linux/drivers/mtd/ubi/build.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (c) International Business Machines Corp., 2006
   4 * Copyright (c) Nokia Corporation, 2007
   5 *
   6 * Author: Artem Bityutskiy (Битюцкий Артём),
   7 *         Frank Haverkamp
   8 */
   9
  10/*
  11 * This file includes UBI initialization and building of UBI devices.
  12 *
  13 * When UBI is initialized, it attaches all the MTD devices specified as the
  14 * module load parameters or the kernel boot parameters. If MTD devices were
  15 * specified, UBI does not attach any MTD device, but it is possible to do
  16 * later using the "UBI control device".
  17 */
  18
  19#include <linux/err.h>
  20#include <linux/module.h>
  21#include <linux/moduleparam.h>
  22#include <linux/stringify.h>
  23#include <linux/namei.h>
  24#include <linux/stat.h>
  25#include <linux/miscdevice.h>
  26#include <linux/mtd/partitions.h>
  27#include <linux/log2.h>
  28#include <linux/kthread.h>
  29#include <linux/kernel.h>
  30#include <linux/slab.h>
  31#include <linux/major.h>
  32#include "ubi.h"
  33
  34/* Maximum length of the 'mtd=' parameter */
  35#define MTD_PARAM_LEN_MAX 64
  36
  37/* Maximum number of comma-separated items in the 'mtd=' parameter */
  38#define MTD_PARAM_MAX_COUNT 4
  39
  40/* Maximum value for the number of bad PEBs per 1024 PEBs */
  41#define MAX_MTD_UBI_BEB_LIMIT 768
  42
  43#ifdef CONFIG_MTD_UBI_MODULE
  44#define ubi_is_module() 1
  45#else
  46#define ubi_is_module() 0
  47#endif
  48
  49/**
  50 * struct mtd_dev_param - MTD device parameter description data structure.
  51 * @name: MTD character device node path, MTD device name, or MTD device number
  52 *        string
  53 * @vid_hdr_offs: VID header offset
  54 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs
  55 */
  56struct mtd_dev_param {
  57        char name[MTD_PARAM_LEN_MAX];
  58        int ubi_num;
  59        int vid_hdr_offs;
  60        int max_beb_per1024;
  61};
  62
  63/* Numbers of elements set in the @mtd_dev_param array */
  64static int mtd_devs;
  65
  66/* MTD devices specification parameters */
  67static struct mtd_dev_param mtd_dev_param[UBI_MAX_DEVICES];
  68#ifdef CONFIG_MTD_UBI_FASTMAP
  69/* UBI module parameter to enable fastmap automatically on non-fastmap images */
  70static bool fm_autoconvert;
  71static bool fm_debug;
  72#endif
  73
  74/* Slab cache for wear-leveling entries */
  75struct kmem_cache *ubi_wl_entry_slab;
  76
  77/* UBI control character device */
  78static struct miscdevice ubi_ctrl_cdev = {
  79        .minor = MISC_DYNAMIC_MINOR,
  80        .name = "ubi_ctrl",
  81        .fops = &ubi_ctrl_cdev_operations,
  82};
  83
  84/* All UBI devices in system */
  85static struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
  86
  87/* Serializes UBI devices creations and removals */
  88DEFINE_MUTEX(ubi_devices_mutex);
  89
  90/* Protects @ubi_devices and @ubi->ref_count */
  91static DEFINE_SPINLOCK(ubi_devices_lock);
  92
  93/* "Show" method for files in '/<sysfs>/class/ubi/' */
  94/* UBI version attribute ('/<sysfs>/class/ubi/version') */
  95static ssize_t version_show(struct class *class, struct class_attribute *attr,
  96                            char *buf)
  97{
  98        return sprintf(buf, "%d\n", UBI_VERSION);
  99}
 100static CLASS_ATTR_RO(version);
 101
 102static struct attribute *ubi_class_attrs[] = {
 103        &class_attr_version.attr,
 104        NULL,
 105};
 106ATTRIBUTE_GROUPS(ubi_class);
 107
 108/* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
 109struct class ubi_class = {
 110        .name           = UBI_NAME_STR,
 111        .owner          = THIS_MODULE,
 112        .class_groups   = ubi_class_groups,
 113};
 114
 115static ssize_t dev_attribute_show(struct device *dev,
 116                                  struct device_attribute *attr, char *buf);
 117
 118/* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
 119static struct device_attribute dev_eraseblock_size =
 120        __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
 121static struct device_attribute dev_avail_eraseblocks =
 122        __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
 123static struct device_attribute dev_total_eraseblocks =
 124        __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
 125static struct device_attribute dev_volumes_count =
 126        __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
 127static struct device_attribute dev_max_ec =
 128        __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
 129static struct device_attribute dev_reserved_for_bad =
 130        __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
 131static struct device_attribute dev_bad_peb_count =
 132        __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
 133static struct device_attribute dev_max_vol_count =
 134        __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
 135static struct device_attribute dev_min_io_size =
 136        __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
 137static struct device_attribute dev_bgt_enabled =
 138        __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
 139static struct device_attribute dev_mtd_num =
 140        __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
 141static struct device_attribute dev_ro_mode =
 142        __ATTR(ro_mode, S_IRUGO, dev_attribute_show, NULL);
 143
 144/**
 145 * ubi_volume_notify - send a volume change notification.
 146 * @ubi: UBI device description object
 147 * @vol: volume description object of the changed volume
 148 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
 149 *
 150 * This is a helper function which notifies all subscribers about a volume
 151 * change event (creation, removal, re-sizing, re-naming, updating). Returns
 152 * zero in case of success and a negative error code in case of failure.
 153 */
 154int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype)
 155{
 156        int ret;
 157        struct ubi_notification nt;
 158
 159        ubi_do_get_device_info(ubi, &nt.di);
 160        ubi_do_get_volume_info(ubi, vol, &nt.vi);
 161
 162        switch (ntype) {
 163        case UBI_VOLUME_ADDED:
 164        case UBI_VOLUME_REMOVED:
 165        case UBI_VOLUME_RESIZED:
 166        case UBI_VOLUME_RENAMED:
 167                ret = ubi_update_fastmap(ubi);
 168                if (ret)
 169                        ubi_msg(ubi, "Unable to write a new fastmap: %i", ret);
 170        }
 171
 172        return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt);
 173}
 174
 175/**
 176 * ubi_notify_all - send a notification to all volumes.
 177 * @ubi: UBI device description object
 178 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
 179 * @nb: the notifier to call
 180 *
 181 * This function walks all volumes of UBI device @ubi and sends the @ntype
 182 * notification for each volume. If @nb is %NULL, then all registered notifiers
 183 * are called, otherwise only the @nb notifier is called. Returns the number of
 184 * sent notifications.
 185 */
 186int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb)
 187{
 188        struct ubi_notification nt;
 189        int i, count = 0;
 190
 191        ubi_do_get_device_info(ubi, &nt.di);
 192
 193        mutex_lock(&ubi->device_mutex);
 194        for (i = 0; i < ubi->vtbl_slots; i++) {
 195                /*
 196                 * Since the @ubi->device is locked, and we are not going to
 197                 * change @ubi->volumes, we do not have to lock
 198                 * @ubi->volumes_lock.
 199                 */
 200                if (!ubi->volumes[i])
 201                        continue;
 202
 203                ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi);
 204                if (nb)
 205                        nb->notifier_call(nb, ntype, &nt);
 206                else
 207                        blocking_notifier_call_chain(&ubi_notifiers, ntype,
 208                                                     &nt);
 209                count += 1;
 210        }
 211        mutex_unlock(&ubi->device_mutex);
 212
 213        return count;
 214}
 215
 216/**
 217 * ubi_enumerate_volumes - send "add" notification for all existing volumes.
 218 * @nb: the notifier to call
 219 *
 220 * This function walks all UBI devices and volumes and sends the
 221 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all
 222 * registered notifiers are called, otherwise only the @nb notifier is called.
 223 * Returns the number of sent notifications.
 224 */
 225int ubi_enumerate_volumes(struct notifier_block *nb)
 226{
 227        int i, count = 0;
 228
 229        /*
 230         * Since the @ubi_devices_mutex is locked, and we are not going to
 231         * change @ubi_devices, we do not have to lock @ubi_devices_lock.
 232         */
 233        for (i = 0; i < UBI_MAX_DEVICES; i++) {
 234                struct ubi_device *ubi = ubi_devices[i];
 235
 236                if (!ubi)
 237                        continue;
 238                count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb);
 239        }
 240
 241        return count;
 242}
 243
 244/**
 245 * ubi_get_device - get UBI device.
 246 * @ubi_num: UBI device number
 247 *
 248 * This function returns UBI device description object for UBI device number
 249 * @ubi_num, or %NULL if the device does not exist. This function increases the
 250 * device reference count to prevent removal of the device. In other words, the
 251 * device cannot be removed if its reference count is not zero.
 252 */
 253struct ubi_device *ubi_get_device(int ubi_num)
 254{
 255        struct ubi_device *ubi;
 256
 257        spin_lock(&ubi_devices_lock);
 258        ubi = ubi_devices[ubi_num];
 259        if (ubi) {
 260                ubi_assert(ubi->ref_count >= 0);
 261                ubi->ref_count += 1;
 262                get_device(&ubi->dev);
 263        }
 264        spin_unlock(&ubi_devices_lock);
 265
 266        return ubi;
 267}
 268
 269/**
 270 * ubi_put_device - drop an UBI device reference.
 271 * @ubi: UBI device description object
 272 */
 273void ubi_put_device(struct ubi_device *ubi)
 274{
 275        spin_lock(&ubi_devices_lock);
 276        ubi->ref_count -= 1;
 277        put_device(&ubi->dev);
 278        spin_unlock(&ubi_devices_lock);
 279}
 280
 281/**
 282 * ubi_get_by_major - get UBI device by character device major number.
 283 * @major: major number
 284 *
 285 * This function is similar to 'ubi_get_device()', but it searches the device
 286 * by its major number.
 287 */
 288struct ubi_device *ubi_get_by_major(int major)
 289{
 290        int i;
 291        struct ubi_device *ubi;
 292
 293        spin_lock(&ubi_devices_lock);
 294        for (i = 0; i < UBI_MAX_DEVICES; i++) {
 295                ubi = ubi_devices[i];
 296                if (ubi && MAJOR(ubi->cdev.dev) == major) {
 297                        ubi_assert(ubi->ref_count >= 0);
 298                        ubi->ref_count += 1;
 299                        get_device(&ubi->dev);
 300                        spin_unlock(&ubi_devices_lock);
 301                        return ubi;
 302                }
 303        }
 304        spin_unlock(&ubi_devices_lock);
 305
 306        return NULL;
 307}
 308
 309/**
 310 * ubi_major2num - get UBI device number by character device major number.
 311 * @major: major number
 312 *
 313 * This function searches UBI device number object by its major number. If UBI
 314 * device was not found, this function returns -ENODEV, otherwise the UBI device
 315 * number is returned.
 316 */
 317int ubi_major2num(int major)
 318{
 319        int i, ubi_num = -ENODEV;
 320
 321        spin_lock(&ubi_devices_lock);
 322        for (i = 0; i < UBI_MAX_DEVICES; i++) {
 323                struct ubi_device *ubi = ubi_devices[i];
 324
 325                if (ubi && MAJOR(ubi->cdev.dev) == major) {
 326                        ubi_num = ubi->ubi_num;
 327                        break;
 328                }
 329        }
 330        spin_unlock(&ubi_devices_lock);
 331
 332        return ubi_num;
 333}
 334
 335/* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
 336static ssize_t dev_attribute_show(struct device *dev,
 337                                  struct device_attribute *attr, char *buf)
 338{
 339        ssize_t ret;
 340        struct ubi_device *ubi;
 341
 342        /*
 343         * The below code looks weird, but it actually makes sense. We get the
 344         * UBI device reference from the contained 'struct ubi_device'. But it
 345         * is unclear if the device was removed or not yet. Indeed, if the
 346         * device was removed before we increased its reference count,
 347         * 'ubi_get_device()' will return -ENODEV and we fail.
 348         *
 349         * Remember, 'struct ubi_device' is freed in the release function, so
 350         * we still can use 'ubi->ubi_num'.
 351         */
 352        ubi = container_of(dev, struct ubi_device, dev);
 353        ubi = ubi_get_device(ubi->ubi_num);
 354        if (!ubi)
 355                return -ENODEV;
 356
 357        if (attr == &dev_eraseblock_size)
 358                ret = sprintf(buf, "%d\n", ubi->leb_size);
 359        else if (attr == &dev_avail_eraseblocks)
 360                ret = sprintf(buf, "%d\n", ubi->avail_pebs);
 361        else if (attr == &dev_total_eraseblocks)
 362                ret = sprintf(buf, "%d\n", ubi->good_peb_count);
 363        else if (attr == &dev_volumes_count)
 364                ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
 365        else if (attr == &dev_max_ec)
 366                ret = sprintf(buf, "%d\n", ubi->max_ec);
 367        else if (attr == &dev_reserved_for_bad)
 368                ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
 369        else if (attr == &dev_bad_peb_count)
 370                ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
 371        else if (attr == &dev_max_vol_count)
 372                ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
 373        else if (attr == &dev_min_io_size)
 374                ret = sprintf(buf, "%d\n", ubi->min_io_size);
 375        else if (attr == &dev_bgt_enabled)
 376                ret = sprintf(buf, "%d\n", ubi->thread_enabled);
 377        else if (attr == &dev_mtd_num)
 378                ret = sprintf(buf, "%d\n", ubi->mtd->index);
 379        else if (attr == &dev_ro_mode)
 380                ret = sprintf(buf, "%d\n", ubi->ro_mode);
 381        else
 382                ret = -EINVAL;
 383
 384        ubi_put_device(ubi);
 385        return ret;
 386}
 387
 388static struct attribute *ubi_dev_attrs[] = {
 389        &dev_eraseblock_size.attr,
 390        &dev_avail_eraseblocks.attr,
 391        &dev_total_eraseblocks.attr,
 392        &dev_volumes_count.attr,
 393        &dev_max_ec.attr,
 394        &dev_reserved_for_bad.attr,
 395        &dev_bad_peb_count.attr,
 396        &dev_max_vol_count.attr,
 397        &dev_min_io_size.attr,
 398        &dev_bgt_enabled.attr,
 399        &dev_mtd_num.attr,
 400        &dev_ro_mode.attr,
 401        NULL
 402};
 403ATTRIBUTE_GROUPS(ubi_dev);
 404
 405static void dev_release(struct device *dev)
 406{
 407        struct ubi_device *ubi = container_of(dev, struct ubi_device, dev);
 408
 409        kfree(ubi);
 410}
 411
 412/**
 413 * kill_volumes - destroy all user volumes.
 414 * @ubi: UBI device description object
 415 */
 416static void kill_volumes(struct ubi_device *ubi)
 417{
 418        int i;
 419
 420        for (i = 0; i < ubi->vtbl_slots; i++)
 421                if (ubi->volumes[i])
 422                        ubi_free_volume(ubi, ubi->volumes[i]);
 423}
 424
 425/**
 426 * uif_init - initialize user interfaces for an UBI device.
 427 * @ubi: UBI device description object
 428 *
 429 * This function initializes various user interfaces for an UBI device. If the
 430 * initialization fails at an early stage, this function frees all the
 431 * resources it allocated, returns an error.
 432 *
 433 * This function returns zero in case of success and a negative error code in
 434 * case of failure.
 435 */
 436static int uif_init(struct ubi_device *ubi)
 437{
 438        int i, err;
 439        dev_t dev;
 440
 441        sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
 442
 443        /*
 444         * Major numbers for the UBI character devices are allocated
 445         * dynamically. Major numbers of volume character devices are
 446         * equivalent to ones of the corresponding UBI character device. Minor
 447         * numbers of UBI character devices are 0, while minor numbers of
 448         * volume character devices start from 1. Thus, we allocate one major
 449         * number and ubi->vtbl_slots + 1 minor numbers.
 450         */
 451        err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
 452        if (err) {
 453                ubi_err(ubi, "cannot register UBI character devices");
 454                return err;
 455        }
 456
 457        ubi->dev.devt = dev;
 458
 459        ubi_assert(MINOR(dev) == 0);
 460        cdev_init(&ubi->cdev, &ubi_cdev_operations);
 461        dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev));
 462        ubi->cdev.owner = THIS_MODULE;
 463
 464        dev_set_name(&ubi->dev, UBI_NAME_STR "%d", ubi->ubi_num);
 465        err = cdev_device_add(&ubi->cdev, &ubi->dev);
 466        if (err)
 467                goto out_unreg;
 468
 469        for (i = 0; i < ubi->vtbl_slots; i++)
 470                if (ubi->volumes[i]) {
 471                        err = ubi_add_volume(ubi, ubi->volumes[i]);
 472                        if (err) {
 473                                ubi_err(ubi, "cannot add volume %d", i);
 474                                goto out_volumes;
 475                        }
 476                }
 477
 478        return 0;
 479
 480out_volumes:
 481        kill_volumes(ubi);
 482        cdev_device_del(&ubi->cdev, &ubi->dev);
 483out_unreg:
 484        unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
 485        ubi_err(ubi, "cannot initialize UBI %s, error %d",
 486                ubi->ubi_name, err);
 487        return err;
 488}
 489
 490/**
 491 * uif_close - close user interfaces for an UBI device.
 492 * @ubi: UBI device description object
 493 *
 494 * Note, since this function un-registers UBI volume device objects (@vol->dev),
 495 * the memory allocated voe the volumes is freed as well (in the release
 496 * function).
 497 */
 498static void uif_close(struct ubi_device *ubi)
 499{
 500        kill_volumes(ubi);
 501        cdev_device_del(&ubi->cdev, &ubi->dev);
 502        unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
 503}
 504
 505/**
 506 * ubi_free_volumes_from - free volumes from specific index.
 507 * @ubi: UBI device description object
 508 * @from: the start index used for volume free.
 509 */
 510static void ubi_free_volumes_from(struct ubi_device *ubi, int from)
 511{
 512        int i;
 513
 514        for (i = from; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
 515                if (!ubi->volumes[i])
 516                        continue;
 517                ubi_eba_replace_table(ubi->volumes[i], NULL);
 518                ubi_fastmap_destroy_checkmap(ubi->volumes[i]);
 519                kfree(ubi->volumes[i]);
 520                ubi->volumes[i] = NULL;
 521        }
 522}
 523
 524/**
 525 * ubi_free_all_volumes - free all volumes.
 526 * @ubi: UBI device description object
 527 */
 528void ubi_free_all_volumes(struct ubi_device *ubi)
 529{
 530        ubi_free_volumes_from(ubi, 0);
 531}
 532
 533/**
 534 * ubi_free_internal_volumes - free internal volumes.
 535 * @ubi: UBI device description object
 536 */
 537void ubi_free_internal_volumes(struct ubi_device *ubi)
 538{
 539        ubi_free_volumes_from(ubi, ubi->vtbl_slots);
 540}
 541
 542static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024)
 543{
 544        int limit, device_pebs;
 545        uint64_t device_size;
 546
 547        if (!max_beb_per1024) {
 548                /*
 549                 * Since max_beb_per1024 has not been set by the user in either
 550                 * the cmdline or Kconfig, use mtd_max_bad_blocks to set the
 551                 * limit if it is supported by the device.
 552                 */
 553                limit = mtd_max_bad_blocks(ubi->mtd, 0, ubi->mtd->size);
 554                if (limit < 0)
 555                        return 0;
 556                return limit;
 557        }
 558
 559        /*
 560         * Here we are using size of the entire flash chip and
 561         * not just the MTD partition size because the maximum
 562         * number of bad eraseblocks is a percentage of the
 563         * whole device and bad eraseblocks are not fairly
 564         * distributed over the flash chip. So the worst case
 565         * is that all the bad eraseblocks of the chip are in
 566         * the MTD partition we are attaching (ubi->mtd).
 567         */
 568        device_size = mtd_get_device_size(ubi->mtd);
 569        device_pebs = mtd_div_by_eb(device_size, ubi->mtd);
 570        limit = mult_frac(device_pebs, max_beb_per1024, 1024);
 571
 572        /* Round it up */
 573        if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs)
 574                limit += 1;
 575
 576        return limit;
 577}
 578
 579/**
 580 * io_init - initialize I/O sub-system for a given UBI device.
 581 * @ubi: UBI device description object
 582 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
 583 *
 584 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
 585 * assumed:
 586 *   o EC header is always at offset zero - this cannot be changed;
 587 *   o VID header starts just after the EC header at the closest address
 588 *     aligned to @io->hdrs_min_io_size;
 589 *   o data starts just after the VID header at the closest address aligned to
 590 *     @io->min_io_size
 591 *
 592 * This function returns zero in case of success and a negative error code in
 593 * case of failure.
 594 */
 595static int io_init(struct ubi_device *ubi, int max_beb_per1024)
 596{
 597        dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb));
 598        dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry));
 599
 600        if (ubi->mtd->numeraseregions != 0) {
 601                /*
 602                 * Some flashes have several erase regions. Different regions
 603                 * may have different eraseblock size and other
 604                 * characteristics. It looks like mostly multi-region flashes
 605                 * have one "main" region and one or more small regions to
 606                 * store boot loader code or boot parameters or whatever. I
 607                 * guess we should just pick the largest region. But this is
 608                 * not implemented.
 609                 */
 610                ubi_err(ubi, "multiple regions, not implemented");
 611                return -EINVAL;
 612        }
 613
 614        if (ubi->vid_hdr_offset < 0)
 615                return -EINVAL;
 616
 617        /*
 618         * Note, in this implementation we support MTD devices with 0x7FFFFFFF
 619         * physical eraseblocks maximum.
 620         */
 621
 622        ubi->peb_size   = ubi->mtd->erasesize;
 623        ubi->peb_count  = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
 624        ubi->flash_size = ubi->mtd->size;
 625
 626        if (mtd_can_have_bb(ubi->mtd)) {
 627                ubi->bad_allowed = 1;
 628                ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024);
 629        }
 630
 631        if (ubi->mtd->type == MTD_NORFLASH) {
 632                ubi_assert(ubi->mtd->writesize == 1);
 633                ubi->nor_flash = 1;
 634        }
 635
 636        ubi->min_io_size = ubi->mtd->writesize;
 637        ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
 638
 639        /*
 640         * Make sure minimal I/O unit is power of 2. Note, there is no
 641         * fundamental reason for this assumption. It is just an optimization
 642         * which allows us to avoid costly division operations.
 643         */
 644        if (!is_power_of_2(ubi->min_io_size)) {
 645                ubi_err(ubi, "min. I/O unit (%d) is not power of 2",
 646                        ubi->min_io_size);
 647                return -EINVAL;
 648        }
 649
 650        ubi_assert(ubi->hdrs_min_io_size > 0);
 651        ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
 652        ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
 653
 654        ubi->max_write_size = ubi->mtd->writebufsize;
 655        /*
 656         * Maximum write size has to be greater or equivalent to min. I/O
 657         * size, and be multiple of min. I/O size.
 658         */
 659        if (ubi->max_write_size < ubi->min_io_size ||
 660            ubi->max_write_size % ubi->min_io_size ||
 661            !is_power_of_2(ubi->max_write_size)) {
 662                ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit",
 663                        ubi->max_write_size, ubi->min_io_size);
 664                return -EINVAL;
 665        }
 666
 667        /* Calculate default aligned sizes of EC and VID headers */
 668        ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
 669        ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
 670
 671        dbg_gen("min_io_size      %d", ubi->min_io_size);
 672        dbg_gen("max_write_size   %d", ubi->max_write_size);
 673        dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
 674        dbg_gen("ec_hdr_alsize    %d", ubi->ec_hdr_alsize);
 675        dbg_gen("vid_hdr_alsize   %d", ubi->vid_hdr_alsize);
 676
 677        if (ubi->vid_hdr_offset == 0)
 678                /* Default offset */
 679                ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
 680                                      ubi->ec_hdr_alsize;
 681        else {
 682                ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
 683                                                ~(ubi->hdrs_min_io_size - 1);
 684                ubi->vid_hdr_shift = ubi->vid_hdr_offset -
 685                                                ubi->vid_hdr_aloffset;
 686        }
 687
 688        /* Similar for the data offset */
 689        ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE;
 690        ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
 691
 692        dbg_gen("vid_hdr_offset   %d", ubi->vid_hdr_offset);
 693        dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
 694        dbg_gen("vid_hdr_shift    %d", ubi->vid_hdr_shift);
 695        dbg_gen("leb_start        %d", ubi->leb_start);
 696
 697        /* The shift must be aligned to 32-bit boundary */
 698        if (ubi->vid_hdr_shift % 4) {
 699                ubi_err(ubi, "unaligned VID header shift %d",
 700                        ubi->vid_hdr_shift);
 701                return -EINVAL;
 702        }
 703
 704        /* Check sanity */
 705        if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
 706            ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
 707            ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
 708            ubi->leb_start & (ubi->min_io_size - 1)) {
 709                ubi_err(ubi, "bad VID header (%d) or data offsets (%d)",
 710                        ubi->vid_hdr_offset, ubi->leb_start);
 711                return -EINVAL;
 712        }
 713
 714        /*
 715         * Set maximum amount of physical erroneous eraseblocks to be 10%.
 716         * Erroneous PEB are those which have read errors.
 717         */
 718        ubi->max_erroneous = ubi->peb_count / 10;
 719        if (ubi->max_erroneous < 16)
 720                ubi->max_erroneous = 16;
 721        dbg_gen("max_erroneous    %d", ubi->max_erroneous);
 722
 723        /*
 724         * It may happen that EC and VID headers are situated in one minimal
 725         * I/O unit. In this case we can only accept this UBI image in
 726         * read-only mode.
 727         */
 728        if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
 729                ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode");
 730                ubi->ro_mode = 1;
 731        }
 732
 733        ubi->leb_size = ubi->peb_size - ubi->leb_start;
 734
 735        if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
 736                ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode",
 737                        ubi->mtd->index);
 738                ubi->ro_mode = 1;
 739        }
 740
 741        /*
 742         * Note, ideally, we have to initialize @ubi->bad_peb_count here. But
 743         * unfortunately, MTD does not provide this information. We should loop
 744         * over all physical eraseblocks and invoke mtd->block_is_bad() for
 745         * each physical eraseblock. So, we leave @ubi->bad_peb_count
 746         * uninitialized so far.
 747         */
 748
 749        return 0;
 750}
 751
 752/**
 753 * autoresize - re-size the volume which has the "auto-resize" flag set.
 754 * @ubi: UBI device description object
 755 * @vol_id: ID of the volume to re-size
 756 *
 757 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in
 758 * the volume table to the largest possible size. See comments in ubi-header.h
 759 * for more description of the flag. Returns zero in case of success and a
 760 * negative error code in case of failure.
 761 */
 762static int autoresize(struct ubi_device *ubi, int vol_id)
 763{
 764        struct ubi_volume_desc desc;
 765        struct ubi_volume *vol = ubi->volumes[vol_id];
 766        int err, old_reserved_pebs = vol->reserved_pebs;
 767
 768        if (ubi->ro_mode) {
 769                ubi_warn(ubi, "skip auto-resize because of R/O mode");
 770                return 0;
 771        }
 772
 773        /*
 774         * Clear the auto-resize flag in the volume in-memory copy of the
 775         * volume table, and 'ubi_resize_volume()' will propagate this change
 776         * to the flash.
 777         */
 778        ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
 779
 780        if (ubi->avail_pebs == 0) {
 781                struct ubi_vtbl_record vtbl_rec;
 782
 783                /*
 784                 * No available PEBs to re-size the volume, clear the flag on
 785                 * flash and exit.
 786                 */
 787                vtbl_rec = ubi->vtbl[vol_id];
 788                err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
 789                if (err)
 790                        ubi_err(ubi, "cannot clean auto-resize flag for volume %d",
 791                                vol_id);
 792        } else {
 793                desc.vol = vol;
 794                err = ubi_resize_volume(&desc,
 795                                        old_reserved_pebs + ubi->avail_pebs);
 796                if (err)
 797                        ubi_err(ubi, "cannot auto-resize volume %d",
 798                                vol_id);
 799        }
 800
 801        if (err)
 802                return err;
 803
 804        ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs",
 805                vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs);
 806        return 0;
 807}
 808
 809/**
 810 * ubi_attach_mtd_dev - attach an MTD device.
 811 * @mtd: MTD device description object
 812 * @ubi_num: number to assign to the new UBI device
 813 * @vid_hdr_offset: VID header offset
 814 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
 815 *
 816 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
 817 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
 818 * which case this function finds a vacant device number and assigns it
 819 * automatically. Returns the new UBI device number in case of success and a
 820 * negative error code in case of failure.
 821 *
 822 * Note, the invocations of this function has to be serialized by the
 823 * @ubi_devices_mutex.
 824 */
 825int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num,
 826                       int vid_hdr_offset, int max_beb_per1024)
 827{
 828        struct ubi_device *ubi;
 829        int i, err;
 830
 831        if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT)
 832                return -EINVAL;
 833
 834        if (!max_beb_per1024)
 835                max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT;
 836
 837        /*
 838         * Check if we already have the same MTD device attached.
 839         *
 840         * Note, this function assumes that UBI devices creations and deletions
 841         * are serialized, so it does not take the &ubi_devices_lock.
 842         */
 843        for (i = 0; i < UBI_MAX_DEVICES; i++) {
 844                ubi = ubi_devices[i];
 845                if (ubi && mtd->index == ubi->mtd->index) {
 846                        pr_err("ubi: mtd%d is already attached to ubi%d\n",
 847                                mtd->index, i);
 848                        return -EEXIST;
 849                }
 850        }
 851
 852        /*
 853         * Make sure this MTD device is not emulated on top of an UBI volume
 854         * already. Well, generally this recursion works fine, but there are
 855         * different problems like the UBI module takes a reference to itself
 856         * by attaching (and thus, opening) the emulated MTD device. This
 857         * results in inability to unload the module. And in general it makes
 858         * no sense to attach emulated MTD devices, so we prohibit this.
 859         */
 860        if (mtd->type == MTD_UBIVOLUME) {
 861                pr_err("ubi: refuse attaching mtd%d - it is already emulated on top of UBI\n",
 862                        mtd->index);
 863                return -EINVAL;
 864        }
 865
 866        /*
 867         * Both UBI and UBIFS have been designed for SLC NAND and NOR flashes.
 868         * MLC NAND is different and needs special care, otherwise UBI or UBIFS
 869         * will die soon and you will lose all your data.
 870         * Relax this rule if the partition we're attaching to operates in SLC
 871         * mode.
 872         */
 873        if (mtd->type == MTD_MLCNANDFLASH &&
 874            !(mtd->flags & MTD_SLC_ON_MLC_EMULATION)) {
 875                pr_err("ubi: refuse attaching mtd%d - MLC NAND is not supported\n",
 876                        mtd->index);
 877                return -EINVAL;
 878        }
 879
 880        if (ubi_num == UBI_DEV_NUM_AUTO) {
 881                /* Search for an empty slot in the @ubi_devices array */
 882                for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
 883                        if (!ubi_devices[ubi_num])
 884                                break;
 885                if (ubi_num == UBI_MAX_DEVICES) {
 886                        pr_err("ubi: only %d UBI devices may be created\n",
 887                                UBI_MAX_DEVICES);
 888                        return -ENFILE;
 889                }
 890        } else {
 891                if (ubi_num >= UBI_MAX_DEVICES)
 892                        return -EINVAL;
 893
 894                /* Make sure ubi_num is not busy */
 895                if (ubi_devices[ubi_num]) {
 896                        pr_err("ubi: ubi%i already exists\n", ubi_num);
 897                        return -EEXIST;
 898                }
 899        }
 900
 901        ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
 902        if (!ubi)
 903                return -ENOMEM;
 904
 905        device_initialize(&ubi->dev);
 906        ubi->dev.release = dev_release;
 907        ubi->dev.class = &ubi_class;
 908        ubi->dev.groups = ubi_dev_groups;
 909
 910        ubi->mtd = mtd;
 911        ubi->ubi_num = ubi_num;
 912        ubi->vid_hdr_offset = vid_hdr_offset;
 913        ubi->autoresize_vol_id = -1;
 914
 915#ifdef CONFIG_MTD_UBI_FASTMAP
 916        ubi->fm_pool.used = ubi->fm_pool.size = 0;
 917        ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0;
 918
 919        /*
 920         * fm_pool.max_size is 5% of the total number of PEBs but it's also
 921         * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE.
 922         */
 923        ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size,
 924                ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE);
 925        ubi->fm_pool.max_size = max(ubi->fm_pool.max_size,
 926                UBI_FM_MIN_POOL_SIZE);
 927
 928        ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2;
 929        ubi->fm_disabled = !fm_autoconvert;
 930        if (fm_debug)
 931                ubi_enable_dbg_chk_fastmap(ubi);
 932
 933        if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd)
 934            <= UBI_FM_MAX_START) {
 935                ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.",
 936                        UBI_FM_MAX_START);
 937                ubi->fm_disabled = 1;
 938        }
 939
 940        ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size);
 941        ubi_msg(ubi, "default fastmap WL pool size: %d",
 942                ubi->fm_wl_pool.max_size);
 943#else
 944        ubi->fm_disabled = 1;
 945#endif
 946        mutex_init(&ubi->buf_mutex);
 947        mutex_init(&ubi->ckvol_mutex);
 948        mutex_init(&ubi->device_mutex);
 949        spin_lock_init(&ubi->volumes_lock);
 950        init_rwsem(&ubi->fm_protect);
 951        init_rwsem(&ubi->fm_eba_sem);
 952
 953        ubi_msg(ubi, "attaching mtd%d", mtd->index);
 954
 955        err = io_init(ubi, max_beb_per1024);
 956        if (err)
 957                goto out_free;
 958
 959        err = -ENOMEM;
 960        ubi->peb_buf = vmalloc(ubi->peb_size);
 961        if (!ubi->peb_buf)
 962                goto out_free;
 963
 964#ifdef CONFIG_MTD_UBI_FASTMAP
 965        ubi->fm_size = ubi_calc_fm_size(ubi);
 966        ubi->fm_buf = vzalloc(ubi->fm_size);
 967        if (!ubi->fm_buf)
 968                goto out_free;
 969#endif
 970        err = ubi_attach(ubi, 0);
 971        if (err) {
 972                ubi_err(ubi, "failed to attach mtd%d, error %d",
 973                        mtd->index, err);
 974                goto out_free;
 975        }
 976
 977        if (ubi->autoresize_vol_id != -1) {
 978                err = autoresize(ubi, ubi->autoresize_vol_id);
 979                if (err)
 980                        goto out_detach;
 981        }
 982
 983        /* Make device "available" before it becomes accessible via sysfs */
 984        ubi_devices[ubi_num] = ubi;
 985
 986        err = uif_init(ubi);
 987        if (err)
 988                goto out_detach;
 989
 990        err = ubi_debugfs_init_dev(ubi);
 991        if (err)
 992                goto out_uif;
 993
 994        ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name);
 995        if (IS_ERR(ubi->bgt_thread)) {
 996                err = PTR_ERR(ubi->bgt_thread);
 997                ubi_err(ubi, "cannot spawn \"%s\", error %d",
 998                        ubi->bgt_name, err);
 999                goto out_debugfs;
1000        }
1001
1002        ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)",
1003                mtd->index, mtd->name, ubi->flash_size >> 20);
1004        ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes",
1005                ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size);
1006        ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d",
1007                ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size);
1008        ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d",
1009                ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start);
1010        ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d",
1011                ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count);
1012        ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d",
1013                ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT,
1014                ubi->vtbl_slots);
1015        ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u",
1016                ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD,
1017                ubi->image_seq);
1018        ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d",
1019                ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs);
1020
1021        /*
1022         * The below lock makes sure we do not race with 'ubi_thread()' which
1023         * checks @ubi->thread_enabled. Otherwise we may fail to wake it up.
1024         */
1025        spin_lock(&ubi->wl_lock);
1026        ubi->thread_enabled = 1;
1027        wake_up_process(ubi->bgt_thread);
1028        spin_unlock(&ubi->wl_lock);
1029
1030        ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL);
1031        return ubi_num;
1032
1033out_debugfs:
1034        ubi_debugfs_exit_dev(ubi);
1035out_uif:
1036        uif_close(ubi);
1037out_detach:
1038        ubi_devices[ubi_num] = NULL;
1039        ubi_wl_close(ubi);
1040        ubi_free_all_volumes(ubi);
1041        vfree(ubi->vtbl);
1042out_free:
1043        vfree(ubi->peb_buf);
1044        vfree(ubi->fm_buf);
1045        put_device(&ubi->dev);
1046        return err;
1047}
1048
1049/**
1050 * ubi_detach_mtd_dev - detach an MTD device.
1051 * @ubi_num: UBI device number to detach from
1052 * @anyway: detach MTD even if device reference count is not zero
1053 *
1054 * This function destroys an UBI device number @ubi_num and detaches the
1055 * underlying MTD device. Returns zero in case of success and %-EBUSY if the
1056 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
1057 * exist.
1058 *
1059 * Note, the invocations of this function has to be serialized by the
1060 * @ubi_devices_mutex.
1061 */
1062int ubi_detach_mtd_dev(int ubi_num, int anyway)
1063{
1064        struct ubi_device *ubi;
1065
1066        if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
1067                return -EINVAL;
1068
1069        ubi = ubi_get_device(ubi_num);
1070        if (!ubi)
1071                return -EINVAL;
1072
1073        spin_lock(&ubi_devices_lock);
1074        put_device(&ubi->dev);
1075        ubi->ref_count -= 1;
1076        if (ubi->ref_count) {
1077                if (!anyway) {
1078                        spin_unlock(&ubi_devices_lock);
1079                        return -EBUSY;
1080                }
1081                /* This may only happen if there is a bug */
1082                ubi_err(ubi, "%s reference count %d, destroy anyway",
1083                        ubi->ubi_name, ubi->ref_count);
1084        }
1085        ubi_devices[ubi_num] = NULL;
1086        spin_unlock(&ubi_devices_lock);
1087
1088        ubi_assert(ubi_num == ubi->ubi_num);
1089        ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL);
1090        ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index);
1091#ifdef CONFIG_MTD_UBI_FASTMAP
1092        /* If we don't write a new fastmap at detach time we lose all
1093         * EC updates that have been made since the last written fastmap.
1094         * In case of fastmap debugging we omit the update to simulate an
1095         * unclean shutdown. */
1096        if (!ubi_dbg_chk_fastmap(ubi))
1097                ubi_update_fastmap(ubi);
1098#endif
1099        /*
1100         * Before freeing anything, we have to stop the background thread to
1101         * prevent it from doing anything on this device while we are freeing.
1102         */
1103        if (ubi->bgt_thread)
1104                kthread_stop(ubi->bgt_thread);
1105
1106#ifdef CONFIG_MTD_UBI_FASTMAP
1107        cancel_work_sync(&ubi->fm_work);
1108#endif
1109        ubi_debugfs_exit_dev(ubi);
1110        uif_close(ubi);
1111
1112        ubi_wl_close(ubi);
1113        ubi_free_internal_volumes(ubi);
1114        vfree(ubi->vtbl);
1115        vfree(ubi->peb_buf);
1116        vfree(ubi->fm_buf);
1117        ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index);
1118        put_mtd_device(ubi->mtd);
1119        put_device(&ubi->dev);
1120        return 0;
1121}
1122
1123/**
1124 * open_mtd_by_chdev - open an MTD device by its character device node path.
1125 * @mtd_dev: MTD character device node path
1126 *
1127 * This helper function opens an MTD device by its character node device path.
1128 * Returns MTD device description object in case of success and a negative
1129 * error code in case of failure.
1130 */
1131static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev)
1132{
1133        int err, minor;
1134        struct path path;
1135        struct kstat stat;
1136
1137        /* Probably this is an MTD character device node path */
1138        err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path);
1139        if (err)
1140                return ERR_PTR(err);
1141
1142        err = vfs_getattr(&path, &stat, STATX_TYPE, AT_STATX_SYNC_AS_STAT);
1143        path_put(&path);
1144        if (err)
1145                return ERR_PTR(err);
1146
1147        /* MTD device number is defined by the major / minor numbers */
1148        if (MAJOR(stat.rdev) != MTD_CHAR_MAJOR || !S_ISCHR(stat.mode))
1149                return ERR_PTR(-EINVAL);
1150
1151        minor = MINOR(stat.rdev);
1152
1153        if (minor & 1)
1154                /*
1155                 * Just do not think the "/dev/mtdrX" devices support is need,
1156                 * so do not support them to avoid doing extra work.
1157                 */
1158                return ERR_PTR(-EINVAL);
1159
1160        return get_mtd_device(NULL, minor / 2);
1161}
1162
1163/**
1164 * open_mtd_device - open MTD device by name, character device path, or number.
1165 * @mtd_dev: name, character device node path, or MTD device device number
1166 *
1167 * This function tries to open and MTD device described by @mtd_dev string,
1168 * which is first treated as ASCII MTD device number, and if it is not true, it
1169 * is treated as MTD device name, and if that is also not true, it is treated
1170 * as MTD character device node path. Returns MTD device description object in
1171 * case of success and a negative error code in case of failure.
1172 */
1173static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
1174{
1175        struct mtd_info *mtd;
1176        int mtd_num;
1177        char *endp;
1178
1179        mtd_num = simple_strtoul(mtd_dev, &endp, 0);
1180        if (*endp != '\0' || mtd_dev == endp) {
1181                /*
1182                 * This does not look like an ASCII integer, probably this is
1183                 * MTD device name.
1184                 */
1185                mtd = get_mtd_device_nm(mtd_dev);
1186                if (PTR_ERR(mtd) == -ENODEV)
1187                        /* Probably this is an MTD character device node path */
1188                        mtd = open_mtd_by_chdev(mtd_dev);
1189        } else
1190                mtd = get_mtd_device(NULL, mtd_num);
1191
1192        return mtd;
1193}
1194
1195static int __init ubi_init(void)
1196{
1197        int err, i, k;
1198
1199        /* Ensure that EC and VID headers have correct size */
1200        BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
1201        BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
1202
1203        if (mtd_devs > UBI_MAX_DEVICES) {
1204                pr_err("UBI error: too many MTD devices, maximum is %d\n",
1205                       UBI_MAX_DEVICES);
1206                return -EINVAL;
1207        }
1208
1209        /* Create base sysfs directory and sysfs files */
1210        err = class_register(&ubi_class);
1211        if (err < 0)
1212                return err;
1213
1214        err = misc_register(&ubi_ctrl_cdev);
1215        if (err) {
1216                pr_err("UBI error: cannot register device\n");
1217                goto out;
1218        }
1219
1220        ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
1221                                              sizeof(struct ubi_wl_entry),
1222                                              0, 0, NULL);
1223        if (!ubi_wl_entry_slab) {
1224                err = -ENOMEM;
1225                goto out_dev_unreg;
1226        }
1227
1228        err = ubi_debugfs_init();
1229        if (err)
1230                goto out_slab;
1231
1232
1233        /* Attach MTD devices */
1234        for (i = 0; i < mtd_devs; i++) {
1235                struct mtd_dev_param *p = &mtd_dev_param[i];
1236                struct mtd_info *mtd;
1237
1238                cond_resched();
1239
1240                mtd = open_mtd_device(p->name);
1241                if (IS_ERR(mtd)) {
1242                        err = PTR_ERR(mtd);
1243                        pr_err("UBI error: cannot open mtd %s, error %d\n",
1244                               p->name, err);
1245                        /* See comment below re-ubi_is_module(). */
1246                        if (ubi_is_module())
1247                                goto out_detach;
1248                        continue;
1249                }
1250
1251                mutex_lock(&ubi_devices_mutex);
1252                err = ubi_attach_mtd_dev(mtd, p->ubi_num,
1253                                         p->vid_hdr_offs, p->max_beb_per1024);
1254                mutex_unlock(&ubi_devices_mutex);
1255                if (err < 0) {
1256                        pr_err("UBI error: cannot attach mtd%d\n",
1257                               mtd->index);
1258                        put_mtd_device(mtd);
1259
1260                        /*
1261                         * Originally UBI stopped initializing on any error.
1262                         * However, later on it was found out that this
1263                         * behavior is not very good when UBI is compiled into
1264                         * the kernel and the MTD devices to attach are passed
1265                         * through the command line. Indeed, UBI failure
1266                         * stopped whole boot sequence.
1267                         *
1268                         * To fix this, we changed the behavior for the
1269                         * non-module case, but preserved the old behavior for
1270                         * the module case, just for compatibility. This is a
1271                         * little inconsistent, though.
1272                         */
1273                        if (ubi_is_module())
1274                                goto out_detach;
1275                }
1276        }
1277
1278        err = ubiblock_init();
1279        if (err) {
1280                pr_err("UBI error: block: cannot initialize, error %d\n", err);
1281
1282                /* See comment above re-ubi_is_module(). */
1283                if (ubi_is_module())
1284                        goto out_detach;
1285        }
1286
1287        return 0;
1288
1289out_detach:
1290        for (k = 0; k < i; k++)
1291                if (ubi_devices[k]) {
1292                        mutex_lock(&ubi_devices_mutex);
1293                        ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1294                        mutex_unlock(&ubi_devices_mutex);
1295                }
1296        ubi_debugfs_exit();
1297out_slab:
1298        kmem_cache_destroy(ubi_wl_entry_slab);
1299out_dev_unreg:
1300        misc_deregister(&ubi_ctrl_cdev);
1301out:
1302        class_unregister(&ubi_class);
1303        pr_err("UBI error: cannot initialize UBI, error %d\n", err);
1304        return err;
1305}
1306late_initcall(ubi_init);
1307
1308static void __exit ubi_exit(void)
1309{
1310        int i;
1311
1312        ubiblock_exit();
1313
1314        for (i = 0; i < UBI_MAX_DEVICES; i++)
1315                if (ubi_devices[i]) {
1316                        mutex_lock(&ubi_devices_mutex);
1317                        ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1318                        mutex_unlock(&ubi_devices_mutex);
1319                }
1320        ubi_debugfs_exit();
1321        kmem_cache_destroy(ubi_wl_entry_slab);
1322        misc_deregister(&ubi_ctrl_cdev);
1323        class_unregister(&ubi_class);
1324}
1325module_exit(ubi_exit);
1326
1327/**
1328 * bytes_str_to_int - convert a number of bytes string into an integer.
1329 * @str: the string to convert
1330 *
1331 * This function returns positive resulting integer in case of success and a
1332 * negative error code in case of failure.
1333 */
1334static int bytes_str_to_int(const char *str)
1335{
1336        char *endp;
1337        unsigned long result;
1338
1339        result = simple_strtoul(str, &endp, 0);
1340        if (str == endp || result >= INT_MAX) {
1341                pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1342                return -EINVAL;
1343        }
1344
1345        switch (*endp) {
1346        case 'G':
1347                result *= 1024;
1348                fallthrough;
1349        case 'M':
1350                result *= 1024;
1351                fallthrough;
1352        case 'K':
1353                result *= 1024;
1354                if (endp[1] == 'i' && endp[2] == 'B')
1355                        endp += 2;
1356        case '\0':
1357                break;
1358        default:
1359                pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1360                return -EINVAL;
1361        }
1362
1363        return result;
1364}
1365
1366/**
1367 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1368 * @val: the parameter value to parse
1369 * @kp: not used
1370 *
1371 * This function returns zero in case of success and a negative error code in
1372 * case of error.
1373 */
1374static int ubi_mtd_param_parse(const char *val, const struct kernel_param *kp)
1375{
1376        int i, len;
1377        struct mtd_dev_param *p;
1378        char buf[MTD_PARAM_LEN_MAX];
1379        char *pbuf = &buf[0];
1380        char *tokens[MTD_PARAM_MAX_COUNT], *token;
1381
1382        if (!val)
1383                return -EINVAL;
1384
1385        if (mtd_devs == UBI_MAX_DEVICES) {
1386                pr_err("UBI error: too many parameters, max. is %d\n",
1387                       UBI_MAX_DEVICES);
1388                return -EINVAL;
1389        }
1390
1391        len = strnlen(val, MTD_PARAM_LEN_MAX);
1392        if (len == MTD_PARAM_LEN_MAX) {
1393                pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n",
1394                       val, MTD_PARAM_LEN_MAX);
1395                return -EINVAL;
1396        }
1397
1398        if (len == 0) {
1399                pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n");
1400                return 0;
1401        }
1402
1403        strcpy(buf, val);
1404
1405        /* Get rid of the final newline */
1406        if (buf[len - 1] == '\n')
1407                buf[len - 1] = '\0';
1408
1409        for (i = 0; i < MTD_PARAM_MAX_COUNT; i++)
1410                tokens[i] = strsep(&pbuf, ",");
1411
1412        if (pbuf) {
1413                pr_err("UBI error: too many arguments at \"%s\"\n", val);
1414                return -EINVAL;
1415        }
1416
1417        p = &mtd_dev_param[mtd_devs];
1418        strcpy(&p->name[0], tokens[0]);
1419
1420        token = tokens[1];
1421        if (token) {
1422                p->vid_hdr_offs = bytes_str_to_int(token);
1423
1424                if (p->vid_hdr_offs < 0)
1425                        return p->vid_hdr_offs;
1426        }
1427
1428        token = tokens[2];
1429        if (token) {
1430                int err = kstrtoint(token, 10, &p->max_beb_per1024);
1431
1432                if (err) {
1433                        pr_err("UBI error: bad value for max_beb_per1024 parameter: %s",
1434                               token);
1435                        return -EINVAL;
1436                }
1437        }
1438
1439        token = tokens[3];
1440        if (token) {
1441                int err = kstrtoint(token, 10, &p->ubi_num);
1442
1443                if (err) {
1444                        pr_err("UBI error: bad value for ubi_num parameter: %s",
1445                               token);
1446                        return -EINVAL;
1447                }
1448        } else
1449                p->ubi_num = UBI_DEV_NUM_AUTO;
1450
1451        mtd_devs += 1;
1452        return 0;
1453}
1454
1455module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 0400);
1456MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n"
1457                      "Multiple \"mtd\" parameters may be specified.\n"
1458                      "MTD devices may be specified by their number, name, or path to the MTD character device node.\n"
1459                      "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n"
1460                      "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value ("
1461                      __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n"
1462                      "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n"
1463                      "\n"
1464                      "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n"
1465                      "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n"
1466                      "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n"
1467                      "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n"
1468                      "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device).");
1469#ifdef CONFIG_MTD_UBI_FASTMAP
1470module_param(fm_autoconvert, bool, 0644);
1471MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap.");
1472module_param(fm_debug, bool, 0);
1473MODULE_PARM_DESC(fm_debug, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!");
1474#endif
1475MODULE_VERSION(__stringify(UBI_VERSION));
1476MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1477MODULE_AUTHOR("Artem Bityutskiy");
1478MODULE_LICENSE("GPL");
1479