linux/drivers/mtd/nand/raw/nand_base.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Overview:
   4 *   This is the generic MTD driver for NAND flash devices. It should be
   5 *   capable of working with almost all NAND chips currently available.
   6 *
   7 *      Additional technical information is available on
   8 *      http://www.linux-mtd.infradead.org/doc/nand.html
   9 *
  10 *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
  11 *                2002-2006 Thomas Gleixner (tglx@linutronix.de)
  12 *
  13 *  Credits:
  14 *      David Woodhouse for adding multichip support
  15 *
  16 *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
  17 *      rework for 2K page size chips
  18 *
  19 *  TODO:
  20 *      Enable cached programming for 2k page size chips
  21 *      Check, if mtd->ecctype should be set to MTD_ECC_HW
  22 *      if we have HW ECC support.
  23 *      BBT table is not serialized, has to be fixed
  24 */
  25
  26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  27
  28#include <linux/module.h>
  29#include <linux/delay.h>
  30#include <linux/errno.h>
  31#include <linux/err.h>
  32#include <linux/sched.h>
  33#include <linux/slab.h>
  34#include <linux/mm.h>
  35#include <linux/types.h>
  36#include <linux/mtd/mtd.h>
  37#include <linux/mtd/nand_ecc.h>
  38#include <linux/mtd/nand_bch.h>
  39#include <linux/interrupt.h>
  40#include <linux/bitops.h>
  41#include <linux/io.h>
  42#include <linux/mtd/partitions.h>
  43#include <linux/of.h>
  44#include <linux/gpio/consumer.h>
  45
  46#include "internals.h"
  47
  48/* Define default oob placement schemes for large and small page devices */
  49static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section,
  50                                 struct mtd_oob_region *oobregion)
  51{
  52        struct nand_chip *chip = mtd_to_nand(mtd);
  53        struct nand_ecc_ctrl *ecc = &chip->ecc;
  54
  55        if (section > 1)
  56                return -ERANGE;
  57
  58        if (!section) {
  59                oobregion->offset = 0;
  60                if (mtd->oobsize == 16)
  61                        oobregion->length = 4;
  62                else
  63                        oobregion->length = 3;
  64        } else {
  65                if (mtd->oobsize == 8)
  66                        return -ERANGE;
  67
  68                oobregion->offset = 6;
  69                oobregion->length = ecc->total - 4;
  70        }
  71
  72        return 0;
  73}
  74
  75static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section,
  76                                  struct mtd_oob_region *oobregion)
  77{
  78        if (section > 1)
  79                return -ERANGE;
  80
  81        if (mtd->oobsize == 16) {
  82                if (section)
  83                        return -ERANGE;
  84
  85                oobregion->length = 8;
  86                oobregion->offset = 8;
  87        } else {
  88                oobregion->length = 2;
  89                if (!section)
  90                        oobregion->offset = 3;
  91                else
  92                        oobregion->offset = 6;
  93        }
  94
  95        return 0;
  96}
  97
  98const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = {
  99        .ecc = nand_ooblayout_ecc_sp,
 100        .free = nand_ooblayout_free_sp,
 101};
 102EXPORT_SYMBOL_GPL(nand_ooblayout_sp_ops);
 103
 104static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
 105                                 struct mtd_oob_region *oobregion)
 106{
 107        struct nand_chip *chip = mtd_to_nand(mtd);
 108        struct nand_ecc_ctrl *ecc = &chip->ecc;
 109
 110        if (section || !ecc->total)
 111                return -ERANGE;
 112
 113        oobregion->length = ecc->total;
 114        oobregion->offset = mtd->oobsize - oobregion->length;
 115
 116        return 0;
 117}
 118
 119static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
 120                                  struct mtd_oob_region *oobregion)
 121{
 122        struct nand_chip *chip = mtd_to_nand(mtd);
 123        struct nand_ecc_ctrl *ecc = &chip->ecc;
 124
 125        if (section)
 126                return -ERANGE;
 127
 128        oobregion->length = mtd->oobsize - ecc->total - 2;
 129        oobregion->offset = 2;
 130
 131        return 0;
 132}
 133
 134const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
 135        .ecc = nand_ooblayout_ecc_lp,
 136        .free = nand_ooblayout_free_lp,
 137};
 138EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops);
 139
 140/*
 141 * Support the old "large page" layout used for 1-bit Hamming ECC where ECC
 142 * are placed at a fixed offset.
 143 */
 144static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section,
 145                                         struct mtd_oob_region *oobregion)
 146{
 147        struct nand_chip *chip = mtd_to_nand(mtd);
 148        struct nand_ecc_ctrl *ecc = &chip->ecc;
 149
 150        if (section)
 151                return -ERANGE;
 152
 153        switch (mtd->oobsize) {
 154        case 64:
 155                oobregion->offset = 40;
 156                break;
 157        case 128:
 158                oobregion->offset = 80;
 159                break;
 160        default:
 161                return -EINVAL;
 162        }
 163
 164        oobregion->length = ecc->total;
 165        if (oobregion->offset + oobregion->length > mtd->oobsize)
 166                return -ERANGE;
 167
 168        return 0;
 169}
 170
 171static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section,
 172                                          struct mtd_oob_region *oobregion)
 173{
 174        struct nand_chip *chip = mtd_to_nand(mtd);
 175        struct nand_ecc_ctrl *ecc = &chip->ecc;
 176        int ecc_offset = 0;
 177
 178        if (section < 0 || section > 1)
 179                return -ERANGE;
 180
 181        switch (mtd->oobsize) {
 182        case 64:
 183                ecc_offset = 40;
 184                break;
 185        case 128:
 186                ecc_offset = 80;
 187                break;
 188        default:
 189                return -EINVAL;
 190        }
 191
 192        if (section == 0) {
 193                oobregion->offset = 2;
 194                oobregion->length = ecc_offset - 2;
 195        } else {
 196                oobregion->offset = ecc_offset + ecc->total;
 197                oobregion->length = mtd->oobsize - oobregion->offset;
 198        }
 199
 200        return 0;
 201}
 202
 203static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = {
 204        .ecc = nand_ooblayout_ecc_lp_hamming,
 205        .free = nand_ooblayout_free_lp_hamming,
 206};
 207
 208static int nand_pairing_dist3_get_info(struct mtd_info *mtd, int page,
 209                                       struct mtd_pairing_info *info)
 210{
 211        int lastpage = (mtd->erasesize / mtd->writesize) - 1;
 212        int dist = 3;
 213
 214        if (page == lastpage)
 215                dist = 2;
 216
 217        if (!page || (page & 1)) {
 218                info->group = 0;
 219                info->pair = (page + 1) / 2;
 220        } else {
 221                info->group = 1;
 222                info->pair = (page + 1 - dist) / 2;
 223        }
 224
 225        return 0;
 226}
 227
 228static int nand_pairing_dist3_get_wunit(struct mtd_info *mtd,
 229                                        const struct mtd_pairing_info *info)
 230{
 231        int lastpair = ((mtd->erasesize / mtd->writesize) - 1) / 2;
 232        int page = info->pair * 2;
 233        int dist = 3;
 234
 235        if (!info->group && !info->pair)
 236                return 0;
 237
 238        if (info->pair == lastpair && info->group)
 239                dist = 2;
 240
 241        if (!info->group)
 242                page--;
 243        else if (info->pair)
 244                page += dist - 1;
 245
 246        if (page >= mtd->erasesize / mtd->writesize)
 247                return -EINVAL;
 248
 249        return page;
 250}
 251
 252const struct mtd_pairing_scheme dist3_pairing_scheme = {
 253        .ngroups = 2,
 254        .get_info = nand_pairing_dist3_get_info,
 255        .get_wunit = nand_pairing_dist3_get_wunit,
 256};
 257
 258static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len)
 259{
 260        int ret = 0;
 261
 262        /* Start address must align on block boundary */
 263        if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
 264                pr_debug("%s: unaligned address\n", __func__);
 265                ret = -EINVAL;
 266        }
 267
 268        /* Length must align on block boundary */
 269        if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
 270                pr_debug("%s: length not block aligned\n", __func__);
 271                ret = -EINVAL;
 272        }
 273
 274        return ret;
 275}
 276
 277/**
 278 * nand_extract_bits - Copy unaligned bits from one buffer to another one
 279 * @dst: destination buffer
 280 * @dst_off: bit offset at which the writing starts
 281 * @src: source buffer
 282 * @src_off: bit offset at which the reading starts
 283 * @nbits: number of bits to copy from @src to @dst
 284 *
 285 * Copy bits from one memory region to another (overlap authorized).
 286 */
 287void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src,
 288                       unsigned int src_off, unsigned int nbits)
 289{
 290        unsigned int tmp, n;
 291
 292        dst += dst_off / 8;
 293        dst_off %= 8;
 294        src += src_off / 8;
 295        src_off %= 8;
 296
 297        while (nbits) {
 298                n = min3(8 - dst_off, 8 - src_off, nbits);
 299
 300                tmp = (*src >> src_off) & GENMASK(n - 1, 0);
 301                *dst &= ~GENMASK(n - 1 + dst_off, dst_off);
 302                *dst |= tmp << dst_off;
 303
 304                dst_off += n;
 305                if (dst_off >= 8) {
 306                        dst++;
 307                        dst_off -= 8;
 308                }
 309
 310                src_off += n;
 311                if (src_off >= 8) {
 312                        src++;
 313                        src_off -= 8;
 314                }
 315
 316                nbits -= n;
 317        }
 318}
 319EXPORT_SYMBOL_GPL(nand_extract_bits);
 320
 321/**
 322 * nand_select_target() - Select a NAND target (A.K.A. die)
 323 * @chip: NAND chip object
 324 * @cs: the CS line to select. Note that this CS id is always from the chip
 325 *      PoV, not the controller one
 326 *
 327 * Select a NAND target so that further operations executed on @chip go to the
 328 * selected NAND target.
 329 */
 330void nand_select_target(struct nand_chip *chip, unsigned int cs)
 331{
 332        /*
 333         * cs should always lie between 0 and nanddev_ntargets(), when that's
 334         * not the case it's a bug and the caller should be fixed.
 335         */
 336        if (WARN_ON(cs > nanddev_ntargets(&chip->base)))
 337                return;
 338
 339        chip->cur_cs = cs;
 340
 341        if (chip->legacy.select_chip)
 342                chip->legacy.select_chip(chip, cs);
 343}
 344EXPORT_SYMBOL_GPL(nand_select_target);
 345
 346/**
 347 * nand_deselect_target() - Deselect the currently selected target
 348 * @chip: NAND chip object
 349 *
 350 * Deselect the currently selected NAND target. The result of operations
 351 * executed on @chip after the target has been deselected is undefined.
 352 */
 353void nand_deselect_target(struct nand_chip *chip)
 354{
 355        if (chip->legacy.select_chip)
 356                chip->legacy.select_chip(chip, -1);
 357
 358        chip->cur_cs = -1;
 359}
 360EXPORT_SYMBOL_GPL(nand_deselect_target);
 361
 362/**
 363 * nand_release_device - [GENERIC] release chip
 364 * @chip: NAND chip object
 365 *
 366 * Release chip lock and wake up anyone waiting on the device.
 367 */
 368static void nand_release_device(struct nand_chip *chip)
 369{
 370        /* Release the controller and the chip */
 371        mutex_unlock(&chip->controller->lock);
 372        mutex_unlock(&chip->lock);
 373}
 374
 375/**
 376 * nand_bbm_get_next_page - Get the next page for bad block markers
 377 * @chip: NAND chip object
 378 * @page: First page to start checking for bad block marker usage
 379 *
 380 * Returns an integer that corresponds to the page offset within a block, for
 381 * a page that is used to store bad block markers. If no more pages are
 382 * available, -EINVAL is returned.
 383 */
 384int nand_bbm_get_next_page(struct nand_chip *chip, int page)
 385{
 386        struct mtd_info *mtd = nand_to_mtd(chip);
 387        int last_page = ((mtd->erasesize - mtd->writesize) >>
 388                         chip->page_shift) & chip->pagemask;
 389        unsigned int bbm_flags = NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE
 390                | NAND_BBM_LASTPAGE;
 391
 392        if (page == 0 && !(chip->options & bbm_flags))
 393                return 0;
 394        if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE)
 395                return 0;
 396        if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE)
 397                return 1;
 398        if (page <= last_page && chip->options & NAND_BBM_LASTPAGE)
 399                return last_page;
 400
 401        return -EINVAL;
 402}
 403
 404/**
 405 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
 406 * @chip: NAND chip object
 407 * @ofs: offset from device start
 408 *
 409 * Check, if the block is bad.
 410 */
 411static int nand_block_bad(struct nand_chip *chip, loff_t ofs)
 412{
 413        int first_page, page_offset;
 414        int res;
 415        u8 bad;
 416
 417        first_page = (int)(ofs >> chip->page_shift) & chip->pagemask;
 418        page_offset = nand_bbm_get_next_page(chip, 0);
 419
 420        while (page_offset >= 0) {
 421                res = chip->ecc.read_oob(chip, first_page + page_offset);
 422                if (res < 0)
 423                        return res;
 424
 425                bad = chip->oob_poi[chip->badblockpos];
 426
 427                if (likely(chip->badblockbits == 8))
 428                        res = bad != 0xFF;
 429                else
 430                        res = hweight8(bad) < chip->badblockbits;
 431                if (res)
 432                        return res;
 433
 434                page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
 435        }
 436
 437        return 0;
 438}
 439
 440static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs)
 441{
 442        if (chip->options & NAND_NO_BBM_QUIRK)
 443                return 0;
 444
 445        if (chip->legacy.block_bad)
 446                return chip->legacy.block_bad(chip, ofs);
 447
 448        return nand_block_bad(chip, ofs);
 449}
 450
 451/**
 452 * nand_get_device - [GENERIC] Get chip for selected access
 453 * @chip: NAND chip structure
 454 *
 455 * Lock the device and its controller for exclusive access
 456 *
 457 * Return: -EBUSY if the chip has been suspended, 0 otherwise
 458 */
 459static int nand_get_device(struct nand_chip *chip)
 460{
 461        mutex_lock(&chip->lock);
 462        if (chip->suspended) {
 463                mutex_unlock(&chip->lock);
 464                return -EBUSY;
 465        }
 466        mutex_lock(&chip->controller->lock);
 467
 468        return 0;
 469}
 470
 471/**
 472 * nand_check_wp - [GENERIC] check if the chip is write protected
 473 * @chip: NAND chip object
 474 *
 475 * Check, if the device is write protected. The function expects, that the
 476 * device is already selected.
 477 */
 478static int nand_check_wp(struct nand_chip *chip)
 479{
 480        u8 status;
 481        int ret;
 482
 483        /* Broken xD cards report WP despite being writable */
 484        if (chip->options & NAND_BROKEN_XD)
 485                return 0;
 486
 487        /* Check the WP bit */
 488        ret = nand_status_op(chip, &status);
 489        if (ret)
 490                return ret;
 491
 492        return status & NAND_STATUS_WP ? 0 : 1;
 493}
 494
 495/**
 496 * nand_fill_oob - [INTERN] Transfer client buffer to oob
 497 * @chip: NAND chip object
 498 * @oob: oob data buffer
 499 * @len: oob data write length
 500 * @ops: oob ops structure
 501 */
 502static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
 503                              struct mtd_oob_ops *ops)
 504{
 505        struct mtd_info *mtd = nand_to_mtd(chip);
 506        int ret;
 507
 508        /*
 509         * Initialise to all 0xFF, to avoid the possibility of left over OOB
 510         * data from a previous OOB read.
 511         */
 512        memset(chip->oob_poi, 0xff, mtd->oobsize);
 513
 514        switch (ops->mode) {
 515
 516        case MTD_OPS_PLACE_OOB:
 517        case MTD_OPS_RAW:
 518                memcpy(chip->oob_poi + ops->ooboffs, oob, len);
 519                return oob + len;
 520
 521        case MTD_OPS_AUTO_OOB:
 522                ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
 523                                                  ops->ooboffs, len);
 524                BUG_ON(ret);
 525                return oob + len;
 526
 527        default:
 528                BUG();
 529        }
 530        return NULL;
 531}
 532
 533/**
 534 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
 535 * @chip: NAND chip object
 536 * @to: offset to write to
 537 * @ops: oob operation description structure
 538 *
 539 * NAND write out-of-band.
 540 */
 541static int nand_do_write_oob(struct nand_chip *chip, loff_t to,
 542                             struct mtd_oob_ops *ops)
 543{
 544        struct mtd_info *mtd = nand_to_mtd(chip);
 545        int chipnr, page, status, len, ret;
 546
 547        pr_debug("%s: to = 0x%08x, len = %i\n",
 548                         __func__, (unsigned int)to, (int)ops->ooblen);
 549
 550        len = mtd_oobavail(mtd, ops);
 551
 552        /* Do not allow write past end of page */
 553        if ((ops->ooboffs + ops->ooblen) > len) {
 554                pr_debug("%s: attempt to write past end of page\n",
 555                                __func__);
 556                return -EINVAL;
 557        }
 558
 559        chipnr = (int)(to >> chip->chip_shift);
 560
 561        /*
 562         * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
 563         * of my DiskOnChip 2000 test units) will clear the whole data page too
 564         * if we don't do this. I have no clue why, but I seem to have 'fixed'
 565         * it in the doc2000 driver in August 1999.  dwmw2.
 566         */
 567        ret = nand_reset(chip, chipnr);
 568        if (ret)
 569                return ret;
 570
 571        nand_select_target(chip, chipnr);
 572
 573        /* Shift to get page */
 574        page = (int)(to >> chip->page_shift);
 575
 576        /* Check, if it is write protected */
 577        if (nand_check_wp(chip)) {
 578                nand_deselect_target(chip);
 579                return -EROFS;
 580        }
 581
 582        /* Invalidate the page cache, if we write to the cached page */
 583        if (page == chip->pagecache.page)
 584                chip->pagecache.page = -1;
 585
 586        nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
 587
 588        if (ops->mode == MTD_OPS_RAW)
 589                status = chip->ecc.write_oob_raw(chip, page & chip->pagemask);
 590        else
 591                status = chip->ecc.write_oob(chip, page & chip->pagemask);
 592
 593        nand_deselect_target(chip);
 594
 595        if (status)
 596                return status;
 597
 598        ops->oobretlen = ops->ooblen;
 599
 600        return 0;
 601}
 602
 603/**
 604 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
 605 * @chip: NAND chip object
 606 * @ofs: offset from device start
 607 *
 608 * This is the default implementation, which can be overridden by a hardware
 609 * specific driver. It provides the details for writing a bad block marker to a
 610 * block.
 611 */
 612static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs)
 613{
 614        struct mtd_info *mtd = nand_to_mtd(chip);
 615        struct mtd_oob_ops ops;
 616        uint8_t buf[2] = { 0, 0 };
 617        int ret = 0, res, page_offset;
 618
 619        memset(&ops, 0, sizeof(ops));
 620        ops.oobbuf = buf;
 621        ops.ooboffs = chip->badblockpos;
 622        if (chip->options & NAND_BUSWIDTH_16) {
 623                ops.ooboffs &= ~0x01;
 624                ops.len = ops.ooblen = 2;
 625        } else {
 626                ops.len = ops.ooblen = 1;
 627        }
 628        ops.mode = MTD_OPS_PLACE_OOB;
 629
 630        page_offset = nand_bbm_get_next_page(chip, 0);
 631
 632        while (page_offset >= 0) {
 633                res = nand_do_write_oob(chip,
 634                                        ofs + (page_offset * mtd->writesize),
 635                                        &ops);
 636
 637                if (!ret)
 638                        ret = res;
 639
 640                page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
 641        }
 642
 643        return ret;
 644}
 645
 646/**
 647 * nand_markbad_bbm - mark a block by updating the BBM
 648 * @chip: NAND chip object
 649 * @ofs: offset of the block to mark bad
 650 */
 651int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs)
 652{
 653        if (chip->legacy.block_markbad)
 654                return chip->legacy.block_markbad(chip, ofs);
 655
 656        return nand_default_block_markbad(chip, ofs);
 657}
 658
 659/**
 660 * nand_block_markbad_lowlevel - mark a block bad
 661 * @chip: NAND chip object
 662 * @ofs: offset from device start
 663 *
 664 * This function performs the generic NAND bad block marking steps (i.e., bad
 665 * block table(s) and/or marker(s)). We only allow the hardware driver to
 666 * specify how to write bad block markers to OOB (chip->legacy.block_markbad).
 667 *
 668 * We try operations in the following order:
 669 *
 670 *  (1) erase the affected block, to allow OOB marker to be written cleanly
 671 *  (2) write bad block marker to OOB area of affected block (unless flag
 672 *      NAND_BBT_NO_OOB_BBM is present)
 673 *  (3) update the BBT
 674 *
 675 * Note that we retain the first error encountered in (2) or (3), finish the
 676 * procedures, and dump the error in the end.
 677*/
 678static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs)
 679{
 680        struct mtd_info *mtd = nand_to_mtd(chip);
 681        int res, ret = 0;
 682
 683        if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
 684                struct erase_info einfo;
 685
 686                /* Attempt erase before marking OOB */
 687                memset(&einfo, 0, sizeof(einfo));
 688                einfo.addr = ofs;
 689                einfo.len = 1ULL << chip->phys_erase_shift;
 690                nand_erase_nand(chip, &einfo, 0);
 691
 692                /* Write bad block marker to OOB */
 693                ret = nand_get_device(chip);
 694                if (ret)
 695                        return ret;
 696
 697                ret = nand_markbad_bbm(chip, ofs);
 698                nand_release_device(chip);
 699        }
 700
 701        /* Mark block bad in BBT */
 702        if (chip->bbt) {
 703                res = nand_markbad_bbt(chip, ofs);
 704                if (!ret)
 705                        ret = res;
 706        }
 707
 708        if (!ret)
 709                mtd->ecc_stats.badblocks++;
 710
 711        return ret;
 712}
 713
 714/**
 715 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
 716 * @mtd: MTD device structure
 717 * @ofs: offset from device start
 718 *
 719 * Check if the block is marked as reserved.
 720 */
 721static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
 722{
 723        struct nand_chip *chip = mtd_to_nand(mtd);
 724
 725        if (!chip->bbt)
 726                return 0;
 727        /* Return info from the table */
 728        return nand_isreserved_bbt(chip, ofs);
 729}
 730
 731/**
 732 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
 733 * @chip: NAND chip object
 734 * @ofs: offset from device start
 735 * @allowbbt: 1, if its allowed to access the bbt area
 736 *
 737 * Check, if the block is bad. Either by reading the bad block table or
 738 * calling of the scan function.
 739 */
 740static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt)
 741{
 742        /* Return info from the table */
 743        if (chip->bbt)
 744                return nand_isbad_bbt(chip, ofs, allowbbt);
 745
 746        return nand_isbad_bbm(chip, ofs);
 747}
 748
 749/**
 750 * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1
 751 * @chip: NAND chip structure
 752 * @timeout_ms: Timeout in ms
 753 *
 754 * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1.
 755 * If that does not happen whitin the specified timeout, -ETIMEDOUT is
 756 * returned.
 757 *
 758 * This helper is intended to be used when the controller does not have access
 759 * to the NAND R/B pin.
 760 *
 761 * Be aware that calling this helper from an ->exec_op() implementation means
 762 * ->exec_op() must be re-entrant.
 763 *
 764 * Return 0 if the NAND chip is ready, a negative error otherwise.
 765 */
 766int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms)
 767{
 768        const struct nand_sdr_timings *timings;
 769        u8 status = 0;
 770        int ret;
 771
 772        if (!nand_has_exec_op(chip))
 773                return -ENOTSUPP;
 774
 775        /* Wait tWB before polling the STATUS reg. */
 776        timings = nand_get_sdr_timings(nand_get_interface_config(chip));
 777        ndelay(PSEC_TO_NSEC(timings->tWB_max));
 778
 779        ret = nand_status_op(chip, NULL);
 780        if (ret)
 781                return ret;
 782
 783        /*
 784         * +1 below is necessary because if we are now in the last fraction
 785         * of jiffy and msecs_to_jiffies is 1 then we will wait only that
 786         * small jiffy fraction - possibly leading to false timeout
 787         */
 788        timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
 789        do {
 790                ret = nand_read_data_op(chip, &status, sizeof(status), true,
 791                                        false);
 792                if (ret)
 793                        break;
 794
 795                if (status & NAND_STATUS_READY)
 796                        break;
 797
 798                /*
 799                 * Typical lowest execution time for a tR on most NANDs is 10us,
 800                 * use this as polling delay before doing something smarter (ie.
 801                 * deriving a delay from the timeout value, timeout_ms/ratio).
 802                 */
 803                udelay(10);
 804        } while (time_before(jiffies, timeout_ms));
 805
 806        /*
 807         * We have to exit READ_STATUS mode in order to read real data on the
 808         * bus in case the WAITRDY instruction is preceding a DATA_IN
 809         * instruction.
 810         */
 811        nand_exit_status_op(chip);
 812
 813        if (ret)
 814                return ret;
 815
 816        return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT;
 817};
 818EXPORT_SYMBOL_GPL(nand_soft_waitrdy);
 819
 820/**
 821 * nand_gpio_waitrdy - Poll R/B GPIO pin until ready
 822 * @chip: NAND chip structure
 823 * @gpiod: GPIO descriptor of R/B pin
 824 * @timeout_ms: Timeout in ms
 825 *
 826 * Poll the R/B GPIO pin until it becomes ready. If that does not happen
 827 * whitin the specified timeout, -ETIMEDOUT is returned.
 828 *
 829 * This helper is intended to be used when the controller has access to the
 830 * NAND R/B pin over GPIO.
 831 *
 832 * Return 0 if the R/B pin indicates chip is ready, a negative error otherwise.
 833 */
 834int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
 835                      unsigned long timeout_ms)
 836{
 837
 838        /*
 839         * Wait until R/B pin indicates chip is ready or timeout occurs.
 840         * +1 below is necessary because if we are now in the last fraction
 841         * of jiffy and msecs_to_jiffies is 1 then we will wait only that
 842         * small jiffy fraction - possibly leading to false timeout.
 843         */
 844        timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
 845        do {
 846                if (gpiod_get_value_cansleep(gpiod))
 847                        return 0;
 848
 849                cond_resched();
 850        } while (time_before(jiffies, timeout_ms));
 851
 852        return gpiod_get_value_cansleep(gpiod) ? 0 : -ETIMEDOUT;
 853};
 854EXPORT_SYMBOL_GPL(nand_gpio_waitrdy);
 855
 856/**
 857 * panic_nand_wait - [GENERIC] wait until the command is done
 858 * @chip: NAND chip structure
 859 * @timeo: timeout
 860 *
 861 * Wait for command done. This is a helper function for nand_wait used when
 862 * we are in interrupt context. May happen when in panic and trying to write
 863 * an oops through mtdoops.
 864 */
 865void panic_nand_wait(struct nand_chip *chip, unsigned long timeo)
 866{
 867        int i;
 868        for (i = 0; i < timeo; i++) {
 869                if (chip->legacy.dev_ready) {
 870                        if (chip->legacy.dev_ready(chip))
 871                                break;
 872                } else {
 873                        int ret;
 874                        u8 status;
 875
 876                        ret = nand_read_data_op(chip, &status, sizeof(status),
 877                                                true, false);
 878                        if (ret)
 879                                return;
 880
 881                        if (status & NAND_STATUS_READY)
 882                                break;
 883                }
 884                mdelay(1);
 885        }
 886}
 887
 888static bool nand_supports_get_features(struct nand_chip *chip, int addr)
 889{
 890        return (chip->parameters.supports_set_get_features &&
 891                test_bit(addr, chip->parameters.get_feature_list));
 892}
 893
 894static bool nand_supports_set_features(struct nand_chip *chip, int addr)
 895{
 896        return (chip->parameters.supports_set_get_features &&
 897                test_bit(addr, chip->parameters.set_feature_list));
 898}
 899
 900/**
 901 * nand_reset_interface - Reset data interface and timings
 902 * @chip: The NAND chip
 903 * @chipnr: Internal die id
 904 *
 905 * Reset the Data interface and timings to ONFI mode 0.
 906 *
 907 * Returns 0 for success or negative error code otherwise.
 908 */
 909static int nand_reset_interface(struct nand_chip *chip, int chipnr)
 910{
 911        const struct nand_controller_ops *ops = chip->controller->ops;
 912        int ret;
 913
 914        if (!nand_controller_can_setup_interface(chip))
 915                return 0;
 916
 917        /*
 918         * The ONFI specification says:
 919         * "
 920         * To transition from NV-DDR or NV-DDR2 to the SDR data
 921         * interface, the host shall use the Reset (FFh) command
 922         * using SDR timing mode 0. A device in any timing mode is
 923         * required to recognize Reset (FFh) command issued in SDR
 924         * timing mode 0.
 925         * "
 926         *
 927         * Configure the data interface in SDR mode and set the
 928         * timings to timing mode 0.
 929         */
 930
 931        chip->current_interface_config = nand_get_reset_interface_config();
 932        ret = ops->setup_interface(chip, chipnr,
 933                                   chip->current_interface_config);
 934        if (ret)
 935                pr_err("Failed to configure data interface to SDR timing mode 0\n");
 936
 937        return ret;
 938}
 939
 940/**
 941 * nand_setup_interface - Setup the best data interface and timings
 942 * @chip: The NAND chip
 943 * @chipnr: Internal die id
 944 *
 945 * Configure what has been reported to be the best data interface and NAND
 946 * timings supported by the chip and the driver.
 947 *
 948 * Returns 0 for success or negative error code otherwise.
 949 */
 950static int nand_setup_interface(struct nand_chip *chip, int chipnr)
 951{
 952        const struct nand_controller_ops *ops = chip->controller->ops;
 953        u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = { };
 954        int ret;
 955
 956        if (!nand_controller_can_setup_interface(chip))
 957                return 0;
 958
 959        /*
 960         * A nand_reset_interface() put both the NAND chip and the NAND
 961         * controller in timings mode 0. If the default mode for this chip is
 962         * also 0, no need to proceed to the change again. Plus, at probe time,
 963         * nand_setup_interface() uses ->set/get_features() which would
 964         * fail anyway as the parameter page is not available yet.
 965         */
 966        if (!chip->best_interface_config)
 967                return 0;
 968
 969        tmode_param[0] = chip->best_interface_config->timings.mode;
 970
 971        /* Change the mode on the chip side (if supported by the NAND chip) */
 972        if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) {
 973                nand_select_target(chip, chipnr);
 974                ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
 975                                        tmode_param);
 976                nand_deselect_target(chip);
 977                if (ret)
 978                        return ret;
 979        }
 980
 981        /* Change the mode on the controller side */
 982        ret = ops->setup_interface(chip, chipnr, chip->best_interface_config);
 983        if (ret)
 984                return ret;
 985
 986        /* Check the mode has been accepted by the chip, if supported */
 987        if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE))
 988                goto update_interface_config;
 989
 990        memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
 991        nand_select_target(chip, chipnr);
 992        ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
 993                                tmode_param);
 994        nand_deselect_target(chip);
 995        if (ret)
 996                goto err_reset_chip;
 997
 998        if (tmode_param[0] != chip->best_interface_config->timings.mode) {
 999                pr_warn("timing mode %d not acknowledged by the NAND chip\n",
1000                        chip->best_interface_config->timings.mode);
1001                goto err_reset_chip;
1002        }
1003
1004update_interface_config:
1005        chip->current_interface_config = chip->best_interface_config;
1006
1007        return 0;
1008
1009err_reset_chip:
1010        /*
1011         * Fallback to mode 0 if the chip explicitly did not ack the chosen
1012         * timing mode.
1013         */
1014        nand_reset_interface(chip, chipnr);
1015        nand_select_target(chip, chipnr);
1016        nand_reset_op(chip);
1017        nand_deselect_target(chip);
1018
1019        return ret;
1020}
1021
1022/**
1023 * nand_choose_best_sdr_timings - Pick up the best SDR timings that both the
1024 *                                NAND controller and the NAND chip support
1025 * @chip: the NAND chip
1026 * @iface: the interface configuration (can eventually be updated)
1027 * @spec_timings: specific timings, when not fitting the ONFI specification
1028 *
1029 * If specific timings are provided, use them. Otherwise, retrieve supported
1030 * timing modes from ONFI information.
1031 */
1032int nand_choose_best_sdr_timings(struct nand_chip *chip,
1033                                 struct nand_interface_config *iface,
1034                                 struct nand_sdr_timings *spec_timings)
1035{
1036        const struct nand_controller_ops *ops = chip->controller->ops;
1037        int best_mode = 0, mode, ret;
1038
1039        iface->type = NAND_SDR_IFACE;
1040
1041        if (spec_timings) {
1042                iface->timings.sdr = *spec_timings;
1043                iface->timings.mode = onfi_find_closest_sdr_mode(spec_timings);
1044
1045                /* Verify the controller supports the requested interface */
1046                ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
1047                                           iface);
1048                if (!ret) {
1049                        chip->best_interface_config = iface;
1050                        return ret;
1051                }
1052
1053                /* Fallback to slower modes */
1054                best_mode = iface->timings.mode;
1055        } else if (chip->parameters.onfi) {
1056                best_mode = fls(chip->parameters.onfi->async_timing_mode) - 1;
1057        }
1058
1059        for (mode = best_mode; mode >= 0; mode--) {
1060                onfi_fill_interface_config(chip, iface, NAND_SDR_IFACE, mode);
1061
1062                ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
1063                                           iface);
1064                if (!ret)
1065                        break;
1066        }
1067
1068        chip->best_interface_config = iface;
1069
1070        return 0;
1071}
1072
1073/**
1074 * nand_choose_interface_config - find the best data interface and timings
1075 * @chip: The NAND chip
1076 *
1077 * Find the best data interface and NAND timings supported by the chip
1078 * and the driver. Eventually let the NAND manufacturer driver propose his own
1079 * set of timings.
1080 *
1081 * After this function nand_chip->interface_config is initialized with the best
1082 * timing mode available.
1083 *
1084 * Returns 0 for success or negative error code otherwise.
1085 */
1086static int nand_choose_interface_config(struct nand_chip *chip)
1087{
1088        struct nand_interface_config *iface;
1089        int ret;
1090
1091        if (!nand_controller_can_setup_interface(chip))
1092                return 0;
1093
1094        iface = kzalloc(sizeof(*iface), GFP_KERNEL);
1095        if (!iface)
1096                return -ENOMEM;
1097
1098        if (chip->ops.choose_interface_config)
1099                ret = chip->ops.choose_interface_config(chip, iface);
1100        else
1101                ret = nand_choose_best_sdr_timings(chip, iface, NULL);
1102
1103        if (ret)
1104                kfree(iface);
1105
1106        return ret;
1107}
1108
1109/**
1110 * nand_fill_column_cycles - fill the column cycles of an address
1111 * @chip: The NAND chip
1112 * @addrs: Array of address cycles to fill
1113 * @offset_in_page: The offset in the page
1114 *
1115 * Fills the first or the first two bytes of the @addrs field depending
1116 * on the NAND bus width and the page size.
1117 *
1118 * Returns the number of cycles needed to encode the column, or a negative
1119 * error code in case one of the arguments is invalid.
1120 */
1121static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs,
1122                                   unsigned int offset_in_page)
1123{
1124        struct mtd_info *mtd = nand_to_mtd(chip);
1125
1126        /* Make sure the offset is less than the actual page size. */
1127        if (offset_in_page > mtd->writesize + mtd->oobsize)
1128                return -EINVAL;
1129
1130        /*
1131         * On small page NANDs, there's a dedicated command to access the OOB
1132         * area, and the column address is relative to the start of the OOB
1133         * area, not the start of the page. Asjust the address accordingly.
1134         */
1135        if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize)
1136                offset_in_page -= mtd->writesize;
1137
1138        /*
1139         * The offset in page is expressed in bytes, if the NAND bus is 16-bit
1140         * wide, then it must be divided by 2.
1141         */
1142        if (chip->options & NAND_BUSWIDTH_16) {
1143                if (WARN_ON(offset_in_page % 2))
1144                        return -EINVAL;
1145
1146                offset_in_page /= 2;
1147        }
1148
1149        addrs[0] = offset_in_page;
1150
1151        /*
1152         * Small page NANDs use 1 cycle for the columns, while large page NANDs
1153         * need 2
1154         */
1155        if (mtd->writesize <= 512)
1156                return 1;
1157
1158        addrs[1] = offset_in_page >> 8;
1159
1160        return 2;
1161}
1162
1163static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1164                                     unsigned int offset_in_page, void *buf,
1165                                     unsigned int len)
1166{
1167        const struct nand_sdr_timings *sdr =
1168                nand_get_sdr_timings(nand_get_interface_config(chip));
1169        struct mtd_info *mtd = nand_to_mtd(chip);
1170        u8 addrs[4];
1171        struct nand_op_instr instrs[] = {
1172                NAND_OP_CMD(NAND_CMD_READ0, 0),
1173                NAND_OP_ADDR(3, addrs, PSEC_TO_NSEC(sdr->tWB_max)),
1174                NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1175                                 PSEC_TO_NSEC(sdr->tRR_min)),
1176                NAND_OP_DATA_IN(len, buf, 0),
1177        };
1178        struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1179        int ret;
1180
1181        /* Drop the DATA_IN instruction if len is set to 0. */
1182        if (!len)
1183                op.ninstrs--;
1184
1185        if (offset_in_page >= mtd->writesize)
1186                instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1187        else if (offset_in_page >= 256 &&
1188                 !(chip->options & NAND_BUSWIDTH_16))
1189                instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1190
1191        ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1192        if (ret < 0)
1193                return ret;
1194
1195        addrs[1] = page;
1196        addrs[2] = page >> 8;
1197
1198        if (chip->options & NAND_ROW_ADDR_3) {
1199                addrs[3] = page >> 16;
1200                instrs[1].ctx.addr.naddrs++;
1201        }
1202
1203        return nand_exec_op(chip, &op);
1204}
1205
1206static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1207                                     unsigned int offset_in_page, void *buf,
1208                                     unsigned int len)
1209{
1210        const struct nand_sdr_timings *sdr =
1211                nand_get_sdr_timings(nand_get_interface_config(chip));
1212        u8 addrs[5];
1213        struct nand_op_instr instrs[] = {
1214                NAND_OP_CMD(NAND_CMD_READ0, 0),
1215                NAND_OP_ADDR(4, addrs, 0),
1216                NAND_OP_CMD(NAND_CMD_READSTART, PSEC_TO_NSEC(sdr->tWB_max)),
1217                NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1218                                 PSEC_TO_NSEC(sdr->tRR_min)),
1219                NAND_OP_DATA_IN(len, buf, 0),
1220        };
1221        struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1222        int ret;
1223
1224        /* Drop the DATA_IN instruction if len is set to 0. */
1225        if (!len)
1226                op.ninstrs--;
1227
1228        ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1229        if (ret < 0)
1230                return ret;
1231
1232        addrs[2] = page;
1233        addrs[3] = page >> 8;
1234
1235        if (chip->options & NAND_ROW_ADDR_3) {
1236                addrs[4] = page >> 16;
1237                instrs[1].ctx.addr.naddrs++;
1238        }
1239
1240        return nand_exec_op(chip, &op);
1241}
1242
1243/**
1244 * nand_read_page_op - Do a READ PAGE operation
1245 * @chip: The NAND chip
1246 * @page: page to read
1247 * @offset_in_page: offset within the page
1248 * @buf: buffer used to store the data
1249 * @len: length of the buffer
1250 *
1251 * This function issues a READ PAGE operation.
1252 * This function does not select/unselect the CS line.
1253 *
1254 * Returns 0 on success, a negative error code otherwise.
1255 */
1256int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1257                      unsigned int offset_in_page, void *buf, unsigned int len)
1258{
1259        struct mtd_info *mtd = nand_to_mtd(chip);
1260
1261        if (len && !buf)
1262                return -EINVAL;
1263
1264        if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1265                return -EINVAL;
1266
1267        if (nand_has_exec_op(chip)) {
1268                if (mtd->writesize > 512)
1269                        return nand_lp_exec_read_page_op(chip, page,
1270                                                         offset_in_page, buf,
1271                                                         len);
1272
1273                return nand_sp_exec_read_page_op(chip, page, offset_in_page,
1274                                                 buf, len);
1275        }
1276
1277        chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page);
1278        if (len)
1279                chip->legacy.read_buf(chip, buf, len);
1280
1281        return 0;
1282}
1283EXPORT_SYMBOL_GPL(nand_read_page_op);
1284
1285/**
1286 * nand_read_param_page_op - Do a READ PARAMETER PAGE operation
1287 * @chip: The NAND chip
1288 * @page: parameter page to read
1289 * @buf: buffer used to store the data
1290 * @len: length of the buffer
1291 *
1292 * This function issues a READ PARAMETER PAGE operation.
1293 * This function does not select/unselect the CS line.
1294 *
1295 * Returns 0 on success, a negative error code otherwise.
1296 */
1297int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
1298                            unsigned int len)
1299{
1300        unsigned int i;
1301        u8 *p = buf;
1302
1303        if (len && !buf)
1304                return -EINVAL;
1305
1306        if (nand_has_exec_op(chip)) {
1307                const struct nand_sdr_timings *sdr =
1308                        nand_get_sdr_timings(nand_get_interface_config(chip));
1309                struct nand_op_instr instrs[] = {
1310                        NAND_OP_CMD(NAND_CMD_PARAM, 0),
1311                        NAND_OP_ADDR(1, &page, PSEC_TO_NSEC(sdr->tWB_max)),
1312                        NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1313                                         PSEC_TO_NSEC(sdr->tRR_min)),
1314                        NAND_OP_8BIT_DATA_IN(len, buf, 0),
1315                };
1316                struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1317
1318                /* Drop the DATA_IN instruction if len is set to 0. */
1319                if (!len)
1320                        op.ninstrs--;
1321
1322                return nand_exec_op(chip, &op);
1323        }
1324
1325        chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1);
1326        for (i = 0; i < len; i++)
1327                p[i] = chip->legacy.read_byte(chip);
1328
1329        return 0;
1330}
1331
1332/**
1333 * nand_change_read_column_op - Do a CHANGE READ COLUMN operation
1334 * @chip: The NAND chip
1335 * @offset_in_page: offset within the page
1336 * @buf: buffer used to store the data
1337 * @len: length of the buffer
1338 * @force_8bit: force 8-bit bus access
1339 *
1340 * This function issues a CHANGE READ COLUMN operation.
1341 * This function does not select/unselect the CS line.
1342 *
1343 * Returns 0 on success, a negative error code otherwise.
1344 */
1345int nand_change_read_column_op(struct nand_chip *chip,
1346                               unsigned int offset_in_page, void *buf,
1347                               unsigned int len, bool force_8bit)
1348{
1349        struct mtd_info *mtd = nand_to_mtd(chip);
1350
1351        if (len && !buf)
1352                return -EINVAL;
1353
1354        if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1355                return -EINVAL;
1356
1357        /* Small page NANDs do not support column change. */
1358        if (mtd->writesize <= 512)
1359                return -ENOTSUPP;
1360
1361        if (nand_has_exec_op(chip)) {
1362                const struct nand_sdr_timings *sdr =
1363                        nand_get_sdr_timings(nand_get_interface_config(chip));
1364                u8 addrs[2] = {};
1365                struct nand_op_instr instrs[] = {
1366                        NAND_OP_CMD(NAND_CMD_RNDOUT, 0),
1367                        NAND_OP_ADDR(2, addrs, 0),
1368                        NAND_OP_CMD(NAND_CMD_RNDOUTSTART,
1369                                    PSEC_TO_NSEC(sdr->tCCS_min)),
1370                        NAND_OP_DATA_IN(len, buf, 0),
1371                };
1372                struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1373                int ret;
1374
1375                ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1376                if (ret < 0)
1377                        return ret;
1378
1379                /* Drop the DATA_IN instruction if len is set to 0. */
1380                if (!len)
1381                        op.ninstrs--;
1382
1383                instrs[3].ctx.data.force_8bit = force_8bit;
1384
1385                return nand_exec_op(chip, &op);
1386        }
1387
1388        chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1);
1389        if (len)
1390                chip->legacy.read_buf(chip, buf, len);
1391
1392        return 0;
1393}
1394EXPORT_SYMBOL_GPL(nand_change_read_column_op);
1395
1396/**
1397 * nand_read_oob_op - Do a READ OOB operation
1398 * @chip: The NAND chip
1399 * @page: page to read
1400 * @offset_in_oob: offset within the OOB area
1401 * @buf: buffer used to store the data
1402 * @len: length of the buffer
1403 *
1404 * This function issues a READ OOB operation.
1405 * This function does not select/unselect the CS line.
1406 *
1407 * Returns 0 on success, a negative error code otherwise.
1408 */
1409int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1410                     unsigned int offset_in_oob, void *buf, unsigned int len)
1411{
1412        struct mtd_info *mtd = nand_to_mtd(chip);
1413
1414        if (len && !buf)
1415                return -EINVAL;
1416
1417        if (offset_in_oob + len > mtd->oobsize)
1418                return -EINVAL;
1419
1420        if (nand_has_exec_op(chip))
1421                return nand_read_page_op(chip, page,
1422                                         mtd->writesize + offset_in_oob,
1423                                         buf, len);
1424
1425        chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page);
1426        if (len)
1427                chip->legacy.read_buf(chip, buf, len);
1428
1429        return 0;
1430}
1431EXPORT_SYMBOL_GPL(nand_read_oob_op);
1432
1433static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page,
1434                                  unsigned int offset_in_page, const void *buf,
1435                                  unsigned int len, bool prog)
1436{
1437        const struct nand_sdr_timings *sdr =
1438                nand_get_sdr_timings(nand_get_interface_config(chip));
1439        struct mtd_info *mtd = nand_to_mtd(chip);
1440        u8 addrs[5] = {};
1441        struct nand_op_instr instrs[] = {
1442                /*
1443                 * The first instruction will be dropped if we're dealing
1444                 * with a large page NAND and adjusted if we're dealing
1445                 * with a small page NAND and the page offset is > 255.
1446                 */
1447                NAND_OP_CMD(NAND_CMD_READ0, 0),
1448                NAND_OP_CMD(NAND_CMD_SEQIN, 0),
1449                NAND_OP_ADDR(0, addrs, PSEC_TO_NSEC(sdr->tADL_min)),
1450                NAND_OP_DATA_OUT(len, buf, 0),
1451                NAND_OP_CMD(NAND_CMD_PAGEPROG, PSEC_TO_NSEC(sdr->tWB_max)),
1452                NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
1453        };
1454        struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1455        int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page);
1456        int ret;
1457        u8 status;
1458
1459        if (naddrs < 0)
1460                return naddrs;
1461
1462        addrs[naddrs++] = page;
1463        addrs[naddrs++] = page >> 8;
1464        if (chip->options & NAND_ROW_ADDR_3)
1465                addrs[naddrs++] = page >> 16;
1466
1467        instrs[2].ctx.addr.naddrs = naddrs;
1468
1469        /* Drop the last two instructions if we're not programming the page. */
1470        if (!prog) {
1471                op.ninstrs -= 2;
1472                /* Also drop the DATA_OUT instruction if empty. */
1473                if (!len)
1474                        op.ninstrs--;
1475        }
1476
1477        if (mtd->writesize <= 512) {
1478                /*
1479                 * Small pages need some more tweaking: we have to adjust the
1480                 * first instruction depending on the page offset we're trying
1481                 * to access.
1482                 */
1483                if (offset_in_page >= mtd->writesize)
1484                        instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1485                else if (offset_in_page >= 256 &&
1486                         !(chip->options & NAND_BUSWIDTH_16))
1487                        instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1488        } else {
1489                /*
1490                 * Drop the first command if we're dealing with a large page
1491                 * NAND.
1492                 */
1493                op.instrs++;
1494                op.ninstrs--;
1495        }
1496
1497        ret = nand_exec_op(chip, &op);
1498        if (!prog || ret)
1499                return ret;
1500
1501        ret = nand_status_op(chip, &status);
1502        if (ret)
1503                return ret;
1504
1505        return status;
1506}
1507
1508/**
1509 * nand_prog_page_begin_op - starts a PROG PAGE operation
1510 * @chip: The NAND chip
1511 * @page: page to write
1512 * @offset_in_page: offset within the page
1513 * @buf: buffer containing the data to write to the page
1514 * @len: length of the buffer
1515 *
1516 * This function issues the first half of a PROG PAGE operation.
1517 * This function does not select/unselect the CS line.
1518 *
1519 * Returns 0 on success, a negative error code otherwise.
1520 */
1521int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1522                            unsigned int offset_in_page, const void *buf,
1523                            unsigned int len)
1524{
1525        struct mtd_info *mtd = nand_to_mtd(chip);
1526
1527        if (len && !buf)
1528                return -EINVAL;
1529
1530        if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1531                return -EINVAL;
1532
1533        if (nand_has_exec_op(chip))
1534                return nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1535                                              len, false);
1536
1537        chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page);
1538
1539        if (buf)
1540                chip->legacy.write_buf(chip, buf, len);
1541
1542        return 0;
1543}
1544EXPORT_SYMBOL_GPL(nand_prog_page_begin_op);
1545
1546/**
1547 * nand_prog_page_end_op - ends a PROG PAGE operation
1548 * @chip: The NAND chip
1549 *
1550 * This function issues the second half of a PROG PAGE operation.
1551 * This function does not select/unselect the CS line.
1552 *
1553 * Returns 0 on success, a negative error code otherwise.
1554 */
1555int nand_prog_page_end_op(struct nand_chip *chip)
1556{
1557        int ret;
1558        u8 status;
1559
1560        if (nand_has_exec_op(chip)) {
1561                const struct nand_sdr_timings *sdr =
1562                        nand_get_sdr_timings(nand_get_interface_config(chip));
1563                struct nand_op_instr instrs[] = {
1564                        NAND_OP_CMD(NAND_CMD_PAGEPROG,
1565                                    PSEC_TO_NSEC(sdr->tWB_max)),
1566                        NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
1567                };
1568                struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1569
1570                ret = nand_exec_op(chip, &op);
1571                if (ret)
1572                        return ret;
1573
1574                ret = nand_status_op(chip, &status);
1575                if (ret)
1576                        return ret;
1577        } else {
1578                chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1579                ret = chip->legacy.waitfunc(chip);
1580                if (ret < 0)
1581                        return ret;
1582
1583                status = ret;
1584        }
1585
1586        if (status & NAND_STATUS_FAIL)
1587                return -EIO;
1588
1589        return 0;
1590}
1591EXPORT_SYMBOL_GPL(nand_prog_page_end_op);
1592
1593/**
1594 * nand_prog_page_op - Do a full PROG PAGE operation
1595 * @chip: The NAND chip
1596 * @page: page to write
1597 * @offset_in_page: offset within the page
1598 * @buf: buffer containing the data to write to the page
1599 * @len: length of the buffer
1600 *
1601 * This function issues a full PROG PAGE operation.
1602 * This function does not select/unselect the CS line.
1603 *
1604 * Returns 0 on success, a negative error code otherwise.
1605 */
1606int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1607                      unsigned int offset_in_page, const void *buf,
1608                      unsigned int len)
1609{
1610        struct mtd_info *mtd = nand_to_mtd(chip);
1611        int status;
1612
1613        if (!len || !buf)
1614                return -EINVAL;
1615
1616        if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1617                return -EINVAL;
1618
1619        if (nand_has_exec_op(chip)) {
1620                status = nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1621                                                len, true);
1622        } else {
1623                chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page,
1624                                     page);
1625                chip->legacy.write_buf(chip, buf, len);
1626                chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1627                status = chip->legacy.waitfunc(chip);
1628        }
1629
1630        if (status & NAND_STATUS_FAIL)
1631                return -EIO;
1632
1633        return 0;
1634}
1635EXPORT_SYMBOL_GPL(nand_prog_page_op);
1636
1637/**
1638 * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation
1639 * @chip: The NAND chip
1640 * @offset_in_page: offset within the page
1641 * @buf: buffer containing the data to send to the NAND
1642 * @len: length of the buffer
1643 * @force_8bit: force 8-bit bus access
1644 *
1645 * This function issues a CHANGE WRITE COLUMN operation.
1646 * This function does not select/unselect the CS line.
1647 *
1648 * Returns 0 on success, a negative error code otherwise.
1649 */
1650int nand_change_write_column_op(struct nand_chip *chip,
1651                                unsigned int offset_in_page,
1652                                const void *buf, unsigned int len,
1653                                bool force_8bit)
1654{
1655        struct mtd_info *mtd = nand_to_mtd(chip);
1656
1657        if (len && !buf)
1658                return -EINVAL;
1659
1660        if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1661                return -EINVAL;
1662
1663        /* Small page NANDs do not support column change. */
1664        if (mtd->writesize <= 512)
1665                return -ENOTSUPP;
1666
1667        if (nand_has_exec_op(chip)) {
1668                const struct nand_sdr_timings *sdr =
1669                        nand_get_sdr_timings(nand_get_interface_config(chip));
1670                u8 addrs[2];
1671                struct nand_op_instr instrs[] = {
1672                        NAND_OP_CMD(NAND_CMD_RNDIN, 0),
1673                        NAND_OP_ADDR(2, addrs, PSEC_TO_NSEC(sdr->tCCS_min)),
1674                        NAND_OP_DATA_OUT(len, buf, 0),
1675                };
1676                struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1677                int ret;
1678
1679                ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1680                if (ret < 0)
1681                        return ret;
1682
1683                instrs[2].ctx.data.force_8bit = force_8bit;
1684
1685                /* Drop the DATA_OUT instruction if len is set to 0. */
1686                if (!len)
1687                        op.ninstrs--;
1688
1689                return nand_exec_op(chip, &op);
1690        }
1691
1692        chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1);
1693        if (len)
1694                chip->legacy.write_buf(chip, buf, len);
1695
1696        return 0;
1697}
1698EXPORT_SYMBOL_GPL(nand_change_write_column_op);
1699
1700/**
1701 * nand_readid_op - Do a READID operation
1702 * @chip: The NAND chip
1703 * @addr: address cycle to pass after the READID command
1704 * @buf: buffer used to store the ID
1705 * @len: length of the buffer
1706 *
1707 * This function sends a READID command and reads back the ID returned by the
1708 * NAND.
1709 * This function does not select/unselect the CS line.
1710 *
1711 * Returns 0 on success, a negative error code otherwise.
1712 */
1713int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1714                   unsigned int len)
1715{
1716        unsigned int i;
1717        u8 *id = buf;
1718
1719        if (len && !buf)
1720                return -EINVAL;
1721
1722        if (nand_has_exec_op(chip)) {
1723                const struct nand_sdr_timings *sdr =
1724                        nand_get_sdr_timings(nand_get_interface_config(chip));
1725                struct nand_op_instr instrs[] = {
1726                        NAND_OP_CMD(NAND_CMD_READID, 0),
1727                        NAND_OP_ADDR(1, &addr, PSEC_TO_NSEC(sdr->tADL_min)),
1728                        NAND_OP_8BIT_DATA_IN(len, buf, 0),
1729                };
1730                struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1731
1732                /* Drop the DATA_IN instruction if len is set to 0. */
1733                if (!len)
1734                        op.ninstrs--;
1735
1736                return nand_exec_op(chip, &op);
1737        }
1738
1739        chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1);
1740
1741        for (i = 0; i < len; i++)
1742                id[i] = chip->legacy.read_byte(chip);
1743
1744        return 0;
1745}
1746EXPORT_SYMBOL_GPL(nand_readid_op);
1747
1748/**
1749 * nand_status_op - Do a STATUS operation
1750 * @chip: The NAND chip
1751 * @status: out variable to store the NAND status
1752 *
1753 * This function sends a STATUS command and reads back the status returned by
1754 * the NAND.
1755 * This function does not select/unselect the CS line.
1756 *
1757 * Returns 0 on success, a negative error code otherwise.
1758 */
1759int nand_status_op(struct nand_chip *chip, u8 *status)
1760{
1761        if (nand_has_exec_op(chip)) {
1762                const struct nand_sdr_timings *sdr =
1763                        nand_get_sdr_timings(nand_get_interface_config(chip));
1764                struct nand_op_instr instrs[] = {
1765                        NAND_OP_CMD(NAND_CMD_STATUS,
1766                                    PSEC_TO_NSEC(sdr->tADL_min)),
1767                        NAND_OP_8BIT_DATA_IN(1, status, 0),
1768                };
1769                struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1770
1771                if (!status)
1772                        op.ninstrs--;
1773
1774                return nand_exec_op(chip, &op);
1775        }
1776
1777        chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1);
1778        if (status)
1779                *status = chip->legacy.read_byte(chip);
1780
1781        return 0;
1782}
1783EXPORT_SYMBOL_GPL(nand_status_op);
1784
1785/**
1786 * nand_exit_status_op - Exit a STATUS operation
1787 * @chip: The NAND chip
1788 *
1789 * This function sends a READ0 command to cancel the effect of the STATUS
1790 * command to avoid reading only the status until a new read command is sent.
1791 *
1792 * This function does not select/unselect the CS line.
1793 *
1794 * Returns 0 on success, a negative error code otherwise.
1795 */
1796int nand_exit_status_op(struct nand_chip *chip)
1797{
1798        if (nand_has_exec_op(chip)) {
1799                struct nand_op_instr instrs[] = {
1800                        NAND_OP_CMD(NAND_CMD_READ0, 0),
1801                };
1802                struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1803
1804                return nand_exec_op(chip, &op);
1805        }
1806
1807        chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1);
1808
1809        return 0;
1810}
1811
1812/**
1813 * nand_erase_op - Do an erase operation
1814 * @chip: The NAND chip
1815 * @eraseblock: block to erase
1816 *
1817 * This function sends an ERASE command and waits for the NAND to be ready
1818 * before returning.
1819 * This function does not select/unselect the CS line.
1820 *
1821 * Returns 0 on success, a negative error code otherwise.
1822 */
1823int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock)
1824{
1825        unsigned int page = eraseblock <<
1826                            (chip->phys_erase_shift - chip->page_shift);
1827        int ret;
1828        u8 status;
1829
1830        if (nand_has_exec_op(chip)) {
1831                const struct nand_sdr_timings *sdr =
1832                        nand_get_sdr_timings(nand_get_interface_config(chip));
1833                u8 addrs[3] = { page, page >> 8, page >> 16 };
1834                struct nand_op_instr instrs[] = {
1835                        NAND_OP_CMD(NAND_CMD_ERASE1, 0),
1836                        NAND_OP_ADDR(2, addrs, 0),
1837                        NAND_OP_CMD(NAND_CMD_ERASE2,
1838                                    PSEC_TO_MSEC(sdr->tWB_max)),
1839                        NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tBERS_max), 0),
1840                };
1841                struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1842
1843                if (chip->options & NAND_ROW_ADDR_3)
1844                        instrs[1].ctx.addr.naddrs++;
1845
1846                ret = nand_exec_op(chip, &op);
1847                if (ret)
1848                        return ret;
1849
1850                ret = nand_status_op(chip, &status);
1851                if (ret)
1852                        return ret;
1853        } else {
1854                chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page);
1855                chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1);
1856
1857                ret = chip->legacy.waitfunc(chip);
1858                if (ret < 0)
1859                        return ret;
1860
1861                status = ret;
1862        }
1863
1864        if (status & NAND_STATUS_FAIL)
1865                return -EIO;
1866
1867        return 0;
1868}
1869EXPORT_SYMBOL_GPL(nand_erase_op);
1870
1871/**
1872 * nand_set_features_op - Do a SET FEATURES operation
1873 * @chip: The NAND chip
1874 * @feature: feature id
1875 * @data: 4 bytes of data
1876 *
1877 * This function sends a SET FEATURES command and waits for the NAND to be
1878 * ready before returning.
1879 * This function does not select/unselect the CS line.
1880 *
1881 * Returns 0 on success, a negative error code otherwise.
1882 */
1883static int nand_set_features_op(struct nand_chip *chip, u8 feature,
1884                                const void *data)
1885{
1886        const u8 *params = data;
1887        int i, ret;
1888
1889        if (nand_has_exec_op(chip)) {
1890                const struct nand_sdr_timings *sdr =
1891                        nand_get_sdr_timings(nand_get_interface_config(chip));
1892                struct nand_op_instr instrs[] = {
1893                        NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0),
1894                        NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tADL_min)),
1895                        NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data,
1896                                              PSEC_TO_NSEC(sdr->tWB_max)),
1897                        NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 0),
1898                };
1899                struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1900
1901                return nand_exec_op(chip, &op);
1902        }
1903
1904        chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1);
1905        for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1906                chip->legacy.write_byte(chip, params[i]);
1907
1908        ret = chip->legacy.waitfunc(chip);
1909        if (ret < 0)
1910                return ret;
1911
1912        if (ret & NAND_STATUS_FAIL)
1913                return -EIO;
1914
1915        return 0;
1916}
1917
1918/**
1919 * nand_get_features_op - Do a GET FEATURES operation
1920 * @chip: The NAND chip
1921 * @feature: feature id
1922 * @data: 4 bytes of data
1923 *
1924 * This function sends a GET FEATURES command and waits for the NAND to be
1925 * ready before returning.
1926 * This function does not select/unselect the CS line.
1927 *
1928 * Returns 0 on success, a negative error code otherwise.
1929 */
1930static int nand_get_features_op(struct nand_chip *chip, u8 feature,
1931                                void *data)
1932{
1933        u8 *params = data;
1934        int i;
1935
1936        if (nand_has_exec_op(chip)) {
1937                const struct nand_sdr_timings *sdr =
1938                        nand_get_sdr_timings(nand_get_interface_config(chip));
1939                struct nand_op_instr instrs[] = {
1940                        NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0),
1941                        NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tWB_max)),
1942                        NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max),
1943                                         PSEC_TO_NSEC(sdr->tRR_min)),
1944                        NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN,
1945                                             data, 0),
1946                };
1947                struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1948
1949                return nand_exec_op(chip, &op);
1950        }
1951
1952        chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1);
1953        for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1954                params[i] = chip->legacy.read_byte(chip);
1955
1956        return 0;
1957}
1958
1959static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms,
1960                            unsigned int delay_ns)
1961{
1962        if (nand_has_exec_op(chip)) {
1963                struct nand_op_instr instrs[] = {
1964                        NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms),
1965                                         PSEC_TO_NSEC(delay_ns)),
1966                };
1967                struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1968
1969                return nand_exec_op(chip, &op);
1970        }
1971
1972        /* Apply delay or wait for ready/busy pin */
1973        if (!chip->legacy.dev_ready)
1974                udelay(chip->legacy.chip_delay);
1975        else
1976                nand_wait_ready(chip);
1977
1978        return 0;
1979}
1980
1981/**
1982 * nand_reset_op - Do a reset operation
1983 * @chip: The NAND chip
1984 *
1985 * This function sends a RESET command and waits for the NAND to be ready
1986 * before returning.
1987 * This function does not select/unselect the CS line.
1988 *
1989 * Returns 0 on success, a negative error code otherwise.
1990 */
1991int nand_reset_op(struct nand_chip *chip)
1992{
1993        if (nand_has_exec_op(chip)) {
1994                const struct nand_sdr_timings *sdr =
1995                        nand_get_sdr_timings(nand_get_interface_config(chip));
1996                struct nand_op_instr instrs[] = {
1997                        NAND_OP_CMD(NAND_CMD_RESET, PSEC_TO_NSEC(sdr->tWB_max)),
1998                        NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tRST_max), 0),
1999                };
2000                struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2001
2002                return nand_exec_op(chip, &op);
2003        }
2004
2005        chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1);
2006
2007        return 0;
2008}
2009EXPORT_SYMBOL_GPL(nand_reset_op);
2010
2011/**
2012 * nand_read_data_op - Read data from the NAND
2013 * @chip: The NAND chip
2014 * @buf: buffer used to store the data
2015 * @len: length of the buffer
2016 * @force_8bit: force 8-bit bus access
2017 * @check_only: do not actually run the command, only checks if the
2018 *              controller driver supports it
2019 *
2020 * This function does a raw data read on the bus. Usually used after launching
2021 * another NAND operation like nand_read_page_op().
2022 * This function does not select/unselect the CS line.
2023 *
2024 * Returns 0 on success, a negative error code otherwise.
2025 */
2026int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
2027                      bool force_8bit, bool check_only)
2028{
2029        if (!len || !buf)
2030                return -EINVAL;
2031
2032        if (nand_has_exec_op(chip)) {
2033                struct nand_op_instr instrs[] = {
2034                        NAND_OP_DATA_IN(len, buf, 0),
2035                };
2036                struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2037
2038                instrs[0].ctx.data.force_8bit = force_8bit;
2039
2040                if (check_only)
2041                        return nand_check_op(chip, &op);
2042
2043                return nand_exec_op(chip, &op);
2044        }
2045
2046        if (check_only)
2047                return 0;
2048
2049        if (force_8bit) {
2050                u8 *p = buf;
2051                unsigned int i;
2052
2053                for (i = 0; i < len; i++)
2054                        p[i] = chip->legacy.read_byte(chip);
2055        } else {
2056                chip->legacy.read_buf(chip, buf, len);
2057        }
2058
2059        return 0;
2060}
2061EXPORT_SYMBOL_GPL(nand_read_data_op);
2062
2063/**
2064 * nand_write_data_op - Write data from the NAND
2065 * @chip: The NAND chip
2066 * @buf: buffer containing the data to send on the bus
2067 * @len: length of the buffer
2068 * @force_8bit: force 8-bit bus access
2069 *
2070 * This function does a raw data write on the bus. Usually used after launching
2071 * another NAND operation like nand_write_page_begin_op().
2072 * This function does not select/unselect the CS line.
2073 *
2074 * Returns 0 on success, a negative error code otherwise.
2075 */
2076int nand_write_data_op(struct nand_chip *chip, const void *buf,
2077                       unsigned int len, bool force_8bit)
2078{
2079        if (!len || !buf)
2080                return -EINVAL;
2081
2082        if (nand_has_exec_op(chip)) {
2083                struct nand_op_instr instrs[] = {
2084                        NAND_OP_DATA_OUT(len, buf, 0),
2085                };
2086                struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2087
2088                instrs[0].ctx.data.force_8bit = force_8bit;
2089
2090                return nand_exec_op(chip, &op);
2091        }
2092
2093        if (force_8bit) {
2094                const u8 *p = buf;
2095                unsigned int i;
2096
2097                for (i = 0; i < len; i++)
2098                        chip->legacy.write_byte(chip, p[i]);
2099        } else {
2100                chip->legacy.write_buf(chip, buf, len);
2101        }
2102
2103        return 0;
2104}
2105EXPORT_SYMBOL_GPL(nand_write_data_op);
2106
2107/**
2108 * struct nand_op_parser_ctx - Context used by the parser
2109 * @instrs: array of all the instructions that must be addressed
2110 * @ninstrs: length of the @instrs array
2111 * @subop: Sub-operation to be passed to the NAND controller
2112 *
2113 * This structure is used by the core to split NAND operations into
2114 * sub-operations that can be handled by the NAND controller.
2115 */
2116struct nand_op_parser_ctx {
2117        const struct nand_op_instr *instrs;
2118        unsigned int ninstrs;
2119        struct nand_subop subop;
2120};
2121
2122/**
2123 * nand_op_parser_must_split_instr - Checks if an instruction must be split
2124 * @pat: the parser pattern element that matches @instr
2125 * @instr: pointer to the instruction to check
2126 * @start_offset: this is an in/out parameter. If @instr has already been
2127 *                split, then @start_offset is the offset from which to start
2128 *                (either an address cycle or an offset in the data buffer).
2129 *                Conversely, if the function returns true (ie. instr must be
2130 *                split), this parameter is updated to point to the first
2131 *                data/address cycle that has not been taken care of.
2132 *
2133 * Some NAND controllers are limited and cannot send X address cycles with a
2134 * unique operation, or cannot read/write more than Y bytes at the same time.
2135 * In this case, split the instruction that does not fit in a single
2136 * controller-operation into two or more chunks.
2137 *
2138 * Returns true if the instruction must be split, false otherwise.
2139 * The @start_offset parameter is also updated to the offset at which the next
2140 * bundle of instruction must start (if an address or a data instruction).
2141 */
2142static bool
2143nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat,
2144                                const struct nand_op_instr *instr,
2145                                unsigned int *start_offset)
2146{
2147        switch (pat->type) {
2148        case NAND_OP_ADDR_INSTR:
2149                if (!pat->ctx.addr.maxcycles)
2150                        break;
2151
2152                if (instr->ctx.addr.naddrs - *start_offset >
2153                    pat->ctx.addr.maxcycles) {
2154                        *start_offset += pat->ctx.addr.maxcycles;
2155                        return true;
2156                }
2157                break;
2158
2159        case NAND_OP_DATA_IN_INSTR:
2160        case NAND_OP_DATA_OUT_INSTR:
2161                if (!pat->ctx.data.maxlen)
2162                        break;
2163
2164                if (instr->ctx.data.len - *start_offset >
2165                    pat->ctx.data.maxlen) {
2166                        *start_offset += pat->ctx.data.maxlen;
2167                        return true;
2168                }
2169                break;
2170
2171        default:
2172                break;
2173        }
2174
2175        return false;
2176}
2177
2178/**
2179 * nand_op_parser_match_pat - Checks if a pattern matches the instructions
2180 *                            remaining in the parser context
2181 * @pat: the pattern to test
2182 * @ctx: the parser context structure to match with the pattern @pat
2183 *
2184 * Check if @pat matches the set or a sub-set of instructions remaining in @ctx.
2185 * Returns true if this is the case, false ortherwise. When true is returned,
2186 * @ctx->subop is updated with the set of instructions to be passed to the
2187 * controller driver.
2188 */
2189static bool
2190nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat,
2191                         struct nand_op_parser_ctx *ctx)
2192{
2193        unsigned int instr_offset = ctx->subop.first_instr_start_off;
2194        const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs;
2195        const struct nand_op_instr *instr = ctx->subop.instrs;
2196        unsigned int i, ninstrs;
2197
2198        for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) {
2199                /*
2200                 * The pattern instruction does not match the operation
2201                 * instruction. If the instruction is marked optional in the
2202                 * pattern definition, we skip the pattern element and continue
2203                 * to the next one. If the element is mandatory, there's no
2204                 * match and we can return false directly.
2205                 */
2206                if (instr->type != pat->elems[i].type) {
2207                        if (!pat->elems[i].optional)
2208                                return false;
2209
2210                        continue;
2211                }
2212
2213                /*
2214                 * Now check the pattern element constraints. If the pattern is
2215                 * not able to handle the whole instruction in a single step,
2216                 * we have to split it.
2217                 * The last_instr_end_off value comes back updated to point to
2218                 * the position where we have to split the instruction (the
2219                 * start of the next subop chunk).
2220                 */
2221                if (nand_op_parser_must_split_instr(&pat->elems[i], instr,
2222                                                    &instr_offset)) {
2223                        ninstrs++;
2224                        i++;
2225                        break;
2226                }
2227
2228                instr++;
2229                ninstrs++;
2230                instr_offset = 0;
2231        }
2232
2233        /*
2234         * This can happen if all instructions of a pattern are optional.
2235         * Still, if there's not at least one instruction handled by this
2236         * pattern, this is not a match, and we should try the next one (if
2237         * any).
2238         */
2239        if (!ninstrs)
2240                return false;
2241
2242        /*
2243         * We had a match on the pattern head, but the pattern may be longer
2244         * than the instructions we're asked to execute. We need to make sure
2245         * there's no mandatory elements in the pattern tail.
2246         */
2247        for (; i < pat->nelems; i++) {
2248                if (!pat->elems[i].optional)
2249                        return false;
2250        }
2251
2252        /*
2253         * We have a match: update the subop structure accordingly and return
2254         * true.
2255         */
2256        ctx->subop.ninstrs = ninstrs;
2257        ctx->subop.last_instr_end_off = instr_offset;
2258
2259        return true;
2260}
2261
2262#if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
2263static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2264{
2265        const struct nand_op_instr *instr;
2266        char *prefix = "      ";
2267        unsigned int i;
2268
2269        pr_debug("executing subop (CS%d):\n", ctx->subop.cs);
2270
2271        for (i = 0; i < ctx->ninstrs; i++) {
2272                instr = &ctx->instrs[i];
2273
2274                if (instr == &ctx->subop.instrs[0])
2275                        prefix = "    ->";
2276
2277                nand_op_trace(prefix, instr);
2278
2279                if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1])
2280                        prefix = "      ";
2281        }
2282}
2283#else
2284static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2285{
2286        /* NOP */
2287}
2288#endif
2289
2290static int nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx *a,
2291                                  const struct nand_op_parser_ctx *b)
2292{
2293        if (a->subop.ninstrs < b->subop.ninstrs)
2294                return -1;
2295        else if (a->subop.ninstrs > b->subop.ninstrs)
2296                return 1;
2297
2298        if (a->subop.last_instr_end_off < b->subop.last_instr_end_off)
2299                return -1;
2300        else if (a->subop.last_instr_end_off > b->subop.last_instr_end_off)
2301                return 1;
2302
2303        return 0;
2304}
2305
2306/**
2307 * nand_op_parser_exec_op - exec_op parser
2308 * @chip: the NAND chip
2309 * @parser: patterns description provided by the controller driver
2310 * @op: the NAND operation to address
2311 * @check_only: when true, the function only checks if @op can be handled but
2312 *              does not execute the operation
2313 *
2314 * Helper function designed to ease integration of NAND controller drivers that
2315 * only support a limited set of instruction sequences. The supported sequences
2316 * are described in @parser, and the framework takes care of splitting @op into
2317 * multiple sub-operations (if required) and pass them back to the ->exec()
2318 * callback of the matching pattern if @check_only is set to false.
2319 *
2320 * NAND controller drivers should call this function from their own ->exec_op()
2321 * implementation.
2322 *
2323 * Returns 0 on success, a negative error code otherwise. A failure can be
2324 * caused by an unsupported operation (none of the supported patterns is able
2325 * to handle the requested operation), or an error returned by one of the
2326 * matching pattern->exec() hook.
2327 */
2328int nand_op_parser_exec_op(struct nand_chip *chip,
2329                           const struct nand_op_parser *parser,
2330                           const struct nand_operation *op, bool check_only)
2331{
2332        struct nand_op_parser_ctx ctx = {
2333                .subop.cs = op->cs,
2334                .subop.instrs = op->instrs,
2335                .instrs = op->instrs,
2336                .ninstrs = op->ninstrs,
2337        };
2338        unsigned int i;
2339
2340        while (ctx.subop.instrs < op->instrs + op->ninstrs) {
2341                const struct nand_op_parser_pattern *pattern;
2342                struct nand_op_parser_ctx best_ctx;
2343                int ret, best_pattern = -1;
2344
2345                for (i = 0; i < parser->npatterns; i++) {
2346                        struct nand_op_parser_ctx test_ctx = ctx;
2347
2348                        pattern = &parser->patterns[i];
2349                        if (!nand_op_parser_match_pat(pattern, &test_ctx))
2350                                continue;
2351
2352                        if (best_pattern >= 0 &&
2353                            nand_op_parser_cmp_ctx(&test_ctx, &best_ctx) <= 0)
2354                                continue;
2355
2356                        best_pattern = i;
2357                        best_ctx = test_ctx;
2358                }
2359
2360                if (best_pattern < 0) {
2361                        pr_debug("->exec_op() parser: pattern not found!\n");
2362                        return -ENOTSUPP;
2363                }
2364
2365                ctx = best_ctx;
2366                nand_op_parser_trace(&ctx);
2367
2368                if (!check_only) {
2369                        pattern = &parser->patterns[best_pattern];
2370                        ret = pattern->exec(chip, &ctx.subop);
2371                        if (ret)
2372                                return ret;
2373                }
2374
2375                /*
2376                 * Update the context structure by pointing to the start of the
2377                 * next subop.
2378                 */
2379                ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs;
2380                if (ctx.subop.last_instr_end_off)
2381                        ctx.subop.instrs -= 1;
2382
2383                ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off;
2384        }
2385
2386        return 0;
2387}
2388EXPORT_SYMBOL_GPL(nand_op_parser_exec_op);
2389
2390static bool nand_instr_is_data(const struct nand_op_instr *instr)
2391{
2392        return instr && (instr->type == NAND_OP_DATA_IN_INSTR ||
2393                         instr->type == NAND_OP_DATA_OUT_INSTR);
2394}
2395
2396static bool nand_subop_instr_is_valid(const struct nand_subop *subop,
2397                                      unsigned int instr_idx)
2398{
2399        return subop && instr_idx < subop->ninstrs;
2400}
2401
2402static unsigned int nand_subop_get_start_off(const struct nand_subop *subop,
2403                                             unsigned int instr_idx)
2404{
2405        if (instr_idx)
2406                return 0;
2407
2408        return subop->first_instr_start_off;
2409}
2410
2411/**
2412 * nand_subop_get_addr_start_off - Get the start offset in an address array
2413 * @subop: The entire sub-operation
2414 * @instr_idx: Index of the instruction inside the sub-operation
2415 *
2416 * During driver development, one could be tempted to directly use the
2417 * ->addr.addrs field of address instructions. This is wrong as address
2418 * instructions might be split.
2419 *
2420 * Given an address instruction, returns the offset of the first cycle to issue.
2421 */
2422unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
2423                                           unsigned int instr_idx)
2424{
2425        if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2426                    subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2427                return 0;
2428
2429        return nand_subop_get_start_off(subop, instr_idx);
2430}
2431EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off);
2432
2433/**
2434 * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert
2435 * @subop: The entire sub-operation
2436 * @instr_idx: Index of the instruction inside the sub-operation
2437 *
2438 * During driver development, one could be tempted to directly use the
2439 * ->addr->naddrs field of a data instruction. This is wrong as instructions
2440 * might be split.
2441 *
2442 * Given an address instruction, returns the number of address cycle to issue.
2443 */
2444unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
2445                                         unsigned int instr_idx)
2446{
2447        int start_off, end_off;
2448
2449        if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2450                    subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2451                return 0;
2452
2453        start_off = nand_subop_get_addr_start_off(subop, instr_idx);
2454
2455        if (instr_idx == subop->ninstrs - 1 &&
2456            subop->last_instr_end_off)
2457                end_off = subop->last_instr_end_off;
2458        else
2459                end_off = subop->instrs[instr_idx].ctx.addr.naddrs;
2460
2461        return end_off - start_off;
2462}
2463EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc);
2464
2465/**
2466 * nand_subop_get_data_start_off - Get the start offset in a data array
2467 * @subop: The entire sub-operation
2468 * @instr_idx: Index of the instruction inside the sub-operation
2469 *
2470 * During driver development, one could be tempted to directly use the
2471 * ->data->buf.{in,out} field of data instructions. This is wrong as data
2472 * instructions might be split.
2473 *
2474 * Given a data instruction, returns the offset to start from.
2475 */
2476unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
2477                                           unsigned int instr_idx)
2478{
2479        if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2480                    !nand_instr_is_data(&subop->instrs[instr_idx])))
2481                return 0;
2482
2483        return nand_subop_get_start_off(subop, instr_idx);
2484}
2485EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off);
2486
2487/**
2488 * nand_subop_get_data_len - Get the number of bytes to retrieve
2489 * @subop: The entire sub-operation
2490 * @instr_idx: Index of the instruction inside the sub-operation
2491 *
2492 * During driver development, one could be tempted to directly use the
2493 * ->data->len field of a data instruction. This is wrong as data instructions
2494 * might be split.
2495 *
2496 * Returns the length of the chunk of data to send/receive.
2497 */
2498unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
2499                                     unsigned int instr_idx)
2500{
2501        int start_off = 0, end_off;
2502
2503        if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2504                    !nand_instr_is_data(&subop->instrs[instr_idx])))
2505                return 0;
2506
2507        start_off = nand_subop_get_data_start_off(subop, instr_idx);
2508
2509        if (instr_idx == subop->ninstrs - 1 &&
2510            subop->last_instr_end_off)
2511                end_off = subop->last_instr_end_off;
2512        else
2513                end_off = subop->instrs[instr_idx].ctx.data.len;
2514
2515        return end_off - start_off;
2516}
2517EXPORT_SYMBOL_GPL(nand_subop_get_data_len);
2518
2519/**
2520 * nand_reset - Reset and initialize a NAND device
2521 * @chip: The NAND chip
2522 * @chipnr: Internal die id
2523 *
2524 * Save the timings data structure, then apply SDR timings mode 0 (see
2525 * nand_reset_interface for details), do the reset operation, and apply
2526 * back the previous timings.
2527 *
2528 * Returns 0 on success, a negative error code otherwise.
2529 */
2530int nand_reset(struct nand_chip *chip, int chipnr)
2531{
2532        int ret;
2533
2534        ret = nand_reset_interface(chip, chipnr);
2535        if (ret)
2536                return ret;
2537
2538        /*
2539         * The CS line has to be released before we can apply the new NAND
2540         * interface settings, hence this weird nand_select_target()
2541         * nand_deselect_target() dance.
2542         */
2543        nand_select_target(chip, chipnr);
2544        ret = nand_reset_op(chip);
2545        nand_deselect_target(chip);
2546        if (ret)
2547                return ret;
2548
2549        ret = nand_setup_interface(chip, chipnr);
2550        if (ret)
2551                return ret;
2552
2553        return 0;
2554}
2555EXPORT_SYMBOL_GPL(nand_reset);
2556
2557/**
2558 * nand_get_features - wrapper to perform a GET_FEATURE
2559 * @chip: NAND chip info structure
2560 * @addr: feature address
2561 * @subfeature_param: the subfeature parameters, a four bytes array
2562 *
2563 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2564 * operation cannot be handled.
2565 */
2566int nand_get_features(struct nand_chip *chip, int addr,
2567                      u8 *subfeature_param)
2568{
2569        if (!nand_supports_get_features(chip, addr))
2570                return -ENOTSUPP;
2571
2572        if (chip->legacy.get_features)
2573                return chip->legacy.get_features(chip, addr, subfeature_param);
2574
2575        return nand_get_features_op(chip, addr, subfeature_param);
2576}
2577
2578/**
2579 * nand_set_features - wrapper to perform a SET_FEATURE
2580 * @chip: NAND chip info structure
2581 * @addr: feature address
2582 * @subfeature_param: the subfeature parameters, a four bytes array
2583 *
2584 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2585 * operation cannot be handled.
2586 */
2587int nand_set_features(struct nand_chip *chip, int addr,
2588                      u8 *subfeature_param)
2589{
2590        if (!nand_supports_set_features(chip, addr))
2591                return -ENOTSUPP;
2592
2593        if (chip->legacy.set_features)
2594                return chip->legacy.set_features(chip, addr, subfeature_param);
2595
2596        return nand_set_features_op(chip, addr, subfeature_param);
2597}
2598
2599/**
2600 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
2601 * @buf: buffer to test
2602 * @len: buffer length
2603 * @bitflips_threshold: maximum number of bitflips
2604 *
2605 * Check if a buffer contains only 0xff, which means the underlying region
2606 * has been erased and is ready to be programmed.
2607 * The bitflips_threshold specify the maximum number of bitflips before
2608 * considering the region is not erased.
2609 * Note: The logic of this function has been extracted from the memweight
2610 * implementation, except that nand_check_erased_buf function exit before
2611 * testing the whole buffer if the number of bitflips exceed the
2612 * bitflips_threshold value.
2613 *
2614 * Returns a positive number of bitflips less than or equal to
2615 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2616 * threshold.
2617 */
2618static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
2619{
2620        const unsigned char *bitmap = buf;
2621        int bitflips = 0;
2622        int weight;
2623
2624        for (; len && ((uintptr_t)bitmap) % sizeof(long);
2625             len--, bitmap++) {
2626                weight = hweight8(*bitmap);
2627                bitflips += BITS_PER_BYTE - weight;
2628                if (unlikely(bitflips > bitflips_threshold))
2629                        return -EBADMSG;
2630        }
2631
2632        for (; len >= sizeof(long);
2633             len -= sizeof(long), bitmap += sizeof(long)) {
2634                unsigned long d = *((unsigned long *)bitmap);
2635                if (d == ~0UL)
2636                        continue;
2637                weight = hweight_long(d);
2638                bitflips += BITS_PER_LONG - weight;
2639                if (unlikely(bitflips > bitflips_threshold))
2640                        return -EBADMSG;
2641        }
2642
2643        for (; len > 0; len--, bitmap++) {
2644                weight = hweight8(*bitmap);
2645                bitflips += BITS_PER_BYTE - weight;
2646                if (unlikely(bitflips > bitflips_threshold))
2647                        return -EBADMSG;
2648        }
2649
2650        return bitflips;
2651}
2652
2653/**
2654 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
2655 *                               0xff data
2656 * @data: data buffer to test
2657 * @datalen: data length
2658 * @ecc: ECC buffer
2659 * @ecclen: ECC length
2660 * @extraoob: extra OOB buffer
2661 * @extraooblen: extra OOB length
2662 * @bitflips_threshold: maximum number of bitflips
2663 *
2664 * Check if a data buffer and its associated ECC and OOB data contains only
2665 * 0xff pattern, which means the underlying region has been erased and is
2666 * ready to be programmed.
2667 * The bitflips_threshold specify the maximum number of bitflips before
2668 * considering the region as not erased.
2669 *
2670 * Note:
2671 * 1/ ECC algorithms are working on pre-defined block sizes which are usually
2672 *    different from the NAND page size. When fixing bitflips, ECC engines will
2673 *    report the number of errors per chunk, and the NAND core infrastructure
2674 *    expect you to return the maximum number of bitflips for the whole page.
2675 *    This is why you should always use this function on a single chunk and
2676 *    not on the whole page. After checking each chunk you should update your
2677 *    max_bitflips value accordingly.
2678 * 2/ When checking for bitflips in erased pages you should not only check
2679 *    the payload data but also their associated ECC data, because a user might
2680 *    have programmed almost all bits to 1 but a few. In this case, we
2681 *    shouldn't consider the chunk as erased, and checking ECC bytes prevent
2682 *    this case.
2683 * 3/ The extraoob argument is optional, and should be used if some of your OOB
2684 *    data are protected by the ECC engine.
2685 *    It could also be used if you support subpages and want to attach some
2686 *    extra OOB data to an ECC chunk.
2687 *
2688 * Returns a positive number of bitflips less than or equal to
2689 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2690 * threshold. In case of success, the passed buffers are filled with 0xff.
2691 */
2692int nand_check_erased_ecc_chunk(void *data, int datalen,
2693                                void *ecc, int ecclen,
2694                                void *extraoob, int extraooblen,
2695                                int bitflips_threshold)
2696{
2697        int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
2698
2699        data_bitflips = nand_check_erased_buf(data, datalen,
2700                                              bitflips_threshold);
2701        if (data_bitflips < 0)
2702                return data_bitflips;
2703
2704        bitflips_threshold -= data_bitflips;
2705
2706        ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
2707        if (ecc_bitflips < 0)
2708                return ecc_bitflips;
2709
2710        bitflips_threshold -= ecc_bitflips;
2711
2712        extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
2713                                                  bitflips_threshold);
2714        if (extraoob_bitflips < 0)
2715                return extraoob_bitflips;
2716
2717        if (data_bitflips)
2718                memset(data, 0xff, datalen);
2719
2720        if (ecc_bitflips)
2721                memset(ecc, 0xff, ecclen);
2722
2723        if (extraoob_bitflips)
2724                memset(extraoob, 0xff, extraooblen);
2725
2726        return data_bitflips + ecc_bitflips + extraoob_bitflips;
2727}
2728EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
2729
2730/**
2731 * nand_read_page_raw_notsupp - dummy read raw page function
2732 * @chip: nand chip info structure
2733 * @buf: buffer to store read data
2734 * @oob_required: caller requires OOB data read to chip->oob_poi
2735 * @page: page number to read
2736 *
2737 * Returns -ENOTSUPP unconditionally.
2738 */
2739int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf,
2740                               int oob_required, int page)
2741{
2742        return -ENOTSUPP;
2743}
2744
2745/**
2746 * nand_read_page_raw - [INTERN] read raw page data without ecc
2747 * @chip: nand chip info structure
2748 * @buf: buffer to store read data
2749 * @oob_required: caller requires OOB data read to chip->oob_poi
2750 * @page: page number to read
2751 *
2752 * Not for syndrome calculating ECC controllers, which use a special oob layout.
2753 */
2754int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
2755                       int page)
2756{
2757        struct mtd_info *mtd = nand_to_mtd(chip);
2758        int ret;
2759
2760        ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize);
2761        if (ret)
2762                return ret;
2763
2764        if (oob_required) {
2765                ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
2766                                        false, false);
2767                if (ret)
2768                        return ret;
2769        }
2770
2771        return 0;
2772}
2773EXPORT_SYMBOL(nand_read_page_raw);
2774
2775/**
2776 * nand_monolithic_read_page_raw - Monolithic page read in raw mode
2777 * @chip: NAND chip info structure
2778 * @buf: buffer to store read data
2779 * @oob_required: caller requires OOB data read to chip->oob_poi
2780 * @page: page number to read
2781 *
2782 * This is a raw page read, ie. without any error detection/correction.
2783 * Monolithic means we are requesting all the relevant data (main plus
2784 * eventually OOB) to be loaded in the NAND cache and sent over the
2785 * bus (from the NAND chip to the NAND controller) in a single
2786 * operation. This is an alternative to nand_read_page_raw(), which
2787 * first reads the main data, and if the OOB data is requested too,
2788 * then reads more data on the bus.
2789 */
2790int nand_monolithic_read_page_raw(struct nand_chip *chip, u8 *buf,
2791                                  int oob_required, int page)
2792{
2793        struct mtd_info *mtd = nand_to_mtd(chip);
2794        unsigned int size = mtd->writesize;
2795        u8 *read_buf = buf;
2796        int ret;
2797
2798        if (oob_required) {
2799                size += mtd->oobsize;
2800
2801                if (buf != chip->data_buf)
2802                        read_buf = nand_get_data_buf(chip);
2803        }
2804
2805        ret = nand_read_page_op(chip, page, 0, read_buf, size);
2806        if (ret)
2807                return ret;
2808
2809        if (buf != chip->data_buf)
2810                memcpy(buf, read_buf, mtd->writesize);
2811
2812        return 0;
2813}
2814EXPORT_SYMBOL(nand_monolithic_read_page_raw);
2815
2816/**
2817 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
2818 * @chip: nand chip info structure
2819 * @buf: buffer to store read data
2820 * @oob_required: caller requires OOB data read to chip->oob_poi
2821 * @page: page number to read
2822 *
2823 * We need a special oob layout and handling even when OOB isn't used.
2824 */
2825static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf,
2826                                       int oob_required, int page)
2827{
2828        struct mtd_info *mtd = nand_to_mtd(chip);
2829        int eccsize = chip->ecc.size;
2830        int eccbytes = chip->ecc.bytes;
2831        uint8_t *oob = chip->oob_poi;
2832        int steps, size, ret;
2833
2834        ret = nand_read_page_op(chip, page, 0, NULL, 0);
2835        if (ret)
2836                return ret;
2837
2838        for (steps = chip->ecc.steps; steps > 0; steps--) {
2839                ret = nand_read_data_op(chip, buf, eccsize, false, false);
2840                if (ret)
2841                        return ret;
2842
2843                buf += eccsize;
2844
2845                if (chip->ecc.prepad) {
2846                        ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
2847                                                false, false);
2848                        if (ret)
2849                                return ret;
2850
2851                        oob += chip->ecc.prepad;
2852                }
2853
2854                ret = nand_read_data_op(chip, oob, eccbytes, false, false);
2855                if (ret)
2856                        return ret;
2857
2858                oob += eccbytes;
2859
2860                if (chip->ecc.postpad) {
2861                        ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
2862                                                false, false);
2863                        if (ret)
2864                                return ret;
2865
2866                        oob += chip->ecc.postpad;
2867                }
2868        }
2869
2870        size = mtd->oobsize - (oob - chip->oob_poi);
2871        if (size) {
2872                ret = nand_read_data_op(chip, oob, size, false, false);
2873                if (ret)
2874                        return ret;
2875        }
2876
2877        return 0;
2878}
2879
2880/**
2881 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
2882 * @chip: nand chip info structure
2883 * @buf: buffer to store read data
2884 * @oob_required: caller requires OOB data read to chip->oob_poi
2885 * @page: page number to read
2886 */
2887static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf,
2888                                int oob_required, int page)
2889{
2890        struct mtd_info *mtd = nand_to_mtd(chip);
2891        int i, eccsize = chip->ecc.size, ret;
2892        int eccbytes = chip->ecc.bytes;
2893        int eccsteps = chip->ecc.steps;
2894        uint8_t *p = buf;
2895        uint8_t *ecc_calc = chip->ecc.calc_buf;
2896        uint8_t *ecc_code = chip->ecc.code_buf;
2897        unsigned int max_bitflips = 0;
2898
2899        chip->ecc.read_page_raw(chip, buf, 1, page);
2900
2901        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2902                chip->ecc.calculate(chip, p, &ecc_calc[i]);
2903
2904        ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
2905                                         chip->ecc.total);
2906        if (ret)
2907                return ret;
2908
2909        eccsteps = chip->ecc.steps;
2910        p = buf;
2911
2912        for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2913                int stat;
2914
2915                stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
2916                if (stat < 0) {
2917                        mtd->ecc_stats.failed++;
2918                } else {
2919                        mtd->ecc_stats.corrected += stat;
2920                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
2921                }
2922        }
2923        return max_bitflips;
2924}
2925
2926/**
2927 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
2928 * @chip: nand chip info structure
2929 * @data_offs: offset of requested data within the page
2930 * @readlen: data length
2931 * @bufpoi: buffer to store read data
2932 * @page: page number to read
2933 */
2934static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs,
2935                             uint32_t readlen, uint8_t *bufpoi, int page)
2936{
2937        struct mtd_info *mtd = nand_to_mtd(chip);
2938        int start_step, end_step, num_steps, ret;
2939        uint8_t *p;
2940        int data_col_addr, i, gaps = 0;
2941        int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
2942        int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
2943        int index, section = 0;
2944        unsigned int max_bitflips = 0;
2945        struct mtd_oob_region oobregion = { };
2946
2947        /* Column address within the page aligned to ECC size (256bytes) */
2948        start_step = data_offs / chip->ecc.size;
2949        end_step = (data_offs + readlen - 1) / chip->ecc.size;
2950        num_steps = end_step - start_step + 1;
2951        index = start_step * chip->ecc.bytes;
2952
2953        /* Data size aligned to ECC ecc.size */
2954        datafrag_len = num_steps * chip->ecc.size;
2955        eccfrag_len = num_steps * chip->ecc.bytes;
2956
2957        data_col_addr = start_step * chip->ecc.size;
2958        /* If we read not a page aligned data */
2959        p = bufpoi + data_col_addr;
2960        ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len);
2961        if (ret)
2962                return ret;
2963
2964        /* Calculate ECC */
2965        for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
2966                chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]);
2967
2968        /*
2969         * The performance is faster if we position offsets according to
2970         * ecc.pos. Let's make sure that there are no gaps in ECC positions.
2971         */
2972        ret = mtd_ooblayout_find_eccregion(mtd, index, &section, &oobregion);
2973        if (ret)
2974                return ret;
2975
2976        if (oobregion.length < eccfrag_len)
2977                gaps = 1;
2978
2979        if (gaps) {
2980                ret = nand_change_read_column_op(chip, mtd->writesize,
2981                                                 chip->oob_poi, mtd->oobsize,
2982                                                 false);
2983                if (ret)
2984                        return ret;
2985        } else {
2986                /*
2987                 * Send the command to read the particular ECC bytes take care
2988                 * about buswidth alignment in read_buf.
2989                 */
2990                aligned_pos = oobregion.offset & ~(busw - 1);
2991                aligned_len = eccfrag_len;
2992                if (oobregion.offset & (busw - 1))
2993                        aligned_len++;
2994                if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
2995                    (busw - 1))
2996                        aligned_len++;
2997
2998                ret = nand_change_read_column_op(chip,
2999                                                 mtd->writesize + aligned_pos,
3000                                                 &chip->oob_poi[aligned_pos],
3001                                                 aligned_len, false);
3002                if (ret)
3003                        return ret;
3004        }
3005
3006        ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf,
3007                                         chip->oob_poi, index, eccfrag_len);
3008        if (ret)
3009                return ret;
3010
3011        p = bufpoi + data_col_addr;
3012        for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
3013                int stat;
3014
3015                stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i],
3016                                         &chip->ecc.calc_buf[i]);
3017                if (stat == -EBADMSG &&
3018                    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3019                        /* check for empty pages with bitflips */
3020                        stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3021                                                &chip->ecc.code_buf[i],
3022                                                chip->ecc.bytes,
3023                                                NULL, 0,
3024                                                chip->ecc.strength);
3025                }
3026
3027                if (stat < 0) {
3028                        mtd->ecc_stats.failed++;
3029                } else {
3030                        mtd->ecc_stats.corrected += stat;
3031                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
3032                }
3033        }
3034        return max_bitflips;
3035}
3036
3037/**
3038 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
3039 * @chip: nand chip info structure
3040 * @buf: buffer to store read data
3041 * @oob_required: caller requires OOB data read to chip->oob_poi
3042 * @page: page number to read
3043 *
3044 * Not for syndrome calculating ECC controllers which need a special oob layout.
3045 */
3046static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
3047                                int oob_required, int page)
3048{
3049        struct mtd_info *mtd = nand_to_mtd(chip);
3050        int i, eccsize = chip->ecc.size, ret;
3051        int eccbytes = chip->ecc.bytes;
3052        int eccsteps = chip->ecc.steps;
3053        uint8_t *p = buf;
3054        uint8_t *ecc_calc = chip->ecc.calc_buf;
3055        uint8_t *ecc_code = chip->ecc.code_buf;
3056        unsigned int max_bitflips = 0;
3057
3058        ret = nand_read_page_op(chip, page, 0, NULL, 0);
3059        if (ret)
3060                return ret;
3061
3062        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3063                chip->ecc.hwctl(chip, NAND_ECC_READ);
3064
3065                ret = nand_read_data_op(chip, p, eccsize, false, false);
3066                if (ret)
3067                        return ret;
3068
3069                chip->ecc.calculate(chip, p, &ecc_calc[i]);
3070        }
3071
3072        ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false,
3073                                false);
3074        if (ret)
3075                return ret;
3076
3077        ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3078                                         chip->ecc.total);
3079        if (ret)
3080                return ret;
3081
3082        eccsteps = chip->ecc.steps;
3083        p = buf;
3084
3085        for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3086                int stat;
3087
3088                stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
3089                if (stat == -EBADMSG &&
3090                    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3091                        /* check for empty pages with bitflips */
3092                        stat = nand_check_erased_ecc_chunk(p, eccsize,
3093                                                &ecc_code[i], eccbytes,
3094                                                NULL, 0,
3095                                                chip->ecc.strength);
3096                }
3097
3098                if (stat < 0) {
3099                        mtd->ecc_stats.failed++;
3100                } else {
3101                        mtd->ecc_stats.corrected += stat;
3102                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
3103                }
3104        }
3105        return max_bitflips;
3106}
3107
3108/**
3109 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
3110 * @chip: nand chip info structure
3111 * @buf: buffer to store read data
3112 * @oob_required: caller requires OOB data read to chip->oob_poi
3113 * @page: page number to read
3114 *
3115 * The hw generator calculates the error syndrome automatically. Therefore we
3116 * need a special oob layout and handling.
3117 */
3118static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf,
3119                                   int oob_required, int page)
3120{
3121        struct mtd_info *mtd = nand_to_mtd(chip);
3122        int ret, i, eccsize = chip->ecc.size;
3123        int eccbytes = chip->ecc.bytes;
3124        int eccsteps = chip->ecc.steps;
3125        int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
3126        uint8_t *p = buf;
3127        uint8_t *oob = chip->oob_poi;
3128        unsigned int max_bitflips = 0;
3129
3130        ret = nand_read_page_op(chip, page, 0, NULL, 0);
3131        if (ret)
3132                return ret;
3133
3134        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3135                int stat;
3136
3137                chip->ecc.hwctl(chip, NAND_ECC_READ);
3138
3139                ret = nand_read_data_op(chip, p, eccsize, false, false);
3140                if (ret)
3141                        return ret;
3142
3143                if (chip->ecc.prepad) {
3144                        ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
3145                                                false, false);
3146                        if (ret)
3147                                return ret;
3148
3149                        oob += chip->ecc.prepad;
3150                }
3151
3152                chip->ecc.hwctl(chip, NAND_ECC_READSYN);
3153
3154                ret = nand_read_data_op(chip, oob, eccbytes, false, false);
3155                if (ret)
3156                        return ret;
3157
3158                stat = chip->ecc.correct(chip, p, oob, NULL);
3159
3160                oob += eccbytes;
3161
3162                if (chip->ecc.postpad) {
3163                        ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3164                                                false, false);
3165                        if (ret)
3166                                return ret;
3167
3168                        oob += chip->ecc.postpad;
3169                }
3170
3171                if (stat == -EBADMSG &&
3172                    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3173                        /* check for empty pages with bitflips */
3174                        stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3175                                                           oob - eccpadbytes,
3176                                                           eccpadbytes,
3177                                                           NULL, 0,
3178                                                           chip->ecc.strength);
3179                }
3180
3181                if (stat < 0) {
3182                        mtd->ecc_stats.failed++;
3183                } else {
3184                        mtd->ecc_stats.corrected += stat;
3185                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
3186                }
3187        }
3188
3189        /* Calculate remaining oob bytes */
3190        i = mtd->oobsize - (oob - chip->oob_poi);
3191        if (i) {
3192                ret = nand_read_data_op(chip, oob, i, false, false);
3193                if (ret)
3194                        return ret;
3195        }
3196
3197        return max_bitflips;
3198}
3199
3200/**
3201 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
3202 * @chip: NAND chip object
3203 * @oob: oob destination address
3204 * @ops: oob ops structure
3205 * @len: size of oob to transfer
3206 */
3207static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
3208                                  struct mtd_oob_ops *ops, size_t len)
3209{
3210        struct mtd_info *mtd = nand_to_mtd(chip);
3211        int ret;
3212
3213        switch (ops->mode) {
3214
3215        case MTD_OPS_PLACE_OOB:
3216        case MTD_OPS_RAW:
3217                memcpy(oob, chip->oob_poi + ops->ooboffs, len);
3218                return oob + len;
3219
3220        case MTD_OPS_AUTO_OOB:
3221                ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
3222                                                  ops->ooboffs, len);
3223                BUG_ON(ret);
3224                return oob + len;
3225
3226        default:
3227                BUG();
3228        }
3229        return NULL;
3230}
3231
3232/**
3233 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
3234 * @chip: NAND chip object
3235 * @retry_mode: the retry mode to use
3236 *
3237 * Some vendors supply a special command to shift the Vt threshold, to be used
3238 * when there are too many bitflips in a page (i.e., ECC error). After setting
3239 * a new threshold, the host should retry reading the page.
3240 */
3241static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
3242{
3243        pr_debug("setting READ RETRY mode %d\n", retry_mode);
3244
3245        if (retry_mode >= chip->read_retries)
3246                return -EINVAL;
3247
3248        if (!chip->ops.setup_read_retry)
3249                return -EOPNOTSUPP;
3250
3251        return chip->ops.setup_read_retry(chip, retry_mode);
3252}
3253
3254static void nand_wait_readrdy(struct nand_chip *chip)
3255{
3256        const struct nand_sdr_timings *sdr;
3257
3258        if (!(chip->options & NAND_NEED_READRDY))
3259                return;
3260
3261        sdr = nand_get_sdr_timings(nand_get_interface_config(chip));
3262        WARN_ON(nand_wait_rdy_op(chip, PSEC_TO_MSEC(sdr->tR_max), 0));
3263}
3264
3265/**
3266 * nand_do_read_ops - [INTERN] Read data with ECC
3267 * @chip: NAND chip object
3268 * @from: offset to read from
3269 * @ops: oob ops structure
3270 *
3271 * Internal function. Called with chip held.
3272 */
3273static int nand_do_read_ops(struct nand_chip *chip, loff_t from,
3274                            struct mtd_oob_ops *ops)
3275{
3276        int chipnr, page, realpage, col, bytes, aligned, oob_required;
3277        struct mtd_info *mtd = nand_to_mtd(chip);
3278        int ret = 0;
3279        uint32_t readlen = ops->len;
3280        uint32_t oobreadlen = ops->ooblen;
3281        uint32_t max_oobsize = mtd_oobavail(mtd, ops);
3282
3283        uint8_t *bufpoi, *oob, *buf;
3284        int use_bounce_buf;
3285        unsigned int max_bitflips = 0;
3286        int retry_mode = 0;
3287        bool ecc_fail = false;
3288
3289        chipnr = (int)(from >> chip->chip_shift);
3290        nand_select_target(chip, chipnr);
3291
3292        realpage = (int)(from >> chip->page_shift);
3293        page = realpage & chip->pagemask;
3294
3295        col = (int)(from & (mtd->writesize - 1));
3296
3297        buf = ops->datbuf;
3298        oob = ops->oobbuf;
3299        oob_required = oob ? 1 : 0;
3300
3301        while (1) {
3302                struct mtd_ecc_stats ecc_stats = mtd->ecc_stats;
3303
3304                bytes = min(mtd->writesize - col, readlen);
3305                aligned = (bytes == mtd->writesize);
3306
3307                if (!aligned)
3308                        use_bounce_buf = 1;
3309                else if (chip->options & NAND_USES_DMA)
3310                        use_bounce_buf = !virt_addr_valid(buf) ||
3311                                         !IS_ALIGNED((unsigned long)buf,
3312                                                     chip->buf_align);
3313                else
3314                        use_bounce_buf = 0;
3315
3316                /* Is the current page in the buffer? */
3317                if (realpage != chip->pagecache.page || oob) {
3318                        bufpoi = use_bounce_buf ? chip->data_buf : buf;
3319
3320                        if (use_bounce_buf && aligned)
3321                                pr_debug("%s: using read bounce buffer for buf@%p\n",
3322                                                 __func__, buf);
3323
3324read_retry:
3325                        /*
3326                         * Now read the page into the buffer.  Absent an error,
3327                         * the read methods return max bitflips per ecc step.
3328                         */
3329                        if (unlikely(ops->mode == MTD_OPS_RAW))
3330                                ret = chip->ecc.read_page_raw(chip, bufpoi,
3331                                                              oob_required,
3332                                                              page);
3333                        else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
3334                                 !oob)
3335                                ret = chip->ecc.read_subpage(chip, col, bytes,
3336                                                             bufpoi, page);
3337                        else
3338                                ret = chip->ecc.read_page(chip, bufpoi,
3339                                                          oob_required, page);
3340                        if (ret < 0) {
3341                                if (use_bounce_buf)
3342                                        /* Invalidate page cache */
3343                                        chip->pagecache.page = -1;
3344                                break;
3345                        }
3346
3347                        /*
3348                         * Copy back the data in the initial buffer when reading
3349                         * partial pages or when a bounce buffer is required.
3350                         */
3351                        if (use_bounce_buf) {
3352                                if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
3353                                    !(mtd->ecc_stats.failed - ecc_stats.failed) &&
3354                                    (ops->mode != MTD_OPS_RAW)) {
3355                                        chip->pagecache.page = realpage;
3356                                        chip->pagecache.bitflips = ret;
3357                                } else {
3358                                        /* Invalidate page cache */
3359                                        chip->pagecache.page = -1;
3360                                }
3361                                memcpy(buf, bufpoi + col, bytes);
3362                        }
3363
3364                        if (unlikely(oob)) {
3365                                int toread = min(oobreadlen, max_oobsize);
3366
3367                                if (toread) {
3368                                        oob = nand_transfer_oob(chip, oob, ops,
3369                                                                toread);
3370                                        oobreadlen -= toread;
3371                                }
3372                        }
3373
3374                        nand_wait_readrdy(chip);
3375
3376                        if (mtd->ecc_stats.failed - ecc_stats.failed) {
3377                                if (retry_mode + 1 < chip->read_retries) {
3378                                        retry_mode++;
3379                                        ret = nand_setup_read_retry(chip,
3380                                                        retry_mode);
3381                                        if (ret < 0)
3382                                                break;
3383
3384                                        /* Reset ecc_stats; retry */
3385                                        mtd->ecc_stats = ecc_stats;
3386                                        goto read_retry;
3387                                } else {
3388                                        /* No more retry modes; real failure */
3389                                        ecc_fail = true;
3390                                }
3391                        }
3392
3393                        buf += bytes;
3394                        max_bitflips = max_t(unsigned int, max_bitflips, ret);
3395                } else {
3396                        memcpy(buf, chip->data_buf + col, bytes);
3397                        buf += bytes;
3398                        max_bitflips = max_t(unsigned int, max_bitflips,
3399                                             chip->pagecache.bitflips);
3400                }
3401
3402                readlen -= bytes;
3403
3404                /* Reset to retry mode 0 */
3405                if (retry_mode) {
3406                        ret = nand_setup_read_retry(chip, 0);
3407                        if (ret < 0)
3408                                break;
3409                        retry_mode = 0;
3410                }
3411
3412                if (!readlen)
3413                        break;
3414
3415                /* For subsequent reads align to page boundary */
3416                col = 0;
3417                /* Increment page address */
3418                realpage++;
3419
3420                page = realpage & chip->pagemask;
3421                /* Check, if we cross a chip boundary */
3422                if (!page) {
3423                        chipnr++;
3424                        nand_deselect_target(chip);
3425                        nand_select_target(chip, chipnr);
3426                }
3427        }
3428        nand_deselect_target(chip);
3429
3430        ops->retlen = ops->len - (size_t) readlen;
3431        if (oob)
3432                ops->oobretlen = ops->ooblen - oobreadlen;
3433
3434        if (ret < 0)
3435                return ret;
3436
3437        if (ecc_fail)
3438                return -EBADMSG;
3439
3440        return max_bitflips;
3441}
3442
3443/**
3444 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
3445 * @chip: nand chip info structure
3446 * @page: page number to read
3447 */
3448int nand_read_oob_std(struct nand_chip *chip, int page)
3449{
3450        struct mtd_info *mtd = nand_to_mtd(chip);
3451
3452        return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3453}
3454EXPORT_SYMBOL(nand_read_oob_std);
3455
3456/**
3457 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
3458 *                          with syndromes
3459 * @chip: nand chip info structure
3460 * @page: page number to read
3461 */
3462static int nand_read_oob_syndrome(struct nand_chip *chip, int page)
3463{
3464        struct mtd_info *mtd = nand_to_mtd(chip);
3465        int length = mtd->oobsize;
3466        int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3467        int eccsize = chip->ecc.size;
3468        uint8_t *bufpoi = chip->oob_poi;
3469        int i, toread, sndrnd = 0, pos, ret;
3470
3471        ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0);
3472        if (ret)
3473                return ret;
3474
3475        for (i = 0; i < chip->ecc.steps; i++) {
3476                if (sndrnd) {
3477                        int ret;
3478
3479                        pos = eccsize + i * (eccsize + chunk);
3480                        if (mtd->writesize > 512)
3481                                ret = nand_change_read_column_op(chip, pos,
3482                                                                 NULL, 0,
3483                                                                 false);
3484                        else
3485                                ret = nand_read_page_op(chip, page, pos, NULL,
3486                                                        0);
3487
3488                        if (ret)
3489                                return ret;
3490                } else
3491                        sndrnd = 1;
3492                toread = min_t(int, length, chunk);
3493
3494                ret = nand_read_data_op(chip, bufpoi, toread, false, false);
3495                if (ret)
3496                        return ret;
3497
3498                bufpoi += toread;
3499                length -= toread;
3500        }
3501        if (length > 0) {
3502                ret = nand_read_data_op(chip, bufpoi, length, false, false);
3503                if (ret)
3504                        return ret;
3505        }
3506
3507        return 0;
3508}
3509
3510/**
3511 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
3512 * @chip: nand chip info structure
3513 * @page: page number to write
3514 */
3515int nand_write_oob_std(struct nand_chip *chip, int page)
3516{
3517        struct mtd_info *mtd = nand_to_mtd(chip);
3518
3519        return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
3520                                 mtd->oobsize);
3521}
3522EXPORT_SYMBOL(nand_write_oob_std);
3523
3524/**
3525 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
3526 *                           with syndrome - only for large page flash
3527 * @chip: nand chip info structure
3528 * @page: page number to write
3529 */
3530static int nand_write_oob_syndrome(struct nand_chip *chip, int page)
3531{
3532        struct mtd_info *mtd = nand_to_mtd(chip);
3533        int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3534        int eccsize = chip->ecc.size, length = mtd->oobsize;
3535        int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps;
3536        const uint8_t *bufpoi = chip->oob_poi;
3537
3538        /*
3539         * data-ecc-data-ecc ... ecc-oob
3540         * or
3541         * data-pad-ecc-pad-data-pad .... ecc-pad-oob
3542         */
3543        if (!chip->ecc.prepad && !chip->ecc.postpad) {
3544                pos = steps * (eccsize + chunk);
3545                steps = 0;
3546        } else
3547                pos = eccsize;
3548
3549        ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0);
3550        if (ret)
3551                return ret;
3552
3553        for (i = 0; i < steps; i++) {
3554                if (sndcmd) {
3555                        if (mtd->writesize <= 512) {
3556                                uint32_t fill = 0xFFFFFFFF;
3557
3558                                len = eccsize;
3559                                while (len > 0) {
3560                                        int num = min_t(int, len, 4);
3561
3562                                        ret = nand_write_data_op(chip, &fill,
3563                                                                 num, false);
3564                                        if (ret)
3565                                                return ret;
3566
3567                                        len -= num;
3568                                }
3569                        } else {
3570                                pos = eccsize + i * (eccsize + chunk);
3571                                ret = nand_change_write_column_op(chip, pos,
3572                                                                  NULL, 0,
3573                                                                  false);
3574                                if (ret)
3575                                        return ret;
3576                        }
3577                } else
3578                        sndcmd = 1;
3579                len = min_t(int, length, chunk);
3580
3581                ret = nand_write_data_op(chip, bufpoi, len, false);
3582                if (ret)
3583                        return ret;
3584
3585                bufpoi += len;
3586                length -= len;
3587        }
3588        if (length > 0) {
3589                ret = nand_write_data_op(chip, bufpoi, length, false);
3590                if (ret)
3591                        return ret;
3592        }
3593
3594        return nand_prog_page_end_op(chip);
3595}
3596
3597/**
3598 * nand_do_read_oob - [INTERN] NAND read out-of-band
3599 * @chip: NAND chip object
3600 * @from: offset to read from
3601 * @ops: oob operations description structure
3602 *
3603 * NAND read out-of-band data from the spare area.
3604 */
3605static int nand_do_read_oob(struct nand_chip *chip, loff_t from,
3606                            struct mtd_oob_ops *ops)
3607{
3608        struct mtd_info *mtd = nand_to_mtd(chip);
3609        unsigned int max_bitflips = 0;
3610        int page, realpage, chipnr;
3611        struct mtd_ecc_stats stats;
3612        int readlen = ops->ooblen;
3613        int len;
3614        uint8_t *buf = ops->oobbuf;
3615        int ret = 0;
3616
3617        pr_debug("%s: from = 0x%08Lx, len = %i\n",
3618                        __func__, (unsigned long long)from, readlen);
3619
3620        stats = mtd->ecc_stats;
3621
3622        len = mtd_oobavail(mtd, ops);
3623
3624        chipnr = (int)(from >> chip->chip_shift);
3625        nand_select_target(chip, chipnr);
3626
3627        /* Shift to get page */
3628        realpage = (int)(from >> chip->page_shift);
3629        page = realpage & chip->pagemask;
3630
3631        while (1) {
3632                if (ops->mode == MTD_OPS_RAW)
3633                        ret = chip->ecc.read_oob_raw(chip, page);
3634                else
3635                        ret = chip->ecc.read_oob(chip, page);
3636
3637                if (ret < 0)
3638                        break;
3639
3640                len = min(len, readlen);
3641                buf = nand_transfer_oob(chip, buf, ops, len);
3642
3643                nand_wait_readrdy(chip);
3644
3645                max_bitflips = max_t(unsigned int, max_bitflips, ret);
3646
3647                readlen -= len;
3648                if (!readlen)
3649                        break;
3650
3651                /* Increment page address */
3652                realpage++;
3653
3654                page = realpage & chip->pagemask;
3655                /* Check, if we cross a chip boundary */
3656                if (!page) {
3657                        chipnr++;
3658                        nand_deselect_target(chip);
3659                        nand_select_target(chip, chipnr);
3660                }
3661        }
3662        nand_deselect_target(chip);
3663
3664        ops->oobretlen = ops->ooblen - readlen;
3665
3666        if (ret < 0)
3667                return ret;
3668
3669        if (mtd->ecc_stats.failed - stats.failed)
3670                return -EBADMSG;
3671
3672        return max_bitflips;
3673}
3674
3675/**
3676 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
3677 * @mtd: MTD device structure
3678 * @from: offset to read from
3679 * @ops: oob operation description structure
3680 *
3681 * NAND read data and/or out-of-band data.
3682 */
3683static int nand_read_oob(struct mtd_info *mtd, loff_t from,
3684                         struct mtd_oob_ops *ops)
3685{
3686        struct nand_chip *chip = mtd_to_nand(mtd);
3687        int ret;
3688
3689        ops->retlen = 0;
3690
3691        if (ops->mode != MTD_OPS_PLACE_OOB &&
3692            ops->mode != MTD_OPS_AUTO_OOB &&
3693            ops->mode != MTD_OPS_RAW)
3694                return -ENOTSUPP;
3695
3696        ret = nand_get_device(chip);
3697        if (ret)
3698                return ret;
3699
3700        if (!ops->datbuf)
3701                ret = nand_do_read_oob(chip, from, ops);
3702        else
3703                ret = nand_do_read_ops(chip, from, ops);
3704
3705        nand_release_device(chip);
3706        return ret;
3707}
3708
3709/**
3710 * nand_write_page_raw_notsupp - dummy raw page write function
3711 * @chip: nand chip info structure
3712 * @buf: data buffer
3713 * @oob_required: must write chip->oob_poi to OOB
3714 * @page: page number to write
3715 *
3716 * Returns -ENOTSUPP unconditionally.
3717 */
3718int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf,
3719                                int oob_required, int page)
3720{
3721        return -ENOTSUPP;
3722}
3723
3724/**
3725 * nand_write_page_raw - [INTERN] raw page write function
3726 * @chip: nand chip info structure
3727 * @buf: data buffer
3728 * @oob_required: must write chip->oob_poi to OOB
3729 * @page: page number to write
3730 *
3731 * Not for syndrome calculating ECC controllers, which use a special oob layout.
3732 */
3733int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
3734                        int oob_required, int page)
3735{
3736        struct mtd_info *mtd = nand_to_mtd(chip);
3737        int ret;
3738
3739        ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
3740        if (ret)
3741                return ret;
3742
3743        if (oob_required) {
3744                ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
3745                                         false);
3746                if (ret)
3747                        return ret;
3748        }
3749
3750        return nand_prog_page_end_op(chip);
3751}
3752EXPORT_SYMBOL(nand_write_page_raw);
3753
3754/**
3755 * nand_monolithic_write_page_raw - Monolithic page write in raw mode
3756 * @chip: NAND chip info structure
3757 * @buf: data buffer to write
3758 * @oob_required: must write chip->oob_poi to OOB
3759 * @page: page number to write
3760 *
3761 * This is a raw page write, ie. without any error detection/correction.
3762 * Monolithic means we are requesting all the relevant data (main plus
3763 * eventually OOB) to be sent over the bus and effectively programmed
3764 * into the NAND chip arrays in a single operation. This is an
3765 * alternative to nand_write_page_raw(), which first sends the main
3766 * data, then eventually send the OOB data by latching more data
3767 * cycles on the NAND bus, and finally sends the program command to
3768 * synchronyze the NAND chip cache.
3769 */
3770int nand_monolithic_write_page_raw(struct nand_chip *chip, const u8 *buf,
3771                                   int oob_required, int page)
3772{
3773        struct mtd_info *mtd = nand_to_mtd(chip);
3774        unsigned int size = mtd->writesize;
3775        u8 *write_buf = (u8 *)buf;
3776
3777        if (oob_required) {
3778                size += mtd->oobsize;
3779
3780                if (buf != chip->data_buf) {
3781                        write_buf = nand_get_data_buf(chip);
3782                        memcpy(write_buf, buf, mtd->writesize);
3783                }
3784        }
3785
3786        return nand_prog_page_op(chip, page, 0, write_buf, size);
3787}
3788EXPORT_SYMBOL(nand_monolithic_write_page_raw);
3789
3790/**
3791 * nand_write_page_raw_syndrome - [INTERN] raw page write function
3792 * @chip: nand chip info structure
3793 * @buf: data buffer
3794 * @oob_required: must write chip->oob_poi to OOB
3795 * @page: page number to write
3796 *
3797 * We need a special oob layout and handling even when ECC isn't checked.
3798 */
3799static int nand_write_page_raw_syndrome(struct nand_chip *chip,
3800                                        const uint8_t *buf, int oob_required,
3801                                        int page)
3802{
3803        struct mtd_info *mtd = nand_to_mtd(chip);
3804        int eccsize = chip->ecc.size;
3805        int eccbytes = chip->ecc.bytes;
3806        uint8_t *oob = chip->oob_poi;
3807        int steps, size, ret;
3808
3809        ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3810        if (ret)
3811                return ret;
3812
3813        for (steps = chip->ecc.steps; steps > 0; steps--) {
3814                ret = nand_write_data_op(chip, buf, eccsize, false);
3815                if (ret)
3816                        return ret;
3817
3818                buf += eccsize;
3819
3820                if (chip->ecc.prepad) {
3821                        ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
3822                                                 false);
3823                        if (ret)
3824                                return ret;
3825
3826                        oob += chip->ecc.prepad;
3827                }
3828
3829                ret = nand_write_data_op(chip, oob, eccbytes, false);
3830                if (ret)
3831                        return ret;
3832
3833                oob += eccbytes;
3834
3835                if (chip->ecc.postpad) {
3836                        ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
3837                                                 false);
3838                        if (ret)
3839                                return ret;
3840
3841                        oob += chip->ecc.postpad;
3842                }
3843        }
3844
3845        size = mtd->oobsize - (oob - chip->oob_poi);
3846        if (size) {
3847                ret = nand_write_data_op(chip, oob, size, false);
3848                if (ret)
3849                        return ret;
3850        }
3851
3852        return nand_prog_page_end_op(chip);
3853}
3854/**
3855 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
3856 * @chip: nand chip info structure
3857 * @buf: data buffer
3858 * @oob_required: must write chip->oob_poi to OOB
3859 * @page: page number to write
3860 */
3861static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf,
3862                                 int oob_required, int page)
3863{
3864        struct mtd_info *mtd = nand_to_mtd(chip);
3865        int i, eccsize = chip->ecc.size, ret;
3866        int eccbytes = chip->ecc.bytes;
3867        int eccsteps = chip->ecc.steps;
3868        uint8_t *ecc_calc = chip->ecc.calc_buf;
3869        const uint8_t *p = buf;
3870
3871        /* Software ECC calculation */
3872        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
3873                chip->ecc.calculate(chip, p, &ecc_calc[i]);
3874
3875        ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
3876                                         chip->ecc.total);
3877        if (ret)
3878                return ret;
3879
3880        return chip->ecc.write_page_raw(chip, buf, 1, page);
3881}
3882
3883/**
3884 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
3885 * @chip: nand chip info structure
3886 * @buf: data buffer
3887 * @oob_required: must write chip->oob_poi to OOB
3888 * @page: page number to write
3889 */
3890static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
3891                                 int oob_required, int page)
3892{
3893        struct mtd_info *mtd = nand_to_mtd(chip);
3894        int i, eccsize = chip->ecc.size, ret;
3895        int eccbytes = chip->ecc.bytes;
3896        int eccsteps = chip->ecc.steps;
3897        uint8_t *ecc_calc = chip->ecc.calc_buf;
3898        const uint8_t *p = buf;
3899
3900        ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3901        if (ret)
3902                return ret;
3903
3904        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3905                chip->ecc.hwctl(chip, NAND_ECC_WRITE);
3906
3907                ret = nand_write_data_op(chip, p, eccsize, false);
3908                if (ret)
3909                        return ret;
3910
3911                chip->ecc.calculate(chip, p, &ecc_calc[i]);
3912        }
3913
3914        ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
3915                                         chip->ecc.total);
3916        if (ret)
3917                return ret;
3918
3919        ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
3920        if (ret)
3921                return ret;
3922
3923        return nand_prog_page_end_op(chip);
3924}
3925
3926
3927/**
3928 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
3929 * @chip:       nand chip info structure
3930 * @offset:     column address of subpage within the page
3931 * @data_len:   data length
3932 * @buf:        data buffer
3933 * @oob_required: must write chip->oob_poi to OOB
3934 * @page: page number to write
3935 */
3936static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset,
3937                                    uint32_t data_len, const uint8_t *buf,
3938                                    int oob_required, int page)
3939{
3940        struct mtd_info *mtd = nand_to_mtd(chip);
3941        uint8_t *oob_buf  = chip->oob_poi;
3942        uint8_t *ecc_calc = chip->ecc.calc_buf;
3943        int ecc_size      = chip->ecc.size;
3944        int ecc_bytes     = chip->ecc.bytes;
3945        int ecc_steps     = chip->ecc.steps;
3946        uint32_t start_step = offset / ecc_size;
3947        uint32_t end_step   = (offset + data_len - 1) / ecc_size;
3948        int oob_bytes       = mtd->oobsize / ecc_steps;
3949        int step, ret;
3950
3951        ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3952        if (ret)
3953                return ret;
3954
3955        for (step = 0; step < ecc_steps; step++) {
3956                /* configure controller for WRITE access */
3957                chip->ecc.hwctl(chip, NAND_ECC_WRITE);
3958
3959                /* write data (untouched subpages already masked by 0xFF) */
3960                ret = nand_write_data_op(chip, buf, ecc_size, false);
3961                if (ret)
3962                        return ret;
3963
3964                /* mask ECC of un-touched subpages by padding 0xFF */
3965                if ((step < start_step) || (step > end_step))
3966                        memset(ecc_calc, 0xff, ecc_bytes);
3967                else
3968                        chip->ecc.calculate(chip, buf, ecc_calc);
3969
3970                /* mask OOB of un-touched subpages by padding 0xFF */
3971                /* if oob_required, preserve OOB metadata of written subpage */
3972                if (!oob_required || (step < start_step) || (step > end_step))
3973                        memset(oob_buf, 0xff, oob_bytes);
3974
3975                buf += ecc_size;
3976                ecc_calc += ecc_bytes;
3977                oob_buf  += oob_bytes;
3978        }
3979
3980        /* copy calculated ECC for whole page to chip->buffer->oob */
3981        /* this include masked-value(0xFF) for unwritten subpages */
3982        ecc_calc = chip->ecc.calc_buf;
3983        ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
3984                                         chip->ecc.total);
3985        if (ret)
3986                return ret;
3987
3988        /* write OOB buffer to NAND device */
3989        ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
3990        if (ret)
3991                return ret;
3992
3993        return nand_prog_page_end_op(chip);
3994}
3995
3996
3997/**
3998 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
3999 * @chip: nand chip info structure
4000 * @buf: data buffer
4001 * @oob_required: must write chip->oob_poi to OOB
4002 * @page: page number to write
4003 *
4004 * The hw generator calculates the error syndrome automatically. Therefore we
4005 * need a special oob layout and handling.
4006 */
4007static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf,
4008                                    int oob_required, int page)
4009{
4010        struct mtd_info *mtd = nand_to_mtd(chip);
4011        int i, eccsize = chip->ecc.size;
4012        int eccbytes = chip->ecc.bytes;
4013        int eccsteps = chip->ecc.steps;
4014        const uint8_t *p = buf;
4015        uint8_t *oob = chip->oob_poi;
4016        int ret;
4017
4018        ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4019        if (ret)
4020                return ret;
4021
4022        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
4023                chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4024
4025                ret = nand_write_data_op(chip, p, eccsize, false);
4026                if (ret)
4027                        return ret;
4028
4029                if (chip->ecc.prepad) {
4030                        ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
4031                                                 false);
4032                        if (ret)
4033                                return ret;
4034
4035                        oob += chip->ecc.prepad;
4036                }
4037
4038                chip->ecc.calculate(chip, p, oob);
4039
4040                ret = nand_write_data_op(chip, oob, eccbytes, false);
4041                if (ret)
4042                        return ret;
4043
4044                oob += eccbytes;
4045
4046                if (chip->ecc.postpad) {
4047                        ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
4048                                                 false);
4049                        if (ret)
4050                                return ret;
4051
4052                        oob += chip->ecc.postpad;
4053                }
4054        }
4055
4056        /* Calculate remaining oob bytes */
4057        i = mtd->oobsize - (oob - chip->oob_poi);
4058        if (i) {
4059                ret = nand_write_data_op(chip, oob, i, false);
4060                if (ret)
4061                        return ret;
4062        }
4063
4064        return nand_prog_page_end_op(chip);
4065}
4066
4067/**
4068 * nand_write_page - write one page
4069 * @chip: NAND chip descriptor
4070 * @offset: address offset within the page
4071 * @data_len: length of actual data to be written
4072 * @buf: the data to write
4073 * @oob_required: must write chip->oob_poi to OOB
4074 * @page: page number to write
4075 * @raw: use _raw version of write_page
4076 */
4077static int nand_write_page(struct nand_chip *chip, uint32_t offset,
4078                           int data_len, const uint8_t *buf, int oob_required,
4079                           int page, int raw)
4080{
4081        struct mtd_info *mtd = nand_to_mtd(chip);
4082        int status, subpage;
4083
4084        if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
4085                chip->ecc.write_subpage)
4086                subpage = offset || (data_len < mtd->writesize);
4087        else
4088                subpage = 0;
4089
4090        if (unlikely(raw))
4091                status = chip->ecc.write_page_raw(chip, buf, oob_required,
4092                                                  page);
4093        else if (subpage)
4094                status = chip->ecc.write_subpage(chip, offset, data_len, buf,
4095                                                 oob_required, page);
4096        else
4097                status = chip->ecc.write_page(chip, buf, oob_required, page);
4098
4099        if (status < 0)
4100                return status;
4101
4102        return 0;
4103}
4104
4105#define NOTALIGNED(x)   ((x & (chip->subpagesize - 1)) != 0)
4106
4107/**
4108 * nand_do_write_ops - [INTERN] NAND write with ECC
4109 * @chip: NAND chip object
4110 * @to: offset to write to
4111 * @ops: oob operations description structure
4112 *
4113 * NAND write with ECC.
4114 */
4115static int nand_do_write_ops(struct nand_chip *chip, loff_t to,
4116                             struct mtd_oob_ops *ops)
4117{
4118        struct mtd_info *mtd = nand_to_mtd(chip);
4119        int chipnr, realpage, page, column;
4120        uint32_t writelen = ops->len;
4121
4122        uint32_t oobwritelen = ops->ooblen;
4123        uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
4124
4125        uint8_t *oob = ops->oobbuf;
4126        uint8_t *buf = ops->datbuf;
4127        int ret;
4128        int oob_required = oob ? 1 : 0;
4129
4130        ops->retlen = 0;
4131        if (!writelen)
4132                return 0;
4133
4134        /* Reject writes, which are not page aligned */
4135        if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
4136                pr_notice("%s: attempt to write non page aligned data\n",
4137                           __func__);
4138                return -EINVAL;
4139        }
4140
4141        column = to & (mtd->writesize - 1);
4142
4143        chipnr = (int)(to >> chip->chip_shift);
4144        nand_select_target(chip, chipnr);
4145
4146        /* Check, if it is write protected */
4147        if (nand_check_wp(chip)) {
4148                ret = -EIO;
4149                goto err_out;
4150        }
4151
4152        realpage = (int)(to >> chip->page_shift);
4153        page = realpage & chip->pagemask;
4154
4155        /* Invalidate the page cache, when we write to the cached page */
4156        if (to <= ((loff_t)chip->pagecache.page << chip->page_shift) &&
4157            ((loff_t)chip->pagecache.page << chip->page_shift) < (to + ops->len))
4158                chip->pagecache.page = -1;
4159
4160        /* Don't allow multipage oob writes with offset */
4161        if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
4162                ret = -EINVAL;
4163                goto err_out;
4164        }
4165
4166        while (1) {
4167                int bytes = mtd->writesize;
4168                uint8_t *wbuf = buf;
4169                int use_bounce_buf;
4170                int part_pagewr = (column || writelen < mtd->writesize);
4171
4172                if (part_pagewr)
4173                        use_bounce_buf = 1;
4174                else if (chip->options & NAND_USES_DMA)
4175                        use_bounce_buf = !virt_addr_valid(buf) ||
4176                                         !IS_ALIGNED((unsigned long)buf,
4177                                                     chip->buf_align);
4178                else
4179                        use_bounce_buf = 0;
4180
4181                /*
4182                 * Copy the data from the initial buffer when doing partial page
4183                 * writes or when a bounce buffer is required.
4184                 */
4185                if (use_bounce_buf) {
4186                        pr_debug("%s: using write bounce buffer for buf@%p\n",
4187                                         __func__, buf);
4188                        if (part_pagewr)
4189                                bytes = min_t(int, bytes - column, writelen);
4190                        wbuf = nand_get_data_buf(chip);
4191                        memset(wbuf, 0xff, mtd->writesize);
4192                        memcpy(&wbuf[column], buf, bytes);
4193                }
4194
4195                if (unlikely(oob)) {
4196                        size_t len = min(oobwritelen, oobmaxlen);
4197                        oob = nand_fill_oob(chip, oob, len, ops);
4198                        oobwritelen -= len;
4199                } else {
4200                        /* We still need to erase leftover OOB data */
4201                        memset(chip->oob_poi, 0xff, mtd->oobsize);
4202                }
4203
4204                ret = nand_write_page(chip, column, bytes, wbuf,
4205                                      oob_required, page,
4206                                      (ops->mode == MTD_OPS_RAW));
4207                if (ret)
4208                        break;
4209
4210                writelen -= bytes;
4211                if (!writelen)
4212                        break;
4213
4214                column = 0;
4215                buf += bytes;
4216                realpage++;
4217
4218                page = realpage & chip->pagemask;
4219                /* Check, if we cross a chip boundary */
4220                if (!page) {
4221                        chipnr++;
4222                        nand_deselect_target(chip);
4223                        nand_select_target(chip, chipnr);
4224                }
4225        }
4226
4227        ops->retlen = ops->len - writelen;
4228        if (unlikely(oob))
4229                ops->oobretlen = ops->ooblen;
4230
4231err_out:
4232        nand_deselect_target(chip);
4233        return ret;
4234}
4235
4236/**
4237 * panic_nand_write - [MTD Interface] NAND write with ECC
4238 * @mtd: MTD device structure
4239 * @to: offset to write to
4240 * @len: number of bytes to write
4241 * @retlen: pointer to variable to store the number of written bytes
4242 * @buf: the data to write
4243 *
4244 * NAND write with ECC. Used when performing writes in interrupt context, this
4245 * may for example be called by mtdoops when writing an oops while in panic.
4246 */
4247static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
4248                            size_t *retlen, const uint8_t *buf)
4249{
4250        struct nand_chip *chip = mtd_to_nand(mtd);
4251        int chipnr = (int)(to >> chip->chip_shift);
4252        struct mtd_oob_ops ops;
4253        int ret;
4254
4255        nand_select_target(chip, chipnr);
4256
4257        /* Wait for the device to get ready */
4258        panic_nand_wait(chip, 400);
4259
4260        memset(&ops, 0, sizeof(ops));
4261        ops.len = len;
4262        ops.datbuf = (uint8_t *)buf;
4263        ops.mode = MTD_OPS_PLACE_OOB;
4264
4265        ret = nand_do_write_ops(chip, to, &ops);
4266
4267        *retlen = ops.retlen;
4268        return ret;
4269}
4270
4271/**
4272 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
4273 * @mtd: MTD device structure
4274 * @to: offset to write to
4275 * @ops: oob operation description structure
4276 */
4277static int nand_write_oob(struct mtd_info *mtd, loff_t to,
4278                          struct mtd_oob_ops *ops)
4279{
4280        struct nand_chip *chip = mtd_to_nand(mtd);
4281        int ret;
4282
4283        ops->retlen = 0;
4284
4285        ret = nand_get_device(chip);
4286        if (ret)
4287                return ret;
4288
4289        switch (ops->mode) {
4290        case MTD_OPS_PLACE_OOB:
4291        case MTD_OPS_AUTO_OOB:
4292        case MTD_OPS_RAW:
4293                break;
4294
4295        default:
4296                goto out;
4297        }
4298
4299        if (!ops->datbuf)
4300                ret = nand_do_write_oob(chip, to, ops);
4301        else
4302                ret = nand_do_write_ops(chip, to, ops);
4303
4304out:
4305        nand_release_device(chip);
4306        return ret;
4307}
4308
4309/**
4310 * nand_erase - [MTD Interface] erase block(s)
4311 * @mtd: MTD device structure
4312 * @instr: erase instruction
4313 *
4314 * Erase one ore more blocks.
4315 */
4316static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
4317{
4318        return nand_erase_nand(mtd_to_nand(mtd), instr, 0);
4319}
4320
4321/**
4322 * nand_erase_nand - [INTERN] erase block(s)
4323 * @chip: NAND chip object
4324 * @instr: erase instruction
4325 * @allowbbt: allow erasing the bbt area
4326 *
4327 * Erase one ore more blocks.
4328 */
4329int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr,
4330                    int allowbbt)
4331{
4332        int page, pages_per_block, ret, chipnr;
4333        loff_t len;
4334
4335        pr_debug("%s: start = 0x%012llx, len = %llu\n",
4336                        __func__, (unsigned long long)instr->addr,
4337                        (unsigned long long)instr->len);
4338
4339        if (check_offs_len(chip, instr->addr, instr->len))
4340                return -EINVAL;
4341
4342        /* Grab the lock and see if the device is available */
4343        ret = nand_get_device(chip);
4344        if (ret)
4345                return ret;
4346
4347        /* Shift to get first page */
4348        page = (int)(instr->addr >> chip->page_shift);
4349        chipnr = (int)(instr->addr >> chip->chip_shift);
4350
4351        /* Calculate pages in each block */
4352        pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
4353
4354        /* Select the NAND device */
4355        nand_select_target(chip, chipnr);
4356
4357        /* Check, if it is write protected */
4358        if (nand_check_wp(chip)) {
4359                pr_debug("%s: device is write protected!\n",
4360                                __func__);
4361                ret = -EIO;
4362                goto erase_exit;
4363        }
4364
4365        /* Loop through the pages */
4366        len = instr->len;
4367
4368        while (len) {
4369                /* Check if we have a bad block, we do not erase bad blocks! */
4370                if (nand_block_checkbad(chip, ((loff_t) page) <<
4371                                        chip->page_shift, allowbbt)) {
4372                        pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
4373                                    __func__, page);
4374                        ret = -EIO;
4375                        goto erase_exit;
4376                }
4377
4378                /*
4379                 * Invalidate the page cache, if we erase the block which
4380                 * contains the current cached page.
4381                 */
4382                if (page <= chip->pagecache.page && chip->pagecache.page <
4383                    (page + pages_per_block))
4384                        chip->pagecache.page = -1;
4385
4386                ret = nand_erase_op(chip, (page & chip->pagemask) >>
4387                                    (chip->phys_erase_shift - chip->page_shift));
4388                if (ret) {
4389                        pr_debug("%s: failed erase, page 0x%08x\n",
4390                                        __func__, page);
4391                        instr->fail_addr =
4392                                ((loff_t)page << chip->page_shift);
4393                        goto erase_exit;
4394                }
4395
4396                /* Increment page address and decrement length */
4397                len -= (1ULL << chip->phys_erase_shift);
4398                page += pages_per_block;
4399
4400                /* Check, if we cross a chip boundary */
4401                if (len && !(page & chip->pagemask)) {
4402                        chipnr++;
4403                        nand_deselect_target(chip);
4404                        nand_select_target(chip, chipnr);
4405                }
4406        }
4407
4408        ret = 0;
4409erase_exit:
4410
4411        /* Deselect and wake up anyone waiting on the device */
4412        nand_deselect_target(chip);
4413        nand_release_device(chip);
4414
4415        /* Return more or less happy */
4416        return ret;
4417}
4418
4419/**
4420 * nand_sync - [MTD Interface] sync
4421 * @mtd: MTD device structure
4422 *
4423 * Sync is actually a wait for chip ready function.
4424 */
4425static void nand_sync(struct mtd_info *mtd)
4426{
4427        struct nand_chip *chip = mtd_to_nand(mtd);
4428
4429        pr_debug("%s: called\n", __func__);
4430
4431        /* Grab the lock and see if the device is available */
4432        WARN_ON(nand_get_device(chip));
4433        /* Release it and go back */
4434        nand_release_device(chip);
4435}
4436
4437/**
4438 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
4439 * @mtd: MTD device structure
4440 * @offs: offset relative to mtd start
4441 */
4442static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
4443{
4444        struct nand_chip *chip = mtd_to_nand(mtd);
4445        int chipnr = (int)(offs >> chip->chip_shift);
4446        int ret;
4447
4448        /* Select the NAND device */
4449        ret = nand_get_device(chip);
4450        if (ret)
4451                return ret;
4452
4453        nand_select_target(chip, chipnr);
4454
4455        ret = nand_block_checkbad(chip, offs, 0);
4456
4457        nand_deselect_target(chip);
4458        nand_release_device(chip);
4459
4460        return ret;
4461}
4462
4463/**
4464 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
4465 * @mtd: MTD device structure
4466 * @ofs: offset relative to mtd start
4467 */
4468static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
4469{
4470        int ret;
4471
4472        ret = nand_block_isbad(mtd, ofs);
4473        if (ret) {
4474                /* If it was bad already, return success and do nothing */
4475                if (ret > 0)
4476                        return 0;
4477                return ret;
4478        }
4479
4480        return nand_block_markbad_lowlevel(mtd_to_nand(mtd), ofs);
4481}
4482
4483/**
4484 * nand_suspend - [MTD Interface] Suspend the NAND flash
4485 * @mtd: MTD device structure
4486 *
4487 * Returns 0 for success or negative error code otherwise.
4488 */
4489static int nand_suspend(struct mtd_info *mtd)
4490{
4491        struct nand_chip *chip = mtd_to_nand(mtd);
4492        int ret = 0;
4493
4494        mutex_lock(&chip->lock);
4495        if (chip->ops.suspend)
4496                ret = chip->ops.suspend(chip);
4497        if (!ret)
4498                chip->suspended = 1;
4499        mutex_unlock(&chip->lock);
4500
4501        return ret;
4502}
4503
4504/**
4505 * nand_resume - [MTD Interface] Resume the NAND flash
4506 * @mtd: MTD device structure
4507 */
4508static void nand_resume(struct mtd_info *mtd)
4509{
4510        struct nand_chip *chip = mtd_to_nand(mtd);
4511
4512        mutex_lock(&chip->lock);
4513        if (chip->suspended) {
4514                if (chip->ops.resume)
4515                        chip->ops.resume(chip);
4516                chip->suspended = 0;
4517        } else {
4518                pr_err("%s called for a chip which is not in suspended state\n",
4519                        __func__);
4520        }
4521        mutex_unlock(&chip->lock);
4522}
4523
4524/**
4525 * nand_shutdown - [MTD Interface] Finish the current NAND operation and
4526 *                 prevent further operations
4527 * @mtd: MTD device structure
4528 */
4529static void nand_shutdown(struct mtd_info *mtd)
4530{
4531        nand_suspend(mtd);
4532}
4533
4534/**
4535 * nand_lock - [MTD Interface] Lock the NAND flash
4536 * @mtd: MTD device structure
4537 * @ofs: offset byte address
4538 * @len: number of bytes to lock (must be a multiple of block/page size)
4539 */
4540static int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
4541{
4542        struct nand_chip *chip = mtd_to_nand(mtd);
4543
4544        if (!chip->ops.lock_area)
4545                return -ENOTSUPP;
4546
4547        return chip->ops.lock_area(chip, ofs, len);
4548}
4549
4550/**
4551 * nand_unlock - [MTD Interface] Unlock the NAND flash
4552 * @mtd: MTD device structure
4553 * @ofs: offset byte address
4554 * @len: number of bytes to unlock (must be a multiple of block/page size)
4555 */
4556static int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
4557{
4558        struct nand_chip *chip = mtd_to_nand(mtd);
4559
4560        if (!chip->ops.unlock_area)
4561                return -ENOTSUPP;
4562
4563        return chip->ops.unlock_area(chip, ofs, len);
4564}
4565
4566/* Set default functions */
4567static void nand_set_defaults(struct nand_chip *chip)
4568{
4569        /* If no controller is provided, use the dummy, legacy one. */
4570        if (!chip->controller) {
4571                chip->controller = &chip->legacy.dummy_controller;
4572                nand_controller_init(chip->controller);
4573        }
4574
4575        nand_legacy_set_defaults(chip);
4576
4577        if (!chip->buf_align)
4578                chip->buf_align = 1;
4579}
4580
4581/* Sanitize ONFI strings so we can safely print them */
4582void sanitize_string(uint8_t *s, size_t len)
4583{
4584        ssize_t i;
4585
4586        /* Null terminate */
4587        s[len - 1] = 0;
4588
4589        /* Remove non printable chars */
4590        for (i = 0; i < len - 1; i++) {
4591                if (s[i] < ' ' || s[i] > 127)
4592                        s[i] = '?';
4593        }
4594
4595        /* Remove trailing spaces */
4596        strim(s);
4597}
4598
4599/*
4600 * nand_id_has_period - Check if an ID string has a given wraparound period
4601 * @id_data: the ID string
4602 * @arrlen: the length of the @id_data array
4603 * @period: the period of repitition
4604 *
4605 * Check if an ID string is repeated within a given sequence of bytes at
4606 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
4607 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
4608 * if the repetition has a period of @period; otherwise, returns zero.
4609 */
4610static int nand_id_has_period(u8 *id_data, int arrlen, int period)
4611{
4612        int i, j;
4613        for (i = 0; i < period; i++)
4614                for (j = i + period; j < arrlen; j += period)
4615                        if (id_data[i] != id_data[j])
4616                                return 0;
4617        return 1;
4618}
4619
4620/*
4621 * nand_id_len - Get the length of an ID string returned by CMD_READID
4622 * @id_data: the ID string
4623 * @arrlen: the length of the @id_data array
4624
4625 * Returns the length of the ID string, according to known wraparound/trailing
4626 * zero patterns. If no pattern exists, returns the length of the array.
4627 */
4628static int nand_id_len(u8 *id_data, int arrlen)
4629{
4630        int last_nonzero, period;
4631
4632        /* Find last non-zero byte */
4633        for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
4634                if (id_data[last_nonzero])
4635                        break;
4636
4637        /* All zeros */
4638        if (last_nonzero < 0)
4639                return 0;
4640
4641        /* Calculate wraparound period */
4642        for (period = 1; period < arrlen; period++)
4643                if (nand_id_has_period(id_data, arrlen, period))
4644                        break;
4645
4646        /* There's a repeated pattern */
4647        if (period < arrlen)
4648                return period;
4649
4650        /* There are trailing zeros */
4651        if (last_nonzero < arrlen - 1)
4652                return last_nonzero + 1;
4653
4654        /* No pattern detected */
4655        return arrlen;
4656}
4657
4658/* Extract the bits of per cell from the 3rd byte of the extended ID */
4659static int nand_get_bits_per_cell(u8 cellinfo)
4660{
4661        int bits;
4662
4663        bits = cellinfo & NAND_CI_CELLTYPE_MSK;
4664        bits >>= NAND_CI_CELLTYPE_SHIFT;
4665        return bits + 1;
4666}
4667
4668/*
4669 * Many new NAND share similar device ID codes, which represent the size of the
4670 * chip. The rest of the parameters must be decoded according to generic or
4671 * manufacturer-specific "extended ID" decoding patterns.
4672 */
4673void nand_decode_ext_id(struct nand_chip *chip)
4674{
4675        struct nand_memory_organization *memorg;
4676        struct mtd_info *mtd = nand_to_mtd(chip);
4677        int extid;
4678        u8 *id_data = chip->id.data;
4679
4680        memorg = nanddev_get_memorg(&chip->base);
4681
4682        /* The 3rd id byte holds MLC / multichip data */
4683        memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4684        /* The 4th id byte is the important one */
4685        extid = id_data[3];
4686
4687        /* Calc pagesize */
4688        memorg->pagesize = 1024 << (extid & 0x03);
4689        mtd->writesize = memorg->pagesize;
4690        extid >>= 2;
4691        /* Calc oobsize */
4692        memorg->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
4693        mtd->oobsize = memorg->oobsize;
4694        extid >>= 2;
4695        /* Calc blocksize. Blocksize is multiples of 64KiB */
4696        memorg->pages_per_eraseblock = ((64 * 1024) << (extid & 0x03)) /
4697                                       memorg->pagesize;
4698        mtd->erasesize = (64 * 1024) << (extid & 0x03);
4699        extid >>= 2;
4700        /* Get buswidth information */
4701        if (extid & 0x1)
4702                chip->options |= NAND_BUSWIDTH_16;
4703}
4704EXPORT_SYMBOL_GPL(nand_decode_ext_id);
4705
4706/*
4707 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
4708 * decodes a matching ID table entry and assigns the MTD size parameters for
4709 * the chip.
4710 */
4711static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
4712{
4713        struct mtd_info *mtd = nand_to_mtd(chip);
4714        struct nand_memory_organization *memorg;
4715
4716        memorg = nanddev_get_memorg(&chip->base);
4717
4718        memorg->pages_per_eraseblock = type->erasesize / type->pagesize;
4719        mtd->erasesize = type->erasesize;
4720        memorg->pagesize = type->pagesize;
4721        mtd->writesize = memorg->pagesize;
4722        memorg->oobsize = memorg->pagesize / 32;
4723        mtd->oobsize = memorg->oobsize;
4724
4725        /* All legacy ID NAND are small-page, SLC */
4726        memorg->bits_per_cell = 1;
4727}
4728
4729/*
4730 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
4731 * heuristic patterns using various detected parameters (e.g., manufacturer,
4732 * page size, cell-type information).
4733 */
4734static void nand_decode_bbm_options(struct nand_chip *chip)
4735{
4736        struct mtd_info *mtd = nand_to_mtd(chip);
4737
4738        /* Set the bad block position */
4739        if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
4740                chip->badblockpos = NAND_BBM_POS_LARGE;
4741        else
4742                chip->badblockpos = NAND_BBM_POS_SMALL;
4743}
4744
4745static inline bool is_full_id_nand(struct nand_flash_dev *type)
4746{
4747        return type->id_len;
4748}
4749
4750static bool find_full_id_nand(struct nand_chip *chip,
4751                              struct nand_flash_dev *type)
4752{
4753        struct mtd_info *mtd = nand_to_mtd(chip);
4754        struct nand_memory_organization *memorg;
4755        u8 *id_data = chip->id.data;
4756
4757        memorg = nanddev_get_memorg(&chip->base);
4758
4759        if (!strncmp(type->id, id_data, type->id_len)) {
4760                memorg->pagesize = type->pagesize;
4761                mtd->writesize = memorg->pagesize;
4762                memorg->pages_per_eraseblock = type->erasesize /
4763                                               type->pagesize;
4764                mtd->erasesize = type->erasesize;
4765                memorg->oobsize = type->oobsize;
4766                mtd->oobsize = memorg->oobsize;
4767
4768                memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4769                memorg->eraseblocks_per_lun =
4770                        DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
4771                                           memorg->pagesize *
4772                                           memorg->pages_per_eraseblock);
4773                chip->options |= type->options;
4774                chip->base.eccreq.strength = NAND_ECC_STRENGTH(type);
4775                chip->base.eccreq.step_size = NAND_ECC_STEP(type);
4776
4777                chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
4778                if (!chip->parameters.model)
4779                        return false;
4780
4781                return true;
4782        }
4783        return false;
4784}
4785
4786/*
4787 * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
4788 * compliant and does not have a full-id or legacy-id entry in the nand_ids
4789 * table.
4790 */
4791static void nand_manufacturer_detect(struct nand_chip *chip)
4792{
4793        /*
4794         * Try manufacturer detection if available and use
4795         * nand_decode_ext_id() otherwise.
4796         */
4797        if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
4798            chip->manufacturer.desc->ops->detect) {
4799                struct nand_memory_organization *memorg;
4800
4801                memorg = nanddev_get_memorg(&chip->base);
4802
4803                /* The 3rd id byte holds MLC / multichip data */
4804                memorg->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]);
4805                chip->manufacturer.desc->ops->detect(chip);
4806        } else {
4807                nand_decode_ext_id(chip);
4808        }
4809}
4810
4811/*
4812 * Manufacturer initialization. This function is called for all NANDs including
4813 * ONFI and JEDEC compliant ones.
4814 * Manufacturer drivers should put all their specific initialization code in
4815 * their ->init() hook.
4816 */
4817static int nand_manufacturer_init(struct nand_chip *chip)
4818{
4819        if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
4820            !chip->manufacturer.desc->ops->init)
4821                return 0;
4822
4823        return chip->manufacturer.desc->ops->init(chip);
4824}
4825
4826/*
4827 * Manufacturer cleanup. This function is called for all NANDs including
4828 * ONFI and JEDEC compliant ones.
4829 * Manufacturer drivers should put all their specific cleanup code in their
4830 * ->cleanup() hook.
4831 */
4832static void nand_manufacturer_cleanup(struct nand_chip *chip)
4833{
4834        /* Release manufacturer private data */
4835        if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
4836            chip->manufacturer.desc->ops->cleanup)
4837                chip->manufacturer.desc->ops->cleanup(chip);
4838}
4839
4840static const char *
4841nand_manufacturer_name(const struct nand_manufacturer_desc *manufacturer_desc)
4842{
4843        return manufacturer_desc ? manufacturer_desc->name : "Unknown";
4844}
4845
4846/*
4847 * Get the flash and manufacturer id and lookup if the type is supported.
4848 */
4849static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
4850{
4851        const struct nand_manufacturer_desc *manufacturer_desc;
4852        struct mtd_info *mtd = nand_to_mtd(chip);
4853        struct nand_memory_organization *memorg;
4854        int busw, ret;
4855        u8 *id_data = chip->id.data;
4856        u8 maf_id, dev_id;
4857        u64 targetsize;
4858
4859        /*
4860         * Let's start by initializing memorg fields that might be left
4861         * unassigned by the ID-based detection logic.
4862         */
4863        memorg = nanddev_get_memorg(&chip->base);
4864        memorg->planes_per_lun = 1;
4865        memorg->luns_per_target = 1;
4866
4867        /*
4868         * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
4869         * after power-up.
4870         */
4871        ret = nand_reset(chip, 0);
4872        if (ret)
4873                return ret;
4874
4875        /* Select the device */
4876        nand_select_target(chip, 0);
4877
4878        /* Send the command for reading device ID */
4879        ret = nand_readid_op(chip, 0, id_data, 2);
4880        if (ret)
4881                return ret;
4882
4883        /* Read manufacturer and device IDs */
4884        maf_id = id_data[0];
4885        dev_id = id_data[1];
4886
4887        /*
4888         * Try again to make sure, as some systems the bus-hold or other
4889         * interface concerns can cause random data which looks like a
4890         * possibly credible NAND flash to appear. If the two results do
4891         * not match, ignore the device completely.
4892         */
4893
4894        /* Read entire ID string */
4895        ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data));
4896        if (ret)
4897                return ret;
4898
4899        if (id_data[0] != maf_id || id_data[1] != dev_id) {
4900                pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
4901                        maf_id, dev_id, id_data[0], id_data[1]);
4902                return -ENODEV;
4903        }
4904
4905        chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data));
4906
4907        /* Try to identify manufacturer */
4908        manufacturer_desc = nand_get_manufacturer_desc(maf_id);
4909        chip->manufacturer.desc = manufacturer_desc;
4910
4911        if (!type)
4912                type = nand_flash_ids;
4913
4914        /*
4915         * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
4916         * override it.
4917         * This is required to make sure initial NAND bus width set by the
4918         * NAND controller driver is coherent with the real NAND bus width
4919         * (extracted by auto-detection code).
4920         */
4921        busw = chip->options & NAND_BUSWIDTH_16;
4922
4923        /*
4924         * The flag is only set (never cleared), reset it to its default value
4925         * before starting auto-detection.
4926         */
4927        chip->options &= ~NAND_BUSWIDTH_16;
4928
4929        for (; type->name != NULL; type++) {
4930                if (is_full_id_nand(type)) {
4931                        if (find_full_id_nand(chip, type))
4932                                goto ident_done;
4933                } else if (dev_id == type->dev_id) {
4934                        break;
4935                }
4936        }
4937
4938        if (!type->name || !type->pagesize) {
4939                /* Check if the chip is ONFI compliant */
4940                ret = nand_onfi_detect(chip);
4941                if (ret < 0)
4942                        return ret;
4943                else if (ret)
4944                        goto ident_done;
4945
4946                /* Check if the chip is JEDEC compliant */
4947                ret = nand_jedec_detect(chip);
4948                if (ret < 0)
4949                        return ret;
4950                else if (ret)
4951                        goto ident_done;
4952        }
4953
4954        if (!type->name)
4955                return -ENODEV;
4956
4957        chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
4958        if (!chip->parameters.model)
4959                return -ENOMEM;
4960
4961        if (!type->pagesize)
4962                nand_manufacturer_detect(chip);
4963        else
4964                nand_decode_id(chip, type);
4965
4966        /* Get chip options */
4967        chip->options |= type->options;
4968
4969        memorg->eraseblocks_per_lun =
4970                        DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
4971                                           memorg->pagesize *
4972                                           memorg->pages_per_eraseblock);
4973
4974ident_done:
4975        if (!mtd->name)
4976                mtd->name = chip->parameters.model;
4977
4978        if (chip->options & NAND_BUSWIDTH_AUTO) {
4979                WARN_ON(busw & NAND_BUSWIDTH_16);
4980                nand_set_defaults(chip);
4981        } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
4982                /*
4983                 * Check, if buswidth is correct. Hardware drivers should set
4984                 * chip correct!
4985                 */
4986                pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
4987                        maf_id, dev_id);
4988                pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
4989                        mtd->name);
4990                pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
4991                        (chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
4992                ret = -EINVAL;
4993
4994                goto free_detect_allocation;
4995        }
4996
4997        nand_decode_bbm_options(chip);
4998
4999        /* Calculate the address shift from the page size */
5000        chip->page_shift = ffs(mtd->writesize) - 1;
5001        /* Convert chipsize to number of pages per chip -1 */
5002        targetsize = nanddev_target_size(&chip->base);
5003        chip->pagemask = (targetsize >> chip->page_shift) - 1;
5004
5005        chip->bbt_erase_shift = chip->phys_erase_shift =
5006                ffs(mtd->erasesize) - 1;
5007        if (targetsize & 0xffffffff)
5008                chip->chip_shift = ffs((unsigned)targetsize) - 1;
5009        else {
5010                chip->chip_shift = ffs((unsigned)(targetsize >> 32));
5011                chip->chip_shift += 32 - 1;
5012        }
5013
5014        if (chip->chip_shift - chip->page_shift > 16)
5015                chip->options |= NAND_ROW_ADDR_3;
5016
5017        chip->badblockbits = 8;
5018
5019        nand_legacy_adjust_cmdfunc(chip);
5020
5021        pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
5022                maf_id, dev_id);
5023        pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
5024                chip->parameters.model);
5025        pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
5026                (int)(targetsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
5027                mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
5028        return 0;
5029
5030free_detect_allocation:
5031        kfree(chip->parameters.model);
5032
5033        return ret;
5034}
5035
5036static const char * const nand_ecc_modes[] = {
5037        [NAND_ECC_NONE]         = "none",
5038        [NAND_ECC_SOFT]         = "soft",
5039        [NAND_ECC_HW]           = "hw",
5040        [NAND_ECC_HW_SYNDROME]  = "hw_syndrome",
5041        [NAND_ECC_ON_DIE]       = "on-die",
5042};
5043
5044static int of_get_nand_ecc_mode(struct device_node *np)
5045{
5046        const char *pm;
5047        int err, i;
5048
5049        err = of_property_read_string(np, "nand-ecc-mode", &pm);
5050        if (err < 0)
5051                return err;
5052
5053        for (i = NAND_ECC_NONE; i < ARRAY_SIZE(nand_ecc_modes); i++)
5054                if (!strcasecmp(pm, nand_ecc_modes[i]))
5055                        return i;
5056
5057        /*
5058         * For backward compatibility we support few obsoleted values that don't
5059         * have their mappings into the nand_ecc_mode enum anymore (they were
5060         * merged with other enums).
5061         */
5062        if (!strcasecmp(pm, "soft_bch"))
5063                return NAND_ECC_SOFT;
5064
5065        return -ENODEV;
5066}
5067
5068static const char * const nand_ecc_algos[] = {
5069        [NAND_ECC_HAMMING]      = "hamming",
5070        [NAND_ECC_BCH]          = "bch",
5071        [NAND_ECC_RS]           = "rs",
5072};
5073
5074static enum nand_ecc_algo of_get_nand_ecc_algo(struct device_node *np)
5075{
5076        enum nand_ecc_algo ecc_algo;
5077        const char *pm;
5078        int err;
5079
5080        err = of_property_read_string(np, "nand-ecc-algo", &pm);
5081        if (!err) {
5082                for (ecc_algo = NAND_ECC_HAMMING;
5083                     ecc_algo < ARRAY_SIZE(nand_ecc_algos);
5084                     ecc_algo++) {
5085                        if (!strcasecmp(pm, nand_ecc_algos[ecc_algo]))
5086                                return ecc_algo;
5087                }
5088        }
5089
5090        /*
5091         * For backward compatibility we also read "nand-ecc-mode" checking
5092         * for some obsoleted values that were specifying ECC algorithm.
5093         */
5094        err = of_property_read_string(np, "nand-ecc-mode", &pm);
5095        if (!err) {
5096                if (!strcasecmp(pm, "soft"))
5097                        return NAND_ECC_HAMMING;
5098                else if (!strcasecmp(pm, "soft_bch"))
5099                        return NAND_ECC_BCH;
5100        }
5101
5102        return NAND_ECC_UNKNOWN;
5103}
5104
5105static int of_get_nand_ecc_step_size(struct device_node *np)
5106{
5107        int ret;
5108        u32 val;
5109
5110        ret = of_property_read_u32(np, "nand-ecc-step-size", &val);
5111        return ret ? ret : val;
5112}
5113
5114static int of_get_nand_ecc_strength(struct device_node *np)
5115{
5116        int ret;
5117        u32 val;
5118
5119        ret = of_property_read_u32(np, "nand-ecc-strength", &val);
5120        return ret ? ret : val;
5121}
5122
5123static int of_get_nand_bus_width(struct device_node *np)
5124{
5125        u32 val;
5126
5127        if (of_property_read_u32(np, "nand-bus-width", &val))
5128                return 8;
5129
5130        switch (val) {
5131        case 8:
5132        case 16:
5133                return val;
5134        default:
5135                return -EIO;
5136        }
5137}
5138
5139static bool of_get_nand_on_flash_bbt(struct device_node *np)
5140{
5141        return of_property_read_bool(np, "nand-on-flash-bbt");
5142}
5143
5144static int nand_dt_init(struct nand_chip *chip)
5145{
5146        struct device_node *dn = nand_get_flash_node(chip);
5147        enum nand_ecc_algo ecc_algo;
5148        int ecc_mode, ecc_strength, ecc_step;
5149
5150        if (!dn)
5151                return 0;
5152
5153        if (of_get_nand_bus_width(dn) == 16)
5154                chip->options |= NAND_BUSWIDTH_16;
5155
5156        if (of_property_read_bool(dn, "nand-is-boot-medium"))
5157                chip->options |= NAND_IS_BOOT_MEDIUM;
5158
5159        if (of_get_nand_on_flash_bbt(dn))
5160                chip->bbt_options |= NAND_BBT_USE_FLASH;
5161
5162        ecc_mode = of_get_nand_ecc_mode(dn);
5163        ecc_algo = of_get_nand_ecc_algo(dn);
5164        ecc_strength = of_get_nand_ecc_strength(dn);
5165        ecc_step = of_get_nand_ecc_step_size(dn);
5166
5167        if (ecc_mode >= 0)
5168                chip->ecc.mode = ecc_mode;
5169
5170        if (ecc_algo != NAND_ECC_UNKNOWN)
5171                chip->ecc.algo = ecc_algo;
5172
5173        if (ecc_strength >= 0)
5174                chip->ecc.strength = ecc_strength;
5175
5176        if (ecc_step > 0)
5177                chip->ecc.size = ecc_step;
5178
5179        if (of_property_read_bool(dn, "nand-ecc-maximize"))
5180                chip->ecc.options |= NAND_ECC_MAXIMIZE;
5181
5182        return 0;
5183}
5184
5185/**
5186 * nand_scan_ident - Scan for the NAND device
5187 * @chip: NAND chip object
5188 * @maxchips: number of chips to scan for
5189 * @table: alternative NAND ID table
5190 *
5191 * This is the first phase of the normal nand_scan() function. It reads the
5192 * flash ID and sets up MTD fields accordingly.
5193 *
5194 * This helper used to be called directly from controller drivers that needed
5195 * to tweak some ECC-related parameters before nand_scan_tail(). This separation
5196 * prevented dynamic allocations during this phase which was unconvenient and
5197 * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks.
5198 */
5199static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips,
5200                           struct nand_flash_dev *table)
5201{
5202        struct mtd_info *mtd = nand_to_mtd(chip);
5203        struct nand_memory_organization *memorg;
5204        int nand_maf_id, nand_dev_id;
5205        unsigned int i;
5206        int ret;
5207
5208        memorg = nanddev_get_memorg(&chip->base);
5209
5210        /* Assume all dies are deselected when we enter nand_scan_ident(). */
5211        chip->cur_cs = -1;
5212
5213        mutex_init(&chip->lock);
5214
5215        /* Enforce the right timings for reset/detection */
5216        chip->current_interface_config = nand_get_reset_interface_config();
5217
5218        ret = nand_dt_init(chip);
5219        if (ret)
5220                return ret;
5221
5222        if (!mtd->name && mtd->dev.parent)
5223                mtd->name = dev_name(mtd->dev.parent);
5224
5225        /* Set the default functions */
5226        nand_set_defaults(chip);
5227
5228        ret = nand_legacy_check_hooks(chip);
5229        if (ret)
5230                return ret;
5231
5232        memorg->ntargets = maxchips;
5233
5234        /* Read the flash type */
5235        ret = nand_detect(chip, table);
5236        if (ret) {
5237                if (!(chip->options & NAND_SCAN_SILENT_NODEV))
5238                        pr_warn("No NAND device found\n");
5239                nand_deselect_target(chip);
5240                return ret;
5241        }
5242
5243        nand_maf_id = chip->id.data[0];
5244        nand_dev_id = chip->id.data[1];
5245
5246        nand_deselect_target(chip);
5247
5248        /* Check for a chip array */
5249        for (i = 1; i < maxchips; i++) {
5250                u8 id[2];
5251
5252                /* See comment in nand_get_flash_type for reset */
5253                ret = nand_reset(chip, i);
5254                if (ret)
5255                        break;
5256
5257                nand_select_target(chip, i);
5258                /* Send the command for reading device ID */
5259                ret = nand_readid_op(chip, 0, id, sizeof(id));
5260                if (ret)
5261                        break;
5262                /* Read manufacturer and device IDs */
5263                if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
5264                        nand_deselect_target(chip);
5265                        break;
5266                }
5267                nand_deselect_target(chip);
5268        }
5269        if (i > 1)
5270                pr_info("%d chips detected\n", i);
5271
5272        /* Store the number of chips and calc total size for mtd */
5273        memorg->ntargets = i;
5274        mtd->size = i * nanddev_target_size(&chip->base);
5275
5276        return 0;
5277}
5278
5279static void nand_scan_ident_cleanup(struct nand_chip *chip)
5280{
5281        kfree(chip->parameters.model);
5282        kfree(chip->parameters.onfi);
5283}
5284
5285static int nand_set_ecc_soft_ops(struct nand_chip *chip)
5286{
5287        struct mtd_info *mtd = nand_to_mtd(chip);
5288        struct nand_ecc_ctrl *ecc = &chip->ecc;
5289
5290        if (WARN_ON(ecc->mode != NAND_ECC_SOFT))
5291                return -EINVAL;
5292
5293        switch (ecc->algo) {
5294        case NAND_ECC_HAMMING:
5295                ecc->calculate = nand_calculate_ecc;
5296                ecc->correct = nand_correct_data;
5297                ecc->read_page = nand_read_page_swecc;
5298                ecc->read_subpage = nand_read_subpage;
5299                ecc->write_page = nand_write_page_swecc;
5300                if (!ecc->read_page_raw)
5301                        ecc->read_page_raw = nand_read_page_raw;
5302                if (!ecc->write_page_raw)
5303                        ecc->write_page_raw = nand_write_page_raw;
5304                ecc->read_oob = nand_read_oob_std;
5305                ecc->write_oob = nand_write_oob_std;
5306                if (!ecc->size)
5307                        ecc->size = 256;
5308                ecc->bytes = 3;
5309                ecc->strength = 1;
5310
5311                if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC))
5312                        ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
5313
5314                return 0;
5315        case NAND_ECC_BCH:
5316                if (!mtd_nand_has_bch()) {
5317                        WARN(1, "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
5318                        return -EINVAL;
5319                }
5320                ecc->calculate = nand_bch_calculate_ecc;
5321                ecc->correct = nand_bch_correct_data;
5322                ecc->read_page = nand_read_page_swecc;
5323                ecc->read_subpage = nand_read_subpage;
5324                ecc->write_page = nand_write_page_swecc;
5325                if (!ecc->read_page_raw)
5326                        ecc->read_page_raw = nand_read_page_raw;
5327                if (!ecc->write_page_raw)
5328                        ecc->write_page_raw = nand_write_page_raw;
5329                ecc->read_oob = nand_read_oob_std;
5330                ecc->write_oob = nand_write_oob_std;
5331
5332                /*
5333                * Board driver should supply ecc.size and ecc.strength
5334                * values to select how many bits are correctable.
5335                * Otherwise, default to 4 bits for large page devices.
5336                */
5337                if (!ecc->size && (mtd->oobsize >= 64)) {
5338                        ecc->size = 512;
5339                        ecc->strength = 4;
5340                }
5341
5342                /*
5343                 * if no ecc placement scheme was provided pickup the default
5344                 * large page one.
5345                 */
5346                if (!mtd->ooblayout) {
5347                        /* handle large page devices only */
5348                        if (mtd->oobsize < 64) {
5349                                WARN(1, "OOB layout is required when using software BCH on small pages\n");
5350                                return -EINVAL;
5351                        }
5352
5353                        mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
5354
5355                }
5356
5357                /*
5358                 * We can only maximize ECC config when the default layout is
5359                 * used, otherwise we don't know how many bytes can really be
5360                 * used.
5361                 */
5362                if (mtd->ooblayout == &nand_ooblayout_lp_ops &&
5363                    ecc->options & NAND_ECC_MAXIMIZE) {
5364                        int steps, bytes;
5365
5366                        /* Always prefer 1k blocks over 512bytes ones */
5367                        ecc->size = 1024;
5368                        steps = mtd->writesize / ecc->size;
5369
5370                        /* Reserve 2 bytes for the BBM */
5371                        bytes = (mtd->oobsize - 2) / steps;
5372                        ecc->strength = bytes * 8 / fls(8 * ecc->size);
5373                }
5374
5375                /* See nand_bch_init() for details. */
5376                ecc->bytes = 0;
5377                ecc->priv = nand_bch_init(mtd);
5378                if (!ecc->priv) {
5379                        WARN(1, "BCH ECC initialization failed!\n");
5380                        return -EINVAL;
5381                }
5382                return 0;
5383        default:
5384                WARN(1, "Unsupported ECC algorithm!\n");
5385                return -EINVAL;
5386        }
5387}
5388
5389/**
5390 * nand_check_ecc_caps - check the sanity of preset ECC settings
5391 * @chip: nand chip info structure
5392 * @caps: ECC caps info structure
5393 * @oobavail: OOB size that the ECC engine can use
5394 *
5395 * When ECC step size and strength are already set, check if they are supported
5396 * by the controller and the calculated ECC bytes fit within the chip's OOB.
5397 * On success, the calculated ECC bytes is set.
5398 */
5399static int
5400nand_check_ecc_caps(struct nand_chip *chip,
5401                    const struct nand_ecc_caps *caps, int oobavail)
5402{
5403        struct mtd_info *mtd = nand_to_mtd(chip);
5404        const struct nand_ecc_step_info *stepinfo;
5405        int preset_step = chip->ecc.size;
5406        int preset_strength = chip->ecc.strength;
5407        int ecc_bytes, nsteps = mtd->writesize / preset_step;
5408        int i, j;
5409
5410        for (i = 0; i < caps->nstepinfos; i++) {
5411                stepinfo = &caps->stepinfos[i];
5412
5413                if (stepinfo->stepsize != preset_step)
5414                        continue;
5415
5416                for (j = 0; j < stepinfo->nstrengths; j++) {
5417                        if (stepinfo->strengths[j] != preset_strength)
5418                                continue;
5419
5420                        ecc_bytes = caps->calc_ecc_bytes(preset_step,
5421                                                         preset_strength);
5422                        if (WARN_ON_ONCE(ecc_bytes < 0))
5423                                return ecc_bytes;
5424
5425                        if (ecc_bytes * nsteps > oobavail) {
5426                                pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
5427                                       preset_step, preset_strength);
5428                                return -ENOSPC;
5429                        }
5430
5431                        chip->ecc.bytes = ecc_bytes;
5432
5433                        return 0;
5434                }
5435        }
5436
5437        pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
5438               preset_step, preset_strength);
5439
5440        return -ENOTSUPP;
5441}
5442
5443/**
5444 * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
5445 * @chip: nand chip info structure
5446 * @caps: ECC engine caps info structure
5447 * @oobavail: OOB size that the ECC engine can use
5448 *
5449 * If a chip's ECC requirement is provided, try to meet it with the least
5450 * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
5451 * On success, the chosen ECC settings are set.
5452 */
5453static int
5454nand_match_ecc_req(struct nand_chip *chip,
5455                   const struct nand_ecc_caps *caps, int oobavail)
5456{
5457        struct mtd_info *mtd = nand_to_mtd(chip);
5458        const struct nand_ecc_step_info *stepinfo;
5459        int req_step = chip->base.eccreq.step_size;
5460        int req_strength = chip->base.eccreq.strength;
5461        int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
5462        int best_step, best_strength, best_ecc_bytes;
5463        int best_ecc_bytes_total = INT_MAX;
5464        int i, j;
5465
5466        /* No information provided by the NAND chip */
5467        if (!req_step || !req_strength)
5468                return -ENOTSUPP;
5469
5470        /* number of correctable bits the chip requires in a page */
5471        req_corr = mtd->writesize / req_step * req_strength;
5472
5473        for (i = 0; i < caps->nstepinfos; i++) {
5474                stepinfo = &caps->stepinfos[i];
5475                step_size = stepinfo->stepsize;
5476
5477                for (j = 0; j < stepinfo->nstrengths; j++) {
5478                        strength = stepinfo->strengths[j];
5479
5480                        /*
5481                         * If both step size and strength are smaller than the
5482                         * chip's requirement, it is not easy to compare the
5483                         * resulted reliability.
5484                         */
5485                        if (step_size < req_step && strength < req_strength)
5486                                continue;
5487
5488                        if (mtd->writesize % step_size)
5489                                continue;
5490
5491                        nsteps = mtd->writesize / step_size;
5492
5493                        ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
5494                        if (WARN_ON_ONCE(ecc_bytes < 0))
5495                                continue;
5496                        ecc_bytes_total = ecc_bytes * nsteps;
5497
5498                        if (ecc_bytes_total > oobavail ||
5499                            strength * nsteps < req_corr)
5500                                continue;
5501
5502                        /*
5503                         * We assume the best is to meet the chip's requrement
5504                         * with the least number of ECC bytes.
5505                         */
5506                        if (ecc_bytes_total < best_ecc_bytes_total) {
5507                                best_ecc_bytes_total = ecc_bytes_total;
5508                                best_step = step_size;
5509                                best_strength = strength;
5510                                best_ecc_bytes = ecc_bytes;
5511                        }
5512                }
5513        }
5514
5515        if (best_ecc_bytes_total == INT_MAX)
5516                return -ENOTSUPP;
5517
5518        chip->ecc.size = best_step;
5519        chip->ecc.strength = best_strength;
5520        chip->ecc.bytes = best_ecc_bytes;
5521
5522        return 0;
5523}
5524
5525/**
5526 * nand_maximize_ecc - choose the max ECC strength available
5527 * @chip: nand chip info structure
5528 * @caps: ECC engine caps info structure
5529 * @oobavail: OOB size that the ECC engine can use
5530 *
5531 * Choose the max ECC strength that is supported on the controller, and can fit
5532 * within the chip's OOB.  On success, the chosen ECC settings are set.
5533 */
5534static int
5535nand_maximize_ecc(struct nand_chip *chip,
5536                  const struct nand_ecc_caps *caps, int oobavail)
5537{
5538        struct mtd_info *mtd = nand_to_mtd(chip);
5539        const struct nand_ecc_step_info *stepinfo;
5540        int step_size, strength, nsteps, ecc_bytes, corr;
5541        int best_corr = 0;
5542        int best_step = 0;
5543        int best_strength, best_ecc_bytes;
5544        int i, j;
5545
5546        for (i = 0; i < caps->nstepinfos; i++) {
5547                stepinfo = &caps->stepinfos[i];
5548                step_size = stepinfo->stepsize;
5549
5550                /* If chip->ecc.size is already set, respect it */
5551                if (chip->ecc.size && step_size != chip->ecc.size)
5552                        continue;
5553
5554                for (j = 0; j < stepinfo->nstrengths; j++) {
5555                        strength = stepinfo->strengths[j];
5556
5557                        if (mtd->writesize % step_size)
5558                                continue;
5559
5560                        nsteps = mtd->writesize / step_size;
5561
5562                        ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
5563                        if (WARN_ON_ONCE(ecc_bytes < 0))
5564                                continue;
5565
5566                        if (ecc_bytes * nsteps > oobavail)
5567                                continue;
5568
5569                        corr = strength * nsteps;
5570
5571                        /*
5572                         * If the number of correctable bits is the same,
5573                         * bigger step_size has more reliability.
5574                         */
5575                        if (corr > best_corr ||
5576                            (corr == best_corr && step_size > best_step)) {
5577                                best_corr = corr;
5578                                best_step = step_size;
5579                                best_strength = strength;
5580                                best_ecc_bytes = ecc_bytes;
5581                        }
5582                }
5583        }
5584
5585        if (!best_corr)
5586                return -ENOTSUPP;
5587
5588        chip->ecc.size = best_step;
5589        chip->ecc.strength = best_strength;
5590        chip->ecc.bytes = best_ecc_bytes;
5591
5592        return 0;
5593}
5594
5595/**
5596 * nand_ecc_choose_conf - Set the ECC strength and ECC step size
5597 * @chip: nand chip info structure
5598 * @caps: ECC engine caps info structure
5599 * @oobavail: OOB size that the ECC engine can use
5600 *
5601 * Choose the ECC configuration according to following logic
5602 *
5603 * 1. If both ECC step size and ECC strength are already set (usually by DT)
5604 *    then check if it is supported by this controller.
5605 * 2. If NAND_ECC_MAXIMIZE is set, then select maximum ECC strength.
5606 * 3. Otherwise, try to match the ECC step size and ECC strength closest
5607 *    to the chip's requirement. If available OOB size can't fit the chip
5608 *    requirement then fallback to the maximum ECC step size and ECC strength.
5609 *
5610 * On success, the chosen ECC settings are set.
5611 */
5612int nand_ecc_choose_conf(struct nand_chip *chip,
5613                         const struct nand_ecc_caps *caps, int oobavail)
5614{
5615        struct mtd_info *mtd = nand_to_mtd(chip);
5616
5617        if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize))
5618                return -EINVAL;
5619
5620        if (chip->ecc.size && chip->ecc.strength)
5621                return nand_check_ecc_caps(chip, caps, oobavail);
5622
5623        if (chip->ecc.options & NAND_ECC_MAXIMIZE)
5624                return nand_maximize_ecc(chip, caps, oobavail);
5625
5626        if (!nand_match_ecc_req(chip, caps, oobavail))
5627                return 0;
5628
5629        return nand_maximize_ecc(chip, caps, oobavail);
5630}
5631EXPORT_SYMBOL_GPL(nand_ecc_choose_conf);
5632
5633/*
5634 * Check if the chip configuration meet the datasheet requirements.
5635
5636 * If our configuration corrects A bits per B bytes and the minimum
5637 * required correction level is X bits per Y bytes, then we must ensure
5638 * both of the following are true:
5639 *
5640 * (1) A / B >= X / Y
5641 * (2) A >= X
5642 *
5643 * Requirement (1) ensures we can correct for the required bitflip density.
5644 * Requirement (2) ensures we can correct even when all bitflips are clumped
5645 * in the same sector.
5646 */
5647static bool nand_ecc_strength_good(struct nand_chip *chip)
5648{
5649        struct mtd_info *mtd = nand_to_mtd(chip);
5650        struct nand_ecc_ctrl *ecc = &chip->ecc;
5651        int corr, ds_corr;
5652
5653        if (ecc->size == 0 || chip->base.eccreq.step_size == 0)
5654                /* Not enough information */
5655                return true;
5656
5657        /*
5658         * We get the number of corrected bits per page to compare
5659         * the correction density.
5660         */
5661        corr = (mtd->writesize * ecc->strength) / ecc->size;
5662        ds_corr = (mtd->writesize * chip->base.eccreq.strength) /
5663                  chip->base.eccreq.step_size;
5664
5665        return corr >= ds_corr && ecc->strength >= chip->base.eccreq.strength;
5666}
5667
5668static int rawnand_erase(struct nand_device *nand, const struct nand_pos *pos)
5669{
5670        struct nand_chip *chip = container_of(nand, struct nand_chip,
5671                                              base);
5672        unsigned int eb = nanddev_pos_to_row(nand, pos);
5673        int ret;
5674
5675        eb >>= nand->rowconv.eraseblock_addr_shift;
5676
5677        nand_select_target(chip, pos->target);
5678        ret = nand_erase_op(chip, eb);
5679        nand_deselect_target(chip);
5680
5681        return ret;
5682}
5683
5684static int rawnand_markbad(struct nand_device *nand,
5685                           const struct nand_pos *pos)
5686{
5687        struct nand_chip *chip = container_of(nand, struct nand_chip,
5688                                              base);
5689
5690        return nand_markbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
5691}
5692
5693static bool rawnand_isbad(struct nand_device *nand, const struct nand_pos *pos)
5694{
5695        struct nand_chip *chip = container_of(nand, struct nand_chip,
5696                                              base);
5697        int ret;
5698
5699        nand_select_target(chip, pos->target);
5700        ret = nand_isbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
5701        nand_deselect_target(chip);
5702
5703        return ret;
5704}
5705
5706static const struct nand_ops rawnand_ops = {
5707        .erase = rawnand_erase,
5708        .markbad = rawnand_markbad,
5709        .isbad = rawnand_isbad,
5710};
5711
5712/**
5713 * nand_scan_tail - Scan for the NAND device
5714 * @chip: NAND chip object
5715 *
5716 * This is the second phase of the normal nand_scan() function. It fills out
5717 * all the uninitialized function pointers with the defaults and scans for a
5718 * bad block table if appropriate.
5719 */
5720static int nand_scan_tail(struct nand_chip *chip)
5721{
5722        struct mtd_info *mtd = nand_to_mtd(chip);
5723        struct nand_ecc_ctrl *ecc = &chip->ecc;
5724        int ret, i;
5725
5726        /* New bad blocks should be marked in OOB, flash-based BBT, or both */
5727        if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
5728                   !(chip->bbt_options & NAND_BBT_USE_FLASH))) {
5729                return -EINVAL;
5730        }
5731
5732        chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
5733        if (!chip->data_buf)
5734                return -ENOMEM;
5735
5736        /*
5737         * FIXME: some NAND manufacturer drivers expect the first die to be
5738         * selected when manufacturer->init() is called. They should be fixed
5739         * to explictly select the relevant die when interacting with the NAND
5740         * chip.
5741         */
5742        nand_select_target(chip, 0);
5743        ret = nand_manufacturer_init(chip);
5744        nand_deselect_target(chip);
5745        if (ret)
5746                goto err_free_buf;
5747
5748        /* Set the internal oob buffer location, just after the page data */
5749        chip->oob_poi = chip->data_buf + mtd->writesize;
5750
5751        /*
5752         * If no default placement scheme is given, select an appropriate one.
5753         */
5754        if (!mtd->ooblayout &&
5755            !(ecc->mode == NAND_ECC_SOFT && ecc->algo == NAND_ECC_BCH)) {
5756                switch (mtd->oobsize) {
5757                case 8:
5758                case 16:
5759                        mtd_set_ooblayout(mtd, &nand_ooblayout_sp_ops);
5760                        break;
5761                case 64:
5762                case 128:
5763                        mtd_set_ooblayout(mtd, &nand_ooblayout_lp_hamming_ops);
5764                        break;
5765                default:
5766                        /*
5767                         * Expose the whole OOB area to users if ECC_NONE
5768                         * is passed. We could do that for all kind of
5769                         * ->oobsize, but we must keep the old large/small
5770                         * page with ECC layout when ->oobsize <= 128 for
5771                         * compatibility reasons.
5772                         */
5773                        if (ecc->mode == NAND_ECC_NONE) {
5774                                mtd_set_ooblayout(mtd,
5775                                                &nand_ooblayout_lp_ops);
5776                                break;
5777                        }
5778
5779                        WARN(1, "No oob scheme defined for oobsize %d\n",
5780                                mtd->oobsize);
5781                        ret = -EINVAL;
5782                        goto err_nand_manuf_cleanup;
5783                }
5784        }
5785
5786        /*
5787         * Check ECC mode, default to software if 3byte/512byte hardware ECC is
5788         * selected and we have 256 byte pagesize fallback to software ECC
5789         */
5790
5791        switch (ecc->mode) {
5792        case NAND_ECC_HW:
5793                /* Use standard hwecc read page function? */
5794                if (!ecc->read_page)
5795                        ecc->read_page = nand_read_page_hwecc;
5796                if (!ecc->write_page)
5797                        ecc->write_page = nand_write_page_hwecc;
5798                if (!ecc->read_page_raw)
5799                        ecc->read_page_raw = nand_read_page_raw;
5800                if (!ecc->write_page_raw)
5801                        ecc->write_page_raw = nand_write_page_raw;
5802                if (!ecc->read_oob)
5803                        ecc->read_oob = nand_read_oob_std;
5804                if (!ecc->write_oob)
5805                        ecc->write_oob = nand_write_oob_std;
5806                if (!ecc->read_subpage)
5807                        ecc->read_subpage = nand_read_subpage;
5808                if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
5809                        ecc->write_subpage = nand_write_subpage_hwecc;
5810                fallthrough;
5811        case NAND_ECC_HW_SYNDROME:
5812                if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
5813                    (!ecc->read_page ||
5814                     ecc->read_page == nand_read_page_hwecc ||
5815                     !ecc->write_page ||
5816                     ecc->write_page == nand_write_page_hwecc)) {
5817                        WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
5818                        ret = -EINVAL;
5819                        goto err_nand_manuf_cleanup;
5820                }
5821                /* Use standard syndrome read/write page function? */
5822                if (!ecc->read_page)
5823                        ecc->read_page = nand_read_page_syndrome;
5824                if (!ecc->write_page)
5825                        ecc->write_page = nand_write_page_syndrome;
5826                if (!ecc->read_page_raw)
5827                        ecc->read_page_raw = nand_read_page_raw_syndrome;
5828                if (!ecc->write_page_raw)
5829                        ecc->write_page_raw = nand_write_page_raw_syndrome;
5830                if (!ecc->read_oob)
5831                        ecc->read_oob = nand_read_oob_syndrome;
5832                if (!ecc->write_oob)
5833                        ecc->write_oob = nand_write_oob_syndrome;
5834
5835                if (mtd->writesize >= ecc->size) {
5836                        if (!ecc->strength) {
5837                                WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
5838                                ret = -EINVAL;
5839                                goto err_nand_manuf_cleanup;
5840                        }
5841                        break;
5842                }
5843                pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
5844                        ecc->size, mtd->writesize);
5845                ecc->mode = NAND_ECC_SOFT;
5846                ecc->algo = NAND_ECC_HAMMING;
5847                fallthrough;
5848        case NAND_ECC_SOFT:
5849                ret = nand_set_ecc_soft_ops(chip);
5850                if (ret) {
5851                        ret = -EINVAL;
5852                        goto err_nand_manuf_cleanup;
5853                }
5854                break;
5855
5856        case NAND_ECC_ON_DIE:
5857                if (!ecc->read_page || !ecc->write_page) {
5858                        WARN(1, "No ECC functions supplied; on-die ECC not possible\n");
5859                        ret = -EINVAL;
5860                        goto err_nand_manuf_cleanup;
5861                }
5862                if (!ecc->read_oob)
5863                        ecc->read_oob = nand_read_oob_std;
5864                if (!ecc->write_oob)
5865                        ecc->write_oob = nand_write_oob_std;
5866                break;
5867
5868        case NAND_ECC_NONE:
5869                pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
5870                ecc->read_page = nand_read_page_raw;
5871                ecc->write_page = nand_write_page_raw;
5872                ecc->read_oob = nand_read_oob_std;
5873                ecc->read_page_raw = nand_read_page_raw;
5874                ecc->write_page_raw = nand_write_page_raw;
5875                ecc->write_oob = nand_write_oob_std;
5876                ecc->size = mtd->writesize;
5877                ecc->bytes = 0;
5878                ecc->strength = 0;
5879                break;
5880
5881        default:
5882                WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->mode);
5883                ret = -EINVAL;
5884                goto err_nand_manuf_cleanup;
5885        }
5886
5887        if (ecc->correct || ecc->calculate) {
5888                ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
5889                ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
5890                if (!ecc->calc_buf || !ecc->code_buf) {
5891                        ret = -ENOMEM;
5892                        goto err_nand_manuf_cleanup;
5893                }
5894        }
5895
5896        /* For many systems, the standard OOB write also works for raw */
5897        if (!ecc->read_oob_raw)
5898                ecc->read_oob_raw = ecc->read_oob;
5899        if (!ecc->write_oob_raw)
5900                ecc->write_oob_raw = ecc->write_oob;
5901
5902        /* propagate ecc info to mtd_info */
5903        mtd->ecc_strength = ecc->strength;
5904        mtd->ecc_step_size = ecc->size;
5905
5906        /*
5907         * Set the number of read / write steps for one page depending on ECC
5908         * mode.
5909         */
5910        ecc->steps = mtd->writesize / ecc->size;
5911        if (ecc->steps * ecc->size != mtd->writesize) {
5912                WARN(1, "Invalid ECC parameters\n");
5913                ret = -EINVAL;
5914                goto err_nand_manuf_cleanup;
5915        }
5916        ecc->total = ecc->steps * ecc->bytes;
5917        if (ecc->total > mtd->oobsize) {
5918                WARN(1, "Total number of ECC bytes exceeded oobsize\n");
5919                ret = -EINVAL;
5920                goto err_nand_manuf_cleanup;
5921        }
5922
5923        /*
5924         * The number of bytes available for a client to place data into
5925         * the out of band area.
5926         */
5927        ret = mtd_ooblayout_count_freebytes(mtd);
5928        if (ret < 0)
5929                ret = 0;
5930
5931        mtd->oobavail = ret;
5932
5933        /* ECC sanity check: warn if it's too weak */
5934        if (!nand_ecc_strength_good(chip))
5935                pr_warn("WARNING: %s: the ECC used on your system (%db/%dB) is too weak compared to the one required by the NAND chip (%db/%dB)\n",
5936                        mtd->name, chip->ecc.strength, chip->ecc.size,
5937                        chip->base.eccreq.strength,
5938                        chip->base.eccreq.step_size);
5939
5940        /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
5941        if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
5942                switch (ecc->steps) {
5943                case 2:
5944                        mtd->subpage_sft = 1;
5945                        break;
5946                case 4:
5947                case 8:
5948                case 16:
5949                        mtd->subpage_sft = 2;
5950                        break;
5951                }
5952        }
5953        chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
5954
5955        /* Invalidate the pagebuffer reference */
5956        chip->pagecache.page = -1;
5957
5958        /* Large page NAND with SOFT_ECC should support subpage reads */
5959        switch (ecc->mode) {
5960        case NAND_ECC_SOFT:
5961                if (chip->page_shift > 9)
5962                        chip->options |= NAND_SUBPAGE_READ;
5963                break;
5964
5965        default:
5966                break;
5967        }
5968
5969        ret = nanddev_init(&chip->base, &rawnand_ops, mtd->owner);
5970        if (ret)
5971                goto err_nand_manuf_cleanup;
5972
5973        /* Adjust the MTD_CAP_ flags when NAND_ROM is set. */
5974        if (chip->options & NAND_ROM)
5975                mtd->flags = MTD_CAP_ROM;
5976
5977        /* Fill in remaining MTD driver data */
5978        mtd->_erase = nand_erase;
5979        mtd->_point = NULL;
5980        mtd->_unpoint = NULL;
5981        mtd->_panic_write = panic_nand_write;
5982        mtd->_read_oob = nand_read_oob;
5983        mtd->_write_oob = nand_write_oob;
5984        mtd->_sync = nand_sync;
5985        mtd->_lock = nand_lock;
5986        mtd->_unlock = nand_unlock;
5987        mtd->_suspend = nand_suspend;
5988        mtd->_resume = nand_resume;
5989        mtd->_reboot = nand_shutdown;
5990        mtd->_block_isreserved = nand_block_isreserved;
5991        mtd->_block_isbad = nand_block_isbad;
5992        mtd->_block_markbad = nand_block_markbad;
5993        mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
5994
5995        /*
5996         * Initialize bitflip_threshold to its default prior scan_bbt() call.
5997         * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
5998         * properly set.
5999         */
6000        if (!mtd->bitflip_threshold)
6001                mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
6002
6003        /* Find the fastest data interface for this chip */
6004        ret = nand_choose_interface_config(chip);
6005        if (ret)
6006                goto err_nanddev_cleanup;
6007
6008        /* Enter fastest possible mode on all dies. */
6009        for (i = 0; i < nanddev_ntargets(&chip->base); i++) {
6010                ret = nand_setup_interface(chip, i);
6011                if (ret)
6012                        goto err_free_interface_config;
6013        }
6014
6015        /* Check, if we should skip the bad block table scan */
6016        if (chip->options & NAND_SKIP_BBTSCAN)
6017                return 0;
6018
6019        /* Build bad block table */
6020        ret = nand_create_bbt(chip);
6021        if (ret)
6022                goto err_free_interface_config;
6023
6024        return 0;
6025
6026err_free_interface_config:
6027        kfree(chip->best_interface_config);
6028
6029err_nanddev_cleanup:
6030        nanddev_cleanup(&chip->base);
6031
6032err_nand_manuf_cleanup:
6033        nand_manufacturer_cleanup(chip);
6034
6035err_free_buf:
6036        kfree(chip->data_buf);
6037        kfree(ecc->code_buf);
6038        kfree(ecc->calc_buf);
6039
6040        return ret;
6041}
6042
6043static int nand_attach(struct nand_chip *chip)
6044{
6045        if (chip->controller->ops && chip->controller->ops->attach_chip)
6046                return chip->controller->ops->attach_chip(chip);
6047
6048        return 0;
6049}
6050
6051static void nand_detach(struct nand_chip *chip)
6052{
6053        if (chip->controller->ops && chip->controller->ops->detach_chip)
6054                chip->controller->ops->detach_chip(chip);
6055}
6056
6057/**
6058 * nand_scan_with_ids - [NAND Interface] Scan for the NAND device
6059 * @chip: NAND chip object
6060 * @maxchips: number of chips to scan for.
6061 * @ids: optional flash IDs table
6062 *
6063 * This fills out all the uninitialized function pointers with the defaults.
6064 * The flash ID is read and the mtd/chip structures are filled with the
6065 * appropriate values.
6066 */
6067int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips,
6068                       struct nand_flash_dev *ids)
6069{
6070        int ret;
6071
6072        if (!maxchips)
6073                return -EINVAL;
6074
6075        ret = nand_scan_ident(chip, maxchips, ids);
6076        if (ret)
6077                return ret;
6078
6079        ret = nand_attach(chip);
6080        if (ret)
6081                goto cleanup_ident;
6082
6083        ret = nand_scan_tail(chip);
6084        if (ret)
6085                goto detach_chip;
6086
6087        return 0;
6088
6089detach_chip:
6090        nand_detach(chip);
6091cleanup_ident:
6092        nand_scan_ident_cleanup(chip);
6093
6094        return ret;
6095}
6096EXPORT_SYMBOL(nand_scan_with_ids);
6097
6098/**
6099 * nand_cleanup - [NAND Interface] Free resources held by the NAND device
6100 * @chip: NAND chip object
6101 */
6102void nand_cleanup(struct nand_chip *chip)
6103{
6104        if (chip->ecc.mode == NAND_ECC_SOFT &&
6105            chip->ecc.algo == NAND_ECC_BCH)
6106                nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
6107
6108        nanddev_cleanup(&chip->base);
6109
6110        /* Free bad block table memory */
6111        kfree(chip->bbt);
6112        kfree(chip->data_buf);
6113        kfree(chip->ecc.code_buf);
6114        kfree(chip->ecc.calc_buf);
6115
6116        /* Free bad block descriptor memory */
6117        if (chip->badblock_pattern && chip->badblock_pattern->options
6118                        & NAND_BBT_DYNAMICSTRUCT)
6119                kfree(chip->badblock_pattern);
6120
6121        /* Free the data interface */
6122        kfree(chip->best_interface_config);
6123
6124        /* Free manufacturer priv data. */
6125        nand_manufacturer_cleanup(chip);
6126
6127        /* Free controller specific allocations after chip identification */
6128        nand_detach(chip);
6129
6130        /* Free identification phase allocations */
6131        nand_scan_ident_cleanup(chip);
6132}
6133
6134EXPORT_SYMBOL_GPL(nand_cleanup);
6135
6136MODULE_LICENSE("GPL");
6137MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
6138MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
6139MODULE_DESCRIPTION("Generic NAND flash driver code");
6140