linux/drivers/misc/habanalabs/common/device.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2
   3/*
   4 * Copyright 2016-2019 HabanaLabs, Ltd.
   5 * All Rights Reserved.
   6 */
   7
   8#define pr_fmt(fmt)                     "habanalabs: " fmt
   9
  10#include "habanalabs.h"
  11
  12#include <linux/pci.h>
  13#include <linux/sched/signal.h>
  14#include <linux/hwmon.h>
  15#include <uapi/misc/habanalabs.h>
  16
  17#define HL_PLDM_PENDING_RESET_PER_SEC   (HL_PENDING_RESET_PER_SEC * 10)
  18
  19bool hl_device_disabled_or_in_reset(struct hl_device *hdev)
  20{
  21        if ((hdev->disabled) || (atomic_read(&hdev->in_reset)))
  22                return true;
  23        else
  24                return false;
  25}
  26
  27enum hl_device_status hl_device_status(struct hl_device *hdev)
  28{
  29        enum hl_device_status status;
  30
  31        if (hdev->disabled)
  32                status = HL_DEVICE_STATUS_MALFUNCTION;
  33        else if (atomic_read(&hdev->in_reset))
  34                status = HL_DEVICE_STATUS_IN_RESET;
  35        else
  36                status = HL_DEVICE_STATUS_OPERATIONAL;
  37
  38        return status;
  39}
  40
  41static void hpriv_release(struct kref *ref)
  42{
  43        struct hl_fpriv *hpriv;
  44        struct hl_device *hdev;
  45
  46        hpriv = container_of(ref, struct hl_fpriv, refcount);
  47
  48        hdev = hpriv->hdev;
  49
  50        put_pid(hpriv->taskpid);
  51
  52        hl_debugfs_remove_file(hpriv);
  53
  54        mutex_destroy(&hpriv->restore_phase_mutex);
  55
  56        mutex_lock(&hdev->fpriv_list_lock);
  57        list_del(&hpriv->dev_node);
  58        hdev->compute_ctx = NULL;
  59        mutex_unlock(&hdev->fpriv_list_lock);
  60
  61        kfree(hpriv);
  62}
  63
  64void hl_hpriv_get(struct hl_fpriv *hpriv)
  65{
  66        kref_get(&hpriv->refcount);
  67}
  68
  69void hl_hpriv_put(struct hl_fpriv *hpriv)
  70{
  71        kref_put(&hpriv->refcount, hpriv_release);
  72}
  73
  74/*
  75 * hl_device_release - release function for habanalabs device
  76 *
  77 * @inode: pointer to inode structure
  78 * @filp: pointer to file structure
  79 *
  80 * Called when process closes an habanalabs device
  81 */
  82static int hl_device_release(struct inode *inode, struct file *filp)
  83{
  84        struct hl_fpriv *hpriv = filp->private_data;
  85
  86        hl_cb_mgr_fini(hpriv->hdev, &hpriv->cb_mgr);
  87        hl_ctx_mgr_fini(hpriv->hdev, &hpriv->ctx_mgr);
  88
  89        filp->private_data = NULL;
  90
  91        hl_hpriv_put(hpriv);
  92
  93        return 0;
  94}
  95
  96static int hl_device_release_ctrl(struct inode *inode, struct file *filp)
  97{
  98        struct hl_fpriv *hpriv = filp->private_data;
  99        struct hl_device *hdev;
 100
 101        filp->private_data = NULL;
 102
 103        hdev = hpriv->hdev;
 104
 105        mutex_lock(&hdev->fpriv_list_lock);
 106        list_del(&hpriv->dev_node);
 107        mutex_unlock(&hdev->fpriv_list_lock);
 108
 109        kfree(hpriv);
 110
 111        return 0;
 112}
 113
 114/*
 115 * hl_mmap - mmap function for habanalabs device
 116 *
 117 * @*filp: pointer to file structure
 118 * @*vma: pointer to vm_area_struct of the process
 119 *
 120 * Called when process does an mmap on habanalabs device. Call the device's mmap
 121 * function at the end of the common code.
 122 */
 123static int hl_mmap(struct file *filp, struct vm_area_struct *vma)
 124{
 125        struct hl_fpriv *hpriv = filp->private_data;
 126
 127        if ((vma->vm_pgoff & HL_MMAP_CB_MASK) == HL_MMAP_CB_MASK) {
 128                vma->vm_pgoff ^= HL_MMAP_CB_MASK;
 129                return hl_cb_mmap(hpriv, vma);
 130        }
 131
 132        return -EINVAL;
 133}
 134
 135static const struct file_operations hl_ops = {
 136        .owner = THIS_MODULE,
 137        .open = hl_device_open,
 138        .release = hl_device_release,
 139        .mmap = hl_mmap,
 140        .unlocked_ioctl = hl_ioctl,
 141        .compat_ioctl = hl_ioctl
 142};
 143
 144static const struct file_operations hl_ctrl_ops = {
 145        .owner = THIS_MODULE,
 146        .open = hl_device_open_ctrl,
 147        .release = hl_device_release_ctrl,
 148        .unlocked_ioctl = hl_ioctl_control,
 149        .compat_ioctl = hl_ioctl_control
 150};
 151
 152static void device_release_func(struct device *dev)
 153{
 154        kfree(dev);
 155}
 156
 157/*
 158 * device_init_cdev - Initialize cdev and device for habanalabs device
 159 *
 160 * @hdev: pointer to habanalabs device structure
 161 * @hclass: pointer to the class object of the device
 162 * @minor: minor number of the specific device
 163 * @fpos: file operations to install for this device
 164 * @name: name of the device as it will appear in the filesystem
 165 * @cdev: pointer to the char device object that will be initialized
 166 * @dev: pointer to the device object that will be initialized
 167 *
 168 * Initialize a cdev and a Linux device for habanalabs's device.
 169 */
 170static int device_init_cdev(struct hl_device *hdev, struct class *hclass,
 171                                int minor, const struct file_operations *fops,
 172                                char *name, struct cdev *cdev,
 173                                struct device **dev)
 174{
 175        cdev_init(cdev, fops);
 176        cdev->owner = THIS_MODULE;
 177
 178        *dev = kzalloc(sizeof(**dev), GFP_KERNEL);
 179        if (!*dev)
 180                return -ENOMEM;
 181
 182        device_initialize(*dev);
 183        (*dev)->devt = MKDEV(hdev->major, minor);
 184        (*dev)->class = hclass;
 185        (*dev)->release = device_release_func;
 186        dev_set_drvdata(*dev, hdev);
 187        dev_set_name(*dev, "%s", name);
 188
 189        return 0;
 190}
 191
 192static int device_cdev_sysfs_add(struct hl_device *hdev)
 193{
 194        int rc;
 195
 196        rc = cdev_device_add(&hdev->cdev, hdev->dev);
 197        if (rc) {
 198                dev_err(hdev->dev,
 199                        "failed to add a char device to the system\n");
 200                return rc;
 201        }
 202
 203        rc = cdev_device_add(&hdev->cdev_ctrl, hdev->dev_ctrl);
 204        if (rc) {
 205                dev_err(hdev->dev,
 206                        "failed to add a control char device to the system\n");
 207                goto delete_cdev_device;
 208        }
 209
 210        /* hl_sysfs_init() must be done after adding the device to the system */
 211        rc = hl_sysfs_init(hdev);
 212        if (rc) {
 213                dev_err(hdev->dev, "failed to initialize sysfs\n");
 214                goto delete_ctrl_cdev_device;
 215        }
 216
 217        hdev->cdev_sysfs_created = true;
 218
 219        return 0;
 220
 221delete_ctrl_cdev_device:
 222        cdev_device_del(&hdev->cdev_ctrl, hdev->dev_ctrl);
 223delete_cdev_device:
 224        cdev_device_del(&hdev->cdev, hdev->dev);
 225        return rc;
 226}
 227
 228static void device_cdev_sysfs_del(struct hl_device *hdev)
 229{
 230        /* device_release() won't be called so must free devices explicitly */
 231        if (!hdev->cdev_sysfs_created) {
 232                kfree(hdev->dev_ctrl);
 233                kfree(hdev->dev);
 234                return;
 235        }
 236
 237        hl_sysfs_fini(hdev);
 238        cdev_device_del(&hdev->cdev_ctrl, hdev->dev_ctrl);
 239        cdev_device_del(&hdev->cdev, hdev->dev);
 240}
 241
 242/*
 243 * device_early_init - do some early initialization for the habanalabs device
 244 *
 245 * @hdev: pointer to habanalabs device structure
 246 *
 247 * Install the relevant function pointers and call the early_init function,
 248 * if such a function exists
 249 */
 250static int device_early_init(struct hl_device *hdev)
 251{
 252        int i, rc;
 253        char workq_name[32];
 254
 255        switch (hdev->asic_type) {
 256        case ASIC_GOYA:
 257                goya_set_asic_funcs(hdev);
 258                strlcpy(hdev->asic_name, "GOYA", sizeof(hdev->asic_name));
 259                break;
 260        case ASIC_GAUDI:
 261                gaudi_set_asic_funcs(hdev);
 262                sprintf(hdev->asic_name, "GAUDI");
 263                break;
 264        default:
 265                dev_err(hdev->dev, "Unrecognized ASIC type %d\n",
 266                        hdev->asic_type);
 267                return -EINVAL;
 268        }
 269
 270        rc = hdev->asic_funcs->early_init(hdev);
 271        if (rc)
 272                return rc;
 273
 274        rc = hl_asid_init(hdev);
 275        if (rc)
 276                goto early_fini;
 277
 278        if (hdev->asic_prop.completion_queues_count) {
 279                hdev->cq_wq = kcalloc(hdev->asic_prop.completion_queues_count,
 280                                sizeof(*hdev->cq_wq),
 281                                GFP_ATOMIC);
 282                if (!hdev->cq_wq) {
 283                        rc = -ENOMEM;
 284                        goto asid_fini;
 285                }
 286        }
 287
 288        for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) {
 289                snprintf(workq_name, 32, "hl-free-jobs-%u", i);
 290                hdev->cq_wq[i] = create_singlethread_workqueue(workq_name);
 291                if (hdev->cq_wq[i] == NULL) {
 292                        dev_err(hdev->dev, "Failed to allocate CQ workqueue\n");
 293                        rc = -ENOMEM;
 294                        goto free_cq_wq;
 295                }
 296        }
 297
 298        hdev->eq_wq = alloc_workqueue("hl-events", WQ_UNBOUND, 0);
 299        if (hdev->eq_wq == NULL) {
 300                dev_err(hdev->dev, "Failed to allocate EQ workqueue\n");
 301                rc = -ENOMEM;
 302                goto free_cq_wq;
 303        }
 304
 305        hdev->hl_chip_info = kzalloc(sizeof(struct hwmon_chip_info),
 306                                        GFP_KERNEL);
 307        if (!hdev->hl_chip_info) {
 308                rc = -ENOMEM;
 309                goto free_eq_wq;
 310        }
 311
 312        hdev->idle_busy_ts_arr = kmalloc_array(HL_IDLE_BUSY_TS_ARR_SIZE,
 313                                        sizeof(struct hl_device_idle_busy_ts),
 314                                        (GFP_KERNEL | __GFP_ZERO));
 315        if (!hdev->idle_busy_ts_arr) {
 316                rc = -ENOMEM;
 317                goto free_chip_info;
 318        }
 319
 320        hl_cb_mgr_init(&hdev->kernel_cb_mgr);
 321
 322        mutex_init(&hdev->send_cpu_message_lock);
 323        mutex_init(&hdev->debug_lock);
 324        mutex_init(&hdev->mmu_cache_lock);
 325        INIT_LIST_HEAD(&hdev->hw_queues_mirror_list);
 326        spin_lock_init(&hdev->hw_queues_mirror_lock);
 327        INIT_LIST_HEAD(&hdev->fpriv_list);
 328        mutex_init(&hdev->fpriv_list_lock);
 329        atomic_set(&hdev->in_reset, 0);
 330
 331        return 0;
 332
 333free_chip_info:
 334        kfree(hdev->hl_chip_info);
 335free_eq_wq:
 336        destroy_workqueue(hdev->eq_wq);
 337free_cq_wq:
 338        for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
 339                if (hdev->cq_wq[i])
 340                        destroy_workqueue(hdev->cq_wq[i]);
 341        kfree(hdev->cq_wq);
 342asid_fini:
 343        hl_asid_fini(hdev);
 344early_fini:
 345        if (hdev->asic_funcs->early_fini)
 346                hdev->asic_funcs->early_fini(hdev);
 347
 348        return rc;
 349}
 350
 351/*
 352 * device_early_fini - finalize all that was done in device_early_init
 353 *
 354 * @hdev: pointer to habanalabs device structure
 355 *
 356 */
 357static void device_early_fini(struct hl_device *hdev)
 358{
 359        int i;
 360
 361        mutex_destroy(&hdev->mmu_cache_lock);
 362        mutex_destroy(&hdev->debug_lock);
 363        mutex_destroy(&hdev->send_cpu_message_lock);
 364
 365        mutex_destroy(&hdev->fpriv_list_lock);
 366
 367        hl_cb_mgr_fini(hdev, &hdev->kernel_cb_mgr);
 368
 369        kfree(hdev->idle_busy_ts_arr);
 370        kfree(hdev->hl_chip_info);
 371
 372        destroy_workqueue(hdev->eq_wq);
 373
 374        for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
 375                destroy_workqueue(hdev->cq_wq[i]);
 376        kfree(hdev->cq_wq);
 377
 378        hl_asid_fini(hdev);
 379
 380        if (hdev->asic_funcs->early_fini)
 381                hdev->asic_funcs->early_fini(hdev);
 382}
 383
 384static void set_freq_to_low_job(struct work_struct *work)
 385{
 386        struct hl_device *hdev = container_of(work, struct hl_device,
 387                                                work_freq.work);
 388
 389        mutex_lock(&hdev->fpriv_list_lock);
 390
 391        if (!hdev->compute_ctx)
 392                hl_device_set_frequency(hdev, PLL_LOW);
 393
 394        mutex_unlock(&hdev->fpriv_list_lock);
 395
 396        schedule_delayed_work(&hdev->work_freq,
 397                        usecs_to_jiffies(HL_PLL_LOW_JOB_FREQ_USEC));
 398}
 399
 400static void hl_device_heartbeat(struct work_struct *work)
 401{
 402        struct hl_device *hdev = container_of(work, struct hl_device,
 403                                                work_heartbeat.work);
 404
 405        if (hl_device_disabled_or_in_reset(hdev))
 406                goto reschedule;
 407
 408        if (!hdev->asic_funcs->send_heartbeat(hdev))
 409                goto reschedule;
 410
 411        dev_err(hdev->dev, "Device heartbeat failed!\n");
 412        hl_device_reset(hdev, true, false);
 413
 414        return;
 415
 416reschedule:
 417        schedule_delayed_work(&hdev->work_heartbeat,
 418                        usecs_to_jiffies(HL_HEARTBEAT_PER_USEC));
 419}
 420
 421/*
 422 * device_late_init - do late stuff initialization for the habanalabs device
 423 *
 424 * @hdev: pointer to habanalabs device structure
 425 *
 426 * Do stuff that either needs the device H/W queues to be active or needs
 427 * to happen after all the rest of the initialization is finished
 428 */
 429static int device_late_init(struct hl_device *hdev)
 430{
 431        int rc;
 432
 433        if (hdev->asic_funcs->late_init) {
 434                rc = hdev->asic_funcs->late_init(hdev);
 435                if (rc) {
 436                        dev_err(hdev->dev,
 437                                "failed late initialization for the H/W\n");
 438                        return rc;
 439                }
 440        }
 441
 442        hdev->high_pll = hdev->asic_prop.high_pll;
 443
 444        /* force setting to low frequency */
 445        hdev->curr_pll_profile = PLL_LOW;
 446
 447        if (hdev->pm_mng_profile == PM_AUTO)
 448                hdev->asic_funcs->set_pll_profile(hdev, PLL_LOW);
 449        else
 450                hdev->asic_funcs->set_pll_profile(hdev, PLL_LAST);
 451
 452        INIT_DELAYED_WORK(&hdev->work_freq, set_freq_to_low_job);
 453        schedule_delayed_work(&hdev->work_freq,
 454        usecs_to_jiffies(HL_PLL_LOW_JOB_FREQ_USEC));
 455
 456        if (hdev->heartbeat) {
 457                INIT_DELAYED_WORK(&hdev->work_heartbeat, hl_device_heartbeat);
 458                schedule_delayed_work(&hdev->work_heartbeat,
 459                                usecs_to_jiffies(HL_HEARTBEAT_PER_USEC));
 460        }
 461
 462        hdev->late_init_done = true;
 463
 464        return 0;
 465}
 466
 467/*
 468 * device_late_fini - finalize all that was done in device_late_init
 469 *
 470 * @hdev: pointer to habanalabs device structure
 471 *
 472 */
 473static void device_late_fini(struct hl_device *hdev)
 474{
 475        if (!hdev->late_init_done)
 476                return;
 477
 478        cancel_delayed_work_sync(&hdev->work_freq);
 479        if (hdev->heartbeat)
 480                cancel_delayed_work_sync(&hdev->work_heartbeat);
 481
 482        if (hdev->asic_funcs->late_fini)
 483                hdev->asic_funcs->late_fini(hdev);
 484
 485        hdev->late_init_done = false;
 486}
 487
 488uint32_t hl_device_utilization(struct hl_device *hdev, uint32_t period_ms)
 489{
 490        struct hl_device_idle_busy_ts *ts;
 491        ktime_t zero_ktime, curr = ktime_get();
 492        u32 overlap_cnt = 0, last_index = hdev->idle_busy_ts_idx;
 493        s64 period_us, last_start_us, last_end_us, last_busy_time_us,
 494                total_busy_time_us = 0, total_busy_time_ms;
 495
 496        zero_ktime = ktime_set(0, 0);
 497        period_us = period_ms * USEC_PER_MSEC;
 498        ts = &hdev->idle_busy_ts_arr[last_index];
 499
 500        /* check case that device is currently in idle */
 501        if (!ktime_compare(ts->busy_to_idle_ts, zero_ktime) &&
 502                        !ktime_compare(ts->idle_to_busy_ts, zero_ktime)) {
 503
 504                last_index--;
 505                /* Handle case idle_busy_ts_idx was 0 */
 506                if (last_index > HL_IDLE_BUSY_TS_ARR_SIZE)
 507                        last_index = HL_IDLE_BUSY_TS_ARR_SIZE - 1;
 508
 509                ts = &hdev->idle_busy_ts_arr[last_index];
 510        }
 511
 512        while (overlap_cnt < HL_IDLE_BUSY_TS_ARR_SIZE) {
 513                /* Check if we are in last sample case. i.e. if the sample
 514                 * begun before the sampling period. This could be a real
 515                 * sample or 0 so need to handle both cases
 516                 */
 517                last_start_us = ktime_to_us(
 518                                ktime_sub(curr, ts->idle_to_busy_ts));
 519
 520                if (last_start_us > period_us) {
 521
 522                        /* First check two cases:
 523                         * 1. If the device is currently busy
 524                         * 2. If the device was idle during the whole sampling
 525                         *    period
 526                         */
 527
 528                        if (!ktime_compare(ts->busy_to_idle_ts, zero_ktime)) {
 529                                /* Check if the device is currently busy */
 530                                if (ktime_compare(ts->idle_to_busy_ts,
 531                                                zero_ktime))
 532                                        return 100;
 533
 534                                /* We either didn't have any activity or we
 535                                 * reached an entry which is 0. Either way,
 536                                 * exit and return what was accumulated so far
 537                                 */
 538                                break;
 539                        }
 540
 541                        /* If sample has finished, check it is relevant */
 542                        last_end_us = ktime_to_us(
 543                                        ktime_sub(curr, ts->busy_to_idle_ts));
 544
 545                        if (last_end_us > period_us)
 546                                break;
 547
 548                        /* It is relevant so add it but with adjustment */
 549                        last_busy_time_us = ktime_to_us(
 550                                                ktime_sub(ts->busy_to_idle_ts,
 551                                                ts->idle_to_busy_ts));
 552                        total_busy_time_us += last_busy_time_us -
 553                                        (last_start_us - period_us);
 554                        break;
 555                }
 556
 557                /* Check if the sample is finished or still open */
 558                if (ktime_compare(ts->busy_to_idle_ts, zero_ktime))
 559                        last_busy_time_us = ktime_to_us(
 560                                                ktime_sub(ts->busy_to_idle_ts,
 561                                                ts->idle_to_busy_ts));
 562                else
 563                        last_busy_time_us = ktime_to_us(
 564                                        ktime_sub(curr, ts->idle_to_busy_ts));
 565
 566                total_busy_time_us += last_busy_time_us;
 567
 568                last_index--;
 569                /* Handle case idle_busy_ts_idx was 0 */
 570                if (last_index > HL_IDLE_BUSY_TS_ARR_SIZE)
 571                        last_index = HL_IDLE_BUSY_TS_ARR_SIZE - 1;
 572
 573                ts = &hdev->idle_busy_ts_arr[last_index];
 574
 575                overlap_cnt++;
 576        }
 577
 578        total_busy_time_ms = DIV_ROUND_UP_ULL(total_busy_time_us,
 579                                                USEC_PER_MSEC);
 580
 581        return DIV_ROUND_UP_ULL(total_busy_time_ms * 100, period_ms);
 582}
 583
 584/*
 585 * hl_device_set_frequency - set the frequency of the device
 586 *
 587 * @hdev: pointer to habanalabs device structure
 588 * @freq: the new frequency value
 589 *
 590 * Change the frequency if needed. This function has no protection against
 591 * concurrency, therefore it is assumed that the calling function has protected
 592 * itself against the case of calling this function from multiple threads with
 593 * different values
 594 *
 595 * Returns 0 if no change was done, otherwise returns 1
 596 */
 597int hl_device_set_frequency(struct hl_device *hdev, enum hl_pll_frequency freq)
 598{
 599        if ((hdev->pm_mng_profile == PM_MANUAL) ||
 600                        (hdev->curr_pll_profile == freq))
 601                return 0;
 602
 603        dev_dbg(hdev->dev, "Changing device frequency to %s\n",
 604                freq == PLL_HIGH ? "high" : "low");
 605
 606        hdev->asic_funcs->set_pll_profile(hdev, freq);
 607
 608        hdev->curr_pll_profile = freq;
 609
 610        return 1;
 611}
 612
 613int hl_device_set_debug_mode(struct hl_device *hdev, bool enable)
 614{
 615        int rc = 0;
 616
 617        mutex_lock(&hdev->debug_lock);
 618
 619        if (!enable) {
 620                if (!hdev->in_debug) {
 621                        dev_err(hdev->dev,
 622                                "Failed to disable debug mode because device was not in debug mode\n");
 623                        rc = -EFAULT;
 624                        goto out;
 625                }
 626
 627                if (!hdev->hard_reset_pending)
 628                        hdev->asic_funcs->halt_coresight(hdev);
 629
 630                hdev->in_debug = 0;
 631
 632                if (!hdev->hard_reset_pending)
 633                        hdev->asic_funcs->set_clock_gating(hdev);
 634
 635                goto out;
 636        }
 637
 638        if (hdev->in_debug) {
 639                dev_err(hdev->dev,
 640                        "Failed to enable debug mode because device is already in debug mode\n");
 641                rc = -EFAULT;
 642                goto out;
 643        }
 644
 645        hdev->asic_funcs->disable_clock_gating(hdev);
 646        hdev->in_debug = 1;
 647
 648out:
 649        mutex_unlock(&hdev->debug_lock);
 650
 651        return rc;
 652}
 653
 654/*
 655 * hl_device_suspend - initiate device suspend
 656 *
 657 * @hdev: pointer to habanalabs device structure
 658 *
 659 * Puts the hw in the suspend state (all asics).
 660 * Returns 0 for success or an error on failure.
 661 * Called at driver suspend.
 662 */
 663int hl_device_suspend(struct hl_device *hdev)
 664{
 665        int rc;
 666
 667        pci_save_state(hdev->pdev);
 668
 669        /* Block future CS/VM/JOB completion operations */
 670        rc = atomic_cmpxchg(&hdev->in_reset, 0, 1);
 671        if (rc) {
 672                dev_err(hdev->dev, "Can't suspend while in reset\n");
 673                return -EIO;
 674        }
 675
 676        /* This blocks all other stuff that is not blocked by in_reset */
 677        hdev->disabled = true;
 678
 679        /*
 680         * Flush anyone that is inside the critical section of enqueue
 681         * jobs to the H/W
 682         */
 683        hdev->asic_funcs->hw_queues_lock(hdev);
 684        hdev->asic_funcs->hw_queues_unlock(hdev);
 685
 686        /* Flush processes that are sending message to CPU */
 687        mutex_lock(&hdev->send_cpu_message_lock);
 688        mutex_unlock(&hdev->send_cpu_message_lock);
 689
 690        rc = hdev->asic_funcs->suspend(hdev);
 691        if (rc)
 692                dev_err(hdev->dev,
 693                        "Failed to disable PCI access of device CPU\n");
 694
 695        /* Shut down the device */
 696        pci_disable_device(hdev->pdev);
 697        pci_set_power_state(hdev->pdev, PCI_D3hot);
 698
 699        return 0;
 700}
 701
 702/*
 703 * hl_device_resume - initiate device resume
 704 *
 705 * @hdev: pointer to habanalabs device structure
 706 *
 707 * Bring the hw back to operating state (all asics).
 708 * Returns 0 for success or an error on failure.
 709 * Called at driver resume.
 710 */
 711int hl_device_resume(struct hl_device *hdev)
 712{
 713        int rc;
 714
 715        pci_set_power_state(hdev->pdev, PCI_D0);
 716        pci_restore_state(hdev->pdev);
 717        rc = pci_enable_device_mem(hdev->pdev);
 718        if (rc) {
 719                dev_err(hdev->dev,
 720                        "Failed to enable PCI device in resume\n");
 721                return rc;
 722        }
 723
 724        pci_set_master(hdev->pdev);
 725
 726        rc = hdev->asic_funcs->resume(hdev);
 727        if (rc) {
 728                dev_err(hdev->dev, "Failed to resume device after suspend\n");
 729                goto disable_device;
 730        }
 731
 732
 733        hdev->disabled = false;
 734        atomic_set(&hdev->in_reset, 0);
 735
 736        rc = hl_device_reset(hdev, true, false);
 737        if (rc) {
 738                dev_err(hdev->dev, "Failed to reset device during resume\n");
 739                goto disable_device;
 740        }
 741
 742        return 0;
 743
 744disable_device:
 745        pci_clear_master(hdev->pdev);
 746        pci_disable_device(hdev->pdev);
 747
 748        return rc;
 749}
 750
 751static int device_kill_open_processes(struct hl_device *hdev)
 752{
 753        u16 pending_total, pending_cnt;
 754        struct hl_fpriv *hpriv;
 755        struct task_struct *task = NULL;
 756
 757        if (hdev->pldm)
 758                pending_total = HL_PLDM_PENDING_RESET_PER_SEC;
 759        else
 760                pending_total = HL_PENDING_RESET_PER_SEC;
 761
 762        /* Giving time for user to close FD, and for processes that are inside
 763         * hl_device_open to finish
 764         */
 765        if (!list_empty(&hdev->fpriv_list))
 766                ssleep(1);
 767
 768        mutex_lock(&hdev->fpriv_list_lock);
 769
 770        /* This section must be protected because we are dereferencing
 771         * pointers that are freed if the process exits
 772         */
 773        list_for_each_entry(hpriv, &hdev->fpriv_list, dev_node) {
 774                task = get_pid_task(hpriv->taskpid, PIDTYPE_PID);
 775                if (task) {
 776                        dev_info(hdev->dev, "Killing user process pid=%d\n",
 777                                task_pid_nr(task));
 778                        send_sig(SIGKILL, task, 1);
 779                        usleep_range(1000, 10000);
 780
 781                        put_task_struct(task);
 782                }
 783        }
 784
 785        mutex_unlock(&hdev->fpriv_list_lock);
 786
 787        /* We killed the open users, but because the driver cleans up after the
 788         * user contexts are closed (e.g. mmu mappings), we need to wait again
 789         * to make sure the cleaning phase is finished before continuing with
 790         * the reset
 791         */
 792
 793        pending_cnt = pending_total;
 794
 795        while ((!list_empty(&hdev->fpriv_list)) && (pending_cnt)) {
 796                dev_info(hdev->dev,
 797                        "Waiting for all unmap operations to finish before hard reset\n");
 798
 799                pending_cnt--;
 800
 801                ssleep(1);
 802        }
 803
 804        return list_empty(&hdev->fpriv_list) ? 0 : -EBUSY;
 805}
 806
 807static void device_hard_reset_pending(struct work_struct *work)
 808{
 809        struct hl_device_reset_work *device_reset_work =
 810                container_of(work, struct hl_device_reset_work, reset_work);
 811        struct hl_device *hdev = device_reset_work->hdev;
 812
 813        hl_device_reset(hdev, true, true);
 814
 815        kfree(device_reset_work);
 816}
 817
 818/*
 819 * hl_device_reset - reset the device
 820 *
 821 * @hdev: pointer to habanalabs device structure
 822 * @hard_reset: should we do hard reset to all engines or just reset the
 823 *              compute/dma engines
 824 * @from_hard_reset_thread: is the caller the hard-reset thread
 825 *
 826 * Block future CS and wait for pending CS to be enqueued
 827 * Call ASIC H/W fini
 828 * Flush all completions
 829 * Re-initialize all internal data structures
 830 * Call ASIC H/W init, late_init
 831 * Test queues
 832 * Enable device
 833 *
 834 * Returns 0 for success or an error on failure.
 835 */
 836int hl_device_reset(struct hl_device *hdev, bool hard_reset,
 837                        bool from_hard_reset_thread)
 838{
 839        int i, rc;
 840
 841        if (!hdev->init_done) {
 842                dev_err(hdev->dev,
 843                        "Can't reset before initialization is done\n");
 844                return 0;
 845        }
 846
 847        if ((!hard_reset) && (!hdev->supports_soft_reset)) {
 848                dev_dbg(hdev->dev, "Doing hard-reset instead of soft-reset\n");
 849                hard_reset = true;
 850        }
 851
 852        /*
 853         * Prevent concurrency in this function - only one reset should be
 854         * done at any given time. Only need to perform this if we didn't
 855         * get from the dedicated hard reset thread
 856         */
 857        if (!from_hard_reset_thread) {
 858                /* Block future CS/VM/JOB completion operations */
 859                rc = atomic_cmpxchg(&hdev->in_reset, 0, 1);
 860                if (rc)
 861                        return 0;
 862
 863                if (hard_reset) {
 864                        /* Disable PCI access from device F/W so he won't send
 865                         * us additional interrupts. We disable MSI/MSI-X at
 866                         * the halt_engines function and we can't have the F/W
 867                         * sending us interrupts after that. We need to disable
 868                         * the access here because if the device is marked
 869                         * disable, the message won't be send. Also, in case
 870                         * of heartbeat, the device CPU is marked as disable
 871                         * so this message won't be sent
 872                         */
 873                        if (hl_fw_send_pci_access_msg(hdev,
 874                                        ARMCP_PACKET_DISABLE_PCI_ACCESS))
 875                                dev_warn(hdev->dev,
 876                                        "Failed to disable PCI access by F/W\n");
 877                }
 878
 879                /* This also blocks future CS/VM/JOB completion operations */
 880                hdev->disabled = true;
 881
 882                /* Flush anyone that is inside the critical section of enqueue
 883                 * jobs to the H/W
 884                 */
 885                hdev->asic_funcs->hw_queues_lock(hdev);
 886                hdev->asic_funcs->hw_queues_unlock(hdev);
 887
 888                /* Flush anyone that is inside device open */
 889                mutex_lock(&hdev->fpriv_list_lock);
 890                mutex_unlock(&hdev->fpriv_list_lock);
 891
 892                dev_err(hdev->dev, "Going to RESET device!\n");
 893        }
 894
 895again:
 896        if ((hard_reset) && (!from_hard_reset_thread)) {
 897                struct hl_device_reset_work *device_reset_work;
 898
 899                hdev->hard_reset_pending = true;
 900
 901                device_reset_work = kzalloc(sizeof(*device_reset_work),
 902                                                GFP_ATOMIC);
 903                if (!device_reset_work) {
 904                        rc = -ENOMEM;
 905                        goto out_err;
 906                }
 907
 908                /*
 909                 * Because the reset function can't run from interrupt or
 910                 * from heartbeat work, we need to call the reset function
 911                 * from a dedicated work
 912                 */
 913                INIT_WORK(&device_reset_work->reset_work,
 914                                device_hard_reset_pending);
 915                device_reset_work->hdev = hdev;
 916                schedule_work(&device_reset_work->reset_work);
 917
 918                return 0;
 919        }
 920
 921        if (hard_reset) {
 922                device_late_fini(hdev);
 923
 924                /*
 925                 * Now that the heartbeat thread is closed, flush processes
 926                 * which are sending messages to CPU
 927                 */
 928                mutex_lock(&hdev->send_cpu_message_lock);
 929                mutex_unlock(&hdev->send_cpu_message_lock);
 930        }
 931
 932        /*
 933         * Halt the engines and disable interrupts so we won't get any more
 934         * completions from H/W and we won't have any accesses from the
 935         * H/W to the host machine
 936         */
 937        hdev->asic_funcs->halt_engines(hdev, hard_reset);
 938
 939        /* Go over all the queues, release all CS and their jobs */
 940        hl_cs_rollback_all(hdev);
 941
 942        if (hard_reset) {
 943                /* Kill processes here after CS rollback. This is because the
 944                 * process can't really exit until all its CSs are done, which
 945                 * is what we do in cs rollback
 946                 */
 947                rc = device_kill_open_processes(hdev);
 948                if (rc) {
 949                        dev_crit(hdev->dev,
 950                                "Failed to kill all open processes, stopping hard reset\n");
 951                        goto out_err;
 952                }
 953
 954                /* Flush the Event queue workers to make sure no other thread is
 955                 * reading or writing to registers during the reset
 956                 */
 957                flush_workqueue(hdev->eq_wq);
 958        }
 959
 960        /* Release kernel context */
 961        if ((hard_reset) && (hl_ctx_put(hdev->kernel_ctx) == 1))
 962                hdev->kernel_ctx = NULL;
 963
 964        /* Reset the H/W. It will be in idle state after this returns */
 965        hdev->asic_funcs->hw_fini(hdev, hard_reset);
 966
 967        if (hard_reset) {
 968                hl_vm_fini(hdev);
 969                hl_mmu_fini(hdev);
 970                hl_eq_reset(hdev, &hdev->event_queue);
 971        }
 972
 973        /* Re-initialize PI,CI to 0 in all queues (hw queue, cq) */
 974        hl_hw_queue_reset(hdev, hard_reset);
 975        for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
 976                hl_cq_reset(hdev, &hdev->completion_queue[i]);
 977
 978        hdev->idle_busy_ts_idx = 0;
 979        hdev->idle_busy_ts_arr[0].busy_to_idle_ts = ktime_set(0, 0);
 980        hdev->idle_busy_ts_arr[0].idle_to_busy_ts = ktime_set(0, 0);
 981
 982        if (hdev->cs_active_cnt)
 983                dev_crit(hdev->dev, "CS active cnt %d is not 0 during reset\n",
 984                        hdev->cs_active_cnt);
 985
 986        mutex_lock(&hdev->fpriv_list_lock);
 987
 988        /* Make sure the context switch phase will run again */
 989        if (hdev->compute_ctx) {
 990                atomic_set(&hdev->compute_ctx->thread_ctx_switch_token, 1);
 991                hdev->compute_ctx->thread_ctx_switch_wait_token = 0;
 992        }
 993
 994        mutex_unlock(&hdev->fpriv_list_lock);
 995
 996        /* Finished tear-down, starting to re-initialize */
 997
 998        if (hard_reset) {
 999                hdev->device_cpu_disabled = false;
1000                hdev->hard_reset_pending = false;
1001
1002                if (hdev->kernel_ctx) {
1003                        dev_crit(hdev->dev,
1004                                "kernel ctx was alive during hard reset, something is terribly wrong\n");
1005                        rc = -EBUSY;
1006                        goto out_err;
1007                }
1008
1009                rc = hl_mmu_init(hdev);
1010                if (rc) {
1011                        dev_err(hdev->dev,
1012                                "Failed to initialize MMU S/W after hard reset\n");
1013                        goto out_err;
1014                }
1015
1016                /* Allocate the kernel context */
1017                hdev->kernel_ctx = kzalloc(sizeof(*hdev->kernel_ctx),
1018                                                GFP_KERNEL);
1019                if (!hdev->kernel_ctx) {
1020                        rc = -ENOMEM;
1021                        goto out_err;
1022                }
1023
1024                hdev->compute_ctx = NULL;
1025
1026                rc = hl_ctx_init(hdev, hdev->kernel_ctx, true);
1027                if (rc) {
1028                        dev_err(hdev->dev,
1029                                "failed to init kernel ctx in hard reset\n");
1030                        kfree(hdev->kernel_ctx);
1031                        hdev->kernel_ctx = NULL;
1032                        goto out_err;
1033                }
1034        }
1035
1036        /* Device is now enabled as part of the initialization requires
1037         * communication with the device firmware to get information that
1038         * is required for the initialization itself
1039         */
1040        hdev->disabled = false;
1041
1042        rc = hdev->asic_funcs->hw_init(hdev);
1043        if (rc) {
1044                dev_err(hdev->dev,
1045                        "failed to initialize the H/W after reset\n");
1046                goto out_err;
1047        }
1048
1049        /* Check that the communication with the device is working */
1050        rc = hdev->asic_funcs->test_queues(hdev);
1051        if (rc) {
1052                dev_err(hdev->dev,
1053                        "Failed to detect if device is alive after reset\n");
1054                goto out_err;
1055        }
1056
1057        if (hard_reset) {
1058                rc = device_late_init(hdev);
1059                if (rc) {
1060                        dev_err(hdev->dev,
1061                                "Failed late init after hard reset\n");
1062                        goto out_err;
1063                }
1064
1065                rc = hl_vm_init(hdev);
1066                if (rc) {
1067                        dev_err(hdev->dev,
1068                                "Failed to init memory module after hard reset\n");
1069                        goto out_err;
1070                }
1071
1072                hl_set_max_power(hdev);
1073        } else {
1074                rc = hdev->asic_funcs->soft_reset_late_init(hdev);
1075                if (rc) {
1076                        dev_err(hdev->dev,
1077                                "Failed late init after soft reset\n");
1078                        goto out_err;
1079                }
1080        }
1081
1082        atomic_set(&hdev->in_reset, 0);
1083
1084        if (hard_reset)
1085                hdev->hard_reset_cnt++;
1086        else
1087                hdev->soft_reset_cnt++;
1088
1089        dev_warn(hdev->dev, "Successfully finished resetting the device\n");
1090
1091        return 0;
1092
1093out_err:
1094        hdev->disabled = true;
1095
1096        if (hard_reset) {
1097                dev_err(hdev->dev,
1098                        "Failed to reset! Device is NOT usable\n");
1099                hdev->hard_reset_cnt++;
1100        } else {
1101                dev_err(hdev->dev,
1102                        "Failed to do soft-reset, trying hard reset\n");
1103                hdev->soft_reset_cnt++;
1104                hard_reset = true;
1105                goto again;
1106        }
1107
1108        atomic_set(&hdev->in_reset, 0);
1109
1110        return rc;
1111}
1112
1113/*
1114 * hl_device_init - main initialization function for habanalabs device
1115 *
1116 * @hdev: pointer to habanalabs device structure
1117 *
1118 * Allocate an id for the device, do early initialization and then call the
1119 * ASIC specific initialization functions. Finally, create the cdev and the
1120 * Linux device to expose it to the user
1121 */
1122int hl_device_init(struct hl_device *hdev, struct class *hclass)
1123{
1124        int i, rc, cq_cnt, cq_ready_cnt;
1125        char *name;
1126        bool add_cdev_sysfs_on_err = false;
1127
1128        name = kasprintf(GFP_KERNEL, "hl%d", hdev->id / 2);
1129        if (!name) {
1130                rc = -ENOMEM;
1131                goto out_disabled;
1132        }
1133
1134        /* Initialize cdev and device structures */
1135        rc = device_init_cdev(hdev, hclass, hdev->id, &hl_ops, name,
1136                                &hdev->cdev, &hdev->dev);
1137
1138        kfree(name);
1139
1140        if (rc)
1141                goto out_disabled;
1142
1143        name = kasprintf(GFP_KERNEL, "hl_controlD%d", hdev->id / 2);
1144        if (!name) {
1145                rc = -ENOMEM;
1146                goto free_dev;
1147        }
1148
1149        /* Initialize cdev and device structures for control device */
1150        rc = device_init_cdev(hdev, hclass, hdev->id_control, &hl_ctrl_ops,
1151                                name, &hdev->cdev_ctrl, &hdev->dev_ctrl);
1152
1153        kfree(name);
1154
1155        if (rc)
1156                goto free_dev;
1157
1158        /* Initialize ASIC function pointers and perform early init */
1159        rc = device_early_init(hdev);
1160        if (rc)
1161                goto free_dev_ctrl;
1162
1163        /*
1164         * Start calling ASIC initialization. First S/W then H/W and finally
1165         * late init
1166         */
1167        rc = hdev->asic_funcs->sw_init(hdev);
1168        if (rc)
1169                goto early_fini;
1170
1171        /*
1172         * Initialize the H/W queues. Must be done before hw_init, because
1173         * there the addresses of the kernel queue are being written to the
1174         * registers of the device
1175         */
1176        rc = hl_hw_queues_create(hdev);
1177        if (rc) {
1178                dev_err(hdev->dev, "failed to initialize kernel queues\n");
1179                goto sw_fini;
1180        }
1181
1182        cq_cnt = hdev->asic_prop.completion_queues_count;
1183
1184        /*
1185         * Initialize the completion queues. Must be done before hw_init,
1186         * because there the addresses of the completion queues are being
1187         * passed as arguments to request_irq
1188         */
1189        if (cq_cnt) {
1190                hdev->completion_queue = kcalloc(cq_cnt,
1191                                sizeof(*hdev->completion_queue),
1192                                GFP_KERNEL);
1193
1194                if (!hdev->completion_queue) {
1195                        dev_err(hdev->dev,
1196                                "failed to allocate completion queues\n");
1197                        rc = -ENOMEM;
1198                        goto hw_queues_destroy;
1199                }
1200        }
1201
1202        for (i = 0, cq_ready_cnt = 0 ; i < cq_cnt ; i++, cq_ready_cnt++) {
1203                rc = hl_cq_init(hdev, &hdev->completion_queue[i],
1204                                hdev->asic_funcs->get_queue_id_for_cq(hdev, i));
1205                if (rc) {
1206                        dev_err(hdev->dev,
1207                                "failed to initialize completion queue\n");
1208                        goto cq_fini;
1209                }
1210                hdev->completion_queue[i].cq_idx = i;
1211        }
1212
1213        /*
1214         * Initialize the event queue. Must be done before hw_init,
1215         * because there the address of the event queue is being
1216         * passed as argument to request_irq
1217         */
1218        rc = hl_eq_init(hdev, &hdev->event_queue);
1219        if (rc) {
1220                dev_err(hdev->dev, "failed to initialize event queue\n");
1221                goto cq_fini;
1222        }
1223
1224        /* MMU S/W must be initialized before kernel context is created */
1225        rc = hl_mmu_init(hdev);
1226        if (rc) {
1227                dev_err(hdev->dev, "Failed to initialize MMU S/W structures\n");
1228                goto eq_fini;
1229        }
1230
1231        /* Allocate the kernel context */
1232        hdev->kernel_ctx = kzalloc(sizeof(*hdev->kernel_ctx), GFP_KERNEL);
1233        if (!hdev->kernel_ctx) {
1234                rc = -ENOMEM;
1235                goto mmu_fini;
1236        }
1237
1238        hdev->compute_ctx = NULL;
1239
1240        rc = hl_ctx_init(hdev, hdev->kernel_ctx, true);
1241        if (rc) {
1242                dev_err(hdev->dev, "failed to initialize kernel context\n");
1243                kfree(hdev->kernel_ctx);
1244                goto mmu_fini;
1245        }
1246
1247        rc = hl_cb_pool_init(hdev);
1248        if (rc) {
1249                dev_err(hdev->dev, "failed to initialize CB pool\n");
1250                goto release_ctx;
1251        }
1252
1253        hl_debugfs_add_device(hdev);
1254
1255        if (hdev->asic_funcs->get_hw_state(hdev) == HL_DEVICE_HW_STATE_DIRTY) {
1256                dev_info(hdev->dev,
1257                        "H/W state is dirty, must reset before initializing\n");
1258                hdev->asic_funcs->halt_engines(hdev, true);
1259                hdev->asic_funcs->hw_fini(hdev, true);
1260        }
1261
1262        /*
1263         * From this point, in case of an error, add char devices and create
1264         * sysfs nodes as part of the error flow, to allow debugging.
1265         */
1266        add_cdev_sysfs_on_err = true;
1267
1268        /* Device is now enabled as part of the initialization requires
1269         * communication with the device firmware to get information that
1270         * is required for the initialization itself
1271         */
1272        hdev->disabled = false;
1273
1274        rc = hdev->asic_funcs->hw_init(hdev);
1275        if (rc) {
1276                dev_err(hdev->dev, "failed to initialize the H/W\n");
1277                rc = 0;
1278                goto out_disabled;
1279        }
1280
1281        /* Check that the communication with the device is working */
1282        rc = hdev->asic_funcs->test_queues(hdev);
1283        if (rc) {
1284                dev_err(hdev->dev, "Failed to detect if device is alive\n");
1285                rc = 0;
1286                goto out_disabled;
1287        }
1288
1289        rc = device_late_init(hdev);
1290        if (rc) {
1291                dev_err(hdev->dev, "Failed late initialization\n");
1292                rc = 0;
1293                goto out_disabled;
1294        }
1295
1296        dev_info(hdev->dev, "Found %s device with %lluGB DRAM\n",
1297                hdev->asic_name,
1298                hdev->asic_prop.dram_size / 1024 / 1024 / 1024);
1299
1300        rc = hl_vm_init(hdev);
1301        if (rc) {
1302                dev_err(hdev->dev, "Failed to initialize memory module\n");
1303                rc = 0;
1304                goto out_disabled;
1305        }
1306
1307        /*
1308         * Expose devices and sysfs nodes to user.
1309         * From here there is no need to add char devices and create sysfs nodes
1310         * in case of an error.
1311         */
1312        add_cdev_sysfs_on_err = false;
1313        rc = device_cdev_sysfs_add(hdev);
1314        if (rc) {
1315                dev_err(hdev->dev,
1316                        "Failed to add char devices and sysfs nodes\n");
1317                rc = 0;
1318                goto out_disabled;
1319        }
1320
1321        /* Need to call this again because the max power might change,
1322         * depending on card type for certain ASICs
1323         */
1324        hl_set_max_power(hdev);
1325
1326        /*
1327         * hl_hwmon_init() must be called after device_late_init(), because only
1328         * there we get the information from the device about which
1329         * hwmon-related sensors the device supports.
1330         * Furthermore, it must be done after adding the device to the system.
1331         */
1332        rc = hl_hwmon_init(hdev);
1333        if (rc) {
1334                dev_err(hdev->dev, "Failed to initialize hwmon\n");
1335                rc = 0;
1336                goto out_disabled;
1337        }
1338
1339        dev_notice(hdev->dev,
1340                "Successfully added device to habanalabs driver\n");
1341
1342        hdev->init_done = true;
1343
1344        return 0;
1345
1346release_ctx:
1347        if (hl_ctx_put(hdev->kernel_ctx) != 1)
1348                dev_err(hdev->dev,
1349                        "kernel ctx is still alive on initialization failure\n");
1350mmu_fini:
1351        hl_mmu_fini(hdev);
1352eq_fini:
1353        hl_eq_fini(hdev, &hdev->event_queue);
1354cq_fini:
1355        for (i = 0 ; i < cq_ready_cnt ; i++)
1356                hl_cq_fini(hdev, &hdev->completion_queue[i]);
1357        kfree(hdev->completion_queue);
1358hw_queues_destroy:
1359        hl_hw_queues_destroy(hdev);
1360sw_fini:
1361        hdev->asic_funcs->sw_fini(hdev);
1362early_fini:
1363        device_early_fini(hdev);
1364free_dev_ctrl:
1365        kfree(hdev->dev_ctrl);
1366free_dev:
1367        kfree(hdev->dev);
1368out_disabled:
1369        hdev->disabled = true;
1370        if (add_cdev_sysfs_on_err)
1371                device_cdev_sysfs_add(hdev);
1372        if (hdev->pdev)
1373                dev_err(&hdev->pdev->dev,
1374                        "Failed to initialize hl%d. Device is NOT usable !\n",
1375                        hdev->id / 2);
1376        else
1377                pr_err("Failed to initialize hl%d. Device is NOT usable !\n",
1378                        hdev->id / 2);
1379
1380        return rc;
1381}
1382
1383/*
1384 * hl_device_fini - main tear-down function for habanalabs device
1385 *
1386 * @hdev: pointer to habanalabs device structure
1387 *
1388 * Destroy the device, call ASIC fini functions and release the id
1389 */
1390void hl_device_fini(struct hl_device *hdev)
1391{
1392        int i, rc;
1393        ktime_t timeout;
1394
1395        dev_info(hdev->dev, "Removing device\n");
1396
1397        /*
1398         * This function is competing with the reset function, so try to
1399         * take the reset atomic and if we are already in middle of reset,
1400         * wait until reset function is finished. Reset function is designed
1401         * to always finish. However, in Gaudi, because of all the network
1402         * ports, the hard reset could take between 10-30 seconds
1403         */
1404
1405        timeout = ktime_add_us(ktime_get(),
1406                                HL_HARD_RESET_MAX_TIMEOUT * 1000 * 1000);
1407        rc = atomic_cmpxchg(&hdev->in_reset, 0, 1);
1408        while (rc) {
1409                usleep_range(50, 200);
1410                rc = atomic_cmpxchg(&hdev->in_reset, 0, 1);
1411                if (ktime_compare(ktime_get(), timeout) > 0) {
1412                        WARN(1, "Failed to remove device because reset function did not finish\n");
1413                        return;
1414                }
1415        }
1416
1417        /* Mark device as disabled */
1418        hdev->disabled = true;
1419
1420        /* Flush anyone that is inside the critical section of enqueue
1421         * jobs to the H/W
1422         */
1423        hdev->asic_funcs->hw_queues_lock(hdev);
1424        hdev->asic_funcs->hw_queues_unlock(hdev);
1425
1426        /* Flush anyone that is inside device open */
1427        mutex_lock(&hdev->fpriv_list_lock);
1428        mutex_unlock(&hdev->fpriv_list_lock);
1429
1430        hdev->hard_reset_pending = true;
1431
1432        hl_hwmon_fini(hdev);
1433
1434        device_late_fini(hdev);
1435
1436        hl_debugfs_remove_device(hdev);
1437
1438        /*
1439         * Halt the engines and disable interrupts so we won't get any more
1440         * completions from H/W and we won't have any accesses from the
1441         * H/W to the host machine
1442         */
1443        hdev->asic_funcs->halt_engines(hdev, true);
1444
1445        /* Go over all the queues, release all CS and their jobs */
1446        hl_cs_rollback_all(hdev);
1447
1448        /* Kill processes here after CS rollback. This is because the process
1449         * can't really exit until all its CSs are done, which is what we
1450         * do in cs rollback
1451         */
1452        rc = device_kill_open_processes(hdev);
1453        if (rc)
1454                dev_crit(hdev->dev, "Failed to kill all open processes\n");
1455
1456        hl_cb_pool_fini(hdev);
1457
1458        /* Release kernel context */
1459        if ((hdev->kernel_ctx) && (hl_ctx_put(hdev->kernel_ctx) != 1))
1460                dev_err(hdev->dev, "kernel ctx is still alive\n");
1461
1462        /* Reset the H/W. It will be in idle state after this returns */
1463        hdev->asic_funcs->hw_fini(hdev, true);
1464
1465        hl_vm_fini(hdev);
1466
1467        hl_mmu_fini(hdev);
1468
1469        hl_eq_fini(hdev, &hdev->event_queue);
1470
1471        for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
1472                hl_cq_fini(hdev, &hdev->completion_queue[i]);
1473        kfree(hdev->completion_queue);
1474
1475        hl_hw_queues_destroy(hdev);
1476
1477        /* Call ASIC S/W finalize function */
1478        hdev->asic_funcs->sw_fini(hdev);
1479
1480        device_early_fini(hdev);
1481
1482        /* Hide devices and sysfs nodes from user */
1483        device_cdev_sysfs_del(hdev);
1484
1485        pr_info("removed device successfully\n");
1486}
1487
1488/*
1489 * MMIO register access helper functions.
1490 */
1491
1492/*
1493 * hl_rreg - Read an MMIO register
1494 *
1495 * @hdev: pointer to habanalabs device structure
1496 * @reg: MMIO register offset (in bytes)
1497 *
1498 * Returns the value of the MMIO register we are asked to read
1499 *
1500 */
1501inline u32 hl_rreg(struct hl_device *hdev, u32 reg)
1502{
1503        return readl(hdev->rmmio + reg);
1504}
1505
1506/*
1507 * hl_wreg - Write to an MMIO register
1508 *
1509 * @hdev: pointer to habanalabs device structure
1510 * @reg: MMIO register offset (in bytes)
1511 * @val: 32-bit value
1512 *
1513 * Writes the 32-bit value into the MMIO register
1514 *
1515 */
1516inline void hl_wreg(struct hl_device *hdev, u32 reg, u32 val)
1517{
1518        writel(val, hdev->rmmio + reg);
1519}
1520