linux/drivers/memory/emif.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * EMIF driver
   4 *
   5 * Copyright (C) 2012 Texas Instruments, Inc.
   6 *
   7 * Aneesh V <aneesh@ti.com>
   8 * Santosh Shilimkar <santosh.shilimkar@ti.com>
   9 */
  10#include <linux/err.h>
  11#include <linux/kernel.h>
  12#include <linux/reboot.h>
  13#include <linux/platform_data/emif_plat.h>
  14#include <linux/io.h>
  15#include <linux/device.h>
  16#include <linux/platform_device.h>
  17#include <linux/interrupt.h>
  18#include <linux/slab.h>
  19#include <linux/of.h>
  20#include <linux/debugfs.h>
  21#include <linux/seq_file.h>
  22#include <linux/module.h>
  23#include <linux/list.h>
  24#include <linux/spinlock.h>
  25#include <linux/pm.h>
  26
  27#include "emif.h"
  28#include "jedec_ddr.h"
  29#include "of_memory.h"
  30
  31/**
  32 * struct emif_data - Per device static data for driver's use
  33 * @duplicate:                  Whether the DDR devices attached to this EMIF
  34 *                              instance are exactly same as that on EMIF1. In
  35 *                              this case we can save some memory and processing
  36 * @temperature_level:          Maximum temperature of LPDDR2 devices attached
  37 *                              to this EMIF - read from MR4 register. If there
  38 *                              are two devices attached to this EMIF, this
  39 *                              value is the maximum of the two temperature
  40 *                              levels.
  41 * @node:                       node in the device list
  42 * @base:                       base address of memory-mapped IO registers.
  43 * @dev:                        device pointer.
  44 * @addressing                  table with addressing information from the spec
  45 * @regs_cache:                 An array of 'struct emif_regs' that stores
  46 *                              calculated register values for different
  47 *                              frequencies, to avoid re-calculating them on
  48 *                              each DVFS transition.
  49 * @curr_regs:                  The set of register values used in the last
  50 *                              frequency change (i.e. corresponding to the
  51 *                              frequency in effect at the moment)
  52 * @plat_data:                  Pointer to saved platform data.
  53 * @debugfs_root:               dentry to the root folder for EMIF in debugfs
  54 * @np_ddr:                     Pointer to ddr device tree node
  55 */
  56struct emif_data {
  57        u8                              duplicate;
  58        u8                              temperature_level;
  59        u8                              lpmode;
  60        struct list_head                node;
  61        unsigned long                   irq_state;
  62        void __iomem                    *base;
  63        struct device                   *dev;
  64        const struct lpddr2_addressing  *addressing;
  65        struct emif_regs                *regs_cache[EMIF_MAX_NUM_FREQUENCIES];
  66        struct emif_regs                *curr_regs;
  67        struct emif_platform_data       *plat_data;
  68        struct dentry                   *debugfs_root;
  69        struct device_node              *np_ddr;
  70};
  71
  72static struct emif_data *emif1;
  73static spinlock_t       emif_lock;
  74static unsigned long    irq_state;
  75static u32              t_ck; /* DDR clock period in ps */
  76static LIST_HEAD(device_list);
  77
  78#ifdef CONFIG_DEBUG_FS
  79static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif,
  80        struct emif_regs *regs)
  81{
  82        u32 type = emif->plat_data->device_info->type;
  83        u32 ip_rev = emif->plat_data->ip_rev;
  84
  85        seq_printf(s, "EMIF register cache dump for %dMHz\n",
  86                regs->freq/1000000);
  87
  88        seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw);
  89        seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw);
  90        seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw);
  91        seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw);
  92
  93        if (ip_rev == EMIF_4D) {
  94                seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
  95                        regs->read_idle_ctrl_shdw_normal);
  96                seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
  97                        regs->read_idle_ctrl_shdw_volt_ramp);
  98        } else if (ip_rev == EMIF_4D5) {
  99                seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
 100                        regs->dll_calib_ctrl_shdw_normal);
 101                seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
 102                        regs->dll_calib_ctrl_shdw_volt_ramp);
 103        }
 104
 105        if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
 106                seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n",
 107                        regs->ref_ctrl_shdw_derated);
 108                seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n",
 109                        regs->sdram_tim1_shdw_derated);
 110                seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n",
 111                        regs->sdram_tim3_shdw_derated);
 112        }
 113}
 114
 115static int emif_regdump_show(struct seq_file *s, void *unused)
 116{
 117        struct emif_data        *emif   = s->private;
 118        struct emif_regs        **regs_cache;
 119        int                     i;
 120
 121        if (emif->duplicate)
 122                regs_cache = emif1->regs_cache;
 123        else
 124                regs_cache = emif->regs_cache;
 125
 126        for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
 127                do_emif_regdump_show(s, emif, regs_cache[i]);
 128                seq_putc(s, '\n');
 129        }
 130
 131        return 0;
 132}
 133
 134static int emif_regdump_open(struct inode *inode, struct file *file)
 135{
 136        return single_open(file, emif_regdump_show, inode->i_private);
 137}
 138
 139static const struct file_operations emif_regdump_fops = {
 140        .open                   = emif_regdump_open,
 141        .read                   = seq_read,
 142        .release                = single_release,
 143};
 144
 145static int emif_mr4_show(struct seq_file *s, void *unused)
 146{
 147        struct emif_data *emif = s->private;
 148
 149        seq_printf(s, "MR4=%d\n", emif->temperature_level);
 150        return 0;
 151}
 152
 153static int emif_mr4_open(struct inode *inode, struct file *file)
 154{
 155        return single_open(file, emif_mr4_show, inode->i_private);
 156}
 157
 158static const struct file_operations emif_mr4_fops = {
 159        .open                   = emif_mr4_open,
 160        .read                   = seq_read,
 161        .release                = single_release,
 162};
 163
 164static int __init_or_module emif_debugfs_init(struct emif_data *emif)
 165{
 166        struct dentry   *dentry;
 167        int             ret;
 168
 169        dentry = debugfs_create_dir(dev_name(emif->dev), NULL);
 170        if (!dentry) {
 171                ret = -ENOMEM;
 172                goto err0;
 173        }
 174        emif->debugfs_root = dentry;
 175
 176        dentry = debugfs_create_file("regcache_dump", S_IRUGO,
 177                        emif->debugfs_root, emif, &emif_regdump_fops);
 178        if (!dentry) {
 179                ret = -ENOMEM;
 180                goto err1;
 181        }
 182
 183        dentry = debugfs_create_file("mr4", S_IRUGO,
 184                        emif->debugfs_root, emif, &emif_mr4_fops);
 185        if (!dentry) {
 186                ret = -ENOMEM;
 187                goto err1;
 188        }
 189
 190        return 0;
 191err1:
 192        debugfs_remove_recursive(emif->debugfs_root);
 193err0:
 194        return ret;
 195}
 196
 197static void __exit emif_debugfs_exit(struct emif_data *emif)
 198{
 199        debugfs_remove_recursive(emif->debugfs_root);
 200        emif->debugfs_root = NULL;
 201}
 202#else
 203static inline int __init_or_module emif_debugfs_init(struct emif_data *emif)
 204{
 205        return 0;
 206}
 207
 208static inline void __exit emif_debugfs_exit(struct emif_data *emif)
 209{
 210}
 211#endif
 212
 213/*
 214 * Calculate the period of DDR clock from frequency value
 215 */
 216static void set_ddr_clk_period(u32 freq)
 217{
 218        /* Divide 10^12 by frequency to get period in ps */
 219        t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq);
 220}
 221
 222/*
 223 * Get bus width used by EMIF. Note that this may be different from the
 224 * bus width of the DDR devices used. For instance two 16-bit DDR devices
 225 * may be connected to a given CS of EMIF. In this case bus width as far
 226 * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
 227 */
 228static u32 get_emif_bus_width(struct emif_data *emif)
 229{
 230        u32             width;
 231        void __iomem    *base = emif->base;
 232
 233        width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK)
 234                        >> NARROW_MODE_SHIFT;
 235        width = width == 0 ? 32 : 16;
 236
 237        return width;
 238}
 239
 240/*
 241 * Get the CL from SDRAM_CONFIG register
 242 */
 243static u32 get_cl(struct emif_data *emif)
 244{
 245        u32             cl;
 246        void __iomem    *base = emif->base;
 247
 248        cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT;
 249
 250        return cl;
 251}
 252
 253static void set_lpmode(struct emif_data *emif, u8 lpmode)
 254{
 255        u32 temp;
 256        void __iomem *base = emif->base;
 257
 258        /*
 259         * Workaround for errata i743 - LPDDR2 Power-Down State is Not
 260         * Efficient
 261         *
 262         * i743 DESCRIPTION:
 263         * The EMIF supports power-down state for low power. The EMIF
 264         * automatically puts the SDRAM into power-down after the memory is
 265         * not accessed for a defined number of cycles and the
 266         * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set to 0x4.
 267         * As the EMIF supports automatic output impedance calibration, a ZQ
 268         * calibration long command is issued every time it exits active
 269         * power-down and precharge power-down modes. The EMIF waits and
 270         * blocks any other command during this calibration.
 271         * The EMIF does not allow selective disabling of ZQ calibration upon
 272         * exit of power-down mode. Due to very short periods of power-down
 273         * cycles, ZQ calibration overhead creates bandwidth issues and
 274         * increases overall system power consumption. On the other hand,
 275         * issuing ZQ calibration long commands when exiting self-refresh is
 276         * still required.
 277         *
 278         * WORKAROUND
 279         * Because there is no power consumption benefit of the power-down due
 280         * to the calibration and there is a performance risk, the guideline
 281         * is to not allow power-down state and, therefore, to not have set
 282         * the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field to 0x4.
 283         */
 284        if ((emif->plat_data->ip_rev == EMIF_4D) &&
 285            (lpmode == EMIF_LP_MODE_PWR_DN)) {
 286                WARN_ONCE(1,
 287                          "REG_LP_MODE = LP_MODE_PWR_DN(4) is prohibited by erratum i743 switch to LP_MODE_SELF_REFRESH(2)\n");
 288                /* rollback LP_MODE to Self-refresh mode */
 289                lpmode = EMIF_LP_MODE_SELF_REFRESH;
 290        }
 291
 292        temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL);
 293        temp &= ~LP_MODE_MASK;
 294        temp |= (lpmode << LP_MODE_SHIFT);
 295        writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL);
 296}
 297
 298static void do_freq_update(void)
 299{
 300        struct emif_data *emif;
 301
 302        /*
 303         * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
 304         *
 305         * i728 DESCRIPTION:
 306         * The EMIF automatically puts the SDRAM into self-refresh mode
 307         * after the EMIF has not performed accesses during
 308         * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
 309         * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
 310         * to 0x2. If during a small window the following three events
 311         * occur:
 312         * - The SR_TIMING counter expires
 313         * - And frequency change is requested
 314         * - And OCP access is requested
 315         * Then it causes instable clock on the DDR interface.
 316         *
 317         * WORKAROUND
 318         * To avoid the occurrence of the three events, the workaround
 319         * is to disable the self-refresh when requesting a frequency
 320         * change. Before requesting a frequency change the software must
 321         * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
 322         * frequency change has been done, the software can reprogram
 323         * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
 324         */
 325        list_for_each_entry(emif, &device_list, node) {
 326                if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
 327                        set_lpmode(emif, EMIF_LP_MODE_DISABLE);
 328        }
 329
 330        /*
 331         * TODO: Do FREQ_UPDATE here when an API
 332         * is available for this as part of the new
 333         * clock framework
 334         */
 335
 336        list_for_each_entry(emif, &device_list, node) {
 337                if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
 338                        set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
 339        }
 340}
 341
 342/* Find addressing table entry based on the device's type and density */
 343static const struct lpddr2_addressing *get_addressing_table(
 344        const struct ddr_device_info *device_info)
 345{
 346        u32             index, type, density;
 347
 348        type = device_info->type;
 349        density = device_info->density;
 350
 351        switch (type) {
 352        case DDR_TYPE_LPDDR2_S4:
 353                index = density - 1;
 354                break;
 355        case DDR_TYPE_LPDDR2_S2:
 356                switch (density) {
 357                case DDR_DENSITY_1Gb:
 358                case DDR_DENSITY_2Gb:
 359                        index = density + 3;
 360                        break;
 361                default:
 362                        index = density - 1;
 363                }
 364                break;
 365        default:
 366                return NULL;
 367        }
 368
 369        return &lpddr2_jedec_addressing_table[index];
 370}
 371
 372/*
 373 * Find the the right timing table from the array of timing
 374 * tables of the device using DDR clock frequency
 375 */
 376static const struct lpddr2_timings *get_timings_table(struct emif_data *emif,
 377                u32 freq)
 378{
 379        u32                             i, min, max, freq_nearest;
 380        const struct lpddr2_timings     *timings = NULL;
 381        const struct lpddr2_timings     *timings_arr = emif->plat_data->timings;
 382        struct                          device *dev = emif->dev;
 383
 384        /* Start with a very high frequency - 1GHz */
 385        freq_nearest = 1000000000;
 386
 387        /*
 388         * Find the timings table such that:
 389         *  1. the frequency range covers the required frequency(safe) AND
 390         *  2. the max_freq is closest to the required frequency(optimal)
 391         */
 392        for (i = 0; i < emif->plat_data->timings_arr_size; i++) {
 393                max = timings_arr[i].max_freq;
 394                min = timings_arr[i].min_freq;
 395                if ((freq >= min) && (freq <= max) && (max < freq_nearest)) {
 396                        freq_nearest = max;
 397                        timings = &timings_arr[i];
 398                }
 399        }
 400
 401        if (!timings)
 402                dev_err(dev, "%s: couldn't find timings for - %dHz\n",
 403                        __func__, freq);
 404
 405        dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n",
 406                __func__, freq, freq_nearest);
 407
 408        return timings;
 409}
 410
 411static u32 get_sdram_ref_ctrl_shdw(u32 freq,
 412                const struct lpddr2_addressing *addressing)
 413{
 414        u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi;
 415
 416        /* Scale down frequency and t_refi to avoid overflow */
 417        freq_khz = freq / 1000;
 418        t_refi = addressing->tREFI_ns / 100;
 419
 420        /*
 421         * refresh rate to be set is 'tREFI(in us) * freq in MHz
 422         * division by 10000 to account for change in units
 423         */
 424        val = t_refi * freq_khz / 10000;
 425        ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT;
 426
 427        return ref_ctrl_shdw;
 428}
 429
 430static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings,
 431                const struct lpddr2_min_tck *min_tck,
 432                const struct lpddr2_addressing *addressing)
 433{
 434        u32 tim1 = 0, val = 0;
 435
 436        val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
 437        tim1 |= val << T_WTR_SHIFT;
 438
 439        if (addressing->num_banks == B8)
 440                val = DIV_ROUND_UP(timings->tFAW, t_ck*4);
 441        else
 442                val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck));
 443        tim1 |= (val - 1) << T_RRD_SHIFT;
 444
 445        val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1;
 446        tim1 |= val << T_RC_SHIFT;
 447
 448        val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck));
 449        tim1 |= (val - 1) << T_RAS_SHIFT;
 450
 451        val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
 452        tim1 |= val << T_WR_SHIFT;
 453
 454        val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1;
 455        tim1 |= val << T_RCD_SHIFT;
 456
 457        val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1;
 458        tim1 |= val << T_RP_SHIFT;
 459
 460        return tim1;
 461}
 462
 463static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings,
 464                const struct lpddr2_min_tck *min_tck,
 465                const struct lpddr2_addressing *addressing)
 466{
 467        u32 tim1 = 0, val = 0;
 468
 469        val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
 470        tim1 = val << T_WTR_SHIFT;
 471
 472        /*
 473         * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps
 474         * to tFAW for de-rating
 475         */
 476        if (addressing->num_banks == B8) {
 477                val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1;
 478        } else {
 479                val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck);
 480                val = max(min_tck->tRRD, val) - 1;
 481        }
 482        tim1 |= val << T_RRD_SHIFT;
 483
 484        val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck);
 485        tim1 |= (val - 1) << T_RC_SHIFT;
 486
 487        val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck);
 488        val = max(min_tck->tRASmin, val) - 1;
 489        tim1 |= val << T_RAS_SHIFT;
 490
 491        val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
 492        tim1 |= val << T_WR_SHIFT;
 493
 494        val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck));
 495        tim1 |= (val - 1) << T_RCD_SHIFT;
 496
 497        val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck));
 498        tim1 |= (val - 1) << T_RP_SHIFT;
 499
 500        return tim1;
 501}
 502
 503static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings,
 504                const struct lpddr2_min_tck *min_tck,
 505                const struct lpddr2_addressing *addressing,
 506                u32 type)
 507{
 508        u32 tim2 = 0, val = 0;
 509
 510        val = min_tck->tCKE - 1;
 511        tim2 |= val << T_CKE_SHIFT;
 512
 513        val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1;
 514        tim2 |= val << T_RTP_SHIFT;
 515
 516        /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */
 517        val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1;
 518        tim2 |= val << T_XSNR_SHIFT;
 519
 520        /* XSRD same as XSNR for LPDDR2 */
 521        tim2 |= val << T_XSRD_SHIFT;
 522
 523        val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1;
 524        tim2 |= val << T_XP_SHIFT;
 525
 526        return tim2;
 527}
 528
 529static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings,
 530                const struct lpddr2_min_tck *min_tck,
 531                const struct lpddr2_addressing *addressing,
 532                u32 type, u32 ip_rev, u32 derated)
 533{
 534        u32 tim3 = 0, val = 0, t_dqsck;
 535
 536        val = timings->tRAS_max_ns / addressing->tREFI_ns - 1;
 537        val = val > 0xF ? 0xF : val;
 538        tim3 |= val << T_RAS_MAX_SHIFT;
 539
 540        val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1;
 541        tim3 |= val << T_RFC_SHIFT;
 542
 543        t_dqsck = (derated == EMIF_DERATED_TIMINGS) ?
 544                timings->tDQSCK_max_derated : timings->tDQSCK_max;
 545        if (ip_rev == EMIF_4D5)
 546                val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1;
 547        else
 548                val = DIV_ROUND_UP(t_dqsck, t_ck) - 1;
 549
 550        tim3 |= val << T_TDQSCKMAX_SHIFT;
 551
 552        val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1;
 553        tim3 |= val << ZQ_ZQCS_SHIFT;
 554
 555        val = DIV_ROUND_UP(timings->tCKESR, t_ck);
 556        val = max(min_tck->tCKESR, val) - 1;
 557        tim3 |= val << T_CKESR_SHIFT;
 558
 559        if (ip_rev == EMIF_4D5) {
 560                tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT;
 561
 562                val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1;
 563                tim3 |= val << T_PDLL_UL_SHIFT;
 564        }
 565
 566        return tim3;
 567}
 568
 569static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
 570                bool cs1_used, bool cal_resistors_per_cs)
 571{
 572        u32 zq = 0, val = 0;
 573
 574        val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns;
 575        zq |= val << ZQ_REFINTERVAL_SHIFT;
 576
 577        val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1;
 578        zq |= val << ZQ_ZQCL_MULT_SHIFT;
 579
 580        val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1;
 581        zq |= val << ZQ_ZQINIT_MULT_SHIFT;
 582
 583        zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT;
 584
 585        if (cal_resistors_per_cs)
 586                zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT;
 587        else
 588                zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT;
 589
 590        zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */
 591
 592        val = cs1_used ? 1 : 0;
 593        zq |= val << ZQ_CS1EN_SHIFT;
 594
 595        return zq;
 596}
 597
 598static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
 599                const struct emif_custom_configs *custom_configs, bool cs1_used,
 600                u32 sdram_io_width, u32 emif_bus_width)
 601{
 602        u32 alert = 0, interval, devcnt;
 603
 604        if (custom_configs && (custom_configs->mask &
 605                                EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL))
 606                interval = custom_configs->temp_alert_poll_interval_ms;
 607        else
 608                interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS;
 609
 610        interval *= 1000000;                    /* Convert to ns */
 611        interval /= addressing->tREFI_ns;       /* Convert to refresh cycles */
 612        alert |= (interval << TA_REFINTERVAL_SHIFT);
 613
 614        /*
 615         * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
 616         * also to this form and subtract to get TA_DEVCNT, which is
 617         * in log2(x) form.
 618         */
 619        emif_bus_width = __fls(emif_bus_width) - 1;
 620        devcnt = emif_bus_width - sdram_io_width;
 621        alert |= devcnt << TA_DEVCNT_SHIFT;
 622
 623        /* DEVWDT is in 'log2(x) - 3' form */
 624        alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT;
 625
 626        alert |= 1 << TA_SFEXITEN_SHIFT;
 627        alert |= 1 << TA_CS0EN_SHIFT;
 628        alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT;
 629
 630        return alert;
 631}
 632
 633static u32 get_read_idle_ctrl_shdw(u8 volt_ramp)
 634{
 635        u32 idle = 0, val = 0;
 636
 637        /*
 638         * Maximum value in normal conditions and increased frequency
 639         * when voltage is ramping
 640         */
 641        if (volt_ramp)
 642                val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1;
 643        else
 644                val = 0x1FF;
 645
 646        /*
 647         * READ_IDLE_CTRL register in EMIF4D has same offset and fields
 648         * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts
 649         */
 650        idle |= val << DLL_CALIB_INTERVAL_SHIFT;
 651        idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT;
 652
 653        return idle;
 654}
 655
 656static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp)
 657{
 658        u32 calib = 0, val = 0;
 659
 660        if (volt_ramp == DDR_VOLTAGE_RAMPING)
 661                val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1;
 662        else
 663                val = 0; /* Disabled when voltage is stable */
 664
 665        calib |= val << DLL_CALIB_INTERVAL_SHIFT;
 666        calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT;
 667
 668        return calib;
 669}
 670
 671static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings,
 672        u32 freq, u8 RL)
 673{
 674        u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0;
 675
 676        val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1;
 677        phy |= val << READ_LATENCY_SHIFT_4D;
 678
 679        if (freq <= 100000000)
 680                val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY;
 681        else if (freq <= 200000000)
 682                val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY;
 683        else
 684                val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY;
 685
 686        phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D;
 687
 688        return phy;
 689}
 690
 691static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl)
 692{
 693        u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay;
 694
 695        /*
 696         * DLL operates at 266 MHz. If DDR frequency is near 266 MHz,
 697         * half-delay is not needed else set half-delay
 698         */
 699        if (freq >= 265000000 && freq < 267000000)
 700                half_delay = 0;
 701        else
 702                half_delay = 1;
 703
 704        phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5;
 705        phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS,
 706                        t_ck) - 1) << READ_LATENCY_SHIFT_4D5);
 707
 708        return phy;
 709}
 710
 711static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void)
 712{
 713        u32 fifo_we_slave_ratio;
 714
 715        fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
 716                EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256, t_ck);
 717
 718        return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 |
 719                fifo_we_slave_ratio << 22;
 720}
 721
 722static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void)
 723{
 724        u32 fifo_we_slave_ratio;
 725
 726        fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
 727                EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256, t_ck);
 728
 729        return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 |
 730                fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23;
 731}
 732
 733static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void)
 734{
 735        u32 fifo_we_slave_ratio;
 736
 737        fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
 738                EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256, t_ck);
 739
 740        return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 |
 741                fifo_we_slave_ratio << 13;
 742}
 743
 744static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
 745{
 746        u32 pwr_mgmt_ctrl       = 0, timeout;
 747        u32 lpmode              = EMIF_LP_MODE_SELF_REFRESH;
 748        u32 timeout_perf        = EMIF_LP_MODE_TIMEOUT_PERFORMANCE;
 749        u32 timeout_pwr         = EMIF_LP_MODE_TIMEOUT_POWER;
 750        u32 freq_threshold      = EMIF_LP_MODE_FREQ_THRESHOLD;
 751        u32 mask;
 752        u8 shift;
 753
 754        struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs;
 755
 756        if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) {
 757                lpmode          = cust_cfgs->lpmode;
 758                timeout_perf    = cust_cfgs->lpmode_timeout_performance;
 759                timeout_pwr     = cust_cfgs->lpmode_timeout_power;
 760                freq_threshold  = cust_cfgs->lpmode_freq_threshold;
 761        }
 762
 763        /* Timeout based on DDR frequency */
 764        timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr;
 765
 766        /*
 767         * The value to be set in register is "log2(timeout) - 3"
 768         * if timeout < 16 load 0 in register
 769         * if timeout is not a power of 2, round to next highest power of 2
 770         */
 771        if (timeout < 16) {
 772                timeout = 0;
 773        } else {
 774                if (timeout & (timeout - 1))
 775                        timeout <<= 1;
 776                timeout = __fls(timeout) - 3;
 777        }
 778
 779        switch (lpmode) {
 780        case EMIF_LP_MODE_CLOCK_STOP:
 781                shift = CS_TIM_SHIFT;
 782                mask = CS_TIM_MASK;
 783                break;
 784        case EMIF_LP_MODE_SELF_REFRESH:
 785                /* Workaround for errata i735 */
 786                if (timeout < 6)
 787                        timeout = 6;
 788
 789                shift = SR_TIM_SHIFT;
 790                mask = SR_TIM_MASK;
 791                break;
 792        case EMIF_LP_MODE_PWR_DN:
 793                shift = PD_TIM_SHIFT;
 794                mask = PD_TIM_MASK;
 795                break;
 796        case EMIF_LP_MODE_DISABLE:
 797        default:
 798                mask = 0;
 799                shift = 0;
 800                break;
 801        }
 802        /* Round to maximum in case of overflow, BUT warn! */
 803        if (lpmode != EMIF_LP_MODE_DISABLE && timeout > mask >> shift) {
 804                pr_err("TIMEOUT Overflow - lpmode=%d perf=%d pwr=%d freq=%d\n",
 805                       lpmode,
 806                       timeout_perf,
 807                       timeout_pwr,
 808                       freq_threshold);
 809                WARN(1, "timeout=0x%02x greater than 0x%02x. Using max\n",
 810                     timeout, mask >> shift);
 811                timeout = mask >> shift;
 812        }
 813
 814        /* Setup required timing */
 815        pwr_mgmt_ctrl = (timeout << shift) & mask;
 816        /* setup a default mask for rest of the modes */
 817        pwr_mgmt_ctrl |= (SR_TIM_MASK | CS_TIM_MASK | PD_TIM_MASK) &
 818                          ~mask;
 819
 820        /* No CS_TIM in EMIF_4D5 */
 821        if (ip_rev == EMIF_4D5)
 822                pwr_mgmt_ctrl &= ~CS_TIM_MASK;
 823
 824        pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT;
 825
 826        return pwr_mgmt_ctrl;
 827}
 828
 829/*
 830 * Get the temperature level of the EMIF instance:
 831 * Reads the MR4 register of attached SDRAM parts to find out the temperature
 832 * level. If there are two parts attached(one on each CS), then the temperature
 833 * level for the EMIF instance is the higher of the two temperatures.
 834 */
 835static void get_temperature_level(struct emif_data *emif)
 836{
 837        u32             temp, temperature_level;
 838        void __iomem    *base;
 839
 840        base = emif->base;
 841
 842        /* Read mode register 4 */
 843        writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG);
 844        temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
 845        temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >>
 846                                MR4_SDRAM_REF_RATE_SHIFT;
 847
 848        if (emif->plat_data->device_info->cs1_used) {
 849                writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG);
 850                temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
 851                temp = (temp & MR4_SDRAM_REF_RATE_MASK)
 852                                >> MR4_SDRAM_REF_RATE_SHIFT;
 853                temperature_level = max(temp, temperature_level);
 854        }
 855
 856        /* treat everything less than nominal(3) in MR4 as nominal */
 857        if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL))
 858                temperature_level = SDRAM_TEMP_NOMINAL;
 859
 860        /* if we get reserved value in MR4 persist with the existing value */
 861        if (likely(temperature_level != SDRAM_TEMP_RESERVED_4))
 862                emif->temperature_level = temperature_level;
 863}
 864
 865/*
 866 * Program EMIF shadow registers that are not dependent on temperature
 867 * or voltage
 868 */
 869static void setup_registers(struct emif_data *emif, struct emif_regs *regs)
 870{
 871        void __iomem    *base = emif->base;
 872
 873        writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW);
 874        writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW);
 875        writel(regs->pwr_mgmt_ctrl_shdw,
 876               base + EMIF_POWER_MANAGEMENT_CTRL_SHDW);
 877
 878        /* Settings specific for EMIF4D5 */
 879        if (emif->plat_data->ip_rev != EMIF_4D5)
 880                return;
 881        writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW);
 882        writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW);
 883        writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW);
 884}
 885
 886/*
 887 * When voltage ramps dll calibration and forced read idle should
 888 * happen more often
 889 */
 890static void setup_volt_sensitive_regs(struct emif_data *emif,
 891                struct emif_regs *regs, u32 volt_state)
 892{
 893        u32             calib_ctrl;
 894        void __iomem    *base = emif->base;
 895
 896        /*
 897         * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as
 898         * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_*
 899         * is an alias of the respective read_idle_ctrl_shdw_* (members of
 900         * a union). So, the below code takes care of both cases
 901         */
 902        if (volt_state == DDR_VOLTAGE_RAMPING)
 903                calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp;
 904        else
 905                calib_ctrl = regs->dll_calib_ctrl_shdw_normal;
 906
 907        writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW);
 908}
 909
 910/*
 911 * setup_temperature_sensitive_regs() - set the timings for temperature
 912 * sensitive registers. This happens once at initialisation time based
 913 * on the temperature at boot time and subsequently based on the temperature
 914 * alert interrupt. Temperature alert can happen when the temperature
 915 * increases or drops. So this function can have the effect of either
 916 * derating the timings or going back to nominal values.
 917 */
 918static void setup_temperature_sensitive_regs(struct emif_data *emif,
 919                struct emif_regs *regs)
 920{
 921        u32             tim1, tim3, ref_ctrl, type;
 922        void __iomem    *base = emif->base;
 923        u32             temperature;
 924
 925        type = emif->plat_data->device_info->type;
 926
 927        tim1 = regs->sdram_tim1_shdw;
 928        tim3 = regs->sdram_tim3_shdw;
 929        ref_ctrl = regs->ref_ctrl_shdw;
 930
 931        /* No de-rating for non-lpddr2 devices */
 932        if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4)
 933                goto out;
 934
 935        temperature = emif->temperature_level;
 936        if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) {
 937                ref_ctrl = regs->ref_ctrl_shdw_derated;
 938        } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) {
 939                tim1 = regs->sdram_tim1_shdw_derated;
 940                tim3 = regs->sdram_tim3_shdw_derated;
 941                ref_ctrl = regs->ref_ctrl_shdw_derated;
 942        }
 943
 944out:
 945        writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW);
 946        writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW);
 947        writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW);
 948}
 949
 950static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif)
 951{
 952        u32             old_temp_level;
 953        irqreturn_t     ret = IRQ_HANDLED;
 954        struct emif_custom_configs *custom_configs;
 955
 956        spin_lock_irqsave(&emif_lock, irq_state);
 957        old_temp_level = emif->temperature_level;
 958        get_temperature_level(emif);
 959
 960        if (unlikely(emif->temperature_level == old_temp_level)) {
 961                goto out;
 962        } else if (!emif->curr_regs) {
 963                dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
 964                goto out;
 965        }
 966
 967        custom_configs = emif->plat_data->custom_configs;
 968
 969        /*
 970         * IF we detect higher than "nominal rating" from DDR sensor
 971         * on an unsupported DDR part, shutdown system
 972         */
 973        if (custom_configs && !(custom_configs->mask &
 974                                EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART)) {
 975                if (emif->temperature_level >= SDRAM_TEMP_HIGH_DERATE_REFRESH) {
 976                        dev_err(emif->dev,
 977                                "%s:NOT Extended temperature capable memory. Converting MR4=0x%02x as shutdown event\n",
 978                                __func__, emif->temperature_level);
 979                        /*
 980                         * Temperature far too high - do kernel_power_off()
 981                         * from thread context
 982                         */
 983                        emif->temperature_level = SDRAM_TEMP_VERY_HIGH_SHUTDOWN;
 984                        ret = IRQ_WAKE_THREAD;
 985                        goto out;
 986                }
 987        }
 988
 989        if (emif->temperature_level < old_temp_level ||
 990                emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
 991                /*
 992                 * Temperature coming down - defer handling to thread OR
 993                 * Temperature far too high - do kernel_power_off() from
 994                 * thread context
 995                 */
 996                ret = IRQ_WAKE_THREAD;
 997        } else {
 998                /* Temperature is going up - handle immediately */
 999                setup_temperature_sensitive_regs(emif, emif->curr_regs);
1000                do_freq_update();
1001        }
1002
1003out:
1004        spin_unlock_irqrestore(&emif_lock, irq_state);
1005        return ret;
1006}
1007
1008static irqreturn_t emif_interrupt_handler(int irq, void *dev_id)
1009{
1010        u32                     interrupts;
1011        struct emif_data        *emif = dev_id;
1012        void __iomem            *base = emif->base;
1013        struct device           *dev = emif->dev;
1014        irqreturn_t             ret = IRQ_HANDLED;
1015
1016        /* Save the status and clear it */
1017        interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1018        writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1019
1020        /*
1021         * Handle temperature alert
1022         * Temperature alert should be same for all ports
1023         * So, it's enough to process it only for one of the ports
1024         */
1025        if (interrupts & TA_SYS_MASK)
1026                ret = handle_temp_alert(base, emif);
1027
1028        if (interrupts & ERR_SYS_MASK)
1029                dev_err(dev, "Access error from SYS port - %x\n", interrupts);
1030
1031        if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1032                /* Save the status and clear it */
1033                interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS);
1034                writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS);
1035
1036                if (interrupts & ERR_LL_MASK)
1037                        dev_err(dev, "Access error from LL port - %x\n",
1038                                interrupts);
1039        }
1040
1041        return ret;
1042}
1043
1044static irqreturn_t emif_threaded_isr(int irq, void *dev_id)
1045{
1046        struct emif_data        *emif = dev_id;
1047
1048        if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
1049                dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1050
1051                /* If we have Power OFF ability, use it, else try restarting */
1052                if (pm_power_off) {
1053                        kernel_power_off();
1054                } else {
1055                        WARN(1, "FIXME: NO pm_power_off!!! trying restart\n");
1056                        kernel_restart("SDRAM Over-temp Emergency restart");
1057                }
1058                return IRQ_HANDLED;
1059        }
1060
1061        spin_lock_irqsave(&emif_lock, irq_state);
1062
1063        if (emif->curr_regs) {
1064                setup_temperature_sensitive_regs(emif, emif->curr_regs);
1065                do_freq_update();
1066        } else {
1067                dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
1068        }
1069
1070        spin_unlock_irqrestore(&emif_lock, irq_state);
1071
1072        return IRQ_HANDLED;
1073}
1074
1075static void clear_all_interrupts(struct emif_data *emif)
1076{
1077        void __iomem    *base = emif->base;
1078
1079        writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS),
1080                base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1081        if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1082                writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS),
1083                        base + EMIF_LL_OCP_INTERRUPT_STATUS);
1084}
1085
1086static void disable_and_clear_all_interrupts(struct emif_data *emif)
1087{
1088        void __iomem            *base = emif->base;
1089
1090        /* Disable all interrupts */
1091        writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET),
1092                base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR);
1093        if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1094                writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET),
1095                        base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR);
1096
1097        /* Clear all interrupts */
1098        clear_all_interrupts(emif);
1099}
1100
1101static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq)
1102{
1103        u32             interrupts, type;
1104        void __iomem    *base = emif->base;
1105
1106        type = emif->plat_data->device_info->type;
1107
1108        clear_all_interrupts(emif);
1109
1110        /* Enable interrupts for SYS interface */
1111        interrupts = EN_ERR_SYS_MASK;
1112        if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4)
1113                interrupts |= EN_TA_SYS_MASK;
1114        writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET);
1115
1116        /* Enable interrupts for LL interface */
1117        if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1118                /* TA need not be enabled for LL */
1119                interrupts = EN_ERR_LL_MASK;
1120                writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET);
1121        }
1122
1123        /* setup IRQ handlers */
1124        return devm_request_threaded_irq(emif->dev, irq,
1125                                    emif_interrupt_handler,
1126                                    emif_threaded_isr,
1127                                    0, dev_name(emif->dev),
1128                                    emif);
1129
1130}
1131
1132static void __init_or_module emif_onetime_settings(struct emif_data *emif)
1133{
1134        u32                             pwr_mgmt_ctrl, zq, temp_alert_cfg;
1135        void __iomem                    *base = emif->base;
1136        const struct lpddr2_addressing  *addressing;
1137        const struct ddr_device_info    *device_info;
1138
1139        device_info = emif->plat_data->device_info;
1140        addressing = get_addressing_table(device_info);
1141
1142        /*
1143         * Init power management settings
1144         * We don't know the frequency yet. Use a high frequency
1145         * value for a conservative timeout setting
1146         */
1147        pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif,
1148                        emif->plat_data->ip_rev);
1149        emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT;
1150        writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL);
1151
1152        /* Init ZQ calibration settings */
1153        zq = get_zq_config_reg(addressing, device_info->cs1_used,
1154                device_info->cal_resistors_per_cs);
1155        writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG);
1156
1157        /* Check temperature level temperature level*/
1158        get_temperature_level(emif);
1159        if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN)
1160                dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1161
1162        /* Init temperature polling */
1163        temp_alert_cfg = get_temp_alert_config(addressing,
1164                emif->plat_data->custom_configs, device_info->cs1_used,
1165                device_info->io_width, get_emif_bus_width(emif));
1166        writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG);
1167
1168        /*
1169         * Program external PHY control registers that are not frequency
1170         * dependent
1171         */
1172        if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY)
1173                return;
1174        writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW);
1175        writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW);
1176        writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW);
1177        writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW);
1178        writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW);
1179        writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW);
1180        writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW);
1181        writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW);
1182        writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW);
1183        writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW);
1184        writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW);
1185        writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW);
1186        writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW);
1187        writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW);
1188        writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW);
1189        writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW);
1190        writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW);
1191        writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW);
1192        writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW);
1193        writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW);
1194        writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW);
1195}
1196
1197static void get_default_timings(struct emif_data *emif)
1198{
1199        struct emif_platform_data *pd = emif->plat_data;
1200
1201        pd->timings             = lpddr2_jedec_timings;
1202        pd->timings_arr_size    = ARRAY_SIZE(lpddr2_jedec_timings);
1203
1204        dev_warn(emif->dev, "%s: using default timings\n", __func__);
1205}
1206
1207static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type,
1208                u32 ip_rev, struct device *dev)
1209{
1210        int valid;
1211
1212        valid = (type == DDR_TYPE_LPDDR2_S4 ||
1213                        type == DDR_TYPE_LPDDR2_S2)
1214                && (density >= DDR_DENSITY_64Mb
1215                        && density <= DDR_DENSITY_8Gb)
1216                && (io_width >= DDR_IO_WIDTH_8
1217                        && io_width <= DDR_IO_WIDTH_32);
1218
1219        /* Combinations of EMIF and PHY revisions that we support today */
1220        switch (ip_rev) {
1221        case EMIF_4D:
1222                valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY);
1223                break;
1224        case EMIF_4D5:
1225                valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY);
1226                break;
1227        default:
1228                valid = 0;
1229        }
1230
1231        if (!valid)
1232                dev_err(dev, "%s: invalid DDR details\n", __func__);
1233        return valid;
1234}
1235
1236static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs,
1237                struct device *dev)
1238{
1239        int valid = 1;
1240
1241        if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) &&
1242                (cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE))
1243                valid = cust_cfgs->lpmode_freq_threshold &&
1244                        cust_cfgs->lpmode_timeout_performance &&
1245                        cust_cfgs->lpmode_timeout_power;
1246
1247        if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)
1248                valid = valid && cust_cfgs->temp_alert_poll_interval_ms;
1249
1250        if (!valid)
1251                dev_warn(dev, "%s: invalid custom configs\n", __func__);
1252
1253        return valid;
1254}
1255
1256#if defined(CONFIG_OF)
1257static void __init_or_module of_get_custom_configs(struct device_node *np_emif,
1258                struct emif_data *emif)
1259{
1260        struct emif_custom_configs      *cust_cfgs = NULL;
1261        int                             len;
1262        const __be32                    *lpmode, *poll_intvl;
1263
1264        lpmode = of_get_property(np_emif, "low-power-mode", &len);
1265        poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len);
1266
1267        if (lpmode || poll_intvl)
1268                cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs),
1269                        GFP_KERNEL);
1270
1271        if (!cust_cfgs)
1272                return;
1273
1274        if (lpmode) {
1275                cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE;
1276                cust_cfgs->lpmode = be32_to_cpup(lpmode);
1277                of_property_read_u32(np_emif,
1278                                "low-power-mode-timeout-performance",
1279                                &cust_cfgs->lpmode_timeout_performance);
1280                of_property_read_u32(np_emif,
1281                                "low-power-mode-timeout-power",
1282                                &cust_cfgs->lpmode_timeout_power);
1283                of_property_read_u32(np_emif,
1284                                "low-power-mode-freq-threshold",
1285                                &cust_cfgs->lpmode_freq_threshold);
1286        }
1287
1288        if (poll_intvl) {
1289                cust_cfgs->mask |=
1290                                EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL;
1291                cust_cfgs->temp_alert_poll_interval_ms =
1292                                                be32_to_cpup(poll_intvl);
1293        }
1294
1295        if (of_find_property(np_emif, "extended-temp-part", &len))
1296                cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART;
1297
1298        if (!is_custom_config_valid(cust_cfgs, emif->dev)) {
1299                devm_kfree(emif->dev, cust_cfgs);
1300                return;
1301        }
1302
1303        emif->plat_data->custom_configs = cust_cfgs;
1304}
1305
1306static void __init_or_module of_get_ddr_info(struct device_node *np_emif,
1307                struct device_node *np_ddr,
1308                struct ddr_device_info *dev_info)
1309{
1310        u32 density = 0, io_width = 0;
1311        int len;
1312
1313        if (of_find_property(np_emif, "cs1-used", &len))
1314                dev_info->cs1_used = true;
1315
1316        if (of_find_property(np_emif, "cal-resistor-per-cs", &len))
1317                dev_info->cal_resistors_per_cs = true;
1318
1319        if (of_device_is_compatible(np_ddr, "jedec,lpddr2-s4"))
1320                dev_info->type = DDR_TYPE_LPDDR2_S4;
1321        else if (of_device_is_compatible(np_ddr, "jedec,lpddr2-s2"))
1322                dev_info->type = DDR_TYPE_LPDDR2_S2;
1323
1324        of_property_read_u32(np_ddr, "density", &density);
1325        of_property_read_u32(np_ddr, "io-width", &io_width);
1326
1327        /* Convert from density in Mb to the density encoding in jedc_ddr.h */
1328        if (density & (density - 1))
1329                dev_info->density = 0;
1330        else
1331                dev_info->density = __fls(density) - 5;
1332
1333        /* Convert from io_width in bits to io_width encoding in jedc_ddr.h */
1334        if (io_width & (io_width - 1))
1335                dev_info->io_width = 0;
1336        else
1337                dev_info->io_width = __fls(io_width) - 1;
1338}
1339
1340static struct emif_data * __init_or_module of_get_memory_device_details(
1341                struct device_node *np_emif, struct device *dev)
1342{
1343        struct emif_data                *emif = NULL;
1344        struct ddr_device_info          *dev_info = NULL;
1345        struct emif_platform_data       *pd = NULL;
1346        struct device_node              *np_ddr;
1347        int                             len;
1348
1349        np_ddr = of_parse_phandle(np_emif, "device-handle", 0);
1350        if (!np_ddr)
1351                goto error;
1352        emif    = devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL);
1353        pd      = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1354        dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1355
1356        if (!emif || !pd || !dev_info) {
1357                dev_err(dev, "%s: Out of memory!!\n",
1358                        __func__);
1359                goto error;
1360        }
1361
1362        emif->plat_data         = pd;
1363        pd->device_info         = dev_info;
1364        emif->dev               = dev;
1365        emif->np_ddr            = np_ddr;
1366        emif->temperature_level = SDRAM_TEMP_NOMINAL;
1367
1368        if (of_device_is_compatible(np_emif, "ti,emif-4d"))
1369                emif->plat_data->ip_rev = EMIF_4D;
1370        else if (of_device_is_compatible(np_emif, "ti,emif-4d5"))
1371                emif->plat_data->ip_rev = EMIF_4D5;
1372
1373        of_property_read_u32(np_emif, "phy-type", &pd->phy_type);
1374
1375        if (of_find_property(np_emif, "hw-caps-ll-interface", &len))
1376                pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE;
1377
1378        of_get_ddr_info(np_emif, np_ddr, dev_info);
1379        if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density,
1380                        pd->device_info->io_width, pd->phy_type, pd->ip_rev,
1381                        emif->dev)) {
1382                dev_err(dev, "%s: invalid device data!!\n", __func__);
1383                goto error;
1384        }
1385        /*
1386         * For EMIF instances other than EMIF1 see if the devices connected
1387         * are exactly same as on EMIF1(which is typically the case). If so,
1388         * mark it as a duplicate of EMIF1. This will save some memory and
1389         * computation.
1390         */
1391        if (emif1 && emif1->np_ddr == np_ddr) {
1392                emif->duplicate = true;
1393                goto out;
1394        } else if (emif1) {
1395                dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1396                        __func__);
1397        }
1398
1399        of_get_custom_configs(np_emif, emif);
1400        emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev,
1401                                        emif->plat_data->device_info->type,
1402                                        &emif->plat_data->timings_arr_size);
1403
1404        emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev);
1405        goto out;
1406
1407error:
1408        return NULL;
1409out:
1410        return emif;
1411}
1412
1413#else
1414
1415static struct emif_data * __init_or_module of_get_memory_device_details(
1416                struct device_node *np_emif, struct device *dev)
1417{
1418        return NULL;
1419}
1420#endif
1421
1422static struct emif_data *__init_or_module get_device_details(
1423                struct platform_device *pdev)
1424{
1425        u32                             size;
1426        struct emif_data                *emif = NULL;
1427        struct ddr_device_info          *dev_info;
1428        struct emif_custom_configs      *cust_cfgs;
1429        struct emif_platform_data       *pd;
1430        struct device                   *dev;
1431        void                            *temp;
1432
1433        pd = pdev->dev.platform_data;
1434        dev = &pdev->dev;
1435
1436        if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type,
1437                        pd->device_info->density, pd->device_info->io_width,
1438                        pd->phy_type, pd->ip_rev, dev))) {
1439                dev_err(dev, "%s: invalid device data\n", __func__);
1440                goto error;
1441        }
1442
1443        emif    = devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL);
1444        temp    = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1445        dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1446
1447        if (!emif || !pd || !dev_info) {
1448                dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__);
1449                goto error;
1450        }
1451
1452        memcpy(temp, pd, sizeof(*pd));
1453        pd = temp;
1454        memcpy(dev_info, pd->device_info, sizeof(*dev_info));
1455
1456        pd->device_info         = dev_info;
1457        emif->plat_data         = pd;
1458        emif->dev               = dev;
1459        emif->temperature_level = SDRAM_TEMP_NOMINAL;
1460
1461        /*
1462         * For EMIF instances other than EMIF1 see if the devices connected
1463         * are exactly same as on EMIF1(which is typically the case). If so,
1464         * mark it as a duplicate of EMIF1 and skip copying timings data.
1465         * This will save some memory and some computation later.
1466         */
1467        emif->duplicate = emif1 && (memcmp(dev_info,
1468                emif1->plat_data->device_info,
1469                sizeof(struct ddr_device_info)) == 0);
1470
1471        if (emif->duplicate) {
1472                pd->timings = NULL;
1473                pd->min_tck = NULL;
1474                goto out;
1475        } else if (emif1) {
1476                dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1477                        __func__);
1478        }
1479
1480        /*
1481         * Copy custom configs - ignore allocation error, if any, as
1482         * custom_configs is not very critical
1483         */
1484        cust_cfgs = pd->custom_configs;
1485        if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) {
1486                temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL);
1487                if (temp)
1488                        memcpy(temp, cust_cfgs, sizeof(*cust_cfgs));
1489                else
1490                        dev_warn(dev, "%s:%d: allocation error\n", __func__,
1491                                __LINE__);
1492                pd->custom_configs = temp;
1493        }
1494
1495        /*
1496         * Copy timings and min-tck values from platform data. If it is not
1497         * available or if memory allocation fails, use JEDEC defaults
1498         */
1499        size = sizeof(struct lpddr2_timings) * pd->timings_arr_size;
1500        if (pd->timings) {
1501                temp = devm_kzalloc(dev, size, GFP_KERNEL);
1502                if (temp) {
1503                        memcpy(temp, pd->timings, size);
1504                        pd->timings = temp;
1505                } else {
1506                        dev_warn(dev, "%s:%d: allocation error\n", __func__,
1507                                __LINE__);
1508                        get_default_timings(emif);
1509                }
1510        } else {
1511                get_default_timings(emif);
1512        }
1513
1514        if (pd->min_tck) {
1515                temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL);
1516                if (temp) {
1517                        memcpy(temp, pd->min_tck, sizeof(*pd->min_tck));
1518                        pd->min_tck = temp;
1519                } else {
1520                        dev_warn(dev, "%s:%d: allocation error\n", __func__,
1521                                __LINE__);
1522                        pd->min_tck = &lpddr2_jedec_min_tck;
1523                }
1524        } else {
1525                pd->min_tck = &lpddr2_jedec_min_tck;
1526        }
1527
1528out:
1529        return emif;
1530
1531error:
1532        return NULL;
1533}
1534
1535static int __init_or_module emif_probe(struct platform_device *pdev)
1536{
1537        struct emif_data        *emif;
1538        struct resource         *res;
1539        int                     irq;
1540
1541        if (pdev->dev.of_node)
1542                emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev);
1543        else
1544                emif = get_device_details(pdev);
1545
1546        if (!emif) {
1547                pr_err("%s: error getting device data\n", __func__);
1548                goto error;
1549        }
1550
1551        list_add(&emif->node, &device_list);
1552        emif->addressing = get_addressing_table(emif->plat_data->device_info);
1553
1554        /* Save pointers to each other in emif and device structures */
1555        emif->dev = &pdev->dev;
1556        platform_set_drvdata(pdev, emif);
1557
1558        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1559        emif->base = devm_ioremap_resource(emif->dev, res);
1560        if (IS_ERR(emif->base))
1561                goto error;
1562
1563        irq = platform_get_irq(pdev, 0);
1564        if (irq < 0)
1565                goto error;
1566
1567        emif_onetime_settings(emif);
1568        emif_debugfs_init(emif);
1569        disable_and_clear_all_interrupts(emif);
1570        setup_interrupts(emif, irq);
1571
1572        /* One-time actions taken on probing the first device */
1573        if (!emif1) {
1574                emif1 = emif;
1575                spin_lock_init(&emif_lock);
1576
1577                /*
1578                 * TODO: register notifiers for frequency and voltage
1579                 * change here once the respective frameworks are
1580                 * available
1581                 */
1582        }
1583
1584        dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n",
1585                __func__, emif->base, irq);
1586
1587        return 0;
1588error:
1589        return -ENODEV;
1590}
1591
1592static int __exit emif_remove(struct platform_device *pdev)
1593{
1594        struct emif_data *emif = platform_get_drvdata(pdev);
1595
1596        emif_debugfs_exit(emif);
1597
1598        return 0;
1599}
1600
1601static void emif_shutdown(struct platform_device *pdev)
1602{
1603        struct emif_data        *emif = platform_get_drvdata(pdev);
1604
1605        disable_and_clear_all_interrupts(emif);
1606}
1607
1608static int get_emif_reg_values(struct emif_data *emif, u32 freq,
1609                struct emif_regs *regs)
1610{
1611        u32                             ip_rev, phy_type;
1612        u32                             cl, type;
1613        const struct lpddr2_timings     *timings;
1614        const struct lpddr2_min_tck     *min_tck;
1615        const struct ddr_device_info    *device_info;
1616        const struct lpddr2_addressing  *addressing;
1617        struct emif_data                *emif_for_calc;
1618        struct device                   *dev;
1619
1620        dev = emif->dev;
1621        /*
1622         * If the devices on this EMIF instance is duplicate of EMIF1,
1623         * use EMIF1 details for the calculation
1624         */
1625        emif_for_calc   = emif->duplicate ? emif1 : emif;
1626        timings         = get_timings_table(emif_for_calc, freq);
1627        addressing      = emif_for_calc->addressing;
1628        if (!timings || !addressing) {
1629                dev_err(dev, "%s: not enough data available for %dHz",
1630                        __func__, freq);
1631                return -1;
1632        }
1633
1634        device_info     = emif_for_calc->plat_data->device_info;
1635        type            = device_info->type;
1636        ip_rev          = emif_for_calc->plat_data->ip_rev;
1637        phy_type        = emif_for_calc->plat_data->phy_type;
1638
1639        min_tck         = emif_for_calc->plat_data->min_tck;
1640
1641        set_ddr_clk_period(freq);
1642
1643        regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing);
1644        regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck,
1645                        addressing);
1646        regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck,
1647                        addressing, type);
1648        regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck,
1649                addressing, type, ip_rev, EMIF_NORMAL_TIMINGS);
1650
1651        cl = get_cl(emif);
1652
1653        if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) {
1654                regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d(
1655                        timings, freq, cl);
1656        } else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) {
1657                regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl);
1658                regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5();
1659                regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5();
1660                regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5();
1661        } else {
1662                return -1;
1663        }
1664
1665        /* Only timeout values in pwr_mgmt_ctrl_shdw register */
1666        regs->pwr_mgmt_ctrl_shdw =
1667                get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) &
1668                (CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK);
1669
1670        if (ip_rev & EMIF_4D) {
1671                regs->read_idle_ctrl_shdw_normal =
1672                        get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE);
1673
1674                regs->read_idle_ctrl_shdw_volt_ramp =
1675                        get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1676        } else if (ip_rev & EMIF_4D5) {
1677                regs->dll_calib_ctrl_shdw_normal =
1678                        get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE);
1679
1680                regs->dll_calib_ctrl_shdw_volt_ramp =
1681                        get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1682        }
1683
1684        if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
1685                regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4,
1686                        addressing);
1687
1688                regs->sdram_tim1_shdw_derated =
1689                        get_sdram_tim_1_shdw_derated(timings, min_tck,
1690                                addressing);
1691
1692                regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings,
1693                        min_tck, addressing, type, ip_rev,
1694                        EMIF_DERATED_TIMINGS);
1695        }
1696
1697        regs->freq = freq;
1698
1699        return 0;
1700}
1701
1702/*
1703 * get_regs() - gets the cached emif_regs structure for a given EMIF instance
1704 * given frequency(freq):
1705 *
1706 * As an optimisation, every EMIF instance other than EMIF1 shares the
1707 * register cache with EMIF1 if the devices connected on this instance
1708 * are same as that on EMIF1(indicated by the duplicate flag)
1709 *
1710 * If we do not have an entry corresponding to the frequency given, we
1711 * allocate a new entry and calculate the values
1712 *
1713 * Upon finding the right reg dump, save it in curr_regs. It can be
1714 * directly used for thermal de-rating and voltage ramping changes.
1715 */
1716static struct emif_regs *get_regs(struct emif_data *emif, u32 freq)
1717{
1718        int                     i;
1719        struct emif_regs        **regs_cache;
1720        struct emif_regs        *regs = NULL;
1721        struct device           *dev;
1722
1723        dev = emif->dev;
1724        if (emif->curr_regs && emif->curr_regs->freq == freq) {
1725                dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq);
1726                return emif->curr_regs;
1727        }
1728
1729        if (emif->duplicate)
1730                regs_cache = emif1->regs_cache;
1731        else
1732                regs_cache = emif->regs_cache;
1733
1734        for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
1735                if (regs_cache[i]->freq == freq) {
1736                        regs = regs_cache[i];
1737                        dev_dbg(dev,
1738                                "%s: reg dump found in reg cache for %u Hz\n",
1739                                __func__, freq);
1740                        break;
1741                }
1742        }
1743
1744        /*
1745         * If we don't have an entry for this frequency in the cache create one
1746         * and calculate the values
1747         */
1748        if (!regs) {
1749                regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC);
1750                if (!regs)
1751                        return NULL;
1752
1753                if (get_emif_reg_values(emif, freq, regs)) {
1754                        devm_kfree(emif->dev, regs);
1755                        return NULL;
1756                }
1757
1758                /*
1759                 * Now look for an un-used entry in the cache and save the
1760                 * newly created struct. If there are no free entries
1761                 * over-write the last entry
1762                 */
1763                for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++)
1764                        ;
1765
1766                if (i >= EMIF_MAX_NUM_FREQUENCIES) {
1767                        dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n",
1768                                __func__);
1769                        i = EMIF_MAX_NUM_FREQUENCIES - 1;
1770                        devm_kfree(emif->dev, regs_cache[i]);
1771                }
1772                regs_cache[i] = regs;
1773        }
1774
1775        return regs;
1776}
1777
1778static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state)
1779{
1780        dev_dbg(emif->dev, "%s: voltage notification : %d", __func__,
1781                volt_state);
1782
1783        if (!emif->curr_regs) {
1784                dev_err(emif->dev,
1785                        "%s: volt-notify before registers are ready: %d\n",
1786                        __func__, volt_state);
1787                return;
1788        }
1789
1790        setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state);
1791}
1792
1793/*
1794 * TODO: voltage notify handling should be hooked up to
1795 * regulator framework as soon as the necessary support
1796 * is available in mainline kernel. This function is un-used
1797 * right now.
1798 */
1799static void __attribute__((unused)) volt_notify_handling(u32 volt_state)
1800{
1801        struct emif_data *emif;
1802
1803        spin_lock_irqsave(&emif_lock, irq_state);
1804
1805        list_for_each_entry(emif, &device_list, node)
1806                do_volt_notify_handling(emif, volt_state);
1807        do_freq_update();
1808
1809        spin_unlock_irqrestore(&emif_lock, irq_state);
1810}
1811
1812static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq)
1813{
1814        struct emif_regs *regs;
1815
1816        regs = get_regs(emif, new_freq);
1817        if (!regs)
1818                return;
1819
1820        emif->curr_regs = regs;
1821
1822        /*
1823         * Update the shadow registers:
1824         * Temperature and voltage-ramp sensitive settings are also configured
1825         * in terms of DDR cycles. So, we need to update them too when there
1826         * is a freq change
1827         */
1828        dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz",
1829                __func__, new_freq);
1830        setup_registers(emif, regs);
1831        setup_temperature_sensitive_regs(emif, regs);
1832        setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE);
1833
1834        /*
1835         * Part of workaround for errata i728. See do_freq_update()
1836         * for more details
1837         */
1838        if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1839                set_lpmode(emif, EMIF_LP_MODE_DISABLE);
1840}
1841
1842/*
1843 * TODO: frequency notify handling should be hooked up to
1844 * clock framework as soon as the necessary support is
1845 * available in mainline kernel. This function is un-used
1846 * right now.
1847 */
1848static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq)
1849{
1850        struct emif_data *emif;
1851
1852        /*
1853         * NOTE: we are taking the spin-lock here and releases it
1854         * only in post-notifier. This doesn't look good and
1855         * Sparse complains about it, but this seems to be
1856         * un-avoidable. We need to lock a sequence of events
1857         * that is split between EMIF and clock framework.
1858         *
1859         * 1. EMIF driver updates EMIF timings in shadow registers in the
1860         *    frequency pre-notify callback from clock framework
1861         * 2. clock framework sets up the registers for the new frequency
1862         * 3. clock framework initiates a hw-sequence that updates
1863         *    the frequency EMIF timings synchronously.
1864         *
1865         * All these 3 steps should be performed as an atomic operation
1866         * vis-a-vis similar sequence in the EMIF interrupt handler
1867         * for temperature events. Otherwise, there could be race
1868         * conditions that could result in incorrect EMIF timings for
1869         * a given frequency
1870         */
1871        spin_lock_irqsave(&emif_lock, irq_state);
1872
1873        list_for_each_entry(emif, &device_list, node)
1874                do_freq_pre_notify_handling(emif, new_freq);
1875}
1876
1877static void do_freq_post_notify_handling(struct emif_data *emif)
1878{
1879        /*
1880         * Part of workaround for errata i728. See do_freq_update()
1881         * for more details
1882         */
1883        if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1884                set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
1885}
1886
1887/*
1888 * TODO: frequency notify handling should be hooked up to
1889 * clock framework as soon as the necessary support is
1890 * available in mainline kernel. This function is un-used
1891 * right now.
1892 */
1893static void __attribute__((unused)) freq_post_notify_handling(void)
1894{
1895        struct emif_data *emif;
1896
1897        list_for_each_entry(emif, &device_list, node)
1898                do_freq_post_notify_handling(emif);
1899
1900        /*
1901         * Lock is done in pre-notify handler. See freq_pre_notify_handling()
1902         * for more details
1903         */
1904        spin_unlock_irqrestore(&emif_lock, irq_state);
1905}
1906
1907#if defined(CONFIG_OF)
1908static const struct of_device_id emif_of_match[] = {
1909                { .compatible = "ti,emif-4d" },
1910                { .compatible = "ti,emif-4d5" },
1911                {},
1912};
1913MODULE_DEVICE_TABLE(of, emif_of_match);
1914#endif
1915
1916static struct platform_driver emif_driver = {
1917        .remove         = __exit_p(emif_remove),
1918        .shutdown       = emif_shutdown,
1919        .driver = {
1920                .name = "emif",
1921                .of_match_table = of_match_ptr(emif_of_match),
1922        },
1923};
1924
1925module_platform_driver_probe(emif_driver, emif_probe);
1926
1927MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
1928MODULE_LICENSE("GPL");
1929MODULE_ALIAS("platform:emif");
1930MODULE_AUTHOR("Texas Instruments Inc");
1931