linux/drivers/mmc/host/mmci.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
   4 *
   5 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
   6 *  Copyright (C) 2010 ST-Ericsson SA
   7 */
   8#include <linux/module.h>
   9#include <linux/moduleparam.h>
  10#include <linux/init.h>
  11#include <linux/ioport.h>
  12#include <linux/device.h>
  13#include <linux/io.h>
  14#include <linux/interrupt.h>
  15#include <linux/kernel.h>
  16#include <linux/slab.h>
  17#include <linux/delay.h>
  18#include <linux/err.h>
  19#include <linux/highmem.h>
  20#include <linux/log2.h>
  21#include <linux/mmc/mmc.h>
  22#include <linux/mmc/pm.h>
  23#include <linux/mmc/host.h>
  24#include <linux/mmc/card.h>
  25#include <linux/mmc/sd.h>
  26#include <linux/mmc/slot-gpio.h>
  27#include <linux/amba/bus.h>
  28#include <linux/clk.h>
  29#include <linux/scatterlist.h>
  30#include <linux/of.h>
  31#include <linux/regulator/consumer.h>
  32#include <linux/dmaengine.h>
  33#include <linux/dma-mapping.h>
  34#include <linux/amba/mmci.h>
  35#include <linux/pm_runtime.h>
  36#include <linux/types.h>
  37#include <linux/pinctrl/consumer.h>
  38#include <linux/reset.h>
  39
  40#include <asm/div64.h>
  41#include <asm/io.h>
  42
  43#include "mmci.h"
  44
  45#define DRIVER_NAME "mmci-pl18x"
  46
  47static void mmci_variant_init(struct mmci_host *host);
  48static void ux500_variant_init(struct mmci_host *host);
  49static void ux500v2_variant_init(struct mmci_host *host);
  50
  51static unsigned int fmax = 515633;
  52
  53static struct variant_data variant_arm = {
  54        .fifosize               = 16 * 4,
  55        .fifohalfsize           = 8 * 4,
  56        .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
  57        .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
  58        .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
  59        .cmdreg_srsp            = MCI_CPSM_RESPONSE,
  60        .datalength_bits        = 16,
  61        .datactrl_blocksz       = 11,
  62        .pwrreg_powerup         = MCI_PWR_UP,
  63        .f_max                  = 100000000,
  64        .reversed_irq_handling  = true,
  65        .mmcimask1              = true,
  66        .irq_pio_mask           = MCI_IRQ_PIO_MASK,
  67        .start_err              = MCI_STARTBITERR,
  68        .opendrain              = MCI_ROD,
  69        .init                   = mmci_variant_init,
  70};
  71
  72static struct variant_data variant_arm_extended_fifo = {
  73        .fifosize               = 128 * 4,
  74        .fifohalfsize           = 64 * 4,
  75        .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
  76        .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
  77        .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
  78        .cmdreg_srsp            = MCI_CPSM_RESPONSE,
  79        .datalength_bits        = 16,
  80        .datactrl_blocksz       = 11,
  81        .pwrreg_powerup         = MCI_PWR_UP,
  82        .f_max                  = 100000000,
  83        .mmcimask1              = true,
  84        .irq_pio_mask           = MCI_IRQ_PIO_MASK,
  85        .start_err              = MCI_STARTBITERR,
  86        .opendrain              = MCI_ROD,
  87        .init                   = mmci_variant_init,
  88};
  89
  90static struct variant_data variant_arm_extended_fifo_hwfc = {
  91        .fifosize               = 128 * 4,
  92        .fifohalfsize           = 64 * 4,
  93        .clkreg_enable          = MCI_ARM_HWFCEN,
  94        .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
  95        .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
  96        .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
  97        .cmdreg_srsp            = MCI_CPSM_RESPONSE,
  98        .datalength_bits        = 16,
  99        .datactrl_blocksz       = 11,
 100        .pwrreg_powerup         = MCI_PWR_UP,
 101        .f_max                  = 100000000,
 102        .mmcimask1              = true,
 103        .irq_pio_mask           = MCI_IRQ_PIO_MASK,
 104        .start_err              = MCI_STARTBITERR,
 105        .opendrain              = MCI_ROD,
 106        .init                   = mmci_variant_init,
 107};
 108
 109static struct variant_data variant_u300 = {
 110        .fifosize               = 16 * 4,
 111        .fifohalfsize           = 8 * 4,
 112        .clkreg_enable          = MCI_ST_U300_HWFCEN,
 113        .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 114        .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
 115        .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 116        .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
 117        .cmdreg_srsp            = MCI_CPSM_RESPONSE,
 118        .datalength_bits        = 16,
 119        .datactrl_blocksz       = 11,
 120        .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
 121        .st_sdio                        = true,
 122        .pwrreg_powerup         = MCI_PWR_ON,
 123        .f_max                  = 100000000,
 124        .signal_direction       = true,
 125        .pwrreg_clkgate         = true,
 126        .pwrreg_nopower         = true,
 127        .mmcimask1              = true,
 128        .irq_pio_mask           = MCI_IRQ_PIO_MASK,
 129        .start_err              = MCI_STARTBITERR,
 130        .opendrain              = MCI_OD,
 131        .init                   = mmci_variant_init,
 132};
 133
 134static struct variant_data variant_nomadik = {
 135        .fifosize               = 16 * 4,
 136        .fifohalfsize           = 8 * 4,
 137        .clkreg                 = MCI_CLK_ENABLE,
 138        .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 139        .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
 140        .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 141        .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
 142        .cmdreg_srsp            = MCI_CPSM_RESPONSE,
 143        .datalength_bits        = 24,
 144        .datactrl_blocksz       = 11,
 145        .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
 146        .st_sdio                = true,
 147        .st_clkdiv              = true,
 148        .pwrreg_powerup         = MCI_PWR_ON,
 149        .f_max                  = 100000000,
 150        .signal_direction       = true,
 151        .pwrreg_clkgate         = true,
 152        .pwrreg_nopower         = true,
 153        .mmcimask1              = true,
 154        .irq_pio_mask           = MCI_IRQ_PIO_MASK,
 155        .start_err              = MCI_STARTBITERR,
 156        .opendrain              = MCI_OD,
 157        .init                   = mmci_variant_init,
 158};
 159
 160static struct variant_data variant_ux500 = {
 161        .fifosize               = 30 * 4,
 162        .fifohalfsize           = 8 * 4,
 163        .clkreg                 = MCI_CLK_ENABLE,
 164        .clkreg_enable          = MCI_ST_UX500_HWFCEN,
 165        .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 166        .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
 167        .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
 168        .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 169        .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
 170        .cmdreg_srsp            = MCI_CPSM_RESPONSE,
 171        .datalength_bits        = 24,
 172        .datactrl_blocksz       = 11,
 173        .datactrl_any_blocksz   = true,
 174        .dma_power_of_2         = true,
 175        .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
 176        .st_sdio                = true,
 177        .st_clkdiv              = true,
 178        .pwrreg_powerup         = MCI_PWR_ON,
 179        .f_max                  = 100000000,
 180        .signal_direction       = true,
 181        .pwrreg_clkgate         = true,
 182        .busy_detect            = true,
 183        .busy_dpsm_flag         = MCI_DPSM_ST_BUSYMODE,
 184        .busy_detect_flag       = MCI_ST_CARDBUSY,
 185        .busy_detect_mask       = MCI_ST_BUSYENDMASK,
 186        .pwrreg_nopower         = true,
 187        .mmcimask1              = true,
 188        .irq_pio_mask           = MCI_IRQ_PIO_MASK,
 189        .start_err              = MCI_STARTBITERR,
 190        .opendrain              = MCI_OD,
 191        .init                   = ux500_variant_init,
 192};
 193
 194static struct variant_data variant_ux500v2 = {
 195        .fifosize               = 30 * 4,
 196        .fifohalfsize           = 8 * 4,
 197        .clkreg                 = MCI_CLK_ENABLE,
 198        .clkreg_enable          = MCI_ST_UX500_HWFCEN,
 199        .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 200        .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
 201        .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
 202        .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 203        .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
 204        .cmdreg_srsp            = MCI_CPSM_RESPONSE,
 205        .datactrl_mask_ddrmode  = MCI_DPSM_ST_DDRMODE,
 206        .datalength_bits        = 24,
 207        .datactrl_blocksz       = 11,
 208        .datactrl_any_blocksz   = true,
 209        .dma_power_of_2         = true,
 210        .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
 211        .st_sdio                = true,
 212        .st_clkdiv              = true,
 213        .pwrreg_powerup         = MCI_PWR_ON,
 214        .f_max                  = 100000000,
 215        .signal_direction       = true,
 216        .pwrreg_clkgate         = true,
 217        .busy_detect            = true,
 218        .busy_dpsm_flag         = MCI_DPSM_ST_BUSYMODE,
 219        .busy_detect_flag       = MCI_ST_CARDBUSY,
 220        .busy_detect_mask       = MCI_ST_BUSYENDMASK,
 221        .pwrreg_nopower         = true,
 222        .mmcimask1              = true,
 223        .irq_pio_mask           = MCI_IRQ_PIO_MASK,
 224        .start_err              = MCI_STARTBITERR,
 225        .opendrain              = MCI_OD,
 226        .init                   = ux500v2_variant_init,
 227};
 228
 229static struct variant_data variant_stm32 = {
 230        .fifosize               = 32 * 4,
 231        .fifohalfsize           = 8 * 4,
 232        .clkreg                 = MCI_CLK_ENABLE,
 233        .clkreg_enable          = MCI_ST_UX500_HWFCEN,
 234        .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 235        .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
 236        .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
 237        .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 238        .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
 239        .cmdreg_srsp            = MCI_CPSM_RESPONSE,
 240        .irq_pio_mask           = MCI_IRQ_PIO_MASK,
 241        .datalength_bits        = 24,
 242        .datactrl_blocksz       = 11,
 243        .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
 244        .st_sdio                = true,
 245        .st_clkdiv              = true,
 246        .pwrreg_powerup         = MCI_PWR_ON,
 247        .f_max                  = 48000000,
 248        .pwrreg_clkgate         = true,
 249        .pwrreg_nopower         = true,
 250        .init                   = mmci_variant_init,
 251};
 252
 253static struct variant_data variant_stm32_sdmmc = {
 254        .fifosize               = 16 * 4,
 255        .fifohalfsize           = 8 * 4,
 256        .f_max                  = 208000000,
 257        .stm32_clkdiv           = true,
 258        .cmdreg_cpsm_enable     = MCI_CPSM_STM32_ENABLE,
 259        .cmdreg_lrsp_crc        = MCI_CPSM_STM32_LRSP_CRC,
 260        .cmdreg_srsp_crc        = MCI_CPSM_STM32_SRSP_CRC,
 261        .cmdreg_srsp            = MCI_CPSM_STM32_SRSP,
 262        .cmdreg_stop            = MCI_CPSM_STM32_CMDSTOP,
 263        .data_cmd_enable        = MCI_CPSM_STM32_CMDTRANS,
 264        .irq_pio_mask           = MCI_IRQ_PIO_STM32_MASK,
 265        .datactrl_first         = true,
 266        .datacnt_useless        = true,
 267        .datalength_bits        = 25,
 268        .datactrl_blocksz       = 14,
 269        .datactrl_any_blocksz   = true,
 270        .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
 271        .stm32_idmabsize_mask   = GENMASK(12, 5),
 272        .busy_timeout           = true,
 273        .busy_detect            = true,
 274        .busy_detect_flag       = MCI_STM32_BUSYD0,
 275        .busy_detect_mask       = MCI_STM32_BUSYD0ENDMASK,
 276        .init                   = sdmmc_variant_init,
 277};
 278
 279static struct variant_data variant_stm32_sdmmcv2 = {
 280        .fifosize               = 16 * 4,
 281        .fifohalfsize           = 8 * 4,
 282        .f_max                  = 208000000,
 283        .stm32_clkdiv           = true,
 284        .cmdreg_cpsm_enable     = MCI_CPSM_STM32_ENABLE,
 285        .cmdreg_lrsp_crc        = MCI_CPSM_STM32_LRSP_CRC,
 286        .cmdreg_srsp_crc        = MCI_CPSM_STM32_SRSP_CRC,
 287        .cmdreg_srsp            = MCI_CPSM_STM32_SRSP,
 288        .cmdreg_stop            = MCI_CPSM_STM32_CMDSTOP,
 289        .data_cmd_enable        = MCI_CPSM_STM32_CMDTRANS,
 290        .irq_pio_mask           = MCI_IRQ_PIO_STM32_MASK,
 291        .datactrl_first         = true,
 292        .datacnt_useless        = true,
 293        .datalength_bits        = 25,
 294        .datactrl_blocksz       = 14,
 295        .datactrl_any_blocksz   = true,
 296        .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
 297        .stm32_idmabsize_mask   = GENMASK(16, 5),
 298        .dma_lli                = true,
 299        .busy_timeout           = true,
 300        .busy_detect            = true,
 301        .busy_detect_flag       = MCI_STM32_BUSYD0,
 302        .busy_detect_mask       = MCI_STM32_BUSYD0ENDMASK,
 303        .init                   = sdmmc_variant_init,
 304};
 305
 306static struct variant_data variant_qcom = {
 307        .fifosize               = 16 * 4,
 308        .fifohalfsize           = 8 * 4,
 309        .clkreg                 = MCI_CLK_ENABLE,
 310        .clkreg_enable          = MCI_QCOM_CLK_FLOWENA |
 311                                  MCI_QCOM_CLK_SELECT_IN_FBCLK,
 312        .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
 313        .datactrl_mask_ddrmode  = MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
 314        .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
 315        .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 316        .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
 317        .cmdreg_srsp            = MCI_CPSM_RESPONSE,
 318        .data_cmd_enable        = MCI_CPSM_QCOM_DATCMD,
 319        .datalength_bits        = 24,
 320        .datactrl_blocksz       = 11,
 321        .datactrl_any_blocksz   = true,
 322        .pwrreg_powerup         = MCI_PWR_UP,
 323        .f_max                  = 208000000,
 324        .explicit_mclk_control  = true,
 325        .qcom_fifo              = true,
 326        .qcom_dml               = true,
 327        .mmcimask1              = true,
 328        .irq_pio_mask           = MCI_IRQ_PIO_MASK,
 329        .start_err              = MCI_STARTBITERR,
 330        .opendrain              = MCI_ROD,
 331        .init                   = qcom_variant_init,
 332};
 333
 334/* Busy detection for the ST Micro variant */
 335static int mmci_card_busy(struct mmc_host *mmc)
 336{
 337        struct mmci_host *host = mmc_priv(mmc);
 338        unsigned long flags;
 339        int busy = 0;
 340
 341        spin_lock_irqsave(&host->lock, flags);
 342        if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
 343                busy = 1;
 344        spin_unlock_irqrestore(&host->lock, flags);
 345
 346        return busy;
 347}
 348
 349static void mmci_reg_delay(struct mmci_host *host)
 350{
 351        /*
 352         * According to the spec, at least three feedback clock cycles
 353         * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
 354         * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
 355         * Worst delay time during card init is at 100 kHz => 30 us.
 356         * Worst delay time when up and running is at 25 MHz => 120 ns.
 357         */
 358        if (host->cclk < 25000000)
 359                udelay(30);
 360        else
 361                ndelay(120);
 362}
 363
 364/*
 365 * This must be called with host->lock held
 366 */
 367void mmci_write_clkreg(struct mmci_host *host, u32 clk)
 368{
 369        if (host->clk_reg != clk) {
 370                host->clk_reg = clk;
 371                writel(clk, host->base + MMCICLOCK);
 372        }
 373}
 374
 375/*
 376 * This must be called with host->lock held
 377 */
 378void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
 379{
 380        if (host->pwr_reg != pwr) {
 381                host->pwr_reg = pwr;
 382                writel(pwr, host->base + MMCIPOWER);
 383        }
 384}
 385
 386/*
 387 * This must be called with host->lock held
 388 */
 389static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
 390{
 391        /* Keep busy mode in DPSM if enabled */
 392        datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
 393
 394        if (host->datactrl_reg != datactrl) {
 395                host->datactrl_reg = datactrl;
 396                writel(datactrl, host->base + MMCIDATACTRL);
 397        }
 398}
 399
 400/*
 401 * This must be called with host->lock held
 402 */
 403static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
 404{
 405        struct variant_data *variant = host->variant;
 406        u32 clk = variant->clkreg;
 407
 408        /* Make sure cclk reflects the current calculated clock */
 409        host->cclk = 0;
 410
 411        if (desired) {
 412                if (variant->explicit_mclk_control) {
 413                        host->cclk = host->mclk;
 414                } else if (desired >= host->mclk) {
 415                        clk = MCI_CLK_BYPASS;
 416                        if (variant->st_clkdiv)
 417                                clk |= MCI_ST_UX500_NEG_EDGE;
 418                        host->cclk = host->mclk;
 419                } else if (variant->st_clkdiv) {
 420                        /*
 421                         * DB8500 TRM says f = mclk / (clkdiv + 2)
 422                         * => clkdiv = (mclk / f) - 2
 423                         * Round the divider up so we don't exceed the max
 424                         * frequency
 425                         */
 426                        clk = DIV_ROUND_UP(host->mclk, desired) - 2;
 427                        if (clk >= 256)
 428                                clk = 255;
 429                        host->cclk = host->mclk / (clk + 2);
 430                } else {
 431                        /*
 432                         * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
 433                         * => clkdiv = mclk / (2 * f) - 1
 434                         */
 435                        clk = host->mclk / (2 * desired) - 1;
 436                        if (clk >= 256)
 437                                clk = 255;
 438                        host->cclk = host->mclk / (2 * (clk + 1));
 439                }
 440
 441                clk |= variant->clkreg_enable;
 442                clk |= MCI_CLK_ENABLE;
 443                /* This hasn't proven to be worthwhile */
 444                /* clk |= MCI_CLK_PWRSAVE; */
 445        }
 446
 447        /* Set actual clock for debug */
 448        host->mmc->actual_clock = host->cclk;
 449
 450        if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
 451                clk |= MCI_4BIT_BUS;
 452        if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
 453                clk |= variant->clkreg_8bit_bus_enable;
 454
 455        if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
 456            host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
 457                clk |= variant->clkreg_neg_edge_enable;
 458
 459        mmci_write_clkreg(host, clk);
 460}
 461
 462static void mmci_dma_release(struct mmci_host *host)
 463{
 464        if (host->ops && host->ops->dma_release)
 465                host->ops->dma_release(host);
 466
 467        host->use_dma = false;
 468}
 469
 470static void mmci_dma_setup(struct mmci_host *host)
 471{
 472        if (!host->ops || !host->ops->dma_setup)
 473                return;
 474
 475        if (host->ops->dma_setup(host))
 476                return;
 477
 478        /* initialize pre request cookie */
 479        host->next_cookie = 1;
 480
 481        host->use_dma = true;
 482}
 483
 484/*
 485 * Validate mmc prerequisites
 486 */
 487static int mmci_validate_data(struct mmci_host *host,
 488                              struct mmc_data *data)
 489{
 490        struct variant_data *variant = host->variant;
 491
 492        if (!data)
 493                return 0;
 494        if (!is_power_of_2(data->blksz) && !variant->datactrl_any_blocksz) {
 495                dev_err(mmc_dev(host->mmc),
 496                        "unsupported block size (%d bytes)\n", data->blksz);
 497                return -EINVAL;
 498        }
 499
 500        if (host->ops && host->ops->validate_data)
 501                return host->ops->validate_data(host, data);
 502
 503        return 0;
 504}
 505
 506static int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next)
 507{
 508        int err;
 509
 510        if (!host->ops || !host->ops->prep_data)
 511                return 0;
 512
 513        err = host->ops->prep_data(host, data, next);
 514
 515        if (next && !err)
 516                data->host_cookie = ++host->next_cookie < 0 ?
 517                        1 : host->next_cookie;
 518
 519        return err;
 520}
 521
 522static void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data,
 523                      int err)
 524{
 525        if (host->ops && host->ops->unprep_data)
 526                host->ops->unprep_data(host, data, err);
 527
 528        data->host_cookie = 0;
 529}
 530
 531static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 532{
 533        WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
 534
 535        if (host->ops && host->ops->get_next_data)
 536                host->ops->get_next_data(host, data);
 537}
 538
 539static int mmci_dma_start(struct mmci_host *host, unsigned int datactrl)
 540{
 541        struct mmc_data *data = host->data;
 542        int ret;
 543
 544        if (!host->use_dma)
 545                return -EINVAL;
 546
 547        ret = mmci_prep_data(host, data, false);
 548        if (ret)
 549                return ret;
 550
 551        if (!host->ops || !host->ops->dma_start)
 552                return -EINVAL;
 553
 554        /* Okay, go for it. */
 555        dev_vdbg(mmc_dev(host->mmc),
 556                 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
 557                 data->sg_len, data->blksz, data->blocks, data->flags);
 558
 559        ret = host->ops->dma_start(host, &datactrl);
 560        if (ret)
 561                return ret;
 562
 563        /* Trigger the DMA transfer */
 564        mmci_write_datactrlreg(host, datactrl);
 565
 566        /*
 567         * Let the MMCI say when the data is ended and it's time
 568         * to fire next DMA request. When that happens, MMCI will
 569         * call mmci_data_end()
 570         */
 571        writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
 572               host->base + MMCIMASK0);
 573        return 0;
 574}
 575
 576static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
 577{
 578        if (!host->use_dma)
 579                return;
 580
 581        if (host->ops && host->ops->dma_finalize)
 582                host->ops->dma_finalize(host, data);
 583}
 584
 585static void mmci_dma_error(struct mmci_host *host)
 586{
 587        if (!host->use_dma)
 588                return;
 589
 590        if (host->ops && host->ops->dma_error)
 591                host->ops->dma_error(host);
 592}
 593
 594static void
 595mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
 596{
 597        writel(0, host->base + MMCICOMMAND);
 598
 599        BUG_ON(host->data);
 600
 601        host->mrq = NULL;
 602        host->cmd = NULL;
 603
 604        mmc_request_done(host->mmc, mrq);
 605}
 606
 607static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
 608{
 609        void __iomem *base = host->base;
 610        struct variant_data *variant = host->variant;
 611
 612        if (host->singleirq) {
 613                unsigned int mask0 = readl(base + MMCIMASK0);
 614
 615                mask0 &= ~variant->irq_pio_mask;
 616                mask0 |= mask;
 617
 618                writel(mask0, base + MMCIMASK0);
 619        }
 620
 621        if (variant->mmcimask1)
 622                writel(mask, base + MMCIMASK1);
 623
 624        host->mask1_reg = mask;
 625}
 626
 627static void mmci_stop_data(struct mmci_host *host)
 628{
 629        mmci_write_datactrlreg(host, 0);
 630        mmci_set_mask1(host, 0);
 631        host->data = NULL;
 632}
 633
 634static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
 635{
 636        unsigned int flags = SG_MITER_ATOMIC;
 637
 638        if (data->flags & MMC_DATA_READ)
 639                flags |= SG_MITER_TO_SG;
 640        else
 641                flags |= SG_MITER_FROM_SG;
 642
 643        sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
 644}
 645
 646static u32 mmci_get_dctrl_cfg(struct mmci_host *host)
 647{
 648        return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host);
 649}
 650
 651static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host)
 652{
 653        return MCI_DPSM_ENABLE | (host->data->blksz << 16);
 654}
 655
 656static bool ux500_busy_complete(struct mmci_host *host, u32 status, u32 err_msk)
 657{
 658        void __iomem *base = host->base;
 659
 660        /*
 661         * Before unmasking for the busy end IRQ, confirm that the
 662         * command was sent successfully. To keep track of having a
 663         * command in-progress, waiting for busy signaling to end,
 664         * store the status in host->busy_status.
 665         *
 666         * Note that, the card may need a couple of clock cycles before
 667         * it starts signaling busy on DAT0, hence re-read the
 668         * MMCISTATUS register here, to allow the busy bit to be set.
 669         * Potentially we may even need to poll the register for a
 670         * while, to allow it to be set, but tests indicates that it
 671         * isn't needed.
 672         */
 673        if (!host->busy_status && !(status & err_msk) &&
 674            (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
 675                writel(readl(base + MMCIMASK0) |
 676                       host->variant->busy_detect_mask,
 677                       base + MMCIMASK0);
 678
 679                host->busy_status = status & (MCI_CMDSENT | MCI_CMDRESPEND);
 680                return false;
 681        }
 682
 683        /*
 684         * If there is a command in-progress that has been successfully
 685         * sent, then bail out if busy status is set and wait for the
 686         * busy end IRQ.
 687         *
 688         * Note that, the HW triggers an IRQ on both edges while
 689         * monitoring DAT0 for busy completion, but there is only one
 690         * status bit in MMCISTATUS for the busy state. Therefore
 691         * both the start and the end interrupts needs to be cleared,
 692         * one after the other. So, clear the busy start IRQ here.
 693         */
 694        if (host->busy_status &&
 695            (status & host->variant->busy_detect_flag)) {
 696                writel(host->variant->busy_detect_mask, base + MMCICLEAR);
 697                return false;
 698        }
 699
 700        /*
 701         * If there is a command in-progress that has been successfully
 702         * sent and the busy bit isn't set, it means we have received
 703         * the busy end IRQ. Clear and mask the IRQ, then continue to
 704         * process the command.
 705         */
 706        if (host->busy_status) {
 707                writel(host->variant->busy_detect_mask, base + MMCICLEAR);
 708
 709                writel(readl(base + MMCIMASK0) &
 710                       ~host->variant->busy_detect_mask, base + MMCIMASK0);
 711                host->busy_status = 0;
 712        }
 713
 714        return true;
 715}
 716
 717/*
 718 * All the DMA operation mode stuff goes inside this ifdef.
 719 * This assumes that you have a generic DMA device interface,
 720 * no custom DMA interfaces are supported.
 721 */
 722#ifdef CONFIG_DMA_ENGINE
 723struct mmci_dmae_next {
 724        struct dma_async_tx_descriptor *desc;
 725        struct dma_chan *chan;
 726};
 727
 728struct mmci_dmae_priv {
 729        struct dma_chan *cur;
 730        struct dma_chan *rx_channel;
 731        struct dma_chan *tx_channel;
 732        struct dma_async_tx_descriptor  *desc_current;
 733        struct mmci_dmae_next next_data;
 734};
 735
 736int mmci_dmae_setup(struct mmci_host *host)
 737{
 738        const char *rxname, *txname;
 739        struct mmci_dmae_priv *dmae;
 740
 741        dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
 742        if (!dmae)
 743                return -ENOMEM;
 744
 745        host->dma_priv = dmae;
 746
 747        dmae->rx_channel = dma_request_chan(mmc_dev(host->mmc), "rx");
 748        if (IS_ERR(dmae->rx_channel)) {
 749                int ret = PTR_ERR(dmae->rx_channel);
 750                dmae->rx_channel = NULL;
 751                return ret;
 752        }
 753
 754        dmae->tx_channel = dma_request_chan(mmc_dev(host->mmc), "tx");
 755        if (IS_ERR(dmae->tx_channel)) {
 756                if (PTR_ERR(dmae->tx_channel) == -EPROBE_DEFER)
 757                        dev_warn(mmc_dev(host->mmc),
 758                                 "Deferred probe for TX channel ignored\n");
 759                dmae->tx_channel = NULL;
 760        }
 761
 762        /*
 763         * If only an RX channel is specified, the driver will
 764         * attempt to use it bidirectionally, however if it is
 765         * is specified but cannot be located, DMA will be disabled.
 766         */
 767        if (dmae->rx_channel && !dmae->tx_channel)
 768                dmae->tx_channel = dmae->rx_channel;
 769
 770        if (dmae->rx_channel)
 771                rxname = dma_chan_name(dmae->rx_channel);
 772        else
 773                rxname = "none";
 774
 775        if (dmae->tx_channel)
 776                txname = dma_chan_name(dmae->tx_channel);
 777        else
 778                txname = "none";
 779
 780        dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
 781                 rxname, txname);
 782
 783        /*
 784         * Limit the maximum segment size in any SG entry according to
 785         * the parameters of the DMA engine device.
 786         */
 787        if (dmae->tx_channel) {
 788                struct device *dev = dmae->tx_channel->device->dev;
 789                unsigned int max_seg_size = dma_get_max_seg_size(dev);
 790
 791                if (max_seg_size < host->mmc->max_seg_size)
 792                        host->mmc->max_seg_size = max_seg_size;
 793        }
 794        if (dmae->rx_channel) {
 795                struct device *dev = dmae->rx_channel->device->dev;
 796                unsigned int max_seg_size = dma_get_max_seg_size(dev);
 797
 798                if (max_seg_size < host->mmc->max_seg_size)
 799                        host->mmc->max_seg_size = max_seg_size;
 800        }
 801
 802        if (!dmae->tx_channel || !dmae->rx_channel) {
 803                mmci_dmae_release(host);
 804                return -EINVAL;
 805        }
 806
 807        return 0;
 808}
 809
 810/*
 811 * This is used in or so inline it
 812 * so it can be discarded.
 813 */
 814void mmci_dmae_release(struct mmci_host *host)
 815{
 816        struct mmci_dmae_priv *dmae = host->dma_priv;
 817
 818        if (dmae->rx_channel)
 819                dma_release_channel(dmae->rx_channel);
 820        if (dmae->tx_channel)
 821                dma_release_channel(dmae->tx_channel);
 822        dmae->rx_channel = dmae->tx_channel = NULL;
 823}
 824
 825static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 826{
 827        struct mmci_dmae_priv *dmae = host->dma_priv;
 828        struct dma_chan *chan;
 829
 830        if (data->flags & MMC_DATA_READ)
 831                chan = dmae->rx_channel;
 832        else
 833                chan = dmae->tx_channel;
 834
 835        dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
 836                     mmc_get_dma_dir(data));
 837}
 838
 839void mmci_dmae_error(struct mmci_host *host)
 840{
 841        struct mmci_dmae_priv *dmae = host->dma_priv;
 842
 843        if (!dma_inprogress(host))
 844                return;
 845
 846        dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
 847        dmaengine_terminate_all(dmae->cur);
 848        host->dma_in_progress = false;
 849        dmae->cur = NULL;
 850        dmae->desc_current = NULL;
 851        host->data->host_cookie = 0;
 852
 853        mmci_dma_unmap(host, host->data);
 854}
 855
 856void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data)
 857{
 858        struct mmci_dmae_priv *dmae = host->dma_priv;
 859        u32 status;
 860        int i;
 861
 862        if (!dma_inprogress(host))
 863                return;
 864
 865        /* Wait up to 1ms for the DMA to complete */
 866        for (i = 0; ; i++) {
 867                status = readl(host->base + MMCISTATUS);
 868                if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
 869                        break;
 870                udelay(10);
 871        }
 872
 873        /*
 874         * Check to see whether we still have some data left in the FIFO -
 875         * this catches DMA controllers which are unable to monitor the
 876         * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
 877         * contiguous buffers.  On TX, we'll get a FIFO underrun error.
 878         */
 879        if (status & MCI_RXDATAAVLBLMASK) {
 880                mmci_dma_error(host);
 881                if (!data->error)
 882                        data->error = -EIO;
 883        } else if (!data->host_cookie) {
 884                mmci_dma_unmap(host, data);
 885        }
 886
 887        /*
 888         * Use of DMA with scatter-gather is impossible.
 889         * Give up with DMA and switch back to PIO mode.
 890         */
 891        if (status & MCI_RXDATAAVLBLMASK) {
 892                dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
 893                mmci_dma_release(host);
 894        }
 895
 896        host->dma_in_progress = false;
 897        dmae->cur = NULL;
 898        dmae->desc_current = NULL;
 899}
 900
 901/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
 902static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data,
 903                                struct dma_chan **dma_chan,
 904                                struct dma_async_tx_descriptor **dma_desc)
 905{
 906        struct mmci_dmae_priv *dmae = host->dma_priv;
 907        struct variant_data *variant = host->variant;
 908        struct dma_slave_config conf = {
 909                .src_addr = host->phybase + MMCIFIFO,
 910                .dst_addr = host->phybase + MMCIFIFO,
 911                .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 912                .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 913                .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
 914                .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
 915                .device_fc = false,
 916        };
 917        struct dma_chan *chan;
 918        struct dma_device *device;
 919        struct dma_async_tx_descriptor *desc;
 920        int nr_sg;
 921        unsigned long flags = DMA_CTRL_ACK;
 922
 923        if (data->flags & MMC_DATA_READ) {
 924                conf.direction = DMA_DEV_TO_MEM;
 925                chan = dmae->rx_channel;
 926        } else {
 927                conf.direction = DMA_MEM_TO_DEV;
 928                chan = dmae->tx_channel;
 929        }
 930
 931        /* If there's no DMA channel, fall back to PIO */
 932        if (!chan)
 933                return -EINVAL;
 934
 935        /* If less than or equal to the fifo size, don't bother with DMA */
 936        if (data->blksz * data->blocks <= variant->fifosize)
 937                return -EINVAL;
 938
 939        /*
 940         * This is necessary to get SDIO working on the Ux500. We do not yet
 941         * know if this is a bug in:
 942         * - The Ux500 DMA controller (DMA40)
 943         * - The MMCI DMA interface on the Ux500
 944         * some power of two blocks (such as 64 bytes) are sent regularly
 945         * during SDIO traffic and those work fine so for these we enable DMA
 946         * transfers.
 947         */
 948        if (host->variant->dma_power_of_2 && !is_power_of_2(data->blksz))
 949                return -EINVAL;
 950
 951        device = chan->device;
 952        nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
 953                           mmc_get_dma_dir(data));
 954        if (nr_sg == 0)
 955                return -EINVAL;
 956
 957        if (host->variant->qcom_dml)
 958                flags |= DMA_PREP_INTERRUPT;
 959
 960        dmaengine_slave_config(chan, &conf);
 961        desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
 962                                            conf.direction, flags);
 963        if (!desc)
 964                goto unmap_exit;
 965
 966        *dma_chan = chan;
 967        *dma_desc = desc;
 968
 969        return 0;
 970
 971 unmap_exit:
 972        dma_unmap_sg(device->dev, data->sg, data->sg_len,
 973                     mmc_get_dma_dir(data));
 974        return -ENOMEM;
 975}
 976
 977int mmci_dmae_prep_data(struct mmci_host *host,
 978                        struct mmc_data *data,
 979                        bool next)
 980{
 981        struct mmci_dmae_priv *dmae = host->dma_priv;
 982        struct mmci_dmae_next *nd = &dmae->next_data;
 983
 984        if (!host->use_dma)
 985                return -EINVAL;
 986
 987        if (next)
 988                return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc);
 989        /* Check if next job is already prepared. */
 990        if (dmae->cur && dmae->desc_current)
 991                return 0;
 992
 993        /* No job were prepared thus do it now. */
 994        return _mmci_dmae_prep_data(host, data, &dmae->cur,
 995                                    &dmae->desc_current);
 996}
 997
 998int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl)
 999{
1000        struct mmci_dmae_priv *dmae = host->dma_priv;
1001        int ret;
1002
1003        host->dma_in_progress = true;
1004        ret = dma_submit_error(dmaengine_submit(dmae->desc_current));
1005        if (ret < 0) {
1006                host->dma_in_progress = false;
1007                return ret;
1008        }
1009        dma_async_issue_pending(dmae->cur);
1010
1011        *datactrl |= MCI_DPSM_DMAENABLE;
1012
1013        return 0;
1014}
1015
1016void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data)
1017{
1018        struct mmci_dmae_priv *dmae = host->dma_priv;
1019        struct mmci_dmae_next *next = &dmae->next_data;
1020
1021        if (!host->use_dma)
1022                return;
1023
1024        WARN_ON(!data->host_cookie && (next->desc || next->chan));
1025
1026        dmae->desc_current = next->desc;
1027        dmae->cur = next->chan;
1028        next->desc = NULL;
1029        next->chan = NULL;
1030}
1031
1032void mmci_dmae_unprep_data(struct mmci_host *host,
1033                           struct mmc_data *data, int err)
1034
1035{
1036        struct mmci_dmae_priv *dmae = host->dma_priv;
1037
1038        if (!host->use_dma)
1039                return;
1040
1041        mmci_dma_unmap(host, data);
1042
1043        if (err) {
1044                struct mmci_dmae_next *next = &dmae->next_data;
1045                struct dma_chan *chan;
1046                if (data->flags & MMC_DATA_READ)
1047                        chan = dmae->rx_channel;
1048                else
1049                        chan = dmae->tx_channel;
1050                dmaengine_terminate_all(chan);
1051
1052                if (dmae->desc_current == next->desc)
1053                        dmae->desc_current = NULL;
1054
1055                if (dmae->cur == next->chan) {
1056                        host->dma_in_progress = false;
1057                        dmae->cur = NULL;
1058                }
1059
1060                next->desc = NULL;
1061                next->chan = NULL;
1062        }
1063}
1064
1065static struct mmci_host_ops mmci_variant_ops = {
1066        .prep_data = mmci_dmae_prep_data,
1067        .unprep_data = mmci_dmae_unprep_data,
1068        .get_datactrl_cfg = mmci_get_dctrl_cfg,
1069        .get_next_data = mmci_dmae_get_next_data,
1070        .dma_setup = mmci_dmae_setup,
1071        .dma_release = mmci_dmae_release,
1072        .dma_start = mmci_dmae_start,
1073        .dma_finalize = mmci_dmae_finalize,
1074        .dma_error = mmci_dmae_error,
1075};
1076#else
1077static struct mmci_host_ops mmci_variant_ops = {
1078        .get_datactrl_cfg = mmci_get_dctrl_cfg,
1079};
1080#endif
1081
1082static void mmci_variant_init(struct mmci_host *host)
1083{
1084        host->ops = &mmci_variant_ops;
1085}
1086
1087static void ux500_variant_init(struct mmci_host *host)
1088{
1089        host->ops = &mmci_variant_ops;
1090        host->ops->busy_complete = ux500_busy_complete;
1091}
1092
1093static void ux500v2_variant_init(struct mmci_host *host)
1094{
1095        host->ops = &mmci_variant_ops;
1096        host->ops->busy_complete = ux500_busy_complete;
1097        host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg;
1098}
1099
1100static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
1101{
1102        struct mmci_host *host = mmc_priv(mmc);
1103        struct mmc_data *data = mrq->data;
1104
1105        if (!data)
1106                return;
1107
1108        WARN_ON(data->host_cookie);
1109
1110        if (mmci_validate_data(host, data))
1111                return;
1112
1113        mmci_prep_data(host, data, true);
1114}
1115
1116static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
1117                              int err)
1118{
1119        struct mmci_host *host = mmc_priv(mmc);
1120        struct mmc_data *data = mrq->data;
1121
1122        if (!data || !data->host_cookie)
1123                return;
1124
1125        mmci_unprep_data(host, data, err);
1126}
1127
1128static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
1129{
1130        struct variant_data *variant = host->variant;
1131        unsigned int datactrl, timeout, irqmask;
1132        unsigned long long clks;
1133        void __iomem *base;
1134
1135        dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
1136                data->blksz, data->blocks, data->flags);
1137
1138        host->data = data;
1139        host->size = data->blksz * data->blocks;
1140        data->bytes_xfered = 0;
1141
1142        clks = (unsigned long long)data->timeout_ns * host->cclk;
1143        do_div(clks, NSEC_PER_SEC);
1144
1145        timeout = data->timeout_clks + (unsigned int)clks;
1146
1147        base = host->base;
1148        writel(timeout, base + MMCIDATATIMER);
1149        writel(host->size, base + MMCIDATALENGTH);
1150
1151        datactrl = host->ops->get_datactrl_cfg(host);
1152        datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0;
1153
1154        if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
1155                u32 clk;
1156
1157                datactrl |= variant->datactrl_mask_sdio;
1158
1159                /*
1160                 * The ST Micro variant for SDIO small write transfers
1161                 * needs to have clock H/W flow control disabled,
1162                 * otherwise the transfer will not start. The threshold
1163                 * depends on the rate of MCLK.
1164                 */
1165                if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
1166                    (host->size < 8 ||
1167                     (host->size <= 8 && host->mclk > 50000000)))
1168                        clk = host->clk_reg & ~variant->clkreg_enable;
1169                else
1170                        clk = host->clk_reg | variant->clkreg_enable;
1171
1172                mmci_write_clkreg(host, clk);
1173        }
1174
1175        if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
1176            host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
1177                datactrl |= variant->datactrl_mask_ddrmode;
1178
1179        /*
1180         * Attempt to use DMA operation mode, if this
1181         * should fail, fall back to PIO mode
1182         */
1183        if (!mmci_dma_start(host, datactrl))
1184                return;
1185
1186        /* IRQ mode, map the SG list for CPU reading/writing */
1187        mmci_init_sg(host, data);
1188
1189        if (data->flags & MMC_DATA_READ) {
1190                irqmask = MCI_RXFIFOHALFFULLMASK;
1191
1192                /*
1193                 * If we have less than the fifo 'half-full' threshold to
1194                 * transfer, trigger a PIO interrupt as soon as any data
1195                 * is available.
1196                 */
1197                if (host->size < variant->fifohalfsize)
1198                        irqmask |= MCI_RXDATAAVLBLMASK;
1199        } else {
1200                /*
1201                 * We don't actually need to include "FIFO empty" here
1202                 * since its implicit in "FIFO half empty".
1203                 */
1204                irqmask = MCI_TXFIFOHALFEMPTYMASK;
1205        }
1206
1207        mmci_write_datactrlreg(host, datactrl);
1208        writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
1209        mmci_set_mask1(host, irqmask);
1210}
1211
1212static void
1213mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
1214{
1215        void __iomem *base = host->base;
1216        unsigned long long clks;
1217
1218        dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
1219            cmd->opcode, cmd->arg, cmd->flags);
1220
1221        if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) {
1222                writel(0, base + MMCICOMMAND);
1223                mmci_reg_delay(host);
1224        }
1225
1226        if (host->variant->cmdreg_stop &&
1227            cmd->opcode == MMC_STOP_TRANSMISSION)
1228                c |= host->variant->cmdreg_stop;
1229
1230        c |= cmd->opcode | host->variant->cmdreg_cpsm_enable;
1231        if (cmd->flags & MMC_RSP_PRESENT) {
1232                if (cmd->flags & MMC_RSP_136)
1233                        c |= host->variant->cmdreg_lrsp_crc;
1234                else if (cmd->flags & MMC_RSP_CRC)
1235                        c |= host->variant->cmdreg_srsp_crc;
1236                else
1237                        c |= host->variant->cmdreg_srsp;
1238        }
1239
1240        if (host->variant->busy_timeout && cmd->flags & MMC_RSP_BUSY) {
1241                if (!cmd->busy_timeout)
1242                        cmd->busy_timeout = 10 * MSEC_PER_SEC;
1243
1244                clks = (unsigned long long)cmd->busy_timeout * host->cclk;
1245                do_div(clks, MSEC_PER_SEC);
1246                writel_relaxed(clks, host->base + MMCIDATATIMER);
1247        }
1248
1249        if (host->ops->pre_sig_volt_switch && cmd->opcode == SD_SWITCH_VOLTAGE)
1250                host->ops->pre_sig_volt_switch(host);
1251
1252        if (/*interrupt*/0)
1253                c |= MCI_CPSM_INTERRUPT;
1254
1255        if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
1256                c |= host->variant->data_cmd_enable;
1257
1258        host->cmd = cmd;
1259
1260        writel(cmd->arg, base + MMCIARGUMENT);
1261        writel(c, base + MMCICOMMAND);
1262}
1263
1264static void mmci_stop_command(struct mmci_host *host)
1265{
1266        host->stop_abort.error = 0;
1267        mmci_start_command(host, &host->stop_abort, 0);
1268}
1269
1270static void
1271mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
1272              unsigned int status)
1273{
1274        unsigned int status_err;
1275
1276        /* Make sure we have data to handle */
1277        if (!data)
1278                return;
1279
1280        /* First check for errors */
1281        status_err = status & (host->variant->start_err |
1282                               MCI_DATACRCFAIL | MCI_DATATIMEOUT |
1283                               MCI_TXUNDERRUN | MCI_RXOVERRUN);
1284
1285        if (status_err) {
1286                u32 remain, success;
1287
1288                /* Terminate the DMA transfer */
1289                mmci_dma_error(host);
1290
1291                /*
1292                 * Calculate how far we are into the transfer.  Note that
1293                 * the data counter gives the number of bytes transferred
1294                 * on the MMC bus, not on the host side.  On reads, this
1295                 * can be as much as a FIFO-worth of data ahead.  This
1296                 * matters for FIFO overruns only.
1297                 */
1298                if (!host->variant->datacnt_useless) {
1299                        remain = readl(host->base + MMCIDATACNT);
1300                        success = data->blksz * data->blocks - remain;
1301                } else {
1302                        success = 0;
1303                }
1304
1305                dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1306                        status_err, success);
1307                if (status_err & MCI_DATACRCFAIL) {
1308                        /* Last block was not successful */
1309                        success -= 1;
1310                        data->error = -EILSEQ;
1311                } else if (status_err & MCI_DATATIMEOUT) {
1312                        data->error = -ETIMEDOUT;
1313                } else if (status_err & MCI_STARTBITERR) {
1314                        data->error = -ECOMM;
1315                } else if (status_err & MCI_TXUNDERRUN) {
1316                        data->error = -EIO;
1317                } else if (status_err & MCI_RXOVERRUN) {
1318                        if (success > host->variant->fifosize)
1319                                success -= host->variant->fifosize;
1320                        else
1321                                success = 0;
1322                        data->error = -EIO;
1323                }
1324                data->bytes_xfered = round_down(success, data->blksz);
1325        }
1326
1327        if (status & MCI_DATABLOCKEND)
1328                dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1329
1330        if (status & MCI_DATAEND || data->error) {
1331                mmci_dma_finalize(host, data);
1332
1333                mmci_stop_data(host);
1334
1335                if (!data->error)
1336                        /* The error clause is handled above, success! */
1337                        data->bytes_xfered = data->blksz * data->blocks;
1338
1339                if (!data->stop) {
1340                        if (host->variant->cmdreg_stop && data->error)
1341                                mmci_stop_command(host);
1342                        else
1343                                mmci_request_end(host, data->mrq);
1344                } else if (host->mrq->sbc && !data->error) {
1345                        mmci_request_end(host, data->mrq);
1346                } else {
1347                        mmci_start_command(host, data->stop, 0);
1348                }
1349        }
1350}
1351
1352static void
1353mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1354             unsigned int status)
1355{
1356        u32 err_msk = MCI_CMDCRCFAIL | MCI_CMDTIMEOUT;
1357        void __iomem *base = host->base;
1358        bool sbc, busy_resp;
1359
1360        if (!cmd)
1361                return;
1362
1363        sbc = (cmd == host->mrq->sbc);
1364        busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1365
1366        /*
1367         * We need to be one of these interrupts to be considered worth
1368         * handling. Note that we tag on any latent IRQs postponed
1369         * due to waiting for busy status.
1370         */
1371        if (host->variant->busy_timeout && busy_resp)
1372                err_msk |= MCI_DATATIMEOUT;
1373
1374        if (!((status | host->busy_status) &
1375              (err_msk | MCI_CMDSENT | MCI_CMDRESPEND)))
1376                return;
1377
1378        /* Handle busy detection on DAT0 if the variant supports it. */
1379        if (busy_resp && host->variant->busy_detect)
1380                if (!host->ops->busy_complete(host, status, err_msk))
1381                        return;
1382
1383        host->cmd = NULL;
1384
1385        if (status & MCI_CMDTIMEOUT) {
1386                cmd->error = -ETIMEDOUT;
1387        } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1388                cmd->error = -EILSEQ;
1389        } else if (host->variant->busy_timeout && busy_resp &&
1390                   status & MCI_DATATIMEOUT) {
1391                cmd->error = -ETIMEDOUT;
1392                host->irq_action = IRQ_WAKE_THREAD;
1393        } else {
1394                cmd->resp[0] = readl(base + MMCIRESPONSE0);
1395                cmd->resp[1] = readl(base + MMCIRESPONSE1);
1396                cmd->resp[2] = readl(base + MMCIRESPONSE2);
1397                cmd->resp[3] = readl(base + MMCIRESPONSE3);
1398        }
1399
1400        if ((!sbc && !cmd->data) || cmd->error) {
1401                if (host->data) {
1402                        /* Terminate the DMA transfer */
1403                        mmci_dma_error(host);
1404
1405                        mmci_stop_data(host);
1406                        if (host->variant->cmdreg_stop && cmd->error) {
1407                                mmci_stop_command(host);
1408                                return;
1409                        }
1410                }
1411
1412                if (host->irq_action != IRQ_WAKE_THREAD)
1413                        mmci_request_end(host, host->mrq);
1414
1415        } else if (sbc) {
1416                mmci_start_command(host, host->mrq->cmd, 0);
1417        } else if (!host->variant->datactrl_first &&
1418                   !(cmd->data->flags & MMC_DATA_READ)) {
1419                mmci_start_data(host, cmd->data);
1420        }
1421}
1422
1423static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1424{
1425        return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1426}
1427
1428static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1429{
1430        /*
1431         * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1432         * from the fifo range should be used
1433         */
1434        if (status & MCI_RXFIFOHALFFULL)
1435                return host->variant->fifohalfsize;
1436        else if (status & MCI_RXDATAAVLBL)
1437                return 4;
1438
1439        return 0;
1440}
1441
1442static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1443{
1444        void __iomem *base = host->base;
1445        char *ptr = buffer;
1446        u32 status = readl(host->base + MMCISTATUS);
1447        int host_remain = host->size;
1448
1449        do {
1450                int count = host->get_rx_fifocnt(host, status, host_remain);
1451
1452                if (count > remain)
1453                        count = remain;
1454
1455                if (count <= 0)
1456                        break;
1457
1458                /*
1459                 * SDIO especially may want to send something that is
1460                 * not divisible by 4 (as opposed to card sectors
1461                 * etc). Therefore make sure to always read the last bytes
1462                 * while only doing full 32-bit reads towards the FIFO.
1463                 */
1464                if (unlikely(count & 0x3)) {
1465                        if (count < 4) {
1466                                unsigned char buf[4];
1467                                ioread32_rep(base + MMCIFIFO, buf, 1);
1468                                memcpy(ptr, buf, count);
1469                        } else {
1470                                ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1471                                count &= ~0x3;
1472                        }
1473                } else {
1474                        ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1475                }
1476
1477                ptr += count;
1478                remain -= count;
1479                host_remain -= count;
1480
1481                if (remain == 0)
1482                        break;
1483
1484                status = readl(base + MMCISTATUS);
1485        } while (status & MCI_RXDATAAVLBL);
1486
1487        return ptr - buffer;
1488}
1489
1490static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1491{
1492        struct variant_data *variant = host->variant;
1493        void __iomem *base = host->base;
1494        char *ptr = buffer;
1495
1496        do {
1497                unsigned int count, maxcnt;
1498
1499                maxcnt = status & MCI_TXFIFOEMPTY ?
1500                         variant->fifosize : variant->fifohalfsize;
1501                count = min(remain, maxcnt);
1502
1503                /*
1504                 * SDIO especially may want to send something that is
1505                 * not divisible by 4 (as opposed to card sectors
1506                 * etc), and the FIFO only accept full 32-bit writes.
1507                 * So compensate by adding +3 on the count, a single
1508                 * byte become a 32bit write, 7 bytes will be two
1509                 * 32bit writes etc.
1510                 */
1511                iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1512
1513                ptr += count;
1514                remain -= count;
1515
1516                if (remain == 0)
1517                        break;
1518
1519                status = readl(base + MMCISTATUS);
1520        } while (status & MCI_TXFIFOHALFEMPTY);
1521
1522        return ptr - buffer;
1523}
1524
1525/*
1526 * PIO data transfer IRQ handler.
1527 */
1528static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1529{
1530        struct mmci_host *host = dev_id;
1531        struct sg_mapping_iter *sg_miter = &host->sg_miter;
1532        struct variant_data *variant = host->variant;
1533        void __iomem *base = host->base;
1534        u32 status;
1535
1536        status = readl(base + MMCISTATUS);
1537
1538        dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1539
1540        do {
1541                unsigned int remain, len;
1542                char *buffer;
1543
1544                /*
1545                 * For write, we only need to test the half-empty flag
1546                 * here - if the FIFO is completely empty, then by
1547                 * definition it is more than half empty.
1548                 *
1549                 * For read, check for data available.
1550                 */
1551                if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1552                        break;
1553
1554                if (!sg_miter_next(sg_miter))
1555                        break;
1556
1557                buffer = sg_miter->addr;
1558                remain = sg_miter->length;
1559
1560                len = 0;
1561                if (status & MCI_RXACTIVE)
1562                        len = mmci_pio_read(host, buffer, remain);
1563                if (status & MCI_TXACTIVE)
1564                        len = mmci_pio_write(host, buffer, remain, status);
1565
1566                sg_miter->consumed = len;
1567
1568                host->size -= len;
1569                remain -= len;
1570
1571                if (remain)
1572                        break;
1573
1574                status = readl(base + MMCISTATUS);
1575        } while (1);
1576
1577        sg_miter_stop(sg_miter);
1578
1579        /*
1580         * If we have less than the fifo 'half-full' threshold to transfer,
1581         * trigger a PIO interrupt as soon as any data is available.
1582         */
1583        if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1584                mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1585
1586        /*
1587         * If we run out of data, disable the data IRQs; this
1588         * prevents a race where the FIFO becomes empty before
1589         * the chip itself has disabled the data path, and
1590         * stops us racing with our data end IRQ.
1591         */
1592        if (host->size == 0) {
1593                mmci_set_mask1(host, 0);
1594                writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1595        }
1596
1597        return IRQ_HANDLED;
1598}
1599
1600/*
1601 * Handle completion of command and data transfers.
1602 */
1603static irqreturn_t mmci_irq(int irq, void *dev_id)
1604{
1605        struct mmci_host *host = dev_id;
1606        u32 status;
1607
1608        spin_lock(&host->lock);
1609        host->irq_action = IRQ_HANDLED;
1610
1611        do {
1612                status = readl(host->base + MMCISTATUS);
1613
1614                if (host->singleirq) {
1615                        if (status & host->mask1_reg)
1616                                mmci_pio_irq(irq, dev_id);
1617
1618                        status &= ~host->variant->irq_pio_mask;
1619                }
1620
1621                /*
1622                 * Busy detection is managed by mmci_cmd_irq(), including to
1623                 * clear the corresponding IRQ.
1624                 */
1625                status &= readl(host->base + MMCIMASK0);
1626                if (host->variant->busy_detect)
1627                        writel(status & ~host->variant->busy_detect_mask,
1628                               host->base + MMCICLEAR);
1629                else
1630                        writel(status, host->base + MMCICLEAR);
1631
1632                dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1633
1634                if (host->variant->reversed_irq_handling) {
1635                        mmci_data_irq(host, host->data, status);
1636                        mmci_cmd_irq(host, host->cmd, status);
1637                } else {
1638                        mmci_cmd_irq(host, host->cmd, status);
1639                        mmci_data_irq(host, host->data, status);
1640                }
1641
1642                /*
1643                 * Busy detection has been handled by mmci_cmd_irq() above.
1644                 * Clear the status bit to prevent polling in IRQ context.
1645                 */
1646                if (host->variant->busy_detect_flag)
1647                        status &= ~host->variant->busy_detect_flag;
1648
1649        } while (status);
1650
1651        spin_unlock(&host->lock);
1652
1653        return host->irq_action;
1654}
1655
1656/*
1657 * mmci_irq_thread() - A threaded IRQ handler that manages a reset of the HW.
1658 *
1659 * A reset is needed for some variants, where a datatimeout for a R1B request
1660 * causes the DPSM to stay busy (non-functional).
1661 */
1662static irqreturn_t mmci_irq_thread(int irq, void *dev_id)
1663{
1664        struct mmci_host *host = dev_id;
1665        unsigned long flags;
1666
1667        if (host->rst) {
1668                reset_control_assert(host->rst);
1669                udelay(2);
1670                reset_control_deassert(host->rst);
1671        }
1672
1673        spin_lock_irqsave(&host->lock, flags);
1674        writel(host->clk_reg, host->base + MMCICLOCK);
1675        writel(host->pwr_reg, host->base + MMCIPOWER);
1676        writel(MCI_IRQENABLE | host->variant->start_err,
1677               host->base + MMCIMASK0);
1678
1679        host->irq_action = IRQ_HANDLED;
1680        mmci_request_end(host, host->mrq);
1681        spin_unlock_irqrestore(&host->lock, flags);
1682
1683        return host->irq_action;
1684}
1685
1686static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1687{
1688        struct mmci_host *host = mmc_priv(mmc);
1689        unsigned long flags;
1690
1691        WARN_ON(host->mrq != NULL);
1692
1693        mrq->cmd->error = mmci_validate_data(host, mrq->data);
1694        if (mrq->cmd->error) {
1695                mmc_request_done(mmc, mrq);
1696                return;
1697        }
1698
1699        spin_lock_irqsave(&host->lock, flags);
1700
1701        host->mrq = mrq;
1702
1703        if (mrq->data)
1704                mmci_get_next_data(host, mrq->data);
1705
1706        if (mrq->data &&
1707            (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ))
1708                mmci_start_data(host, mrq->data);
1709
1710        if (mrq->sbc)
1711                mmci_start_command(host, mrq->sbc, 0);
1712        else
1713                mmci_start_command(host, mrq->cmd, 0);
1714
1715        spin_unlock_irqrestore(&host->lock, flags);
1716}
1717
1718static void mmci_set_max_busy_timeout(struct mmc_host *mmc)
1719{
1720        struct mmci_host *host = mmc_priv(mmc);
1721        u32 max_busy_timeout = 0;
1722
1723        if (!host->variant->busy_detect)
1724                return;
1725
1726        if (host->variant->busy_timeout && mmc->actual_clock)
1727                max_busy_timeout = ~0UL / (mmc->actual_clock / MSEC_PER_SEC);
1728
1729        mmc->max_busy_timeout = max_busy_timeout;
1730}
1731
1732static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1733{
1734        struct mmci_host *host = mmc_priv(mmc);
1735        struct variant_data *variant = host->variant;
1736        u32 pwr = 0;
1737        unsigned long flags;
1738        int ret;
1739
1740        if (host->plat->ios_handler &&
1741                host->plat->ios_handler(mmc_dev(mmc), ios))
1742                        dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1743
1744        switch (ios->power_mode) {
1745        case MMC_POWER_OFF:
1746                if (!IS_ERR(mmc->supply.vmmc))
1747                        mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1748
1749                if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1750                        regulator_disable(mmc->supply.vqmmc);
1751                        host->vqmmc_enabled = false;
1752                }
1753
1754                break;
1755        case MMC_POWER_UP:
1756                if (!IS_ERR(mmc->supply.vmmc))
1757                        mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1758
1759                /*
1760                 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1761                 * and instead uses MCI_PWR_ON so apply whatever value is
1762                 * configured in the variant data.
1763                 */
1764                pwr |= variant->pwrreg_powerup;
1765
1766                break;
1767        case MMC_POWER_ON:
1768                if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1769                        ret = regulator_enable(mmc->supply.vqmmc);
1770                        if (ret < 0)
1771                                dev_err(mmc_dev(mmc),
1772                                        "failed to enable vqmmc regulator\n");
1773                        else
1774                                host->vqmmc_enabled = true;
1775                }
1776
1777                pwr |= MCI_PWR_ON;
1778                break;
1779        }
1780
1781        if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1782                /*
1783                 * The ST Micro variant has some additional bits
1784                 * indicating signal direction for the signals in
1785                 * the SD/MMC bus and feedback-clock usage.
1786                 */
1787                pwr |= host->pwr_reg_add;
1788
1789                if (ios->bus_width == MMC_BUS_WIDTH_4)
1790                        pwr &= ~MCI_ST_DATA74DIREN;
1791                else if (ios->bus_width == MMC_BUS_WIDTH_1)
1792                        pwr &= (~MCI_ST_DATA74DIREN &
1793                                ~MCI_ST_DATA31DIREN &
1794                                ~MCI_ST_DATA2DIREN);
1795        }
1796
1797        if (variant->opendrain) {
1798                if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1799                        pwr |= variant->opendrain;
1800        } else {
1801                /*
1802                 * If the variant cannot configure the pads by its own, then we
1803                 * expect the pinctrl to be able to do that for us
1804                 */
1805                if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1806                        pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1807                else
1808                        pinctrl_select_default_state(mmc_dev(mmc));
1809        }
1810
1811        /*
1812         * If clock = 0 and the variant requires the MMCIPOWER to be used for
1813         * gating the clock, the MCI_PWR_ON bit is cleared.
1814         */
1815        if (!ios->clock && variant->pwrreg_clkgate)
1816                pwr &= ~MCI_PWR_ON;
1817
1818        if (host->variant->explicit_mclk_control &&
1819            ios->clock != host->clock_cache) {
1820                ret = clk_set_rate(host->clk, ios->clock);
1821                if (ret < 0)
1822                        dev_err(mmc_dev(host->mmc),
1823                                "Error setting clock rate (%d)\n", ret);
1824                else
1825                        host->mclk = clk_get_rate(host->clk);
1826        }
1827        host->clock_cache = ios->clock;
1828
1829        spin_lock_irqsave(&host->lock, flags);
1830
1831        if (host->ops && host->ops->set_clkreg)
1832                host->ops->set_clkreg(host, ios->clock);
1833        else
1834                mmci_set_clkreg(host, ios->clock);
1835
1836        mmci_set_max_busy_timeout(mmc);
1837
1838        if (host->ops && host->ops->set_pwrreg)
1839                host->ops->set_pwrreg(host, pwr);
1840        else
1841                mmci_write_pwrreg(host, pwr);
1842
1843        mmci_reg_delay(host);
1844
1845        spin_unlock_irqrestore(&host->lock, flags);
1846}
1847
1848static int mmci_get_cd(struct mmc_host *mmc)
1849{
1850        struct mmci_host *host = mmc_priv(mmc);
1851        struct mmci_platform_data *plat = host->plat;
1852        unsigned int status = mmc_gpio_get_cd(mmc);
1853
1854        if (status == -ENOSYS) {
1855                if (!plat->status)
1856                        return 1; /* Assume always present */
1857
1858                status = plat->status(mmc_dev(host->mmc));
1859        }
1860        return status;
1861}
1862
1863static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1864{
1865        struct mmci_host *host = mmc_priv(mmc);
1866        int ret;
1867
1868        ret = mmc_regulator_set_vqmmc(mmc, ios);
1869
1870        if (!ret && host->ops && host->ops->post_sig_volt_switch)
1871                ret = host->ops->post_sig_volt_switch(host, ios);
1872        else if (ret)
1873                ret = 0;
1874
1875        if (ret < 0)
1876                dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1877
1878        return ret;
1879}
1880
1881static struct mmc_host_ops mmci_ops = {
1882        .request        = mmci_request,
1883        .pre_req        = mmci_pre_request,
1884        .post_req       = mmci_post_request,
1885        .set_ios        = mmci_set_ios,
1886        .get_ro         = mmc_gpio_get_ro,
1887        .get_cd         = mmci_get_cd,
1888        .start_signal_voltage_switch = mmci_sig_volt_switch,
1889};
1890
1891static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1892{
1893        struct mmci_host *host = mmc_priv(mmc);
1894        int ret = mmc_of_parse(mmc);
1895
1896        if (ret)
1897                return ret;
1898
1899        if (of_get_property(np, "st,sig-dir-dat0", NULL))
1900                host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1901        if (of_get_property(np, "st,sig-dir-dat2", NULL))
1902                host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1903        if (of_get_property(np, "st,sig-dir-dat31", NULL))
1904                host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1905        if (of_get_property(np, "st,sig-dir-dat74", NULL))
1906                host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1907        if (of_get_property(np, "st,sig-dir-cmd", NULL))
1908                host->pwr_reg_add |= MCI_ST_CMDDIREN;
1909        if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1910                host->pwr_reg_add |= MCI_ST_FBCLKEN;
1911        if (of_get_property(np, "st,sig-dir", NULL))
1912                host->pwr_reg_add |= MCI_STM32_DIRPOL;
1913        if (of_get_property(np, "st,neg-edge", NULL))
1914                host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE;
1915        if (of_get_property(np, "st,use-ckin", NULL))
1916                host->clk_reg_add |= MCI_STM32_CLK_SELCKIN;
1917
1918        if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1919                mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1920        if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1921                mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1922
1923        return 0;
1924}
1925
1926static int mmci_probe(struct amba_device *dev,
1927        const struct amba_id *id)
1928{
1929        struct mmci_platform_data *plat = dev->dev.platform_data;
1930        struct device_node *np = dev->dev.of_node;
1931        struct variant_data *variant = id->data;
1932        struct mmci_host *host;
1933        struct mmc_host *mmc;
1934        int ret;
1935
1936        /* Must have platform data or Device Tree. */
1937        if (!plat && !np) {
1938                dev_err(&dev->dev, "No plat data or DT found\n");
1939                return -EINVAL;
1940        }
1941
1942        if (!plat) {
1943                plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1944                if (!plat)
1945                        return -ENOMEM;
1946        }
1947
1948        mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1949        if (!mmc)
1950                return -ENOMEM;
1951
1952        ret = mmci_of_parse(np, mmc);
1953        if (ret)
1954                goto host_free;
1955
1956        host = mmc_priv(mmc);
1957        host->mmc = mmc;
1958        host->mmc_ops = &mmci_ops;
1959        mmc->ops = &mmci_ops;
1960
1961        /*
1962         * Some variant (STM32) doesn't have opendrain bit, nevertheless
1963         * pins can be set accordingly using pinctrl
1964         */
1965        if (!variant->opendrain) {
1966                host->pinctrl = devm_pinctrl_get(&dev->dev);
1967                if (IS_ERR(host->pinctrl)) {
1968                        dev_err(&dev->dev, "failed to get pinctrl");
1969                        ret = PTR_ERR(host->pinctrl);
1970                        goto host_free;
1971                }
1972
1973                host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
1974                                                            MMCI_PINCTRL_STATE_OPENDRAIN);
1975                if (IS_ERR(host->pins_opendrain)) {
1976                        dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
1977                        ret = PTR_ERR(host->pins_opendrain);
1978                        goto host_free;
1979                }
1980        }
1981
1982        host->hw_designer = amba_manf(dev);
1983        host->hw_revision = amba_rev(dev);
1984        dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1985        dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1986
1987        host->clk = devm_clk_get(&dev->dev, NULL);
1988        if (IS_ERR(host->clk)) {
1989                ret = PTR_ERR(host->clk);
1990                goto host_free;
1991        }
1992
1993        ret = clk_prepare_enable(host->clk);
1994        if (ret)
1995                goto host_free;
1996
1997        if (variant->qcom_fifo)
1998                host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1999        else
2000                host->get_rx_fifocnt = mmci_get_rx_fifocnt;
2001
2002        host->plat = plat;
2003        host->variant = variant;
2004        host->mclk = clk_get_rate(host->clk);
2005        /*
2006         * According to the spec, mclk is max 100 MHz,
2007         * so we try to adjust the clock down to this,
2008         * (if possible).
2009         */
2010        if (host->mclk > variant->f_max) {
2011                ret = clk_set_rate(host->clk, variant->f_max);
2012                if (ret < 0)
2013                        goto clk_disable;
2014                host->mclk = clk_get_rate(host->clk);
2015                dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
2016                        host->mclk);
2017        }
2018
2019        host->phybase = dev->res.start;
2020        host->base = devm_ioremap_resource(&dev->dev, &dev->res);
2021        if (IS_ERR(host->base)) {
2022                ret = PTR_ERR(host->base);
2023                goto clk_disable;
2024        }
2025
2026        if (variant->init)
2027                variant->init(host);
2028
2029        /*
2030         * The ARM and ST versions of the block have slightly different
2031         * clock divider equations which means that the minimum divider
2032         * differs too.
2033         * on Qualcomm like controllers get the nearest minimum clock to 100Khz
2034         */
2035        if (variant->st_clkdiv)
2036                mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
2037        else if (variant->stm32_clkdiv)
2038                mmc->f_min = DIV_ROUND_UP(host->mclk, 2046);
2039        else if (variant->explicit_mclk_control)
2040                mmc->f_min = clk_round_rate(host->clk, 100000);
2041        else
2042                mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
2043        /*
2044         * If no maximum operating frequency is supplied, fall back to use
2045         * the module parameter, which has a (low) default value in case it
2046         * is not specified. Either value must not exceed the clock rate into
2047         * the block, of course.
2048         */
2049        if (mmc->f_max)
2050                mmc->f_max = variant->explicit_mclk_control ?
2051                                min(variant->f_max, mmc->f_max) :
2052                                min(host->mclk, mmc->f_max);
2053        else
2054                mmc->f_max = variant->explicit_mclk_control ?
2055                                fmax : min(host->mclk, fmax);
2056
2057
2058        dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
2059
2060        host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL);
2061        if (IS_ERR(host->rst)) {
2062                ret = PTR_ERR(host->rst);
2063                goto clk_disable;
2064        }
2065
2066        /* Get regulators and the supported OCR mask */
2067        ret = mmc_regulator_get_supply(mmc);
2068        if (ret)
2069                goto clk_disable;
2070
2071        if (!mmc->ocr_avail)
2072                mmc->ocr_avail = plat->ocr_mask;
2073        else if (plat->ocr_mask)
2074                dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
2075
2076        /* We support these capabilities. */
2077        mmc->caps |= MMC_CAP_CMD23;
2078
2079        /*
2080         * Enable busy detection.
2081         */
2082        if (variant->busy_detect) {
2083                mmci_ops.card_busy = mmci_card_busy;
2084                /*
2085                 * Not all variants have a flag to enable busy detection
2086                 * in the DPSM, but if they do, set it here.
2087                 */
2088                if (variant->busy_dpsm_flag)
2089                        mmci_write_datactrlreg(host,
2090                                               host->variant->busy_dpsm_flag);
2091                mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
2092        }
2093
2094        /* Prepare a CMD12 - needed to clear the DPSM on some variants. */
2095        host->stop_abort.opcode = MMC_STOP_TRANSMISSION;
2096        host->stop_abort.arg = 0;
2097        host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC;
2098
2099        /* We support these PM capabilities. */
2100        mmc->pm_caps |= MMC_PM_KEEP_POWER;
2101
2102        /*
2103         * We can do SGIO
2104         */
2105        mmc->max_segs = NR_SG;
2106
2107        /*
2108         * Since only a certain number of bits are valid in the data length
2109         * register, we must ensure that we don't exceed 2^num-1 bytes in a
2110         * single request.
2111         */
2112        mmc->max_req_size = (1 << variant->datalength_bits) - 1;
2113
2114        /*
2115         * Set the maximum segment size.  Since we aren't doing DMA
2116         * (yet) we are only limited by the data length register.
2117         */
2118        mmc->max_seg_size = mmc->max_req_size;
2119
2120        /*
2121         * Block size can be up to 2048 bytes, but must be a power of two.
2122         */
2123        mmc->max_blk_size = 1 << variant->datactrl_blocksz;
2124
2125        /*
2126         * Limit the number of blocks transferred so that we don't overflow
2127         * the maximum request size.
2128         */
2129        mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz;
2130
2131        spin_lock_init(&host->lock);
2132
2133        writel(0, host->base + MMCIMASK0);
2134
2135        if (variant->mmcimask1)
2136                writel(0, host->base + MMCIMASK1);
2137
2138        writel(0xfff, host->base + MMCICLEAR);
2139
2140        /*
2141         * If:
2142         * - not using DT but using a descriptor table, or
2143         * - using a table of descriptors ALONGSIDE DT, or
2144         * look up these descriptors named "cd" and "wp" right here, fail
2145         * silently of these do not exist
2146         */
2147        if (!np) {
2148                ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0);
2149                if (ret == -EPROBE_DEFER)
2150                        goto clk_disable;
2151
2152                ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0);
2153                if (ret == -EPROBE_DEFER)
2154                        goto clk_disable;
2155        }
2156
2157        ret = devm_request_threaded_irq(&dev->dev, dev->irq[0], mmci_irq,
2158                                        mmci_irq_thread, IRQF_SHARED,
2159                                        DRIVER_NAME " (cmd)", host);
2160        if (ret)
2161                goto clk_disable;
2162
2163        if (!dev->irq[1])
2164                host->singleirq = true;
2165        else {
2166                ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
2167                                IRQF_SHARED, DRIVER_NAME " (pio)", host);
2168                if (ret)
2169                        goto clk_disable;
2170        }
2171
2172        writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
2173
2174        amba_set_drvdata(dev, mmc);
2175
2176        dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2177                 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
2178                 amba_rev(dev), (unsigned long long)dev->res.start,
2179                 dev->irq[0], dev->irq[1]);
2180
2181        mmci_dma_setup(host);
2182
2183        pm_runtime_set_autosuspend_delay(&dev->dev, 50);
2184        pm_runtime_use_autosuspend(&dev->dev);
2185
2186        mmc_add_host(mmc);
2187
2188        pm_runtime_put(&dev->dev);
2189        return 0;
2190
2191 clk_disable:
2192        clk_disable_unprepare(host->clk);
2193 host_free:
2194        mmc_free_host(mmc);
2195        return ret;
2196}
2197
2198static int mmci_remove(struct amba_device *dev)
2199{
2200        struct mmc_host *mmc = amba_get_drvdata(dev);
2201
2202        if (mmc) {
2203                struct mmci_host *host = mmc_priv(mmc);
2204                struct variant_data *variant = host->variant;
2205
2206                /*
2207                 * Undo pm_runtime_put() in probe.  We use the _sync
2208                 * version here so that we can access the primecell.
2209                 */
2210                pm_runtime_get_sync(&dev->dev);
2211
2212                mmc_remove_host(mmc);
2213
2214                writel(0, host->base + MMCIMASK0);
2215
2216                if (variant->mmcimask1)
2217                        writel(0, host->base + MMCIMASK1);
2218
2219                writel(0, host->base + MMCICOMMAND);
2220                writel(0, host->base + MMCIDATACTRL);
2221
2222                mmci_dma_release(host);
2223                clk_disable_unprepare(host->clk);
2224                mmc_free_host(mmc);
2225        }
2226
2227        return 0;
2228}
2229
2230#ifdef CONFIG_PM
2231static void mmci_save(struct mmci_host *host)
2232{
2233        unsigned long flags;
2234
2235        spin_lock_irqsave(&host->lock, flags);
2236
2237        writel(0, host->base + MMCIMASK0);
2238        if (host->variant->pwrreg_nopower) {
2239                writel(0, host->base + MMCIDATACTRL);
2240                writel(0, host->base + MMCIPOWER);
2241                writel(0, host->base + MMCICLOCK);
2242        }
2243        mmci_reg_delay(host);
2244
2245        spin_unlock_irqrestore(&host->lock, flags);
2246}
2247
2248static void mmci_restore(struct mmci_host *host)
2249{
2250        unsigned long flags;
2251
2252        spin_lock_irqsave(&host->lock, flags);
2253
2254        if (host->variant->pwrreg_nopower) {
2255                writel(host->clk_reg, host->base + MMCICLOCK);
2256                writel(host->datactrl_reg, host->base + MMCIDATACTRL);
2257                writel(host->pwr_reg, host->base + MMCIPOWER);
2258        }
2259        writel(MCI_IRQENABLE | host->variant->start_err,
2260               host->base + MMCIMASK0);
2261        mmci_reg_delay(host);
2262
2263        spin_unlock_irqrestore(&host->lock, flags);
2264}
2265
2266static int mmci_runtime_suspend(struct device *dev)
2267{
2268        struct amba_device *adev = to_amba_device(dev);
2269        struct mmc_host *mmc = amba_get_drvdata(adev);
2270
2271        if (mmc) {
2272                struct mmci_host *host = mmc_priv(mmc);
2273                pinctrl_pm_select_sleep_state(dev);
2274                mmci_save(host);
2275                clk_disable_unprepare(host->clk);
2276        }
2277
2278        return 0;
2279}
2280
2281static int mmci_runtime_resume(struct device *dev)
2282{
2283        struct amba_device *adev = to_amba_device(dev);
2284        struct mmc_host *mmc = amba_get_drvdata(adev);
2285
2286        if (mmc) {
2287                struct mmci_host *host = mmc_priv(mmc);
2288                clk_prepare_enable(host->clk);
2289                mmci_restore(host);
2290                pinctrl_select_default_state(dev);
2291        }
2292
2293        return 0;
2294}
2295#endif
2296
2297static const struct dev_pm_ops mmci_dev_pm_ops = {
2298        SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2299                                pm_runtime_force_resume)
2300        SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
2301};
2302
2303static const struct amba_id mmci_ids[] = {
2304        {
2305                .id     = 0x00041180,
2306                .mask   = 0xff0fffff,
2307                .data   = &variant_arm,
2308        },
2309        {
2310                .id     = 0x01041180,
2311                .mask   = 0xff0fffff,
2312                .data   = &variant_arm_extended_fifo,
2313        },
2314        {
2315                .id     = 0x02041180,
2316                .mask   = 0xff0fffff,
2317                .data   = &variant_arm_extended_fifo_hwfc,
2318        },
2319        {
2320                .id     = 0x00041181,
2321                .mask   = 0x000fffff,
2322                .data   = &variant_arm,
2323        },
2324        /* ST Micro variants */
2325        {
2326                .id     = 0x00180180,
2327                .mask   = 0x00ffffff,
2328                .data   = &variant_u300,
2329        },
2330        {
2331                .id     = 0x10180180,
2332                .mask   = 0xf0ffffff,
2333                .data   = &variant_nomadik,
2334        },
2335        {
2336                .id     = 0x00280180,
2337                .mask   = 0x00ffffff,
2338                .data   = &variant_nomadik,
2339        },
2340        {
2341                .id     = 0x00480180,
2342                .mask   = 0xf0ffffff,
2343                .data   = &variant_ux500,
2344        },
2345        {
2346                .id     = 0x10480180,
2347                .mask   = 0xf0ffffff,
2348                .data   = &variant_ux500v2,
2349        },
2350        {
2351                .id     = 0x00880180,
2352                .mask   = 0x00ffffff,
2353                .data   = &variant_stm32,
2354        },
2355        {
2356                .id     = 0x10153180,
2357                .mask   = 0xf0ffffff,
2358                .data   = &variant_stm32_sdmmc,
2359        },
2360        {
2361                .id     = 0x00253180,
2362                .mask   = 0xf0ffffff,
2363                .data   = &variant_stm32_sdmmcv2,
2364        },
2365        /* Qualcomm variants */
2366        {
2367                .id     = 0x00051180,
2368                .mask   = 0x000fffff,
2369                .data   = &variant_qcom,
2370        },
2371        { 0, 0 },
2372};
2373
2374MODULE_DEVICE_TABLE(amba, mmci_ids);
2375
2376static struct amba_driver mmci_driver = {
2377        .drv            = {
2378                .name   = DRIVER_NAME,
2379                .pm     = &mmci_dev_pm_ops,
2380        },
2381        .probe          = mmci_probe,
2382        .remove         = mmci_remove,
2383        .id_table       = mmci_ids,
2384};
2385
2386module_amba_driver(mmci_driver);
2387
2388module_param(fmax, uint, 0444);
2389
2390MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2391MODULE_LICENSE("GPL");
2392