linux/drivers/mmc/host/sh_mmcif.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * MMCIF eMMC driver.
   4 *
   5 * Copyright (C) 2010 Renesas Solutions Corp.
   6 * Yusuke Goda <yusuke.goda.sx@renesas.com>
   7 */
   8
   9/*
  10 * The MMCIF driver is now processing MMC requests asynchronously, according
  11 * to the Linux MMC API requirement.
  12 *
  13 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
  14 * data, and optional stop. To achieve asynchronous processing each of these
  15 * stages is split into two halves: a top and a bottom half. The top half
  16 * initialises the hardware, installs a timeout handler to handle completion
  17 * timeouts, and returns. In case of the command stage this immediately returns
  18 * control to the caller, leaving all further processing to run asynchronously.
  19 * All further request processing is performed by the bottom halves.
  20 *
  21 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
  22 * thread, a DMA completion callback, if DMA is used, a timeout work, and
  23 * request- and stage-specific handler methods.
  24 *
  25 * Each bottom half run begins with either a hardware interrupt, a DMA callback
  26 * invocation, or a timeout work run. In case of an error or a successful
  27 * processing completion, the MMC core is informed and the request processing is
  28 * finished. In case processing has to continue, i.e., if data has to be read
  29 * from or written to the card, or if a stop command has to be sent, the next
  30 * top half is called, which performs the necessary hardware handling and
  31 * reschedules the timeout work. This returns the driver state machine into the
  32 * bottom half waiting state.
  33 */
  34
  35#include <linux/bitops.h>
  36#include <linux/clk.h>
  37#include <linux/completion.h>
  38#include <linux/delay.h>
  39#include <linux/dma-mapping.h>
  40#include <linux/dmaengine.h>
  41#include <linux/mmc/card.h>
  42#include <linux/mmc/core.h>
  43#include <linux/mmc/host.h>
  44#include <linux/mmc/mmc.h>
  45#include <linux/mmc/sdio.h>
  46#include <linux/mmc/sh_mmcif.h>
  47#include <linux/mmc/slot-gpio.h>
  48#include <linux/mod_devicetable.h>
  49#include <linux/mutex.h>
  50#include <linux/of_device.h>
  51#include <linux/pagemap.h>
  52#include <linux/platform_device.h>
  53#include <linux/pm_qos.h>
  54#include <linux/pm_runtime.h>
  55#include <linux/sh_dma.h>
  56#include <linux/spinlock.h>
  57#include <linux/module.h>
  58
  59#define DRIVER_NAME     "sh_mmcif"
  60
  61/* CE_CMD_SET */
  62#define CMD_MASK                0x3f000000
  63#define CMD_SET_RTYP_NO         ((0 << 23) | (0 << 22))
  64#define CMD_SET_RTYP_6B         ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
  65#define CMD_SET_RTYP_17B        ((1 << 23) | (0 << 22)) /* R2 */
  66#define CMD_SET_RBSY            (1 << 21) /* R1b */
  67#define CMD_SET_CCSEN           (1 << 20)
  68#define CMD_SET_WDAT            (1 << 19) /* 1: on data, 0: no data */
  69#define CMD_SET_DWEN            (1 << 18) /* 1: write, 0: read */
  70#define CMD_SET_CMLTE           (1 << 17) /* 1: multi block trans, 0: single */
  71#define CMD_SET_CMD12EN         (1 << 16) /* 1: CMD12 auto issue */
  72#define CMD_SET_RIDXC_INDEX     ((0 << 15) | (0 << 14)) /* index check */
  73#define CMD_SET_RIDXC_BITS      ((0 << 15) | (1 << 14)) /* check bits check */
  74#define CMD_SET_RIDXC_NO        ((1 << 15) | (0 << 14)) /* no check */
  75#define CMD_SET_CRC7C           ((0 << 13) | (0 << 12)) /* CRC7 check*/
  76#define CMD_SET_CRC7C_BITS      ((0 << 13) | (1 << 12)) /* check bits check*/
  77#define CMD_SET_CRC7C_INTERNAL  ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
  78#define CMD_SET_CRC16C          (1 << 10) /* 0: CRC16 check*/
  79#define CMD_SET_CRCSTE          (1 << 8) /* 1: not receive CRC status */
  80#define CMD_SET_TBIT            (1 << 7) /* 1: tran mission bit "Low" */
  81#define CMD_SET_OPDM            (1 << 6) /* 1: open/drain */
  82#define CMD_SET_CCSH            (1 << 5)
  83#define CMD_SET_DARS            (1 << 2) /* Dual Data Rate */
  84#define CMD_SET_DATW_1          ((0 << 1) | (0 << 0)) /* 1bit */
  85#define CMD_SET_DATW_4          ((0 << 1) | (1 << 0)) /* 4bit */
  86#define CMD_SET_DATW_8          ((1 << 1) | (0 << 0)) /* 8bit */
  87
  88/* CE_CMD_CTRL */
  89#define CMD_CTRL_BREAK          (1 << 0)
  90
  91/* CE_BLOCK_SET */
  92#define BLOCK_SIZE_MASK         0x0000ffff
  93
  94/* CE_INT */
  95#define INT_CCSDE               (1 << 29)
  96#define INT_CMD12DRE            (1 << 26)
  97#define INT_CMD12RBE            (1 << 25)
  98#define INT_CMD12CRE            (1 << 24)
  99#define INT_DTRANE              (1 << 23)
 100#define INT_BUFRE               (1 << 22)
 101#define INT_BUFWEN              (1 << 21)
 102#define INT_BUFREN              (1 << 20)
 103#define INT_CCSRCV              (1 << 19)
 104#define INT_RBSYE               (1 << 17)
 105#define INT_CRSPE               (1 << 16)
 106#define INT_CMDVIO              (1 << 15)
 107#define INT_BUFVIO              (1 << 14)
 108#define INT_WDATERR             (1 << 11)
 109#define INT_RDATERR             (1 << 10)
 110#define INT_RIDXERR             (1 << 9)
 111#define INT_RSPERR              (1 << 8)
 112#define INT_CCSTO               (1 << 5)
 113#define INT_CRCSTO              (1 << 4)
 114#define INT_WDATTO              (1 << 3)
 115#define INT_RDATTO              (1 << 2)
 116#define INT_RBSYTO              (1 << 1)
 117#define INT_RSPTO               (1 << 0)
 118#define INT_ERR_STS             (INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
 119                                 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
 120                                 INT_CCSTO | INT_CRCSTO | INT_WDATTO |    \
 121                                 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
 122
 123#define INT_ALL                 (INT_RBSYE | INT_CRSPE | INT_BUFREN |    \
 124                                 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
 125                                 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
 126
 127#define INT_CCS                 (INT_CCSTO | INT_CCSRCV | INT_CCSDE)
 128
 129/* CE_INT_MASK */
 130#define MASK_ALL                0x00000000
 131#define MASK_MCCSDE             (1 << 29)
 132#define MASK_MCMD12DRE          (1 << 26)
 133#define MASK_MCMD12RBE          (1 << 25)
 134#define MASK_MCMD12CRE          (1 << 24)
 135#define MASK_MDTRANE            (1 << 23)
 136#define MASK_MBUFRE             (1 << 22)
 137#define MASK_MBUFWEN            (1 << 21)
 138#define MASK_MBUFREN            (1 << 20)
 139#define MASK_MCCSRCV            (1 << 19)
 140#define MASK_MRBSYE             (1 << 17)
 141#define MASK_MCRSPE             (1 << 16)
 142#define MASK_MCMDVIO            (1 << 15)
 143#define MASK_MBUFVIO            (1 << 14)
 144#define MASK_MWDATERR           (1 << 11)
 145#define MASK_MRDATERR           (1 << 10)
 146#define MASK_MRIDXERR           (1 << 9)
 147#define MASK_MRSPERR            (1 << 8)
 148#define MASK_MCCSTO             (1 << 5)
 149#define MASK_MCRCSTO            (1 << 4)
 150#define MASK_MWDATTO            (1 << 3)
 151#define MASK_MRDATTO            (1 << 2)
 152#define MASK_MRBSYTO            (1 << 1)
 153#define MASK_MRSPTO             (1 << 0)
 154
 155#define MASK_START_CMD          (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
 156                                 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
 157                                 MASK_MCRCSTO | MASK_MWDATTO | \
 158                                 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
 159
 160#define MASK_CLEAN              (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE |      \
 161                                 MASK_MBUFREN | MASK_MBUFWEN |                  \
 162                                 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE |  \
 163                                 MASK_MCMD12RBE | MASK_MCMD12CRE)
 164
 165/* CE_HOST_STS1 */
 166#define STS1_CMDSEQ             (1 << 31)
 167
 168/* CE_HOST_STS2 */
 169#define STS2_CRCSTE             (1 << 31)
 170#define STS2_CRC16E             (1 << 30)
 171#define STS2_AC12CRCE           (1 << 29)
 172#define STS2_RSPCRC7E           (1 << 28)
 173#define STS2_CRCSTEBE           (1 << 27)
 174#define STS2_RDATEBE            (1 << 26)
 175#define STS2_AC12REBE           (1 << 25)
 176#define STS2_RSPEBE             (1 << 24)
 177#define STS2_AC12IDXE           (1 << 23)
 178#define STS2_RSPIDXE            (1 << 22)
 179#define STS2_CCSTO              (1 << 15)
 180#define STS2_RDATTO             (1 << 14)
 181#define STS2_DATBSYTO           (1 << 13)
 182#define STS2_CRCSTTO            (1 << 12)
 183#define STS2_AC12BSYTO          (1 << 11)
 184#define STS2_RSPBSYTO           (1 << 10)
 185#define STS2_AC12RSPTO          (1 << 9)
 186#define STS2_RSPTO              (1 << 8)
 187#define STS2_CRC_ERR            (STS2_CRCSTE | STS2_CRC16E |            \
 188                                 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
 189#define STS2_TIMEOUT_ERR        (STS2_CCSTO | STS2_RDATTO |             \
 190                                 STS2_DATBSYTO | STS2_CRCSTTO |         \
 191                                 STS2_AC12BSYTO | STS2_RSPBSYTO |       \
 192                                 STS2_AC12RSPTO | STS2_RSPTO)
 193
 194#define CLKDEV_EMMC_DATA        52000000 /* 52 MHz */
 195#define CLKDEV_MMC_DATA         20000000 /* 20 MHz */
 196#define CLKDEV_INIT             400000   /* 400 kHz */
 197
 198enum sh_mmcif_state {
 199        STATE_IDLE,
 200        STATE_REQUEST,
 201        STATE_IOS,
 202        STATE_TIMEOUT,
 203};
 204
 205enum sh_mmcif_wait_for {
 206        MMCIF_WAIT_FOR_REQUEST,
 207        MMCIF_WAIT_FOR_CMD,
 208        MMCIF_WAIT_FOR_MREAD,
 209        MMCIF_WAIT_FOR_MWRITE,
 210        MMCIF_WAIT_FOR_READ,
 211        MMCIF_WAIT_FOR_WRITE,
 212        MMCIF_WAIT_FOR_READ_END,
 213        MMCIF_WAIT_FOR_WRITE_END,
 214        MMCIF_WAIT_FOR_STOP,
 215};
 216
 217/*
 218 * difference for each SoC
 219 */
 220struct sh_mmcif_host {
 221        struct mmc_host *mmc;
 222        struct mmc_request *mrq;
 223        struct platform_device *pd;
 224        struct clk *clk;
 225        int bus_width;
 226        unsigned char timing;
 227        bool sd_error;
 228        bool dying;
 229        long timeout;
 230        void __iomem *addr;
 231        u32 *pio_ptr;
 232        spinlock_t lock;                /* protect sh_mmcif_host::state */
 233        enum sh_mmcif_state state;
 234        enum sh_mmcif_wait_for wait_for;
 235        struct delayed_work timeout_work;
 236        size_t blocksize;
 237        int sg_idx;
 238        int sg_blkidx;
 239        bool power;
 240        bool ccs_enable;                /* Command Completion Signal support */
 241        bool clk_ctrl2_enable;
 242        struct mutex thread_lock;
 243        u32 clkdiv_map;         /* see CE_CLK_CTRL::CLKDIV */
 244
 245        /* DMA support */
 246        struct dma_chan         *chan_rx;
 247        struct dma_chan         *chan_tx;
 248        struct completion       dma_complete;
 249        bool                    dma_active;
 250};
 251
 252static const struct of_device_id sh_mmcif_of_match[] = {
 253        { .compatible = "renesas,sh-mmcif" },
 254        { }
 255};
 256MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
 257
 258#define sh_mmcif_host_to_dev(host) (&host->pd->dev)
 259
 260static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
 261                                        unsigned int reg, u32 val)
 262{
 263        writel(val | readl(host->addr + reg), host->addr + reg);
 264}
 265
 266static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
 267                                        unsigned int reg, u32 val)
 268{
 269        writel(~val & readl(host->addr + reg), host->addr + reg);
 270}
 271
 272static void sh_mmcif_dma_complete(void *arg)
 273{
 274        struct sh_mmcif_host *host = arg;
 275        struct mmc_request *mrq = host->mrq;
 276        struct device *dev = sh_mmcif_host_to_dev(host);
 277
 278        dev_dbg(dev, "Command completed\n");
 279
 280        if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
 281                 dev_name(dev)))
 282                return;
 283
 284        complete(&host->dma_complete);
 285}
 286
 287static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
 288{
 289        struct mmc_data *data = host->mrq->data;
 290        struct scatterlist *sg = data->sg;
 291        struct dma_async_tx_descriptor *desc = NULL;
 292        struct dma_chan *chan = host->chan_rx;
 293        struct device *dev = sh_mmcif_host_to_dev(host);
 294        dma_cookie_t cookie = -EINVAL;
 295        int ret;
 296
 297        ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
 298                         DMA_FROM_DEVICE);
 299        if (ret > 0) {
 300                host->dma_active = true;
 301                desc = dmaengine_prep_slave_sg(chan, sg, ret,
 302                        DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 303        }
 304
 305        if (desc) {
 306                desc->callback = sh_mmcif_dma_complete;
 307                desc->callback_param = host;
 308                cookie = dmaengine_submit(desc);
 309                sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
 310                dma_async_issue_pending(chan);
 311        }
 312        dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
 313                __func__, data->sg_len, ret, cookie);
 314
 315        if (!desc) {
 316                /* DMA failed, fall back to PIO */
 317                if (ret >= 0)
 318                        ret = -EIO;
 319                host->chan_rx = NULL;
 320                host->dma_active = false;
 321                dma_release_channel(chan);
 322                /* Free the Tx channel too */
 323                chan = host->chan_tx;
 324                if (chan) {
 325                        host->chan_tx = NULL;
 326                        dma_release_channel(chan);
 327                }
 328                dev_warn(dev,
 329                         "DMA failed: %d, falling back to PIO\n", ret);
 330                sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 331        }
 332
 333        dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
 334                desc, cookie, data->sg_len);
 335}
 336
 337static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
 338{
 339        struct mmc_data *data = host->mrq->data;
 340        struct scatterlist *sg = data->sg;
 341        struct dma_async_tx_descriptor *desc = NULL;
 342        struct dma_chan *chan = host->chan_tx;
 343        struct device *dev = sh_mmcif_host_to_dev(host);
 344        dma_cookie_t cookie = -EINVAL;
 345        int ret;
 346
 347        ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
 348                         DMA_TO_DEVICE);
 349        if (ret > 0) {
 350                host->dma_active = true;
 351                desc = dmaengine_prep_slave_sg(chan, sg, ret,
 352                        DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 353        }
 354
 355        if (desc) {
 356                desc->callback = sh_mmcif_dma_complete;
 357                desc->callback_param = host;
 358                cookie = dmaengine_submit(desc);
 359                sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
 360                dma_async_issue_pending(chan);
 361        }
 362        dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
 363                __func__, data->sg_len, ret, cookie);
 364
 365        if (!desc) {
 366                /* DMA failed, fall back to PIO */
 367                if (ret >= 0)
 368                        ret = -EIO;
 369                host->chan_tx = NULL;
 370                host->dma_active = false;
 371                dma_release_channel(chan);
 372                /* Free the Rx channel too */
 373                chan = host->chan_rx;
 374                if (chan) {
 375                        host->chan_rx = NULL;
 376                        dma_release_channel(chan);
 377                }
 378                dev_warn(dev,
 379                         "DMA failed: %d, falling back to PIO\n", ret);
 380                sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 381        }
 382
 383        dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
 384                desc, cookie);
 385}
 386
 387static struct dma_chan *
 388sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
 389{
 390        dma_cap_mask_t mask;
 391
 392        dma_cap_zero(mask);
 393        dma_cap_set(DMA_SLAVE, mask);
 394        if (slave_id <= 0)
 395                return NULL;
 396
 397        return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
 398}
 399
 400static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
 401                                     struct dma_chan *chan,
 402                                     enum dma_transfer_direction direction)
 403{
 404        struct resource *res;
 405        struct dma_slave_config cfg = { 0, };
 406
 407        res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
 408        cfg.direction = direction;
 409
 410        if (direction == DMA_DEV_TO_MEM) {
 411                cfg.src_addr = res->start + MMCIF_CE_DATA;
 412                cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 413        } else {
 414                cfg.dst_addr = res->start + MMCIF_CE_DATA;
 415                cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 416        }
 417
 418        return dmaengine_slave_config(chan, &cfg);
 419}
 420
 421static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
 422{
 423        struct device *dev = sh_mmcif_host_to_dev(host);
 424        host->dma_active = false;
 425
 426        /* We can only either use DMA for both Tx and Rx or not use it at all */
 427        if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
 428                struct sh_mmcif_plat_data *pdata = dev->platform_data;
 429
 430                host->chan_tx = sh_mmcif_request_dma_pdata(host,
 431                                                        pdata->slave_id_tx);
 432                host->chan_rx = sh_mmcif_request_dma_pdata(host,
 433                                                        pdata->slave_id_rx);
 434        } else {
 435                host->chan_tx = dma_request_chan(dev, "tx");
 436                if (IS_ERR(host->chan_tx))
 437                        host->chan_tx = NULL;
 438                host->chan_rx = dma_request_chan(dev, "rx");
 439                if (IS_ERR(host->chan_rx))
 440                        host->chan_rx = NULL;
 441        }
 442        dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
 443                host->chan_rx);
 444
 445        if (!host->chan_tx || !host->chan_rx ||
 446            sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
 447            sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
 448                goto error;
 449
 450        return;
 451
 452error:
 453        if (host->chan_tx)
 454                dma_release_channel(host->chan_tx);
 455        if (host->chan_rx)
 456                dma_release_channel(host->chan_rx);
 457        host->chan_tx = host->chan_rx = NULL;
 458}
 459
 460static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
 461{
 462        sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 463        /* Descriptors are freed automatically */
 464        if (host->chan_tx) {
 465                struct dma_chan *chan = host->chan_tx;
 466                host->chan_tx = NULL;
 467                dma_release_channel(chan);
 468        }
 469        if (host->chan_rx) {
 470                struct dma_chan *chan = host->chan_rx;
 471                host->chan_rx = NULL;
 472                dma_release_channel(chan);
 473        }
 474
 475        host->dma_active = false;
 476}
 477
 478static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
 479{
 480        struct device *dev = sh_mmcif_host_to_dev(host);
 481        struct sh_mmcif_plat_data *p = dev->platform_data;
 482        bool sup_pclk = p ? p->sup_pclk : false;
 483        unsigned int current_clk = clk_get_rate(host->clk);
 484        unsigned int clkdiv;
 485
 486        sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
 487        sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
 488
 489        if (!clk)
 490                return;
 491
 492        if (host->clkdiv_map) {
 493                unsigned int freq, best_freq, myclk, div, diff_min, diff;
 494                int i;
 495
 496                clkdiv = 0;
 497                diff_min = ~0;
 498                best_freq = 0;
 499                for (i = 31; i >= 0; i--) {
 500                        if (!((1 << i) & host->clkdiv_map))
 501                                continue;
 502
 503                        /*
 504                         * clk = parent_freq / div
 505                         * -> parent_freq = clk x div
 506                         */
 507
 508                        div = 1 << (i + 1);
 509                        freq = clk_round_rate(host->clk, clk * div);
 510                        myclk = freq / div;
 511                        diff = (myclk > clk) ? myclk - clk : clk - myclk;
 512
 513                        if (diff <= diff_min) {
 514                                best_freq = freq;
 515                                clkdiv = i;
 516                                diff_min = diff;
 517                        }
 518                }
 519
 520                dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
 521                        (best_freq / (1 << (clkdiv + 1))), clk,
 522                        best_freq, clkdiv);
 523
 524                clk_set_rate(host->clk, best_freq);
 525                clkdiv = clkdiv << 16;
 526        } else if (sup_pclk && clk == current_clk) {
 527                clkdiv = CLK_SUP_PCLK;
 528        } else {
 529                clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
 530        }
 531
 532        sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
 533        sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
 534}
 535
 536static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
 537{
 538        u32 tmp;
 539
 540        tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
 541
 542        sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
 543        sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
 544        if (host->ccs_enable)
 545                tmp |= SCCSTO_29;
 546        if (host->clk_ctrl2_enable)
 547                sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
 548        sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
 549                SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
 550        /* byte swap on */
 551        sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
 552}
 553
 554static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
 555{
 556        struct device *dev = sh_mmcif_host_to_dev(host);
 557        u32 state1, state2;
 558        int ret, timeout;
 559
 560        host->sd_error = false;
 561
 562        state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
 563        state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
 564        dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
 565        dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
 566
 567        if (state1 & STS1_CMDSEQ) {
 568                sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
 569                sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
 570                for (timeout = 10000; timeout; timeout--) {
 571                        if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
 572                              & STS1_CMDSEQ))
 573                                break;
 574                        mdelay(1);
 575                }
 576                if (!timeout) {
 577                        dev_err(dev,
 578                                "Forced end of command sequence timeout err\n");
 579                        return -EIO;
 580                }
 581                sh_mmcif_sync_reset(host);
 582                dev_dbg(dev, "Forced end of command sequence\n");
 583                return -EIO;
 584        }
 585
 586        if (state2 & STS2_CRC_ERR) {
 587                dev_err(dev, " CRC error: state %u, wait %u\n",
 588                        host->state, host->wait_for);
 589                ret = -EIO;
 590        } else if (state2 & STS2_TIMEOUT_ERR) {
 591                dev_err(dev, " Timeout: state %u, wait %u\n",
 592                        host->state, host->wait_for);
 593                ret = -ETIMEDOUT;
 594        } else {
 595                dev_dbg(dev, " End/Index error: state %u, wait %u\n",
 596                        host->state, host->wait_for);
 597                ret = -EIO;
 598        }
 599        return ret;
 600}
 601
 602static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
 603{
 604        struct mmc_data *data = host->mrq->data;
 605
 606        host->sg_blkidx += host->blocksize;
 607
 608        /* data->sg->length must be a multiple of host->blocksize? */
 609        BUG_ON(host->sg_blkidx > data->sg->length);
 610
 611        if (host->sg_blkidx == data->sg->length) {
 612                host->sg_blkidx = 0;
 613                if (++host->sg_idx < data->sg_len)
 614                        host->pio_ptr = sg_virt(++data->sg);
 615        } else {
 616                host->pio_ptr = p;
 617        }
 618
 619        return host->sg_idx != data->sg_len;
 620}
 621
 622static void sh_mmcif_single_read(struct sh_mmcif_host *host,
 623                                 struct mmc_request *mrq)
 624{
 625        host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 626                           BLOCK_SIZE_MASK) + 3;
 627
 628        host->wait_for = MMCIF_WAIT_FOR_READ;
 629
 630        /* buf read enable */
 631        sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 632}
 633
 634static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
 635{
 636        struct device *dev = sh_mmcif_host_to_dev(host);
 637        struct mmc_data *data = host->mrq->data;
 638        u32 *p = sg_virt(data->sg);
 639        int i;
 640
 641        if (host->sd_error) {
 642                data->error = sh_mmcif_error_manage(host);
 643                dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 644                return false;
 645        }
 646
 647        for (i = 0; i < host->blocksize / 4; i++)
 648                *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
 649
 650        /* buffer read end */
 651        sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
 652        host->wait_for = MMCIF_WAIT_FOR_READ_END;
 653
 654        return true;
 655}
 656
 657static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
 658                                struct mmc_request *mrq)
 659{
 660        struct mmc_data *data = mrq->data;
 661
 662        if (!data->sg_len || !data->sg->length)
 663                return;
 664
 665        host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 666                BLOCK_SIZE_MASK;
 667
 668        host->wait_for = MMCIF_WAIT_FOR_MREAD;
 669        host->sg_idx = 0;
 670        host->sg_blkidx = 0;
 671        host->pio_ptr = sg_virt(data->sg);
 672
 673        sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 674}
 675
 676static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
 677{
 678        struct device *dev = sh_mmcif_host_to_dev(host);
 679        struct mmc_data *data = host->mrq->data;
 680        u32 *p = host->pio_ptr;
 681        int i;
 682
 683        if (host->sd_error) {
 684                data->error = sh_mmcif_error_manage(host);
 685                dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 686                return false;
 687        }
 688
 689        BUG_ON(!data->sg->length);
 690
 691        for (i = 0; i < host->blocksize / 4; i++)
 692                *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
 693
 694        if (!sh_mmcif_next_block(host, p))
 695                return false;
 696
 697        sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 698
 699        return true;
 700}
 701
 702static void sh_mmcif_single_write(struct sh_mmcif_host *host,
 703                                        struct mmc_request *mrq)
 704{
 705        host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 706                           BLOCK_SIZE_MASK) + 3;
 707
 708        host->wait_for = MMCIF_WAIT_FOR_WRITE;
 709
 710        /* buf write enable */
 711        sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 712}
 713
 714static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
 715{
 716        struct device *dev = sh_mmcif_host_to_dev(host);
 717        struct mmc_data *data = host->mrq->data;
 718        u32 *p = sg_virt(data->sg);
 719        int i;
 720
 721        if (host->sd_error) {
 722                data->error = sh_mmcif_error_manage(host);
 723                dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 724                return false;
 725        }
 726
 727        for (i = 0; i < host->blocksize / 4; i++)
 728                sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
 729
 730        /* buffer write end */
 731        sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
 732        host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
 733
 734        return true;
 735}
 736
 737static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
 738                                struct mmc_request *mrq)
 739{
 740        struct mmc_data *data = mrq->data;
 741
 742        if (!data->sg_len || !data->sg->length)
 743                return;
 744
 745        host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 746                BLOCK_SIZE_MASK;
 747
 748        host->wait_for = MMCIF_WAIT_FOR_MWRITE;
 749        host->sg_idx = 0;
 750        host->sg_blkidx = 0;
 751        host->pio_ptr = sg_virt(data->sg);
 752
 753        sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 754}
 755
 756static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
 757{
 758        struct device *dev = sh_mmcif_host_to_dev(host);
 759        struct mmc_data *data = host->mrq->data;
 760        u32 *p = host->pio_ptr;
 761        int i;
 762
 763        if (host->sd_error) {
 764                data->error = sh_mmcif_error_manage(host);
 765                dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 766                return false;
 767        }
 768
 769        BUG_ON(!data->sg->length);
 770
 771        for (i = 0; i < host->blocksize / 4; i++)
 772                sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
 773
 774        if (!sh_mmcif_next_block(host, p))
 775                return false;
 776
 777        sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 778
 779        return true;
 780}
 781
 782static void sh_mmcif_get_response(struct sh_mmcif_host *host,
 783                                                struct mmc_command *cmd)
 784{
 785        if (cmd->flags & MMC_RSP_136) {
 786                cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
 787                cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
 788                cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
 789                cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
 790        } else
 791                cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
 792}
 793
 794static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
 795                                                struct mmc_command *cmd)
 796{
 797        cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
 798}
 799
 800static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
 801                            struct mmc_request *mrq)
 802{
 803        struct device *dev = sh_mmcif_host_to_dev(host);
 804        struct mmc_data *data = mrq->data;
 805        struct mmc_command *cmd = mrq->cmd;
 806        u32 opc = cmd->opcode;
 807        u32 tmp = 0;
 808
 809        /* Response Type check */
 810        switch (mmc_resp_type(cmd)) {
 811        case MMC_RSP_NONE:
 812                tmp |= CMD_SET_RTYP_NO;
 813                break;
 814        case MMC_RSP_R1:
 815        case MMC_RSP_R3:
 816                tmp |= CMD_SET_RTYP_6B;
 817                break;
 818        case MMC_RSP_R1B:
 819                tmp |= CMD_SET_RBSY | CMD_SET_RTYP_6B;
 820                break;
 821        case MMC_RSP_R2:
 822                tmp |= CMD_SET_RTYP_17B;
 823                break;
 824        default:
 825                dev_err(dev, "Unsupported response type.\n");
 826                break;
 827        }
 828
 829        /* WDAT / DATW */
 830        if (data) {
 831                tmp |= CMD_SET_WDAT;
 832                switch (host->bus_width) {
 833                case MMC_BUS_WIDTH_1:
 834                        tmp |= CMD_SET_DATW_1;
 835                        break;
 836                case MMC_BUS_WIDTH_4:
 837                        tmp |= CMD_SET_DATW_4;
 838                        break;
 839                case MMC_BUS_WIDTH_8:
 840                        tmp |= CMD_SET_DATW_8;
 841                        break;
 842                default:
 843                        dev_err(dev, "Unsupported bus width.\n");
 844                        break;
 845                }
 846                switch (host->timing) {
 847                case MMC_TIMING_MMC_DDR52:
 848                        /*
 849                         * MMC core will only set this timing, if the host
 850                         * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
 851                         * capability. MMCIF implementations with this
 852                         * capability, e.g. sh73a0, will have to set it
 853                         * in their platform data.
 854                         */
 855                        tmp |= CMD_SET_DARS;
 856                        break;
 857                }
 858        }
 859        /* DWEN */
 860        if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
 861                tmp |= CMD_SET_DWEN;
 862        /* CMLTE/CMD12EN */
 863        if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
 864                tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
 865                sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
 866                                data->blocks << 16);
 867        }
 868        /* RIDXC[1:0] check bits */
 869        if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
 870            opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
 871                tmp |= CMD_SET_RIDXC_BITS;
 872        /* RCRC7C[1:0] check bits */
 873        if (opc == MMC_SEND_OP_COND)
 874                tmp |= CMD_SET_CRC7C_BITS;
 875        /* RCRC7C[1:0] internal CRC7 */
 876        if (opc == MMC_ALL_SEND_CID ||
 877                opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
 878                tmp |= CMD_SET_CRC7C_INTERNAL;
 879
 880        return (opc << 24) | tmp;
 881}
 882
 883static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
 884                               struct mmc_request *mrq, u32 opc)
 885{
 886        struct device *dev = sh_mmcif_host_to_dev(host);
 887
 888        switch (opc) {
 889        case MMC_READ_MULTIPLE_BLOCK:
 890                sh_mmcif_multi_read(host, mrq);
 891                return 0;
 892        case MMC_WRITE_MULTIPLE_BLOCK:
 893                sh_mmcif_multi_write(host, mrq);
 894                return 0;
 895        case MMC_WRITE_BLOCK:
 896                sh_mmcif_single_write(host, mrq);
 897                return 0;
 898        case MMC_READ_SINGLE_BLOCK:
 899        case MMC_SEND_EXT_CSD:
 900                sh_mmcif_single_read(host, mrq);
 901                return 0;
 902        default:
 903                dev_err(dev, "Unsupported CMD%d\n", opc);
 904                return -EINVAL;
 905        }
 906}
 907
 908static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
 909                               struct mmc_request *mrq)
 910{
 911        struct mmc_command *cmd = mrq->cmd;
 912        u32 opc;
 913        u32 mask = 0;
 914        unsigned long flags;
 915
 916        if (cmd->flags & MMC_RSP_BUSY)
 917                mask = MASK_START_CMD | MASK_MRBSYE;
 918        else
 919                mask = MASK_START_CMD | MASK_MCRSPE;
 920
 921        if (host->ccs_enable)
 922                mask |= MASK_MCCSTO;
 923
 924        if (mrq->data) {
 925                sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
 926                sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
 927                                mrq->data->blksz);
 928        }
 929        opc = sh_mmcif_set_cmd(host, mrq);
 930
 931        if (host->ccs_enable)
 932                sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
 933        else
 934                sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
 935        sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
 936        /* set arg */
 937        sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
 938        /* set cmd */
 939        spin_lock_irqsave(&host->lock, flags);
 940        sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
 941
 942        host->wait_for = MMCIF_WAIT_FOR_CMD;
 943        schedule_delayed_work(&host->timeout_work, host->timeout);
 944        spin_unlock_irqrestore(&host->lock, flags);
 945}
 946
 947static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
 948                              struct mmc_request *mrq)
 949{
 950        struct device *dev = sh_mmcif_host_to_dev(host);
 951
 952        switch (mrq->cmd->opcode) {
 953        case MMC_READ_MULTIPLE_BLOCK:
 954                sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
 955                break;
 956        case MMC_WRITE_MULTIPLE_BLOCK:
 957                sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
 958                break;
 959        default:
 960                dev_err(dev, "unsupported stop cmd\n");
 961                mrq->stop->error = sh_mmcif_error_manage(host);
 962                return;
 963        }
 964
 965        host->wait_for = MMCIF_WAIT_FOR_STOP;
 966}
 967
 968static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
 969{
 970        struct sh_mmcif_host *host = mmc_priv(mmc);
 971        struct device *dev = sh_mmcif_host_to_dev(host);
 972        unsigned long flags;
 973
 974        spin_lock_irqsave(&host->lock, flags);
 975        if (host->state != STATE_IDLE) {
 976                dev_dbg(dev, "%s() rejected, state %u\n",
 977                        __func__, host->state);
 978                spin_unlock_irqrestore(&host->lock, flags);
 979                mrq->cmd->error = -EAGAIN;
 980                mmc_request_done(mmc, mrq);
 981                return;
 982        }
 983
 984        host->state = STATE_REQUEST;
 985        spin_unlock_irqrestore(&host->lock, flags);
 986
 987        host->mrq = mrq;
 988
 989        sh_mmcif_start_cmd(host, mrq);
 990}
 991
 992static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
 993{
 994        struct device *dev = sh_mmcif_host_to_dev(host);
 995
 996        if (host->mmc->f_max) {
 997                unsigned int f_max, f_min = 0, f_min_old;
 998
 999                f_max = host->mmc->f_max;
1000                for (f_min_old = f_max; f_min_old > 2;) {
1001                        f_min = clk_round_rate(host->clk, f_min_old / 2);
1002                        if (f_min == f_min_old)
1003                                break;
1004                        f_min_old = f_min;
1005                }
1006
1007                /*
1008                 * This driver assumes this SoC is R-Car Gen2 or later
1009                 */
1010                host->clkdiv_map = 0x3ff;
1011
1012                host->mmc->f_max = f_max / (1 << ffs(host->clkdiv_map));
1013                host->mmc->f_min = f_min / (1 << fls(host->clkdiv_map));
1014        } else {
1015                unsigned int clk = clk_get_rate(host->clk);
1016
1017                host->mmc->f_max = clk / 2;
1018                host->mmc->f_min = clk / 512;
1019        }
1020
1021        dev_dbg(dev, "clk max/min = %d/%d\n",
1022                host->mmc->f_max, host->mmc->f_min);
1023}
1024
1025static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1026{
1027        struct sh_mmcif_host *host = mmc_priv(mmc);
1028        struct device *dev = sh_mmcif_host_to_dev(host);
1029        unsigned long flags;
1030
1031        spin_lock_irqsave(&host->lock, flags);
1032        if (host->state != STATE_IDLE) {
1033                dev_dbg(dev, "%s() rejected, state %u\n",
1034                        __func__, host->state);
1035                spin_unlock_irqrestore(&host->lock, flags);
1036                return;
1037        }
1038
1039        host->state = STATE_IOS;
1040        spin_unlock_irqrestore(&host->lock, flags);
1041
1042        switch (ios->power_mode) {
1043        case MMC_POWER_UP:
1044                if (!IS_ERR(mmc->supply.vmmc))
1045                        mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1046                if (!host->power) {
1047                        clk_prepare_enable(host->clk);
1048                        pm_runtime_get_sync(dev);
1049                        sh_mmcif_sync_reset(host);
1050                        sh_mmcif_request_dma(host);
1051                        host->power = true;
1052                }
1053                break;
1054        case MMC_POWER_OFF:
1055                if (!IS_ERR(mmc->supply.vmmc))
1056                        mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1057                if (host->power) {
1058                        sh_mmcif_clock_control(host, 0);
1059                        sh_mmcif_release_dma(host);
1060                        pm_runtime_put(dev);
1061                        clk_disable_unprepare(host->clk);
1062                        host->power = false;
1063                }
1064                break;
1065        case MMC_POWER_ON:
1066                sh_mmcif_clock_control(host, ios->clock);
1067                break;
1068        }
1069
1070        host->timing = ios->timing;
1071        host->bus_width = ios->bus_width;
1072        host->state = STATE_IDLE;
1073}
1074
1075static const struct mmc_host_ops sh_mmcif_ops = {
1076        .request        = sh_mmcif_request,
1077        .set_ios        = sh_mmcif_set_ios,
1078        .get_cd         = mmc_gpio_get_cd,
1079};
1080
1081static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1082{
1083        struct mmc_command *cmd = host->mrq->cmd;
1084        struct mmc_data *data = host->mrq->data;
1085        struct device *dev = sh_mmcif_host_to_dev(host);
1086        long time;
1087
1088        if (host->sd_error) {
1089                switch (cmd->opcode) {
1090                case MMC_ALL_SEND_CID:
1091                case MMC_SELECT_CARD:
1092                case MMC_APP_CMD:
1093                        cmd->error = -ETIMEDOUT;
1094                        break;
1095                default:
1096                        cmd->error = sh_mmcif_error_manage(host);
1097                        break;
1098                }
1099                dev_dbg(dev, "CMD%d error %d\n",
1100                        cmd->opcode, cmd->error);
1101                host->sd_error = false;
1102                return false;
1103        }
1104        if (!(cmd->flags & MMC_RSP_PRESENT)) {
1105                cmd->error = 0;
1106                return false;
1107        }
1108
1109        sh_mmcif_get_response(host, cmd);
1110
1111        if (!data)
1112                return false;
1113
1114        /*
1115         * Completion can be signalled from DMA callback and error, so, have to
1116         * reset here, before setting .dma_active
1117         */
1118        init_completion(&host->dma_complete);
1119
1120        if (data->flags & MMC_DATA_READ) {
1121                if (host->chan_rx)
1122                        sh_mmcif_start_dma_rx(host);
1123        } else {
1124                if (host->chan_tx)
1125                        sh_mmcif_start_dma_tx(host);
1126        }
1127
1128        if (!host->dma_active) {
1129                data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1130                return !data->error;
1131        }
1132
1133        /* Running in the IRQ thread, can sleep */
1134        time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1135                                                         host->timeout);
1136
1137        if (data->flags & MMC_DATA_READ)
1138                dma_unmap_sg(host->chan_rx->device->dev,
1139                             data->sg, data->sg_len,
1140                             DMA_FROM_DEVICE);
1141        else
1142                dma_unmap_sg(host->chan_tx->device->dev,
1143                             data->sg, data->sg_len,
1144                             DMA_TO_DEVICE);
1145
1146        if (host->sd_error) {
1147                dev_err(host->mmc->parent,
1148                        "Error IRQ while waiting for DMA completion!\n");
1149                /* Woken up by an error IRQ: abort DMA */
1150                data->error = sh_mmcif_error_manage(host);
1151        } else if (!time) {
1152                dev_err(host->mmc->parent, "DMA timeout!\n");
1153                data->error = -ETIMEDOUT;
1154        } else if (time < 0) {
1155                dev_err(host->mmc->parent,
1156                        "wait_for_completion_...() error %ld!\n", time);
1157                data->error = time;
1158        }
1159        sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1160                        BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1161        host->dma_active = false;
1162
1163        if (data->error) {
1164                data->bytes_xfered = 0;
1165                /* Abort DMA */
1166                if (data->flags & MMC_DATA_READ)
1167                        dmaengine_terminate_all(host->chan_rx);
1168                else
1169                        dmaengine_terminate_all(host->chan_tx);
1170        }
1171
1172        return false;
1173}
1174
1175static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1176{
1177        struct sh_mmcif_host *host = dev_id;
1178        struct mmc_request *mrq;
1179        struct device *dev = sh_mmcif_host_to_dev(host);
1180        bool wait = false;
1181        unsigned long flags;
1182        int wait_work;
1183
1184        spin_lock_irqsave(&host->lock, flags);
1185        wait_work = host->wait_for;
1186        spin_unlock_irqrestore(&host->lock, flags);
1187
1188        cancel_delayed_work_sync(&host->timeout_work);
1189
1190        mutex_lock(&host->thread_lock);
1191
1192        mrq = host->mrq;
1193        if (!mrq) {
1194                dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1195                        host->state, host->wait_for);
1196                mutex_unlock(&host->thread_lock);
1197                return IRQ_HANDLED;
1198        }
1199
1200        /*
1201         * All handlers return true, if processing continues, and false, if the
1202         * request has to be completed - successfully or not
1203         */
1204        switch (wait_work) {
1205        case MMCIF_WAIT_FOR_REQUEST:
1206                /* We're too late, the timeout has already kicked in */
1207                mutex_unlock(&host->thread_lock);
1208                return IRQ_HANDLED;
1209        case MMCIF_WAIT_FOR_CMD:
1210                /* Wait for data? */
1211                wait = sh_mmcif_end_cmd(host);
1212                break;
1213        case MMCIF_WAIT_FOR_MREAD:
1214                /* Wait for more data? */
1215                wait = sh_mmcif_mread_block(host);
1216                break;
1217        case MMCIF_WAIT_FOR_READ:
1218                /* Wait for data end? */
1219                wait = sh_mmcif_read_block(host);
1220                break;
1221        case MMCIF_WAIT_FOR_MWRITE:
1222                /* Wait data to write? */
1223                wait = sh_mmcif_mwrite_block(host);
1224                break;
1225        case MMCIF_WAIT_FOR_WRITE:
1226                /* Wait for data end? */
1227                wait = sh_mmcif_write_block(host);
1228                break;
1229        case MMCIF_WAIT_FOR_STOP:
1230                if (host->sd_error) {
1231                        mrq->stop->error = sh_mmcif_error_manage(host);
1232                        dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1233                        break;
1234                }
1235                sh_mmcif_get_cmd12response(host, mrq->stop);
1236                mrq->stop->error = 0;
1237                break;
1238        case MMCIF_WAIT_FOR_READ_END:
1239        case MMCIF_WAIT_FOR_WRITE_END:
1240                if (host->sd_error) {
1241                        mrq->data->error = sh_mmcif_error_manage(host);
1242                        dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1243                }
1244                break;
1245        default:
1246                BUG();
1247        }
1248
1249        if (wait) {
1250                schedule_delayed_work(&host->timeout_work, host->timeout);
1251                /* Wait for more data */
1252                mutex_unlock(&host->thread_lock);
1253                return IRQ_HANDLED;
1254        }
1255
1256        if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1257                struct mmc_data *data = mrq->data;
1258                if (!mrq->cmd->error && data && !data->error)
1259                        data->bytes_xfered =
1260                                data->blocks * data->blksz;
1261
1262                if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1263                        sh_mmcif_stop_cmd(host, mrq);
1264                        if (!mrq->stop->error) {
1265                                schedule_delayed_work(&host->timeout_work, host->timeout);
1266                                mutex_unlock(&host->thread_lock);
1267                                return IRQ_HANDLED;
1268                        }
1269                }
1270        }
1271
1272        host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1273        host->state = STATE_IDLE;
1274        host->mrq = NULL;
1275        mmc_request_done(host->mmc, mrq);
1276
1277        mutex_unlock(&host->thread_lock);
1278
1279        return IRQ_HANDLED;
1280}
1281
1282static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1283{
1284        struct sh_mmcif_host *host = dev_id;
1285        struct device *dev = sh_mmcif_host_to_dev(host);
1286        u32 state, mask;
1287
1288        state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1289        mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1290        if (host->ccs_enable)
1291                sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1292        else
1293                sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1294        sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1295
1296        if (state & ~MASK_CLEAN)
1297                dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1298                        state);
1299
1300        if (state & INT_ERR_STS || state & ~INT_ALL) {
1301                host->sd_error = true;
1302                dev_dbg(dev, "int err state = 0x%08x\n", state);
1303        }
1304        if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1305                if (!host->mrq)
1306                        dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1307                if (!host->dma_active)
1308                        return IRQ_WAKE_THREAD;
1309                else if (host->sd_error)
1310                        sh_mmcif_dma_complete(host);
1311        } else {
1312                dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1313        }
1314
1315        return IRQ_HANDLED;
1316}
1317
1318static void sh_mmcif_timeout_work(struct work_struct *work)
1319{
1320        struct delayed_work *d = to_delayed_work(work);
1321        struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1322        struct mmc_request *mrq = host->mrq;
1323        struct device *dev = sh_mmcif_host_to_dev(host);
1324        unsigned long flags;
1325
1326        if (host->dying)
1327                /* Don't run after mmc_remove_host() */
1328                return;
1329
1330        spin_lock_irqsave(&host->lock, flags);
1331        if (host->state == STATE_IDLE) {
1332                spin_unlock_irqrestore(&host->lock, flags);
1333                return;
1334        }
1335
1336        dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1337                host->wait_for, mrq->cmd->opcode);
1338
1339        host->state = STATE_TIMEOUT;
1340        spin_unlock_irqrestore(&host->lock, flags);
1341
1342        /*
1343         * Handle races with cancel_delayed_work(), unless
1344         * cancel_delayed_work_sync() is used
1345         */
1346        switch (host->wait_for) {
1347        case MMCIF_WAIT_FOR_CMD:
1348                mrq->cmd->error = sh_mmcif_error_manage(host);
1349                break;
1350        case MMCIF_WAIT_FOR_STOP:
1351                mrq->stop->error = sh_mmcif_error_manage(host);
1352                break;
1353        case MMCIF_WAIT_FOR_MREAD:
1354        case MMCIF_WAIT_FOR_MWRITE:
1355        case MMCIF_WAIT_FOR_READ:
1356        case MMCIF_WAIT_FOR_WRITE:
1357        case MMCIF_WAIT_FOR_READ_END:
1358        case MMCIF_WAIT_FOR_WRITE_END:
1359                mrq->data->error = sh_mmcif_error_manage(host);
1360                break;
1361        default:
1362                BUG();
1363        }
1364
1365        host->state = STATE_IDLE;
1366        host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1367        host->mrq = NULL;
1368        mmc_request_done(host->mmc, mrq);
1369}
1370
1371static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1372{
1373        struct device *dev = sh_mmcif_host_to_dev(host);
1374        struct sh_mmcif_plat_data *pd = dev->platform_data;
1375        struct mmc_host *mmc = host->mmc;
1376
1377        mmc_regulator_get_supply(mmc);
1378
1379        if (!pd)
1380                return;
1381
1382        if (!mmc->ocr_avail)
1383                mmc->ocr_avail = pd->ocr;
1384        else if (pd->ocr)
1385                dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1386}
1387
1388static int sh_mmcif_probe(struct platform_device *pdev)
1389{
1390        int ret = 0, irq[2];
1391        struct mmc_host *mmc;
1392        struct sh_mmcif_host *host;
1393        struct device *dev = &pdev->dev;
1394        struct sh_mmcif_plat_data *pd = dev->platform_data;
1395        void __iomem *reg;
1396        const char *name;
1397
1398        irq[0] = platform_get_irq(pdev, 0);
1399        irq[1] = platform_get_irq_optional(pdev, 1);
1400        if (irq[0] < 0)
1401                return -ENXIO;
1402
1403        reg = devm_platform_ioremap_resource(pdev, 0);
1404        if (IS_ERR(reg))
1405                return PTR_ERR(reg);
1406
1407        mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1408        if (!mmc)
1409                return -ENOMEM;
1410
1411        ret = mmc_of_parse(mmc);
1412        if (ret < 0)
1413                goto err_host;
1414
1415        host            = mmc_priv(mmc);
1416        host->mmc       = mmc;
1417        host->addr      = reg;
1418        host->timeout   = msecs_to_jiffies(10000);
1419        host->ccs_enable = true;
1420        host->clk_ctrl2_enable = false;
1421
1422        host->pd = pdev;
1423
1424        spin_lock_init(&host->lock);
1425
1426        mmc->ops = &sh_mmcif_ops;
1427        sh_mmcif_init_ocr(host);
1428
1429        mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1430        mmc->caps2 |= MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO;
1431        mmc->max_busy_timeout = 10000;
1432
1433        if (pd && pd->caps)
1434                mmc->caps |= pd->caps;
1435        mmc->max_segs = 32;
1436        mmc->max_blk_size = 512;
1437        mmc->max_req_size = PAGE_SIZE * mmc->max_segs;
1438        mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1439        mmc->max_seg_size = mmc->max_req_size;
1440
1441        platform_set_drvdata(pdev, host);
1442
1443        host->clk = devm_clk_get(dev, NULL);
1444        if (IS_ERR(host->clk)) {
1445                ret = PTR_ERR(host->clk);
1446                dev_err(dev, "cannot get clock: %d\n", ret);
1447                goto err_host;
1448        }
1449
1450        ret = clk_prepare_enable(host->clk);
1451        if (ret < 0)
1452                goto err_host;
1453
1454        sh_mmcif_clk_setup(host);
1455
1456        pm_runtime_enable(dev);
1457        host->power = false;
1458
1459        ret = pm_runtime_get_sync(dev);
1460        if (ret < 0)
1461                goto err_clk;
1462
1463        INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1464
1465        sh_mmcif_sync_reset(host);
1466        sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1467
1468        name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1469        ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1470                                        sh_mmcif_irqt, 0, name, host);
1471        if (ret) {
1472                dev_err(dev, "request_irq error (%s)\n", name);
1473                goto err_clk;
1474        }
1475        if (irq[1] >= 0) {
1476                ret = devm_request_threaded_irq(dev, irq[1],
1477                                                sh_mmcif_intr, sh_mmcif_irqt,
1478                                                0, "sh_mmc:int", host);
1479                if (ret) {
1480                        dev_err(dev, "request_irq error (sh_mmc:int)\n");
1481                        goto err_clk;
1482                }
1483        }
1484
1485        mutex_init(&host->thread_lock);
1486
1487        ret = mmc_add_host(mmc);
1488        if (ret < 0)
1489                goto err_clk;
1490
1491        dev_pm_qos_expose_latency_limit(dev, 100);
1492
1493        dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1494                 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1495                 clk_get_rate(host->clk) / 1000000UL);
1496
1497        pm_runtime_put(dev);
1498        clk_disable_unprepare(host->clk);
1499        return ret;
1500
1501err_clk:
1502        clk_disable_unprepare(host->clk);
1503        pm_runtime_put_sync(dev);
1504        pm_runtime_disable(dev);
1505err_host:
1506        mmc_free_host(mmc);
1507        return ret;
1508}
1509
1510static int sh_mmcif_remove(struct platform_device *pdev)
1511{
1512        struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1513
1514        host->dying = true;
1515        clk_prepare_enable(host->clk);
1516        pm_runtime_get_sync(&pdev->dev);
1517
1518        dev_pm_qos_hide_latency_limit(&pdev->dev);
1519
1520        mmc_remove_host(host->mmc);
1521        sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1522
1523        /*
1524         * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1525         * mmc_remove_host() call above. But swapping order doesn't help either
1526         * (a query on the linux-mmc mailing list didn't bring any replies).
1527         */
1528        cancel_delayed_work_sync(&host->timeout_work);
1529
1530        clk_disable_unprepare(host->clk);
1531        mmc_free_host(host->mmc);
1532        pm_runtime_put_sync(&pdev->dev);
1533        pm_runtime_disable(&pdev->dev);
1534
1535        return 0;
1536}
1537
1538#ifdef CONFIG_PM_SLEEP
1539static int sh_mmcif_suspend(struct device *dev)
1540{
1541        struct sh_mmcif_host *host = dev_get_drvdata(dev);
1542
1543        pm_runtime_get_sync(dev);
1544        sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1545        pm_runtime_put(dev);
1546
1547        return 0;
1548}
1549
1550static int sh_mmcif_resume(struct device *dev)
1551{
1552        return 0;
1553}
1554#endif
1555
1556static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1557        SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1558};
1559
1560static struct platform_driver sh_mmcif_driver = {
1561        .probe          = sh_mmcif_probe,
1562        .remove         = sh_mmcif_remove,
1563        .driver         = {
1564                .name   = DRIVER_NAME,
1565                .pm     = &sh_mmcif_dev_pm_ops,
1566                .of_match_table = sh_mmcif_of_match,
1567        },
1568};
1569
1570module_platform_driver(sh_mmcif_driver);
1571
1572MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1573MODULE_LICENSE("GPL v2");
1574MODULE_ALIAS("platform:" DRIVER_NAME);
1575MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");
1576