linux/drivers/mmc/core/mmc_test.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Copyright 2007-2008 Pierre Ossman
   4 */
   5
   6#include <linux/mmc/core.h>
   7#include <linux/mmc/card.h>
   8#include <linux/mmc/host.h>
   9#include <linux/mmc/mmc.h>
  10#include <linux/slab.h>
  11
  12#include <linux/scatterlist.h>
  13#include <linux/swap.h>         /* For nr_free_buffer_pages() */
  14#include <linux/list.h>
  15
  16#include <linux/debugfs.h>
  17#include <linux/uaccess.h>
  18#include <linux/seq_file.h>
  19#include <linux/module.h>
  20
  21#include "core.h"
  22#include "card.h"
  23#include "host.h"
  24#include "bus.h"
  25#include "mmc_ops.h"
  26
  27#define RESULT_OK               0
  28#define RESULT_FAIL             1
  29#define RESULT_UNSUP_HOST       2
  30#define RESULT_UNSUP_CARD       3
  31
  32#define BUFFER_ORDER            2
  33#define BUFFER_SIZE             (PAGE_SIZE << BUFFER_ORDER)
  34
  35#define TEST_ALIGN_END          8
  36
  37/*
  38 * Limit the test area size to the maximum MMC HC erase group size.  Note that
  39 * the maximum SD allocation unit size is just 4MiB.
  40 */
  41#define TEST_AREA_MAX_SIZE (128 * 1024 * 1024)
  42
  43/**
  44 * struct mmc_test_pages - pages allocated by 'alloc_pages()'.
  45 * @page: first page in the allocation
  46 * @order: order of the number of pages allocated
  47 */
  48struct mmc_test_pages {
  49        struct page *page;
  50        unsigned int order;
  51};
  52
  53/**
  54 * struct mmc_test_mem - allocated memory.
  55 * @arr: array of allocations
  56 * @cnt: number of allocations
  57 */
  58struct mmc_test_mem {
  59        struct mmc_test_pages *arr;
  60        unsigned int cnt;
  61};
  62
  63/**
  64 * struct mmc_test_area - information for performance tests.
  65 * @max_sz: test area size (in bytes)
  66 * @dev_addr: address on card at which to do performance tests
  67 * @max_tfr: maximum transfer size allowed by driver (in bytes)
  68 * @max_segs: maximum segments allowed by driver in scatterlist @sg
  69 * @max_seg_sz: maximum segment size allowed by driver
  70 * @blocks: number of (512 byte) blocks currently mapped by @sg
  71 * @sg_len: length of currently mapped scatterlist @sg
  72 * @mem: allocated memory
  73 * @sg: scatterlist
  74 * @sg_areq: scatterlist for non-blocking request
  75 */
  76struct mmc_test_area {
  77        unsigned long max_sz;
  78        unsigned int dev_addr;
  79        unsigned int max_tfr;
  80        unsigned int max_segs;
  81        unsigned int max_seg_sz;
  82        unsigned int blocks;
  83        unsigned int sg_len;
  84        struct mmc_test_mem *mem;
  85        struct scatterlist *sg;
  86        struct scatterlist *sg_areq;
  87};
  88
  89/**
  90 * struct mmc_test_transfer_result - transfer results for performance tests.
  91 * @link: double-linked list
  92 * @count: amount of group of sectors to check
  93 * @sectors: amount of sectors to check in one group
  94 * @ts: time values of transfer
  95 * @rate: calculated transfer rate
  96 * @iops: I/O operations per second (times 100)
  97 */
  98struct mmc_test_transfer_result {
  99        struct list_head link;
 100        unsigned int count;
 101        unsigned int sectors;
 102        struct timespec64 ts;
 103        unsigned int rate;
 104        unsigned int iops;
 105};
 106
 107/**
 108 * struct mmc_test_general_result - results for tests.
 109 * @link: double-linked list
 110 * @card: card under test
 111 * @testcase: number of test case
 112 * @result: result of test run
 113 * @tr_lst: transfer measurements if any as mmc_test_transfer_result
 114 */
 115struct mmc_test_general_result {
 116        struct list_head link;
 117        struct mmc_card *card;
 118        int testcase;
 119        int result;
 120        struct list_head tr_lst;
 121};
 122
 123/**
 124 * struct mmc_test_dbgfs_file - debugfs related file.
 125 * @link: double-linked list
 126 * @card: card under test
 127 * @file: file created under debugfs
 128 */
 129struct mmc_test_dbgfs_file {
 130        struct list_head link;
 131        struct mmc_card *card;
 132        struct dentry *file;
 133};
 134
 135/**
 136 * struct mmc_test_card - test information.
 137 * @card: card under test
 138 * @scratch: transfer buffer
 139 * @buffer: transfer buffer
 140 * @highmem: buffer for highmem tests
 141 * @area: information for performance tests
 142 * @gr: pointer to results of current testcase
 143 */
 144struct mmc_test_card {
 145        struct mmc_card *card;
 146
 147        u8              scratch[BUFFER_SIZE];
 148        u8              *buffer;
 149#ifdef CONFIG_HIGHMEM
 150        struct page     *highmem;
 151#endif
 152        struct mmc_test_area            area;
 153        struct mmc_test_general_result  *gr;
 154};
 155
 156enum mmc_test_prep_media {
 157        MMC_TEST_PREP_NONE = 0,
 158        MMC_TEST_PREP_WRITE_FULL = 1 << 0,
 159        MMC_TEST_PREP_ERASE = 1 << 1,
 160};
 161
 162struct mmc_test_multiple_rw {
 163        unsigned int *sg_len;
 164        unsigned int *bs;
 165        unsigned int len;
 166        unsigned int size;
 167        bool do_write;
 168        bool do_nonblock_req;
 169        enum mmc_test_prep_media prepare;
 170};
 171
 172/*******************************************************************/
 173/*  General helper functions                                       */
 174/*******************************************************************/
 175
 176/*
 177 * Configure correct block size in card
 178 */
 179static int mmc_test_set_blksize(struct mmc_test_card *test, unsigned size)
 180{
 181        return mmc_set_blocklen(test->card, size);
 182}
 183
 184static bool mmc_test_card_cmd23(struct mmc_card *card)
 185{
 186        return mmc_card_mmc(card) ||
 187               (mmc_card_sd(card) && card->scr.cmds & SD_SCR_CMD23_SUPPORT);
 188}
 189
 190static void mmc_test_prepare_sbc(struct mmc_test_card *test,
 191                                 struct mmc_request *mrq, unsigned int blocks)
 192{
 193        struct mmc_card *card = test->card;
 194
 195        if (!mrq->sbc || !mmc_host_cmd23(card->host) ||
 196            !mmc_test_card_cmd23(card) || !mmc_op_multi(mrq->cmd->opcode) ||
 197            (card->quirks & MMC_QUIRK_BLK_NO_CMD23)) {
 198                mrq->sbc = NULL;
 199                return;
 200        }
 201
 202        mrq->sbc->opcode = MMC_SET_BLOCK_COUNT;
 203        mrq->sbc->arg = blocks;
 204        mrq->sbc->flags = MMC_RSP_R1 | MMC_CMD_AC;
 205}
 206
 207/*
 208 * Fill in the mmc_request structure given a set of transfer parameters.
 209 */
 210static void mmc_test_prepare_mrq(struct mmc_test_card *test,
 211        struct mmc_request *mrq, struct scatterlist *sg, unsigned sg_len,
 212        unsigned dev_addr, unsigned blocks, unsigned blksz, int write)
 213{
 214        if (WARN_ON(!mrq || !mrq->cmd || !mrq->data || !mrq->stop))
 215                return;
 216
 217        if (blocks > 1) {
 218                mrq->cmd->opcode = write ?
 219                        MMC_WRITE_MULTIPLE_BLOCK : MMC_READ_MULTIPLE_BLOCK;
 220        } else {
 221                mrq->cmd->opcode = write ?
 222                        MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
 223        }
 224
 225        mrq->cmd->arg = dev_addr;
 226        if (!mmc_card_blockaddr(test->card))
 227                mrq->cmd->arg <<= 9;
 228
 229        mrq->cmd->flags = MMC_RSP_R1 | MMC_CMD_ADTC;
 230
 231        if (blocks == 1)
 232                mrq->stop = NULL;
 233        else {
 234                mrq->stop->opcode = MMC_STOP_TRANSMISSION;
 235                mrq->stop->arg = 0;
 236                mrq->stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
 237        }
 238
 239        mrq->data->blksz = blksz;
 240        mrq->data->blocks = blocks;
 241        mrq->data->flags = write ? MMC_DATA_WRITE : MMC_DATA_READ;
 242        mrq->data->sg = sg;
 243        mrq->data->sg_len = sg_len;
 244
 245        mmc_test_prepare_sbc(test, mrq, blocks);
 246
 247        mmc_set_data_timeout(mrq->data, test->card);
 248}
 249
 250static int mmc_test_busy(struct mmc_command *cmd)
 251{
 252        return !(cmd->resp[0] & R1_READY_FOR_DATA) ||
 253                (R1_CURRENT_STATE(cmd->resp[0]) == R1_STATE_PRG);
 254}
 255
 256/*
 257 * Wait for the card to finish the busy state
 258 */
 259static int mmc_test_wait_busy(struct mmc_test_card *test)
 260{
 261        int ret, busy;
 262        struct mmc_command cmd = {};
 263
 264        busy = 0;
 265        do {
 266                memset(&cmd, 0, sizeof(struct mmc_command));
 267
 268                cmd.opcode = MMC_SEND_STATUS;
 269                cmd.arg = test->card->rca << 16;
 270                cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
 271
 272                ret = mmc_wait_for_cmd(test->card->host, &cmd, 0);
 273                if (ret)
 274                        break;
 275
 276                if (!busy && mmc_test_busy(&cmd)) {
 277                        busy = 1;
 278                        if (test->card->host->caps & MMC_CAP_WAIT_WHILE_BUSY)
 279                                pr_info("%s: Warning: Host did not wait for busy state to end.\n",
 280                                        mmc_hostname(test->card->host));
 281                }
 282        } while (mmc_test_busy(&cmd));
 283
 284        return ret;
 285}
 286
 287/*
 288 * Transfer a single sector of kernel addressable data
 289 */
 290static int mmc_test_buffer_transfer(struct mmc_test_card *test,
 291        u8 *buffer, unsigned addr, unsigned blksz, int write)
 292{
 293        struct mmc_request mrq = {};
 294        struct mmc_command cmd = {};
 295        struct mmc_command stop = {};
 296        struct mmc_data data = {};
 297
 298        struct scatterlist sg;
 299
 300        mrq.cmd = &cmd;
 301        mrq.data = &data;
 302        mrq.stop = &stop;
 303
 304        sg_init_one(&sg, buffer, blksz);
 305
 306        mmc_test_prepare_mrq(test, &mrq, &sg, 1, addr, 1, blksz, write);
 307
 308        mmc_wait_for_req(test->card->host, &mrq);
 309
 310        if (cmd.error)
 311                return cmd.error;
 312        if (data.error)
 313                return data.error;
 314
 315        return mmc_test_wait_busy(test);
 316}
 317
 318static void mmc_test_free_mem(struct mmc_test_mem *mem)
 319{
 320        if (!mem)
 321                return;
 322        while (mem->cnt--)
 323                __free_pages(mem->arr[mem->cnt].page,
 324                             mem->arr[mem->cnt].order);
 325        kfree(mem->arr);
 326        kfree(mem);
 327}
 328
 329/*
 330 * Allocate a lot of memory, preferably max_sz but at least min_sz.  In case
 331 * there isn't much memory do not exceed 1/16th total lowmem pages.  Also do
 332 * not exceed a maximum number of segments and try not to make segments much
 333 * bigger than maximum segment size.
 334 */
 335static struct mmc_test_mem *mmc_test_alloc_mem(unsigned long min_sz,
 336                                               unsigned long max_sz,
 337                                               unsigned int max_segs,
 338                                               unsigned int max_seg_sz)
 339{
 340        unsigned long max_page_cnt = DIV_ROUND_UP(max_sz, PAGE_SIZE);
 341        unsigned long min_page_cnt = DIV_ROUND_UP(min_sz, PAGE_SIZE);
 342        unsigned long max_seg_page_cnt = DIV_ROUND_UP(max_seg_sz, PAGE_SIZE);
 343        unsigned long page_cnt = 0;
 344        unsigned long limit = nr_free_buffer_pages() >> 4;
 345        struct mmc_test_mem *mem;
 346
 347        if (max_page_cnt > limit)
 348                max_page_cnt = limit;
 349        if (min_page_cnt > max_page_cnt)
 350                min_page_cnt = max_page_cnt;
 351
 352        if (max_seg_page_cnt > max_page_cnt)
 353                max_seg_page_cnt = max_page_cnt;
 354
 355        if (max_segs > max_page_cnt)
 356                max_segs = max_page_cnt;
 357
 358        mem = kzalloc(sizeof(*mem), GFP_KERNEL);
 359        if (!mem)
 360                return NULL;
 361
 362        mem->arr = kcalloc(max_segs, sizeof(*mem->arr), GFP_KERNEL);
 363        if (!mem->arr)
 364                goto out_free;
 365
 366        while (max_page_cnt) {
 367                struct page *page;
 368                unsigned int order;
 369                gfp_t flags = GFP_KERNEL | GFP_DMA | __GFP_NOWARN |
 370                                __GFP_NORETRY;
 371
 372                order = get_order(max_seg_page_cnt << PAGE_SHIFT);
 373                while (1) {
 374                        page = alloc_pages(flags, order);
 375                        if (page || !order)
 376                                break;
 377                        order -= 1;
 378                }
 379                if (!page) {
 380                        if (page_cnt < min_page_cnt)
 381                                goto out_free;
 382                        break;
 383                }
 384                mem->arr[mem->cnt].page = page;
 385                mem->arr[mem->cnt].order = order;
 386                mem->cnt += 1;
 387                if (max_page_cnt <= (1UL << order))
 388                        break;
 389                max_page_cnt -= 1UL << order;
 390                page_cnt += 1UL << order;
 391                if (mem->cnt >= max_segs) {
 392                        if (page_cnt < min_page_cnt)
 393                                goto out_free;
 394                        break;
 395                }
 396        }
 397
 398        return mem;
 399
 400out_free:
 401        mmc_test_free_mem(mem);
 402        return NULL;
 403}
 404
 405/*
 406 * Map memory into a scatterlist.  Optionally allow the same memory to be
 407 * mapped more than once.
 408 */
 409static int mmc_test_map_sg(struct mmc_test_mem *mem, unsigned long size,
 410                           struct scatterlist *sglist, int repeat,
 411                           unsigned int max_segs, unsigned int max_seg_sz,
 412                           unsigned int *sg_len, int min_sg_len)
 413{
 414        struct scatterlist *sg = NULL;
 415        unsigned int i;
 416        unsigned long sz = size;
 417
 418        sg_init_table(sglist, max_segs);
 419        if (min_sg_len > max_segs)
 420                min_sg_len = max_segs;
 421
 422        *sg_len = 0;
 423        do {
 424                for (i = 0; i < mem->cnt; i++) {
 425                        unsigned long len = PAGE_SIZE << mem->arr[i].order;
 426
 427                        if (min_sg_len && (size / min_sg_len < len))
 428                                len = ALIGN(size / min_sg_len, 512);
 429                        if (len > sz)
 430                                len = sz;
 431                        if (len > max_seg_sz)
 432                                len = max_seg_sz;
 433                        if (sg)
 434                                sg = sg_next(sg);
 435                        else
 436                                sg = sglist;
 437                        if (!sg)
 438                                return -EINVAL;
 439                        sg_set_page(sg, mem->arr[i].page, len, 0);
 440                        sz -= len;
 441                        *sg_len += 1;
 442                        if (!sz)
 443                                break;
 444                }
 445        } while (sz && repeat);
 446
 447        if (sz)
 448                return -EINVAL;
 449
 450        if (sg)
 451                sg_mark_end(sg);
 452
 453        return 0;
 454}
 455
 456/*
 457 * Map memory into a scatterlist so that no pages are contiguous.  Allow the
 458 * same memory to be mapped more than once.
 459 */
 460static int mmc_test_map_sg_max_scatter(struct mmc_test_mem *mem,
 461                                       unsigned long sz,
 462                                       struct scatterlist *sglist,
 463                                       unsigned int max_segs,
 464                                       unsigned int max_seg_sz,
 465                                       unsigned int *sg_len)
 466{
 467        struct scatterlist *sg = NULL;
 468        unsigned int i = mem->cnt, cnt;
 469        unsigned long len;
 470        void *base, *addr, *last_addr = NULL;
 471
 472        sg_init_table(sglist, max_segs);
 473
 474        *sg_len = 0;
 475        while (sz) {
 476                base = page_address(mem->arr[--i].page);
 477                cnt = 1 << mem->arr[i].order;
 478                while (sz && cnt) {
 479                        addr = base + PAGE_SIZE * --cnt;
 480                        if (last_addr && last_addr + PAGE_SIZE == addr)
 481                                continue;
 482                        last_addr = addr;
 483                        len = PAGE_SIZE;
 484                        if (len > max_seg_sz)
 485                                len = max_seg_sz;
 486                        if (len > sz)
 487                                len = sz;
 488                        if (sg)
 489                                sg = sg_next(sg);
 490                        else
 491                                sg = sglist;
 492                        if (!sg)
 493                                return -EINVAL;
 494                        sg_set_page(sg, virt_to_page(addr), len, 0);
 495                        sz -= len;
 496                        *sg_len += 1;
 497                }
 498                if (i == 0)
 499                        i = mem->cnt;
 500        }
 501
 502        if (sg)
 503                sg_mark_end(sg);
 504
 505        return 0;
 506}
 507
 508/*
 509 * Calculate transfer rate in bytes per second.
 510 */
 511static unsigned int mmc_test_rate(uint64_t bytes, struct timespec64 *ts)
 512{
 513        uint64_t ns;
 514
 515        ns = timespec64_to_ns(ts);
 516        bytes *= 1000000000;
 517
 518        while (ns > UINT_MAX) {
 519                bytes >>= 1;
 520                ns >>= 1;
 521        }
 522
 523        if (!ns)
 524                return 0;
 525
 526        do_div(bytes, (uint32_t)ns);
 527
 528        return bytes;
 529}
 530
 531/*
 532 * Save transfer results for future usage
 533 */
 534static void mmc_test_save_transfer_result(struct mmc_test_card *test,
 535        unsigned int count, unsigned int sectors, struct timespec64 ts,
 536        unsigned int rate, unsigned int iops)
 537{
 538        struct mmc_test_transfer_result *tr;
 539
 540        if (!test->gr)
 541                return;
 542
 543        tr = kmalloc(sizeof(*tr), GFP_KERNEL);
 544        if (!tr)
 545                return;
 546
 547        tr->count = count;
 548        tr->sectors = sectors;
 549        tr->ts = ts;
 550        tr->rate = rate;
 551        tr->iops = iops;
 552
 553        list_add_tail(&tr->link, &test->gr->tr_lst);
 554}
 555
 556/*
 557 * Print the transfer rate.
 558 */
 559static void mmc_test_print_rate(struct mmc_test_card *test, uint64_t bytes,
 560                                struct timespec64 *ts1, struct timespec64 *ts2)
 561{
 562        unsigned int rate, iops, sectors = bytes >> 9;
 563        struct timespec64 ts;
 564
 565        ts = timespec64_sub(*ts2, *ts1);
 566
 567        rate = mmc_test_rate(bytes, &ts);
 568        iops = mmc_test_rate(100, &ts); /* I/O ops per sec x 100 */
 569
 570        pr_info("%s: Transfer of %u sectors (%u%s KiB) took %llu.%09u "
 571                         "seconds (%u kB/s, %u KiB/s, %u.%02u IOPS)\n",
 572                         mmc_hostname(test->card->host), sectors, sectors >> 1,
 573                         (sectors & 1 ? ".5" : ""), (u64)ts.tv_sec,
 574                         (u32)ts.tv_nsec, rate / 1000, rate / 1024,
 575                         iops / 100, iops % 100);
 576
 577        mmc_test_save_transfer_result(test, 1, sectors, ts, rate, iops);
 578}
 579
 580/*
 581 * Print the average transfer rate.
 582 */
 583static void mmc_test_print_avg_rate(struct mmc_test_card *test, uint64_t bytes,
 584                                    unsigned int count, struct timespec64 *ts1,
 585                                    struct timespec64 *ts2)
 586{
 587        unsigned int rate, iops, sectors = bytes >> 9;
 588        uint64_t tot = bytes * count;
 589        struct timespec64 ts;
 590
 591        ts = timespec64_sub(*ts2, *ts1);
 592
 593        rate = mmc_test_rate(tot, &ts);
 594        iops = mmc_test_rate(count * 100, &ts); /* I/O ops per sec x 100 */
 595
 596        pr_info("%s: Transfer of %u x %u sectors (%u x %u%s KiB) took "
 597                         "%llu.%09u seconds (%u kB/s, %u KiB/s, "
 598                         "%u.%02u IOPS, sg_len %d)\n",
 599                         mmc_hostname(test->card->host), count, sectors, count,
 600                         sectors >> 1, (sectors & 1 ? ".5" : ""),
 601                         (u64)ts.tv_sec, (u32)ts.tv_nsec,
 602                         rate / 1000, rate / 1024, iops / 100, iops % 100,
 603                         test->area.sg_len);
 604
 605        mmc_test_save_transfer_result(test, count, sectors, ts, rate, iops);
 606}
 607
 608/*
 609 * Return the card size in sectors.
 610 */
 611static unsigned int mmc_test_capacity(struct mmc_card *card)
 612{
 613        if (!mmc_card_sd(card) && mmc_card_blockaddr(card))
 614                return card->ext_csd.sectors;
 615        else
 616                return card->csd.capacity << (card->csd.read_blkbits - 9);
 617}
 618
 619/*******************************************************************/
 620/*  Test preparation and cleanup                                   */
 621/*******************************************************************/
 622
 623/*
 624 * Fill the first couple of sectors of the card with known data
 625 * so that bad reads/writes can be detected
 626 */
 627static int __mmc_test_prepare(struct mmc_test_card *test, int write)
 628{
 629        int ret, i;
 630
 631        ret = mmc_test_set_blksize(test, 512);
 632        if (ret)
 633                return ret;
 634
 635        if (write)
 636                memset(test->buffer, 0xDF, 512);
 637        else {
 638                for (i = 0; i < 512; i++)
 639                        test->buffer[i] = i;
 640        }
 641
 642        for (i = 0; i < BUFFER_SIZE / 512; i++) {
 643                ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
 644                if (ret)
 645                        return ret;
 646        }
 647
 648        return 0;
 649}
 650
 651static int mmc_test_prepare_write(struct mmc_test_card *test)
 652{
 653        return __mmc_test_prepare(test, 1);
 654}
 655
 656static int mmc_test_prepare_read(struct mmc_test_card *test)
 657{
 658        return __mmc_test_prepare(test, 0);
 659}
 660
 661static int mmc_test_cleanup(struct mmc_test_card *test)
 662{
 663        int ret, i;
 664
 665        ret = mmc_test_set_blksize(test, 512);
 666        if (ret)
 667                return ret;
 668
 669        memset(test->buffer, 0, 512);
 670
 671        for (i = 0; i < BUFFER_SIZE / 512; i++) {
 672                ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
 673                if (ret)
 674                        return ret;
 675        }
 676
 677        return 0;
 678}
 679
 680/*******************************************************************/
 681/*  Test execution helpers                                         */
 682/*******************************************************************/
 683
 684/*
 685 * Modifies the mmc_request to perform the "short transfer" tests
 686 */
 687static void mmc_test_prepare_broken_mrq(struct mmc_test_card *test,
 688        struct mmc_request *mrq, int write)
 689{
 690        if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
 691                return;
 692
 693        if (mrq->data->blocks > 1) {
 694                mrq->cmd->opcode = write ?
 695                        MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
 696                mrq->stop = NULL;
 697        } else {
 698                mrq->cmd->opcode = MMC_SEND_STATUS;
 699                mrq->cmd->arg = test->card->rca << 16;
 700        }
 701}
 702
 703/*
 704 * Checks that a normal transfer didn't have any errors
 705 */
 706static int mmc_test_check_result(struct mmc_test_card *test,
 707                                 struct mmc_request *mrq)
 708{
 709        int ret;
 710
 711        if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
 712                return -EINVAL;
 713
 714        ret = 0;
 715
 716        if (mrq->sbc && mrq->sbc->error)
 717                ret = mrq->sbc->error;
 718        if (!ret && mrq->cmd->error)
 719                ret = mrq->cmd->error;
 720        if (!ret && mrq->data->error)
 721                ret = mrq->data->error;
 722        if (!ret && mrq->stop && mrq->stop->error)
 723                ret = mrq->stop->error;
 724        if (!ret && mrq->data->bytes_xfered !=
 725                mrq->data->blocks * mrq->data->blksz)
 726                ret = RESULT_FAIL;
 727
 728        if (ret == -EINVAL)
 729                ret = RESULT_UNSUP_HOST;
 730
 731        return ret;
 732}
 733
 734/*
 735 * Checks that a "short transfer" behaved as expected
 736 */
 737static int mmc_test_check_broken_result(struct mmc_test_card *test,
 738        struct mmc_request *mrq)
 739{
 740        int ret;
 741
 742        if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
 743                return -EINVAL;
 744
 745        ret = 0;
 746
 747        if (!ret && mrq->cmd->error)
 748                ret = mrq->cmd->error;
 749        if (!ret && mrq->data->error == 0)
 750                ret = RESULT_FAIL;
 751        if (!ret && mrq->data->error != -ETIMEDOUT)
 752                ret = mrq->data->error;
 753        if (!ret && mrq->stop && mrq->stop->error)
 754                ret = mrq->stop->error;
 755        if (mrq->data->blocks > 1) {
 756                if (!ret && mrq->data->bytes_xfered > mrq->data->blksz)
 757                        ret = RESULT_FAIL;
 758        } else {
 759                if (!ret && mrq->data->bytes_xfered > 0)
 760                        ret = RESULT_FAIL;
 761        }
 762
 763        if (ret == -EINVAL)
 764                ret = RESULT_UNSUP_HOST;
 765
 766        return ret;
 767}
 768
 769struct mmc_test_req {
 770        struct mmc_request mrq;
 771        struct mmc_command sbc;
 772        struct mmc_command cmd;
 773        struct mmc_command stop;
 774        struct mmc_command status;
 775        struct mmc_data data;
 776};
 777
 778/*
 779 * Tests nonblock transfer with certain parameters
 780 */
 781static void mmc_test_req_reset(struct mmc_test_req *rq)
 782{
 783        memset(rq, 0, sizeof(struct mmc_test_req));
 784
 785        rq->mrq.cmd = &rq->cmd;
 786        rq->mrq.data = &rq->data;
 787        rq->mrq.stop = &rq->stop;
 788}
 789
 790static struct mmc_test_req *mmc_test_req_alloc(void)
 791{
 792        struct mmc_test_req *rq = kmalloc(sizeof(*rq), GFP_KERNEL);
 793
 794        if (rq)
 795                mmc_test_req_reset(rq);
 796
 797        return rq;
 798}
 799
 800static void mmc_test_wait_done(struct mmc_request *mrq)
 801{
 802        complete(&mrq->completion);
 803}
 804
 805static int mmc_test_start_areq(struct mmc_test_card *test,
 806                               struct mmc_request *mrq,
 807                               struct mmc_request *prev_mrq)
 808{
 809        struct mmc_host *host = test->card->host;
 810        int err = 0;
 811
 812        if (mrq) {
 813                init_completion(&mrq->completion);
 814                mrq->done = mmc_test_wait_done;
 815                mmc_pre_req(host, mrq);
 816        }
 817
 818        if (prev_mrq) {
 819                wait_for_completion(&prev_mrq->completion);
 820                err = mmc_test_wait_busy(test);
 821                if (!err)
 822                        err = mmc_test_check_result(test, prev_mrq);
 823        }
 824
 825        if (!err && mrq) {
 826                err = mmc_start_request(host, mrq);
 827                if (err)
 828                        mmc_retune_release(host);
 829        }
 830
 831        if (prev_mrq)
 832                mmc_post_req(host, prev_mrq, 0);
 833
 834        if (err && mrq)
 835                mmc_post_req(host, mrq, err);
 836
 837        return err;
 838}
 839
 840static int mmc_test_nonblock_transfer(struct mmc_test_card *test,
 841                                      unsigned int dev_addr, int write,
 842                                      int count)
 843{
 844        struct mmc_test_req *rq1, *rq2;
 845        struct mmc_request *mrq, *prev_mrq;
 846        int i;
 847        int ret = RESULT_OK;
 848        struct mmc_test_area *t = &test->area;
 849        struct scatterlist *sg = t->sg;
 850        struct scatterlist *sg_areq = t->sg_areq;
 851
 852        rq1 = mmc_test_req_alloc();
 853        rq2 = mmc_test_req_alloc();
 854        if (!rq1 || !rq2) {
 855                ret = RESULT_FAIL;
 856                goto err;
 857        }
 858
 859        mrq = &rq1->mrq;
 860        prev_mrq = NULL;
 861
 862        for (i = 0; i < count; i++) {
 863                mmc_test_req_reset(container_of(mrq, struct mmc_test_req, mrq));
 864                mmc_test_prepare_mrq(test, mrq, sg, t->sg_len, dev_addr,
 865                                     t->blocks, 512, write);
 866                ret = mmc_test_start_areq(test, mrq, prev_mrq);
 867                if (ret)
 868                        goto err;
 869
 870                if (!prev_mrq)
 871                        prev_mrq = &rq2->mrq;
 872
 873                swap(mrq, prev_mrq);
 874                swap(sg, sg_areq);
 875                dev_addr += t->blocks;
 876        }
 877
 878        ret = mmc_test_start_areq(test, NULL, prev_mrq);
 879err:
 880        kfree(rq1);
 881        kfree(rq2);
 882        return ret;
 883}
 884
 885/*
 886 * Tests a basic transfer with certain parameters
 887 */
 888static int mmc_test_simple_transfer(struct mmc_test_card *test,
 889        struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
 890        unsigned blocks, unsigned blksz, int write)
 891{
 892        struct mmc_request mrq = {};
 893        struct mmc_command cmd = {};
 894        struct mmc_command stop = {};
 895        struct mmc_data data = {};
 896
 897        mrq.cmd = &cmd;
 898        mrq.data = &data;
 899        mrq.stop = &stop;
 900
 901        mmc_test_prepare_mrq(test, &mrq, sg, sg_len, dev_addr,
 902                blocks, blksz, write);
 903
 904        mmc_wait_for_req(test->card->host, &mrq);
 905
 906        mmc_test_wait_busy(test);
 907
 908        return mmc_test_check_result(test, &mrq);
 909}
 910
 911/*
 912 * Tests a transfer where the card will fail completely or partly
 913 */
 914static int mmc_test_broken_transfer(struct mmc_test_card *test,
 915        unsigned blocks, unsigned blksz, int write)
 916{
 917        struct mmc_request mrq = {};
 918        struct mmc_command cmd = {};
 919        struct mmc_command stop = {};
 920        struct mmc_data data = {};
 921
 922        struct scatterlist sg;
 923
 924        mrq.cmd = &cmd;
 925        mrq.data = &data;
 926        mrq.stop = &stop;
 927
 928        sg_init_one(&sg, test->buffer, blocks * blksz);
 929
 930        mmc_test_prepare_mrq(test, &mrq, &sg, 1, 0, blocks, blksz, write);
 931        mmc_test_prepare_broken_mrq(test, &mrq, write);
 932
 933        mmc_wait_for_req(test->card->host, &mrq);
 934
 935        mmc_test_wait_busy(test);
 936
 937        return mmc_test_check_broken_result(test, &mrq);
 938}
 939
 940/*
 941 * Does a complete transfer test where data is also validated
 942 *
 943 * Note: mmc_test_prepare() must have been done before this call
 944 */
 945static int mmc_test_transfer(struct mmc_test_card *test,
 946        struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
 947        unsigned blocks, unsigned blksz, int write)
 948{
 949        int ret, i;
 950        unsigned long flags;
 951
 952        if (write) {
 953                for (i = 0; i < blocks * blksz; i++)
 954                        test->scratch[i] = i;
 955        } else {
 956                memset(test->scratch, 0, BUFFER_SIZE);
 957        }
 958        local_irq_save(flags);
 959        sg_copy_from_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
 960        local_irq_restore(flags);
 961
 962        ret = mmc_test_set_blksize(test, blksz);
 963        if (ret)
 964                return ret;
 965
 966        ret = mmc_test_simple_transfer(test, sg, sg_len, dev_addr,
 967                blocks, blksz, write);
 968        if (ret)
 969                return ret;
 970
 971        if (write) {
 972                int sectors;
 973
 974                ret = mmc_test_set_blksize(test, 512);
 975                if (ret)
 976                        return ret;
 977
 978                sectors = (blocks * blksz + 511) / 512;
 979                if ((sectors * 512) == (blocks * blksz))
 980                        sectors++;
 981
 982                if ((sectors * 512) > BUFFER_SIZE)
 983                        return -EINVAL;
 984
 985                memset(test->buffer, 0, sectors * 512);
 986
 987                for (i = 0; i < sectors; i++) {
 988                        ret = mmc_test_buffer_transfer(test,
 989                                test->buffer + i * 512,
 990                                dev_addr + i, 512, 0);
 991                        if (ret)
 992                                return ret;
 993                }
 994
 995                for (i = 0; i < blocks * blksz; i++) {
 996                        if (test->buffer[i] != (u8)i)
 997                                return RESULT_FAIL;
 998                }
 999
1000                for (; i < sectors * 512; i++) {
1001                        if (test->buffer[i] != 0xDF)
1002                                return RESULT_FAIL;
1003                }
1004        } else {
1005                local_irq_save(flags);
1006                sg_copy_to_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
1007                local_irq_restore(flags);
1008                for (i = 0; i < blocks * blksz; i++) {
1009                        if (test->scratch[i] != (u8)i)
1010                                return RESULT_FAIL;
1011                }
1012        }
1013
1014        return 0;
1015}
1016
1017/*******************************************************************/
1018/*  Tests                                                          */
1019/*******************************************************************/
1020
1021struct mmc_test_case {
1022        const char *name;
1023
1024        int (*prepare)(struct mmc_test_card *);
1025        int (*run)(struct mmc_test_card *);
1026        int (*cleanup)(struct mmc_test_card *);
1027};
1028
1029static int mmc_test_basic_write(struct mmc_test_card *test)
1030{
1031        int ret;
1032        struct scatterlist sg;
1033
1034        ret = mmc_test_set_blksize(test, 512);
1035        if (ret)
1036                return ret;
1037
1038        sg_init_one(&sg, test->buffer, 512);
1039
1040        return mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 1);
1041}
1042
1043static int mmc_test_basic_read(struct mmc_test_card *test)
1044{
1045        int ret;
1046        struct scatterlist sg;
1047
1048        ret = mmc_test_set_blksize(test, 512);
1049        if (ret)
1050                return ret;
1051
1052        sg_init_one(&sg, test->buffer, 512);
1053
1054        return mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 0);
1055}
1056
1057static int mmc_test_verify_write(struct mmc_test_card *test)
1058{
1059        struct scatterlist sg;
1060
1061        sg_init_one(&sg, test->buffer, 512);
1062
1063        return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1064}
1065
1066static int mmc_test_verify_read(struct mmc_test_card *test)
1067{
1068        struct scatterlist sg;
1069
1070        sg_init_one(&sg, test->buffer, 512);
1071
1072        return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1073}
1074
1075static int mmc_test_multi_write(struct mmc_test_card *test)
1076{
1077        unsigned int size;
1078        struct scatterlist sg;
1079
1080        if (test->card->host->max_blk_count == 1)
1081                return RESULT_UNSUP_HOST;
1082
1083        size = PAGE_SIZE * 2;
1084        size = min(size, test->card->host->max_req_size);
1085        size = min(size, test->card->host->max_seg_size);
1086        size = min(size, test->card->host->max_blk_count * 512);
1087
1088        if (size < 1024)
1089                return RESULT_UNSUP_HOST;
1090
1091        sg_init_one(&sg, test->buffer, size);
1092
1093        return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1094}
1095
1096static int mmc_test_multi_read(struct mmc_test_card *test)
1097{
1098        unsigned int size;
1099        struct scatterlist sg;
1100
1101        if (test->card->host->max_blk_count == 1)
1102                return RESULT_UNSUP_HOST;
1103
1104        size = PAGE_SIZE * 2;
1105        size = min(size, test->card->host->max_req_size);
1106        size = min(size, test->card->host->max_seg_size);
1107        size = min(size, test->card->host->max_blk_count * 512);
1108
1109        if (size < 1024)
1110                return RESULT_UNSUP_HOST;
1111
1112        sg_init_one(&sg, test->buffer, size);
1113
1114        return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1115}
1116
1117static int mmc_test_pow2_write(struct mmc_test_card *test)
1118{
1119        int ret, i;
1120        struct scatterlist sg;
1121
1122        if (!test->card->csd.write_partial)
1123                return RESULT_UNSUP_CARD;
1124
1125        for (i = 1; i < 512; i <<= 1) {
1126                sg_init_one(&sg, test->buffer, i);
1127                ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1128                if (ret)
1129                        return ret;
1130        }
1131
1132        return 0;
1133}
1134
1135static int mmc_test_pow2_read(struct mmc_test_card *test)
1136{
1137        int ret, i;
1138        struct scatterlist sg;
1139
1140        if (!test->card->csd.read_partial)
1141                return RESULT_UNSUP_CARD;
1142
1143        for (i = 1; i < 512; i <<= 1) {
1144                sg_init_one(&sg, test->buffer, i);
1145                ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1146                if (ret)
1147                        return ret;
1148        }
1149
1150        return 0;
1151}
1152
1153static int mmc_test_weird_write(struct mmc_test_card *test)
1154{
1155        int ret, i;
1156        struct scatterlist sg;
1157
1158        if (!test->card->csd.write_partial)
1159                return RESULT_UNSUP_CARD;
1160
1161        for (i = 3; i < 512; i += 7) {
1162                sg_init_one(&sg, test->buffer, i);
1163                ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1164                if (ret)
1165                        return ret;
1166        }
1167
1168        return 0;
1169}
1170
1171static int mmc_test_weird_read(struct mmc_test_card *test)
1172{
1173        int ret, i;
1174        struct scatterlist sg;
1175
1176        if (!test->card->csd.read_partial)
1177                return RESULT_UNSUP_CARD;
1178
1179        for (i = 3; i < 512; i += 7) {
1180                sg_init_one(&sg, test->buffer, i);
1181                ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1182                if (ret)
1183                        return ret;
1184        }
1185
1186        return 0;
1187}
1188
1189static int mmc_test_align_write(struct mmc_test_card *test)
1190{
1191        int ret, i;
1192        struct scatterlist sg;
1193
1194        for (i = 1; i < TEST_ALIGN_END; i++) {
1195                sg_init_one(&sg, test->buffer + i, 512);
1196                ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1197                if (ret)
1198                        return ret;
1199        }
1200
1201        return 0;
1202}
1203
1204static int mmc_test_align_read(struct mmc_test_card *test)
1205{
1206        int ret, i;
1207        struct scatterlist sg;
1208
1209        for (i = 1; i < TEST_ALIGN_END; i++) {
1210                sg_init_one(&sg, test->buffer + i, 512);
1211                ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1212                if (ret)
1213                        return ret;
1214        }
1215
1216        return 0;
1217}
1218
1219static int mmc_test_align_multi_write(struct mmc_test_card *test)
1220{
1221        int ret, i;
1222        unsigned int size;
1223        struct scatterlist sg;
1224
1225        if (test->card->host->max_blk_count == 1)
1226                return RESULT_UNSUP_HOST;
1227
1228        size = PAGE_SIZE * 2;
1229        size = min(size, test->card->host->max_req_size);
1230        size = min(size, test->card->host->max_seg_size);
1231        size = min(size, test->card->host->max_blk_count * 512);
1232
1233        if (size < 1024)
1234                return RESULT_UNSUP_HOST;
1235
1236        for (i = 1; i < TEST_ALIGN_END; i++) {
1237                sg_init_one(&sg, test->buffer + i, size);
1238                ret = mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1239                if (ret)
1240                        return ret;
1241        }
1242
1243        return 0;
1244}
1245
1246static int mmc_test_align_multi_read(struct mmc_test_card *test)
1247{
1248        int ret, i;
1249        unsigned int size;
1250        struct scatterlist sg;
1251
1252        if (test->card->host->max_blk_count == 1)
1253                return RESULT_UNSUP_HOST;
1254
1255        size = PAGE_SIZE * 2;
1256        size = min(size, test->card->host->max_req_size);
1257        size = min(size, test->card->host->max_seg_size);
1258        size = min(size, test->card->host->max_blk_count * 512);
1259
1260        if (size < 1024)
1261                return RESULT_UNSUP_HOST;
1262
1263        for (i = 1; i < TEST_ALIGN_END; i++) {
1264                sg_init_one(&sg, test->buffer + i, size);
1265                ret = mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1266                if (ret)
1267                        return ret;
1268        }
1269
1270        return 0;
1271}
1272
1273static int mmc_test_xfersize_write(struct mmc_test_card *test)
1274{
1275        int ret;
1276
1277        ret = mmc_test_set_blksize(test, 512);
1278        if (ret)
1279                return ret;
1280
1281        return mmc_test_broken_transfer(test, 1, 512, 1);
1282}
1283
1284static int mmc_test_xfersize_read(struct mmc_test_card *test)
1285{
1286        int ret;
1287
1288        ret = mmc_test_set_blksize(test, 512);
1289        if (ret)
1290                return ret;
1291
1292        return mmc_test_broken_transfer(test, 1, 512, 0);
1293}
1294
1295static int mmc_test_multi_xfersize_write(struct mmc_test_card *test)
1296{
1297        int ret;
1298
1299        if (test->card->host->max_blk_count == 1)
1300                return RESULT_UNSUP_HOST;
1301
1302        ret = mmc_test_set_blksize(test, 512);
1303        if (ret)
1304                return ret;
1305
1306        return mmc_test_broken_transfer(test, 2, 512, 1);
1307}
1308
1309static int mmc_test_multi_xfersize_read(struct mmc_test_card *test)
1310{
1311        int ret;
1312
1313        if (test->card->host->max_blk_count == 1)
1314                return RESULT_UNSUP_HOST;
1315
1316        ret = mmc_test_set_blksize(test, 512);
1317        if (ret)
1318                return ret;
1319
1320        return mmc_test_broken_transfer(test, 2, 512, 0);
1321}
1322
1323#ifdef CONFIG_HIGHMEM
1324
1325static int mmc_test_write_high(struct mmc_test_card *test)
1326{
1327        struct scatterlist sg;
1328
1329        sg_init_table(&sg, 1);
1330        sg_set_page(&sg, test->highmem, 512, 0);
1331
1332        return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1333}
1334
1335static int mmc_test_read_high(struct mmc_test_card *test)
1336{
1337        struct scatterlist sg;
1338
1339        sg_init_table(&sg, 1);
1340        sg_set_page(&sg, test->highmem, 512, 0);
1341
1342        return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1343}
1344
1345static int mmc_test_multi_write_high(struct mmc_test_card *test)
1346{
1347        unsigned int size;
1348        struct scatterlist sg;
1349
1350        if (test->card->host->max_blk_count == 1)
1351                return RESULT_UNSUP_HOST;
1352
1353        size = PAGE_SIZE * 2;
1354        size = min(size, test->card->host->max_req_size);
1355        size = min(size, test->card->host->max_seg_size);
1356        size = min(size, test->card->host->max_blk_count * 512);
1357
1358        if (size < 1024)
1359                return RESULT_UNSUP_HOST;
1360
1361        sg_init_table(&sg, 1);
1362        sg_set_page(&sg, test->highmem, size, 0);
1363
1364        return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1365}
1366
1367static int mmc_test_multi_read_high(struct mmc_test_card *test)
1368{
1369        unsigned int size;
1370        struct scatterlist sg;
1371
1372        if (test->card->host->max_blk_count == 1)
1373                return RESULT_UNSUP_HOST;
1374
1375        size = PAGE_SIZE * 2;
1376        size = min(size, test->card->host->max_req_size);
1377        size = min(size, test->card->host->max_seg_size);
1378        size = min(size, test->card->host->max_blk_count * 512);
1379
1380        if (size < 1024)
1381                return RESULT_UNSUP_HOST;
1382
1383        sg_init_table(&sg, 1);
1384        sg_set_page(&sg, test->highmem, size, 0);
1385
1386        return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1387}
1388
1389#else
1390
1391static int mmc_test_no_highmem(struct mmc_test_card *test)
1392{
1393        pr_info("%s: Highmem not configured - test skipped\n",
1394               mmc_hostname(test->card->host));
1395        return 0;
1396}
1397
1398#endif /* CONFIG_HIGHMEM */
1399
1400/*
1401 * Map sz bytes so that it can be transferred.
1402 */
1403static int mmc_test_area_map(struct mmc_test_card *test, unsigned long sz,
1404                             int max_scatter, int min_sg_len, bool nonblock)
1405{
1406        struct mmc_test_area *t = &test->area;
1407        int err;
1408        unsigned int sg_len = 0;
1409
1410        t->blocks = sz >> 9;
1411
1412        if (max_scatter) {
1413                err = mmc_test_map_sg_max_scatter(t->mem, sz, t->sg,
1414                                                  t->max_segs, t->max_seg_sz,
1415                                       &t->sg_len);
1416        } else {
1417                err = mmc_test_map_sg(t->mem, sz, t->sg, 1, t->max_segs,
1418                                      t->max_seg_sz, &t->sg_len, min_sg_len);
1419        }
1420
1421        if (err || !nonblock)
1422                goto err;
1423
1424        if (max_scatter) {
1425                err = mmc_test_map_sg_max_scatter(t->mem, sz, t->sg_areq,
1426                                                  t->max_segs, t->max_seg_sz,
1427                                                  &sg_len);
1428        } else {
1429                err = mmc_test_map_sg(t->mem, sz, t->sg_areq, 1, t->max_segs,
1430                                      t->max_seg_sz, &sg_len, min_sg_len);
1431        }
1432        if (!err && sg_len != t->sg_len)
1433                err = -EINVAL;
1434
1435err:
1436        if (err)
1437                pr_info("%s: Failed to map sg list\n",
1438                       mmc_hostname(test->card->host));
1439        return err;
1440}
1441
1442/*
1443 * Transfer bytes mapped by mmc_test_area_map().
1444 */
1445static int mmc_test_area_transfer(struct mmc_test_card *test,
1446                                  unsigned int dev_addr, int write)
1447{
1448        struct mmc_test_area *t = &test->area;
1449
1450        return mmc_test_simple_transfer(test, t->sg, t->sg_len, dev_addr,
1451                                        t->blocks, 512, write);
1452}
1453
1454/*
1455 * Map and transfer bytes for multiple transfers.
1456 */
1457static int mmc_test_area_io_seq(struct mmc_test_card *test, unsigned long sz,
1458                                unsigned int dev_addr, int write,
1459                                int max_scatter, int timed, int count,
1460                                bool nonblock, int min_sg_len)
1461{
1462        struct timespec64 ts1, ts2;
1463        int ret = 0;
1464        int i;
1465
1466        /*
1467         * In the case of a maximally scattered transfer, the maximum transfer
1468         * size is further limited by using PAGE_SIZE segments.
1469         */
1470        if (max_scatter) {
1471                struct mmc_test_area *t = &test->area;
1472                unsigned long max_tfr;
1473
1474                if (t->max_seg_sz >= PAGE_SIZE)
1475                        max_tfr = t->max_segs * PAGE_SIZE;
1476                else
1477                        max_tfr = t->max_segs * t->max_seg_sz;
1478                if (sz > max_tfr)
1479                        sz = max_tfr;
1480        }
1481
1482        ret = mmc_test_area_map(test, sz, max_scatter, min_sg_len, nonblock);
1483        if (ret)
1484                return ret;
1485
1486        if (timed)
1487                ktime_get_ts64(&ts1);
1488        if (nonblock)
1489                ret = mmc_test_nonblock_transfer(test, dev_addr, write, count);
1490        else
1491                for (i = 0; i < count && ret == 0; i++) {
1492                        ret = mmc_test_area_transfer(test, dev_addr, write);
1493                        dev_addr += sz >> 9;
1494                }
1495
1496        if (ret)
1497                return ret;
1498
1499        if (timed)
1500                ktime_get_ts64(&ts2);
1501
1502        if (timed)
1503                mmc_test_print_avg_rate(test, sz, count, &ts1, &ts2);
1504
1505        return 0;
1506}
1507
1508static int mmc_test_area_io(struct mmc_test_card *test, unsigned long sz,
1509                            unsigned int dev_addr, int write, int max_scatter,
1510                            int timed)
1511{
1512        return mmc_test_area_io_seq(test, sz, dev_addr, write, max_scatter,
1513                                    timed, 1, false, 0);
1514}
1515
1516/*
1517 * Write the test area entirely.
1518 */
1519static int mmc_test_area_fill(struct mmc_test_card *test)
1520{
1521        struct mmc_test_area *t = &test->area;
1522
1523        return mmc_test_area_io(test, t->max_tfr, t->dev_addr, 1, 0, 0);
1524}
1525
1526/*
1527 * Erase the test area entirely.
1528 */
1529static int mmc_test_area_erase(struct mmc_test_card *test)
1530{
1531        struct mmc_test_area *t = &test->area;
1532
1533        if (!mmc_can_erase(test->card))
1534                return 0;
1535
1536        return mmc_erase(test->card, t->dev_addr, t->max_sz >> 9,
1537                         MMC_ERASE_ARG);
1538}
1539
1540/*
1541 * Cleanup struct mmc_test_area.
1542 */
1543static int mmc_test_area_cleanup(struct mmc_test_card *test)
1544{
1545        struct mmc_test_area *t = &test->area;
1546
1547        kfree(t->sg);
1548        kfree(t->sg_areq);
1549        mmc_test_free_mem(t->mem);
1550
1551        return 0;
1552}
1553
1554/*
1555 * Initialize an area for testing large transfers.  The test area is set to the
1556 * middle of the card because cards may have different characteristics at the
1557 * front (for FAT file system optimization).  Optionally, the area is erased
1558 * (if the card supports it) which may improve write performance.  Optionally,
1559 * the area is filled with data for subsequent read tests.
1560 */
1561static int mmc_test_area_init(struct mmc_test_card *test, int erase, int fill)
1562{
1563        struct mmc_test_area *t = &test->area;
1564        unsigned long min_sz = 64 * 1024, sz;
1565        int ret;
1566
1567        ret = mmc_test_set_blksize(test, 512);
1568        if (ret)
1569                return ret;
1570
1571        /* Make the test area size about 4MiB */
1572        sz = (unsigned long)test->card->pref_erase << 9;
1573        t->max_sz = sz;
1574        while (t->max_sz < 4 * 1024 * 1024)
1575                t->max_sz += sz;
1576        while (t->max_sz > TEST_AREA_MAX_SIZE && t->max_sz > sz)
1577                t->max_sz -= sz;
1578
1579        t->max_segs = test->card->host->max_segs;
1580        t->max_seg_sz = test->card->host->max_seg_size;
1581        t->max_seg_sz -= t->max_seg_sz % 512;
1582
1583        t->max_tfr = t->max_sz;
1584        if (t->max_tfr >> 9 > test->card->host->max_blk_count)
1585                t->max_tfr = test->card->host->max_blk_count << 9;
1586        if (t->max_tfr > test->card->host->max_req_size)
1587                t->max_tfr = test->card->host->max_req_size;
1588        if (t->max_tfr / t->max_seg_sz > t->max_segs)
1589                t->max_tfr = t->max_segs * t->max_seg_sz;
1590
1591        /*
1592         * Try to allocate enough memory for a max. sized transfer.  Less is OK
1593         * because the same memory can be mapped into the scatterlist more than
1594         * once.  Also, take into account the limits imposed on scatterlist
1595         * segments by the host driver.
1596         */
1597        t->mem = mmc_test_alloc_mem(min_sz, t->max_tfr, t->max_segs,
1598                                    t->max_seg_sz);
1599        if (!t->mem)
1600                return -ENOMEM;
1601
1602        t->sg = kmalloc_array(t->max_segs, sizeof(*t->sg), GFP_KERNEL);
1603        if (!t->sg) {
1604                ret = -ENOMEM;
1605                goto out_free;
1606        }
1607
1608        t->sg_areq = kmalloc_array(t->max_segs, sizeof(*t->sg_areq),
1609                                   GFP_KERNEL);
1610        if (!t->sg_areq) {
1611                ret = -ENOMEM;
1612                goto out_free;
1613        }
1614
1615        t->dev_addr = mmc_test_capacity(test->card) / 2;
1616        t->dev_addr -= t->dev_addr % (t->max_sz >> 9);
1617
1618        if (erase) {
1619                ret = mmc_test_area_erase(test);
1620                if (ret)
1621                        goto out_free;
1622        }
1623
1624        if (fill) {
1625                ret = mmc_test_area_fill(test);
1626                if (ret)
1627                        goto out_free;
1628        }
1629
1630        return 0;
1631
1632out_free:
1633        mmc_test_area_cleanup(test);
1634        return ret;
1635}
1636
1637/*
1638 * Prepare for large transfers.  Do not erase the test area.
1639 */
1640static int mmc_test_area_prepare(struct mmc_test_card *test)
1641{
1642        return mmc_test_area_init(test, 0, 0);
1643}
1644
1645/*
1646 * Prepare for large transfers.  Do erase the test area.
1647 */
1648static int mmc_test_area_prepare_erase(struct mmc_test_card *test)
1649{
1650        return mmc_test_area_init(test, 1, 0);
1651}
1652
1653/*
1654 * Prepare for large transfers.  Erase and fill the test area.
1655 */
1656static int mmc_test_area_prepare_fill(struct mmc_test_card *test)
1657{
1658        return mmc_test_area_init(test, 1, 1);
1659}
1660
1661/*
1662 * Test best-case performance.  Best-case performance is expected from
1663 * a single large transfer.
1664 *
1665 * An additional option (max_scatter) allows the measurement of the same
1666 * transfer but with no contiguous pages in the scatter list.  This tests
1667 * the efficiency of DMA to handle scattered pages.
1668 */
1669static int mmc_test_best_performance(struct mmc_test_card *test, int write,
1670                                     int max_scatter)
1671{
1672        struct mmc_test_area *t = &test->area;
1673
1674        return mmc_test_area_io(test, t->max_tfr, t->dev_addr, write,
1675                                max_scatter, 1);
1676}
1677
1678/*
1679 * Best-case read performance.
1680 */
1681static int mmc_test_best_read_performance(struct mmc_test_card *test)
1682{
1683        return mmc_test_best_performance(test, 0, 0);
1684}
1685
1686/*
1687 * Best-case write performance.
1688 */
1689static int mmc_test_best_write_performance(struct mmc_test_card *test)
1690{
1691        return mmc_test_best_performance(test, 1, 0);
1692}
1693
1694/*
1695 * Best-case read performance into scattered pages.
1696 */
1697static int mmc_test_best_read_perf_max_scatter(struct mmc_test_card *test)
1698{
1699        return mmc_test_best_performance(test, 0, 1);
1700}
1701
1702/*
1703 * Best-case write performance from scattered pages.
1704 */
1705static int mmc_test_best_write_perf_max_scatter(struct mmc_test_card *test)
1706{
1707        return mmc_test_best_performance(test, 1, 1);
1708}
1709
1710/*
1711 * Single read performance by transfer size.
1712 */
1713static int mmc_test_profile_read_perf(struct mmc_test_card *test)
1714{
1715        struct mmc_test_area *t = &test->area;
1716        unsigned long sz;
1717        unsigned int dev_addr;
1718        int ret;
1719
1720        for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1721                dev_addr = t->dev_addr + (sz >> 9);
1722                ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1723                if (ret)
1724                        return ret;
1725        }
1726        sz = t->max_tfr;
1727        dev_addr = t->dev_addr;
1728        return mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1729}
1730
1731/*
1732 * Single write performance by transfer size.
1733 */
1734static int mmc_test_profile_write_perf(struct mmc_test_card *test)
1735{
1736        struct mmc_test_area *t = &test->area;
1737        unsigned long sz;
1738        unsigned int dev_addr;
1739        int ret;
1740
1741        ret = mmc_test_area_erase(test);
1742        if (ret)
1743                return ret;
1744        for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1745                dev_addr = t->dev_addr + (sz >> 9);
1746                ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1747                if (ret)
1748                        return ret;
1749        }
1750        ret = mmc_test_area_erase(test);
1751        if (ret)
1752                return ret;
1753        sz = t->max_tfr;
1754        dev_addr = t->dev_addr;
1755        return mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1756}
1757
1758/*
1759 * Single trim performance by transfer size.
1760 */
1761static int mmc_test_profile_trim_perf(struct mmc_test_card *test)
1762{
1763        struct mmc_test_area *t = &test->area;
1764        unsigned long sz;
1765        unsigned int dev_addr;
1766        struct timespec64 ts1, ts2;
1767        int ret;
1768
1769        if (!mmc_can_trim(test->card))
1770                return RESULT_UNSUP_CARD;
1771
1772        if (!mmc_can_erase(test->card))
1773                return RESULT_UNSUP_HOST;
1774
1775        for (sz = 512; sz < t->max_sz; sz <<= 1) {
1776                dev_addr = t->dev_addr + (sz >> 9);
1777                ktime_get_ts64(&ts1);
1778                ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1779                if (ret)
1780                        return ret;
1781                ktime_get_ts64(&ts2);
1782                mmc_test_print_rate(test, sz, &ts1, &ts2);
1783        }
1784        dev_addr = t->dev_addr;
1785        ktime_get_ts64(&ts1);
1786        ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1787        if (ret)
1788                return ret;
1789        ktime_get_ts64(&ts2);
1790        mmc_test_print_rate(test, sz, &ts1, &ts2);
1791        return 0;
1792}
1793
1794static int mmc_test_seq_read_perf(struct mmc_test_card *test, unsigned long sz)
1795{
1796        struct mmc_test_area *t = &test->area;
1797        unsigned int dev_addr, i, cnt;
1798        struct timespec64 ts1, ts2;
1799        int ret;
1800
1801        cnt = t->max_sz / sz;
1802        dev_addr = t->dev_addr;
1803        ktime_get_ts64(&ts1);
1804        for (i = 0; i < cnt; i++) {
1805                ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 0);
1806                if (ret)
1807                        return ret;
1808                dev_addr += (sz >> 9);
1809        }
1810        ktime_get_ts64(&ts2);
1811        mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1812        return 0;
1813}
1814
1815/*
1816 * Consecutive read performance by transfer size.
1817 */
1818static int mmc_test_profile_seq_read_perf(struct mmc_test_card *test)
1819{
1820        struct mmc_test_area *t = &test->area;
1821        unsigned long sz;
1822        int ret;
1823
1824        for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1825                ret = mmc_test_seq_read_perf(test, sz);
1826                if (ret)
1827                        return ret;
1828        }
1829        sz = t->max_tfr;
1830        return mmc_test_seq_read_perf(test, sz);
1831}
1832
1833static int mmc_test_seq_write_perf(struct mmc_test_card *test, unsigned long sz)
1834{
1835        struct mmc_test_area *t = &test->area;
1836        unsigned int dev_addr, i, cnt;
1837        struct timespec64 ts1, ts2;
1838        int ret;
1839
1840        ret = mmc_test_area_erase(test);
1841        if (ret)
1842                return ret;
1843        cnt = t->max_sz / sz;
1844        dev_addr = t->dev_addr;
1845        ktime_get_ts64(&ts1);
1846        for (i = 0; i < cnt; i++) {
1847                ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 0);
1848                if (ret)
1849                        return ret;
1850                dev_addr += (sz >> 9);
1851        }
1852        ktime_get_ts64(&ts2);
1853        mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1854        return 0;
1855}
1856
1857/*
1858 * Consecutive write performance by transfer size.
1859 */
1860static int mmc_test_profile_seq_write_perf(struct mmc_test_card *test)
1861{
1862        struct mmc_test_area *t = &test->area;
1863        unsigned long sz;
1864        int ret;
1865
1866        for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1867                ret = mmc_test_seq_write_perf(test, sz);
1868                if (ret)
1869                        return ret;
1870        }
1871        sz = t->max_tfr;
1872        return mmc_test_seq_write_perf(test, sz);
1873}
1874
1875/*
1876 * Consecutive trim performance by transfer size.
1877 */
1878static int mmc_test_profile_seq_trim_perf(struct mmc_test_card *test)
1879{
1880        struct mmc_test_area *t = &test->area;
1881        unsigned long sz;
1882        unsigned int dev_addr, i, cnt;
1883        struct timespec64 ts1, ts2;
1884        int ret;
1885
1886        if (!mmc_can_trim(test->card))
1887                return RESULT_UNSUP_CARD;
1888
1889        if (!mmc_can_erase(test->card))
1890                return RESULT_UNSUP_HOST;
1891
1892        for (sz = 512; sz <= t->max_sz; sz <<= 1) {
1893                ret = mmc_test_area_erase(test);
1894                if (ret)
1895                        return ret;
1896                ret = mmc_test_area_fill(test);
1897                if (ret)
1898                        return ret;
1899                cnt = t->max_sz / sz;
1900                dev_addr = t->dev_addr;
1901                ktime_get_ts64(&ts1);
1902                for (i = 0; i < cnt; i++) {
1903                        ret = mmc_erase(test->card, dev_addr, sz >> 9,
1904                                        MMC_TRIM_ARG);
1905                        if (ret)
1906                                return ret;
1907                        dev_addr += (sz >> 9);
1908                }
1909                ktime_get_ts64(&ts2);
1910                mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1911        }
1912        return 0;
1913}
1914
1915static unsigned int rnd_next = 1;
1916
1917static unsigned int mmc_test_rnd_num(unsigned int rnd_cnt)
1918{
1919        uint64_t r;
1920
1921        rnd_next = rnd_next * 1103515245 + 12345;
1922        r = (rnd_next >> 16) & 0x7fff;
1923        return (r * rnd_cnt) >> 15;
1924}
1925
1926static int mmc_test_rnd_perf(struct mmc_test_card *test, int write, int print,
1927                             unsigned long sz)
1928{
1929        unsigned int dev_addr, cnt, rnd_addr, range1, range2, last_ea = 0, ea;
1930        unsigned int ssz;
1931        struct timespec64 ts1, ts2, ts;
1932        int ret;
1933
1934        ssz = sz >> 9;
1935
1936        rnd_addr = mmc_test_capacity(test->card) / 4;
1937        range1 = rnd_addr / test->card->pref_erase;
1938        range2 = range1 / ssz;
1939
1940        ktime_get_ts64(&ts1);
1941        for (cnt = 0; cnt < UINT_MAX; cnt++) {
1942                ktime_get_ts64(&ts2);
1943                ts = timespec64_sub(ts2, ts1);
1944                if (ts.tv_sec >= 10)
1945                        break;
1946                ea = mmc_test_rnd_num(range1);
1947                if (ea == last_ea)
1948                        ea -= 1;
1949                last_ea = ea;
1950                dev_addr = rnd_addr + test->card->pref_erase * ea +
1951                           ssz * mmc_test_rnd_num(range2);
1952                ret = mmc_test_area_io(test, sz, dev_addr, write, 0, 0);
1953                if (ret)
1954                        return ret;
1955        }
1956        if (print)
1957                mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1958        return 0;
1959}
1960
1961static int mmc_test_random_perf(struct mmc_test_card *test, int write)
1962{
1963        struct mmc_test_area *t = &test->area;
1964        unsigned int next;
1965        unsigned long sz;
1966        int ret;
1967
1968        for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1969                /*
1970                 * When writing, try to get more consistent results by running
1971                 * the test twice with exactly the same I/O but outputting the
1972                 * results only for the 2nd run.
1973                 */
1974                if (write) {
1975                        next = rnd_next;
1976                        ret = mmc_test_rnd_perf(test, write, 0, sz);
1977                        if (ret)
1978                                return ret;
1979                        rnd_next = next;
1980                }
1981                ret = mmc_test_rnd_perf(test, write, 1, sz);
1982                if (ret)
1983                        return ret;
1984        }
1985        sz = t->max_tfr;
1986        if (write) {
1987                next = rnd_next;
1988                ret = mmc_test_rnd_perf(test, write, 0, sz);
1989                if (ret)
1990                        return ret;
1991                rnd_next = next;
1992        }
1993        return mmc_test_rnd_perf(test, write, 1, sz);
1994}
1995
1996/*
1997 * Random read performance by transfer size.
1998 */
1999static int mmc_test_random_read_perf(struct mmc_test_card *test)
2000{
2001        return mmc_test_random_perf(test, 0);
2002}
2003
2004/*
2005 * Random write performance by transfer size.
2006 */
2007static int mmc_test_random_write_perf(struct mmc_test_card *test)
2008{
2009        return mmc_test_random_perf(test, 1);
2010}
2011
2012static int mmc_test_seq_perf(struct mmc_test_card *test, int write,
2013                             unsigned int tot_sz, int max_scatter)
2014{
2015        struct mmc_test_area *t = &test->area;
2016        unsigned int dev_addr, i, cnt, sz, ssz;
2017        struct timespec64 ts1, ts2;
2018        int ret;
2019
2020        sz = t->max_tfr;
2021
2022        /*
2023         * In the case of a maximally scattered transfer, the maximum transfer
2024         * size is further limited by using PAGE_SIZE segments.
2025         */
2026        if (max_scatter) {
2027                unsigned long max_tfr;
2028
2029                if (t->max_seg_sz >= PAGE_SIZE)
2030                        max_tfr = t->max_segs * PAGE_SIZE;
2031                else
2032                        max_tfr = t->max_segs * t->max_seg_sz;
2033                if (sz > max_tfr)
2034                        sz = max_tfr;
2035        }
2036
2037        ssz = sz >> 9;
2038        dev_addr = mmc_test_capacity(test->card) / 4;
2039        if (tot_sz > dev_addr << 9)
2040                tot_sz = dev_addr << 9;
2041        cnt = tot_sz / sz;
2042        dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2043
2044        ktime_get_ts64(&ts1);
2045        for (i = 0; i < cnt; i++) {
2046                ret = mmc_test_area_io(test, sz, dev_addr, write,
2047                                       max_scatter, 0);
2048                if (ret)
2049                        return ret;
2050                dev_addr += ssz;
2051        }
2052        ktime_get_ts64(&ts2);
2053
2054        mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
2055
2056        return 0;
2057}
2058
2059static int mmc_test_large_seq_perf(struct mmc_test_card *test, int write)
2060{
2061        int ret, i;
2062
2063        for (i = 0; i < 10; i++) {
2064                ret = mmc_test_seq_perf(test, write, 10 * 1024 * 1024, 1);
2065                if (ret)
2066                        return ret;
2067        }
2068        for (i = 0; i < 5; i++) {
2069                ret = mmc_test_seq_perf(test, write, 100 * 1024 * 1024, 1);
2070                if (ret)
2071                        return ret;
2072        }
2073        for (i = 0; i < 3; i++) {
2074                ret = mmc_test_seq_perf(test, write, 1000 * 1024 * 1024, 1);
2075                if (ret)
2076                        return ret;
2077        }
2078
2079        return ret;
2080}
2081
2082/*
2083 * Large sequential read performance.
2084 */
2085static int mmc_test_large_seq_read_perf(struct mmc_test_card *test)
2086{
2087        return mmc_test_large_seq_perf(test, 0);
2088}
2089
2090/*
2091 * Large sequential write performance.
2092 */
2093static int mmc_test_large_seq_write_perf(struct mmc_test_card *test)
2094{
2095        return mmc_test_large_seq_perf(test, 1);
2096}
2097
2098static int mmc_test_rw_multiple(struct mmc_test_card *test,
2099                                struct mmc_test_multiple_rw *tdata,
2100                                unsigned int reqsize, unsigned int size,
2101                                int min_sg_len)
2102{
2103        unsigned int dev_addr;
2104        struct mmc_test_area *t = &test->area;
2105        int ret = 0;
2106
2107        /* Set up test area */
2108        if (size > mmc_test_capacity(test->card) / 2 * 512)
2109                size = mmc_test_capacity(test->card) / 2 * 512;
2110        if (reqsize > t->max_tfr)
2111                reqsize = t->max_tfr;
2112        dev_addr = mmc_test_capacity(test->card) / 4;
2113        if ((dev_addr & 0xffff0000))
2114                dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2115        else
2116                dev_addr &= 0xfffff800; /* Round to 1MiB boundary */
2117        if (!dev_addr)
2118                goto err;
2119
2120        if (reqsize > size)
2121                return 0;
2122
2123        /* prepare test area */
2124        if (mmc_can_erase(test->card) &&
2125            tdata->prepare & MMC_TEST_PREP_ERASE) {
2126                ret = mmc_erase(test->card, dev_addr,
2127                                size / 512, MMC_SECURE_ERASE_ARG);
2128                if (ret)
2129                        ret = mmc_erase(test->card, dev_addr,
2130                                        size / 512, MMC_ERASE_ARG);
2131                if (ret)
2132                        goto err;
2133        }
2134
2135        /* Run test */
2136        ret = mmc_test_area_io_seq(test, reqsize, dev_addr,
2137                                   tdata->do_write, 0, 1, size / reqsize,
2138                                   tdata->do_nonblock_req, min_sg_len);
2139        if (ret)
2140                goto err;
2141
2142        return ret;
2143 err:
2144        pr_info("[%s] error\n", __func__);
2145        return ret;
2146}
2147
2148static int mmc_test_rw_multiple_size(struct mmc_test_card *test,
2149                                     struct mmc_test_multiple_rw *rw)
2150{
2151        int ret = 0;
2152        int i;
2153        void *pre_req = test->card->host->ops->pre_req;
2154        void *post_req = test->card->host->ops->post_req;
2155
2156        if (rw->do_nonblock_req &&
2157            ((!pre_req && post_req) || (pre_req && !post_req))) {
2158                pr_info("error: only one of pre/post is defined\n");
2159                return -EINVAL;
2160        }
2161
2162        for (i = 0 ; i < rw->len && ret == 0; i++) {
2163                ret = mmc_test_rw_multiple(test, rw, rw->bs[i], rw->size, 0);
2164                if (ret)
2165                        break;
2166        }
2167        return ret;
2168}
2169
2170static int mmc_test_rw_multiple_sg_len(struct mmc_test_card *test,
2171                                       struct mmc_test_multiple_rw *rw)
2172{
2173        int ret = 0;
2174        int i;
2175
2176        for (i = 0 ; i < rw->len && ret == 0; i++) {
2177                ret = mmc_test_rw_multiple(test, rw, 512 * 1024, rw->size,
2178                                           rw->sg_len[i]);
2179                if (ret)
2180                        break;
2181        }
2182        return ret;
2183}
2184
2185/*
2186 * Multiple blocking write 4k to 4 MB chunks
2187 */
2188static int mmc_test_profile_mult_write_blocking_perf(struct mmc_test_card *test)
2189{
2190        unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2191                             1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2192        struct mmc_test_multiple_rw test_data = {
2193                .bs = bs,
2194                .size = TEST_AREA_MAX_SIZE,
2195                .len = ARRAY_SIZE(bs),
2196                .do_write = true,
2197                .do_nonblock_req = false,
2198                .prepare = MMC_TEST_PREP_ERASE,
2199        };
2200
2201        return mmc_test_rw_multiple_size(test, &test_data);
2202};
2203
2204/*
2205 * Multiple non-blocking write 4k to 4 MB chunks
2206 */
2207static int mmc_test_profile_mult_write_nonblock_perf(struct mmc_test_card *test)
2208{
2209        unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2210                             1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2211        struct mmc_test_multiple_rw test_data = {
2212                .bs = bs,
2213                .size = TEST_AREA_MAX_SIZE,
2214                .len = ARRAY_SIZE(bs),
2215                .do_write = true,
2216                .do_nonblock_req = true,
2217                .prepare = MMC_TEST_PREP_ERASE,
2218        };
2219
2220        return mmc_test_rw_multiple_size(test, &test_data);
2221}
2222
2223/*
2224 * Multiple blocking read 4k to 4 MB chunks
2225 */
2226static int mmc_test_profile_mult_read_blocking_perf(struct mmc_test_card *test)
2227{
2228        unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2229                             1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2230        struct mmc_test_multiple_rw test_data = {
2231                .bs = bs,
2232                .size = TEST_AREA_MAX_SIZE,
2233                .len = ARRAY_SIZE(bs),
2234                .do_write = false,
2235                .do_nonblock_req = false,
2236                .prepare = MMC_TEST_PREP_NONE,
2237        };
2238
2239        return mmc_test_rw_multiple_size(test, &test_data);
2240}
2241
2242/*
2243 * Multiple non-blocking read 4k to 4 MB chunks
2244 */
2245static int mmc_test_profile_mult_read_nonblock_perf(struct mmc_test_card *test)
2246{
2247        unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2248                             1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2249        struct mmc_test_multiple_rw test_data = {
2250                .bs = bs,
2251                .size = TEST_AREA_MAX_SIZE,
2252                .len = ARRAY_SIZE(bs),
2253                .do_write = false,
2254                .do_nonblock_req = true,
2255                .prepare = MMC_TEST_PREP_NONE,
2256        };
2257
2258        return mmc_test_rw_multiple_size(test, &test_data);
2259}
2260
2261/*
2262 * Multiple blocking write 1 to 512 sg elements
2263 */
2264static int mmc_test_profile_sglen_wr_blocking_perf(struct mmc_test_card *test)
2265{
2266        unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2267                                 1 << 7, 1 << 8, 1 << 9};
2268        struct mmc_test_multiple_rw test_data = {
2269                .sg_len = sg_len,
2270                .size = TEST_AREA_MAX_SIZE,
2271                .len = ARRAY_SIZE(sg_len),
2272                .do_write = true,
2273                .do_nonblock_req = false,
2274                .prepare = MMC_TEST_PREP_ERASE,
2275        };
2276
2277        return mmc_test_rw_multiple_sg_len(test, &test_data);
2278};
2279
2280/*
2281 * Multiple non-blocking write 1 to 512 sg elements
2282 */
2283static int mmc_test_profile_sglen_wr_nonblock_perf(struct mmc_test_card *test)
2284{
2285        unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2286                                 1 << 7, 1 << 8, 1 << 9};
2287        struct mmc_test_multiple_rw test_data = {
2288                .sg_len = sg_len,
2289                .size = TEST_AREA_MAX_SIZE,
2290                .len = ARRAY_SIZE(sg_len),
2291                .do_write = true,
2292                .do_nonblock_req = true,
2293                .prepare = MMC_TEST_PREP_ERASE,
2294        };
2295
2296        return mmc_test_rw_multiple_sg_len(test, &test_data);
2297}
2298
2299/*
2300 * Multiple blocking read 1 to 512 sg elements
2301 */
2302static int mmc_test_profile_sglen_r_blocking_perf(struct mmc_test_card *test)
2303{
2304        unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2305                                 1 << 7, 1 << 8, 1 << 9};
2306        struct mmc_test_multiple_rw test_data = {
2307                .sg_len = sg_len,
2308                .size = TEST_AREA_MAX_SIZE,
2309                .len = ARRAY_SIZE(sg_len),
2310                .do_write = false,
2311                .do_nonblock_req = false,
2312                .prepare = MMC_TEST_PREP_NONE,
2313        };
2314
2315        return mmc_test_rw_multiple_sg_len(test, &test_data);
2316}
2317
2318/*
2319 * Multiple non-blocking read 1 to 512 sg elements
2320 */
2321static int mmc_test_profile_sglen_r_nonblock_perf(struct mmc_test_card *test)
2322{
2323        unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2324                                 1 << 7, 1 << 8, 1 << 9};
2325        struct mmc_test_multiple_rw test_data = {
2326                .sg_len = sg_len,
2327                .size = TEST_AREA_MAX_SIZE,
2328                .len = ARRAY_SIZE(sg_len),
2329                .do_write = false,
2330                .do_nonblock_req = true,
2331                .prepare = MMC_TEST_PREP_NONE,
2332        };
2333
2334        return mmc_test_rw_multiple_sg_len(test, &test_data);
2335}
2336
2337/*
2338 * eMMC hardware reset.
2339 */
2340static int mmc_test_reset(struct mmc_test_card *test)
2341{
2342        struct mmc_card *card = test->card;
2343        struct mmc_host *host = card->host;
2344        int err;
2345
2346        err = mmc_hw_reset(host);
2347        if (!err) {
2348                /*
2349                 * Reset will re-enable the card's command queue, but tests
2350                 * expect it to be disabled.
2351                 */
2352                if (card->ext_csd.cmdq_en)
2353                        mmc_cmdq_disable(card);
2354                return RESULT_OK;
2355        } else if (err == -EOPNOTSUPP) {
2356                return RESULT_UNSUP_HOST;
2357        }
2358
2359        return RESULT_FAIL;
2360}
2361
2362static int mmc_test_send_status(struct mmc_test_card *test,
2363                                struct mmc_command *cmd)
2364{
2365        memset(cmd, 0, sizeof(*cmd));
2366
2367        cmd->opcode = MMC_SEND_STATUS;
2368        if (!mmc_host_is_spi(test->card->host))
2369                cmd->arg = test->card->rca << 16;
2370        cmd->flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2371
2372        return mmc_wait_for_cmd(test->card->host, cmd, 0);
2373}
2374
2375static int mmc_test_ongoing_transfer(struct mmc_test_card *test,
2376                                     unsigned int dev_addr, int use_sbc,
2377                                     int repeat_cmd, int write, int use_areq)
2378{
2379        struct mmc_test_req *rq = mmc_test_req_alloc();
2380        struct mmc_host *host = test->card->host;
2381        struct mmc_test_area *t = &test->area;
2382        struct mmc_request *mrq;
2383        unsigned long timeout;
2384        bool expired = false;
2385        int ret = 0, cmd_ret;
2386        u32 status = 0;
2387        int count = 0;
2388
2389        if (!rq)
2390                return -ENOMEM;
2391
2392        mrq = &rq->mrq;
2393        if (use_sbc)
2394                mrq->sbc = &rq->sbc;
2395        mrq->cap_cmd_during_tfr = true;
2396
2397        mmc_test_prepare_mrq(test, mrq, t->sg, t->sg_len, dev_addr, t->blocks,
2398                             512, write);
2399
2400        if (use_sbc && t->blocks > 1 && !mrq->sbc) {
2401                ret =  mmc_host_cmd23(host) ?
2402                       RESULT_UNSUP_CARD :
2403                       RESULT_UNSUP_HOST;
2404                goto out_free;
2405        }
2406
2407        /* Start ongoing data request */
2408        if (use_areq) {
2409                ret = mmc_test_start_areq(test, mrq, NULL);
2410                if (ret)
2411                        goto out_free;
2412        } else {
2413                mmc_wait_for_req(host, mrq);
2414        }
2415
2416        timeout = jiffies + msecs_to_jiffies(3000);
2417        do {
2418                count += 1;
2419
2420                /* Send status command while data transfer in progress */
2421                cmd_ret = mmc_test_send_status(test, &rq->status);
2422                if (cmd_ret)
2423                        break;
2424
2425                status = rq->status.resp[0];
2426                if (status & R1_ERROR) {
2427                        cmd_ret = -EIO;
2428                        break;
2429                }
2430
2431                if (mmc_is_req_done(host, mrq))
2432                        break;
2433
2434                expired = time_after(jiffies, timeout);
2435                if (expired) {
2436                        pr_info("%s: timeout waiting for Tran state status %#x\n",
2437                                mmc_hostname(host), status);
2438                        cmd_ret = -ETIMEDOUT;
2439                        break;
2440                }
2441        } while (repeat_cmd && R1_CURRENT_STATE(status) != R1_STATE_TRAN);
2442
2443        /* Wait for data request to complete */
2444        if (use_areq) {
2445                ret = mmc_test_start_areq(test, NULL, mrq);
2446        } else {
2447                mmc_wait_for_req_done(test->card->host, mrq);
2448        }
2449
2450        /*
2451         * For cap_cmd_during_tfr request, upper layer must send stop if
2452         * required.
2453         */
2454        if (mrq->data->stop && (mrq->data->error || !mrq->sbc)) {
2455                if (ret)
2456                        mmc_wait_for_cmd(host, mrq->data->stop, 0);
2457                else
2458                        ret = mmc_wait_for_cmd(host, mrq->data->stop, 0);
2459        }
2460
2461        if (ret)
2462                goto out_free;
2463
2464        if (cmd_ret) {
2465                pr_info("%s: Send Status failed: status %#x, error %d\n",
2466                        mmc_hostname(test->card->host), status, cmd_ret);
2467        }
2468
2469        ret = mmc_test_check_result(test, mrq);
2470        if (ret)
2471                goto out_free;
2472
2473        ret = mmc_test_wait_busy(test);
2474        if (ret)
2475                goto out_free;
2476
2477        if (repeat_cmd && (t->blocks + 1) << 9 > t->max_tfr)
2478                pr_info("%s: %d commands completed during transfer of %u blocks\n",
2479                        mmc_hostname(test->card->host), count, t->blocks);
2480
2481        if (cmd_ret)
2482                ret = cmd_ret;
2483out_free:
2484        kfree(rq);
2485
2486        return ret;
2487}
2488
2489static int __mmc_test_cmds_during_tfr(struct mmc_test_card *test,
2490                                      unsigned long sz, int use_sbc, int write,
2491                                      int use_areq)
2492{
2493        struct mmc_test_area *t = &test->area;
2494        int ret;
2495
2496        if (!(test->card->host->caps & MMC_CAP_CMD_DURING_TFR))
2497                return RESULT_UNSUP_HOST;
2498
2499        ret = mmc_test_area_map(test, sz, 0, 0, use_areq);
2500        if (ret)
2501                return ret;
2502
2503        ret = mmc_test_ongoing_transfer(test, t->dev_addr, use_sbc, 0, write,
2504                                        use_areq);
2505        if (ret)
2506                return ret;
2507
2508        return mmc_test_ongoing_transfer(test, t->dev_addr, use_sbc, 1, write,
2509                                         use_areq);
2510}
2511
2512static int mmc_test_cmds_during_tfr(struct mmc_test_card *test, int use_sbc,
2513                                    int write, int use_areq)
2514{
2515        struct mmc_test_area *t = &test->area;
2516        unsigned long sz;
2517        int ret;
2518
2519        for (sz = 512; sz <= t->max_tfr; sz += 512) {
2520                ret = __mmc_test_cmds_during_tfr(test, sz, use_sbc, write,
2521                                                 use_areq);
2522                if (ret)
2523                        return ret;
2524        }
2525        return 0;
2526}
2527
2528/*
2529 * Commands during read - no Set Block Count (CMD23).
2530 */
2531static int mmc_test_cmds_during_read(struct mmc_test_card *test)
2532{
2533        return mmc_test_cmds_during_tfr(test, 0, 0, 0);
2534}
2535
2536/*
2537 * Commands during write - no Set Block Count (CMD23).
2538 */
2539static int mmc_test_cmds_during_write(struct mmc_test_card *test)
2540{
2541        return mmc_test_cmds_during_tfr(test, 0, 1, 0);
2542}
2543
2544/*
2545 * Commands during read - use Set Block Count (CMD23).
2546 */
2547static int mmc_test_cmds_during_read_cmd23(struct mmc_test_card *test)
2548{
2549        return mmc_test_cmds_during_tfr(test, 1, 0, 0);
2550}
2551
2552/*
2553 * Commands during write - use Set Block Count (CMD23).
2554 */
2555static int mmc_test_cmds_during_write_cmd23(struct mmc_test_card *test)
2556{
2557        return mmc_test_cmds_during_tfr(test, 1, 1, 0);
2558}
2559
2560/*
2561 * Commands during non-blocking read - use Set Block Count (CMD23).
2562 */
2563static int mmc_test_cmds_during_read_cmd23_nonblock(struct mmc_test_card *test)
2564{
2565        return mmc_test_cmds_during_tfr(test, 1, 0, 1);
2566}
2567
2568/*
2569 * Commands during non-blocking write - use Set Block Count (CMD23).
2570 */
2571static int mmc_test_cmds_during_write_cmd23_nonblock(struct mmc_test_card *test)
2572{
2573        return mmc_test_cmds_during_tfr(test, 1, 1, 1);
2574}
2575
2576static const struct mmc_test_case mmc_test_cases[] = {
2577        {
2578                .name = "Basic write (no data verification)",
2579                .run = mmc_test_basic_write,
2580        },
2581
2582        {
2583                .name = "Basic read (no data verification)",
2584                .run = mmc_test_basic_read,
2585        },
2586
2587        {
2588                .name = "Basic write (with data verification)",
2589                .prepare = mmc_test_prepare_write,
2590                .run = mmc_test_verify_write,
2591                .cleanup = mmc_test_cleanup,
2592        },
2593
2594        {
2595                .name = "Basic read (with data verification)",
2596                .prepare = mmc_test_prepare_read,
2597                .run = mmc_test_verify_read,
2598                .cleanup = mmc_test_cleanup,
2599        },
2600
2601        {
2602                .name = "Multi-block write",
2603                .prepare = mmc_test_prepare_write,
2604                .run = mmc_test_multi_write,
2605                .cleanup = mmc_test_cleanup,
2606        },
2607
2608        {
2609                .name = "Multi-block read",
2610                .prepare = mmc_test_prepare_read,
2611                .run = mmc_test_multi_read,
2612                .cleanup = mmc_test_cleanup,
2613        },
2614
2615        {
2616                .name = "Power of two block writes",
2617                .prepare = mmc_test_prepare_write,
2618                .run = mmc_test_pow2_write,
2619                .cleanup = mmc_test_cleanup,
2620        },
2621
2622        {
2623                .name = "Power of two block reads",
2624                .prepare = mmc_test_prepare_read,
2625                .run = mmc_test_pow2_read,
2626                .cleanup = mmc_test_cleanup,
2627        },
2628
2629        {
2630                .name = "Weird sized block writes",
2631                .prepare = mmc_test_prepare_write,
2632                .run = mmc_test_weird_write,
2633                .cleanup = mmc_test_cleanup,
2634        },
2635
2636        {
2637                .name = "Weird sized block reads",
2638                .prepare = mmc_test_prepare_read,
2639                .run = mmc_test_weird_read,
2640                .cleanup = mmc_test_cleanup,
2641        },
2642
2643        {
2644                .name = "Badly aligned write",
2645                .prepare = mmc_test_prepare_write,
2646                .run = mmc_test_align_write,
2647                .cleanup = mmc_test_cleanup,
2648        },
2649
2650        {
2651                .name = "Badly aligned read",
2652                .prepare = mmc_test_prepare_read,
2653                .run = mmc_test_align_read,
2654                .cleanup = mmc_test_cleanup,
2655        },
2656
2657        {
2658                .name = "Badly aligned multi-block write",
2659                .prepare = mmc_test_prepare_write,
2660                .run = mmc_test_align_multi_write,
2661                .cleanup = mmc_test_cleanup,
2662        },
2663
2664        {
2665                .name = "Badly aligned multi-block read",
2666                .prepare = mmc_test_prepare_read,
2667                .run = mmc_test_align_multi_read,
2668                .cleanup = mmc_test_cleanup,
2669        },
2670
2671        {
2672                .name = "Correct xfer_size at write (start failure)",
2673                .run = mmc_test_xfersize_write,
2674        },
2675
2676        {
2677                .name = "Correct xfer_size at read (start failure)",
2678                .run = mmc_test_xfersize_read,
2679        },
2680
2681        {
2682                .name = "Correct xfer_size at write (midway failure)",
2683                .run = mmc_test_multi_xfersize_write,
2684        },
2685
2686        {
2687                .name = "Correct xfer_size at read (midway failure)",
2688                .run = mmc_test_multi_xfersize_read,
2689        },
2690
2691#ifdef CONFIG_HIGHMEM
2692
2693        {
2694                .name = "Highmem write",
2695                .prepare = mmc_test_prepare_write,
2696                .run = mmc_test_write_high,
2697                .cleanup = mmc_test_cleanup,
2698        },
2699
2700        {
2701                .name = "Highmem read",
2702                .prepare = mmc_test_prepare_read,
2703                .run = mmc_test_read_high,
2704                .cleanup = mmc_test_cleanup,
2705        },
2706
2707        {
2708                .name = "Multi-block highmem write",
2709                .prepare = mmc_test_prepare_write,
2710                .run = mmc_test_multi_write_high,
2711                .cleanup = mmc_test_cleanup,
2712        },
2713
2714        {
2715                .name = "Multi-block highmem read",
2716                .prepare = mmc_test_prepare_read,
2717                .run = mmc_test_multi_read_high,
2718                .cleanup = mmc_test_cleanup,
2719        },
2720
2721#else
2722
2723        {
2724                .name = "Highmem write",
2725                .run = mmc_test_no_highmem,
2726        },
2727
2728        {
2729                .name = "Highmem read",
2730                .run = mmc_test_no_highmem,
2731        },
2732
2733        {
2734                .name = "Multi-block highmem write",
2735                .run = mmc_test_no_highmem,
2736        },
2737
2738        {
2739                .name = "Multi-block highmem read",
2740                .run = mmc_test_no_highmem,
2741        },
2742
2743#endif /* CONFIG_HIGHMEM */
2744
2745        {
2746                .name = "Best-case read performance",
2747                .prepare = mmc_test_area_prepare_fill,
2748                .run = mmc_test_best_read_performance,
2749                .cleanup = mmc_test_area_cleanup,
2750        },
2751
2752        {
2753                .name = "Best-case write performance",
2754                .prepare = mmc_test_area_prepare_erase,
2755                .run = mmc_test_best_write_performance,
2756                .cleanup = mmc_test_area_cleanup,
2757        },
2758
2759        {
2760                .name = "Best-case read performance into scattered pages",
2761                .prepare = mmc_test_area_prepare_fill,
2762                .run = mmc_test_best_read_perf_max_scatter,
2763                .cleanup = mmc_test_area_cleanup,
2764        },
2765
2766        {
2767                .name = "Best-case write performance from scattered pages",
2768                .prepare = mmc_test_area_prepare_erase,
2769                .run = mmc_test_best_write_perf_max_scatter,
2770                .cleanup = mmc_test_area_cleanup,
2771        },
2772
2773        {
2774                .name = "Single read performance by transfer size",
2775                .prepare = mmc_test_area_prepare_fill,
2776                .run = mmc_test_profile_read_perf,
2777                .cleanup = mmc_test_area_cleanup,
2778        },
2779
2780        {
2781                .name = "Single write performance by transfer size",
2782                .prepare = mmc_test_area_prepare,
2783                .run = mmc_test_profile_write_perf,
2784                .cleanup = mmc_test_area_cleanup,
2785        },
2786
2787        {
2788                .name = "Single trim performance by transfer size",
2789                .prepare = mmc_test_area_prepare_fill,
2790                .run = mmc_test_profile_trim_perf,
2791                .cleanup = mmc_test_area_cleanup,
2792        },
2793
2794        {
2795                .name = "Consecutive read performance by transfer size",
2796                .prepare = mmc_test_area_prepare_fill,
2797                .run = mmc_test_profile_seq_read_perf,
2798                .cleanup = mmc_test_area_cleanup,
2799        },
2800
2801        {
2802                .name = "Consecutive write performance by transfer size",
2803                .prepare = mmc_test_area_prepare,
2804                .run = mmc_test_profile_seq_write_perf,
2805                .cleanup = mmc_test_area_cleanup,
2806        },
2807
2808        {
2809                .name = "Consecutive trim performance by transfer size",
2810                .prepare = mmc_test_area_prepare,
2811                .run = mmc_test_profile_seq_trim_perf,
2812                .cleanup = mmc_test_area_cleanup,
2813        },
2814
2815        {
2816                .name = "Random read performance by transfer size",
2817                .prepare = mmc_test_area_prepare,
2818                .run = mmc_test_random_read_perf,
2819                .cleanup = mmc_test_area_cleanup,
2820        },
2821
2822        {
2823                .name = "Random write performance by transfer size",
2824                .prepare = mmc_test_area_prepare,
2825                .run = mmc_test_random_write_perf,
2826                .cleanup = mmc_test_area_cleanup,
2827        },
2828
2829        {
2830                .name = "Large sequential read into scattered pages",
2831                .prepare = mmc_test_area_prepare,
2832                .run = mmc_test_large_seq_read_perf,
2833                .cleanup = mmc_test_area_cleanup,
2834        },
2835
2836        {
2837                .name = "Large sequential write from scattered pages",
2838                .prepare = mmc_test_area_prepare,
2839                .run = mmc_test_large_seq_write_perf,
2840                .cleanup = mmc_test_area_cleanup,
2841        },
2842
2843        {
2844                .name = "Write performance with blocking req 4k to 4MB",
2845                .prepare = mmc_test_area_prepare,
2846                .run = mmc_test_profile_mult_write_blocking_perf,
2847                .cleanup = mmc_test_area_cleanup,
2848        },
2849
2850        {
2851                .name = "Write performance with non-blocking req 4k to 4MB",
2852                .prepare = mmc_test_area_prepare,
2853                .run = mmc_test_profile_mult_write_nonblock_perf,
2854                .cleanup = mmc_test_area_cleanup,
2855        },
2856
2857        {
2858                .name = "Read performance with blocking req 4k to 4MB",
2859                .prepare = mmc_test_area_prepare,
2860                .run = mmc_test_profile_mult_read_blocking_perf,
2861                .cleanup = mmc_test_area_cleanup,
2862        },
2863
2864        {
2865                .name = "Read performance with non-blocking req 4k to 4MB",
2866                .prepare = mmc_test_area_prepare,
2867                .run = mmc_test_profile_mult_read_nonblock_perf,
2868                .cleanup = mmc_test_area_cleanup,
2869        },
2870
2871        {
2872                .name = "Write performance blocking req 1 to 512 sg elems",
2873                .prepare = mmc_test_area_prepare,
2874                .run = mmc_test_profile_sglen_wr_blocking_perf,
2875                .cleanup = mmc_test_area_cleanup,
2876        },
2877
2878        {
2879                .name = "Write performance non-blocking req 1 to 512 sg elems",
2880                .prepare = mmc_test_area_prepare,
2881                .run = mmc_test_profile_sglen_wr_nonblock_perf,
2882                .cleanup = mmc_test_area_cleanup,
2883        },
2884
2885        {
2886                .name = "Read performance blocking req 1 to 512 sg elems",
2887                .prepare = mmc_test_area_prepare,
2888                .run = mmc_test_profile_sglen_r_blocking_perf,
2889                .cleanup = mmc_test_area_cleanup,
2890        },
2891
2892        {
2893                .name = "Read performance non-blocking req 1 to 512 sg elems",
2894                .prepare = mmc_test_area_prepare,
2895                .run = mmc_test_profile_sglen_r_nonblock_perf,
2896                .cleanup = mmc_test_area_cleanup,
2897        },
2898
2899        {
2900                .name = "Reset test",
2901                .run = mmc_test_reset,
2902        },
2903
2904        {
2905                .name = "Commands during read - no Set Block Count (CMD23)",
2906                .prepare = mmc_test_area_prepare,
2907                .run = mmc_test_cmds_during_read,
2908                .cleanup = mmc_test_area_cleanup,
2909        },
2910
2911        {
2912                .name = "Commands during write - no Set Block Count (CMD23)",
2913                .prepare = mmc_test_area_prepare,
2914                .run = mmc_test_cmds_during_write,
2915                .cleanup = mmc_test_area_cleanup,
2916        },
2917
2918        {
2919                .name = "Commands during read - use Set Block Count (CMD23)",
2920                .prepare = mmc_test_area_prepare,
2921                .run = mmc_test_cmds_during_read_cmd23,
2922                .cleanup = mmc_test_area_cleanup,
2923        },
2924
2925        {
2926                .name = "Commands during write - use Set Block Count (CMD23)",
2927                .prepare = mmc_test_area_prepare,
2928                .run = mmc_test_cmds_during_write_cmd23,
2929                .cleanup = mmc_test_area_cleanup,
2930        },
2931
2932        {
2933                .name = "Commands during non-blocking read - use Set Block Count (CMD23)",
2934                .prepare = mmc_test_area_prepare,
2935                .run = mmc_test_cmds_during_read_cmd23_nonblock,
2936                .cleanup = mmc_test_area_cleanup,
2937        },
2938
2939        {
2940                .name = "Commands during non-blocking write - use Set Block Count (CMD23)",
2941                .prepare = mmc_test_area_prepare,
2942                .run = mmc_test_cmds_during_write_cmd23_nonblock,
2943                .cleanup = mmc_test_area_cleanup,
2944        },
2945};
2946
2947static DEFINE_MUTEX(mmc_test_lock);
2948
2949static LIST_HEAD(mmc_test_result);
2950
2951static void mmc_test_run(struct mmc_test_card *test, int testcase)
2952{
2953        int i, ret;
2954
2955        pr_info("%s: Starting tests of card %s...\n",
2956                mmc_hostname(test->card->host), mmc_card_id(test->card));
2957
2958        mmc_claim_host(test->card->host);
2959
2960        for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++) {
2961                struct mmc_test_general_result *gr;
2962
2963                if (testcase && ((i + 1) != testcase))
2964                        continue;
2965
2966                pr_info("%s: Test case %d. %s...\n",
2967                        mmc_hostname(test->card->host), i + 1,
2968                        mmc_test_cases[i].name);
2969
2970                if (mmc_test_cases[i].prepare) {
2971                        ret = mmc_test_cases[i].prepare(test);
2972                        if (ret) {
2973                                pr_info("%s: Result: Prepare stage failed! (%d)\n",
2974                                        mmc_hostname(test->card->host),
2975                                        ret);
2976                                continue;
2977                        }
2978                }
2979
2980                gr = kzalloc(sizeof(*gr), GFP_KERNEL);
2981                if (gr) {
2982                        INIT_LIST_HEAD(&gr->tr_lst);
2983
2984                        /* Assign data what we know already */
2985                        gr->card = test->card;
2986                        gr->testcase = i;
2987
2988                        /* Append container to global one */
2989                        list_add_tail(&gr->link, &mmc_test_result);
2990
2991                        /*
2992                         * Save the pointer to created container in our private
2993                         * structure.
2994                         */
2995                        test->gr = gr;
2996                }
2997
2998                ret = mmc_test_cases[i].run(test);
2999                switch (ret) {
3000                case RESULT_OK:
3001                        pr_info("%s: Result: OK\n",
3002                                mmc_hostname(test->card->host));
3003                        break;
3004                case RESULT_FAIL:
3005                        pr_info("%s: Result: FAILED\n",
3006                                mmc_hostname(test->card->host));
3007                        break;
3008                case RESULT_UNSUP_HOST:
3009                        pr_info("%s: Result: UNSUPPORTED (by host)\n",
3010                                mmc_hostname(test->card->host));
3011                        break;
3012                case RESULT_UNSUP_CARD:
3013                        pr_info("%s: Result: UNSUPPORTED (by card)\n",
3014                                mmc_hostname(test->card->host));
3015                        break;
3016                default:
3017                        pr_info("%s: Result: ERROR (%d)\n",
3018                                mmc_hostname(test->card->host), ret);
3019                }
3020
3021                /* Save the result */
3022                if (gr)
3023                        gr->result = ret;
3024
3025                if (mmc_test_cases[i].cleanup) {
3026                        ret = mmc_test_cases[i].cleanup(test);
3027                        if (ret) {
3028                                pr_info("%s: Warning: Cleanup stage failed! (%d)\n",
3029                                        mmc_hostname(test->card->host),
3030                                        ret);
3031                        }
3032                }
3033        }
3034
3035        mmc_release_host(test->card->host);
3036
3037        pr_info("%s: Tests completed.\n",
3038                mmc_hostname(test->card->host));
3039}
3040
3041static void mmc_test_free_result(struct mmc_card *card)
3042{
3043        struct mmc_test_general_result *gr, *grs;
3044
3045        mutex_lock(&mmc_test_lock);
3046
3047        list_for_each_entry_safe(gr, grs, &mmc_test_result, link) {
3048                struct mmc_test_transfer_result *tr, *trs;
3049
3050                if (card && gr->card != card)
3051                        continue;
3052
3053                list_for_each_entry_safe(tr, trs, &gr->tr_lst, link) {
3054                        list_del(&tr->link);
3055                        kfree(tr);
3056                }
3057
3058                list_del(&gr->link);
3059                kfree(gr);
3060        }
3061
3062        mutex_unlock(&mmc_test_lock);
3063}
3064
3065static LIST_HEAD(mmc_test_file_test);
3066
3067static int mtf_test_show(struct seq_file *sf, void *data)
3068{
3069        struct mmc_card *card = (struct mmc_card *)sf->private;
3070        struct mmc_test_general_result *gr;
3071
3072        mutex_lock(&mmc_test_lock);
3073
3074        list_for_each_entry(gr, &mmc_test_result, link) {
3075                struct mmc_test_transfer_result *tr;
3076
3077                if (gr->card != card)
3078                        continue;
3079
3080                seq_printf(sf, "Test %d: %d\n", gr->testcase + 1, gr->result);
3081
3082                list_for_each_entry(tr, &gr->tr_lst, link) {
3083                        seq_printf(sf, "%u %d %llu.%09u %u %u.%02u\n",
3084                                tr->count, tr->sectors,
3085                                (u64)tr->ts.tv_sec, (u32)tr->ts.tv_nsec,
3086                                tr->rate, tr->iops / 100, tr->iops % 100);
3087                }
3088        }
3089
3090        mutex_unlock(&mmc_test_lock);
3091
3092        return 0;
3093}
3094
3095static int mtf_test_open(struct inode *inode, struct file *file)
3096{
3097        return single_open(file, mtf_test_show, inode->i_private);
3098}
3099
3100static ssize_t mtf_test_write(struct file *file, const char __user *buf,
3101        size_t count, loff_t *pos)
3102{
3103        struct seq_file *sf = (struct seq_file *)file->private_data;
3104        struct mmc_card *card = (struct mmc_card *)sf->private;
3105        struct mmc_test_card *test;
3106        long testcase;
3107        int ret;
3108
3109        ret = kstrtol_from_user(buf, count, 10, &testcase);
3110        if (ret)
3111                return ret;
3112
3113        test = kzalloc(sizeof(*test), GFP_KERNEL);
3114        if (!test)
3115                return -ENOMEM;
3116
3117        /*
3118         * Remove all test cases associated with given card. Thus we have only
3119         * actual data of the last run.
3120         */
3121        mmc_test_free_result(card);
3122
3123        test->card = card;
3124
3125        test->buffer = kzalloc(BUFFER_SIZE, GFP_KERNEL);
3126#ifdef CONFIG_HIGHMEM
3127        test->highmem = alloc_pages(GFP_KERNEL | __GFP_HIGHMEM, BUFFER_ORDER);
3128#endif
3129
3130#ifdef CONFIG_HIGHMEM
3131        if (test->buffer && test->highmem) {
3132#else
3133        if (test->buffer) {
3134#endif
3135                mutex_lock(&mmc_test_lock);
3136                mmc_test_run(test, testcase);
3137                mutex_unlock(&mmc_test_lock);
3138        }
3139
3140#ifdef CONFIG_HIGHMEM
3141        __free_pages(test->highmem, BUFFER_ORDER);
3142#endif
3143        kfree(test->buffer);
3144        kfree(test);
3145
3146        return count;
3147}
3148
3149static const struct file_operations mmc_test_fops_test = {
3150        .open           = mtf_test_open,
3151        .read           = seq_read,
3152        .write          = mtf_test_write,
3153        .llseek         = seq_lseek,
3154        .release        = single_release,
3155};
3156
3157static int mtf_testlist_show(struct seq_file *sf, void *data)
3158{
3159        int i;
3160
3161        mutex_lock(&mmc_test_lock);
3162
3163        seq_puts(sf, "0:\tRun all tests\n");
3164        for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++)
3165                seq_printf(sf, "%d:\t%s\n", i + 1, mmc_test_cases[i].name);
3166
3167        mutex_unlock(&mmc_test_lock);
3168
3169        return 0;
3170}
3171
3172DEFINE_SHOW_ATTRIBUTE(mtf_testlist);
3173
3174static void mmc_test_free_dbgfs_file(struct mmc_card *card)
3175{
3176        struct mmc_test_dbgfs_file *df, *dfs;
3177
3178        mutex_lock(&mmc_test_lock);
3179
3180        list_for_each_entry_safe(df, dfs, &mmc_test_file_test, link) {
3181                if (card && df->card != card)
3182                        continue;
3183                debugfs_remove(df->file);
3184                list_del(&df->link);
3185                kfree(df);
3186        }
3187
3188        mutex_unlock(&mmc_test_lock);
3189}
3190
3191static int __mmc_test_register_dbgfs_file(struct mmc_card *card,
3192        const char *name, umode_t mode, const struct file_operations *fops)
3193{
3194        struct dentry *file = NULL;
3195        struct mmc_test_dbgfs_file *df;
3196
3197        if (card->debugfs_root)
3198                debugfs_create_file(name, mode, card->debugfs_root, card, fops);
3199
3200        df = kmalloc(sizeof(*df), GFP_KERNEL);
3201        if (!df) {
3202                debugfs_remove(file);
3203                return -ENOMEM;
3204        }
3205
3206        df->card = card;
3207        df->file = file;
3208
3209        list_add(&df->link, &mmc_test_file_test);
3210        return 0;
3211}
3212
3213static int mmc_test_register_dbgfs_file(struct mmc_card *card)
3214{
3215        int ret;
3216
3217        mutex_lock(&mmc_test_lock);
3218
3219        ret = __mmc_test_register_dbgfs_file(card, "test", S_IWUSR | S_IRUGO,
3220                &mmc_test_fops_test);
3221        if (ret)
3222                goto err;
3223
3224        ret = __mmc_test_register_dbgfs_file(card, "testlist", S_IRUGO,
3225                &mtf_testlist_fops);
3226        if (ret)
3227                goto err;
3228
3229err:
3230        mutex_unlock(&mmc_test_lock);
3231
3232        return ret;
3233}
3234
3235static int mmc_test_probe(struct mmc_card *card)
3236{
3237        int ret;
3238
3239        if (!mmc_card_mmc(card) && !mmc_card_sd(card))
3240                return -ENODEV;
3241
3242        ret = mmc_test_register_dbgfs_file(card);
3243        if (ret)
3244                return ret;
3245
3246        if (card->ext_csd.cmdq_en) {
3247                mmc_claim_host(card->host);
3248                ret = mmc_cmdq_disable(card);
3249                mmc_release_host(card->host);
3250                if (ret)
3251                        return ret;
3252        }
3253
3254        dev_info(&card->dev, "Card claimed for testing.\n");
3255
3256        return 0;
3257}
3258
3259static void mmc_test_remove(struct mmc_card *card)
3260{
3261        if (card->reenable_cmdq) {
3262                mmc_claim_host(card->host);
3263                mmc_cmdq_enable(card);
3264                mmc_release_host(card->host);
3265        }
3266        mmc_test_free_result(card);
3267        mmc_test_free_dbgfs_file(card);
3268}
3269
3270static void mmc_test_shutdown(struct mmc_card *card)
3271{
3272}
3273
3274static struct mmc_driver mmc_driver = {
3275        .drv            = {
3276                .name   = "mmc_test",
3277        },
3278        .probe          = mmc_test_probe,
3279        .remove         = mmc_test_remove,
3280        .shutdown       = mmc_test_shutdown,
3281};
3282
3283static int __init mmc_test_init(void)
3284{
3285        return mmc_register_driver(&mmc_driver);
3286}
3287
3288static void __exit mmc_test_exit(void)
3289{
3290        /* Clear stalled data if card is still plugged */
3291        mmc_test_free_result(NULL);
3292        mmc_test_free_dbgfs_file(NULL);
3293
3294        mmc_unregister_driver(&mmc_driver);
3295}
3296
3297module_init(mmc_test_init);
3298module_exit(mmc_test_exit);
3299
3300MODULE_LICENSE("GPL");
3301MODULE_DESCRIPTION("Multimedia Card (MMC) host test driver");
3302MODULE_AUTHOR("Pierre Ossman");
3303