223        if (release_inactive) {
6224                spin_lock_irq(&conf->device_lock);
6225                return 0;
6226        }
6227
6228        for (i = 0; i < batch_size; i++)
6229                handle_stripe(batch[i]);
6230        log_write_stripe_run(conf);
6231
6232        cond_resched();
6233
6234        spin_lock_irq(&conf->device_lock);
6235        for (i = 0; i < batch_size; i++) {
6236                hash = batch[i]->hash_lock_index;
6237                __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6238        }
6239        return batch_size;
6240}
6241
6242static void raid5_do_work(struct work_struct *work)
6243{
6244        struct r5worker *worker = container_of(work, struct r5worker, work);
6245        struct r5worker_group *group = worker->group;
6246        struct r5conf *conf = group->conf;
6247        struct mddev *mddev = conf->mddev;
6248        int group_id = group - conf->worker_groups;
6249        int handled;
6250        struct blk_plug plug;
6251
6252        pr_debug("+++ raid5worker active\n");
6253
6254        blk_start_plug(&plug);
6255        handled = 0;
6256        spin_lock_irq(&conf->device_lock);
6257        while (1) {
6258                int batch_size, released;
6259
6260                released = release_stripe_list(conf, worker->temp_inactive_list);
6261
6262                batch_size = handle_active_stripes(conf, group_id, worker,
6263                                                   worker->temp_inactive_list);
6264                worker->working = false;
6265                if (!batch_size && !released)
6266                        break;
6267                handled += batch_size;
6268                wait_event_lock_irq(mddev->sb_wait,
6269                        !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6270                        conf->device_lock);
6271        }
6272        pr_debug("%d stripes handled\n", handled);
6273
6274        spin_unlock_irq(&conf->device_lock);
6275
6276        flush_deferred_bios(conf);
6277
6278        r5l_flush_stripe_to_raid(conf->log);
6279
6280        async_tx_issue_pending_all();
6281        blk_finish_plug(&plug);
6282
6283        pr_debug("--- raid5worker inactive\n");
6284}
6285
6286/*
6287 * This is our raid5 kernel thread.
6288 *
6289 * We scan the hash table for stripes which can be handled now.
6290 * During the scan, completed stripes are saved for us by the interrupt
6291 * handler, so that they will not have to wait for our next wakeup.
6292 */
6293static void raid5d(struct md_thread *thread)
6294{
6295        struct mddev *mddev = thread->mddev;
6296        struct r5conf *conf = mddev->private;
6297        int handled;
6298        struct blk_plug plug;
6299
6300        pr_debug("+++ raid5d active\n");
6301
6302        md_check_recovery(mddev);
6303
6304        blk_start_plug(&plug);
6305        handled = 0;
6306        spin_lock_irq(&conf->device_lock);
6307        while (1) {
6308                struct bio *bio;
6309                int batch_size, released;
6310                unsigned int offset;
6311
6312                released = release_stripe_list(conf, conf->temp_inactive_list);
6313                if (released)
6314                        clear_bit(R5_DID_ALLOC, &conf->cache_state);
6315
6316                if (
6317                    !list_empty(&conf->bitmap_list)) {
6318                        /* Now is a good time to flush some bitmap updates */
6319                        conf->seq_flush++;
6320                        spin_unlock_irq(&conf->device_lock);
6321                        md_bitmap_unplug(mddev->bitmap);
6322                        spin_lock_irq(&conf->device_lock);
6323                        conf->seq_write = conf->seq_flush;
6324                        activate_bit_delay(conf, conf->temp_inactive_list);
6325                }
6326                raid5_activate_delayed(conf);
6327
6328                while ((bio = remove_bio_from_retry(conf, &offset))) {
6329                        int ok;
6330                        spin_unlock_irq(&conf->device_lock);
6331                        ok = retry_aligned_read(conf, bio, offset);
6332                        spin_lock_irq(&conf->device_lock);
6333                        if (!ok)
6334                                break;
6335                        handled++;
6336                }
6337
6338                batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6339                                                   conf->temp_inactive_list);
6340                if (!batch_size && !released)
6341                        break;
6342                handled += batch_size;
6343
6344                if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6345                        spin_unlock_irq(&conf->device_lock);
6346                        md_check_recovery(mddev);
6347                        spin_lock_irq(&conf->device_lock);
6348                }
6349        }
6350        pr_debug("%d stripes handled\n", handled);
6351
6352        spin_unlock_irq(&conf->device_lock);
6353        if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6354            mutex_trylock(&conf->cache_size_mutex)) {
6355                grow_one_stripe(conf, __GFP_NOWARN);
6356                /* Set flag even if allocation failed.  This helps
6357                 * slow down allocation requests when mem is short
6358                 */
6359                set_bit(R5_DID_ALLOC, &conf->cache_state);
6360                mutex_unlock(&conf->cache_size_mutex);
6361        }
6362
6363        flush_deferred_bios(conf);
6364
6365        r5l_flush_stripe_to_raid(conf->log);
6366
6367        async_tx_issue_pending_all();
6368        blk_finish_plug(&plug);
6369
6370        pr_debug("--- raid5d inactive\n");
6371}
6372
6373static ssize_t
6374raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6375{
6376        struct r5conf *conf;
6377        int ret = 0;
6378        spin_lock(&mddev->lock);
6379        conf = mddev->private;
6380        if (conf)
6381                ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6382        spin_unlock(&mddev->lock);
6383        return ret;
6384}
6385
6386int
6387raid5_set_cache_size(struct mddev *mddev, int size)
6388{
6389        int result = 0;
6390        struct r5conf *conf = mddev->private;
6391
6392        if (size <= 16 || size > 32768)
6393                return -EINVAL;
6394
6395        conf->min_nr_stripes = size;
6396        mutex_lock(&conf->cache_size_mutex);
6397        while (size < conf->max_nr_stripes &&
6398               drop_one_stripe(conf))
6399                ;
6400        mutex_unlock(&conf->cache_size_mutex);
6401
6402        md_allow_write(mddev);
6403
6404        mutex_lock(&conf->cache_size_mutex);
6405        while (size > conf->max_nr_stripes)
6406                if (!grow_one_stripe(conf, GFP_KERNEL)) {
6407                        conf->min_nr_stripes = conf->max_nr_stripes;
6408                        result = -ENOMEM;
6409                        break;
6410                }
6411        mutex_unlock(&conf->cache_size_mutex);
6412
6413        return result;
6414}
6415EXPORT_SYMBOL(raid5_set_cache_size);
6416
6417static ssize_t
6418raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6419{
6420        struct r5conf *conf;
6421        unsigned long new;
6422        int err;
6423
6424        if (len >= PAGE_SIZE)
6425                return -EINVAL;
6426        if (kstrtoul(page, 10, &new))
6427                return -EINVAL;
6428        err = mddev_lock(mddev);
6429        if (err)
6430                return err;
6431        conf = mddev->private;
6432        if (!conf)
6433                err = -ENODEV;
6434        else
6435                err = raid5_set_cache_size(mddev, new);
6436        mddev_unlock(mddev);
6437
6438        return err ?: len;
6439}
6440
6441static struct md_sysfs_entry
6442raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6443                                raid5_show_stripe_cache_size,
6444                                raid5_store_stripe_cache_size);
6445
6446static ssize_t
6447raid5_show_rmw_level(struct mddev  *mddev, char *page)
6448{
6449        struct r5conf *conf = mddev->private;
6450        if (conf)
6451                return sprintf(page, "%d\n", conf->rmw_level);
6452        else
6453                return 0;
6454}
6455
6456static ssize_t
6457raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6458{
6459        struct r5conf *conf = mddev->private;
6460        unsigned long new;
6461
6462        if (!conf)
6463                return -ENODEV;
6464
6465        if (len >= PAGE_SIZE)
6466                return -EINVAL;
6467
6468        if (kstrtoul(page, 10, &new))
6469                return -EINVAL;
6470
6471        if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6472                return -EINVAL;
6473
6474        if (new != PARITY_DISABLE_RMW &&
6475            new != PARITY_ENABLE_RMW &&
6476            new != PARITY_PREFER_RMW)
6477                return -EINVAL;
6478
6479        conf->rmw_level = new;
6480        return len;
6481}
6482
6483static struct md_sysfs_entry
6484raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6485                         raid5_show_rmw_level,
6486                         raid5_store_rmw_level);
6487
6488static ssize_t
6489raid5_show_stripe_size(struct mddev  *mddev, char *page)
6490{
6491        struct r5conf *conf;
6492        int ret = 0;
6493
6494        spin_lock(&mddev->lock);
6495        conf = mddev->private;
6496        if (conf)
6497                ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf));
6498        spin_unlock(&mddev->lock);
6499        return ret;
6500}
6501
6502#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
6503static ssize_t
6504raid5_store_stripe_size(struct mddev  *mddev, const char *page, size_t len)
6505{
6506        struct r5conf *conf;
6507        unsigned long new;
6508        int err;
6509
6510        if (len >= PAGE_SIZE)
6511                return -EINVAL;
6512        if (kstrtoul(page, 10, &new))
6513                return -EINVAL;
6514
6515        /*
6516         * The value should not be bigger than PAGE_SIZE. It requires to
6517         * be multiple of DEFAULT_STRIPE_SIZE and the value should be power
6518         * of two.
6519         */
6520        if (new % DEFAULT_STRIPE_SIZE != 0 ||
6521                        new > PAGE_SIZE || new == 0 ||
6522                        new != roundup_pow_of_two(new))
6523                return -EINVAL;
6524
6525        err = mddev_lock(mddev);
6526        if (err)
6527                return err;
6528
6529        conf = mddev->private;
6530        if (!conf) {
6531                err = -ENODEV;
6532                goto out_unlock;
6533        }
6534
6535        if (new == conf->stripe_size)
6536                goto out_unlock;
6537
6538        pr_debug("md/raid: change stripe_size from %lu to %lu\n",
6539                        conf->stripe_size, new);
6540
6541        mddev_suspend(mddev);
6542        conf->stripe_size = new;
6543        conf->stripe_shift = ilog2(new) - 9;
6544        conf->stripe_sectors = new >> 9;
6545        mddev_resume(mddev);
6546
6547out_unlock:
6548        mddev_unlock(mddev);
6549        return err ?: len;
6550}
6551
6552static struct md_sysfs_entry
6553raid5_stripe_size = __ATTR(stripe_size, 0644,
6554                         raid5_show_stripe_size,
6555                         raid5_store_stripe_size);
6556#else
6557static struct md_sysfs_entry
6558raid5_stripe_size = __ATTR(stripe_size, 0444,
6559                         raid5_show_stripe_size,
6560                         NULL);
6561#endif
6562
6563static ssize_t
6564raid5_show_preread_threshold(struct mddev *mddev, char *page)
6565{
6566        struct r5conf *conf;
6567        int ret = 0;
6568        spin_lock(&mddev->lock);
6569        conf = mddev->private;
6570        if (conf)
6571                ret = sprintf(page, "%d\n", conf->bypass_threshold);
6572        spin_unlock(&mddev->lock);
6573        return ret;
6574}
6575
6576static ssize_t
6577raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6578{
6579        struct r5conf *conf;
6580        unsigned long new;
6581        int err;
6582
6583        if (len >= PAGE_SIZE)
6584                return -EINVAL;
6585        if (kstrtoul(page, 10, &new))
6586                return -EINVAL;
6587
6588        err = mddev_lock(mddev);
6589        if (err)
6590                return err;
6591        conf = mddev->private;
6592        if (!conf)
6593                err = -ENODEV;
6594        else if (new > conf->min_nr_stripes)
6595                err = -EINVAL;
6596        else
6597                conf->bypass_threshold = new;
6598        mddev_unlock(mddev);
6599        return err ?: len;
6600}
6601
6602static struct md_sysfs_entry
6603raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6604                                        S_IRUGO | S_IWUSR,
6605                                        raid5_show_preread_threshold,
6606                                        raid5_store_preread_threshold);
6607
6608static ssize_t
6609raid5_show_skip_copy(struct mddev *mddev, char *page)
6610{
6611        struct r5conf *conf;
6612        int ret = 0;
6613        spin_lock(&mddev->lock);
6614        conf = mddev->private;
6615        if (conf)
6616                ret = sprintf(page, "%d\n", conf->skip_copy);
6617        spin_unlock(&mddev->lock);
6618        return ret;
6619}
6620
6621static ssize_t
6622raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6623{
6624        struct r5conf *conf;
6625        unsigned long new;
6626        int err;
6627
6628        if (len >= PAGE_SIZE)
6629                return -EINVAL;
6630        if (kstrtoul(page, 10, &new))
6631                return -EINVAL;
6632        new = !!new;
6633
6634        err = mddev_lock(mddev);
6635        if (err)
6636                return err;
6637        conf = mddev->private;
6638        if (!conf)
6639                err = -ENODEV;
6640        else if (new != conf->skip_copy) {
6641                mddev_suspend(mddev);
6642                conf->skip_copy = new;
6643                if (new)
6644                        mddev->queue->backing_dev_info->capabilities |=
6645                                BDI_CAP_STABLE_WRITES;
6646                else
6647                        mddev->queue->backing_dev_info->capabilities &=
6648                                ~BDI_CAP_STABLE_WRITES;
6649                mddev_resume(mddev);
6650        }
6651        mddev_unlock(mddev);
6652        return err ?: len;
6653}
6654
6655static struct md_sysfs_entry
6656raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6657                                        raid5_show_skip_copy,
6658                                        raid5_store_skip_copy);
6659
6660static ssize_t
6661stripe_cache_active_show(struct mddev *mddev, char *page)
6662{
6663        struct r5conf *conf = mddev->private;
6664        if (conf)
6665                return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6666        else
6667                return 0;
6668}
6669
6670static struct md_sysfs_entry
6671raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6672
6673static ssize_t
6674raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6675{
6676        struct r5conf *conf;
6677        int ret = 0;
6678        spin_lock(&mddev->lock);
6679        conf = mddev->private;
6680        if (conf)
6681                ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6682        spin_unlock(&mddev->lock);
6683        return ret;
6684}
6685
6686static int alloc_thread_groups(struct r5conf *conf, int cnt,
6687                               int *group_cnt,
6688                               struct r5worker_group **worker_groups);
6689static ssize_t
6690raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6691{
6692        struct r5conf *conf;
6693        unsigned int new;
6694        int err;
6695        struct r5worker_group *new_groups, *old_groups;
6696        int group_cnt;
6697
6698        if (len >= PAGE_SIZE)
6699                return -EINVAL;
6700        if (kstrtouint(page, 10, &new))
6701                return -EINVAL;
6702        /* 8192 should be big enough */
6703        if (new > 8192)
6704                return -EINVAL;
6705
6706        err = mddev_lock(mddev);
6707        if (err)
6708                return err;
6709        conf = mddev->private;
6710        if (!conf)
6711                err = -ENODEV;
6712        else if (new != conf->worker_cnt_per_group) {
6713                mddev_suspend(mddev);
6714
6715                old_groups = conf->worker_groups;
6716                if (old_groups)
6717                        flush_workqueue(raid5_wq);
6718
6719                err = alloc_thread_groups(conf, new, &group_cnt, &new_groups);
6720                if (!err) {
6721                        spin_lock_irq(&conf->device_lock);
6722                        conf->group_cnt = group_cnt;
6723                        conf->worker_cnt_per_group = new;
6724                        conf->worker_groups = new_groups;
6725                        spin_unlock_irq(&conf->device_lock);
6726
6727                        if (old_groups)
6728                                kfree(old_groups[0].workers);
6729                        kfree(old_groups);
6730                }
6731                mddev_resume(mddev);
6732        }
6733        mddev_unlock(mddev);
6734
6735        return err ?: len;
6736}
6737
6738static struct md_sysfs_entry
6739raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6740                                raid5_show_group_thread_cnt,
6741                                raid5_store_group_thread_cnt);
6742
6743static struct attribute *raid5_attrs[] =  {
6744        &raid5_stripecache_size.attr,
6745        &raid5_stripecache_active.attr,
6746        &raid5_preread_bypass_threshold.attr,
6747        &raid5_group_thread_cnt.attr,
6748        &raid5_skip_copy.attr,
6749        &raid5_rmw_level.attr,
6750        &raid5_stripe_size.attr,
6751        &r5c_journal_mode.attr,
6752        &ppl_write_hint.attr,
6753        NULL,
6754};
6755static struct attribute_group raid5_attrs_group = {
6756        .name = NULL,
6757        .attrs = raid5_attrs,
6758};
6759
6760static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt,
6761                               struct r5worker_group **worker_groups)
6762{
6763        int i, j, k;
6764        ssize_t size;
6765        struct r5worker *workers;
6766
6767        if (cnt == 0) {
6768                *group_cnt = 0;
6769                *worker_groups = NULL;
6770                return 0;
6771        }
6772        *group_cnt = num_possible_nodes();
6773        size = sizeof(struct r5worker) * cnt;
6774        workers = kcalloc(size, *group_cnt, GFP_NOIO);
6775        *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
6776                                 GFP_NOIO);
6777        if (!*worker_groups || !workers) {
6778                kfree(workers);
6779                kfree(*worker_groups);
6780                return -ENOMEM;
6781        }
6782
6783        for (i = 0; i < *group_cnt; i++) {
6784                struct r5worker_group *group;
6785
6786                group = &(*worker_groups)[i];
6787                INIT_LIST_HEAD(&group->handle_list);
6788                INIT_LIST_HEAD(&group->loprio_list);
6789                group->conf = conf;
6790                group->workers = workers + i * cnt;
6791
6792                for (j = 0; j < cnt; j++) {
6793                        struct r5worker *worker = group->workers + j;
6794                        worker->group = group;
6795                        INIT_WORK(&worker->work, raid5_do_work);
6796
6797                        for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6798                                INIT_LIST_HEAD(worker->temp_inactive_list + k);
6799                }
6800        }
6801
6802        return 0;
6803}
6804
6805static void free_thread_groups(struct r5conf *conf)
6806{
6807        if (conf->worker_groups)
6808                kfree(conf->worker_groups[0].workers);
6809        kfree(conf->worker_groups);
6810        conf->worker_groups = NULL;
6811}
6812
6813static sector_t
6814raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6815{
6816        struct r5conf *conf = mddev->private;
6817
6818        if (!sectors)
6819                sectors = mddev->dev_sectors;
6820        if (!raid_disks)
6821                /* size is defined by the smallest of previous and new size */
6822                raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6823
6824        sectors &= ~((sector_t)conf->chunk_sectors - 1);
6825        sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6826        return sectors * (raid_disks - conf->max_degraded);
6827}
6828
6829static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6830{
6831        safe_put_page(percpu->spare_page);
6832        percpu->spare_page = NULL;
6833        kvfree(percpu->scribble);
6834        percpu->scribble = NULL;
6835}
6836
6837static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6838{
6839        if (conf->level == 6 && !percpu->spare_page) {
6840                percpu->spare_page = alloc_page(GFP_KERNEL);
6841                if (!percpu->spare_page)
6842                        return -ENOMEM;
6843        }
6844
6845        if (scribble_alloc(percpu,
6846                           max(conf->raid_disks,
6847                               conf->previous_raid_disks),
6848                           max(conf->chunk_sectors,
6849                               conf->prev_chunk_sectors)
6850                           / RAID5_STRIPE_SECTORS(conf))) {
6851                free_scratch_buffer(conf, percpu);
6852                return -ENOMEM;
6853        }
6854
6855        return 0;
6856}
6857
6858static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6859{
6860        struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6861
6862        free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6863        return 0;
6864}
6865
6866static void raid5_free_percpu(struct r5conf *conf)
6867{
6868        if (!conf->percpu)
6869                return;
6870
6871        cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6872        free_percpu(conf->percpu);
6873}
6874
6875static void free_conf(struct r5conf *conf)
6876{
6877        int i;
6878
6879        log_exit(conf);
6880
6881        unregister_shrinker(&conf->shrinker);
6882        free_thread_groups(conf);
6883        shrink_stripes(conf);
6884        raid5_free_percpu(conf);
6885        for (i = 0; i < conf->pool_size; i++)
6886                if (conf->disks[i].extra_page)
6887                        put_page(conf->disks[i].extra_page);
6888        kfree(conf->disks);
6889        bioset_exit(&conf->bio_split);
6890        kfree(conf->stripe_hashtbl);
6891        kfree(conf->pending_data);
6892        kfree(conf);
6893}
6894
6895static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6896{
6897        struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6898        struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6899
6900        if (alloc_scratch_buffer(conf, percpu)) {
6901                pr_warn("%s: failed memory allocation for cpu%u\n",
6902                        __func__, cpu);
6903                return -ENOMEM;
6904        }
6905        return 0;
6906}
6907
6908static int raid5_alloc_percpu(struct r5conf *conf)
6909{
6910        int err = 0;
6911
6912        conf->percpu = alloc_percpu(struct raid5_percpu);
6913        if (!conf->percpu)
6914                return -ENOMEM;
6915
6916        err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6917        if (!err) {
6918                conf->scribble_disks = max(conf->raid_disks,
6919                        conf->previous_raid_disks);
6920                conf->scribble_sectors = max(conf->chunk_sectors,
6921                        conf->prev_chunk_sectors);
6922        }
6923        return err;
6924}
6925
6926static unsigned long raid5_cache_scan(struct shrinker *shrink,
6927                                      struct shrink_control *sc)
6928{
6929        struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6930        unsigned long ret = SHRINK_STOP;
6931
6932        if (mutex_trylock(&conf->cache_size_mutex)) {
6933                ret= 0;
6934                while (ret < sc->nr_to_scan &&
6935                       conf->max_nr_stripes > conf->min_nr_stripes) {
6936                        if (drop_one_stripe(conf) == 0) {
6937                                ret = SHRINK_STOP;
6938                                break;
6939                        }
6940                        ret++;
6941                }
6942                mutex_unlock(&conf->cache_size_mutex);
6943        }
6944        return ret;
6945}
6946
6947static unsigned long raid5_cache_count(struct shrinker *shrink,
6948                                       struct shrink_control *sc)
6949{
6950        struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6951
6952        if (conf->max_nr_stripes < conf->min_nr_stripes)
6953                /* unlikely, but not impossible */
6954                return 0;
6955        return conf->max_nr_stripes - conf->min_nr_stripes;
6956}
6957
6958static struct r5conf *setup_conf(struct mddev *mddev)
6959{
6960        struct r5conf *conf;
6961        int raid_disk, memory, max_disks;
6962        struct md_rdev *rdev;
6963        struct disk_info *disk;
6964        char pers_name[6];
6965        int i;
6966        int group_cnt;
6967        struct r5worker_group *new_group;
6968        int ret;
6969
6970        if (mddev->new_level != 5
6971            && mddev->new_level != 4
6972            && mddev->new_level != 6) {
6973                pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6974                        mdname(mddev), mddev->new_level);
6975                return ERR_PTR(-EIO);
6976        }
6977        if ((mddev->new_level == 5
6978             && !algorithm_valid_raid5(mddev->new_layout)) ||
6979            (mddev->new_level == 6
6980             && !algorithm_valid_raid6(mddev->new_layout))) {
6981                pr_warn("md/raid:%s: layout %d not supported\n",
6982                        mdname(mddev), mddev->new_layout);
6983                return ERR_PTR(-EIO);
6984        }
6985        if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6986                pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6987                        mdname(mddev), mddev->raid_disks);
6988                return ERR_PTR(-EINVAL);
6989        }
6990
6991        if (!mddev->new_chunk_sectors ||
6992            (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6993            !is_power_of_2(mddev->new_chunk_sectors)) {
6994                pr_warn("md/raid:%s: invalid chunk size %d\n",
6995                        mdname(mddev), mddev->new_chunk_sectors << 9);
6996                return ERR_PTR(-EINVAL);
6997        }
6998
6999        conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
7000        if (conf == NULL)
7001                goto abort;
7002
7003#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
7004        conf->stripe_size = DEFAULT_STRIPE_SIZE;
7005        conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9;
7006        conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9;
7007#endif
7008        INIT_LIST_HEAD(&conf->free_list);
7009        INIT_LIST_HEAD(&conf->pending_list);
7010        conf->pending_data = kcalloc(PENDING_IO_MAX,
7011                                     sizeof(struct r5pending_data),
7012                                     GFP_KERNEL);
7013        if (!conf->pending_data)
7014                goto abort;
7015        for (i = 0; i < PENDING_IO_MAX; i++)
7016                list_add(&conf->pending_data[i].sibling, &conf->free_list);
7017        /* Don't enable multi-threading by default*/
7018        if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) {
7019                conf->group_cnt = group_cnt;
7020                conf->worker_cnt_per_group = 0;
7021                conf->worker_groups = new_group;
7022        } else
7023                goto abort;
7024        spin_lock_init(&conf->device_lock);
7025        seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock);
7026        mutex_init(&conf->cache_size_mutex);
7027        init_waitqueue_head(&conf->wait_for_quiescent);
7028        init_waitqueue_head(&conf->wait_for_stripe);
7029        init_waitqueue_head(&conf->wait_for_overlap);
7030        INIT_LIST_HEAD(&conf->handle_list);
7031        INIT_LIST_HEAD(&conf->loprio_list);
7032        INIT_LIST_HEAD(&conf->hold_list);
7033        INIT_LIST_HEAD(&conf->delayed_list);
7034        INIT_LIST_HEAD(&conf->bitmap_list);
7035        init_llist_head(&conf->released_stripes);
7036        atomic_set(&conf->active_stripes, 0);
7037        atomic_set(&conf->preread_active_stripes, 0);
7038        atomic_set(&conf->active_aligned_reads, 0);
7039        spin_lock_init(&conf->pending_bios_lock);
7040        conf->batch_bio_dispatch = true;
7041        rdev_for_each(rdev, mddev) {
7042                if (test_bit(Journal, &rdev->flags))
7043                        continue;
7044                if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
7045                        conf->batch_bio_dispatch = false;
7046                        break;
7047                }
7048        }
7049
7050        conf->bypass_threshold = BYPASS_THRESHOLD;
7051        conf->recovery_disabled = mddev->recovery_disabled - 1;
7052
7053        conf->raid_disks = mddev->raid_disks;
7054        if (mddev->reshape_position == MaxSector)
7055                conf->previous_raid_disks = mddev->raid_disks;
7056        else
7057                conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
7058        max_disks = max(conf->raid_disks, conf->previous_raid_disks);
7059
7060        conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
7061                              GFP_KERNEL);
7062
7063        if (!conf->disks)
7064                goto abort;
7065
7066        for (i = 0; i < max_disks; i++) {
7067                conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
7068                if (!conf->disks[i].extra_page)
7069                        goto abort;
7070        }
7071
7072        ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
7073        if (ret)
7074                goto abort;
7075        conf->mddev = mddev;
7076
7077        if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
7078                goto abort;
7079
7080        /* We init hash_locks[0] separately to that it can be used
7081         * as the reference lock in the spin_lock_nest_lock() call
7082         * in lock_all_device_hash_locks_irq in order to convince
7083         * lockdep that we know what we are doing.
7084         */
7085        spin_lock_init(conf->hash_locks);
7086        for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
7087                spin_lock_init(conf->hash_locks + i);
7088
7089        for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7090                INIT_LIST_HEAD(conf->inactive_list + i);
7091
7092        for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7093                INIT_LIST_HEAD(conf->temp_inactive_list + i);
7094
7095        atomic_set(&conf->r5c_cached_full_stripes, 0);
7096        INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7097        atomic_set(&conf->r5c_cached_partial_stripes, 0);
7098        INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7099        atomic_set(&conf->r5c_flushing_full_stripes, 0);
7100        atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7101
7102        conf->level = mddev->new_level;
7103        conf->chunk_sectors = mddev->new_chunk_sectors;
7104        if (raid5_alloc_percpu(conf) != 0)
7105                goto abort;
7106
7107        pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7108
7109        rdev_for_each(rdev, mddev) {
7110                raid_disk = rdev->raid_disk;
7111                if (raid_disk >= max_disks
7112                    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7113                        continue;
7114                disk = conf->disks + raid_disk;
7115
7116                if (test_bit(Replacement, &rdev->flags)) {
7117                        if (disk->replacement)
7118                                goto abort;
7119                        disk->replacement = rdev;
7120                } else {
7121                        if (disk->rdev)
7122                                goto abort;
7123                        disk->rdev = rdev;
7124                }
7125
7126                if (test_bit(In_sync, &rdev->flags)) {
7127                        char b[BDEVNAME_SIZE];
7128                        pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7129                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
7130                } else if (rdev->saved_raid_disk != raid_disk)
7131                        /* Cannot rely on bitmap to complete recovery */
7132                        conf->fullsync = 1;
7133        }
7134
7135        conf->level = mddev->new_level;
7136        if (conf->level == 6) {
7137                conf->max_degraded = 2;
7138                if (raid6_call.xor_syndrome)
7139                        conf->rmw_level = PARITY_ENABLE_RMW;
7140                else
7141                        conf->rmw_level = PARITY_DISABLE_RMW;
7142        } else {
7143                conf->max_degraded = 1;
7144                conf->rmw_level = PARITY_ENABLE_RMW;
7145        }
7146        conf->algorithm = mddev->new_layout;
7147        conf->reshape_progress = mddev->reshape_position;
7148        if (conf->reshape_progress != MaxSector) {
7149                conf->prev_chunk_sectors = mddev->chunk_sectors;
7150                conf->prev_algo = mddev->layout;
7151        } else {
7152                conf->prev_chunk_sectors = conf->chunk_sectors;
7153                conf->prev_algo = conf->algorithm;
7154        }
7155
7156        conf->min_nr_stripes = NR_STRIPES;
7157        if (mddev->reshape_position != MaxSector) {
7158                int stripes = max_t(int,
7159                        ((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4,
7160                        ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4);
7161                conf->min_nr_stripes = max(NR_STRIPES, stripes);
7162                if (conf->min_nr_stripes != NR_STRIPES)
7163                        pr_info("md/raid:%s: force stripe size %d for reshape\n",
7164                                mdname(mddev), conf->min_nr_stripes);
7165        }
7166        memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7167                 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7168        atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7169        if (grow_stripes(conf, conf->min_nr_stripes)) {
7170                pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7171                        mdname(mddev), memory);
7172                goto abort;
7173        } else
7174                pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7175        /*
7176         * Losing a stripe head costs more than the time to refill it,
7177         * it reduces the queue depth and so can hurt throughput.
7178         * So set it rather large, scaled by number of devices.
7179         */
7180        conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7181        conf->shrinker.scan_objects = raid5_cache_scan;
7182        conf->shrinker.count_objects = raid5_cache_count;
7183        conf->shrinker.batch = 128;
7184        conf->shrinker.flags = 0;
7185        if (register_shrinker(&conf->shrinker)) {
7186                pr_warn("md/raid:%s: couldn't register shrinker.\n",
7187                        mdname(mddev));
7188                goto abort;
7189        }
7190
7191        sprintf(pers_name, "raid%d", mddev->new_level);
7192        conf->thread = md_register_thread(raid5d, mddev, pers_name);
7193        if (!conf->thread) {
7194                pr_warn("md/raid:%s: couldn't allocate thread.\n",
7195                        mdname(mddev));
7196                goto abort;
7197        }
7198
7199        return conf;
7200
7201 abort:
7202        if (conf) {
7203                free_conf(conf);
7204                return ERR_PTR(-EIO);
7205        } else
7206                return ERR_PTR(-ENOMEM);
7207}
7208
7209static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7210{
7211        switch (algo) {
7212        case ALGORITHM_PARITY_0:
7213                if (raid_disk < max_degraded)
7214                        return 1;
7215                break;
7216        case ALGORITHM_PARITY_N:
7217                if (raid_disk >= raid_disks - max_degraded)
7218                        return 1;
7219                break;
7220        case ALGORITHM_PARITY_0_6:
7221                if (raid_disk == 0 ||
7222                    raid_disk == raid_disks - 1)
7223                        return 1;
7224                break;
7225        case ALGORITHM_LEFT_ASYMMETRIC_6:
7226        case ALGORITHM_RIGHT_ASYMMETRIC_6:
7227        case ALGORITHM_LEFT_SYMMETRIC_6:
7228        case ALGORITHM_RIGHT_SYMMETRIC_6:
7229                if (raid_disk == raid_disks - 1)
7230                        return 1;
7231        }
7232        return 0;
7233}
7234
7235static int raid5_run(struct mddev *mddev)
7236{
7237        struct r5conf *conf;
7238        int working_disks = 0;
7239        int dirty_parity_disks = 0;
7240        struct md_rdev *rdev;
7241        struct md_rdev *journal_dev = NULL;
7242        sector_t reshape_offset = 0;
7243        int i;
7244        long long min_offset_diff = 0;
7245        int first = 1;
7246
7247        if (mddev_init_writes_pending(mddev) < 0)
7248                return -ENOMEM;
7249
7250        if (mddev->recovery_cp != MaxSector)
7251                pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7252                          mdname(mddev));
7253
7254        rdev_for_each(rdev, mddev) {
7255                long long diff;
7256
7257                if (test_bit(Journal, &rdev->flags)) {
7258                        journal_dev = rdev;
7259                        continue;
7260                }
7261                if (rdev->raid_disk < 0)
7262                        continue;
7263                diff = (rdev->new_data_offset - rdev->data_offset);
7264                if (first) {
7265                        min_offset_diff = diff;
7266                        first = 0;
7267                } else if (mddev->reshape_backwards &&
7268                         diff < min_offset_diff)
7269                        min_offset_diff = diff;
7270                else if (!mddev->reshape_backwards &&
7271                         diff > min_offset_diff)
7272                        min_offset_diff = diff;
7273        }
7274
7275        if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7276            (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7277                pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7278                          mdname(mddev));
7279                return -EINVAL;
7280        }
7281
7282        if (mddev->reshape_position != MaxSector) {
7283                /* Check that we can continue the reshape.
7284                 * Difficulties arise if the stripe we would write to
7285                 * next is at or after the stripe we would read from next.
7286                 * For a reshape that changes the number of devices, this
7287                 * is only possible for a very short time, and mdadm makes
7288                 * sure that time appears to have past before assembling
7289                 * the array.  So we fail if that time hasn't passed.
7290                 * For a reshape that keeps the number of devices the same
7291                 * mdadm must be monitoring the reshape can keeping the
7292                 * critical areas read-only and backed up.  It will start
7293                 * the array in read-only mode, so we check for that.
7294                 */
7295                sector_t here_new, here_old;
7296                int old_disks;
7297                int max_degraded = (mddev->level == 6 ? 2 : 1);
7298                int chunk_sectors;
7299                int new_data_disks;
7300
7301                if (journal_dev) {
7302                        pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7303                                mdname(mddev));
7304                        return -EINVAL;
7305                }
7306
7307                if (mddev->new_level != mddev->level) {
7308                        pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7309                                mdname(mddev));
7310                        return -EINVAL;
7311                }
7312                old_disks = mddev->raid_disks - mddev->delta_disks;
7313                /* reshape_position must be on a new-stripe boundary, and one
7314                 * further up in new geometry must map after here in old
7315                 * geometry.
7316                 * If the chunk sizes are different, then as we perform reshape
7317                 * in units of the largest of the two, reshape_position needs
7318                 * be a multiple of the largest chunk size times new data disks.
7319                 */
7320                here_new = mddev->reshape_position;
7321                chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7322                new_data_disks = mddev->raid_disks - max_degraded;
7323                if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7324                        pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7325                                mdname(mddev));
7326                        return -EINVAL;
7327                }
7328                reshape_offset = here_new * chunk_sectors;
7329                /* here_new is the stripe we will write to */
7330                here_old = mddev->reshape_position;
7331                sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7332                /* here_old is the first stripe that we might need to read
7333                 * from */
7334                if (mddev->delta_disks == 0) {
7335                        /* We cannot be sure it is safe to start an in-place
7336                         * reshape.  It is only safe if user-space is monitoring
7337                         * and taking constant backups.
7338                         * mdadm always starts a situation like this in
7339                         * readonly mode so it can take control before
7340                         * allowing any writes.  So just check for that.
7341                         */
7342                        if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7343                            abs(min_offset_diff) >= mddev->new_chunk_sectors)
7344                                /* not really in-place - so OK */;
7345                        else if (mddev->ro == 0) {
7346                                pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7347                                        mdname(mddev));
7348                                return -EINVAL;
7349                        }
7350                } else if (mddev->reshape_backwards
7351                    ? (here_new * chunk_sectors + min_offset_diff <=
7352                       here_old * chunk_sectors)
7353                    : (here_new * chunk_sectors >=
7354                       here_old * chunk_sectors + (-min_offset_diff))) {
7355                        /* Reading from the same stripe as writing to - bad */
7356                        pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7357                                mdname(mddev));
7358                        return -EINVAL;
7359                }
7360                pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7361                /* OK, we should be able to continue; */
7362        } else {
7363                BUG_ON(mddev->level != mddev->new_level);
7364                BUG_ON(mddev->layout != mddev->new_layout);
7365                BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7366                BUG_ON(mddev->delta_disks != 0);
7367        }
7368
7369        if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7370            test_bit(MD_HAS_PPL, &mddev->flags)) {
7371                pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7372                        mdname(mddev));
7373                clear_bit(MD_HAS_PPL, &mddev->flags);
7374                clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7375        }
7376
7377        if (mddev->private == NULL)
7378                conf = setup_conf(mddev);
7379        else
7380                conf = mddev->private;
7381
7382        if (IS_ERR(conf))
7383                return PTR_ERR(conf);
7384
7385        if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7386                if (!journal_dev) {
7387                        pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7388                                mdname(mddev));
7389                        mddev->ro = 1;
7390                        set_disk_ro(mddev->gendisk, 1);
7391                } else if (mddev->recovery_cp == MaxSector)
7392                        set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7393        }
7394
7395        conf->min_offset_diff = min_offset_diff;
7396        mddev->thread = conf->thread;
7397        conf->thread = NULL;
7398        mddev->private = conf;
7399
7400        for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7401             i++) {
7402                rdev = conf->disks[i].rdev;
7403                if (!rdev && conf->disks[i].replacement) {
7404                        /* The replacement is all we have yet */
7405                        rdev = conf->disks[i].replacement;
7406                        conf->disks[i].replacement = NULL;
7407                        clear_bit(Replacement, &rdev->flags);
7408                        conf->disks[i].rdev = rdev;
7409                }
7410                if (!rdev)
7411                        continue;
7412                if (conf->disks[i].replacement &&
7413                    conf->reshape_progress != MaxSector) {
7414                        /* replacements and reshape simply do not mix. */
7415                        pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7416                        goto abort;
7417                }
7418                if (test_bit(In_sync, &rdev->flags)) {
7419                        working_disks++;
7420                        continue;
7421                }
7422                /* This disc is not fully in-sync.  However if it
7423                 * just stored parity (beyond the recovery_offset),
7424                 * when we don't need to be concerned about the
7425                 * array being dirty.
7426                 * When reshape goes 'backwards', we never have
7427                 * partially completed devices, so we only need
7428                 * to worry about reshape going forwards.
7429                 */
7430                /* Hack because v0.91 doesn't store recovery_offset properly. */
7431                if (mddev->major_version == 0 &&
7432                    mddev->minor_version > 90)
7433                        rdev->recovery_offset = reshape_offset;
7434
7435                if (rdev->recovery_offset < reshape_offset) {
7436                        /* We need to check old and new layout */
7437                        if (!only_parity(rdev->raid_disk,
7438                                         conf->algorithm,
7439                                         conf->raid_disks,
7440                                         conf->max_degraded))
7441                                continue;
7442                }
7443                if (!only_parity(rdev->raid_disk,
7444                                 conf->prev_algo,
7445                                 conf->previous_raid_disks,
7446                                 conf->max_degraded))
7447                        continue;
7448                dirty_parity_disks++;
7449        }
7450
7451        /*
7452         * 0 for a fully functional array, 1 or 2 for a degraded array.
7453         */
7454        mddev->degraded = raid5_calc_degraded(conf);
7455
7456        if (has_failed(conf)) {
7457                pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7458                        mdname(mddev), mddev->degraded, conf->raid_disks);
7459                goto abort;
7460        }
7461
7462        /* device size must be a multiple of chunk size */
7463        mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7464        mddev->resync_max_sectors = mddev->dev_sectors;
7465
7466        if (mddev->degraded > dirty_parity_disks &&
7467            mddev->recovery_cp != MaxSector) {
7468                if (test_bit(MD_HAS_PPL, &mddev->flags))
7469                        pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7470                                mdname(mddev));
7471                else if (mddev->ok_start_degraded)
7472                        pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7473                                mdname(mddev));
7474                else {
7475                        pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7476                                mdname(mddev));
7477                        goto abort;
7478                }
7479        }
7480
7481        pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7482                mdname(mddev), conf->level,
7483                mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7484                mddev->new_layout);
7485
7486        print_raid5_conf(conf);
7487
7488        if (conf->reshape_progress != MaxSector) {
7489                conf->reshape_safe = conf->reshape_progress;
7490                atomic_set(&conf->reshape_stripes, 0);
7491                clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7492                clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7493                set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7494                set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7495                mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7496                                                        "reshape");
7497                if (!mddev->sync_thread)
7498                        goto abort;
7499        }
7500
7501        /* Ok, everything is just fine now */
7502        if (mddev->to_remove == &raid5_attrs_group)
7503                mddev->to_remove = NULL;
7504        else if (mddev->kobj.sd &&
7505            sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7506                pr_warn("raid5: failed to create sysfs attributes for %s\n",
7507                        mdname(mddev));
7508        md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7509
7510        if (mddev->queue) {
7511                int chunk_size;
7512                /* read-ahead size must cover two whole stripes, which
7513                 * is 2 * (datadisks) * chunksize where 'n' is the
7514                 * number of raid devices
7515                 */
7516                int data_disks = conf->previous_raid_disks - conf->max_degraded;
7517                int stripe = data_disks *
7518                        ((mddev->chunk_sectors << 9) / PAGE_SIZE);
7519                if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7520                        mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7521
7522                chunk_size = mddev->chunk_sectors << 9;
7523                blk_queue_io_min(mddev->queue, chunk_size);
7524                blk_queue_io_opt(mddev->queue, chunk_size *
7525                                 (conf->raid_disks - conf->max_degraded));
7526                mddev->queue->limits.raid_partial_stripes_expensive = 1;
7527                /*
7528                 * We can only discard a whole stripe. It doesn't make sense to
7529                 * discard data disk but write parity disk
7530                 */
7531                stripe = stripe * PAGE_SIZE;
7532                /* Round up to power of 2, as discard handling
7533                 * currently assumes that */
7534                while ((stripe-1) & stripe)
7535                        stripe = (stripe | (stripe-1)) + 1;
7536                mddev->queue->limits.discard_alignment = stripe;
7537                mddev->queue->limits.discard_granularity = stripe;
7538
7539                blk_queue_max_write_same_sectors(mddev->queue, 0);
7540                blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7541
7542                rdev_for_each(rdev, mddev) {
7543                        disk_stack_limits(mddev->gendisk, rdev->bdev,
7544                                          rdev->data_offset << 9);
7545                        disk_stack_limits(mddev->gendisk, rdev->bdev,
7546                                          rdev->new_data_offset << 9);
7547                }
7548
7549                /*
7550                 * zeroing is required, otherwise data
7551                 * could be lost. Consider a scenario: discard a stripe
7552                 * (the stripe could be inconsistent if
7553                 * discard_zeroes_data is 0); write one disk of the
7554                 * stripe (the stripe could be inconsistent again
7555                 * depending on which disks are used to calculate
7556                 * parity); the disk is broken; The stripe data of this
7557                 * disk is lost.
7558                 *
7559                 * We only allow DISCARD if the sysadmin has confirmed that
7560                 * only safe devices are in use by setting a module parameter.
7561                 * A better idea might be to turn DISCARD into WRITE_ZEROES
7562                 * requests, as that is required to be safe.
7563                 */
7564                if (devices_handle_discard_safely &&
7565                    mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7566                    mddev->queue->limits.discard_granularity >= stripe)
7567                        blk_queue_flag_set(QUEUE_FLAG_DISCARD,
7568                                                mddev->queue);
7569                else
7570                        blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
7571                                                mddev->queue);
7572
7573                blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7574        }
7575
7576        if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7577                goto abort;
7578
7579        return 0;
7580abort:
7581        md_unregister_thread(&mddev->thread);
7582        print_raid5_conf(conf);
7583        free_conf(conf);
7584        mddev->private = NULL;
7585        pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7586        return -EIO;
7587}
7588
7589static void raid5_free(struct mddev *mddev, void *priv)
7590{
7591        struct r5conf *conf = priv;
7592
7593        free_conf(conf);
7594        mddev->to_remove = &raid5_attrs_group;
7595}
7596
7597static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7598{
7599        struct r5conf *conf = mddev->private;
7600        int i;
7601
7602        seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7603                conf->chunk_sectors / 2, mddev->layout);
7604        seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7605        rcu_read_lock();
7606        for (i = 0; i < conf->raid_disks; i++) {
7607                struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7608                seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7609        }
7610        rcu_read_unlock();
7611        seq_printf (seq, "]");
7612}
7613
7614static void print_raid5_conf (struct r5conf *conf)
7615{
7616        int i;
7617        struct disk_info *tmp;
7618
7619        pr_debug("RAID conf printout:\n");
7620        if (!conf) {
7621                pr_debug("(conf==NULL)\n");
7622                return;
7623        }
7624        pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7625               conf->raid_disks,
7626               conf->raid_disks - conf->mddev->degraded);
7627
7628        for (i = 0; i < conf->raid_disks; i++) {
7629                char b[BDEVNAME_SIZE];
7630                tmp = conf->disks + i;
7631                if (tmp->rdev)
7632                        pr_debug(" disk %d, o:%d, dev:%s\n",
7633                               i, !test_bit(Faulty, &tmp->rdev->flags),
7634                               bdevname(tmp->rdev->bdev, b));
7635        }
7636}
7637
7638static int raid5_spare_active(struct mddev *mddev)
7639{
7640        int i;
7641        struct r5conf *conf = mddev->private;
7642        struct disk_info *tmp;
7643        int count = 0;
7644        unsigned long flags;
7645
7646        for (i = 0; i < conf->raid_disks; i++) {
7647                tmp = conf->disks + i;
7648                if (tmp->replacement
7649                    && tmp->replacement->recovery_offset == MaxSector
7650                    && !test_bit(Faulty, &tmp->replacement->flags)
7651                    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7652                        /* Replacement has just become active. */
7653                        if (!tmp->rdev
7654                            || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7655                                count++;
7656                        if (tmp->rdev) {
7657                                /* Replaced device not technically faulty,
7658                                 * but we need to be sure it gets removed
7659                                 * and never re-added.
7660                                 */
7661                                set_bit(Faulty, &tmp->rdev->flags);
7662                                sysfs_notify_dirent_safe(
7663                                        tmp->rdev->sysfs_state);
7664                        }
7665                        sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7666                } else if (tmp->rdev
7667                    && tmp->rdev->recovery_offset == MaxSector
7668                    && !test_bit(Faulty, &tmp->rdev->flags)
7669                    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7670                        count++;
7671                        sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7672                }
7673        }
7674        spin_lock_irqsave(&conf->device_lock, flags);
7675        mddev->degraded = raid5_calc_degraded(conf);
7676        spin_unlock_irqrestore(&conf->device_lock, flags);
7677        print_raid5_conf(conf);
7678        return count;
7679}
7680
7681static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7682{
7683        struct r5conf *conf = mddev->private;
7684        int err = 0;
7685        int number = rdev->raid_disk;
7686        struct md_rdev **rdevp;
7687        struct disk_info *p = conf->disks + number;
7688
7689        print_raid5_conf(conf);
7690        if (test_bit(Journal, &rdev->flags) && conf->log) {
7691                /*
7692                 * we can't wait pending write here, as this is called in
7693                 * raid5d, wait will deadlock.
7694                 * neilb: there is no locking about new writes here,
7695                 * so this cannot be safe.
7696                 */
7697                if (atomic_read(&conf->active_stripes) ||
7698                    atomic_read(&conf->r5c_cached_full_stripes) ||
7699                    atomic_read(&conf->r5c_cached_partial_stripes)) {
7700                        return -EBUSY;
7701                }
7702                log_exit(conf);
7703                return 0;
7704        }
7705        if (rdev == p->rdev)
7706                rdevp = &p->rdev;
7707        else if (rdev == p->replacement)
7708                rdevp = &p->replacement;
7709        else
7710                return 0;
7711
7712        if (number >= conf->raid_disks &&
7713            conf->reshape_progress == MaxSector)
7714                clear_bit(In_sync, &rdev->flags);
7715
7716        if (test_bit(In_sync, &rdev->flags) ||
7717            atomic_read(&rdev->nr_pending)) {
7718                err = -EBUSY;
7719                goto abort;
7720        }
7721        /* Only remove non-faulty devices if recovery
7722         * isn't possible.
7723         */
7724        if (!test_bit(Faulty, &rdev->flags) &&
7725            mddev->recovery_disabled != conf->recovery_disabled &&
7726            !has_failed(conf) &&
7727            (!p->replacement || p->replacement == rdev) &&
7728            number < conf->raid_disks) {
7729                err = -EBUSY;
7730                goto abort;
7731        }
7732        *rdevp = NULL;
7733        if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7734                synchronize_rcu();
7735                if (atomic_read(&rdev->nr_pending)) {
7736                        /* lost the race, try later */
7737                        err = -EBUSY;
7738                        *rdevp = rdev;
7739                }
7740        }
7741        if (!err) {
7742                err = log_modify(conf, rdev, false);
7743                if (err)
7744                        goto abort;
7745        }
7746        if (p->replacement) {
7747                /* We must have just cleared 'rdev' */
7748                p->rdev = p->replacement;
7749                clear_bit(Replacement, &p->replacement->flags);
7750                smp_mb(); /* Make sure other CPUs may see both as identical
7751                           * but will never see neither - if they are careful
7752                           */
7753                p->replacement = NULL;
7754
7755                if (!err)
7756                        err = log_modify(conf, p->rdev, true);
7757        }
7758
7759        clear_bit(WantReplacement, &rdev->flags);
7760abort:
7761
7762        print_raid5_conf(conf);
7763        return err;
7764}
7765
7766static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7767{
7768        struct r5conf *conf = mddev->private;
7769        int ret, err = -EEXIST;
7770        int disk;
7771        struct disk_info *p;
7772        int first = 0;
7773        int last = conf->raid_disks - 1;
7774
7775        if (test_bit(Journal, &rdev->flags)) {
7776                if (conf->log)
7777                        return -EBUSY;
7778
7779                rdev->raid_disk = 0;
7780                /*
7781                 * The array is in readonly mode if journal is missing, so no
7782                 * write requests running. We should be safe
7783                 */
7784                ret = log_init(conf, rdev, false);
7785                if (ret)
7786                        return ret;
7787
7788                ret = r5l_start(conf->log);
7789                if (ret)
7790                        return ret;
7791
7792                return 0;
7793        }
7794        if (mddev->recovery_disabled == conf->recovery_disabled)
7795                return -EBUSY;
7796
7797        if (rdev->saved_raid_disk < 0 && has_failed(conf))
7798                /* no point adding a device */
7799                return -EINVAL;
7800
7801        if (rdev->raid_disk >= 0)
7802                first = last = rdev->raid_disk;
7803
7804        /*
7805         * find the disk ... but prefer rdev->saved_raid_disk
7806         * if possible.
7807         */
7808        if (rdev->saved_raid_disk >= 0 &&
7809            rdev->saved_raid_disk >= first &&
7810            conf->disks[rdev->saved_raid_disk].rdev == NULL)
7811                first = rdev->saved_raid_disk;
7812
7813        for (disk = first; disk <= last; disk++) {
7814                p = conf->disks + disk;
7815                if (p->rdev == NULL) {
7816                        clear_bit(In_sync, &rdev->flags);
7817                        rdev->raid_disk = disk;
7818                        if (rdev->saved_raid_disk != disk)
7819                                conf->fullsync = 1;
7820                        rcu_assign_pointer(p->rdev, rdev);
7821
7822                        err = log_modify(conf, rdev, true);
7823
7824                        goto out;
7825                }
7826        }
7827        for (disk = first; disk <= last; disk++) {
7828                p = conf->disks + disk;
7829                if (test_bit(WantReplacement, &p->rdev->flags) &&
7830                    p->replacement == NULL) {
7831                        clear_bit(In_sync, &rdev->flags);
7832                        set_bit(Replacement, &rdev->flags);
7833                        rdev->raid_disk = disk;
7834                        err = 0;
7835                        conf->fullsync = 1;
7836                        rcu_assign_pointer(p->replacement, rdev);
7837                        break;
7838                }
7839        }
7840out:
7841        print_raid5_conf(conf);
7842        return err;
7843}
7844
7845static int raid5_resize(struct mddev *mddev, sector_t sectors)
7846{
7847        /* no resync is happening, and there is enough space
7848         * on all devices, so we can resize.
7849         * We need to make sure resync covers any new space.
7850         * If the array is shrinking we should possibly wait until
7851         * any io in the removed space completes, but it hardly seems
7852         * worth it.
7853         */
7854        sector_t newsize;
7855        struct r5conf *conf = mddev->private;
7856
7857        if (raid5_has_log(conf) || raid5_has_ppl(conf))
7858                return -EINVAL;
7859        sectors &= ~((sector_t)conf->chunk_sectors - 1);
7860        newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7861        if (mddev->external_size &&
7862            mddev->array_sectors > newsize)
7863                return -EINVAL;
7864        if (mddev->bitmap) {
7865                int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
7866                if (ret)
7867                        return ret;
7868        }
7869        md_set_array_sectors(mddev, newsize);
7870        if (sectors > mddev->dev_sectors &&
7871            mddev->recovery_cp > mddev->dev_sectors) {
7872                mddev->recovery_cp = mddev->dev_sectors;
7873                set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7874        }
7875        mddev->dev_sectors = sectors;
7876        mddev->resync_max_sectors = sectors;
7877        return 0;
7878}
7879
7880static int check_stripe_cache(struct mddev *mddev)
7881{
7882        /* Can only proceed if there are plenty of stripe_heads.
7883         * We need a minimum of one full stripe,, and for sensible progress
7884         * it is best to have about 4 times that.
7885         * If we require 4 times, then the default 256 4K stripe_heads will
7886         * allow for chunk sizes up to 256K, which is probably OK.
7887         * If the chunk size is greater, user-space should request more
7888         * stripe_heads first.
7889         */
7890        struct r5conf *conf = mddev->private;
7891        if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
7892            > conf->min_nr_stripes ||
7893            ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
7894            > conf->min_nr_stripes) {
7895                pr_warn("md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7896                        mdname(mddev),
7897                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7898                         / RAID5_STRIPE_SIZE(conf))*4);
7899                return 0;
7900        }
7901        return 1;
7902}
7903
7904static int check_reshape(struct mddev *mddev)
7905{
7906        struct r5conf *conf = mddev->private;
7907
7908        if (raid5_has_log(conf) || raid5_has_ppl(conf))
7909                return -EINVAL;
7910        if (mddev->delta_disks == 0 &&
7911            mddev->new_layout == mddev->layout &&
7912            mddev->new_chunk_sectors == mddev->chunk_sectors)
7913                return 0; /* nothing to do */
7914        if (has_failed(conf))
7915                return -EINVAL;
7916        if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7917                /* We might be able to shrink, but the devices must
7918                 * be made bigger first.
7919                 * For raid6, 4 is the minimum size.
7920                 * Otherwise 2 is the minimum
7921                 */
7922                int min = 2;
7923                if (mddev->level == 6)
7924                        min = 4;
7925                if (mddev->raid_disks + mddev->delta_disks < min)
7926                        return -EINVAL;
7927        }
7928
7929        if (!check_stripe_cache(mddev))
7930                return -ENOSPC;
7931
7932        if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7933            mddev->delta_disks > 0)
7934                if (resize_chunks(conf,
7935                                  conf->previous_raid_disks
7936                                  + max(0, mddev->delta_disks),
7937                                  max(mddev->new_chunk_sectors,
7938                                      mddev->chunk_sectors)
7939                            ) < 0)
7940                        return -ENOMEM;
7941
7942        if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
7943                return 0; /* never bother to shrink */
7944        return resize_stripes(conf, (conf->previous_raid_disks
7945                                     + mddev->delta_disks));
7946}
7947
7948static int raid5_start_reshape(struct mddev *mddev)
7949{
7950        struct r5conf *conf = mddev->private;
7951        struct md_rdev *rdev;
7952        int spares = 0;
7953        unsigned long flags;
7954
7955        if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7956                return -EBUSY;
7957
7958        if (!check_stripe_cache(mddev))
7959                return -ENOSPC;
7960
7961        if (has_failed(conf))
7962                return -EINVAL;
7963
7964        rdev_for_each(rdev, mddev) {
7965                if (!test_bit(In_sync, &rdev->flags)
7966                    && !test_bit(Faulty, &rdev->flags))
7967                        spares++;
7968        }
7969
7970        if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7971                /* Not enough devices even to make a degraded array
7972                 * of that size
7973                 */
7974                return -EINVAL;
7975
7976        /* Refuse to reduce size of the array.  Any reductions in
7977         * array size must be through explicit setting of array_size
7978         * attribute.
7979         */
7980        if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7981            < mddev->array_sectors) {
7982                pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7983                        mdname(mddev));
7984                return -EINVAL;
7985        }
7986
7987        atomic_set(&conf->reshape_stripes, 0);
7988        spin_lock_irq(&conf->device_lock);
7989        write_seqcount_begin(&conf->gen_lock);
7990        conf->previous_raid_disks = conf->raid_disks;
7991        conf->raid_disks += mddev->delta_disks;
7992        conf->prev_chunk_sectors = conf->chunk_sectors;
7993        conf->chunk_sectors = mddev->new_chunk_sectors;
7994        conf->prev_algo = conf->algorithm;
7995        conf->algorithm = mddev->new_layout;
7996        conf->generation++;
7997        /* Code that selects data_offset needs to see the generation update
7998         * if reshape_progress has been set - so a memory barrier needed.
7999         */
8000        smp_mb();
8001        if (mddev->reshape_backwards)
8002                conf->reshape_progress = raid5_size(mddev, 0, 0);
8003        else
8004                conf->reshape_progress = 0;
8005        conf->reshape_safe = conf->reshape_progress;
8006        write_seqcount_end(&conf->gen_lock);
8007        spin_unlock_irq(&conf->device_lock);
8008
8009        /* Now make sure any requests that proceeded on the assumption
8010         * the reshape wasn't running - like Discard or Read - have
8011         * completed.
8012         */
8013        mddev_suspend(mddev);
8014        mddev_resume(mddev);
8015
8016        /* Add some new drives, as many as will fit.
8017         * We know there are enough to make the newly sized array work.
8018         * Don't add devices if we are reducing the number of
8019         * devices in the array.  This is because it is not possible
8020         * to correctly record the "partially reconstructed" state of
8021         * such devices during the reshape and confusion could result.
8022         */
8023        if (mddev->delta_disks >= 0) {
8024                rdev_for_each(rdev, mddev)
8025                        if (rdev->raid_disk < 0 &&
8026                            !test_bit(Faulty, &rdev->flags)) {
8027                                if (raid5_add_disk(mddev, rdev) == 0) {
8028                                        if (rdev->raid_disk
8029                                            >= conf->previous_raid_disks)
8030                                                set_bit(In_sync, &rdev->flags);
8031                                        else
8032                                                rdev->recovery_offset = 0;
8033
8034                                        /* Failure here is OK */
8035                                        sysfs_link_rdev(mddev, rdev);
8036                                }
8037                        } else if (rdev->raid_disk >= conf->previous_raid_disks
8038                                   && !test_bit(Faulty, &rdev->flags)) {
8039                                /* This is a spare that was manually added */
8040                                set_bit(In_sync, &rdev->flags);
8041                        }
8042
8043                /* When a reshape changes the number of devices,
8044                 * ->degraded is measured against the larger of the
8045                 * pre and post number of devices.
8046                 */
8047                spin_lock_irqsave(&conf->device_lock, flags);
8048                mddev->degraded = raid5_calc_degraded(conf);
8049                spin_unlock_irqrestore(&conf->device_lock, flags);
8050        }
8051        mddev->raid_disks = conf->raid_disks;
8052        mddev->reshape_position = conf->reshape_progress;
8053        set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8054
8055        clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8056        clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8057        clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8058        set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8059        set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8060        mddev->sync_thread = md_register_thread(md_do_sync, mddev,
8061                                                "reshape");
8062        if (!mddev->sync_thread) {
8063                mddev->recovery = 0;
8064                spin_lock_irq(&conf->device_lock);
8065                write_seqcount_begin(&conf->gen_lock);
8066                mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
8067                mddev->new_chunk_sectors =
8068                        conf->chunk_sectors = conf->prev_chunk_sectors;
8069                mddev->new_layout = conf->algorithm = conf->prev_algo;
8070                rdev_for_each(rdev, mddev)
8071                        rdev->new_data_offset = rdev->data_offset;
8072                smp_wmb();
8073                conf->generation --;
8074                conf->reshape_progress = MaxSector;
8075                mddev->reshape_position = MaxSector;
8076                write_seqcount_end(&conf->gen_lock);
8077                spin_unlock_irq(&conf->device_lock);
8078                return -EAGAIN;
8079        }
8080        conf->reshape_checkpoint = jiffies;
8081        md_wakeup_thread(mddev->sync_thread);
8082        md_new_event(mddev);
8083        return 0;
8084}
8085
8086/* This is called from the reshape thread and should make any
8087 * changes needed in 'conf'
8088 */
8089static void end_reshape(struct r5conf *conf)
8090{
8091
8092        if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
8093                struct md_rdev *rdev;
8094
8095                spin_lock_irq(&conf->device_lock);
8096                conf->previous_raid_disks = conf->raid_disks;
8097                md_finish_reshape(conf->mddev);
8098                smp_wmb();
8099                conf->reshape_progress = MaxSector;
8100                conf->mddev->reshape_position = MaxSector;
8101                rdev_for_each(rdev, conf->mddev)
8102                        if (rdev->raid_disk >= 0 &&
8103                            !test_bit(Journal, &rdev->flags) &&
8104                            !test_bit(In_sync, &rdev->flags))
8105                                rdev->recovery_offset = MaxSector;
8106                spin_unlock_irq(&conf->device_lock);
8107                wake_up(&conf->wait_for_overlap);
8108
8109                /* read-ahead size must cover two whole stripes, which is
8110                 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
8111                 */
8112                if (conf->mddev->queue) {
8113                        int data_disks = conf->raid_disks - conf->max_degraded;
8114                        int stripe = data_disks * ((conf->chunk_sectors << 9)
8115                                                   / PAGE_SIZE);
8116                        if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
8117                                conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
8118                }
8119        }
8120}
8121
8122/* This is called from the raid5d thread with mddev_lock held.
8123 * It makes config changes to the device.
8124 */
8125static void raid5_finish_reshape(struct mddev *mddev)
8126{
8127        struct r5conf *conf = mddev->private;
8128
8129        if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8130
8131                if (mddev->delta_disks <= 0) {
8132                        int d;
8133                        spin_lock_irq(&conf->device_lock);
8134                        mddev->degraded = raid5_calc_degraded(conf);
8135                        spin_unlock_irq(&conf->device_lock);
8136                        for (d = conf->raid_disks ;
8137                             d < conf->raid_disks - mddev->delta_disks;
8138                             d++) {
8139                                struct md_rdev *rdev = conf->disks[d].rdev;
8140                                if (rdev)
8141                                        clear_bit(In_sync, &rdev->flags);
8142                                rdev = conf->disks[d].replacement;
8143                                if (rdev)
8144                                        clear_bit(In_sync, &rdev->flags);
8145                        }
8146                }
8147                mddev->layout = conf->algorithm;
8148                mddev->chunk_sectors = conf->chunk_sectors;
8149                mddev->reshape_position = MaxSector;
8150                mddev->delta_disks = 0;
8151                mddev->reshape_backwards = 0;
8152        }
8153}
8154
8155static void raid5_quiesce(struct mddev *mddev, int quiesce)
8156{
8157        struct r5conf *conf = mddev->private;
8158
8159        if (quiesce) {
8160                /* stop all writes */
8161                lock_all_device_hash_locks_irq(conf);
8162                /* '2' tells resync/reshape to pause so that all
8163                 * active stripes can drain
8164                 */
8165                r5c_flush_cache(conf, INT_MAX);
8166                conf->quiesce = 2;
8167                wait_event_cmd(conf->wait_for_quiescent,
8168                                    atomic_read(&conf->active_stripes) == 0 &&
8169                                    atomic_read(&conf->active_aligned_reads) == 0,
8170                                    unlock_all_device_hash_locks_irq(conf),
8171                                    lock_all_device_hash_locks_irq(conf));
8172                conf->quiesce = 1;
8173                unlock_all_device_hash_locks_irq(conf);
8174                /* allow reshape to continue */
8175                wake_up(&conf->wait_for_overlap);
8176        } else {
8177                /* re-enable writes */
8178                lock_all_device_hash_locks_irq(conf);
8179                conf->quiesce = 0;
8180                wake_up(&conf->wait_for_quiescent);
8181                wake_up(&conf->wait_for_overlap);
8182                unlock_all_device_hash_locks_irq(conf);
8183        }
8184        log_quiesce(conf, quiesce);
8185}
8186
8187static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8188{
8189        struct r0conf *raid0_conf = mddev->private;
8190        sector_t sectors;
8191
8192        /* for raid0 takeover only one zone is supported */
8193        if (raid0_conf->nr_strip_zones > 1) {
8194                pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8195                        mdname(mddev));
8196                return ERR_PTR(-EINVAL);
8197        }
8198
8199        sectors = raid0_conf->strip_zone[0].zone_end;
8200        sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8201        mddev->dev_sectors = sectors;
8202        mddev->new_level = level;
8203        mddev->new_layout = ALGORITHM_PARITY_N;
8204        mddev->new_chunk_sectors = mddev->chunk_sectors;
8205        mddev->raid_disks += 1;
8206        mddev->delta_disks = 1;
8207        /* make sure it will be not marked as dirty */
8208        mddev->recovery_cp = MaxSector;
8209
8210        return setup_conf(mddev);
8211}
8212
8213static void *raid5_takeover_raid1(struct mddev *mddev)
8214{
8215        int chunksect;
8216        void *ret;
8217
8218        if (mddev->raid_disks != 2 ||
8219            mddev->degraded > 1)
8220                return ERR_PTR(-EINVAL);
8221
8222        /* Should check if there are write-behind devices? */
8223
8224        chunksect = 64*2; /* 64K by default */
8225
8226        /* The array must be an exact multiple of chunksize */
8227        while (chunksect && (mddev->array_sectors & (chunksect-1)))
8228                chunksect >>= 1;
8229
8230        if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private))
8231                /* array size does not allow a suitable chunk size */
8232                return ERR_PTR(-EINVAL);
8233
8234        mddev->new_level = 5;
8235        mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8236        mddev->new_chunk_sectors = chunksect;
8237
8238        ret = setup_conf(mddev);
8239        if (!IS_ERR(ret))
8240                mddev_clear_unsupported_flags(mddev,
8241                        UNSUPPORTED_MDDEV_FLAGS);
8242        return ret;
8243}
8244
8245static void *raid5_takeover_raid6(struct mddev *mddev)
8246{
8247        int new_layout;
8248
8249        switch (mddev->layout) {
8250        case ALGORITHM_LEFT_ASYMMETRIC_6:
8251                new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8252                break;
8253        case ALGORITHM_RIGHT_ASYMMETRIC_6:
8254                new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8255                break;
8256        case ALGORITHM_LEFT_SYMMETRIC_6:
8257                new_layout = ALGORITHM_LEFT_SYMMETRIC;
8258                break;
8259        case ALGORITHM_RIGHT_SYMMETRIC_6:
8260                new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8261                break;
8262        case ALGORITHM_PARITY_0_6:
8263                new_layout = ALGORITHM_PARITY_0;
8264                break;
8265        case ALGORITHM_PARITY_N:
8266                new_layout = ALGORITHM_PARITY_N;
8267                break;
8268        default:
8269                return ERR_PTR(-EINVAL);
8270        }
8271        mddev->new_level = 5;
8272        mddev->new_layout = new_layout;
8273        mddev->delta_disks = -1;
8274        mddev->raid_disks -= 1;
8275        return setup_conf(mddev);
8276}
8277
8278static int raid5_check_reshape(struct mddev *mddev)
8279{
8280        /* For a 2-drive array, the layout and chunk size can be changed
8281         * immediately as not restriping is needed.
8282         * For larger arrays we record the new value - after validation
8283         * to be used by a reshape pass.
8284         */
8285        struct r5conf *conf = mddev->private;
8286        int new_chunk = mddev->new_chunk_sectors;
8287
8288        if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8289                return -EINVAL;
8290        if (new_chunk > 0) {
8291                if (!is_power_of_2(new_chunk))
8292                        return -EINVAL;
8293                if (new_chunk < (PAGE_SIZE>>9))
8294                        return -EINVAL;
8295                if (mddev->array_sectors & (new_chunk-1))
8296                        /* not factor of array size */
8297                        return -EINVAL;
8298        }
8299
8300        /* They look valid */
8301
8302        if (mddev->raid_disks == 2) {
8303                /* can make the change immediately */
8304                if (mddev->new_layout >= 0) {
8305                        conf->algorithm = mddev->new_layout;
8306                        mddev->layout = mddev->new_layout;
8307                }
8308                if (new_chunk > 0) {
8309                        conf->chunk_sectors = new_chunk ;
8310                        mddev->chunk_sectors = new_chunk;
8311                }
8312                set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8313                md_wakeup_thread(mddev->thread);
8314        }
8315        return check_reshape(mddev);
8316}
8317
8318static int raid6_check_reshape(struct mddev *mddev)
8319{
8320        int new_chunk = mddev->new_chunk_sectors;
8321
8322        if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8323                return -EINVAL;
8324        if (new_chunk > 0) {
8325                if (!is_power_of_2(new_chunk))
8326                        return -EINVAL;
8327                if (new_chunk < (PAGE_SIZE >> 9))
8328                        return -EINVAL;
8329                if (mddev->array_sectors & (new_chunk-1))
8330                        /* not factor of array size */
8331                        return -EINVAL;
8332        }
8333
8334        /* They look valid */
8335        return check_reshape(mddev);
8336}
8337
8338static void *raid5_takeover(struct mddev *mddev)
8339{
8340        /* raid5 can take over:
8341         *  raid0 - if there is only one strip zone - make it a raid4 layout
8342         *  raid1 - if there are two drives.  We need to know the chunk size
8343         *  raid4 - trivial - just use a raid4 layout.
8344         *  raid6 - Providing it is a *_6 layout
8345         */
8346        if (mddev->level == 0)
8347                return raid45_takeover_raid0(mddev, 5);
8348        if (mddev->level == 1)
8349                return raid5_takeover_raid1(mddev);
8350        if (mddev->level == 4) {
8351                mddev->new_layout = ALGORITHM_PARITY_N;
8352                mddev->new_level = 5;
8353                return setup_conf(mddev);
8354        }
8355        if (mddev->level == 6)
8356                return raid5_takeover_raid6(mddev);
8357
8358        return ERR_PTR(-EINVAL);
8359}
8360
8361static void *raid4_takeover(struct mddev *mddev)
8362{
8363        /* raid4 can take over:
8364         *  raid0 - if there is only one strip zone
8365         *  raid5 - if layout is right
8366         */
8367        if (mddev->level == 0)
8368                return raid45_takeover_raid0(mddev, 4);
8369        if (mddev->level == 5 &&
8370            mddev->layout == ALGORITHM_PARITY_N) {
8371                mddev->new_layout = 0;
8372                mddev->new_level = 4;
8373                return setup_conf(mddev);
8374        }
8375        return ERR_PTR(-EINVAL);
8376}
8377
8378static struct md_personality raid5_personality;
8379
8380static void *raid6_takeover(struct mddev *mddev)
8381{
8382        /* Currently can only take over a raid5.  We map the
8383         * personality to an equivalent raid6 personality
8384         * with the Q block at the end.
8385         */
8386        int new_layout;
8387
8388        if (mddev->pers != &raid5_personality)
8389                return ERR_PTR(-EINVAL);
8390        if (mddev->degraded > 1)
8391                return ERR_PTR(-EINVAL);
8392        if (mddev->raid_disks > 253)
8393                return ERR_PTR(-EINVAL);
8394        if (mddev->raid_disks < 3)
8395                return ERR_PTR(-EINVAL);
8396
8397        switch (mddev->layout) {
8398        case ALGORITHM_LEFT_ASYMMETRIC:
8399                new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8400                break;
8401        case ALGORITHM_RIGHT_ASYMMETRIC:
8402                new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8403                break;
8404        case ALGORITHM_LEFT_SYMMETRIC:
8405                new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8406                break;
8407        case ALGORITHM_RIGHT_SYMMETRIC:
8408                new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8409                break;
8410        case ALGORITHM_PARITY_0:
8411                new_layout = ALGORITHM_PARITY_0_6;
8412                break;
8413        case ALGORITHM_PARITY_N:
8414                new_layout = ALGORITHM_PARITY_N;
8415                break;
8416        default:
8417                return ERR_PTR(-EINVAL);
8418        }
8419        mddev->new_level = 6;
8420        mddev->new_layout = new_layout;
8421        mddev->delta_disks = 1;
8422        mddev->raid_disks += 1;
8423        return setup_conf(mddev);
8424}
8425
8426static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8427{
8428        struct r5conf *conf;
8429        int err;
8430
8431        err = mddev_lock(mddev);
8432        if (err)
8433                return err;
8434        conf = mddev->private;
8435        if (!conf) {
8436                mddev_unlock(mddev);
8437                return -ENODEV;
8438        }
8439
8440        if (strncmp(buf, "ppl", 3) == 0) {
8441                /* ppl only works with RAID 5 */
8442                if (!raid5_has_ppl(conf) && conf->level == 5) {
8443                        err = log_init(conf, NULL, true);
8444                        if (!err) {
8445                                err = resize_stripes(conf, conf->pool_size);
8446                                if (err)
8447                                        log_exit(conf);
8448                        }
8449                } else
8450                        err = -EINVAL;
8451        } else if (strncmp(buf, "resync", 6) == 0) {
8452                if (raid5_has_ppl(conf)) {
8453                        mddev_suspend(mddev);
8454                        log_exit(conf);
8455                        mddev_resume(mddev);
8456                        err = resize_stripes(conf, conf->pool_size);
8457                } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8458                           r5l_log_disk_error(conf)) {
8459                        bool journal_dev_exists = false;
8460                        struct md_rdev *rdev;
8461
8462                        rdev_for_each(rdev, mddev)
8463                                if (test_bit(Journal, &rdev->flags)) {
8464                                        journal_dev_exists = true;
8465                                        break;
8466                                }
8467
8468                        if (!journal_dev_exists) {
8469                                mddev_suspend(mddev);
8470                                clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8471                                mddev_resume(mddev);
8472                        } else  /* need remove journal device first */
8473                                err = -EBUSY;
8474                } else
8475                        err = -EINVAL;
8476        } else {
8477                err = -EINVAL;
8478        }
8479
8480        if (!err)
8481                md_update_sb(mddev, 1);
8482
8483        mddev_unlock(mddev);
8484
8485        return err;
8486}
8487
8488static int raid5_start(struct mddev *mddev)
8489{
8490        struct r5conf *conf = mddev->private;
8491
8492        return r5l_start(conf->log);
8493}
8494
8495static struct md_personality raid6_personality =
8496{
8497        .name           = "raid6",
8498        .level          = 6,
8499        .owner          = THIS_MODULE,
8500        .make_request   = raid5_make_request,
8501        .run            = raid5_run,
8502        .start          = raid5_start,
8503        .free           = raid5_free,
8504        .status         = raid5_status,
8505        .error_handler  = raid5_error,
8506        .hot_add_disk   = raid5_add_disk,
8507        .hot_remove_disk= raid5_remove_disk,
8508        .spare_active   = raid5_spare_active,
8509        .sync_request   = raid5_sync_request,
8510        .resize         = raid5_resize,
8511        .size           = raid5_size,
8512        .check_reshape  = raid6_check_reshape,
8513        .start_reshape  = raid5_start_reshape,
8514        .finish_reshape = raid5_finish_reshape,
8515        .quiesce        = raid5_quiesce,
8516        .takeover       = raid6_takeover,
8517        .change_consistency_policy = raid5_change_consistency_policy,
8518};
8519static struct md_personality raid5_personality =
8520{
8521        .name           = "raid5",
8522        .level          = 5,
8523        .owner          = THIS_MODULE,
8524        .make_request   = raid5_make_request,
8525        .run            = raid5_run,
8526        .start          = raid5_start,
8527        .free           = raid5_free,
8528        .status         = raid5_status,
8529        .error_handler  = raid5_error,
8530        .hot_add_disk   = raid5_add_disk,
8531        .hot_remove_disk= raid5_remove_disk,
8532        .spare_active   = raid5_spare_active,
8533        .sync_request   = raid5_sync_request,
8534        .resize         = raid5_resize,
8535        .size           = raid5_size,
8536        .check_reshape  = raid5_check_reshape,
8537        .start_reshape  = raid5_start_reshape,
8538        .finish_reshape = raid5_finish_reshape,
8539        .quiesce        = raid5_quiesce,
8540        .takeover       = raid5_takeover,
8541        .change_consistency_policy = raid5_change_consistency_policy,
8542};
8543
8544static struct md_personality raid4_personality =
8545{
8546        .name           = "raid4",
8547        .level          = 4,
8548        .owner          = THIS_MODULE,
8549        .make_request   = raid5_make_request,
8550        .run            = raid5_run,
8551        .start          = raid5_start,
8552        .free           = raid5_free,
8553        .status         = raid5_status,
8554        .error_handler  = raid5_error,
8555        .hot_add_disk   = raid5_add_disk,
8556        .hot_remove_disk= raid5_remove_disk,
8557        .spare_active   = raid5_spare_active,
8558        .sync_request   = raid5_sync_request,
8559        .resize         = raid5_resize,
8560        .size           = raid5_size,
8561        .check_reshape  = raid5_check_reshape,
8562        .start_reshape  = raid5_start_reshape,
8563        .finish_reshape = raid5_finish_reshape,
8564        .quiesce        = raid5_quiesce,
8565        .takeover       = raid4_takeover,
8566        .change_consistency_policy = raid5_change_consistency_policy,
8567};
8568
8569static int __init raid5_init(void)
8570{
8571        int ret;
8572
8573        raid5_wq = alloc_workqueue("raid5wq",
8574                WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8575        if (!raid5_wq)
8576                return -ENOMEM;
8577
8578        ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8579                                      "md/raid5:prepare",
8580                                      raid456_cpu_up_prepare,
8581                                      raid456_cpu_dead);
8582        if (ret) {
8583                destroy_workqueue(raid5_wq);
8584                return ret;
8585        }
8586        register_md_personality(&raid6_personality);
8587        register_md_personality(&raid5_personality);
8588        register_md_personality(&raid4_personality);
8589        return 0;
8590}
8591
8592static void raid5_exit(void)
8593{
8594        unregister_md_personality(&raid6_personality);
8595        unregister_md_personality(&raid5_personality);
8596        unregister_md_personality(&raid4_personality);
8597        cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8598        destroy_workqueue(raid5_wq);
8599}
8600
8601module_init(raid5_init);
8602module_exit(raid5_exit);
8603MODULE_LICENSE("GPL");
8604MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8605MODULE_ALIAS("md-personality-4"); /* RAID5 */
8606MODULE_ALIAS("md-raid5");
8607MODULE_ALIAS("md-raid4");
8608MODULE_ALIAS("md-level-5");
8609MODULE_ALIAS("md-level-4");
8610MODULE_ALIAS("md-personality-8"); /* RAID6 */
8611MODULE_ALIAS("md-raid6");
8612MODULE_ALIAS("md-level-6");
8613
8614/* This used to be two separate modules, they were: */
8615MODULE_ALIAS("raid5");
8616MODULE_ALIAS("raid6");
8617