linux/drivers/mtd/devices/st_spi_fsm.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * st_spi_fsm.c - ST Fast Sequence Mode (FSM) Serial Flash Controller
   4 *
   5 * Author: Angus Clark <angus.clark@st.com>
   6 *
   7 * Copyright (C) 2010-2014 STMicroelectronics Limited
   8 *
   9 * JEDEC probe based on drivers/mtd/devices/m25p80.c
  10 */
  11#include <linux/kernel.h>
  12#include <linux/module.h>
  13#include <linux/regmap.h>
  14#include <linux/platform_device.h>
  15#include <linux/mfd/syscon.h>
  16#include <linux/mtd/mtd.h>
  17#include <linux/mtd/partitions.h>
  18#include <linux/mtd/spi-nor.h>
  19#include <linux/sched.h>
  20#include <linux/delay.h>
  21#include <linux/io.h>
  22#include <linux/of.h>
  23#include <linux/clk.h>
  24
  25#include "serial_flash_cmds.h"
  26
  27/*
  28 * FSM SPI Controller Registers
  29 */
  30#define SPI_CLOCKDIV                    0x0010
  31#define SPI_MODESELECT                  0x0018
  32#define SPI_CONFIGDATA                  0x0020
  33#define SPI_STA_MODE_CHANGE             0x0028
  34#define SPI_FAST_SEQ_TRANSFER_SIZE      0x0100
  35#define SPI_FAST_SEQ_ADD1               0x0104
  36#define SPI_FAST_SEQ_ADD2               0x0108
  37#define SPI_FAST_SEQ_ADD_CFG            0x010c
  38#define SPI_FAST_SEQ_OPC1               0x0110
  39#define SPI_FAST_SEQ_OPC2               0x0114
  40#define SPI_FAST_SEQ_OPC3               0x0118
  41#define SPI_FAST_SEQ_OPC4               0x011c
  42#define SPI_FAST_SEQ_OPC5               0x0120
  43#define SPI_MODE_BITS                   0x0124
  44#define SPI_DUMMY_BITS                  0x0128
  45#define SPI_FAST_SEQ_FLASH_STA_DATA     0x012c
  46#define SPI_FAST_SEQ_1                  0x0130
  47#define SPI_FAST_SEQ_2                  0x0134
  48#define SPI_FAST_SEQ_3                  0x0138
  49#define SPI_FAST_SEQ_4                  0x013c
  50#define SPI_FAST_SEQ_CFG                0x0140
  51#define SPI_FAST_SEQ_STA                0x0144
  52#define SPI_QUAD_BOOT_SEQ_INIT_1        0x0148
  53#define SPI_QUAD_BOOT_SEQ_INIT_2        0x014c
  54#define SPI_QUAD_BOOT_READ_SEQ_1        0x0150
  55#define SPI_QUAD_BOOT_READ_SEQ_2        0x0154
  56#define SPI_PROGRAM_ERASE_TIME          0x0158
  57#define SPI_MULT_PAGE_REPEAT_SEQ_1      0x015c
  58#define SPI_MULT_PAGE_REPEAT_SEQ_2      0x0160
  59#define SPI_STATUS_WR_TIME_REG          0x0164
  60#define SPI_FAST_SEQ_DATA_REG           0x0300
  61
  62/*
  63 * Register: SPI_MODESELECT
  64 */
  65#define SPI_MODESELECT_CONTIG           0x01
  66#define SPI_MODESELECT_FASTREAD         0x02
  67#define SPI_MODESELECT_DUALIO           0x04
  68#define SPI_MODESELECT_FSM              0x08
  69#define SPI_MODESELECT_QUADBOOT         0x10
  70
  71/*
  72 * Register: SPI_CONFIGDATA
  73 */
  74#define SPI_CFG_DEVICE_ST               0x1
  75#define SPI_CFG_DEVICE_ATMEL            0x4
  76#define SPI_CFG_MIN_CS_HIGH(x)          (((x) & 0xfff) << 4)
  77#define SPI_CFG_CS_SETUPHOLD(x)         (((x) & 0xff) << 16)
  78#define SPI_CFG_DATA_HOLD(x)            (((x) & 0xff) << 24)
  79
  80#define SPI_CFG_DEFAULT_MIN_CS_HIGH    SPI_CFG_MIN_CS_HIGH(0x0AA)
  81#define SPI_CFG_DEFAULT_CS_SETUPHOLD   SPI_CFG_CS_SETUPHOLD(0xA0)
  82#define SPI_CFG_DEFAULT_DATA_HOLD      SPI_CFG_DATA_HOLD(0x00)
  83
  84/*
  85 * Register: SPI_FAST_SEQ_TRANSFER_SIZE
  86 */
  87#define TRANSFER_SIZE(x)                ((x) * 8)
  88
  89/*
  90 * Register: SPI_FAST_SEQ_ADD_CFG
  91 */
  92#define ADR_CFG_CYCLES_ADD1(x)          ((x) << 0)
  93#define ADR_CFG_PADS_1_ADD1             (0x0 << 6)
  94#define ADR_CFG_PADS_2_ADD1             (0x1 << 6)
  95#define ADR_CFG_PADS_4_ADD1             (0x3 << 6)
  96#define ADR_CFG_CSDEASSERT_ADD1         (1   << 8)
  97#define ADR_CFG_CYCLES_ADD2(x)          ((x) << (0+16))
  98#define ADR_CFG_PADS_1_ADD2             (0x0 << (6+16))
  99#define ADR_CFG_PADS_2_ADD2             (0x1 << (6+16))
 100#define ADR_CFG_PADS_4_ADD2             (0x3 << (6+16))
 101#define ADR_CFG_CSDEASSERT_ADD2         (1   << (8+16))
 102
 103/*
 104 * Register: SPI_FAST_SEQ_n
 105 */
 106#define SEQ_OPC_OPCODE(x)               ((x) << 0)
 107#define SEQ_OPC_CYCLES(x)               ((x) << 8)
 108#define SEQ_OPC_PADS_1                  (0x0 << 14)
 109#define SEQ_OPC_PADS_2                  (0x1 << 14)
 110#define SEQ_OPC_PADS_4                  (0x3 << 14)
 111#define SEQ_OPC_CSDEASSERT              (1   << 16)
 112
 113/*
 114 * Register: SPI_FAST_SEQ_CFG
 115 */
 116#define SEQ_CFG_STARTSEQ                (1 << 0)
 117#define SEQ_CFG_SWRESET                 (1 << 5)
 118#define SEQ_CFG_CSDEASSERT              (1 << 6)
 119#define SEQ_CFG_READNOTWRITE            (1 << 7)
 120#define SEQ_CFG_ERASE                   (1 << 8)
 121#define SEQ_CFG_PADS_1                  (0x0 << 16)
 122#define SEQ_CFG_PADS_2                  (0x1 << 16)
 123#define SEQ_CFG_PADS_4                  (0x3 << 16)
 124
 125/*
 126 * Register: SPI_MODE_BITS
 127 */
 128#define MODE_DATA(x)                    (x & 0xff)
 129#define MODE_CYCLES(x)                  ((x & 0x3f) << 16)
 130#define MODE_PADS_1                     (0x0 << 22)
 131#define MODE_PADS_2                     (0x1 << 22)
 132#define MODE_PADS_4                     (0x3 << 22)
 133#define DUMMY_CSDEASSERT                (1   << 24)
 134
 135/*
 136 * Register: SPI_DUMMY_BITS
 137 */
 138#define DUMMY_CYCLES(x)                 ((x & 0x3f) << 16)
 139#define DUMMY_PADS_1                    (0x0 << 22)
 140#define DUMMY_PADS_2                    (0x1 << 22)
 141#define DUMMY_PADS_4                    (0x3 << 22)
 142#define DUMMY_CSDEASSERT                (1   << 24)
 143
 144/*
 145 * Register: SPI_FAST_SEQ_FLASH_STA_DATA
 146 */
 147#define STA_DATA_BYTE1(x)               ((x & 0xff) << 0)
 148#define STA_DATA_BYTE2(x)               ((x & 0xff) << 8)
 149#define STA_PADS_1                      (0x0 << 16)
 150#define STA_PADS_2                      (0x1 << 16)
 151#define STA_PADS_4                      (0x3 << 16)
 152#define STA_CSDEASSERT                  (0x1 << 20)
 153#define STA_RDNOTWR                     (0x1 << 21)
 154
 155/*
 156 * FSM SPI Instruction Opcodes
 157 */
 158#define STFSM_OPC_CMD                   0x1
 159#define STFSM_OPC_ADD                   0x2
 160#define STFSM_OPC_STA                   0x3
 161#define STFSM_OPC_MODE                  0x4
 162#define STFSM_OPC_DUMMY         0x5
 163#define STFSM_OPC_DATA                  0x6
 164#define STFSM_OPC_WAIT                  0x7
 165#define STFSM_OPC_JUMP                  0x8
 166#define STFSM_OPC_GOTO                  0x9
 167#define STFSM_OPC_STOP                  0xF
 168
 169/*
 170 * FSM SPI Instructions (== opcode + operand).
 171 */
 172#define STFSM_INSTR(cmd, op)            ((cmd) | ((op) << 4))
 173
 174#define STFSM_INST_CMD1                 STFSM_INSTR(STFSM_OPC_CMD,      1)
 175#define STFSM_INST_CMD2                 STFSM_INSTR(STFSM_OPC_CMD,      2)
 176#define STFSM_INST_CMD3                 STFSM_INSTR(STFSM_OPC_CMD,      3)
 177#define STFSM_INST_CMD4                 STFSM_INSTR(STFSM_OPC_CMD,      4)
 178#define STFSM_INST_CMD5                 STFSM_INSTR(STFSM_OPC_CMD,      5)
 179#define STFSM_INST_ADD1                 STFSM_INSTR(STFSM_OPC_ADD,      1)
 180#define STFSM_INST_ADD2                 STFSM_INSTR(STFSM_OPC_ADD,      2)
 181
 182#define STFSM_INST_DATA_WRITE           STFSM_INSTR(STFSM_OPC_DATA,     1)
 183#define STFSM_INST_DATA_READ            STFSM_INSTR(STFSM_OPC_DATA,     2)
 184
 185#define STFSM_INST_STA_RD1              STFSM_INSTR(STFSM_OPC_STA,      0x1)
 186#define STFSM_INST_STA_WR1              STFSM_INSTR(STFSM_OPC_STA,      0x1)
 187#define STFSM_INST_STA_RD2              STFSM_INSTR(STFSM_OPC_STA,      0x2)
 188#define STFSM_INST_STA_WR1_2            STFSM_INSTR(STFSM_OPC_STA,      0x3)
 189
 190#define STFSM_INST_MODE                 STFSM_INSTR(STFSM_OPC_MODE,     0)
 191#define STFSM_INST_DUMMY                STFSM_INSTR(STFSM_OPC_DUMMY,    0)
 192#define STFSM_INST_WAIT                 STFSM_INSTR(STFSM_OPC_WAIT,     0)
 193#define STFSM_INST_STOP                 STFSM_INSTR(STFSM_OPC_STOP,     0)
 194
 195#define STFSM_DEFAULT_EMI_FREQ 100000000UL                        /* 100 MHz */
 196#define STFSM_DEFAULT_WR_TIME  (STFSM_DEFAULT_EMI_FREQ * (15/1000)) /* 15ms */
 197
 198#define STFSM_FLASH_SAFE_FREQ  10000000UL                         /* 10 MHz */
 199
 200#define STFSM_MAX_WAIT_SEQ_MS  1000     /* FSM execution time */
 201
 202/* S25FLxxxS commands */
 203#define S25FL_CMD_WRITE4_1_1_4 0x34
 204#define S25FL_CMD_SE4          0xdc
 205#define S25FL_CMD_CLSR         0x30
 206#define S25FL_CMD_DYBWR                0xe1
 207#define S25FL_CMD_DYBRD                0xe0
 208#define S25FL_CMD_WRITE4       0x12    /* Note, opcode clashes with
 209                                        * 'SPINOR_OP_WRITE_1_4_4'
 210                                        * as found on N25Qxxx devices! */
 211
 212/* Status register */
 213#define FLASH_STATUS_BUSY      0x01
 214#define FLASH_STATUS_WEL       0x02
 215#define FLASH_STATUS_BP0       0x04
 216#define FLASH_STATUS_BP1       0x08
 217#define FLASH_STATUS_BP2       0x10
 218#define FLASH_STATUS_SRWP0     0x80
 219#define FLASH_STATUS_TIMEOUT   0xff
 220/* S25FL Error Flags */
 221#define S25FL_STATUS_E_ERR     0x20
 222#define S25FL_STATUS_P_ERR     0x40
 223
 224#define N25Q_CMD_WRVCR         0x81
 225#define N25Q_CMD_RDVCR         0x85
 226#define N25Q_CMD_RDVECR        0x65
 227#define N25Q_CMD_RDNVCR        0xb5
 228#define N25Q_CMD_WRNVCR        0xb1
 229
 230#define FLASH_PAGESIZE         256                      /* In Bytes    */
 231#define FLASH_PAGESIZE_32      (FLASH_PAGESIZE / 4)     /* In uint32_t */
 232#define FLASH_MAX_BUSY_WAIT    (300 * HZ)       /* Maximum 'CHIPERASE' time */
 233
 234/*
 235 * Flags to tweak operation of default read/write/erase routines
 236 */
 237#define CFG_READ_TOGGLE_32BIT_ADDR     0x00000001
 238#define CFG_WRITE_TOGGLE_32BIT_ADDR    0x00000002
 239#define CFG_ERASESEC_TOGGLE_32BIT_ADDR 0x00000008
 240#define CFG_S25FL_CHECK_ERROR_FLAGS    0x00000010
 241
 242struct stfsm_seq {
 243        uint32_t data_size;
 244        uint32_t addr1;
 245        uint32_t addr2;
 246        uint32_t addr_cfg;
 247        uint32_t seq_opc[5];
 248        uint32_t mode;
 249        uint32_t dummy;
 250        uint32_t status;
 251        uint8_t  seq[16];
 252        uint32_t seq_cfg;
 253} __packed __aligned(4);
 254
 255struct stfsm {
 256        struct device           *dev;
 257        void __iomem            *base;
 258        struct mtd_info         mtd;
 259        struct mutex            lock;
 260        struct flash_info       *info;
 261        struct clk              *clk;
 262
 263        uint32_t                configuration;
 264        uint32_t                fifo_dir_delay;
 265        bool                    booted_from_spi;
 266        bool                    reset_signal;
 267        bool                    reset_por;
 268
 269        struct stfsm_seq stfsm_seq_read;
 270        struct stfsm_seq stfsm_seq_write;
 271        struct stfsm_seq stfsm_seq_en_32bit_addr;
 272};
 273
 274/* Parameters to configure a READ or WRITE FSM sequence */
 275struct seq_rw_config {
 276        uint32_t        flags;          /* flags to support config */
 277        uint8_t         cmd;            /* FLASH command */
 278        int             write;          /* Write Sequence */
 279        uint8_t         addr_pads;      /* No. of addr pads (MODE & DUMMY) */
 280        uint8_t         data_pads;      /* No. of data pads */
 281        uint8_t         mode_data;      /* MODE data */
 282        uint8_t         mode_cycles;    /* No. of MODE cycles */
 283        uint8_t         dummy_cycles;   /* No. of DUMMY cycles */
 284};
 285
 286/* SPI Flash Device Table */
 287struct flash_info {
 288        char            *name;
 289        /*
 290         * JEDEC id zero means "no ID" (most older chips); otherwise it has
 291         * a high byte of zero plus three data bytes: the manufacturer id,
 292         * then a two byte device id.
 293         */
 294        u32             jedec_id;
 295        u16             ext_id;
 296        /*
 297         * The size listed here is what works with SPINOR_OP_SE, which isn't
 298         * necessarily called a "sector" by the vendor.
 299         */
 300        unsigned        sector_size;
 301        u16             n_sectors;
 302        u32             flags;
 303        /*
 304         * Note, where FAST_READ is supported, freq_max specifies the
 305         * FAST_READ frequency, not the READ frequency.
 306         */
 307        u32             max_freq;
 308        int             (*config)(struct stfsm *);
 309};
 310
 311static int stfsm_n25q_config(struct stfsm *fsm);
 312static int stfsm_mx25_config(struct stfsm *fsm);
 313static int stfsm_s25fl_config(struct stfsm *fsm);
 314static int stfsm_w25q_config(struct stfsm *fsm);
 315
 316static struct flash_info flash_types[] = {
 317        /*
 318         * ST Microelectronics/Numonyx --
 319         * (newer production versions may have feature updates
 320         * (eg faster operating frequency)
 321         */
 322#define M25P_FLAG (FLASH_FLAG_READ_WRITE | FLASH_FLAG_READ_FAST)
 323        { "m25p40",  0x202013, 0,  64 * 1024,   8, M25P_FLAG, 25, NULL },
 324        { "m25p80",  0x202014, 0,  64 * 1024,  16, M25P_FLAG, 25, NULL },
 325        { "m25p16",  0x202015, 0,  64 * 1024,  32, M25P_FLAG, 25, NULL },
 326        { "m25p32",  0x202016, 0,  64 * 1024,  64, M25P_FLAG, 50, NULL },
 327        { "m25p64",  0x202017, 0,  64 * 1024, 128, M25P_FLAG, 50, NULL },
 328        { "m25p128", 0x202018, 0, 256 * 1024,  64, M25P_FLAG, 50, NULL },
 329
 330#define M25PX_FLAG (FLASH_FLAG_READ_WRITE      |        \
 331                    FLASH_FLAG_READ_FAST        |       \
 332                    FLASH_FLAG_READ_1_1_2       |       \
 333                    FLASH_FLAG_WRITE_1_1_2)
 334        { "m25px32", 0x207116, 0,  64 * 1024,  64, M25PX_FLAG, 75, NULL },
 335        { "m25px64", 0x207117, 0,  64 * 1024, 128, M25PX_FLAG, 75, NULL },
 336
 337        /* Macronix MX25xxx
 338         *     - Support for 'FLASH_FLAG_WRITE_1_4_4' is omitted for devices
 339         *       where operating frequency must be reduced.
 340         */
 341#define MX25_FLAG (FLASH_FLAG_READ_WRITE       |        \
 342                   FLASH_FLAG_READ_FAST         |       \
 343                   FLASH_FLAG_READ_1_1_2        |       \
 344                   FLASH_FLAG_READ_1_2_2        |       \
 345                   FLASH_FLAG_READ_1_1_4        |       \
 346                   FLASH_FLAG_SE_4K             |       \
 347                   FLASH_FLAG_SE_32K)
 348        { "mx25l3255e",  0xc29e16, 0, 64 * 1024, 64,
 349          (MX25_FLAG | FLASH_FLAG_WRITE_1_4_4), 86,
 350          stfsm_mx25_config},
 351        { "mx25l25635e", 0xc22019, 0, 64*1024, 512,
 352          (MX25_FLAG | FLASH_FLAG_32BIT_ADDR | FLASH_FLAG_RESET), 70,
 353          stfsm_mx25_config },
 354        { "mx25l25655e", 0xc22619, 0, 64*1024, 512,
 355          (MX25_FLAG | FLASH_FLAG_32BIT_ADDR | FLASH_FLAG_RESET), 70,
 356          stfsm_mx25_config},
 357
 358#define N25Q_FLAG (FLASH_FLAG_READ_WRITE       |        \
 359                   FLASH_FLAG_READ_FAST         |       \
 360                   FLASH_FLAG_READ_1_1_2        |       \
 361                   FLASH_FLAG_READ_1_2_2        |       \
 362                   FLASH_FLAG_READ_1_1_4        |       \
 363                   FLASH_FLAG_READ_1_4_4        |       \
 364                   FLASH_FLAG_WRITE_1_1_2       |       \
 365                   FLASH_FLAG_WRITE_1_2_2       |       \
 366                   FLASH_FLAG_WRITE_1_1_4       |       \
 367                   FLASH_FLAG_WRITE_1_4_4)
 368        { "n25q128", 0x20ba18, 0, 64 * 1024,  256, N25Q_FLAG, 108,
 369          stfsm_n25q_config },
 370        { "n25q256", 0x20ba19, 0, 64 * 1024,  512,
 371          N25Q_FLAG | FLASH_FLAG_32BIT_ADDR, 108, stfsm_n25q_config },
 372
 373        /*
 374         * Spansion S25FLxxxP
 375         *     - 256KiB and 64KiB sector variants (identified by ext. JEDEC)
 376         */
 377#define S25FLXXXP_FLAG (FLASH_FLAG_READ_WRITE  |        \
 378                        FLASH_FLAG_READ_1_1_2   |       \
 379                        FLASH_FLAG_READ_1_2_2   |       \
 380                        FLASH_FLAG_READ_1_1_4   |       \
 381                        FLASH_FLAG_READ_1_4_4   |       \
 382                        FLASH_FLAG_WRITE_1_1_4  |       \
 383                        FLASH_FLAG_READ_FAST)
 384        { "s25fl032p",  0x010215, 0x4d00,  64 * 1024,  64, S25FLXXXP_FLAG, 80,
 385          stfsm_s25fl_config},
 386        { "s25fl129p0", 0x012018, 0x4d00, 256 * 1024,  64, S25FLXXXP_FLAG, 80,
 387          stfsm_s25fl_config },
 388        { "s25fl129p1", 0x012018, 0x4d01,  64 * 1024, 256, S25FLXXXP_FLAG, 80,
 389          stfsm_s25fl_config },
 390
 391        /*
 392         * Spansion S25FLxxxS
 393         *     - 256KiB and 64KiB sector variants (identified by ext. JEDEC)
 394         *     - RESET# signal supported by die but not bristled out on all
 395         *       package types.  The package type is a function of board design,
 396         *       so this information is captured in the board's flags.
 397         *     - Supports 'DYB' sector protection. Depending on variant, sectors
 398         *       may default to locked state on power-on.
 399         */
 400#define S25FLXXXS_FLAG (S25FLXXXP_FLAG         |        \
 401                        FLASH_FLAG_RESET        |       \
 402                        FLASH_FLAG_DYB_LOCKING)
 403        { "s25fl128s0", 0x012018, 0x0300,  256 * 1024, 64, S25FLXXXS_FLAG, 80,
 404          stfsm_s25fl_config },
 405        { "s25fl128s1", 0x012018, 0x0301,  64 * 1024, 256, S25FLXXXS_FLAG, 80,
 406          stfsm_s25fl_config },
 407        { "s25fl256s0", 0x010219, 0x4d00, 256 * 1024, 128,
 408          S25FLXXXS_FLAG | FLASH_FLAG_32BIT_ADDR, 80, stfsm_s25fl_config },
 409        { "s25fl256s1", 0x010219, 0x4d01,  64 * 1024, 512,
 410          S25FLXXXS_FLAG | FLASH_FLAG_32BIT_ADDR, 80, stfsm_s25fl_config },
 411
 412        /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
 413#define W25X_FLAG (FLASH_FLAG_READ_WRITE       |        \
 414                   FLASH_FLAG_READ_FAST         |       \
 415                   FLASH_FLAG_READ_1_1_2        |       \
 416                   FLASH_FLAG_WRITE_1_1_2)
 417        { "w25x40",  0xef3013, 0,  64 * 1024,   8, W25X_FLAG, 75, NULL },
 418        { "w25x80",  0xef3014, 0,  64 * 1024,  16, W25X_FLAG, 75, NULL },
 419        { "w25x16",  0xef3015, 0,  64 * 1024,  32, W25X_FLAG, 75, NULL },
 420        { "w25x32",  0xef3016, 0,  64 * 1024,  64, W25X_FLAG, 75, NULL },
 421        { "w25x64",  0xef3017, 0,  64 * 1024, 128, W25X_FLAG, 75, NULL },
 422
 423        /* Winbond -- w25q "blocks" are 64K, "sectors" are 4KiB */
 424#define W25Q_FLAG (FLASH_FLAG_READ_WRITE       |        \
 425                   FLASH_FLAG_READ_FAST         |       \
 426                   FLASH_FLAG_READ_1_1_2        |       \
 427                   FLASH_FLAG_READ_1_2_2        |       \
 428                   FLASH_FLAG_READ_1_1_4        |       \
 429                   FLASH_FLAG_READ_1_4_4        |       \
 430                   FLASH_FLAG_WRITE_1_1_4)
 431        { "w25q80",  0xef4014, 0,  64 * 1024,  16, W25Q_FLAG, 80,
 432          stfsm_w25q_config },
 433        { "w25q16",  0xef4015, 0,  64 * 1024,  32, W25Q_FLAG, 80,
 434          stfsm_w25q_config },
 435        { "w25q32",  0xef4016, 0,  64 * 1024,  64, W25Q_FLAG, 80,
 436          stfsm_w25q_config },
 437        { "w25q64",  0xef4017, 0,  64 * 1024, 128, W25Q_FLAG, 80,
 438          stfsm_w25q_config },
 439
 440        /* Sentinel */
 441        { NULL, 0x000000, 0, 0, 0, 0, 0, NULL },
 442};
 443
 444/*
 445 * FSM message sequence configurations:
 446 *
 447 * All configs are presented in order of preference
 448 */
 449
 450/* Default READ configurations, in order of preference */
 451static struct seq_rw_config default_read_configs[] = {
 452        {FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ_1_4_4,   0, 4, 4, 0x00, 2, 4},
 453        {FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ_1_1_4,   0, 1, 4, 0x00, 4, 0},
 454        {FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ_1_2_2,   0, 2, 2, 0x00, 4, 0},
 455        {FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ_1_1_2,   0, 1, 2, 0x00, 0, 8},
 456        {FLASH_FLAG_READ_FAST,  SPINOR_OP_READ_FAST,    0, 1, 1, 0x00, 0, 8},
 457        {FLASH_FLAG_READ_WRITE, SPINOR_OP_READ,         0, 1, 1, 0x00, 0, 0},
 458        {0x00,                  0,                      0, 0, 0, 0x00, 0, 0},
 459};
 460
 461/* Default WRITE configurations */
 462static struct seq_rw_config default_write_configs[] = {
 463        {FLASH_FLAG_WRITE_1_4_4, SPINOR_OP_WRITE_1_4_4, 1, 4, 4, 0x00, 0, 0},
 464        {FLASH_FLAG_WRITE_1_1_4, SPINOR_OP_WRITE_1_1_4, 1, 1, 4, 0x00, 0, 0},
 465        {FLASH_FLAG_WRITE_1_2_2, SPINOR_OP_WRITE_1_2_2, 1, 2, 2, 0x00, 0, 0},
 466        {FLASH_FLAG_WRITE_1_1_2, SPINOR_OP_WRITE_1_1_2, 1, 1, 2, 0x00, 0, 0},
 467        {FLASH_FLAG_READ_WRITE,  SPINOR_OP_WRITE,       1, 1, 1, 0x00, 0, 0},
 468        {0x00,                   0,                     0, 0, 0, 0x00, 0, 0},
 469};
 470
 471/*
 472 * [N25Qxxx] Configuration
 473 */
 474#define N25Q_VCR_DUMMY_CYCLES(x)        (((x) & 0xf) << 4)
 475#define N25Q_VCR_XIP_DISABLED           ((uint8_t)0x1 << 3)
 476#define N25Q_VCR_WRAP_CONT              0x3
 477
 478/* N25Q 3-byte Address READ configurations
 479 *      - 'FAST' variants configured for 8 dummy cycles.
 480 *
 481 * Note, the number of dummy cycles used for 'FAST' READ operations is
 482 * configurable and would normally be tuned according to the READ command and
 483 * operating frequency.  However, this applies universally to all 'FAST' READ
 484 * commands, including those used by the SPIBoot controller, and remains in
 485 * force until the device is power-cycled.  Since the SPIBoot controller is
 486 * hard-wired to use 8 dummy cycles, we must configure the device to also use 8
 487 * cycles.
 488 */
 489static struct seq_rw_config n25q_read3_configs[] = {
 490        {FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ_1_4_4,   0, 4, 4, 0x00, 0, 8},
 491        {FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ_1_1_4,   0, 1, 4, 0x00, 0, 8},
 492        {FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ_1_2_2,   0, 2, 2, 0x00, 0, 8},
 493        {FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ_1_1_2,   0, 1, 2, 0x00, 0, 8},
 494        {FLASH_FLAG_READ_FAST,  SPINOR_OP_READ_FAST,    0, 1, 1, 0x00, 0, 8},
 495        {FLASH_FLAG_READ_WRITE, SPINOR_OP_READ,         0, 1, 1, 0x00, 0, 0},
 496        {0x00,                  0,                      0, 0, 0, 0x00, 0, 0},
 497};
 498
 499/* N25Q 4-byte Address READ configurations
 500 *      - use special 4-byte address READ commands (reduces overheads, and
 501 *        reduces risk of hitting watchdog reset issues).
 502 *      - 'FAST' variants configured for 8 dummy cycles (see note above.)
 503 */
 504static struct seq_rw_config n25q_read4_configs[] = {
 505        {FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B, 0, 4, 4, 0x00, 0, 8},
 506        {FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B, 0, 1, 4, 0x00, 0, 8},
 507        {FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B, 0, 2, 2, 0x00, 0, 8},
 508        {FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B, 0, 1, 2, 0x00, 0, 8},
 509        {FLASH_FLAG_READ_FAST,  SPINOR_OP_READ_FAST_4B,  0, 1, 1, 0x00, 0, 8},
 510        {FLASH_FLAG_READ_WRITE, SPINOR_OP_READ_4B,       0, 1, 1, 0x00, 0, 0},
 511        {0x00,                  0,                       0, 0, 0, 0x00, 0, 0},
 512};
 513
 514/*
 515 * [MX25xxx] Configuration
 516 */
 517#define MX25_STATUS_QE                  (0x1 << 6)
 518
 519static int stfsm_mx25_en_32bit_addr_seq(struct stfsm_seq *seq)
 520{
 521        seq->seq_opc[0] = (SEQ_OPC_PADS_1 |
 522                           SEQ_OPC_CYCLES(8) |
 523                           SEQ_OPC_OPCODE(SPINOR_OP_EN4B) |
 524                           SEQ_OPC_CSDEASSERT);
 525
 526        seq->seq[0] = STFSM_INST_CMD1;
 527        seq->seq[1] = STFSM_INST_WAIT;
 528        seq->seq[2] = STFSM_INST_STOP;
 529
 530        seq->seq_cfg = (SEQ_CFG_PADS_1 |
 531                        SEQ_CFG_ERASE |
 532                        SEQ_CFG_READNOTWRITE |
 533                        SEQ_CFG_CSDEASSERT |
 534                        SEQ_CFG_STARTSEQ);
 535
 536        return 0;
 537}
 538
 539/*
 540 * [S25FLxxx] Configuration
 541 */
 542#define STFSM_S25FL_CONFIG_QE           (0x1 << 1)
 543
 544/*
 545 * S25FLxxxS devices provide three ways of supporting 32-bit addressing: Bank
 546 * Register, Extended Address Modes, and a 32-bit address command set.  The
 547 * 32-bit address command set is used here, since it avoids any problems with
 548 * entering a state that is incompatible with the SPIBoot Controller.
 549 */
 550static struct seq_rw_config stfsm_s25fl_read4_configs[] = {
 551        {FLASH_FLAG_READ_1_4_4,  SPINOR_OP_READ_1_4_4_4B,  0, 4, 4, 0x00, 2, 4},
 552        {FLASH_FLAG_READ_1_1_4,  SPINOR_OP_READ_1_1_4_4B,  0, 1, 4, 0x00, 0, 8},
 553        {FLASH_FLAG_READ_1_2_2,  SPINOR_OP_READ_1_2_2_4B,  0, 2, 2, 0x00, 4, 0},
 554        {FLASH_FLAG_READ_1_1_2,  SPINOR_OP_READ_1_1_2_4B,  0, 1, 2, 0x00, 0, 8},
 555        {FLASH_FLAG_READ_FAST,   SPINOR_OP_READ_FAST_4B,   0, 1, 1, 0x00, 0, 8},
 556        {FLASH_FLAG_READ_WRITE,  SPINOR_OP_READ_4B,        0, 1, 1, 0x00, 0, 0},
 557        {0x00,                   0,                        0, 0, 0, 0x00, 0, 0},
 558};
 559
 560static struct seq_rw_config stfsm_s25fl_write4_configs[] = {
 561        {FLASH_FLAG_WRITE_1_1_4, S25FL_CMD_WRITE4_1_1_4, 1, 1, 4, 0x00, 0, 0},
 562        {FLASH_FLAG_READ_WRITE,  S25FL_CMD_WRITE4,       1, 1, 1, 0x00, 0, 0},
 563        {0x00,                   0,                      0, 0, 0, 0x00, 0, 0},
 564};
 565
 566/*
 567 * [W25Qxxx] Configuration
 568 */
 569#define W25Q_STATUS_QE                  (0x1 << 1)
 570
 571static struct stfsm_seq stfsm_seq_read_jedec = {
 572        .data_size = TRANSFER_SIZE(8),
 573        .seq_opc[0] = (SEQ_OPC_PADS_1 |
 574                       SEQ_OPC_CYCLES(8) |
 575                       SEQ_OPC_OPCODE(SPINOR_OP_RDID)),
 576        .seq = {
 577                STFSM_INST_CMD1,
 578                STFSM_INST_DATA_READ,
 579                STFSM_INST_STOP,
 580        },
 581        .seq_cfg = (SEQ_CFG_PADS_1 |
 582                    SEQ_CFG_READNOTWRITE |
 583                    SEQ_CFG_CSDEASSERT |
 584                    SEQ_CFG_STARTSEQ),
 585};
 586
 587static struct stfsm_seq stfsm_seq_read_status_fifo = {
 588        .data_size = TRANSFER_SIZE(4),
 589        .seq_opc[0] = (SEQ_OPC_PADS_1 |
 590                       SEQ_OPC_CYCLES(8) |
 591                       SEQ_OPC_OPCODE(SPINOR_OP_RDSR)),
 592        .seq = {
 593                STFSM_INST_CMD1,
 594                STFSM_INST_DATA_READ,
 595                STFSM_INST_STOP,
 596        },
 597        .seq_cfg = (SEQ_CFG_PADS_1 |
 598                    SEQ_CFG_READNOTWRITE |
 599                    SEQ_CFG_CSDEASSERT |
 600                    SEQ_CFG_STARTSEQ),
 601};
 602
 603static struct stfsm_seq stfsm_seq_erase_sector = {
 604        /* 'addr_cfg' configured during initialisation */
 605        .seq_opc = {
 606                (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
 607                 SEQ_OPC_OPCODE(SPINOR_OP_WREN) | SEQ_OPC_CSDEASSERT),
 608
 609                (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
 610                 SEQ_OPC_OPCODE(SPINOR_OP_SE)),
 611        },
 612        .seq = {
 613                STFSM_INST_CMD1,
 614                STFSM_INST_CMD2,
 615                STFSM_INST_ADD1,
 616                STFSM_INST_ADD2,
 617                STFSM_INST_STOP,
 618        },
 619        .seq_cfg = (SEQ_CFG_PADS_1 |
 620                    SEQ_CFG_READNOTWRITE |
 621                    SEQ_CFG_CSDEASSERT |
 622                    SEQ_CFG_STARTSEQ),
 623};
 624
 625static struct stfsm_seq stfsm_seq_erase_chip = {
 626        .seq_opc = {
 627                (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
 628                 SEQ_OPC_OPCODE(SPINOR_OP_WREN) | SEQ_OPC_CSDEASSERT),
 629
 630                (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
 631                 SEQ_OPC_OPCODE(SPINOR_OP_CHIP_ERASE) | SEQ_OPC_CSDEASSERT),
 632        },
 633        .seq = {
 634                STFSM_INST_CMD1,
 635                STFSM_INST_CMD2,
 636                STFSM_INST_WAIT,
 637                STFSM_INST_STOP,
 638        },
 639        .seq_cfg = (SEQ_CFG_PADS_1 |
 640                    SEQ_CFG_ERASE |
 641                    SEQ_CFG_READNOTWRITE |
 642                    SEQ_CFG_CSDEASSERT |
 643                    SEQ_CFG_STARTSEQ),
 644};
 645
 646static struct stfsm_seq stfsm_seq_write_status = {
 647        .seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
 648                       SEQ_OPC_OPCODE(SPINOR_OP_WREN) | SEQ_OPC_CSDEASSERT),
 649        .seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
 650                       SEQ_OPC_OPCODE(SPINOR_OP_WRSR)),
 651        .seq = {
 652                STFSM_INST_CMD1,
 653                STFSM_INST_CMD2,
 654                STFSM_INST_STA_WR1,
 655                STFSM_INST_STOP,
 656        },
 657        .seq_cfg = (SEQ_CFG_PADS_1 |
 658                    SEQ_CFG_READNOTWRITE |
 659                    SEQ_CFG_CSDEASSERT |
 660                    SEQ_CFG_STARTSEQ),
 661};
 662
 663/* Dummy sequence to read one byte of data from flash into the FIFO */
 664static const struct stfsm_seq stfsm_seq_load_fifo_byte = {
 665        .data_size = TRANSFER_SIZE(1),
 666        .seq_opc[0] = (SEQ_OPC_PADS_1 |
 667                       SEQ_OPC_CYCLES(8) |
 668                       SEQ_OPC_OPCODE(SPINOR_OP_RDID)),
 669        .seq = {
 670                STFSM_INST_CMD1,
 671                STFSM_INST_DATA_READ,
 672                STFSM_INST_STOP,
 673        },
 674        .seq_cfg = (SEQ_CFG_PADS_1 |
 675                    SEQ_CFG_READNOTWRITE |
 676                    SEQ_CFG_CSDEASSERT |
 677                    SEQ_CFG_STARTSEQ),
 678};
 679
 680static int stfsm_n25q_en_32bit_addr_seq(struct stfsm_seq *seq)
 681{
 682        seq->seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
 683                           SEQ_OPC_OPCODE(SPINOR_OP_EN4B));
 684        seq->seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
 685                           SEQ_OPC_OPCODE(SPINOR_OP_WREN) |
 686                           SEQ_OPC_CSDEASSERT);
 687
 688        seq->seq[0] = STFSM_INST_CMD2;
 689        seq->seq[1] = STFSM_INST_CMD1;
 690        seq->seq[2] = STFSM_INST_WAIT;
 691        seq->seq[3] = STFSM_INST_STOP;
 692
 693        seq->seq_cfg = (SEQ_CFG_PADS_1 |
 694                        SEQ_CFG_ERASE |
 695                        SEQ_CFG_READNOTWRITE |
 696                        SEQ_CFG_CSDEASSERT |
 697                        SEQ_CFG_STARTSEQ);
 698
 699        return 0;
 700}
 701
 702static inline int stfsm_is_idle(struct stfsm *fsm)
 703{
 704        return readl(fsm->base + SPI_FAST_SEQ_STA) & 0x10;
 705}
 706
 707static inline uint32_t stfsm_fifo_available(struct stfsm *fsm)
 708{
 709        return (readl(fsm->base + SPI_FAST_SEQ_STA) >> 5) & 0x7f;
 710}
 711
 712static inline void stfsm_load_seq(struct stfsm *fsm,
 713                                  const struct stfsm_seq *seq)
 714{
 715        void __iomem *dst = fsm->base + SPI_FAST_SEQ_TRANSFER_SIZE;
 716        const uint32_t *src = (const uint32_t *)seq;
 717        int words = sizeof(*seq) / sizeof(*src);
 718
 719        BUG_ON(!stfsm_is_idle(fsm));
 720
 721        while (words--) {
 722                writel(*src, dst);
 723                src++;
 724                dst += 4;
 725        }
 726}
 727
 728static void stfsm_wait_seq(struct stfsm *fsm)
 729{
 730        unsigned long deadline;
 731        int timeout = 0;
 732
 733        deadline = jiffies + msecs_to_jiffies(STFSM_MAX_WAIT_SEQ_MS);
 734
 735        while (!timeout) {
 736                if (time_after_eq(jiffies, deadline))
 737                        timeout = 1;
 738
 739                if (stfsm_is_idle(fsm))
 740                        return;
 741
 742                cond_resched();
 743        }
 744
 745        dev_err(fsm->dev, "timeout on sequence completion\n");
 746}
 747
 748static void stfsm_read_fifo(struct stfsm *fsm, uint32_t *buf, uint32_t size)
 749{
 750        uint32_t remaining = size >> 2;
 751        uint32_t avail;
 752        uint32_t words;
 753
 754        dev_dbg(fsm->dev, "Reading %d bytes from FIFO\n", size);
 755
 756        BUG_ON((((uintptr_t)buf) & 0x3) || (size & 0x3));
 757
 758        while (remaining) {
 759                for (;;) {
 760                        avail = stfsm_fifo_available(fsm);
 761                        if (avail)
 762                                break;
 763                        udelay(1);
 764                }
 765                words = min(avail, remaining);
 766                remaining -= words;
 767
 768                readsl(fsm->base + SPI_FAST_SEQ_DATA_REG, buf, words);
 769                buf += words;
 770        }
 771}
 772
 773/*
 774 * Clear the data FIFO
 775 *
 776 * Typically, this is only required during driver initialisation, where no
 777 * assumptions can be made regarding the state of the FIFO.
 778 *
 779 * The process of clearing the FIFO is complicated by fact that while it is
 780 * possible for the FIFO to contain an arbitrary number of bytes [1], the
 781 * SPI_FAST_SEQ_STA register only reports the number of complete 32-bit words
 782 * present.  Furthermore, data can only be drained from the FIFO by reading
 783 * complete 32-bit words.
 784 *
 785 * With this in mind, a two stage process is used to the clear the FIFO:
 786 *
 787 *     1. Read any complete 32-bit words from the FIFO, as reported by the
 788 *        SPI_FAST_SEQ_STA register.
 789 *
 790 *     2. Mop up any remaining bytes.  At this point, it is not known if there
 791 *        are 0, 1, 2, or 3 bytes in the FIFO.  To handle all cases, a dummy FSM
 792 *        sequence is used to load one byte at a time, until a complete 32-bit
 793 *        word is formed; at most, 4 bytes will need to be loaded.
 794 *
 795 * [1] It is theoretically possible for the FIFO to contain an arbitrary number
 796 *     of bits.  However, since there are no known use-cases that leave
 797 *     incomplete bytes in the FIFO, only words and bytes are considered here.
 798 */
 799static void stfsm_clear_fifo(struct stfsm *fsm)
 800{
 801        const struct stfsm_seq *seq = &stfsm_seq_load_fifo_byte;
 802        uint32_t words, i;
 803
 804        /* 1. Clear any 32-bit words */
 805        words = stfsm_fifo_available(fsm);
 806        if (words) {
 807                for (i = 0; i < words; i++)
 808                        readl(fsm->base + SPI_FAST_SEQ_DATA_REG);
 809                dev_dbg(fsm->dev, "cleared %d words from FIFO\n", words);
 810        }
 811
 812        /*
 813         * 2. Clear any remaining bytes
 814         *    - Load the FIFO, one byte at a time, until a complete 32-bit word
 815         *      is available.
 816         */
 817        for (i = 0, words = 0; i < 4 && !words; i++) {
 818                stfsm_load_seq(fsm, seq);
 819                stfsm_wait_seq(fsm);
 820                words = stfsm_fifo_available(fsm);
 821        }
 822
 823        /*    - A single word must be available now */
 824        if (words != 1) {
 825                dev_err(fsm->dev, "failed to clear bytes from the data FIFO\n");
 826                return;
 827        }
 828
 829        /*    - Read the 32-bit word */
 830        readl(fsm->base + SPI_FAST_SEQ_DATA_REG);
 831
 832        dev_dbg(fsm->dev, "cleared %d byte(s) from the data FIFO\n", 4 - i);
 833}
 834
 835static int stfsm_write_fifo(struct stfsm *fsm, const uint32_t *buf,
 836                            uint32_t size)
 837{
 838        uint32_t words = size >> 2;
 839
 840        dev_dbg(fsm->dev, "writing %d bytes to FIFO\n", size);
 841
 842        BUG_ON((((uintptr_t)buf) & 0x3) || (size & 0x3));
 843
 844        writesl(fsm->base + SPI_FAST_SEQ_DATA_REG, buf, words);
 845
 846        return size;
 847}
 848
 849static int stfsm_enter_32bit_addr(struct stfsm *fsm, int enter)
 850{
 851        struct stfsm_seq *seq = &fsm->stfsm_seq_en_32bit_addr;
 852        uint32_t cmd = enter ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
 853
 854        seq->seq_opc[0] = (SEQ_OPC_PADS_1 |
 855                           SEQ_OPC_CYCLES(8) |
 856                           SEQ_OPC_OPCODE(cmd) |
 857                           SEQ_OPC_CSDEASSERT);
 858
 859        stfsm_load_seq(fsm, seq);
 860
 861        stfsm_wait_seq(fsm);
 862
 863        return 0;
 864}
 865
 866static uint8_t stfsm_wait_busy(struct stfsm *fsm)
 867{
 868        struct stfsm_seq *seq = &stfsm_seq_read_status_fifo;
 869        unsigned long deadline;
 870        uint32_t status;
 871        int timeout = 0;
 872
 873        /* Use RDRS1 */
 874        seq->seq_opc[0] = (SEQ_OPC_PADS_1 |
 875                           SEQ_OPC_CYCLES(8) |
 876                           SEQ_OPC_OPCODE(SPINOR_OP_RDSR));
 877
 878        /* Load read_status sequence */
 879        stfsm_load_seq(fsm, seq);
 880
 881        /*
 882         * Repeat until busy bit is deasserted, or timeout, or error (S25FLxxxS)
 883         */
 884        deadline = jiffies + FLASH_MAX_BUSY_WAIT;
 885        while (!timeout) {
 886                if (time_after_eq(jiffies, deadline))
 887                        timeout = 1;
 888
 889                stfsm_wait_seq(fsm);
 890
 891                stfsm_read_fifo(fsm, &status, 4);
 892
 893                if ((status & FLASH_STATUS_BUSY) == 0)
 894                        return 0;
 895
 896                if ((fsm->configuration & CFG_S25FL_CHECK_ERROR_FLAGS) &&
 897                    ((status & S25FL_STATUS_P_ERR) ||
 898                     (status & S25FL_STATUS_E_ERR)))
 899                        return (uint8_t)(status & 0xff);
 900
 901                if (!timeout)
 902                        /* Restart */
 903                        writel(seq->seq_cfg, fsm->base + SPI_FAST_SEQ_CFG);
 904
 905                cond_resched();
 906        }
 907
 908        dev_err(fsm->dev, "timeout on wait_busy\n");
 909
 910        return FLASH_STATUS_TIMEOUT;
 911}
 912
 913static int stfsm_read_status(struct stfsm *fsm, uint8_t cmd,
 914                             uint8_t *data, int bytes)
 915{
 916        struct stfsm_seq *seq = &stfsm_seq_read_status_fifo;
 917        uint32_t tmp;
 918        uint8_t *t = (uint8_t *)&tmp;
 919        int i;
 920
 921        dev_dbg(fsm->dev, "read 'status' register [0x%02x], %d byte(s)\n",
 922                cmd, bytes);
 923
 924        BUG_ON(bytes != 1 && bytes != 2);
 925
 926        seq->seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
 927                           SEQ_OPC_OPCODE(cmd)),
 928
 929        stfsm_load_seq(fsm, seq);
 930
 931        stfsm_read_fifo(fsm, &tmp, 4);
 932
 933        for (i = 0; i < bytes; i++)
 934                data[i] = t[i];
 935
 936        stfsm_wait_seq(fsm);
 937
 938        return 0;
 939}
 940
 941static int stfsm_write_status(struct stfsm *fsm, uint8_t cmd,
 942                            uint16_t data, int bytes, int wait_busy)
 943{
 944        struct stfsm_seq *seq = &stfsm_seq_write_status;
 945
 946        dev_dbg(fsm->dev,
 947                "write 'status' register [0x%02x], %d byte(s), 0x%04x\n"
 948                " %s wait-busy\n", cmd, bytes, data, wait_busy ? "with" : "no");
 949
 950        BUG_ON(bytes != 1 && bytes != 2);
 951
 952        seq->seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
 953                           SEQ_OPC_OPCODE(cmd));
 954
 955        seq->status = (uint32_t)data | STA_PADS_1 | STA_CSDEASSERT;
 956        seq->seq[2] = (bytes == 1) ? STFSM_INST_STA_WR1 : STFSM_INST_STA_WR1_2;
 957
 958        stfsm_load_seq(fsm, seq);
 959
 960        stfsm_wait_seq(fsm);
 961
 962        if (wait_busy)
 963                stfsm_wait_busy(fsm);
 964
 965        return 0;
 966}
 967
 968/*
 969 * SoC reset on 'boot-from-spi' systems
 970 *
 971 * Certain modes of operation cause the Flash device to enter a particular state
 972 * for a period of time (e.g. 'Erase Sector', 'Quad Enable', and 'Enter 32-bit
 973 * Addr' commands).  On boot-from-spi systems, it is important to consider what
 974 * happens if a warm reset occurs during this period.  The SPIBoot controller
 975 * assumes that Flash device is in its default reset state, 24-bit address mode,
 976 * and ready to accept commands.  This can be achieved using some form of
 977 * on-board logic/controller to force a device POR in response to a SoC-level
 978 * reset or by making use of the device reset signal if available (limited
 979 * number of devices only).
 980 *
 981 * Failure to take such precautions can cause problems following a warm reset.
 982 * For some operations (e.g. ERASE), there is little that can be done.  For
 983 * other modes of operation (e.g. 32-bit addressing), options are often
 984 * available that can help minimise the window in which a reset could cause a
 985 * problem.
 986 *
 987 */
 988static bool stfsm_can_handle_soc_reset(struct stfsm *fsm)
 989{
 990        /* Reset signal is available on the board and supported by the device */
 991        if (fsm->reset_signal && fsm->info->flags & FLASH_FLAG_RESET)
 992                return true;
 993
 994        /* Board-level logic forces a power-on-reset */
 995        if (fsm->reset_por)
 996                return true;
 997
 998        /* Reset is not properly handled and may result in failure to reboot */
 999        return false;
1000}
1001
1002/* Configure 'addr_cfg' according to addressing mode */
1003static void stfsm_prepare_erasesec_seq(struct stfsm *fsm,
1004                                       struct stfsm_seq *seq)
1005{
1006        int addr1_cycles = fsm->info->flags & FLASH_FLAG_32BIT_ADDR ? 16 : 8;
1007
1008        seq->addr_cfg = (ADR_CFG_CYCLES_ADD1(addr1_cycles) |
1009                         ADR_CFG_PADS_1_ADD1 |
1010                         ADR_CFG_CYCLES_ADD2(16) |
1011                         ADR_CFG_PADS_1_ADD2 |
1012                         ADR_CFG_CSDEASSERT_ADD2);
1013}
1014
1015/* Search for preferred configuration based on available flags */
1016static struct seq_rw_config *
1017stfsm_search_seq_rw_configs(struct stfsm *fsm,
1018                            struct seq_rw_config cfgs[])
1019{
1020        struct seq_rw_config *config;
1021        int flags = fsm->info->flags;
1022
1023        for (config = cfgs; config->cmd != 0; config++)
1024                if ((config->flags & flags) == config->flags)
1025                        return config;
1026
1027        return NULL;
1028}
1029
1030/* Prepare a READ/WRITE sequence according to configuration parameters */
1031static void stfsm_prepare_rw_seq(struct stfsm *fsm,
1032                                 struct stfsm_seq *seq,
1033                                 struct seq_rw_config *cfg)
1034{
1035        int addr1_cycles, addr2_cycles;
1036        int i = 0;
1037
1038        memset(seq, 0, sizeof(*seq));
1039
1040        /* Add READ/WRITE OPC  */
1041        seq->seq_opc[i++] = (SEQ_OPC_PADS_1 |
1042                             SEQ_OPC_CYCLES(8) |
1043                             SEQ_OPC_OPCODE(cfg->cmd));
1044
1045        /* Add WREN OPC for a WRITE sequence */
1046        if (cfg->write)
1047                seq->seq_opc[i++] = (SEQ_OPC_PADS_1 |
1048                                     SEQ_OPC_CYCLES(8) |
1049                                     SEQ_OPC_OPCODE(SPINOR_OP_WREN) |
1050                                     SEQ_OPC_CSDEASSERT);
1051
1052        /* Address configuration (24 or 32-bit addresses) */
1053        addr1_cycles  = (fsm->info->flags & FLASH_FLAG_32BIT_ADDR) ? 16 : 8;
1054        addr1_cycles /= cfg->addr_pads;
1055        addr2_cycles  = 16 / cfg->addr_pads;
1056        seq->addr_cfg = ((addr1_cycles & 0x3f) << 0 |   /* ADD1 cycles */
1057                         (cfg->addr_pads - 1) << 6 |    /* ADD1 pads */
1058                         (addr2_cycles & 0x3f) << 16 |  /* ADD2 cycles */
1059                         ((cfg->addr_pads - 1) << 22)); /* ADD2 pads */
1060
1061        /* Data/Sequence configuration */
1062        seq->seq_cfg = ((cfg->data_pads - 1) << 16 |
1063                        SEQ_CFG_STARTSEQ |
1064                        SEQ_CFG_CSDEASSERT);
1065        if (!cfg->write)
1066                seq->seq_cfg |= SEQ_CFG_READNOTWRITE;
1067
1068        /* Mode configuration (no. of pads taken from addr cfg) */
1069        seq->mode = ((cfg->mode_data & 0xff) << 0 |     /* data */
1070                     (cfg->mode_cycles & 0x3f) << 16 |  /* cycles */
1071                     (cfg->addr_pads - 1) << 22);       /* pads */
1072
1073        /* Dummy configuration (no. of pads taken from addr cfg) */
1074        seq->dummy = ((cfg->dummy_cycles & 0x3f) << 16 |        /* cycles */
1075                      (cfg->addr_pads - 1) << 22);              /* pads */
1076
1077
1078        /* Instruction sequence */
1079        i = 0;
1080        if (cfg->write)
1081                seq->seq[i++] = STFSM_INST_CMD2;
1082
1083        seq->seq[i++] = STFSM_INST_CMD1;
1084
1085        seq->seq[i++] = STFSM_INST_ADD1;
1086        seq->seq[i++] = STFSM_INST_ADD2;
1087
1088        if (cfg->mode_cycles)
1089                seq->seq[i++] = STFSM_INST_MODE;
1090
1091        if (cfg->dummy_cycles)
1092                seq->seq[i++] = STFSM_INST_DUMMY;
1093
1094        seq->seq[i++] =
1095                cfg->write ? STFSM_INST_DATA_WRITE : STFSM_INST_DATA_READ;
1096        seq->seq[i++] = STFSM_INST_STOP;
1097}
1098
1099static int stfsm_search_prepare_rw_seq(struct stfsm *fsm,
1100                                       struct stfsm_seq *seq,
1101                                       struct seq_rw_config *cfgs)
1102{
1103        struct seq_rw_config *config;
1104
1105        config = stfsm_search_seq_rw_configs(fsm, cfgs);
1106        if (!config) {
1107                dev_err(fsm->dev, "failed to find suitable config\n");
1108                return -EINVAL;
1109        }
1110
1111        stfsm_prepare_rw_seq(fsm, seq, config);
1112
1113        return 0;
1114}
1115
1116/* Prepare a READ/WRITE/ERASE 'default' sequences */
1117static int stfsm_prepare_rwe_seqs_default(struct stfsm *fsm)
1118{
1119        uint32_t flags = fsm->info->flags;
1120        int ret;
1121
1122        /* Configure 'READ' sequence */
1123        ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read,
1124                                          default_read_configs);
1125        if (ret) {
1126                dev_err(fsm->dev,
1127                        "failed to prep READ sequence with flags [0x%08x]\n",
1128                        flags);
1129                return ret;
1130        }
1131
1132        /* Configure 'WRITE' sequence */
1133        ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_write,
1134                                          default_write_configs);
1135        if (ret) {
1136                dev_err(fsm->dev,
1137                        "failed to prep WRITE sequence with flags [0x%08x]\n",
1138                        flags);
1139                return ret;
1140        }
1141
1142        /* Configure 'ERASE_SECTOR' sequence */
1143        stfsm_prepare_erasesec_seq(fsm, &stfsm_seq_erase_sector);
1144
1145        return 0;
1146}
1147
1148static int stfsm_mx25_config(struct stfsm *fsm)
1149{
1150        uint32_t flags = fsm->info->flags;
1151        uint32_t data_pads;
1152        uint8_t sta;
1153        int ret;
1154        bool soc_reset;
1155
1156        /*
1157         * Use default READ/WRITE sequences
1158         */
1159        ret = stfsm_prepare_rwe_seqs_default(fsm);
1160        if (ret)
1161                return ret;
1162
1163        /*
1164         * Configure 32-bit Address Support
1165         */
1166        if (flags & FLASH_FLAG_32BIT_ADDR) {
1167                /* Configure 'enter_32bitaddr' FSM sequence */
1168                stfsm_mx25_en_32bit_addr_seq(&fsm->stfsm_seq_en_32bit_addr);
1169
1170                soc_reset = stfsm_can_handle_soc_reset(fsm);
1171                if (soc_reset || !fsm->booted_from_spi)
1172                        /* If we can handle SoC resets, we enable 32-bit address
1173                         * mode pervasively */
1174                        stfsm_enter_32bit_addr(fsm, 1);
1175
1176                else
1177                        /* Else, enable/disable 32-bit addressing before/after
1178                         * each operation */
1179                        fsm->configuration = (CFG_READ_TOGGLE_32BIT_ADDR |
1180                                              CFG_WRITE_TOGGLE_32BIT_ADDR |
1181                                              CFG_ERASESEC_TOGGLE_32BIT_ADDR);
1182        }
1183
1184        /* Check status of 'QE' bit, update if required. */
1185        stfsm_read_status(fsm, SPINOR_OP_RDSR, &sta, 1);
1186        data_pads = ((fsm->stfsm_seq_read.seq_cfg >> 16) & 0x3) + 1;
1187        if (data_pads == 4) {
1188                if (!(sta & MX25_STATUS_QE)) {
1189                        /* Set 'QE' */
1190                        sta |= MX25_STATUS_QE;
1191
1192                        stfsm_write_status(fsm, SPINOR_OP_WRSR, sta, 1, 1);
1193                }
1194        } else {
1195                if (sta & MX25_STATUS_QE) {
1196                        /* Clear 'QE' */
1197                        sta &= ~MX25_STATUS_QE;
1198
1199                        stfsm_write_status(fsm, SPINOR_OP_WRSR, sta, 1, 1);
1200                }
1201        }
1202
1203        return 0;
1204}
1205
1206static int stfsm_n25q_config(struct stfsm *fsm)
1207{
1208        uint32_t flags = fsm->info->flags;
1209        uint8_t vcr;
1210        int ret = 0;
1211        bool soc_reset;
1212
1213        /* Configure 'READ' sequence */
1214        if (flags & FLASH_FLAG_32BIT_ADDR)
1215                ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read,
1216                                                  n25q_read4_configs);
1217        else
1218                ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read,
1219                                                  n25q_read3_configs);
1220        if (ret) {
1221                dev_err(fsm->dev,
1222                        "failed to prepare READ sequence with flags [0x%08x]\n",
1223                        flags);
1224                return ret;
1225        }
1226
1227        /* Configure 'WRITE' sequence (default configs) */
1228        ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_write,
1229                                          default_write_configs);
1230        if (ret) {
1231                dev_err(fsm->dev,
1232                        "preparing WRITE sequence using flags [0x%08x] failed\n",
1233                        flags);
1234                return ret;
1235        }
1236
1237        /* * Configure 'ERASE_SECTOR' sequence */
1238        stfsm_prepare_erasesec_seq(fsm, &stfsm_seq_erase_sector);
1239
1240        /* Configure 32-bit address support */
1241        if (flags & FLASH_FLAG_32BIT_ADDR) {
1242                stfsm_n25q_en_32bit_addr_seq(&fsm->stfsm_seq_en_32bit_addr);
1243
1244                soc_reset = stfsm_can_handle_soc_reset(fsm);
1245                if (soc_reset || !fsm->booted_from_spi) {
1246                        /*
1247                         * If we can handle SoC resets, we enable 32-bit
1248                         * address mode pervasively
1249                         */
1250                        stfsm_enter_32bit_addr(fsm, 1);
1251                } else {
1252                        /*
1253                         * If not, enable/disable for WRITE and ERASE
1254                         * operations (READ uses special commands)
1255                         */
1256                        fsm->configuration = (CFG_WRITE_TOGGLE_32BIT_ADDR |
1257                                              CFG_ERASESEC_TOGGLE_32BIT_ADDR);
1258                }
1259        }
1260
1261        /*
1262         * Configure device to use 8 dummy cycles
1263         */
1264        vcr = (N25Q_VCR_DUMMY_CYCLES(8) | N25Q_VCR_XIP_DISABLED |
1265               N25Q_VCR_WRAP_CONT);
1266        stfsm_write_status(fsm, N25Q_CMD_WRVCR, vcr, 1, 0);
1267
1268        return 0;
1269}
1270
1271static void stfsm_s25fl_prepare_erasesec_seq_32(struct stfsm_seq *seq)
1272{
1273        seq->seq_opc[1] = (SEQ_OPC_PADS_1 |
1274                           SEQ_OPC_CYCLES(8) |
1275                           SEQ_OPC_OPCODE(S25FL_CMD_SE4));
1276
1277        seq->addr_cfg = (ADR_CFG_CYCLES_ADD1(16) |
1278                         ADR_CFG_PADS_1_ADD1 |
1279                         ADR_CFG_CYCLES_ADD2(16) |
1280                         ADR_CFG_PADS_1_ADD2 |
1281                         ADR_CFG_CSDEASSERT_ADD2);
1282}
1283
1284static void stfsm_s25fl_read_dyb(struct stfsm *fsm, uint32_t offs, uint8_t *dby)
1285{
1286        uint32_t tmp;
1287        struct stfsm_seq seq = {
1288                .data_size = TRANSFER_SIZE(4),
1289                .seq_opc[0] = (SEQ_OPC_PADS_1 |
1290                               SEQ_OPC_CYCLES(8) |
1291                               SEQ_OPC_OPCODE(S25FL_CMD_DYBRD)),
1292                .addr_cfg = (ADR_CFG_CYCLES_ADD1(16) |
1293                             ADR_CFG_PADS_1_ADD1 |
1294                             ADR_CFG_CYCLES_ADD2(16) |
1295                             ADR_CFG_PADS_1_ADD2),
1296                .addr1 = (offs >> 16) & 0xffff,
1297                .addr2 = offs & 0xffff,
1298                .seq = {
1299                        STFSM_INST_CMD1,
1300                        STFSM_INST_ADD1,
1301                        STFSM_INST_ADD2,
1302                        STFSM_INST_DATA_READ,
1303                        STFSM_INST_STOP,
1304                },
1305                .seq_cfg = (SEQ_CFG_PADS_1 |
1306                            SEQ_CFG_READNOTWRITE |
1307                            SEQ_CFG_CSDEASSERT |
1308                            SEQ_CFG_STARTSEQ),
1309        };
1310
1311        stfsm_load_seq(fsm, &seq);
1312
1313        stfsm_read_fifo(fsm, &tmp, 4);
1314
1315        *dby = (uint8_t)(tmp >> 24);
1316
1317        stfsm_wait_seq(fsm);
1318}
1319
1320static void stfsm_s25fl_write_dyb(struct stfsm *fsm, uint32_t offs, uint8_t dby)
1321{
1322        struct stfsm_seq seq = {
1323                .seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
1324                               SEQ_OPC_OPCODE(SPINOR_OP_WREN) |
1325                               SEQ_OPC_CSDEASSERT),
1326                .seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
1327                               SEQ_OPC_OPCODE(S25FL_CMD_DYBWR)),
1328                .addr_cfg = (ADR_CFG_CYCLES_ADD1(16) |
1329                             ADR_CFG_PADS_1_ADD1 |
1330                             ADR_CFG_CYCLES_ADD2(16) |
1331                             ADR_CFG_PADS_1_ADD2),
1332                .status = (uint32_t)dby | STA_PADS_1 | STA_CSDEASSERT,
1333                .addr1 = (offs >> 16) & 0xffff,
1334                .addr2 = offs & 0xffff,
1335                .seq = {
1336                        STFSM_INST_CMD1,
1337                        STFSM_INST_CMD2,
1338                        STFSM_INST_ADD1,
1339                        STFSM_INST_ADD2,
1340                        STFSM_INST_STA_WR1,
1341                        STFSM_INST_STOP,
1342                },
1343                .seq_cfg = (SEQ_CFG_PADS_1 |
1344                            SEQ_CFG_READNOTWRITE |
1345                            SEQ_CFG_CSDEASSERT |
1346                            SEQ_CFG_STARTSEQ),
1347        };
1348
1349        stfsm_load_seq(fsm, &seq);
1350        stfsm_wait_seq(fsm);
1351
1352        stfsm_wait_busy(fsm);
1353}
1354
1355static int stfsm_s25fl_clear_status_reg(struct stfsm *fsm)
1356{
1357        struct stfsm_seq seq = {
1358                .seq_opc[0] = (SEQ_OPC_PADS_1 |
1359                               SEQ_OPC_CYCLES(8) |
1360                               SEQ_OPC_OPCODE(S25FL_CMD_CLSR) |
1361                               SEQ_OPC_CSDEASSERT),
1362                .seq_opc[1] = (SEQ_OPC_PADS_1 |
1363                               SEQ_OPC_CYCLES(8) |
1364                               SEQ_OPC_OPCODE(SPINOR_OP_WRDI) |
1365                               SEQ_OPC_CSDEASSERT),
1366                .seq = {
1367                        STFSM_INST_CMD1,
1368                        STFSM_INST_CMD2,
1369                        STFSM_INST_WAIT,
1370                        STFSM_INST_STOP,
1371                },
1372                .seq_cfg = (SEQ_CFG_PADS_1 |
1373                            SEQ_CFG_ERASE |
1374                            SEQ_CFG_READNOTWRITE |
1375                            SEQ_CFG_CSDEASSERT |
1376                            SEQ_CFG_STARTSEQ),
1377        };
1378
1379        stfsm_load_seq(fsm, &seq);
1380
1381        stfsm_wait_seq(fsm);
1382
1383        return 0;
1384}
1385
1386static int stfsm_s25fl_config(struct stfsm *fsm)
1387{
1388        struct flash_info *info = fsm->info;
1389        uint32_t flags = info->flags;
1390        uint32_t data_pads;
1391        uint32_t offs;
1392        uint16_t sta_wr;
1393        uint8_t sr1, cr1, dyb;
1394        int update_sr = 0;
1395        int ret;
1396
1397        if (flags & FLASH_FLAG_32BIT_ADDR) {
1398                /*
1399                 * Prepare Read/Write/Erase sequences according to S25FLxxx
1400                 * 32-bit address command set
1401                 */
1402                ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read,
1403                                                  stfsm_s25fl_read4_configs);
1404                if (ret)
1405                        return ret;
1406
1407                ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_write,
1408                                                  stfsm_s25fl_write4_configs);
1409                if (ret)
1410                        return ret;
1411
1412                stfsm_s25fl_prepare_erasesec_seq_32(&stfsm_seq_erase_sector);
1413
1414        } else {
1415                /* Use default configurations for 24-bit addressing */
1416                ret = stfsm_prepare_rwe_seqs_default(fsm);
1417                if (ret)
1418                        return ret;
1419        }
1420
1421        /*
1422         * For devices that support 'DYB' sector locking, check lock status and
1423         * unlock sectors if necessary (some variants power-on with sectors
1424         * locked by default)
1425         */
1426        if (flags & FLASH_FLAG_DYB_LOCKING) {
1427                offs = 0;
1428                for (offs = 0; offs < info->sector_size * info->n_sectors;) {
1429                        stfsm_s25fl_read_dyb(fsm, offs, &dyb);
1430                        if (dyb == 0x00)
1431                                stfsm_s25fl_write_dyb(fsm, offs, 0xff);
1432
1433                        /* Handle bottom/top 4KiB parameter sectors */
1434                        if ((offs < info->sector_size * 2) ||
1435                            (offs >= (info->sector_size - info->n_sectors * 4)))
1436                                offs += 0x1000;
1437                        else
1438                                offs += 0x10000;
1439                }
1440        }
1441
1442        /* Check status of 'QE' bit, update if required. */
1443        stfsm_read_status(fsm, SPINOR_OP_RDCR, &cr1, 1);
1444        data_pads = ((fsm->stfsm_seq_read.seq_cfg >> 16) & 0x3) + 1;
1445        if (data_pads == 4) {
1446                if (!(cr1 & STFSM_S25FL_CONFIG_QE)) {
1447                        /* Set 'QE' */
1448                        cr1 |= STFSM_S25FL_CONFIG_QE;
1449
1450                        update_sr = 1;
1451                }
1452        } else {
1453                if (cr1 & STFSM_S25FL_CONFIG_QE) {
1454                        /* Clear 'QE' */
1455                        cr1 &= ~STFSM_S25FL_CONFIG_QE;
1456
1457                        update_sr = 1;
1458                }
1459        }
1460        if (update_sr) {
1461                stfsm_read_status(fsm, SPINOR_OP_RDSR, &sr1, 1);
1462                sta_wr = ((uint16_t)cr1  << 8) | sr1;
1463                stfsm_write_status(fsm, SPINOR_OP_WRSR, sta_wr, 2, 1);
1464        }
1465
1466        /*
1467         * S25FLxxx devices support Program and Error error flags.
1468         * Configure driver to check flags and clear if necessary.
1469         */
1470        fsm->configuration |= CFG_S25FL_CHECK_ERROR_FLAGS;
1471
1472        return 0;
1473}
1474
1475static int stfsm_w25q_config(struct stfsm *fsm)
1476{
1477        uint32_t data_pads;
1478        uint8_t sr1, sr2;
1479        uint16_t sr_wr;
1480        int update_sr = 0;
1481        int ret;
1482
1483        ret = stfsm_prepare_rwe_seqs_default(fsm);
1484        if (ret)
1485                return ret;
1486
1487        /* Check status of 'QE' bit, update if required. */
1488        stfsm_read_status(fsm, SPINOR_OP_RDCR, &sr2, 1);
1489        data_pads = ((fsm->stfsm_seq_read.seq_cfg >> 16) & 0x3) + 1;
1490        if (data_pads == 4) {
1491                if (!(sr2 & W25Q_STATUS_QE)) {
1492                        /* Set 'QE' */
1493                        sr2 |= W25Q_STATUS_QE;
1494                        update_sr = 1;
1495                }
1496        } else {
1497                if (sr2 & W25Q_STATUS_QE) {
1498                        /* Clear 'QE' */
1499                        sr2 &= ~W25Q_STATUS_QE;
1500                        update_sr = 1;
1501                }
1502        }
1503        if (update_sr) {
1504                /* Write status register */
1505                stfsm_read_status(fsm, SPINOR_OP_RDSR, &sr1, 1);
1506                sr_wr = ((uint16_t)sr2 << 8) | sr1;
1507                stfsm_write_status(fsm, SPINOR_OP_WRSR, sr_wr, 2, 1);
1508        }
1509
1510        return 0;
1511}
1512
1513static int stfsm_read(struct stfsm *fsm, uint8_t *buf, uint32_t size,
1514                      uint32_t offset)
1515{
1516        struct stfsm_seq *seq = &fsm->stfsm_seq_read;
1517        uint32_t data_pads;
1518        uint32_t read_mask;
1519        uint32_t size_ub;
1520        uint32_t size_lb;
1521        uint32_t size_mop;
1522        uint32_t tmp[4];
1523        uint32_t page_buf[FLASH_PAGESIZE_32];
1524        uint8_t *p;
1525
1526        dev_dbg(fsm->dev, "reading %d bytes from 0x%08x\n", size, offset);
1527
1528        /* Enter 32-bit address mode, if required */
1529        if (fsm->configuration & CFG_READ_TOGGLE_32BIT_ADDR)
1530                stfsm_enter_32bit_addr(fsm, 1);
1531
1532        /* Must read in multiples of 32 cycles (or 32*pads/8 Bytes) */
1533        data_pads = ((seq->seq_cfg >> 16) & 0x3) + 1;
1534        read_mask = (data_pads << 2) - 1;
1535
1536        /* Handle non-aligned buf */
1537        p = ((uintptr_t)buf & 0x3) ? (uint8_t *)page_buf : buf;
1538
1539        /* Handle non-aligned size */
1540        size_ub = (size + read_mask) & ~read_mask;
1541        size_lb = size & ~read_mask;
1542        size_mop = size & read_mask;
1543
1544        seq->data_size = TRANSFER_SIZE(size_ub);
1545        seq->addr1 = (offset >> 16) & 0xffff;
1546        seq->addr2 = offset & 0xffff;
1547
1548        stfsm_load_seq(fsm, seq);
1549
1550        if (size_lb)
1551                stfsm_read_fifo(fsm, (uint32_t *)p, size_lb);
1552
1553        if (size_mop) {
1554                stfsm_read_fifo(fsm, tmp, read_mask + 1);
1555                memcpy(p + size_lb, &tmp, size_mop);
1556        }
1557
1558        /* Handle non-aligned buf */
1559        if ((uintptr_t)buf & 0x3)
1560                memcpy(buf, page_buf, size);
1561
1562        /* Wait for sequence to finish */
1563        stfsm_wait_seq(fsm);
1564
1565        stfsm_clear_fifo(fsm);
1566
1567        /* Exit 32-bit address mode, if required */
1568        if (fsm->configuration & CFG_READ_TOGGLE_32BIT_ADDR)
1569                stfsm_enter_32bit_addr(fsm, 0);
1570
1571        return 0;
1572}
1573
1574static int stfsm_write(struct stfsm *fsm, const uint8_t *buf,
1575                       uint32_t size, uint32_t offset)
1576{
1577        struct stfsm_seq *seq = &fsm->stfsm_seq_write;
1578        uint32_t data_pads;
1579        uint32_t write_mask;
1580        uint32_t size_ub;
1581        uint32_t size_lb;
1582        uint32_t size_mop;
1583        uint32_t tmp[4];
1584        uint32_t i;
1585        uint32_t page_buf[FLASH_PAGESIZE_32];
1586        uint8_t *t = (uint8_t *)&tmp;
1587        const uint8_t *p;
1588        int ret;
1589
1590        dev_dbg(fsm->dev, "writing %d bytes to 0x%08x\n", size, offset);
1591
1592        /* Enter 32-bit address mode, if required */
1593        if (fsm->configuration & CFG_WRITE_TOGGLE_32BIT_ADDR)
1594                stfsm_enter_32bit_addr(fsm, 1);
1595
1596        /* Must write in multiples of 32 cycles (or 32*pads/8 bytes) */
1597        data_pads = ((seq->seq_cfg >> 16) & 0x3) + 1;
1598        write_mask = (data_pads << 2) - 1;
1599
1600        /* Handle non-aligned buf */
1601        if ((uintptr_t)buf & 0x3) {
1602                memcpy(page_buf, buf, size);
1603                p = (uint8_t *)page_buf;
1604        } else {
1605                p = buf;
1606        }
1607
1608        /* Handle non-aligned size */
1609        size_ub = (size + write_mask) & ~write_mask;
1610        size_lb = size & ~write_mask;
1611        size_mop = size & write_mask;
1612
1613        seq->data_size = TRANSFER_SIZE(size_ub);
1614        seq->addr1 = (offset >> 16) & 0xffff;
1615        seq->addr2 = offset & 0xffff;
1616
1617        /* Need to set FIFO to write mode, before writing data to FIFO (see
1618         * GNBvb79594)
1619         */
1620        writel(0x00040000, fsm->base + SPI_FAST_SEQ_CFG);
1621
1622        /*
1623         * Before writing data to the FIFO, apply a small delay to allow a
1624         * potential change of FIFO direction to complete.
1625         */
1626        if (fsm->fifo_dir_delay == 0)
1627                readl(fsm->base + SPI_FAST_SEQ_CFG);
1628        else
1629                udelay(fsm->fifo_dir_delay);
1630
1631
1632        /* Write data to FIFO, before starting sequence (see GNBvd79593) */
1633        if (size_lb) {
1634                stfsm_write_fifo(fsm, (uint32_t *)p, size_lb);
1635                p += size_lb;
1636        }
1637
1638        /* Handle non-aligned size */
1639        if (size_mop) {
1640                memset(t, 0xff, write_mask + 1);        /* fill with 0xff's */
1641                for (i = 0; i < size_mop; i++)
1642                        t[i] = *p++;
1643
1644                stfsm_write_fifo(fsm, tmp, write_mask + 1);
1645        }
1646
1647        /* Start sequence */
1648        stfsm_load_seq(fsm, seq);
1649
1650        /* Wait for sequence to finish */
1651        stfsm_wait_seq(fsm);
1652
1653        /* Wait for completion */
1654        ret = stfsm_wait_busy(fsm);
1655        if (ret && fsm->configuration & CFG_S25FL_CHECK_ERROR_FLAGS)
1656                stfsm_s25fl_clear_status_reg(fsm);
1657
1658        /* Exit 32-bit address mode, if required */
1659        if (fsm->configuration & CFG_WRITE_TOGGLE_32BIT_ADDR)
1660                stfsm_enter_32bit_addr(fsm, 0);
1661
1662        return 0;
1663}
1664
1665/*
1666 * Read an address range from the flash chip. The address range
1667 * may be any size provided it is within the physical boundaries.
1668 */
1669static int stfsm_mtd_read(struct mtd_info *mtd, loff_t from, size_t len,
1670                          size_t *retlen, u_char *buf)
1671{
1672        struct stfsm *fsm = dev_get_drvdata(mtd->dev.parent);
1673        uint32_t bytes;
1674
1675        dev_dbg(fsm->dev, "%s from 0x%08x, len %zd\n",
1676                __func__, (u32)from, len);
1677
1678        mutex_lock(&fsm->lock);
1679
1680        while (len > 0) {
1681                bytes = min_t(size_t, len, FLASH_PAGESIZE);
1682
1683                stfsm_read(fsm, buf, bytes, from);
1684
1685                buf += bytes;
1686                from += bytes;
1687                len -= bytes;
1688
1689                *retlen += bytes;
1690        }
1691
1692        mutex_unlock(&fsm->lock);
1693
1694        return 0;
1695}
1696
1697static int stfsm_erase_sector(struct stfsm *fsm, uint32_t offset)
1698{
1699        struct stfsm_seq *seq = &stfsm_seq_erase_sector;
1700        int ret;
1701
1702        dev_dbg(fsm->dev, "erasing sector at 0x%08x\n", offset);
1703
1704        /* Enter 32-bit address mode, if required */
1705        if (fsm->configuration & CFG_ERASESEC_TOGGLE_32BIT_ADDR)
1706                stfsm_enter_32bit_addr(fsm, 1);
1707
1708        seq->addr1 = (offset >> 16) & 0xffff;
1709        seq->addr2 = offset & 0xffff;
1710
1711        stfsm_load_seq(fsm, seq);
1712
1713        stfsm_wait_seq(fsm);
1714
1715        /* Wait for completion */
1716        ret = stfsm_wait_busy(fsm);
1717        if (ret && fsm->configuration & CFG_S25FL_CHECK_ERROR_FLAGS)
1718                stfsm_s25fl_clear_status_reg(fsm);
1719
1720        /* Exit 32-bit address mode, if required */
1721        if (fsm->configuration & CFG_ERASESEC_TOGGLE_32BIT_ADDR)
1722                stfsm_enter_32bit_addr(fsm, 0);
1723
1724        return ret;
1725}
1726
1727static int stfsm_erase_chip(struct stfsm *fsm)
1728{
1729        const struct stfsm_seq *seq = &stfsm_seq_erase_chip;
1730
1731        dev_dbg(fsm->dev, "erasing chip\n");
1732
1733        stfsm_load_seq(fsm, seq);
1734
1735        stfsm_wait_seq(fsm);
1736
1737        return stfsm_wait_busy(fsm);
1738}
1739
1740/*
1741 * Write an address range to the flash chip.  Data must be written in
1742 * FLASH_PAGESIZE chunks.  The address range may be any size provided
1743 * it is within the physical boundaries.
1744 */
1745static int stfsm_mtd_write(struct mtd_info *mtd, loff_t to, size_t len,
1746                           size_t *retlen, const u_char *buf)
1747{
1748        struct stfsm *fsm = dev_get_drvdata(mtd->dev.parent);
1749
1750        u32 page_offs;
1751        u32 bytes;
1752        uint8_t *b = (uint8_t *)buf;
1753        int ret = 0;
1754
1755        dev_dbg(fsm->dev, "%s to 0x%08x, len %zd\n", __func__, (u32)to, len);
1756
1757        /* Offset within page */
1758        page_offs = to % FLASH_PAGESIZE;
1759
1760        mutex_lock(&fsm->lock);
1761
1762        while (len) {
1763                /* Write up to page boundary */
1764                bytes = min_t(size_t, FLASH_PAGESIZE - page_offs, len);
1765
1766                ret = stfsm_write(fsm, b, bytes, to);
1767                if (ret)
1768                        goto out1;
1769
1770                b += bytes;
1771                len -= bytes;
1772                to += bytes;
1773
1774                /* We are now page-aligned */
1775                page_offs = 0;
1776
1777                *retlen += bytes;
1778
1779        }
1780
1781out1:
1782        mutex_unlock(&fsm->lock);
1783
1784        return ret;
1785}
1786
1787/*
1788 * Erase an address range on the flash chip. The address range may extend
1789 * one or more erase sectors.  Return an error is there is a problem erasing.
1790 */
1791static int stfsm_mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1792{
1793        struct stfsm *fsm = dev_get_drvdata(mtd->dev.parent);
1794        u32 addr, len;
1795        int ret;
1796
1797        dev_dbg(fsm->dev, "%s at 0x%llx, len %lld\n", __func__,
1798                (long long)instr->addr, (long long)instr->len);
1799
1800        addr = instr->addr;
1801        len = instr->len;
1802
1803        mutex_lock(&fsm->lock);
1804
1805        /* Whole-chip erase? */
1806        if (len == mtd->size) {
1807                ret = stfsm_erase_chip(fsm);
1808                if (ret)
1809                        goto out1;
1810        } else {
1811                while (len) {
1812                        ret = stfsm_erase_sector(fsm, addr);
1813                        if (ret)
1814                                goto out1;
1815
1816                        addr += mtd->erasesize;
1817                        len -= mtd->erasesize;
1818                }
1819        }
1820
1821        mutex_unlock(&fsm->lock);
1822
1823        return 0;
1824
1825out1:
1826        mutex_unlock(&fsm->lock);
1827
1828        return ret;
1829}
1830
1831static void stfsm_read_jedec(struct stfsm *fsm, uint8_t *jedec)
1832{
1833        const struct stfsm_seq *seq = &stfsm_seq_read_jedec;
1834        uint32_t tmp[2];
1835
1836        stfsm_load_seq(fsm, seq);
1837
1838        stfsm_read_fifo(fsm, tmp, 8);
1839
1840        memcpy(jedec, tmp, 5);
1841
1842        stfsm_wait_seq(fsm);
1843}
1844
1845static struct flash_info *stfsm_jedec_probe(struct stfsm *fsm)
1846{
1847        struct flash_info       *info;
1848        u16                     ext_jedec;
1849        u32                     jedec;
1850        u8                      id[5];
1851
1852        stfsm_read_jedec(fsm, id);
1853
1854        jedec     = id[0] << 16 | id[1] << 8 | id[2];
1855        /*
1856         * JEDEC also defines an optional "extended device information"
1857         * string for after vendor-specific data, after the three bytes
1858         * we use here. Supporting some chips might require using it.
1859         */
1860        ext_jedec = id[3] << 8  | id[4];
1861
1862        dev_dbg(fsm->dev, "JEDEC =  0x%08x [%5ph]\n", jedec, id);
1863
1864        for (info = flash_types; info->name; info++) {
1865                if (info->jedec_id == jedec) {
1866                        if (info->ext_id && info->ext_id != ext_jedec)
1867                                continue;
1868                        return info;
1869                }
1870        }
1871        dev_err(fsm->dev, "Unrecognized JEDEC id %06x\n", jedec);
1872
1873        return NULL;
1874}
1875
1876static int stfsm_set_mode(struct stfsm *fsm, uint32_t mode)
1877{
1878        int ret, timeout = 10;
1879
1880        /* Wait for controller to accept mode change */
1881        while (--timeout) {
1882                ret = readl(fsm->base + SPI_STA_MODE_CHANGE);
1883                if (ret & 0x1)
1884                        break;
1885                udelay(1);
1886        }
1887
1888        if (!timeout)
1889                return -EBUSY;
1890
1891        writel(mode, fsm->base + SPI_MODESELECT);
1892
1893        return 0;
1894}
1895
1896static void stfsm_set_freq(struct stfsm *fsm, uint32_t spi_freq)
1897{
1898        uint32_t emi_freq;
1899        uint32_t clk_div;
1900
1901        emi_freq = clk_get_rate(fsm->clk);
1902
1903        /*
1904         * Calculate clk_div - values between 2 and 128
1905         * Multiple of 2, rounded up
1906         */
1907        clk_div = 2 * DIV_ROUND_UP(emi_freq, 2 * spi_freq);
1908        if (clk_div < 2)
1909                clk_div = 2;
1910        else if (clk_div > 128)
1911                clk_div = 128;
1912
1913        /*
1914         * Determine a suitable delay for the IP to complete a change of
1915         * direction of the FIFO. The required delay is related to the clock
1916         * divider used. The following heuristics are based on empirical tests,
1917         * using a 100MHz EMI clock.
1918         */
1919        if (clk_div <= 4)
1920                fsm->fifo_dir_delay = 0;
1921        else if (clk_div <= 10)
1922                fsm->fifo_dir_delay = 1;
1923        else
1924                fsm->fifo_dir_delay = DIV_ROUND_UP(clk_div, 10);
1925
1926        dev_dbg(fsm->dev, "emi_clk = %uHZ, spi_freq = %uHZ, clk_div = %u\n",
1927                emi_freq, spi_freq, clk_div);
1928
1929        writel(clk_div, fsm->base + SPI_CLOCKDIV);
1930}
1931
1932static int stfsm_init(struct stfsm *fsm)
1933{
1934        int ret;
1935
1936        /* Perform a soft reset of the FSM controller */
1937        writel(SEQ_CFG_SWRESET, fsm->base + SPI_FAST_SEQ_CFG);
1938        udelay(1);
1939        writel(0, fsm->base + SPI_FAST_SEQ_CFG);
1940
1941        /* Set clock to 'safe' frequency initially */
1942        stfsm_set_freq(fsm, STFSM_FLASH_SAFE_FREQ);
1943
1944        /* Switch to FSM */
1945        ret = stfsm_set_mode(fsm, SPI_MODESELECT_FSM);
1946        if (ret)
1947                return ret;
1948
1949        /* Set timing parameters */
1950        writel(SPI_CFG_DEVICE_ST            |
1951               SPI_CFG_DEFAULT_MIN_CS_HIGH  |
1952               SPI_CFG_DEFAULT_CS_SETUPHOLD |
1953               SPI_CFG_DEFAULT_DATA_HOLD,
1954               fsm->base + SPI_CONFIGDATA);
1955        writel(STFSM_DEFAULT_WR_TIME, fsm->base + SPI_STATUS_WR_TIME_REG);
1956
1957        /*
1958         * Set the FSM 'WAIT' delay to the minimum workable value.  Note, for
1959         * our purposes, the WAIT instruction is used purely to achieve
1960         * "sequence validity" rather than actually implement a delay.
1961         */
1962        writel(0x00000001, fsm->base + SPI_PROGRAM_ERASE_TIME);
1963
1964        /* Clear FIFO, just in case */
1965        stfsm_clear_fifo(fsm);
1966
1967        return 0;
1968}
1969
1970static void stfsm_fetch_platform_configs(struct platform_device *pdev)
1971{
1972        struct stfsm *fsm = platform_get_drvdata(pdev);
1973        struct device_node *np = pdev->dev.of_node;
1974        struct regmap *regmap;
1975        uint32_t boot_device_reg;
1976        uint32_t boot_device_spi;
1977        uint32_t boot_device;     /* Value we read from *boot_device_reg */
1978        int ret;
1979
1980        /* Booting from SPI NOR Flash is the default */
1981        fsm->booted_from_spi = true;
1982
1983        regmap = syscon_regmap_lookup_by_phandle(np, "st,syscfg");
1984        if (IS_ERR(regmap))
1985                goto boot_device_fail;
1986
1987        fsm->reset_signal = of_property_read_bool(np, "st,reset-signal");
1988
1989        fsm->reset_por = of_property_read_bool(np, "st,reset-por");
1990
1991        /* Where in the syscon the boot device information lives */
1992        ret = of_property_read_u32(np, "st,boot-device-reg", &boot_device_reg);
1993        if (ret)
1994                goto boot_device_fail;
1995
1996        /* Boot device value when booted from SPI NOR */
1997        ret = of_property_read_u32(np, "st,boot-device-spi", &boot_device_spi);
1998        if (ret)
1999                goto boot_device_fail;
2000
2001        ret = regmap_read(regmap, boot_device_reg, &boot_device);
2002        if (ret)
2003                goto boot_device_fail;
2004
2005        if (boot_device != boot_device_spi)
2006                fsm->booted_from_spi = false;
2007
2008        return;
2009
2010boot_device_fail:
2011        dev_warn(&pdev->dev,
2012                 "failed to fetch boot device, assuming boot from SPI\n");
2013}
2014
2015static int stfsm_probe(struct platform_device *pdev)
2016{
2017        struct device_node *np = pdev->dev.of_node;
2018        struct flash_info *info;
2019        struct resource *res;
2020        struct stfsm *fsm;
2021        int ret;
2022
2023        if (!np) {
2024                dev_err(&pdev->dev, "No DT found\n");
2025                return -EINVAL;
2026        }
2027
2028        fsm = devm_kzalloc(&pdev->dev, sizeof(*fsm), GFP_KERNEL);
2029        if (!fsm)
2030                return -ENOMEM;
2031
2032        fsm->dev = &pdev->dev;
2033
2034        platform_set_drvdata(pdev, fsm);
2035
2036        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2037        if (!res) {
2038                dev_err(&pdev->dev, "Resource not found\n");
2039                return -ENODEV;
2040        }
2041
2042        fsm->base = devm_ioremap_resource(&pdev->dev, res);
2043        if (IS_ERR(fsm->base)) {
2044                dev_err(&pdev->dev,
2045                        "Failed to reserve memory region %pR\n", res);
2046                return PTR_ERR(fsm->base);
2047        }
2048
2049        fsm->clk = devm_clk_get(&pdev->dev, NULL);
2050        if (IS_ERR(fsm->clk)) {
2051                dev_err(fsm->dev, "Couldn't find EMI clock.\n");
2052                return PTR_ERR(fsm->clk);
2053        }
2054
2055        ret = clk_prepare_enable(fsm->clk);
2056        if (ret) {
2057                dev_err(fsm->dev, "Failed to enable EMI clock.\n");
2058                return ret;
2059        }
2060
2061        mutex_init(&fsm->lock);
2062
2063        ret = stfsm_init(fsm);
2064        if (ret) {
2065                dev_err(&pdev->dev, "Failed to initialise FSM Controller\n");
2066                goto err_clk_unprepare;
2067        }
2068
2069        stfsm_fetch_platform_configs(pdev);
2070
2071        /* Detect SPI FLASH device */
2072        info = stfsm_jedec_probe(fsm);
2073        if (!info) {
2074                ret = -ENODEV;
2075                goto err_clk_unprepare;
2076        }
2077        fsm->info = info;
2078
2079        /* Use device size to determine address width */
2080        if (info->sector_size * info->n_sectors > 0x1000000)
2081                info->flags |= FLASH_FLAG_32BIT_ADDR;
2082
2083        /*
2084         * Configure READ/WRITE/ERASE sequences according to platform and
2085         * device flags.
2086         */
2087        if (info->config) {
2088                ret = info->config(fsm);
2089                if (ret)
2090                        goto err_clk_unprepare;
2091        } else {
2092                ret = stfsm_prepare_rwe_seqs_default(fsm);
2093                if (ret)
2094                        goto err_clk_unprepare;
2095        }
2096
2097        fsm->mtd.name           = info->name;
2098        fsm->mtd.dev.parent     = &pdev->dev;
2099        mtd_set_of_node(&fsm->mtd, np);
2100        fsm->mtd.type           = MTD_NORFLASH;
2101        fsm->mtd.writesize      = 4;
2102        fsm->mtd.writebufsize   = fsm->mtd.writesize;
2103        fsm->mtd.flags          = MTD_CAP_NORFLASH;
2104        fsm->mtd.size           = info->sector_size * info->n_sectors;
2105        fsm->mtd.erasesize      = info->sector_size;
2106
2107        fsm->mtd._read  = stfsm_mtd_read;
2108        fsm->mtd._write = stfsm_mtd_write;
2109        fsm->mtd._erase = stfsm_mtd_erase;
2110
2111        dev_info(&pdev->dev,
2112                "Found serial flash device: %s\n"
2113                " size = %llx (%lldMiB) erasesize = 0x%08x (%uKiB)\n",
2114                info->name,
2115                (long long)fsm->mtd.size, (long long)(fsm->mtd.size >> 20),
2116                fsm->mtd.erasesize, (fsm->mtd.erasesize >> 10));
2117
2118        return mtd_device_register(&fsm->mtd, NULL, 0);
2119
2120err_clk_unprepare:
2121        clk_disable_unprepare(fsm->clk);
2122        return ret;
2123}
2124
2125static int stfsm_remove(struct platform_device *pdev)
2126{
2127        struct stfsm *fsm = platform_get_drvdata(pdev);
2128
2129        return mtd_device_unregister(&fsm->mtd);
2130}
2131
2132#ifdef CONFIG_PM_SLEEP
2133static int stfsmfsm_suspend(struct device *dev)
2134{
2135        struct stfsm *fsm = dev_get_drvdata(dev);
2136
2137        clk_disable_unprepare(fsm->clk);
2138
2139        return 0;
2140}
2141
2142static int stfsmfsm_resume(struct device *dev)
2143{
2144        struct stfsm *fsm = dev_get_drvdata(dev);
2145
2146        return clk_prepare_enable(fsm->clk);
2147}
2148#endif
2149
2150static SIMPLE_DEV_PM_OPS(stfsm_pm_ops, stfsmfsm_suspend, stfsmfsm_resume);
2151
2152static const struct of_device_id stfsm_match[] = {
2153        { .compatible = "st,spi-fsm", },
2154        {},
2155};
2156MODULE_DEVICE_TABLE(of, stfsm_match);
2157
2158static struct platform_driver stfsm_driver = {
2159        .probe          = stfsm_probe,
2160        .remove         = stfsm_remove,
2161        .driver         = {
2162                .name   = "st-spi-fsm",
2163                .of_match_table = stfsm_match,
2164                .pm     = &stfsm_pm_ops,
2165        },
2166};
2167module_platform_driver(stfsm_driver);
2168
2169MODULE_AUTHOR("Angus Clark <angus.clark@st.com>");
2170MODULE_DESCRIPTION("ST SPI FSM driver");
2171MODULE_LICENSE("GPL");
2172