linux/drivers/memory/samsung/exynos5422-dmc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2019 Samsung Electronics Co., Ltd.
   4 * Author: Lukasz Luba <l.luba@partner.samsung.com>
   5 */
   6
   7#include <linux/clk.h>
   8#include <linux/devfreq.h>
   9#include <linux/devfreq-event.h>
  10#include <linux/device.h>
  11#include <linux/interrupt.h>
  12#include <linux/io.h>
  13#include <linux/mfd/syscon.h>
  14#include <linux/module.h>
  15#include <linux/moduleparam.h>
  16#include <linux/of_device.h>
  17#include <linux/pm_opp.h>
  18#include <linux/platform_device.h>
  19#include <linux/regmap.h>
  20#include <linux/regulator/consumer.h>
  21#include <linux/slab.h>
  22#include "../jedec_ddr.h"
  23#include "../of_memory.h"
  24
  25static int irqmode;
  26module_param(irqmode, int, 0644);
  27MODULE_PARM_DESC(irqmode, "Enable IRQ mode (0=off [default], 1=on)");
  28
  29#define EXYNOS5_DREXI_TIMINGAREF                (0x0030)
  30#define EXYNOS5_DREXI_TIMINGROW0                (0x0034)
  31#define EXYNOS5_DREXI_TIMINGDATA0               (0x0038)
  32#define EXYNOS5_DREXI_TIMINGPOWER0              (0x003C)
  33#define EXYNOS5_DREXI_TIMINGROW1                (0x00E4)
  34#define EXYNOS5_DREXI_TIMINGDATA1               (0x00E8)
  35#define EXYNOS5_DREXI_TIMINGPOWER1              (0x00EC)
  36#define CDREX_PAUSE                             (0x2091c)
  37#define CDREX_LPDDR3PHY_CON3                    (0x20a20)
  38#define CDREX_LPDDR3PHY_CLKM_SRC                (0x20700)
  39#define EXYNOS5_TIMING_SET_SWI                  BIT(28)
  40#define USE_MX_MSPLL_TIMINGS                    (1)
  41#define USE_BPLL_TIMINGS                        (0)
  42#define EXYNOS5_AREF_NORMAL                     (0x2e)
  43
  44#define DREX_PPCCLKCON          (0x0130)
  45#define DREX_PEREV2CONFIG       (0x013c)
  46#define DREX_PMNC_PPC           (0xE000)
  47#define DREX_CNTENS_PPC         (0xE010)
  48#define DREX_CNTENC_PPC         (0xE020)
  49#define DREX_INTENS_PPC         (0xE030)
  50#define DREX_INTENC_PPC         (0xE040)
  51#define DREX_FLAG_PPC           (0xE050)
  52#define DREX_PMCNT2_PPC         (0xE130)
  53
  54/*
  55 * A value for register DREX_PMNC_PPC which should be written to reset
  56 * the cycle counter CCNT (a reference wall clock). It sets zero to the
  57 * CCNT counter.
  58 */
  59#define CC_RESET                BIT(2)
  60
  61/*
  62 * A value for register DREX_PMNC_PPC which does the reset of all performance
  63 * counters to zero.
  64 */
  65#define PPC_COUNTER_RESET       BIT(1)
  66
  67/*
  68 * Enables all configured counters (including cycle counter). The value should
  69 * be written to the register DREX_PMNC_PPC.
  70 */
  71#define PPC_ENABLE              BIT(0)
  72
  73/* A value for register DREX_PPCCLKCON which enables performance events clock.
  74 * Must be written before first access to the performance counters register
  75 * set, otherwise it could crash.
  76 */
  77#define PEREV_CLK_EN            BIT(0)
  78
  79/*
  80 * Values which are used to enable counters, interrupts or configure flags of
  81 * the performance counters. They configure counter 2 and cycle counter.
  82 */
  83#define PERF_CNT2               BIT(2)
  84#define PERF_CCNT               BIT(31)
  85
  86/*
  87 * Performance event types which are used for setting the preferred event
  88 * to track in the counters.
  89 * There is a set of different types, the values are from range 0 to 0x6f.
  90 * These settings should be written to the configuration register which manages
  91 * the type of the event (register DREX_PEREV2CONFIG).
  92 */
  93#define READ_TRANSFER_CH0       (0x6d)
  94#define READ_TRANSFER_CH1       (0x6f)
  95
  96#define PERF_COUNTER_START_VALUE 0xff000000
  97#define PERF_EVENT_UP_DOWN_THRESHOLD 900000000ULL
  98
  99/**
 100 * struct dmc_opp_table - Operating level desciption
 101 *
 102 * Covers frequency and voltage settings of the DMC operating mode.
 103 */
 104struct dmc_opp_table {
 105        u32 freq_hz;
 106        u32 volt_uv;
 107};
 108
 109/**
 110 * struct exynos5_dmc - main structure describing DMC device
 111 *
 112 * The main structure for the Dynamic Memory Controller which covers clocks,
 113 * memory regions, HW information, parameters and current operating mode.
 114 */
 115struct exynos5_dmc {
 116        struct device *dev;
 117        struct devfreq *df;
 118        struct devfreq_simple_ondemand_data gov_data;
 119        void __iomem *base_drexi0;
 120        void __iomem *base_drexi1;
 121        struct regmap *clk_regmap;
 122        struct mutex lock;
 123        unsigned long curr_rate;
 124        unsigned long curr_volt;
 125        unsigned long bypass_rate;
 126        struct dmc_opp_table *opp;
 127        struct dmc_opp_table opp_bypass;
 128        int opp_count;
 129        u32 timings_arr_size;
 130        u32 *timing_row;
 131        u32 *timing_data;
 132        u32 *timing_power;
 133        const struct lpddr3_timings *timings;
 134        const struct lpddr3_min_tck *min_tck;
 135        u32 bypass_timing_row;
 136        u32 bypass_timing_data;
 137        u32 bypass_timing_power;
 138        struct regulator *vdd_mif;
 139        struct clk *fout_spll;
 140        struct clk *fout_bpll;
 141        struct clk *mout_spll;
 142        struct clk *mout_bpll;
 143        struct clk *mout_mclk_cdrex;
 144        struct clk *mout_mx_mspll_ccore;
 145        struct clk *mx_mspll_ccore_phy;
 146        struct clk *mout_mx_mspll_ccore_phy;
 147        struct devfreq_event_dev **counter;
 148        int num_counters;
 149        u64 last_overflow_ts[2];
 150        unsigned long load;
 151        unsigned long total;
 152        bool in_irq_mode;
 153};
 154
 155#define TIMING_FIELD(t_name, t_bit_beg, t_bit_end) \
 156        { .name = t_name, .bit_beg = t_bit_beg, .bit_end = t_bit_end }
 157
 158#define TIMING_VAL2REG(timing, t_val)                   \
 159({                                                      \
 160                u32 __val;                              \
 161                __val = (t_val) << (timing)->bit_beg;   \
 162                __val;                                  \
 163})
 164
 165struct timing_reg {
 166        char *name;
 167        int bit_beg;
 168        int bit_end;
 169        unsigned int val;
 170};
 171
 172static const struct timing_reg timing_row[] = {
 173        TIMING_FIELD("tRFC", 24, 31),
 174        TIMING_FIELD("tRRD", 20, 23),
 175        TIMING_FIELD("tRP", 16, 19),
 176        TIMING_FIELD("tRCD", 12, 15),
 177        TIMING_FIELD("tRC", 6, 11),
 178        TIMING_FIELD("tRAS", 0, 5),
 179};
 180
 181static const struct timing_reg timing_data[] = {
 182        TIMING_FIELD("tWTR", 28, 31),
 183        TIMING_FIELD("tWR", 24, 27),
 184        TIMING_FIELD("tRTP", 20, 23),
 185        TIMING_FIELD("tW2W-C2C", 14, 14),
 186        TIMING_FIELD("tR2R-C2C", 12, 12),
 187        TIMING_FIELD("WL", 8, 11),
 188        TIMING_FIELD("tDQSCK", 4, 7),
 189        TIMING_FIELD("RL", 0, 3),
 190};
 191
 192static const struct timing_reg timing_power[] = {
 193        TIMING_FIELD("tFAW", 26, 31),
 194        TIMING_FIELD("tXSR", 16, 25),
 195        TIMING_FIELD("tXP", 8, 15),
 196        TIMING_FIELD("tCKE", 4, 7),
 197        TIMING_FIELD("tMRD", 0, 3),
 198};
 199
 200#define TIMING_COUNT (ARRAY_SIZE(timing_row) + ARRAY_SIZE(timing_data) + \
 201                      ARRAY_SIZE(timing_power))
 202
 203static int exynos5_counters_set_event(struct exynos5_dmc *dmc)
 204{
 205        int i, ret;
 206
 207        for (i = 0; i < dmc->num_counters; i++) {
 208                if (!dmc->counter[i])
 209                        continue;
 210                ret = devfreq_event_set_event(dmc->counter[i]);
 211                if (ret < 0)
 212                        return ret;
 213        }
 214        return 0;
 215}
 216
 217static int exynos5_counters_enable_edev(struct exynos5_dmc *dmc)
 218{
 219        int i, ret;
 220
 221        for (i = 0; i < dmc->num_counters; i++) {
 222                if (!dmc->counter[i])
 223                        continue;
 224                ret = devfreq_event_enable_edev(dmc->counter[i]);
 225                if (ret < 0)
 226                        return ret;
 227        }
 228        return 0;
 229}
 230
 231static int exynos5_counters_disable_edev(struct exynos5_dmc *dmc)
 232{
 233        int i, ret;
 234
 235        for (i = 0; i < dmc->num_counters; i++) {
 236                if (!dmc->counter[i])
 237                        continue;
 238                ret = devfreq_event_disable_edev(dmc->counter[i]);
 239                if (ret < 0)
 240                        return ret;
 241        }
 242        return 0;
 243}
 244
 245/**
 246 * find_target_freq_id() - Finds requested frequency in local DMC configuration
 247 * @dmc:        device for which the information is checked
 248 * @target_rate:        requested frequency in KHz
 249 *
 250 * Seeks in the local DMC driver structure for the requested frequency value
 251 * and returns index or error value.
 252 */
 253static int find_target_freq_idx(struct exynos5_dmc *dmc,
 254                                unsigned long target_rate)
 255{
 256        int i;
 257
 258        for (i = dmc->opp_count - 1; i >= 0; i--)
 259                if (dmc->opp[i].freq_hz <= target_rate)
 260                        return i;
 261
 262        return -EINVAL;
 263}
 264
 265/**
 266 * exynos5_switch_timing_regs() - Changes bank register set for DRAM timings
 267 * @dmc:        device for which the new settings is going to be applied
 268 * @set:        boolean variable passing set value
 269 *
 270 * Changes the register set, which holds timing parameters.
 271 * There is two register sets: 0 and 1. The register set 0
 272 * is used in normal operation when the clock is provided from main PLL.
 273 * The bank register set 1 is used when the main PLL frequency is going to be
 274 * changed and the clock is taken from alternative, stable source.
 275 * This function switches between these banks according to the
 276 * currently used clock source.
 277 */
 278static int exynos5_switch_timing_regs(struct exynos5_dmc *dmc, bool set)
 279{
 280        unsigned int reg;
 281        int ret;
 282
 283        ret = regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, &reg);
 284        if (ret)
 285                return ret;
 286
 287        if (set)
 288                reg |= EXYNOS5_TIMING_SET_SWI;
 289        else
 290                reg &= ~EXYNOS5_TIMING_SET_SWI;
 291
 292        regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, reg);
 293
 294        return 0;
 295}
 296
 297/**
 298 * exynos5_init_freq_table() - Initialized PM OPP framework
 299 * @dmc:        DMC device for which the frequencies are used for OPP init
 300 * @profile:    devfreq device's profile
 301 *
 302 * Populate the devfreq device's OPP table based on current frequency, voltage.
 303 */
 304static int exynos5_init_freq_table(struct exynos5_dmc *dmc,
 305                                   struct devfreq_dev_profile *profile)
 306{
 307        int i, ret;
 308        int idx;
 309        unsigned long freq;
 310
 311        ret = dev_pm_opp_of_add_table(dmc->dev);
 312        if (ret < 0) {
 313                dev_err(dmc->dev, "Failed to get OPP table\n");
 314                return ret;
 315        }
 316
 317        dmc->opp_count = dev_pm_opp_get_opp_count(dmc->dev);
 318
 319        dmc->opp = devm_kmalloc_array(dmc->dev, dmc->opp_count,
 320                                      sizeof(struct dmc_opp_table), GFP_KERNEL);
 321        if (!dmc->opp)
 322                goto err_opp;
 323
 324        idx = dmc->opp_count - 1;
 325        for (i = 0, freq = ULONG_MAX; i < dmc->opp_count; i++, freq--) {
 326                struct dev_pm_opp *opp;
 327
 328                opp = dev_pm_opp_find_freq_floor(dmc->dev, &freq);
 329                if (IS_ERR(opp))
 330                        goto err_opp;
 331
 332                dmc->opp[idx - i].freq_hz = freq;
 333                dmc->opp[idx - i].volt_uv = dev_pm_opp_get_voltage(opp);
 334
 335                dev_pm_opp_put(opp);
 336        }
 337
 338        return 0;
 339
 340err_opp:
 341        dev_pm_opp_of_remove_table(dmc->dev);
 342
 343        return -EINVAL;
 344}
 345
 346/**
 347 * exynos5_set_bypass_dram_timings() - Low-level changes of the DRAM timings
 348 * @dmc:        device for which the new settings is going to be applied
 349 * @param:      DRAM parameters which passes timing data
 350 *
 351 * Low-level function for changing timings for DRAM memory clocking from
 352 * 'bypass' clock source (fixed frequency @400MHz).
 353 * It uses timing bank registers set 1.
 354 */
 355static void exynos5_set_bypass_dram_timings(struct exynos5_dmc *dmc)
 356{
 357        writel(EXYNOS5_AREF_NORMAL,
 358               dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF);
 359
 360        writel(dmc->bypass_timing_row,
 361               dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW1);
 362        writel(dmc->bypass_timing_row,
 363               dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW1);
 364        writel(dmc->bypass_timing_data,
 365               dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA1);
 366        writel(dmc->bypass_timing_data,
 367               dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA1);
 368        writel(dmc->bypass_timing_power,
 369               dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER1);
 370        writel(dmc->bypass_timing_power,
 371               dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER1);
 372}
 373
 374/**
 375 * exynos5_dram_change_timings() - Low-level changes of the DRAM final timings
 376 * @dmc:        device for which the new settings is going to be applied
 377 * @target_rate:        target frequency of the DMC
 378 *
 379 * Low-level function for changing timings for DRAM memory operating from main
 380 * clock source (BPLL), which can have different frequencies. Thus, each
 381 * frequency must have corresponding timings register values in order to keep
 382 * the needed delays.
 383 * It uses timing bank registers set 0.
 384 */
 385static int exynos5_dram_change_timings(struct exynos5_dmc *dmc,
 386                                       unsigned long target_rate)
 387{
 388        int idx;
 389
 390        for (idx = dmc->opp_count - 1; idx >= 0; idx--)
 391                if (dmc->opp[idx].freq_hz <= target_rate)
 392                        break;
 393
 394        if (idx < 0)
 395                return -EINVAL;
 396
 397        writel(EXYNOS5_AREF_NORMAL,
 398               dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF);
 399
 400        writel(dmc->timing_row[idx],
 401               dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW0);
 402        writel(dmc->timing_row[idx],
 403               dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW0);
 404        writel(dmc->timing_data[idx],
 405               dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA0);
 406        writel(dmc->timing_data[idx],
 407               dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA0);
 408        writel(dmc->timing_power[idx],
 409               dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER0);
 410        writel(dmc->timing_power[idx],
 411               dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER0);
 412
 413        return 0;
 414}
 415
 416/**
 417 * exynos5_dmc_align_target_voltage() - Sets the final voltage for the DMC
 418 * @dmc:        device for which it is going to be set
 419 * @target_volt:        new voltage which is chosen to be final
 420 *
 421 * Function tries to align voltage to the safe level for 'normal' mode.
 422 * It checks the need of higher voltage and changes the value. The target
 423 * voltage might be lower that currently set and still the system will be
 424 * stable.
 425 */
 426static int exynos5_dmc_align_target_voltage(struct exynos5_dmc *dmc,
 427                                            unsigned long target_volt)
 428{
 429        int ret = 0;
 430
 431        if (dmc->curr_volt <= target_volt)
 432                return 0;
 433
 434        ret = regulator_set_voltage(dmc->vdd_mif, target_volt,
 435                                    target_volt);
 436        if (!ret)
 437                dmc->curr_volt = target_volt;
 438
 439        return ret;
 440}
 441
 442/**
 443 * exynos5_dmc_align_bypass_voltage() - Sets the voltage for the DMC
 444 * @dmc:        device for which it is going to be set
 445 * @target_volt:        new voltage which is chosen to be final
 446 *
 447 * Function tries to align voltage to the safe level for the 'bypass' mode.
 448 * It checks the need of higher voltage and changes the value.
 449 * The target voltage must not be less than currently needed, because
 450 * for current frequency the device might become unstable.
 451 */
 452static int exynos5_dmc_align_bypass_voltage(struct exynos5_dmc *dmc,
 453                                            unsigned long target_volt)
 454{
 455        int ret = 0;
 456        unsigned long bypass_volt = dmc->opp_bypass.volt_uv;
 457
 458        target_volt = max(bypass_volt, target_volt);
 459
 460        if (dmc->curr_volt >= target_volt)
 461                return 0;
 462
 463        ret = regulator_set_voltage(dmc->vdd_mif, target_volt,
 464                                    target_volt);
 465        if (!ret)
 466                dmc->curr_volt = target_volt;
 467
 468        return ret;
 469}
 470
 471/**
 472 * exynos5_dmc_align_bypass_dram_timings() - Chooses and sets DRAM timings
 473 * @dmc:        device for which it is going to be set
 474 * @target_rate:        new frequency which is chosen to be final
 475 *
 476 * Function changes the DRAM timings for the temporary 'bypass' mode.
 477 */
 478static int exynos5_dmc_align_bypass_dram_timings(struct exynos5_dmc *dmc,
 479                                                 unsigned long target_rate)
 480{
 481        int idx = find_target_freq_idx(dmc, target_rate);
 482
 483        if (idx < 0)
 484                return -EINVAL;
 485
 486        exynos5_set_bypass_dram_timings(dmc);
 487
 488        return 0;
 489}
 490
 491/**
 492 * exynos5_dmc_switch_to_bypass_configuration() - Switching to temporary clock
 493 * @dmc:        DMC device for which the switching is going to happen
 494 * @target_rate:        new frequency which is going to be set as a final
 495 * @target_volt:        new voltage which is going to be set as a final
 496 *
 497 * Function configures DMC and clocks for operating in temporary 'bypass' mode.
 498 * This mode is used only temporary but if required, changes voltage and timings
 499 * for DRAM chips. It switches the main clock to stable clock source for the
 500 * period of the main PLL reconfiguration.
 501 */
 502static int
 503exynos5_dmc_switch_to_bypass_configuration(struct exynos5_dmc *dmc,
 504                                           unsigned long target_rate,
 505                                           unsigned long target_volt)
 506{
 507        int ret;
 508
 509        /*
 510         * Having higher voltage for a particular frequency does not harm
 511         * the chip. Use it for the temporary frequency change when one
 512         * voltage manipulation might be avoided.
 513         */
 514        ret = exynos5_dmc_align_bypass_voltage(dmc, target_volt);
 515        if (ret)
 516                return ret;
 517
 518        /*
 519         * Longer delays for DRAM does not cause crash, the opposite does.
 520         */
 521        ret = exynos5_dmc_align_bypass_dram_timings(dmc, target_rate);
 522        if (ret)
 523                return ret;
 524
 525        /*
 526         * Delays are long enough, so use them for the new coming clock.
 527         */
 528        ret = exynos5_switch_timing_regs(dmc, USE_MX_MSPLL_TIMINGS);
 529
 530        return ret;
 531}
 532
 533/**
 534 * exynos5_dmc_change_freq_and_volt() - Changes voltage and frequency of the DMC
 535 * using safe procedure
 536 * @dmc:        device for which the frequency is going to be changed
 537 * @target_rate:        requested new frequency
 538 * @target_volt:        requested voltage which corresponds to the new frequency
 539 *
 540 * The DMC frequency change procedure requires a few steps.
 541 * The main requirement is to change the clock source in the clk mux
 542 * for the time of main clock PLL locking. The assumption is that the
 543 * alternative clock source set as parent is stable.
 544 * The second parent's clock frequency is fixed to 400MHz, it is named 'bypass'
 545 * clock. This requires alignment in DRAM timing parameters for the new
 546 * T-period. There is two bank sets for keeping DRAM
 547 * timings: set 0 and set 1. The set 0 is used when main clock source is
 548 * chosen. The 2nd set of regs is used for 'bypass' clock. Switching between
 549 * the two bank sets is part of the process.
 550 * The voltage must also be aligned to the minimum required level. There is
 551 * this intermediate step with switching to 'bypass' parent clock source.
 552 * if the old voltage is lower, it requires an increase of the voltage level.
 553 * The complexity of the voltage manipulation is hidden in low level function.
 554 * In this function there is last alignment of the voltage level at the end.
 555 */
 556static int
 557exynos5_dmc_change_freq_and_volt(struct exynos5_dmc *dmc,
 558                                 unsigned long target_rate,
 559                                 unsigned long target_volt)
 560{
 561        int ret;
 562
 563        ret = exynos5_dmc_switch_to_bypass_configuration(dmc, target_rate,
 564                                                         target_volt);
 565        if (ret)
 566                return ret;
 567
 568        /*
 569         * Voltage is set at least to a level needed for this frequency,
 570         * so switching clock source is safe now.
 571         */
 572        clk_prepare_enable(dmc->fout_spll);
 573        clk_prepare_enable(dmc->mout_spll);
 574        clk_prepare_enable(dmc->mout_mx_mspll_ccore);
 575
 576        ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_mx_mspll_ccore);
 577        if (ret)
 578                goto disable_clocks;
 579
 580        /*
 581         * We are safe to increase the timings for current bypass frequency.
 582         * Thanks to this the settings will be ready for the upcoming clock
 583         * source change.
 584         */
 585        exynos5_dram_change_timings(dmc, target_rate);
 586
 587        clk_set_rate(dmc->fout_bpll, target_rate);
 588
 589        ret = exynos5_switch_timing_regs(dmc, USE_BPLL_TIMINGS);
 590        if (ret)
 591                goto disable_clocks;
 592
 593        ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_bpll);
 594        if (ret)
 595                goto disable_clocks;
 596
 597        /*
 598         * Make sure if the voltage is not from 'bypass' settings and align to
 599         * the right level for power efficiency.
 600         */
 601        ret = exynos5_dmc_align_target_voltage(dmc, target_volt);
 602
 603disable_clocks:
 604        clk_disable_unprepare(dmc->mout_mx_mspll_ccore);
 605        clk_disable_unprepare(dmc->mout_spll);
 606        clk_disable_unprepare(dmc->fout_spll);
 607
 608        return ret;
 609}
 610
 611/**
 612 * exynos5_dmc_get_volt_freq() - Gets the frequency and voltage from the OPP
 613 * table.
 614 * @dmc:        device for which the frequency is going to be changed
 615 * @freq:       requested frequency in KHz
 616 * @target_rate:        returned frequency which is the same or lower than
 617 *                      requested
 618 * @target_volt:        returned voltage which corresponds to the returned
 619 *                      frequency
 620 *
 621 * Function gets requested frequency and checks OPP framework for needed
 622 * frequency and voltage. It populates the values 'target_rate' and
 623 * 'target_volt' or returns error value when OPP framework fails.
 624 */
 625static int exynos5_dmc_get_volt_freq(struct exynos5_dmc *dmc,
 626                                     unsigned long *freq,
 627                                     unsigned long *target_rate,
 628                                     unsigned long *target_volt, u32 flags)
 629{
 630        struct dev_pm_opp *opp;
 631
 632        opp = devfreq_recommended_opp(dmc->dev, freq, flags);
 633        if (IS_ERR(opp))
 634                return PTR_ERR(opp);
 635
 636        *target_rate = dev_pm_opp_get_freq(opp);
 637        *target_volt = dev_pm_opp_get_voltage(opp);
 638        dev_pm_opp_put(opp);
 639
 640        return 0;
 641}
 642
 643/**
 644 * exynos5_dmc_target() - Function responsible for changing frequency of DMC
 645 * @dev:        device for which the frequency is going to be changed
 646 * @freq:       requested frequency in KHz
 647 * @flags:      flags provided for this frequency change request
 648 *
 649 * An entry function provided to the devfreq framework which provides frequency
 650 * change of the DMC. The function gets the possible rate from OPP table based
 651 * on requested frequency. It calls the next function responsible for the
 652 * frequency and voltage change. In case of failure, does not set 'curr_rate'
 653 * and returns error value to the framework.
 654 */
 655static int exynos5_dmc_target(struct device *dev, unsigned long *freq,
 656                              u32 flags)
 657{
 658        struct exynos5_dmc *dmc = dev_get_drvdata(dev);
 659        unsigned long target_rate = 0;
 660        unsigned long target_volt = 0;
 661        int ret;
 662
 663        ret = exynos5_dmc_get_volt_freq(dmc, freq, &target_rate, &target_volt,
 664                                        flags);
 665
 666        if (ret)
 667                return ret;
 668
 669        if (target_rate == dmc->curr_rate)
 670                return 0;
 671
 672        mutex_lock(&dmc->lock);
 673
 674        ret = exynos5_dmc_change_freq_and_volt(dmc, target_rate, target_volt);
 675
 676        if (ret) {
 677                mutex_unlock(&dmc->lock);
 678                return ret;
 679        }
 680
 681        dmc->curr_rate = target_rate;
 682
 683        mutex_unlock(&dmc->lock);
 684        return 0;
 685}
 686
 687/**
 688 * exynos5_counters_get() - Gets the performance counters values.
 689 * @dmc:        device for which the counters are going to be checked
 690 * @load_count: variable which is populated with counter value
 691 * @total_count:        variable which is used as 'wall clock' reference
 692 *
 693 * Function which provides performance counters values. It sums up counters for
 694 * two DMC channels. The 'total_count' is used as a reference and max value.
 695 * The ratio 'load_count/total_count' shows the busy percentage [0%, 100%].
 696 */
 697static int exynos5_counters_get(struct exynos5_dmc *dmc,
 698                                unsigned long *load_count,
 699                                unsigned long *total_count)
 700{
 701        unsigned long total = 0;
 702        struct devfreq_event_data event;
 703        int ret, i;
 704
 705        *load_count = 0;
 706
 707        /* Take into account only read+write counters, but stop all */
 708        for (i = 0; i < dmc->num_counters; i++) {
 709                if (!dmc->counter[i])
 710                        continue;
 711
 712                ret = devfreq_event_get_event(dmc->counter[i], &event);
 713                if (ret < 0)
 714                        return ret;
 715
 716                *load_count += event.load_count;
 717
 718                if (total < event.total_count)
 719                        total = event.total_count;
 720        }
 721
 722        *total_count = total;
 723
 724        return 0;
 725}
 726
 727/**
 728 * exynos5_dmc_start_perf_events() - Setup and start performance event counters
 729 * @dmc:        device for which the counters are going to be checked
 730 * @beg_value:  initial value for the counter
 731 *
 732 * Function which enables needed counters, interrupts and sets initial values
 733 * then starts the counters.
 734 */
 735static void exynos5_dmc_start_perf_events(struct exynos5_dmc *dmc,
 736                                          u32 beg_value)
 737{
 738        /* Enable interrupts for counter 2 */
 739        writel(PERF_CNT2, dmc->base_drexi0 + DREX_INTENS_PPC);
 740        writel(PERF_CNT2, dmc->base_drexi1 + DREX_INTENS_PPC);
 741
 742        /* Enable counter 2 and CCNT  */
 743        writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_CNTENS_PPC);
 744        writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_CNTENS_PPC);
 745
 746        /* Clear overflow flag for all counters */
 747        writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_FLAG_PPC);
 748        writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_FLAG_PPC);
 749
 750        /* Reset all counters */
 751        writel(CC_RESET | PPC_COUNTER_RESET, dmc->base_drexi0 + DREX_PMNC_PPC);
 752        writel(CC_RESET | PPC_COUNTER_RESET, dmc->base_drexi1 + DREX_PMNC_PPC);
 753
 754        /*
 755         * Set start value for the counters, the number of samples that
 756         * will be gathered is calculated as: 0xffffffff - beg_value
 757         */
 758        writel(beg_value, dmc->base_drexi0 + DREX_PMCNT2_PPC);
 759        writel(beg_value, dmc->base_drexi1 + DREX_PMCNT2_PPC);
 760
 761        /* Start all counters */
 762        writel(PPC_ENABLE, dmc->base_drexi0 + DREX_PMNC_PPC);
 763        writel(PPC_ENABLE, dmc->base_drexi1 + DREX_PMNC_PPC);
 764}
 765
 766/**
 767 * exynos5_dmc_perf_events_calc() - Calculate utilization
 768 * @dmc:        device for which the counters are going to be checked
 769 * @diff_ts:    time between last interrupt and current one
 770 *
 771 * Function which calculates needed utilization for the devfreq governor.
 772 * It prepares values for 'busy_time' and 'total_time' based on elapsed time
 773 * between interrupts, which approximates utilization.
 774 */
 775static void exynos5_dmc_perf_events_calc(struct exynos5_dmc *dmc, u64 diff_ts)
 776{
 777        /*
 778         * This is a simple algorithm for managing traffic on DMC.
 779         * When there is almost no load the counters overflow every 4s,
 780         * no mater the DMC frequency.
 781         * The high load might be approximated using linear function.
 782         * Knowing that, simple calculation can provide 'busy_time' and
 783         * 'total_time' to the devfreq governor which picks up target
 784         * frequency.
 785         * We want a fast ramp up and slow decay in frequency change function.
 786         */
 787        if (diff_ts < PERF_EVENT_UP_DOWN_THRESHOLD) {
 788                /*
 789                 * Set higher utilization for the simple_ondemand governor.
 790                 * The governor should increase the frequency of the DMC.
 791                 */
 792                dmc->load = 70;
 793                dmc->total = 100;
 794        } else {
 795                /*
 796                 * Set low utilization for the simple_ondemand governor.
 797                 * The governor should decrease the frequency of the DMC.
 798                 */
 799                dmc->load = 35;
 800                dmc->total = 100;
 801        }
 802
 803        dev_dbg(dmc->dev, "diff_ts=%llu\n", diff_ts);
 804}
 805
 806/**
 807 * exynos5_dmc_perf_events_check() - Checks the status of the counters
 808 * @dmc:        device for which the counters are going to be checked
 809 *
 810 * Function which is called from threaded IRQ to check the counters state
 811 * and to call approximation for the needed utilization.
 812 */
 813static void exynos5_dmc_perf_events_check(struct exynos5_dmc *dmc)
 814{
 815        u32 val;
 816        u64 diff_ts, ts;
 817
 818        ts = ktime_get_ns();
 819
 820        /* Stop all counters */
 821        writel(0, dmc->base_drexi0 + DREX_PMNC_PPC);
 822        writel(0, dmc->base_drexi1 + DREX_PMNC_PPC);
 823
 824        /* Check the source in interrupt flag registers (which channel) */
 825        val = readl(dmc->base_drexi0 + DREX_FLAG_PPC);
 826        if (val) {
 827                diff_ts = ts - dmc->last_overflow_ts[0];
 828                dmc->last_overflow_ts[0] = ts;
 829                dev_dbg(dmc->dev, "drex0 0xE050 val= 0x%08x\n",  val);
 830        } else {
 831                val = readl(dmc->base_drexi1 + DREX_FLAG_PPC);
 832                diff_ts = ts - dmc->last_overflow_ts[1];
 833                dmc->last_overflow_ts[1] = ts;
 834                dev_dbg(dmc->dev, "drex1 0xE050 val= 0x%08x\n",  val);
 835        }
 836
 837        exynos5_dmc_perf_events_calc(dmc, diff_ts);
 838
 839        exynos5_dmc_start_perf_events(dmc, PERF_COUNTER_START_VALUE);
 840}
 841
 842/**
 843 * exynos5_dmc_enable_perf_events() - Enable performance events
 844 * @dmc:        device for which the counters are going to be checked
 845 *
 846 * Function which is setup needed environment and enables counters.
 847 */
 848static void exynos5_dmc_enable_perf_events(struct exynos5_dmc *dmc)
 849{
 850        u64 ts;
 851
 852        /* Enable Performance Event Clock */
 853        writel(PEREV_CLK_EN, dmc->base_drexi0 + DREX_PPCCLKCON);
 854        writel(PEREV_CLK_EN, dmc->base_drexi1 + DREX_PPCCLKCON);
 855
 856        /* Select read transfers as performance event2 */
 857        writel(READ_TRANSFER_CH0, dmc->base_drexi0 + DREX_PEREV2CONFIG);
 858        writel(READ_TRANSFER_CH1, dmc->base_drexi1 + DREX_PEREV2CONFIG);
 859
 860        ts = ktime_get_ns();
 861        dmc->last_overflow_ts[0] = ts;
 862        dmc->last_overflow_ts[1] = ts;
 863
 864        /* Devfreq shouldn't be faster than initialization, play safe though. */
 865        dmc->load = 99;
 866        dmc->total = 100;
 867}
 868
 869/**
 870 * exynos5_dmc_disable_perf_events() - Disable performance events
 871 * @dmc:        device for which the counters are going to be checked
 872 *
 873 * Function which stops, disables performance event counters and interrupts.
 874 */
 875static void exynos5_dmc_disable_perf_events(struct exynos5_dmc *dmc)
 876{
 877        /* Stop all counters */
 878        writel(0, dmc->base_drexi0 + DREX_PMNC_PPC);
 879        writel(0, dmc->base_drexi1 + DREX_PMNC_PPC);
 880
 881        /* Disable interrupts for counter 2 */
 882        writel(PERF_CNT2, dmc->base_drexi0 + DREX_INTENC_PPC);
 883        writel(PERF_CNT2, dmc->base_drexi1 + DREX_INTENC_PPC);
 884
 885        /* Disable counter 2 and CCNT  */
 886        writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_CNTENC_PPC);
 887        writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_CNTENC_PPC);
 888
 889        /* Clear overflow flag for all counters */
 890        writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_FLAG_PPC);
 891        writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_FLAG_PPC);
 892}
 893
 894/**
 895 * exynos5_dmc_get_status() - Read current DMC performance statistics.
 896 * @dev:        device for which the statistics are requested
 897 * @stat:       structure which has statistic fields
 898 *
 899 * Function reads the DMC performance counters and calculates 'busy_time'
 900 * and 'total_time'. To protect from overflow, the values are shifted right
 901 * by 10. After read out the counters are setup to count again.
 902 */
 903static int exynos5_dmc_get_status(struct device *dev,
 904                                  struct devfreq_dev_status *stat)
 905{
 906        struct exynos5_dmc *dmc = dev_get_drvdata(dev);
 907        unsigned long load, total;
 908        int ret;
 909
 910        if (dmc->in_irq_mode) {
 911                stat->current_frequency = dmc->curr_rate;
 912                stat->busy_time = dmc->load;
 913                stat->total_time = dmc->total;
 914        } else {
 915                ret = exynos5_counters_get(dmc, &load, &total);
 916                if (ret < 0)
 917                        return -EINVAL;
 918
 919                /* To protect from overflow, divide by 1024 */
 920                stat->busy_time = load >> 10;
 921                stat->total_time = total >> 10;
 922
 923                ret = exynos5_counters_set_event(dmc);
 924                if (ret < 0) {
 925                        dev_err(dev, "could not set event counter\n");
 926                        return ret;
 927                }
 928        }
 929
 930        return 0;
 931}
 932
 933/**
 934 * exynos5_dmc_get_cur_freq() - Function returns current DMC frequency
 935 * @dev:        device for which the framework checks operating frequency
 936 * @freq:       returned frequency value
 937 *
 938 * It returns the currently used frequency of the DMC. The real operating
 939 * frequency might be lower when the clock source value could not be divided
 940 * to the requested value.
 941 */
 942static int exynos5_dmc_get_cur_freq(struct device *dev, unsigned long *freq)
 943{
 944        struct exynos5_dmc *dmc = dev_get_drvdata(dev);
 945
 946        mutex_lock(&dmc->lock);
 947        *freq = dmc->curr_rate;
 948        mutex_unlock(&dmc->lock);
 949
 950        return 0;
 951}
 952
 953/**
 954 * exynos5_dmc_df_profile - Devfreq governor's profile structure
 955 *
 956 * It provides to the devfreq framework needed functions and polling period.
 957 */
 958static struct devfreq_dev_profile exynos5_dmc_df_profile = {
 959        .timer = DEVFREQ_TIMER_DELAYED,
 960        .target = exynos5_dmc_target,
 961        .get_dev_status = exynos5_dmc_get_status,
 962        .get_cur_freq = exynos5_dmc_get_cur_freq,
 963};
 964
 965/**
 966 * exynos5_dmc_align_initial_frequency() - Align initial frequency value
 967 * @dmc:        device for which the frequency is going to be set
 968 * @bootloader_init_freq:       initial frequency set by the bootloader in KHz
 969 *
 970 * The initial bootloader frequency, which is present during boot, might be
 971 * different that supported frequency values in the driver. It is possible
 972 * due to different PLL settings or used PLL as a source.
 973 * This function provides the 'initial_freq' for the devfreq framework
 974 * statistics engine which supports only registered values. Thus, some alignment
 975 * must be made.
 976 */
 977static unsigned long
 978exynos5_dmc_align_init_freq(struct exynos5_dmc *dmc,
 979                            unsigned long bootloader_init_freq)
 980{
 981        unsigned long aligned_freq;
 982        int idx;
 983
 984        idx = find_target_freq_idx(dmc, bootloader_init_freq);
 985        if (idx >= 0)
 986                aligned_freq = dmc->opp[idx].freq_hz;
 987        else
 988                aligned_freq = dmc->opp[dmc->opp_count - 1].freq_hz;
 989
 990        return aligned_freq;
 991}
 992
 993/**
 994 * create_timings_aligned() - Create register values and align with standard
 995 * @dmc:        device for which the frequency is going to be set
 996 * @idx:        speed bin in the OPP table
 997 * @clk_period_ps:      the period of the clock, known as tCK
 998 *
 999 * The function calculates timings and creates a register value ready for
1000 * a frequency transition. The register contains a few timings. They are
1001 * shifted by a known offset. The timing value is calculated based on memory
1002 * specyfication: minimal time required and minimal cycles required.
1003 */
1004static int create_timings_aligned(struct exynos5_dmc *dmc, u32 *reg_timing_row,
1005                                  u32 *reg_timing_data, u32 *reg_timing_power,
1006                                  u32 clk_period_ps)
1007{
1008        u32 val;
1009        const struct timing_reg *reg;
1010
1011        if (clk_period_ps == 0)
1012                return -EINVAL;
1013
1014        *reg_timing_row = 0;
1015        *reg_timing_data = 0;
1016        *reg_timing_power = 0;
1017
1018        val = dmc->timings->tRFC / clk_period_ps;
1019        val += dmc->timings->tRFC % clk_period_ps ? 1 : 0;
1020        val = max(val, dmc->min_tck->tRFC);
1021        reg = &timing_row[0];
1022        *reg_timing_row |= TIMING_VAL2REG(reg, val);
1023
1024        val = dmc->timings->tRRD / clk_period_ps;
1025        val += dmc->timings->tRRD % clk_period_ps ? 1 : 0;
1026        val = max(val, dmc->min_tck->tRRD);
1027        reg = &timing_row[1];
1028        *reg_timing_row |= TIMING_VAL2REG(reg, val);
1029
1030        val = dmc->timings->tRPab / clk_period_ps;
1031        val += dmc->timings->tRPab % clk_period_ps ? 1 : 0;
1032        val = max(val, dmc->min_tck->tRPab);
1033        reg = &timing_row[2];
1034        *reg_timing_row |= TIMING_VAL2REG(reg, val);
1035
1036        val = dmc->timings->tRCD / clk_period_ps;
1037        val += dmc->timings->tRCD % clk_period_ps ? 1 : 0;
1038        val = max(val, dmc->min_tck->tRCD);
1039        reg = &timing_row[3];
1040        *reg_timing_row |= TIMING_VAL2REG(reg, val);
1041
1042        val = dmc->timings->tRC / clk_period_ps;
1043        val += dmc->timings->tRC % clk_period_ps ? 1 : 0;
1044        val = max(val, dmc->min_tck->tRC);
1045        reg = &timing_row[4];
1046        *reg_timing_row |= TIMING_VAL2REG(reg, val);
1047
1048        val = dmc->timings->tRAS / clk_period_ps;
1049        val += dmc->timings->tRAS % clk_period_ps ? 1 : 0;
1050        val = max(val, dmc->min_tck->tRAS);
1051        reg = &timing_row[5];
1052        *reg_timing_row |= TIMING_VAL2REG(reg, val);
1053
1054        /* data related timings */
1055        val = dmc->timings->tWTR / clk_period_ps;
1056        val += dmc->timings->tWTR % clk_period_ps ? 1 : 0;
1057        val = max(val, dmc->min_tck->tWTR);
1058        reg = &timing_data[0];
1059        *reg_timing_data |= TIMING_VAL2REG(reg, val);
1060
1061        val = dmc->timings->tWR / clk_period_ps;
1062        val += dmc->timings->tWR % clk_period_ps ? 1 : 0;
1063        val = max(val, dmc->min_tck->tWR);
1064        reg = &timing_data[1];
1065        *reg_timing_data |= TIMING_VAL2REG(reg, val);
1066
1067        val = dmc->timings->tRTP / clk_period_ps;
1068        val += dmc->timings->tRTP % clk_period_ps ? 1 : 0;
1069        val = max(val, dmc->min_tck->tRTP);
1070        reg = &timing_data[2];
1071        *reg_timing_data |= TIMING_VAL2REG(reg, val);
1072
1073        val = dmc->timings->tW2W_C2C / clk_period_ps;
1074        val += dmc->timings->tW2W_C2C % clk_period_ps ? 1 : 0;
1075        val = max(val, dmc->min_tck->tW2W_C2C);
1076        reg = &timing_data[3];
1077        *reg_timing_data |= TIMING_VAL2REG(reg, val);
1078
1079        val = dmc->timings->tR2R_C2C / clk_period_ps;
1080        val += dmc->timings->tR2R_C2C % clk_period_ps ? 1 : 0;
1081        val = max(val, dmc->min_tck->tR2R_C2C);
1082        reg = &timing_data[4];
1083        *reg_timing_data |= TIMING_VAL2REG(reg, val);
1084
1085        val = dmc->timings->tWL / clk_period_ps;
1086        val += dmc->timings->tWL % clk_period_ps ? 1 : 0;
1087        val = max(val, dmc->min_tck->tWL);
1088        reg = &timing_data[5];
1089        *reg_timing_data |= TIMING_VAL2REG(reg, val);
1090
1091        val = dmc->timings->tDQSCK / clk_period_ps;
1092        val += dmc->timings->tDQSCK % clk_period_ps ? 1 : 0;
1093        val = max(val, dmc->min_tck->tDQSCK);
1094        reg = &timing_data[6];
1095        *reg_timing_data |= TIMING_VAL2REG(reg, val);
1096
1097        val = dmc->timings->tRL / clk_period_ps;
1098        val += dmc->timings->tRL % clk_period_ps ? 1 : 0;
1099        val = max(val, dmc->min_tck->tRL);
1100        reg = &timing_data[7];
1101        *reg_timing_data |= TIMING_VAL2REG(reg, val);
1102
1103        /* power related timings */
1104        val = dmc->timings->tFAW / clk_period_ps;
1105        val += dmc->timings->tFAW % clk_period_ps ? 1 : 0;
1106        val = max(val, dmc->min_tck->tFAW);
1107        reg = &timing_power[0];
1108        *reg_timing_power |= TIMING_VAL2REG(reg, val);
1109
1110        val = dmc->timings->tXSR / clk_period_ps;
1111        val += dmc->timings->tXSR % clk_period_ps ? 1 : 0;
1112        val = max(val, dmc->min_tck->tXSR);
1113        reg = &timing_power[1];
1114        *reg_timing_power |= TIMING_VAL2REG(reg, val);
1115
1116        val = dmc->timings->tXP / clk_period_ps;
1117        val += dmc->timings->tXP % clk_period_ps ? 1 : 0;
1118        val = max(val, dmc->min_tck->tXP);
1119        reg = &timing_power[2];
1120        *reg_timing_power |= TIMING_VAL2REG(reg, val);
1121
1122        val = dmc->timings->tCKE / clk_period_ps;
1123        val += dmc->timings->tCKE % clk_period_ps ? 1 : 0;
1124        val = max(val, dmc->min_tck->tCKE);
1125        reg = &timing_power[3];
1126        *reg_timing_power |= TIMING_VAL2REG(reg, val);
1127
1128        val = dmc->timings->tMRD / clk_period_ps;
1129        val += dmc->timings->tMRD % clk_period_ps ? 1 : 0;
1130        val = max(val, dmc->min_tck->tMRD);
1131        reg = &timing_power[4];
1132        *reg_timing_power |= TIMING_VAL2REG(reg, val);
1133
1134        return 0;
1135}
1136
1137/**
1138 * of_get_dram_timings() - helper function for parsing DT settings for DRAM
1139 * @dmc:        device for which the frequency is going to be set
1140 *
1141 * The function parses DT entries with DRAM information.
1142 */
1143static int of_get_dram_timings(struct exynos5_dmc *dmc)
1144{
1145        int ret = 0;
1146        int idx;
1147        struct device_node *np_ddr;
1148        u32 freq_mhz, clk_period_ps;
1149
1150        np_ddr = of_parse_phandle(dmc->dev->of_node, "device-handle", 0);
1151        if (!np_ddr) {
1152                dev_warn(dmc->dev, "could not find 'device-handle' in DT\n");
1153                return -EINVAL;
1154        }
1155
1156        dmc->timing_row = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
1157                                             sizeof(u32), GFP_KERNEL);
1158        if (!dmc->timing_row)
1159                return -ENOMEM;
1160
1161        dmc->timing_data = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
1162                                              sizeof(u32), GFP_KERNEL);
1163        if (!dmc->timing_data)
1164                return -ENOMEM;
1165
1166        dmc->timing_power = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
1167                                               sizeof(u32), GFP_KERNEL);
1168        if (!dmc->timing_power)
1169                return -ENOMEM;
1170
1171        dmc->timings = of_lpddr3_get_ddr_timings(np_ddr, dmc->dev,
1172                                                 DDR_TYPE_LPDDR3,
1173                                                 &dmc->timings_arr_size);
1174        if (!dmc->timings) {
1175                of_node_put(np_ddr);
1176                dev_warn(dmc->dev, "could not get timings from DT\n");
1177                return -EINVAL;
1178        }
1179
1180        dmc->min_tck = of_lpddr3_get_min_tck(np_ddr, dmc->dev);
1181        if (!dmc->min_tck) {
1182                of_node_put(np_ddr);
1183                dev_warn(dmc->dev, "could not get tck from DT\n");
1184                return -EINVAL;
1185        }
1186
1187        /* Sorted array of OPPs with frequency ascending */
1188        for (idx = 0; idx < dmc->opp_count; idx++) {
1189                freq_mhz = dmc->opp[idx].freq_hz / 1000000;
1190                clk_period_ps = 1000000 / freq_mhz;
1191
1192                ret = create_timings_aligned(dmc, &dmc->timing_row[idx],
1193                                             &dmc->timing_data[idx],
1194                                             &dmc->timing_power[idx],
1195                                             clk_period_ps);
1196        }
1197
1198        of_node_put(np_ddr);
1199
1200        /* Take the highest frequency's timings as 'bypass' */
1201        dmc->bypass_timing_row = dmc->timing_row[idx - 1];
1202        dmc->bypass_timing_data = dmc->timing_data[idx - 1];
1203        dmc->bypass_timing_power = dmc->timing_power[idx - 1];
1204
1205        return ret;
1206}
1207
1208/**
1209 * exynos5_dmc_init_clks() - Initialize clocks needed for DMC operation.
1210 * @dmc:        DMC structure containing needed fields
1211 *
1212 * Get the needed clocks defined in DT device, enable and set the right parents.
1213 * Read current frequency and initialize the initial rate for governor.
1214 */
1215static int exynos5_dmc_init_clks(struct exynos5_dmc *dmc)
1216{
1217        int ret;
1218        unsigned long target_volt = 0;
1219        unsigned long target_rate = 0;
1220        unsigned int tmp;
1221
1222        dmc->fout_spll = devm_clk_get(dmc->dev, "fout_spll");
1223        if (IS_ERR(dmc->fout_spll))
1224                return PTR_ERR(dmc->fout_spll);
1225
1226        dmc->fout_bpll = devm_clk_get(dmc->dev, "fout_bpll");
1227        if (IS_ERR(dmc->fout_bpll))
1228                return PTR_ERR(dmc->fout_bpll);
1229
1230        dmc->mout_mclk_cdrex = devm_clk_get(dmc->dev, "mout_mclk_cdrex");
1231        if (IS_ERR(dmc->mout_mclk_cdrex))
1232                return PTR_ERR(dmc->mout_mclk_cdrex);
1233
1234        dmc->mout_bpll = devm_clk_get(dmc->dev, "mout_bpll");
1235        if (IS_ERR(dmc->mout_bpll))
1236                return PTR_ERR(dmc->mout_bpll);
1237
1238        dmc->mout_mx_mspll_ccore = devm_clk_get(dmc->dev,
1239                                                "mout_mx_mspll_ccore");
1240        if (IS_ERR(dmc->mout_mx_mspll_ccore))
1241                return PTR_ERR(dmc->mout_mx_mspll_ccore);
1242
1243        dmc->mout_spll = devm_clk_get(dmc->dev, "ff_dout_spll2");
1244        if (IS_ERR(dmc->mout_spll)) {
1245                dmc->mout_spll = devm_clk_get(dmc->dev, "mout_sclk_spll");
1246                if (IS_ERR(dmc->mout_spll))
1247                        return PTR_ERR(dmc->mout_spll);
1248        }
1249
1250        /*
1251         * Convert frequency to KHz values and set it for the governor.
1252         */
1253        dmc->curr_rate = clk_get_rate(dmc->mout_mclk_cdrex);
1254        dmc->curr_rate = exynos5_dmc_align_init_freq(dmc, dmc->curr_rate);
1255        exynos5_dmc_df_profile.initial_freq = dmc->curr_rate;
1256
1257        ret = exynos5_dmc_get_volt_freq(dmc, &dmc->curr_rate, &target_rate,
1258                                        &target_volt, 0);
1259        if (ret)
1260                return ret;
1261
1262        dmc->curr_volt = target_volt;
1263
1264        clk_set_parent(dmc->mout_mx_mspll_ccore, dmc->mout_spll);
1265
1266        dmc->bypass_rate = clk_get_rate(dmc->mout_mx_mspll_ccore);
1267
1268        clk_prepare_enable(dmc->fout_bpll);
1269        clk_prepare_enable(dmc->mout_bpll);
1270
1271        /*
1272         * Some bootloaders do not set clock routes correctly.
1273         * Stop one path in clocks to PHY.
1274         */
1275        regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CLKM_SRC, &tmp);
1276        tmp &= ~(BIT(1) | BIT(0));
1277        regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CLKM_SRC, tmp);
1278
1279        return 0;
1280}
1281
1282/**
1283 * exynos5_performance_counters_init() - Initializes performance DMC's counters
1284 * @dmc:        DMC for which it does the setup
1285 *
1286 * Initialization of performance counters in DMC for estimating usage.
1287 * The counter's values are used for calculation of a memory bandwidth and based
1288 * on that the governor changes the frequency.
1289 * The counters are not used when the governor is GOVERNOR_USERSPACE.
1290 */
1291static int exynos5_performance_counters_init(struct exynos5_dmc *dmc)
1292{
1293        int counters_size;
1294        int ret, i;
1295
1296        dmc->num_counters = devfreq_event_get_edev_count(dmc->dev);
1297        if (dmc->num_counters < 0) {
1298                dev_err(dmc->dev, "could not get devfreq-event counters\n");
1299                return dmc->num_counters;
1300        }
1301
1302        counters_size = sizeof(struct devfreq_event_dev) * dmc->num_counters;
1303        dmc->counter = devm_kzalloc(dmc->dev, counters_size, GFP_KERNEL);
1304        if (!dmc->counter)
1305                return -ENOMEM;
1306
1307        for (i = 0; i < dmc->num_counters; i++) {
1308                dmc->counter[i] =
1309                        devfreq_event_get_edev_by_phandle(dmc->dev, i);
1310                if (IS_ERR_OR_NULL(dmc->counter[i]))
1311                        return -EPROBE_DEFER;
1312        }
1313
1314        ret = exynos5_counters_enable_edev(dmc);
1315        if (ret < 0) {
1316                dev_err(dmc->dev, "could not enable event counter\n");
1317                return ret;
1318        }
1319
1320        ret = exynos5_counters_set_event(dmc);
1321        if (ret < 0) {
1322                exynos5_counters_disable_edev(dmc);
1323                dev_err(dmc->dev, "could not set event counter\n");
1324                return ret;
1325        }
1326
1327        return 0;
1328}
1329
1330/**
1331 * exynos5_dmc_set_pause_on_switching() - Controls a pause feature in DMC
1332 * @dmc:        device which is used for changing this feature
1333 * @set:        a boolean state passing enable/disable request
1334 *
1335 * There is a need of pausing DREX DMC when divider or MUX in clock tree
1336 * changes its configuration. In such situation access to the memory is blocked
1337 * in DMC automatically. This feature is used when clock frequency change
1338 * request appears and touches clock tree.
1339 */
1340static inline int exynos5_dmc_set_pause_on_switching(struct exynos5_dmc *dmc)
1341{
1342        unsigned int val;
1343        int ret;
1344
1345        ret = regmap_read(dmc->clk_regmap, CDREX_PAUSE, &val);
1346        if (ret)
1347                return ret;
1348
1349        val |= 1UL;
1350        regmap_write(dmc->clk_regmap, CDREX_PAUSE, val);
1351
1352        return 0;
1353}
1354
1355static irqreturn_t dmc_irq_thread(int irq, void *priv)
1356{
1357        int res;
1358        struct exynos5_dmc *dmc = priv;
1359
1360        mutex_lock(&dmc->df->lock);
1361        exynos5_dmc_perf_events_check(dmc);
1362        res = update_devfreq(dmc->df);
1363        mutex_unlock(&dmc->df->lock);
1364
1365        if (res)
1366                dev_warn(dmc->dev, "devfreq failed with %d\n", res);
1367
1368        return IRQ_HANDLED;
1369}
1370
1371/**
1372 * exynos5_dmc_probe() - Probe function for the DMC driver
1373 * @pdev:       platform device for which the driver is going to be initialized
1374 *
1375 * Initialize basic components: clocks, regulators, performance counters, etc.
1376 * Read out product version and based on the information setup
1377 * internal structures for the controller (frequency and voltage) and for DRAM
1378 * memory parameters: timings for each operating frequency.
1379 * Register new devfreq device for controlling DVFS of the DMC.
1380 */
1381static int exynos5_dmc_probe(struct platform_device *pdev)
1382{
1383        int ret = 0;
1384        struct device *dev = &pdev->dev;
1385        struct device_node *np = dev->of_node;
1386        struct exynos5_dmc *dmc;
1387        int irq[2];
1388
1389        dmc = devm_kzalloc(dev, sizeof(*dmc), GFP_KERNEL);
1390        if (!dmc)
1391                return -ENOMEM;
1392
1393        mutex_init(&dmc->lock);
1394
1395        dmc->dev = dev;
1396        platform_set_drvdata(pdev, dmc);
1397
1398        dmc->base_drexi0 = devm_platform_ioremap_resource(pdev, 0);
1399        if (IS_ERR(dmc->base_drexi0))
1400                return PTR_ERR(dmc->base_drexi0);
1401
1402        dmc->base_drexi1 = devm_platform_ioremap_resource(pdev, 1);
1403        if (IS_ERR(dmc->base_drexi1))
1404                return PTR_ERR(dmc->base_drexi1);
1405
1406        dmc->clk_regmap = syscon_regmap_lookup_by_phandle(np,
1407                                                          "samsung,syscon-clk");
1408        if (IS_ERR(dmc->clk_regmap))
1409                return PTR_ERR(dmc->clk_regmap);
1410
1411        ret = exynos5_init_freq_table(dmc, &exynos5_dmc_df_profile);
1412        if (ret) {
1413                dev_warn(dev, "couldn't initialize frequency settings\n");
1414                return ret;
1415        }
1416
1417        dmc->vdd_mif = devm_regulator_get(dev, "vdd");
1418        if (IS_ERR(dmc->vdd_mif)) {
1419                ret = PTR_ERR(dmc->vdd_mif);
1420                return ret;
1421        }
1422
1423        ret = exynos5_dmc_init_clks(dmc);
1424        if (ret)
1425                return ret;
1426
1427        ret = of_get_dram_timings(dmc);
1428        if (ret) {
1429                dev_warn(dev, "couldn't initialize timings settings\n");
1430                goto remove_clocks;
1431        }
1432
1433        ret = exynos5_dmc_set_pause_on_switching(dmc);
1434        if (ret) {
1435                dev_warn(dev, "couldn't get access to PAUSE register\n");
1436                goto remove_clocks;
1437        }
1438
1439        /* There is two modes in which the driver works: polling or IRQ */
1440        irq[0] = platform_get_irq_byname(pdev, "drex_0");
1441        irq[1] = platform_get_irq_byname(pdev, "drex_1");
1442        if (irq[0] > 0 && irq[1] > 0 && irqmode) {
1443                ret = devm_request_threaded_irq(dev, irq[0], NULL,
1444                                                dmc_irq_thread, IRQF_ONESHOT,
1445                                                dev_name(dev), dmc);
1446                if (ret) {
1447                        dev_err(dev, "couldn't grab IRQ\n");
1448                        goto remove_clocks;
1449                }
1450
1451                ret = devm_request_threaded_irq(dev, irq[1], NULL,
1452                                                dmc_irq_thread, IRQF_ONESHOT,
1453                                                dev_name(dev), dmc);
1454                if (ret) {
1455                        dev_err(dev, "couldn't grab IRQ\n");
1456                        goto remove_clocks;
1457                }
1458
1459                /*
1460                 * Setup default thresholds for the devfreq governor.
1461                 * The values are chosen based on experiments.
1462                 */
1463                dmc->gov_data.upthreshold = 55;
1464                dmc->gov_data.downdifferential = 5;
1465
1466                exynos5_dmc_enable_perf_events(dmc);
1467
1468                dmc->in_irq_mode = 1;
1469        } else {
1470                ret = exynos5_performance_counters_init(dmc);
1471                if (ret) {
1472                        dev_warn(dev, "couldn't probe performance counters\n");
1473                        goto remove_clocks;
1474                }
1475
1476                /*
1477                 * Setup default thresholds for the devfreq governor.
1478                 * The values are chosen based on experiments.
1479                 */
1480                dmc->gov_data.upthreshold = 10;
1481                dmc->gov_data.downdifferential = 5;
1482
1483                exynos5_dmc_df_profile.polling_ms = 100;
1484        }
1485
1486        dmc->df = devm_devfreq_add_device(dev, &exynos5_dmc_df_profile,
1487                                          DEVFREQ_GOV_SIMPLE_ONDEMAND,
1488                                          &dmc->gov_data);
1489
1490        if (IS_ERR(dmc->df)) {
1491                ret = PTR_ERR(dmc->df);
1492                goto err_devfreq_add;
1493        }
1494
1495        if (dmc->in_irq_mode)
1496                exynos5_dmc_start_perf_events(dmc, PERF_COUNTER_START_VALUE);
1497
1498        dev_info(dev, "DMC initialized, in irq mode: %d\n", dmc->in_irq_mode);
1499
1500        return 0;
1501
1502err_devfreq_add:
1503        if (dmc->in_irq_mode)
1504                exynos5_dmc_disable_perf_events(dmc);
1505        else
1506                exynos5_counters_disable_edev(dmc);
1507remove_clocks:
1508        clk_disable_unprepare(dmc->mout_bpll);
1509        clk_disable_unprepare(dmc->fout_bpll);
1510
1511        return ret;
1512}
1513
1514/**
1515 * exynos5_dmc_remove() - Remove function for the platform device
1516 * @pdev:       platform device which is going to be removed
1517 *
1518 * The function relies on 'devm' framework function which automatically
1519 * clean the device's resources. It just calls explicitly disable function for
1520 * the performance counters.
1521 */
1522static int exynos5_dmc_remove(struct platform_device *pdev)
1523{
1524        struct exynos5_dmc *dmc = dev_get_drvdata(&pdev->dev);
1525
1526        if (dmc->in_irq_mode)
1527                exynos5_dmc_disable_perf_events(dmc);
1528        else
1529                exynos5_counters_disable_edev(dmc);
1530
1531        clk_disable_unprepare(dmc->mout_bpll);
1532        clk_disable_unprepare(dmc->fout_bpll);
1533
1534        dev_pm_opp_remove_table(dmc->dev);
1535
1536        return 0;
1537}
1538
1539static const struct of_device_id exynos5_dmc_of_match[] = {
1540        { .compatible = "samsung,exynos5422-dmc", },
1541        { },
1542};
1543MODULE_DEVICE_TABLE(of, exynos5_dmc_of_match);
1544
1545static struct platform_driver exynos5_dmc_platdrv = {
1546        .probe  = exynos5_dmc_probe,
1547        .remove = exynos5_dmc_remove,
1548        .driver = {
1549                .name   = "exynos5-dmc",
1550                .of_match_table = exynos5_dmc_of_match,
1551        },
1552};
1553module_platform_driver(exynos5_dmc_platdrv);
1554MODULE_DESCRIPTION("Driver for Exynos5422 Dynamic Memory Controller dynamic frequency and voltage change");
1555MODULE_LICENSE("GPL v2");
1556MODULE_AUTHOR("Lukasz Luba");
1557