linux/drivers/mtd/mtdcore.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Core registration and callback routines for MTD
   4 * drivers and users.
   5 *
   6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
   7 * Copyright © 2006      Red Hat UK Limited 
   8 */
   9
  10#include <linux/module.h>
  11#include <linux/kernel.h>
  12#include <linux/ptrace.h>
  13#include <linux/seq_file.h>
  14#include <linux/string.h>
  15#include <linux/timer.h>
  16#include <linux/major.h>
  17#include <linux/fs.h>
  18#include <linux/err.h>
  19#include <linux/ioctl.h>
  20#include <linux/init.h>
  21#include <linux/of.h>
  22#include <linux/proc_fs.h>
  23#include <linux/idr.h>
  24#include <linux/backing-dev.h>
  25#include <linux/gfp.h>
  26#include <linux/slab.h>
  27#include <linux/reboot.h>
  28#include <linux/leds.h>
  29#include <linux/debugfs.h>
  30#include <linux/nvmem-provider.h>
  31
  32#include <linux/mtd/mtd.h>
  33#include <linux/mtd/partitions.h>
  34
  35#include "mtdcore.h"
  36
  37struct backing_dev_info *mtd_bdi;
  38
  39#ifdef CONFIG_PM_SLEEP
  40
  41static int mtd_cls_suspend(struct device *dev)
  42{
  43        struct mtd_info *mtd = dev_get_drvdata(dev);
  44
  45        return mtd ? mtd_suspend(mtd) : 0;
  46}
  47
  48static int mtd_cls_resume(struct device *dev)
  49{
  50        struct mtd_info *mtd = dev_get_drvdata(dev);
  51
  52        if (mtd)
  53                mtd_resume(mtd);
  54        return 0;
  55}
  56
  57static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
  58#define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
  59#else
  60#define MTD_CLS_PM_OPS NULL
  61#endif
  62
  63static struct class mtd_class = {
  64        .name = "mtd",
  65        .owner = THIS_MODULE,
  66        .pm = MTD_CLS_PM_OPS,
  67};
  68
  69static DEFINE_IDR(mtd_idr);
  70
  71/* These are exported solely for the purpose of mtd_blkdevs.c. You
  72   should not use them for _anything_ else */
  73DEFINE_MUTEX(mtd_table_mutex);
  74EXPORT_SYMBOL_GPL(mtd_table_mutex);
  75
  76struct mtd_info *__mtd_next_device(int i)
  77{
  78        return idr_get_next(&mtd_idr, &i);
  79}
  80EXPORT_SYMBOL_GPL(__mtd_next_device);
  81
  82static LIST_HEAD(mtd_notifiers);
  83
  84
  85#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
  86
  87/* REVISIT once MTD uses the driver model better, whoever allocates
  88 * the mtd_info will probably want to use the release() hook...
  89 */
  90static void mtd_release(struct device *dev)
  91{
  92        struct mtd_info *mtd = dev_get_drvdata(dev);
  93        dev_t index = MTD_DEVT(mtd->index);
  94
  95        /* remove /dev/mtdXro node */
  96        device_destroy(&mtd_class, index + 1);
  97}
  98
  99static ssize_t mtd_type_show(struct device *dev,
 100                struct device_attribute *attr, char *buf)
 101{
 102        struct mtd_info *mtd = dev_get_drvdata(dev);
 103        char *type;
 104
 105        switch (mtd->type) {
 106        case MTD_ABSENT:
 107                type = "absent";
 108                break;
 109        case MTD_RAM:
 110                type = "ram";
 111                break;
 112        case MTD_ROM:
 113                type = "rom";
 114                break;
 115        case MTD_NORFLASH:
 116                type = "nor";
 117                break;
 118        case MTD_NANDFLASH:
 119                type = "nand";
 120                break;
 121        case MTD_DATAFLASH:
 122                type = "dataflash";
 123                break;
 124        case MTD_UBIVOLUME:
 125                type = "ubi";
 126                break;
 127        case MTD_MLCNANDFLASH:
 128                type = "mlc-nand";
 129                break;
 130        default:
 131                type = "unknown";
 132        }
 133
 134        return snprintf(buf, PAGE_SIZE, "%s\n", type);
 135}
 136static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
 137
 138static ssize_t mtd_flags_show(struct device *dev,
 139                struct device_attribute *attr, char *buf)
 140{
 141        struct mtd_info *mtd = dev_get_drvdata(dev);
 142
 143        return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
 144}
 145static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
 146
 147static ssize_t mtd_size_show(struct device *dev,
 148                struct device_attribute *attr, char *buf)
 149{
 150        struct mtd_info *mtd = dev_get_drvdata(dev);
 151
 152        return snprintf(buf, PAGE_SIZE, "%llu\n",
 153                (unsigned long long)mtd->size);
 154}
 155static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
 156
 157static ssize_t mtd_erasesize_show(struct device *dev,
 158                struct device_attribute *attr, char *buf)
 159{
 160        struct mtd_info *mtd = dev_get_drvdata(dev);
 161
 162        return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
 163}
 164static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
 165
 166static ssize_t mtd_writesize_show(struct device *dev,
 167                struct device_attribute *attr, char *buf)
 168{
 169        struct mtd_info *mtd = dev_get_drvdata(dev);
 170
 171        return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
 172}
 173static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
 174
 175static ssize_t mtd_subpagesize_show(struct device *dev,
 176                struct device_attribute *attr, char *buf)
 177{
 178        struct mtd_info *mtd = dev_get_drvdata(dev);
 179        unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
 180
 181        return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
 182}
 183static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
 184
 185static ssize_t mtd_oobsize_show(struct device *dev,
 186                struct device_attribute *attr, char *buf)
 187{
 188        struct mtd_info *mtd = dev_get_drvdata(dev);
 189
 190        return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
 191}
 192static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
 193
 194static ssize_t mtd_oobavail_show(struct device *dev,
 195                                 struct device_attribute *attr, char *buf)
 196{
 197        struct mtd_info *mtd = dev_get_drvdata(dev);
 198
 199        return snprintf(buf, PAGE_SIZE, "%u\n", mtd->oobavail);
 200}
 201static DEVICE_ATTR(oobavail, S_IRUGO, mtd_oobavail_show, NULL);
 202
 203static ssize_t mtd_numeraseregions_show(struct device *dev,
 204                struct device_attribute *attr, char *buf)
 205{
 206        struct mtd_info *mtd = dev_get_drvdata(dev);
 207
 208        return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
 209}
 210static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
 211        NULL);
 212
 213static ssize_t mtd_name_show(struct device *dev,
 214                struct device_attribute *attr, char *buf)
 215{
 216        struct mtd_info *mtd = dev_get_drvdata(dev);
 217
 218        return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
 219}
 220static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
 221
 222static ssize_t mtd_ecc_strength_show(struct device *dev,
 223                                     struct device_attribute *attr, char *buf)
 224{
 225        struct mtd_info *mtd = dev_get_drvdata(dev);
 226
 227        return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
 228}
 229static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
 230
 231static ssize_t mtd_bitflip_threshold_show(struct device *dev,
 232                                          struct device_attribute *attr,
 233                                          char *buf)
 234{
 235        struct mtd_info *mtd = dev_get_drvdata(dev);
 236
 237        return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
 238}
 239
 240static ssize_t mtd_bitflip_threshold_store(struct device *dev,
 241                                           struct device_attribute *attr,
 242                                           const char *buf, size_t count)
 243{
 244        struct mtd_info *mtd = dev_get_drvdata(dev);
 245        unsigned int bitflip_threshold;
 246        int retval;
 247
 248        retval = kstrtouint(buf, 0, &bitflip_threshold);
 249        if (retval)
 250                return retval;
 251
 252        mtd->bitflip_threshold = bitflip_threshold;
 253        return count;
 254}
 255static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
 256                   mtd_bitflip_threshold_show,
 257                   mtd_bitflip_threshold_store);
 258
 259static ssize_t mtd_ecc_step_size_show(struct device *dev,
 260                struct device_attribute *attr, char *buf)
 261{
 262        struct mtd_info *mtd = dev_get_drvdata(dev);
 263
 264        return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
 265
 266}
 267static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
 268
 269static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
 270                struct device_attribute *attr, char *buf)
 271{
 272        struct mtd_info *mtd = dev_get_drvdata(dev);
 273        struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
 274
 275        return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
 276}
 277static DEVICE_ATTR(corrected_bits, S_IRUGO,
 278                   mtd_ecc_stats_corrected_show, NULL);
 279
 280static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
 281                struct device_attribute *attr, char *buf)
 282{
 283        struct mtd_info *mtd = dev_get_drvdata(dev);
 284        struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
 285
 286        return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
 287}
 288static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
 289
 290static ssize_t mtd_badblocks_show(struct device *dev,
 291                struct device_attribute *attr, char *buf)
 292{
 293        struct mtd_info *mtd = dev_get_drvdata(dev);
 294        struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
 295
 296        return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
 297}
 298static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
 299
 300static ssize_t mtd_bbtblocks_show(struct device *dev,
 301                struct device_attribute *attr, char *buf)
 302{
 303        struct mtd_info *mtd = dev_get_drvdata(dev);
 304        struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
 305
 306        return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
 307}
 308static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
 309
 310static struct attribute *mtd_attrs[] = {
 311        &dev_attr_type.attr,
 312        &dev_attr_flags.attr,
 313        &dev_attr_size.attr,
 314        &dev_attr_erasesize.attr,
 315        &dev_attr_writesize.attr,
 316        &dev_attr_subpagesize.attr,
 317        &dev_attr_oobsize.attr,
 318        &dev_attr_oobavail.attr,
 319        &dev_attr_numeraseregions.attr,
 320        &dev_attr_name.attr,
 321        &dev_attr_ecc_strength.attr,
 322        &dev_attr_ecc_step_size.attr,
 323        &dev_attr_corrected_bits.attr,
 324        &dev_attr_ecc_failures.attr,
 325        &dev_attr_bad_blocks.attr,
 326        &dev_attr_bbt_blocks.attr,
 327        &dev_attr_bitflip_threshold.attr,
 328        NULL,
 329};
 330ATTRIBUTE_GROUPS(mtd);
 331
 332static const struct device_type mtd_devtype = {
 333        .name           = "mtd",
 334        .groups         = mtd_groups,
 335        .release        = mtd_release,
 336};
 337
 338static int mtd_partid_show(struct seq_file *s, void *p)
 339{
 340        struct mtd_info *mtd = s->private;
 341
 342        seq_printf(s, "%s\n", mtd->dbg.partid);
 343
 344        return 0;
 345}
 346
 347static int mtd_partid_debugfs_open(struct inode *inode, struct file *file)
 348{
 349        return single_open(file, mtd_partid_show, inode->i_private);
 350}
 351
 352static const struct file_operations mtd_partid_debug_fops = {
 353        .open           = mtd_partid_debugfs_open,
 354        .read           = seq_read,
 355        .llseek         = seq_lseek,
 356        .release        = single_release,
 357};
 358
 359static int mtd_partname_show(struct seq_file *s, void *p)
 360{
 361        struct mtd_info *mtd = s->private;
 362
 363        seq_printf(s, "%s\n", mtd->dbg.partname);
 364
 365        return 0;
 366}
 367
 368static int mtd_partname_debugfs_open(struct inode *inode, struct file *file)
 369{
 370        return single_open(file, mtd_partname_show, inode->i_private);
 371}
 372
 373static const struct file_operations mtd_partname_debug_fops = {
 374        .open           = mtd_partname_debugfs_open,
 375        .read           = seq_read,
 376        .llseek         = seq_lseek,
 377        .release        = single_release,
 378};
 379
 380static struct dentry *dfs_dir_mtd;
 381
 382static void mtd_debugfs_populate(struct mtd_info *mtd)
 383{
 384        struct device *dev = &mtd->dev;
 385        struct dentry *root;
 386
 387        if (IS_ERR_OR_NULL(dfs_dir_mtd))
 388                return;
 389
 390        root = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
 391        mtd->dbg.dfs_dir = root;
 392
 393        if (mtd->dbg.partid)
 394                debugfs_create_file("partid", 0400, root, mtd,
 395                                    &mtd_partid_debug_fops);
 396
 397        if (mtd->dbg.partname)
 398                debugfs_create_file("partname", 0400, root, mtd,
 399                                    &mtd_partname_debug_fops);
 400}
 401
 402#ifndef CONFIG_MMU
 403unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
 404{
 405        switch (mtd->type) {
 406        case MTD_RAM:
 407                return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
 408                        NOMMU_MAP_READ | NOMMU_MAP_WRITE;
 409        case MTD_ROM:
 410                return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
 411                        NOMMU_MAP_READ;
 412        default:
 413                return NOMMU_MAP_COPY;
 414        }
 415}
 416EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
 417#endif
 418
 419static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
 420                               void *cmd)
 421{
 422        struct mtd_info *mtd;
 423
 424        mtd = container_of(n, struct mtd_info, reboot_notifier);
 425        mtd->_reboot(mtd);
 426
 427        return NOTIFY_DONE;
 428}
 429
 430/**
 431 * mtd_wunit_to_pairing_info - get pairing information of a wunit
 432 * @mtd: pointer to new MTD device info structure
 433 * @wunit: write unit we are interested in
 434 * @info: returned pairing information
 435 *
 436 * Retrieve pairing information associated to the wunit.
 437 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
 438 * paired together, and where programming a page may influence the page it is
 439 * paired with.
 440 * The notion of page is replaced by the term wunit (write-unit) to stay
 441 * consistent with the ->writesize field.
 442 *
 443 * The @wunit argument can be extracted from an absolute offset using
 444 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
 445 * to @wunit.
 446 *
 447 * From the pairing info the MTD user can find all the wunits paired with
 448 * @wunit using the following loop:
 449 *
 450 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
 451 *      info.pair = i;
 452 *      mtd_pairing_info_to_wunit(mtd, &info);
 453 *      ...
 454 * }
 455 */
 456int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
 457                              struct mtd_pairing_info *info)
 458{
 459        struct mtd_info *master = mtd_get_master(mtd);
 460        int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
 461
 462        if (wunit < 0 || wunit >= npairs)
 463                return -EINVAL;
 464
 465        if (master->pairing && master->pairing->get_info)
 466                return master->pairing->get_info(master, wunit, info);
 467
 468        info->group = 0;
 469        info->pair = wunit;
 470
 471        return 0;
 472}
 473EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
 474
 475/**
 476 * mtd_pairing_info_to_wunit - get wunit from pairing information
 477 * @mtd: pointer to new MTD device info structure
 478 * @info: pairing information struct
 479 *
 480 * Returns a positive number representing the wunit associated to the info
 481 * struct, or a negative error code.
 482 *
 483 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
 484 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
 485 * doc).
 486 *
 487 * It can also be used to only program the first page of each pair (i.e.
 488 * page attached to group 0), which allows one to use an MLC NAND in
 489 * software-emulated SLC mode:
 490 *
 491 * info.group = 0;
 492 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
 493 * for (info.pair = 0; info.pair < npairs; info.pair++) {
 494 *      wunit = mtd_pairing_info_to_wunit(mtd, &info);
 495 *      mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
 496 *                mtd->writesize, &retlen, buf + (i * mtd->writesize));
 497 * }
 498 */
 499int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
 500                              const struct mtd_pairing_info *info)
 501{
 502        struct mtd_info *master = mtd_get_master(mtd);
 503        int ngroups = mtd_pairing_groups(master);
 504        int npairs = mtd_wunit_per_eb(master) / ngroups;
 505
 506        if (!info || info->pair < 0 || info->pair >= npairs ||
 507            info->group < 0 || info->group >= ngroups)
 508                return -EINVAL;
 509
 510        if (master->pairing && master->pairing->get_wunit)
 511                return mtd->pairing->get_wunit(master, info);
 512
 513        return info->pair;
 514}
 515EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
 516
 517/**
 518 * mtd_pairing_groups - get the number of pairing groups
 519 * @mtd: pointer to new MTD device info structure
 520 *
 521 * Returns the number of pairing groups.
 522 *
 523 * This number is usually equal to the number of bits exposed by a single
 524 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
 525 * to iterate over all pages of a given pair.
 526 */
 527int mtd_pairing_groups(struct mtd_info *mtd)
 528{
 529        struct mtd_info *master = mtd_get_master(mtd);
 530
 531        if (!master->pairing || !master->pairing->ngroups)
 532                return 1;
 533
 534        return master->pairing->ngroups;
 535}
 536EXPORT_SYMBOL_GPL(mtd_pairing_groups);
 537
 538static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
 539                              void *val, size_t bytes)
 540{
 541        struct mtd_info *mtd = priv;
 542        size_t retlen;
 543        int err;
 544
 545        err = mtd_read(mtd, offset, bytes, &retlen, val);
 546        if (err && err != -EUCLEAN)
 547                return err;
 548
 549        return retlen == bytes ? 0 : -EIO;
 550}
 551
 552static int mtd_nvmem_add(struct mtd_info *mtd)
 553{
 554        struct nvmem_config config = {};
 555
 556        config.id = -1;
 557        config.dev = &mtd->dev;
 558        config.name = dev_name(&mtd->dev);
 559        config.owner = THIS_MODULE;
 560        config.reg_read = mtd_nvmem_reg_read;
 561        config.size = mtd->size;
 562        config.word_size = 1;
 563        config.stride = 1;
 564        config.read_only = true;
 565        config.root_only = true;
 566        config.no_of_node = true;
 567        config.priv = mtd;
 568
 569        mtd->nvmem = nvmem_register(&config);
 570        if (IS_ERR(mtd->nvmem)) {
 571                /* Just ignore if there is no NVMEM support in the kernel */
 572                if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
 573                        mtd->nvmem = NULL;
 574                } else {
 575                        dev_err(&mtd->dev, "Failed to register NVMEM device\n");
 576                        return PTR_ERR(mtd->nvmem);
 577                }
 578        }
 579
 580        return 0;
 581}
 582
 583/**
 584 *      add_mtd_device - register an MTD device
 585 *      @mtd: pointer to new MTD device info structure
 586 *
 587 *      Add a device to the list of MTD devices present in the system, and
 588 *      notify each currently active MTD 'user' of its arrival. Returns
 589 *      zero on success or non-zero on failure.
 590 */
 591
 592int add_mtd_device(struct mtd_info *mtd)
 593{
 594        struct mtd_info *master = mtd_get_master(mtd);
 595        struct mtd_notifier *not;
 596        int i, error;
 597
 598        /*
 599         * May occur, for instance, on buggy drivers which call
 600         * mtd_device_parse_register() multiple times on the same master MTD,
 601         * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
 602         */
 603        if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
 604                return -EEXIST;
 605
 606        BUG_ON(mtd->writesize == 0);
 607
 608        /*
 609         * MTD drivers should implement ->_{write,read}() or
 610         * ->_{write,read}_oob(), but not both.
 611         */
 612        if (WARN_ON((mtd->_write && mtd->_write_oob) ||
 613                    (mtd->_read && mtd->_read_oob)))
 614                return -EINVAL;
 615
 616        if (WARN_ON((!mtd->erasesize || !master->_erase) &&
 617                    !(mtd->flags & MTD_NO_ERASE)))
 618                return -EINVAL;
 619
 620        /*
 621         * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
 622         * master is an MLC NAND and has a proper pairing scheme defined.
 623         * We also reject masters that implement ->_writev() for now, because
 624         * NAND controller drivers don't implement this hook, and adding the
 625         * SLC -> MLC address/length conversion to this path is useless if we
 626         * don't have a user.
 627         */
 628        if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
 629            (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
 630             !master->pairing || master->_writev))
 631                return -EINVAL;
 632
 633        mutex_lock(&mtd_table_mutex);
 634
 635        i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
 636        if (i < 0) {
 637                error = i;
 638                goto fail_locked;
 639        }
 640
 641        mtd->index = i;
 642        mtd->usecount = 0;
 643
 644        /* default value if not set by driver */
 645        if (mtd->bitflip_threshold == 0)
 646                mtd->bitflip_threshold = mtd->ecc_strength;
 647
 648        if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
 649                int ngroups = mtd_pairing_groups(master);
 650
 651                mtd->erasesize /= ngroups;
 652                mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
 653                            mtd->erasesize;
 654        }
 655
 656        if (is_power_of_2(mtd->erasesize))
 657                mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
 658        else
 659                mtd->erasesize_shift = 0;
 660
 661        if (is_power_of_2(mtd->writesize))
 662                mtd->writesize_shift = ffs(mtd->writesize) - 1;
 663        else
 664                mtd->writesize_shift = 0;
 665
 666        mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
 667        mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
 668
 669        /* Some chips always power up locked. Unlock them now */
 670        if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
 671                error = mtd_unlock(mtd, 0, mtd->size);
 672                if (error && error != -EOPNOTSUPP)
 673                        printk(KERN_WARNING
 674                               "%s: unlock failed, writes may not work\n",
 675                               mtd->name);
 676                /* Ignore unlock failures? */
 677                error = 0;
 678        }
 679
 680        /* Caller should have set dev.parent to match the
 681         * physical device, if appropriate.
 682         */
 683        mtd->dev.type = &mtd_devtype;
 684        mtd->dev.class = &mtd_class;
 685        mtd->dev.devt = MTD_DEVT(i);
 686        dev_set_name(&mtd->dev, "mtd%d", i);
 687        dev_set_drvdata(&mtd->dev, mtd);
 688        of_node_get(mtd_get_of_node(mtd));
 689        error = device_register(&mtd->dev);
 690        if (error)
 691                goto fail_added;
 692
 693        /* Add the nvmem provider */
 694        error = mtd_nvmem_add(mtd);
 695        if (error)
 696                goto fail_nvmem_add;
 697
 698        mtd_debugfs_populate(mtd);
 699
 700        device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
 701                      "mtd%dro", i);
 702
 703        pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
 704        /* No need to get a refcount on the module containing
 705           the notifier, since we hold the mtd_table_mutex */
 706        list_for_each_entry(not, &mtd_notifiers, list)
 707                not->add(mtd);
 708
 709        mutex_unlock(&mtd_table_mutex);
 710        /* We _know_ we aren't being removed, because
 711           our caller is still holding us here. So none
 712           of this try_ nonsense, and no bitching about it
 713           either. :) */
 714        __module_get(THIS_MODULE);
 715        return 0;
 716
 717fail_nvmem_add:
 718        device_unregister(&mtd->dev);
 719fail_added:
 720        of_node_put(mtd_get_of_node(mtd));
 721        idr_remove(&mtd_idr, i);
 722fail_locked:
 723        mutex_unlock(&mtd_table_mutex);
 724        return error;
 725}
 726
 727/**
 728 *      del_mtd_device - unregister an MTD device
 729 *      @mtd: pointer to MTD device info structure
 730 *
 731 *      Remove a device from the list of MTD devices present in the system,
 732 *      and notify each currently active MTD 'user' of its departure.
 733 *      Returns zero on success or 1 on failure, which currently will happen
 734 *      if the requested device does not appear to be present in the list.
 735 */
 736
 737int del_mtd_device(struct mtd_info *mtd)
 738{
 739        int ret;
 740        struct mtd_notifier *not;
 741
 742        mutex_lock(&mtd_table_mutex);
 743
 744        debugfs_remove_recursive(mtd->dbg.dfs_dir);
 745
 746        if (idr_find(&mtd_idr, mtd->index) != mtd) {
 747                ret = -ENODEV;
 748                goto out_error;
 749        }
 750
 751        /* No need to get a refcount on the module containing
 752                the notifier, since we hold the mtd_table_mutex */
 753        list_for_each_entry(not, &mtd_notifiers, list)
 754                not->remove(mtd);
 755
 756        if (mtd->usecount) {
 757                printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
 758                       mtd->index, mtd->name, mtd->usecount);
 759                ret = -EBUSY;
 760        } else {
 761                /* Try to remove the NVMEM provider */
 762                if (mtd->nvmem)
 763                        nvmem_unregister(mtd->nvmem);
 764
 765                device_unregister(&mtd->dev);
 766
 767                idr_remove(&mtd_idr, mtd->index);
 768                of_node_put(mtd_get_of_node(mtd));
 769
 770                module_put(THIS_MODULE);
 771                ret = 0;
 772        }
 773
 774out_error:
 775        mutex_unlock(&mtd_table_mutex);
 776        return ret;
 777}
 778
 779/*
 780 * Set a few defaults based on the parent devices, if not provided by the
 781 * driver
 782 */
 783static void mtd_set_dev_defaults(struct mtd_info *mtd)
 784{
 785        if (mtd->dev.parent) {
 786                if (!mtd->owner && mtd->dev.parent->driver)
 787                        mtd->owner = mtd->dev.parent->driver->owner;
 788                if (!mtd->name)
 789                        mtd->name = dev_name(mtd->dev.parent);
 790        } else {
 791                pr_debug("mtd device won't show a device symlink in sysfs\n");
 792        }
 793
 794        INIT_LIST_HEAD(&mtd->partitions);
 795        mutex_init(&mtd->master.partitions_lock);
 796}
 797
 798/**
 799 * mtd_device_parse_register - parse partitions and register an MTD device.
 800 *
 801 * @mtd: the MTD device to register
 802 * @types: the list of MTD partition probes to try, see
 803 *         'parse_mtd_partitions()' for more information
 804 * @parser_data: MTD partition parser-specific data
 805 * @parts: fallback partition information to register, if parsing fails;
 806 *         only valid if %nr_parts > %0
 807 * @nr_parts: the number of partitions in parts, if zero then the full
 808 *            MTD device is registered if no partition info is found
 809 *
 810 * This function aggregates MTD partitions parsing (done by
 811 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
 812 * basically follows the most common pattern found in many MTD drivers:
 813 *
 814 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
 815 *   registered first.
 816 * * Then It tries to probe partitions on MTD device @mtd using parsers
 817 *   specified in @types (if @types is %NULL, then the default list of parsers
 818 *   is used, see 'parse_mtd_partitions()' for more information). If none are
 819 *   found this functions tries to fallback to information specified in
 820 *   @parts/@nr_parts.
 821 * * If no partitions were found this function just registers the MTD device
 822 *   @mtd and exits.
 823 *
 824 * Returns zero in case of success and a negative error code in case of failure.
 825 */
 826int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
 827                              struct mtd_part_parser_data *parser_data,
 828                              const struct mtd_partition *parts,
 829                              int nr_parts)
 830{
 831        int ret;
 832
 833        mtd_set_dev_defaults(mtd);
 834
 835        if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
 836                ret = add_mtd_device(mtd);
 837                if (ret)
 838                        return ret;
 839        }
 840
 841        /* Prefer parsed partitions over driver-provided fallback */
 842        ret = parse_mtd_partitions(mtd, types, parser_data);
 843        if (ret > 0)
 844                ret = 0;
 845        else if (nr_parts)
 846                ret = add_mtd_partitions(mtd, parts, nr_parts);
 847        else if (!device_is_registered(&mtd->dev))
 848                ret = add_mtd_device(mtd);
 849        else
 850                ret = 0;
 851
 852        if (ret)
 853                goto out;
 854
 855        /*
 856         * FIXME: some drivers unfortunately call this function more than once.
 857         * So we have to check if we've already assigned the reboot notifier.
 858         *
 859         * Generally, we can make multiple calls work for most cases, but it
 860         * does cause problems with parse_mtd_partitions() above (e.g.,
 861         * cmdlineparts will register partitions more than once).
 862         */
 863        WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
 864                  "MTD already registered\n");
 865        if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
 866                mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
 867                register_reboot_notifier(&mtd->reboot_notifier);
 868        }
 869
 870out:
 871        if (ret && device_is_registered(&mtd->dev))
 872                del_mtd_device(mtd);
 873
 874        return ret;
 875}
 876EXPORT_SYMBOL_GPL(mtd_device_parse_register);
 877
 878/**
 879 * mtd_device_unregister - unregister an existing MTD device.
 880 *
 881 * @master: the MTD device to unregister.  This will unregister both the master
 882 *          and any partitions if registered.
 883 */
 884int mtd_device_unregister(struct mtd_info *master)
 885{
 886        int err;
 887
 888        if (master->_reboot)
 889                unregister_reboot_notifier(&master->reboot_notifier);
 890
 891        err = del_mtd_partitions(master);
 892        if (err)
 893                return err;
 894
 895        if (!device_is_registered(&master->dev))
 896                return 0;
 897
 898        return del_mtd_device(master);
 899}
 900EXPORT_SYMBOL_GPL(mtd_device_unregister);
 901
 902/**
 903 *      register_mtd_user - register a 'user' of MTD devices.
 904 *      @new: pointer to notifier info structure
 905 *
 906 *      Registers a pair of callbacks function to be called upon addition
 907 *      or removal of MTD devices. Causes the 'add' callback to be immediately
 908 *      invoked for each MTD device currently present in the system.
 909 */
 910void register_mtd_user (struct mtd_notifier *new)
 911{
 912        struct mtd_info *mtd;
 913
 914        mutex_lock(&mtd_table_mutex);
 915
 916        list_add(&new->list, &mtd_notifiers);
 917
 918        __module_get(THIS_MODULE);
 919
 920        mtd_for_each_device(mtd)
 921                new->add(mtd);
 922
 923        mutex_unlock(&mtd_table_mutex);
 924}
 925EXPORT_SYMBOL_GPL(register_mtd_user);
 926
 927/**
 928 *      unregister_mtd_user - unregister a 'user' of MTD devices.
 929 *      @old: pointer to notifier info structure
 930 *
 931 *      Removes a callback function pair from the list of 'users' to be
 932 *      notified upon addition or removal of MTD devices. Causes the
 933 *      'remove' callback to be immediately invoked for each MTD device
 934 *      currently present in the system.
 935 */
 936int unregister_mtd_user (struct mtd_notifier *old)
 937{
 938        struct mtd_info *mtd;
 939
 940        mutex_lock(&mtd_table_mutex);
 941
 942        module_put(THIS_MODULE);
 943
 944        mtd_for_each_device(mtd)
 945                old->remove(mtd);
 946
 947        list_del(&old->list);
 948        mutex_unlock(&mtd_table_mutex);
 949        return 0;
 950}
 951EXPORT_SYMBOL_GPL(unregister_mtd_user);
 952
 953/**
 954 *      get_mtd_device - obtain a validated handle for an MTD device
 955 *      @mtd: last known address of the required MTD device
 956 *      @num: internal device number of the required MTD device
 957 *
 958 *      Given a number and NULL address, return the num'th entry in the device
 959 *      table, if any.  Given an address and num == -1, search the device table
 960 *      for a device with that address and return if it's still present. Given
 961 *      both, return the num'th driver only if its address matches. Return
 962 *      error code if not.
 963 */
 964struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
 965{
 966        struct mtd_info *ret = NULL, *other;
 967        int err = -ENODEV;
 968
 969        mutex_lock(&mtd_table_mutex);
 970
 971        if (num == -1) {
 972                mtd_for_each_device(other) {
 973                        if (other == mtd) {
 974                                ret = mtd;
 975                                break;
 976                        }
 977                }
 978        } else if (num >= 0) {
 979                ret = idr_find(&mtd_idr, num);
 980                if (mtd && mtd != ret)
 981                        ret = NULL;
 982        }
 983
 984        if (!ret) {
 985                ret = ERR_PTR(err);
 986                goto out;
 987        }
 988
 989        err = __get_mtd_device(ret);
 990        if (err)
 991                ret = ERR_PTR(err);
 992out:
 993        mutex_unlock(&mtd_table_mutex);
 994        return ret;
 995}
 996EXPORT_SYMBOL_GPL(get_mtd_device);
 997
 998
 999int __get_mtd_device(struct mtd_info *mtd)
1000{
1001        struct mtd_info *master = mtd_get_master(mtd);
1002        int err;
1003
1004        if (!try_module_get(master->owner))
1005                return -ENODEV;
1006
1007        if (master->_get_device) {
1008                err = master->_get_device(mtd);
1009
1010                if (err) {
1011                        module_put(master->owner);
1012                        return err;
1013                }
1014        }
1015
1016        while (mtd->parent) {
1017                mtd->usecount++;
1018                mtd = mtd->parent;
1019        }
1020
1021        return 0;
1022}
1023EXPORT_SYMBOL_GPL(__get_mtd_device);
1024
1025/**
1026 *      get_mtd_device_nm - obtain a validated handle for an MTD device by
1027 *      device name
1028 *      @name: MTD device name to open
1029 *
1030 *      This function returns MTD device description structure in case of
1031 *      success and an error code in case of failure.
1032 */
1033struct mtd_info *get_mtd_device_nm(const char *name)
1034{
1035        int err = -ENODEV;
1036        struct mtd_info *mtd = NULL, *other;
1037
1038        mutex_lock(&mtd_table_mutex);
1039
1040        mtd_for_each_device(other) {
1041                if (!strcmp(name, other->name)) {
1042                        mtd = other;
1043                        break;
1044                }
1045        }
1046
1047        if (!mtd)
1048                goto out_unlock;
1049
1050        err = __get_mtd_device(mtd);
1051        if (err)
1052                goto out_unlock;
1053
1054        mutex_unlock(&mtd_table_mutex);
1055        return mtd;
1056
1057out_unlock:
1058        mutex_unlock(&mtd_table_mutex);
1059        return ERR_PTR(err);
1060}
1061EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1062
1063void put_mtd_device(struct mtd_info *mtd)
1064{
1065        mutex_lock(&mtd_table_mutex);
1066        __put_mtd_device(mtd);
1067        mutex_unlock(&mtd_table_mutex);
1068
1069}
1070EXPORT_SYMBOL_GPL(put_mtd_device);
1071
1072void __put_mtd_device(struct mtd_info *mtd)
1073{
1074        struct mtd_info *master = mtd_get_master(mtd);
1075
1076        while (mtd->parent) {
1077                --mtd->usecount;
1078                BUG_ON(mtd->usecount < 0);
1079                mtd = mtd->parent;
1080        }
1081
1082        if (master->_put_device)
1083                master->_put_device(master);
1084
1085        module_put(master->owner);
1086}
1087EXPORT_SYMBOL_GPL(__put_mtd_device);
1088
1089/*
1090 * Erase is an synchronous operation. Device drivers are epected to return a
1091 * negative error code if the operation failed and update instr->fail_addr
1092 * to point the portion that was not properly erased.
1093 */
1094int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1095{
1096        struct mtd_info *master = mtd_get_master(mtd);
1097        u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1098        struct erase_info adjinstr;
1099        int ret;
1100
1101        instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1102        adjinstr = *instr;
1103
1104        if (!mtd->erasesize || !master->_erase)
1105                return -ENOTSUPP;
1106
1107        if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1108                return -EINVAL;
1109        if (!(mtd->flags & MTD_WRITEABLE))
1110                return -EROFS;
1111
1112        if (!instr->len)
1113                return 0;
1114
1115        ledtrig_mtd_activity();
1116
1117        if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1118                adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1119                                master->erasesize;
1120                adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1121                                master->erasesize) -
1122                               adjinstr.addr;
1123        }
1124
1125        adjinstr.addr += mst_ofs;
1126
1127        ret = master->_erase(master, &adjinstr);
1128
1129        if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1130                instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1131                if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1132                        instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1133                                                         master);
1134                        instr->fail_addr *= mtd->erasesize;
1135                }
1136        }
1137
1138        return ret;
1139}
1140EXPORT_SYMBOL_GPL(mtd_erase);
1141
1142/*
1143 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1144 */
1145int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1146              void **virt, resource_size_t *phys)
1147{
1148        struct mtd_info *master = mtd_get_master(mtd);
1149
1150        *retlen = 0;
1151        *virt = NULL;
1152        if (phys)
1153                *phys = 0;
1154        if (!master->_point)
1155                return -EOPNOTSUPP;
1156        if (from < 0 || from >= mtd->size || len > mtd->size - from)
1157                return -EINVAL;
1158        if (!len)
1159                return 0;
1160
1161        from = mtd_get_master_ofs(mtd, from);
1162        return master->_point(master, from, len, retlen, virt, phys);
1163}
1164EXPORT_SYMBOL_GPL(mtd_point);
1165
1166/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1167int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1168{
1169        struct mtd_info *master = mtd_get_master(mtd);
1170
1171        if (!master->_unpoint)
1172                return -EOPNOTSUPP;
1173        if (from < 0 || from >= mtd->size || len > mtd->size - from)
1174                return -EINVAL;
1175        if (!len)
1176                return 0;
1177        return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1178}
1179EXPORT_SYMBOL_GPL(mtd_unpoint);
1180
1181/*
1182 * Allow NOMMU mmap() to directly map the device (if not NULL)
1183 * - return the address to which the offset maps
1184 * - return -ENOSYS to indicate refusal to do the mapping
1185 */
1186unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1187                                    unsigned long offset, unsigned long flags)
1188{
1189        size_t retlen;
1190        void *virt;
1191        int ret;
1192
1193        ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1194        if (ret)
1195                return ret;
1196        if (retlen != len) {
1197                mtd_unpoint(mtd, offset, retlen);
1198                return -ENOSYS;
1199        }
1200        return (unsigned long)virt;
1201}
1202EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1203
1204static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1205                                 const struct mtd_ecc_stats *old_stats)
1206{
1207        struct mtd_ecc_stats diff;
1208
1209        if (master == mtd)
1210                return;
1211
1212        diff = master->ecc_stats;
1213        diff.failed -= old_stats->failed;
1214        diff.corrected -= old_stats->corrected;
1215
1216        while (mtd->parent) {
1217                mtd->ecc_stats.failed += diff.failed;
1218                mtd->ecc_stats.corrected += diff.corrected;
1219                mtd = mtd->parent;
1220        }
1221}
1222
1223int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1224             u_char *buf)
1225{
1226        struct mtd_oob_ops ops = {
1227                .len = len,
1228                .datbuf = buf,
1229        };
1230        int ret;
1231
1232        ret = mtd_read_oob(mtd, from, &ops);
1233        *retlen = ops.retlen;
1234
1235        return ret;
1236}
1237EXPORT_SYMBOL_GPL(mtd_read);
1238
1239int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1240              const u_char *buf)
1241{
1242        struct mtd_oob_ops ops = {
1243                .len = len,
1244                .datbuf = (u8 *)buf,
1245        };
1246        int ret;
1247
1248        ret = mtd_write_oob(mtd, to, &ops);
1249        *retlen = ops.retlen;
1250
1251        return ret;
1252}
1253EXPORT_SYMBOL_GPL(mtd_write);
1254
1255/*
1256 * In blackbox flight recorder like scenarios we want to make successful writes
1257 * in interrupt context. panic_write() is only intended to be called when its
1258 * known the kernel is about to panic and we need the write to succeed. Since
1259 * the kernel is not going to be running for much longer, this function can
1260 * break locks and delay to ensure the write succeeds (but not sleep).
1261 */
1262int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1263                    const u_char *buf)
1264{
1265        struct mtd_info *master = mtd_get_master(mtd);
1266
1267        *retlen = 0;
1268        if (!master->_panic_write)
1269                return -EOPNOTSUPP;
1270        if (to < 0 || to >= mtd->size || len > mtd->size - to)
1271                return -EINVAL;
1272        if (!(mtd->flags & MTD_WRITEABLE))
1273                return -EROFS;
1274        if (!len)
1275                return 0;
1276        if (!master->oops_panic_write)
1277                master->oops_panic_write = true;
1278
1279        return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1280                                    retlen, buf);
1281}
1282EXPORT_SYMBOL_GPL(mtd_panic_write);
1283
1284static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1285                             struct mtd_oob_ops *ops)
1286{
1287        /*
1288         * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1289         * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1290         *  this case.
1291         */
1292        if (!ops->datbuf)
1293                ops->len = 0;
1294
1295        if (!ops->oobbuf)
1296                ops->ooblen = 0;
1297
1298        if (offs < 0 || offs + ops->len > mtd->size)
1299                return -EINVAL;
1300
1301        if (ops->ooblen) {
1302                size_t maxooblen;
1303
1304                if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1305                        return -EINVAL;
1306
1307                maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1308                                      mtd_div_by_ws(offs, mtd)) *
1309                             mtd_oobavail(mtd, ops)) - ops->ooboffs;
1310                if (ops->ooblen > maxooblen)
1311                        return -EINVAL;
1312        }
1313
1314        return 0;
1315}
1316
1317static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1318                            struct mtd_oob_ops *ops)
1319{
1320        struct mtd_info *master = mtd_get_master(mtd);
1321        int ret;
1322
1323        from = mtd_get_master_ofs(mtd, from);
1324        if (master->_read_oob)
1325                ret = master->_read_oob(master, from, ops);
1326        else
1327                ret = master->_read(master, from, ops->len, &ops->retlen,
1328                                    ops->datbuf);
1329
1330        return ret;
1331}
1332
1333static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1334                             struct mtd_oob_ops *ops)
1335{
1336        struct mtd_info *master = mtd_get_master(mtd);
1337        int ret;
1338
1339        to = mtd_get_master_ofs(mtd, to);
1340        if (master->_write_oob)
1341                ret = master->_write_oob(master, to, ops);
1342        else
1343                ret = master->_write(master, to, ops->len, &ops->retlen,
1344                                     ops->datbuf);
1345
1346        return ret;
1347}
1348
1349static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1350                               struct mtd_oob_ops *ops)
1351{
1352        struct mtd_info *master = mtd_get_master(mtd);
1353        int ngroups = mtd_pairing_groups(master);
1354        int npairs = mtd_wunit_per_eb(master) / ngroups;
1355        struct mtd_oob_ops adjops = *ops;
1356        unsigned int wunit, oobavail;
1357        struct mtd_pairing_info info;
1358        int max_bitflips = 0;
1359        u32 ebofs, pageofs;
1360        loff_t base, pos;
1361
1362        ebofs = mtd_mod_by_eb(start, mtd);
1363        base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1364        info.group = 0;
1365        info.pair = mtd_div_by_ws(ebofs, mtd);
1366        pageofs = mtd_mod_by_ws(ebofs, mtd);
1367        oobavail = mtd_oobavail(mtd, ops);
1368
1369        while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1370                int ret;
1371
1372                if (info.pair >= npairs) {
1373                        info.pair = 0;
1374                        base += master->erasesize;
1375                }
1376
1377                wunit = mtd_pairing_info_to_wunit(master, &info);
1378                pos = mtd_wunit_to_offset(mtd, base, wunit);
1379
1380                adjops.len = ops->len - ops->retlen;
1381                if (adjops.len > mtd->writesize - pageofs)
1382                        adjops.len = mtd->writesize - pageofs;
1383
1384                adjops.ooblen = ops->ooblen - ops->oobretlen;
1385                if (adjops.ooblen > oobavail - adjops.ooboffs)
1386                        adjops.ooblen = oobavail - adjops.ooboffs;
1387
1388                if (read) {
1389                        ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1390                        if (ret > 0)
1391                                max_bitflips = max(max_bitflips, ret);
1392                } else {
1393                        ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1394                }
1395
1396                if (ret < 0)
1397                        return ret;
1398
1399                max_bitflips = max(max_bitflips, ret);
1400                ops->retlen += adjops.retlen;
1401                ops->oobretlen += adjops.oobretlen;
1402                adjops.datbuf += adjops.retlen;
1403                adjops.oobbuf += adjops.oobretlen;
1404                adjops.ooboffs = 0;
1405                pageofs = 0;
1406                info.pair++;
1407        }
1408
1409        return max_bitflips;
1410}
1411
1412int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1413{
1414        struct mtd_info *master = mtd_get_master(mtd);
1415        struct mtd_ecc_stats old_stats = master->ecc_stats;
1416        int ret_code;
1417
1418        ops->retlen = ops->oobretlen = 0;
1419
1420        ret_code = mtd_check_oob_ops(mtd, from, ops);
1421        if (ret_code)
1422                return ret_code;
1423
1424        ledtrig_mtd_activity();
1425
1426        /* Check the validity of a potential fallback on mtd->_read */
1427        if (!master->_read_oob && (!master->_read || ops->oobbuf))
1428                return -EOPNOTSUPP;
1429
1430        if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1431                ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1432        else
1433                ret_code = mtd_read_oob_std(mtd, from, ops);
1434
1435        mtd_update_ecc_stats(mtd, master, &old_stats);
1436
1437        /*
1438         * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1439         * similar to mtd->_read(), returning a non-negative integer
1440         * representing max bitflips. In other cases, mtd->_read_oob() may
1441         * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1442         */
1443        if (unlikely(ret_code < 0))
1444                return ret_code;
1445        if (mtd->ecc_strength == 0)
1446                return 0;       /* device lacks ecc */
1447        return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1448}
1449EXPORT_SYMBOL_GPL(mtd_read_oob);
1450
1451int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1452                                struct mtd_oob_ops *ops)
1453{
1454        struct mtd_info *master = mtd_get_master(mtd);
1455        int ret;
1456
1457        ops->retlen = ops->oobretlen = 0;
1458
1459        if (!(mtd->flags & MTD_WRITEABLE))
1460                return -EROFS;
1461
1462        ret = mtd_check_oob_ops(mtd, to, ops);
1463        if (ret)
1464                return ret;
1465
1466        ledtrig_mtd_activity();
1467
1468        /* Check the validity of a potential fallback on mtd->_write */
1469        if (!master->_write_oob && (!master->_write || ops->oobbuf))
1470                return -EOPNOTSUPP;
1471
1472        if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1473                return mtd_io_emulated_slc(mtd, to, false, ops);
1474
1475        return mtd_write_oob_std(mtd, to, ops);
1476}
1477EXPORT_SYMBOL_GPL(mtd_write_oob);
1478
1479/**
1480 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1481 * @mtd: MTD device structure
1482 * @section: ECC section. Depending on the layout you may have all the ECC
1483 *           bytes stored in a single contiguous section, or one section
1484 *           per ECC chunk (and sometime several sections for a single ECC
1485 *           ECC chunk)
1486 * @oobecc: OOB region struct filled with the appropriate ECC position
1487 *          information
1488 *
1489 * This function returns ECC section information in the OOB area. If you want
1490 * to get all the ECC bytes information, then you should call
1491 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1492 *
1493 * Returns zero on success, a negative error code otherwise.
1494 */
1495int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1496                      struct mtd_oob_region *oobecc)
1497{
1498        struct mtd_info *master = mtd_get_master(mtd);
1499
1500        memset(oobecc, 0, sizeof(*oobecc));
1501
1502        if (!master || section < 0)
1503                return -EINVAL;
1504
1505        if (!master->ooblayout || !master->ooblayout->ecc)
1506                return -ENOTSUPP;
1507
1508        return master->ooblayout->ecc(master, section, oobecc);
1509}
1510EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1511
1512/**
1513 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1514 *                      section
1515 * @mtd: MTD device structure
1516 * @section: Free section you are interested in. Depending on the layout
1517 *           you may have all the free bytes stored in a single contiguous
1518 *           section, or one section per ECC chunk plus an extra section
1519 *           for the remaining bytes (or other funky layout).
1520 * @oobfree: OOB region struct filled with the appropriate free position
1521 *           information
1522 *
1523 * This function returns free bytes position in the OOB area. If you want
1524 * to get all the free bytes information, then you should call
1525 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1526 *
1527 * Returns zero on success, a negative error code otherwise.
1528 */
1529int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1530                       struct mtd_oob_region *oobfree)
1531{
1532        struct mtd_info *master = mtd_get_master(mtd);
1533
1534        memset(oobfree, 0, sizeof(*oobfree));
1535
1536        if (!master || section < 0)
1537                return -EINVAL;
1538
1539        if (!master->ooblayout || !master->ooblayout->free)
1540                return -ENOTSUPP;
1541
1542        return master->ooblayout->free(master, section, oobfree);
1543}
1544EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1545
1546/**
1547 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1548 * @mtd: mtd info structure
1549 * @byte: the byte we are searching for
1550 * @sectionp: pointer where the section id will be stored
1551 * @oobregion: used to retrieve the ECC position
1552 * @iter: iterator function. Should be either mtd_ooblayout_free or
1553 *        mtd_ooblayout_ecc depending on the region type you're searching for
1554 *
1555 * This function returns the section id and oobregion information of a
1556 * specific byte. For example, say you want to know where the 4th ECC byte is
1557 * stored, you'll use:
1558 *
1559 * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1560 *
1561 * Returns zero on success, a negative error code otherwise.
1562 */
1563static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1564                                int *sectionp, struct mtd_oob_region *oobregion,
1565                                int (*iter)(struct mtd_info *,
1566                                            int section,
1567                                            struct mtd_oob_region *oobregion))
1568{
1569        int pos = 0, ret, section = 0;
1570
1571        memset(oobregion, 0, sizeof(*oobregion));
1572
1573        while (1) {
1574                ret = iter(mtd, section, oobregion);
1575                if (ret)
1576                        return ret;
1577
1578                if (pos + oobregion->length > byte)
1579                        break;
1580
1581                pos += oobregion->length;
1582                section++;
1583        }
1584
1585        /*
1586         * Adjust region info to make it start at the beginning at the
1587         * 'start' ECC byte.
1588         */
1589        oobregion->offset += byte - pos;
1590        oobregion->length -= byte - pos;
1591        *sectionp = section;
1592
1593        return 0;
1594}
1595
1596/**
1597 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1598 *                                ECC byte
1599 * @mtd: mtd info structure
1600 * @eccbyte: the byte we are searching for
1601 * @sectionp: pointer where the section id will be stored
1602 * @oobregion: OOB region information
1603 *
1604 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1605 * byte.
1606 *
1607 * Returns zero on success, a negative error code otherwise.
1608 */
1609int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1610                                 int *section,
1611                                 struct mtd_oob_region *oobregion)
1612{
1613        return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1614                                         mtd_ooblayout_ecc);
1615}
1616EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1617
1618/**
1619 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1620 * @mtd: mtd info structure
1621 * @buf: destination buffer to store OOB bytes
1622 * @oobbuf: OOB buffer
1623 * @start: first byte to retrieve
1624 * @nbytes: number of bytes to retrieve
1625 * @iter: section iterator
1626 *
1627 * Extract bytes attached to a specific category (ECC or free)
1628 * from the OOB buffer and copy them into buf.
1629 *
1630 * Returns zero on success, a negative error code otherwise.
1631 */
1632static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1633                                const u8 *oobbuf, int start, int nbytes,
1634                                int (*iter)(struct mtd_info *,
1635                                            int section,
1636                                            struct mtd_oob_region *oobregion))
1637{
1638        struct mtd_oob_region oobregion;
1639        int section, ret;
1640
1641        ret = mtd_ooblayout_find_region(mtd, start, &section,
1642                                        &oobregion, iter);
1643
1644        while (!ret) {
1645                int cnt;
1646
1647                cnt = min_t(int, nbytes, oobregion.length);
1648                memcpy(buf, oobbuf + oobregion.offset, cnt);
1649                buf += cnt;
1650                nbytes -= cnt;
1651
1652                if (!nbytes)
1653                        break;
1654
1655                ret = iter(mtd, ++section, &oobregion);
1656        }
1657
1658        return ret;
1659}
1660
1661/**
1662 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1663 * @mtd: mtd info structure
1664 * @buf: source buffer to get OOB bytes from
1665 * @oobbuf: OOB buffer
1666 * @start: first OOB byte to set
1667 * @nbytes: number of OOB bytes to set
1668 * @iter: section iterator
1669 *
1670 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1671 * is selected by passing the appropriate iterator.
1672 *
1673 * Returns zero on success, a negative error code otherwise.
1674 */
1675static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1676                                u8 *oobbuf, int start, int nbytes,
1677                                int (*iter)(struct mtd_info *,
1678                                            int section,
1679                                            struct mtd_oob_region *oobregion))
1680{
1681        struct mtd_oob_region oobregion;
1682        int section, ret;
1683
1684        ret = mtd_ooblayout_find_region(mtd, start, &section,
1685                                        &oobregion, iter);
1686
1687        while (!ret) {
1688                int cnt;
1689
1690                cnt = min_t(int, nbytes, oobregion.length);
1691                memcpy(oobbuf + oobregion.offset, buf, cnt);
1692                buf += cnt;
1693                nbytes -= cnt;
1694
1695                if (!nbytes)
1696                        break;
1697
1698                ret = iter(mtd, ++section, &oobregion);
1699        }
1700
1701        return ret;
1702}
1703
1704/**
1705 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1706 * @mtd: mtd info structure
1707 * @iter: category iterator
1708 *
1709 * Count the number of bytes in a given category.
1710 *
1711 * Returns a positive value on success, a negative error code otherwise.
1712 */
1713static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1714                                int (*iter)(struct mtd_info *,
1715                                            int section,
1716                                            struct mtd_oob_region *oobregion))
1717{
1718        struct mtd_oob_region oobregion;
1719        int section = 0, ret, nbytes = 0;
1720
1721        while (1) {
1722                ret = iter(mtd, section++, &oobregion);
1723                if (ret) {
1724                        if (ret == -ERANGE)
1725                                ret = nbytes;
1726                        break;
1727                }
1728
1729                nbytes += oobregion.length;
1730        }
1731
1732        return ret;
1733}
1734
1735/**
1736 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1737 * @mtd: mtd info structure
1738 * @eccbuf: destination buffer to store ECC bytes
1739 * @oobbuf: OOB buffer
1740 * @start: first ECC byte to retrieve
1741 * @nbytes: number of ECC bytes to retrieve
1742 *
1743 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1744 *
1745 * Returns zero on success, a negative error code otherwise.
1746 */
1747int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1748                               const u8 *oobbuf, int start, int nbytes)
1749{
1750        return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1751                                       mtd_ooblayout_ecc);
1752}
1753EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1754
1755/**
1756 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1757 * @mtd: mtd info structure
1758 * @eccbuf: source buffer to get ECC bytes from
1759 * @oobbuf: OOB buffer
1760 * @start: first ECC byte to set
1761 * @nbytes: number of ECC bytes to set
1762 *
1763 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1764 *
1765 * Returns zero on success, a negative error code otherwise.
1766 */
1767int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1768                               u8 *oobbuf, int start, int nbytes)
1769{
1770        return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1771                                       mtd_ooblayout_ecc);
1772}
1773EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1774
1775/**
1776 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1777 * @mtd: mtd info structure
1778 * @databuf: destination buffer to store ECC bytes
1779 * @oobbuf: OOB buffer
1780 * @start: first ECC byte to retrieve
1781 * @nbytes: number of ECC bytes to retrieve
1782 *
1783 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1784 *
1785 * Returns zero on success, a negative error code otherwise.
1786 */
1787int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1788                                const u8 *oobbuf, int start, int nbytes)
1789{
1790        return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1791                                       mtd_ooblayout_free);
1792}
1793EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1794
1795/**
1796 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1797 * @mtd: mtd info structure
1798 * @databuf: source buffer to get data bytes from
1799 * @oobbuf: OOB buffer
1800 * @start: first ECC byte to set
1801 * @nbytes: number of ECC bytes to set
1802 *
1803 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
1804 *
1805 * Returns zero on success, a negative error code otherwise.
1806 */
1807int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1808                                u8 *oobbuf, int start, int nbytes)
1809{
1810        return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1811                                       mtd_ooblayout_free);
1812}
1813EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1814
1815/**
1816 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1817 * @mtd: mtd info structure
1818 *
1819 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1820 *
1821 * Returns zero on success, a negative error code otherwise.
1822 */
1823int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1824{
1825        return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1826}
1827EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1828
1829/**
1830 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
1831 * @mtd: mtd info structure
1832 *
1833 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1834 *
1835 * Returns zero on success, a negative error code otherwise.
1836 */
1837int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1838{
1839        return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1840}
1841EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1842
1843/*
1844 * Method to access the protection register area, present in some flash
1845 * devices. The user data is one time programmable but the factory data is read
1846 * only.
1847 */
1848int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1849                           struct otp_info *buf)
1850{
1851        struct mtd_info *master = mtd_get_master(mtd);
1852
1853        if (!master->_get_fact_prot_info)
1854                return -EOPNOTSUPP;
1855        if (!len)
1856                return 0;
1857        return master->_get_fact_prot_info(master, len, retlen, buf);
1858}
1859EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1860
1861int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1862                           size_t *retlen, u_char *buf)
1863{
1864        struct mtd_info *master = mtd_get_master(mtd);
1865
1866        *retlen = 0;
1867        if (!master->_read_fact_prot_reg)
1868                return -EOPNOTSUPP;
1869        if (!len)
1870                return 0;
1871        return master->_read_fact_prot_reg(master, from, len, retlen, buf);
1872}
1873EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1874
1875int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1876                           struct otp_info *buf)
1877{
1878        struct mtd_info *master = mtd_get_master(mtd);
1879
1880        if (!master->_get_user_prot_info)
1881                return -EOPNOTSUPP;
1882        if (!len)
1883                return 0;
1884        return master->_get_user_prot_info(master, len, retlen, buf);
1885}
1886EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1887
1888int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1889                           size_t *retlen, u_char *buf)
1890{
1891        struct mtd_info *master = mtd_get_master(mtd);
1892
1893        *retlen = 0;
1894        if (!master->_read_user_prot_reg)
1895                return -EOPNOTSUPP;
1896        if (!len)
1897                return 0;
1898        return master->_read_user_prot_reg(master, from, len, retlen, buf);
1899}
1900EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1901
1902int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1903                            size_t *retlen, u_char *buf)
1904{
1905        struct mtd_info *master = mtd_get_master(mtd);
1906        int ret;
1907
1908        *retlen = 0;
1909        if (!master->_write_user_prot_reg)
1910                return -EOPNOTSUPP;
1911        if (!len)
1912                return 0;
1913        ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
1914        if (ret)
1915                return ret;
1916
1917        /*
1918         * If no data could be written at all, we are out of memory and
1919         * must return -ENOSPC.
1920         */
1921        return (*retlen) ? 0 : -ENOSPC;
1922}
1923EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1924
1925int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1926{
1927        struct mtd_info *master = mtd_get_master(mtd);
1928
1929        if (!master->_lock_user_prot_reg)
1930                return -EOPNOTSUPP;
1931        if (!len)
1932                return 0;
1933        return master->_lock_user_prot_reg(master, from, len);
1934}
1935EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1936
1937/* Chip-supported device locking */
1938int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1939{
1940        struct mtd_info *master = mtd_get_master(mtd);
1941
1942        if (!master->_lock)
1943                return -EOPNOTSUPP;
1944        if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1945                return -EINVAL;
1946        if (!len)
1947                return 0;
1948
1949        if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1950                ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1951                len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
1952        }
1953
1954        return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
1955}
1956EXPORT_SYMBOL_GPL(mtd_lock);
1957
1958int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1959{
1960        struct mtd_info *master = mtd_get_master(mtd);
1961
1962        if (!master->_unlock)
1963                return -EOPNOTSUPP;
1964        if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1965                return -EINVAL;
1966        if (!len)
1967                return 0;
1968
1969        if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1970                ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1971                len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
1972        }
1973
1974        return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
1975}
1976EXPORT_SYMBOL_GPL(mtd_unlock);
1977
1978int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1979{
1980        struct mtd_info *master = mtd_get_master(mtd);
1981
1982        if (!master->_is_locked)
1983                return -EOPNOTSUPP;
1984        if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1985                return -EINVAL;
1986        if (!len)
1987                return 0;
1988
1989        if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1990                ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1991                len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
1992        }
1993
1994        return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
1995}
1996EXPORT_SYMBOL_GPL(mtd_is_locked);
1997
1998int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1999{
2000        struct mtd_info *master = mtd_get_master(mtd);
2001
2002        if (ofs < 0 || ofs >= mtd->size)
2003                return -EINVAL;
2004        if (!master->_block_isreserved)
2005                return 0;
2006
2007        if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2008                ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2009
2010        return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
2011}
2012EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2013
2014int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2015{
2016        struct mtd_info *master = mtd_get_master(mtd);
2017
2018        if (ofs < 0 || ofs >= mtd->size)
2019                return -EINVAL;
2020        if (!master->_block_isbad)
2021                return 0;
2022
2023        if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2024                ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2025
2026        return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2027}
2028EXPORT_SYMBOL_GPL(mtd_block_isbad);
2029
2030int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2031{
2032        struct mtd_info *master = mtd_get_master(mtd);
2033        int ret;
2034
2035        if (!master->_block_markbad)
2036                return -EOPNOTSUPP;
2037        if (ofs < 0 || ofs >= mtd->size)
2038                return -EINVAL;
2039        if (!(mtd->flags & MTD_WRITEABLE))
2040                return -EROFS;
2041
2042        if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2043                ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2044
2045        ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2046        if (ret)
2047                return ret;
2048
2049        while (mtd->parent) {
2050                mtd->ecc_stats.badblocks++;
2051                mtd = mtd->parent;
2052        }
2053
2054        return 0;
2055}
2056EXPORT_SYMBOL_GPL(mtd_block_markbad);
2057
2058/*
2059 * default_mtd_writev - the default writev method
2060 * @mtd: mtd device description object pointer
2061 * @vecs: the vectors to write
2062 * @count: count of vectors in @vecs
2063 * @to: the MTD device offset to write to
2064 * @retlen: on exit contains the count of bytes written to the MTD device.
2065 *
2066 * This function returns zero in case of success and a negative error code in
2067 * case of failure.
2068 */
2069static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2070                              unsigned long count, loff_t to, size_t *retlen)
2071{
2072        unsigned long i;
2073        size_t totlen = 0, thislen;
2074        int ret = 0;
2075
2076        for (i = 0; i < count; i++) {
2077                if (!vecs[i].iov_len)
2078                        continue;
2079                ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2080                                vecs[i].iov_base);
2081                totlen += thislen;
2082                if (ret || thislen != vecs[i].iov_len)
2083                        break;
2084                to += vecs[i].iov_len;
2085        }
2086        *retlen = totlen;
2087        return ret;
2088}
2089
2090/*
2091 * mtd_writev - the vector-based MTD write method
2092 * @mtd: mtd device description object pointer
2093 * @vecs: the vectors to write
2094 * @count: count of vectors in @vecs
2095 * @to: the MTD device offset to write to
2096 * @retlen: on exit contains the count of bytes written to the MTD device.
2097 *
2098 * This function returns zero in case of success and a negative error code in
2099 * case of failure.
2100 */
2101int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2102               unsigned long count, loff_t to, size_t *retlen)
2103{
2104        struct mtd_info *master = mtd_get_master(mtd);
2105
2106        *retlen = 0;
2107        if (!(mtd->flags & MTD_WRITEABLE))
2108                return -EROFS;
2109
2110        if (!master->_writev)
2111                return default_mtd_writev(mtd, vecs, count, to, retlen);
2112
2113        return master->_writev(master, vecs, count,
2114                               mtd_get_master_ofs(mtd, to), retlen);
2115}
2116EXPORT_SYMBOL_GPL(mtd_writev);
2117
2118/**
2119 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2120 * @mtd: mtd device description object pointer
2121 * @size: a pointer to the ideal or maximum size of the allocation, points
2122 *        to the actual allocation size on success.
2123 *
2124 * This routine attempts to allocate a contiguous kernel buffer up to
2125 * the specified size, backing off the size of the request exponentially
2126 * until the request succeeds or until the allocation size falls below
2127 * the system page size. This attempts to make sure it does not adversely
2128 * impact system performance, so when allocating more than one page, we
2129 * ask the memory allocator to avoid re-trying, swapping, writing back
2130 * or performing I/O.
2131 *
2132 * Note, this function also makes sure that the allocated buffer is aligned to
2133 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2134 *
2135 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2136 * to handle smaller (i.e. degraded) buffer allocations under low- or
2137 * fragmented-memory situations where such reduced allocations, from a
2138 * requested ideal, are allowed.
2139 *
2140 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2141 */
2142void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2143{
2144        gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2145        size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2146        void *kbuf;
2147
2148        *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2149
2150        while (*size > min_alloc) {
2151                kbuf = kmalloc(*size, flags);
2152                if (kbuf)
2153                        return kbuf;
2154
2155                *size >>= 1;
2156                *size = ALIGN(*size, mtd->writesize);
2157        }
2158
2159        /*
2160         * For the last resort allocation allow 'kmalloc()' to do all sorts of
2161         * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2162         */
2163        return kmalloc(*size, GFP_KERNEL);
2164}
2165EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2166
2167#ifdef CONFIG_PROC_FS
2168
2169/*====================================================================*/
2170/* Support for /proc/mtd */
2171
2172static int mtd_proc_show(struct seq_file *m, void *v)
2173{
2174        struct mtd_info *mtd;
2175
2176        seq_puts(m, "dev:    size   erasesize  name\n");
2177        mutex_lock(&mtd_table_mutex);
2178        mtd_for_each_device(mtd) {
2179                seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2180                           mtd->index, (unsigned long long)mtd->size,
2181                           mtd->erasesize, mtd->name);
2182        }
2183        mutex_unlock(&mtd_table_mutex);
2184        return 0;
2185}
2186#endif /* CONFIG_PROC_FS */
2187
2188/*====================================================================*/
2189/* Init code */
2190
2191static struct backing_dev_info * __init mtd_bdi_init(char *name)
2192{
2193        struct backing_dev_info *bdi;
2194        int ret;
2195
2196        bdi = bdi_alloc(NUMA_NO_NODE);
2197        if (!bdi)
2198                return ERR_PTR(-ENOMEM);
2199
2200        /*
2201         * We put '-0' suffix to the name to get the same name format as we
2202         * used to get. Since this is called only once, we get a unique name. 
2203         */
2204        ret = bdi_register(bdi, "%.28s-0", name);
2205        if (ret)
2206                bdi_put(bdi);
2207
2208        return ret ? ERR_PTR(ret) : bdi;
2209}
2210
2211static struct proc_dir_entry *proc_mtd;
2212
2213static int __init init_mtd(void)
2214{
2215        int ret;
2216
2217        ret = class_register(&mtd_class);
2218        if (ret)
2219                goto err_reg;
2220
2221        mtd_bdi = mtd_bdi_init("mtd");
2222        if (IS_ERR(mtd_bdi)) {
2223                ret = PTR_ERR(mtd_bdi);
2224                goto err_bdi;
2225        }
2226
2227        proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2228
2229        ret = init_mtdchar();
2230        if (ret)
2231                goto out_procfs;
2232
2233        dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2234
2235        return 0;
2236
2237out_procfs:
2238        if (proc_mtd)
2239                remove_proc_entry("mtd", NULL);
2240        bdi_put(mtd_bdi);
2241err_bdi:
2242        class_unregister(&mtd_class);
2243err_reg:
2244        pr_err("Error registering mtd class or bdi: %d\n", ret);
2245        return ret;
2246}
2247
2248static void __exit cleanup_mtd(void)
2249{
2250        debugfs_remove_recursive(dfs_dir_mtd);
2251        cleanup_mtdchar();
2252        if (proc_mtd)
2253                remove_proc_entry("mtd", NULL);
2254        class_unregister(&mtd_class);
2255        bdi_put(mtd_bdi);
2256        idr_destroy(&mtd_idr);
2257}
2258
2259module_init(init_mtd);
2260module_exit(cleanup_mtd);
2261
2262MODULE_LICENSE("GPL");
2263MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2264MODULE_DESCRIPTION("Core MTD registration and access routines");
2265