linux/drivers/mtd/ubi/eba.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (c) International Business Machines Corp., 2006
   4 *
   5 * Author: Artem Bityutskiy (Битюцкий Артём)
   6 */
   7
   8/*
   9 * The UBI Eraseblock Association (EBA) sub-system.
  10 *
  11 * This sub-system is responsible for I/O to/from logical eraseblock.
  12 *
  13 * Although in this implementation the EBA table is fully kept and managed in
  14 * RAM, which assumes poor scalability, it might be (partially) maintained on
  15 * flash in future implementations.
  16 *
  17 * The EBA sub-system implements per-logical eraseblock locking. Before
  18 * accessing a logical eraseblock it is locked for reading or writing. The
  19 * per-logical eraseblock locking is implemented by means of the lock tree. The
  20 * lock tree is an RB-tree which refers all the currently locked logical
  21 * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
  22 * They are indexed by (@vol_id, @lnum) pairs.
  23 *
  24 * EBA also maintains the global sequence counter which is incremented each
  25 * time a logical eraseblock is mapped to a physical eraseblock and it is
  26 * stored in the volume identifier header. This means that each VID header has
  27 * a unique sequence number. The sequence number is only increased an we assume
  28 * 64 bits is enough to never overflow.
  29 */
  30
  31#include <linux/slab.h>
  32#include <linux/crc32.h>
  33#include <linux/err.h>
  34#include "ubi.h"
  35
  36/* Number of physical eraseblocks reserved for atomic LEB change operation */
  37#define EBA_RESERVED_PEBS 1
  38
  39/**
  40 * struct ubi_eba_entry - structure encoding a single LEB -> PEB association
  41 * @pnum: the physical eraseblock number attached to the LEB
  42 *
  43 * This structure is encoding a LEB -> PEB association. Note that the LEB
  44 * number is not stored here, because it is the index used to access the
  45 * entries table.
  46 */
  47struct ubi_eba_entry {
  48        int pnum;
  49};
  50
  51/**
  52 * struct ubi_eba_table - LEB -> PEB association information
  53 * @entries: the LEB to PEB mapping (one entry per LEB).
  54 *
  55 * This structure is private to the EBA logic and should be kept here.
  56 * It is encoding the LEB to PEB association table, and is subject to
  57 * changes.
  58 */
  59struct ubi_eba_table {
  60        struct ubi_eba_entry *entries;
  61};
  62
  63/**
  64 * next_sqnum - get next sequence number.
  65 * @ubi: UBI device description object
  66 *
  67 * This function returns next sequence number to use, which is just the current
  68 * global sequence counter value. It also increases the global sequence
  69 * counter.
  70 */
  71unsigned long long ubi_next_sqnum(struct ubi_device *ubi)
  72{
  73        unsigned long long sqnum;
  74
  75        spin_lock(&ubi->ltree_lock);
  76        sqnum = ubi->global_sqnum++;
  77        spin_unlock(&ubi->ltree_lock);
  78
  79        return sqnum;
  80}
  81
  82/**
  83 * ubi_get_compat - get compatibility flags of a volume.
  84 * @ubi: UBI device description object
  85 * @vol_id: volume ID
  86 *
  87 * This function returns compatibility flags for an internal volume. User
  88 * volumes have no compatibility flags, so %0 is returned.
  89 */
  90static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
  91{
  92        if (vol_id == UBI_LAYOUT_VOLUME_ID)
  93                return UBI_LAYOUT_VOLUME_COMPAT;
  94        return 0;
  95}
  96
  97/**
  98 * ubi_eba_get_ldesc - get information about a LEB
  99 * @vol: volume description object
 100 * @lnum: logical eraseblock number
 101 * @ldesc: the LEB descriptor to fill
 102 *
 103 * Used to query information about a specific LEB.
 104 * It is currently only returning the physical position of the LEB, but will be
 105 * extended to provide more information.
 106 */
 107void ubi_eba_get_ldesc(struct ubi_volume *vol, int lnum,
 108                       struct ubi_eba_leb_desc *ldesc)
 109{
 110        ldesc->lnum = lnum;
 111        ldesc->pnum = vol->eba_tbl->entries[lnum].pnum;
 112}
 113
 114/**
 115 * ubi_eba_create_table - allocate a new EBA table and initialize it with all
 116 *                        LEBs unmapped
 117 * @vol: volume containing the EBA table to copy
 118 * @nentries: number of entries in the table
 119 *
 120 * Allocate a new EBA table and initialize it with all LEBs unmapped.
 121 * Returns a valid pointer if it succeed, an ERR_PTR() otherwise.
 122 */
 123struct ubi_eba_table *ubi_eba_create_table(struct ubi_volume *vol,
 124                                           int nentries)
 125{
 126        struct ubi_eba_table *tbl;
 127        int err = -ENOMEM;
 128        int i;
 129
 130        tbl = kzalloc(sizeof(*tbl), GFP_KERNEL);
 131        if (!tbl)
 132                return ERR_PTR(-ENOMEM);
 133
 134        tbl->entries = kmalloc_array(nentries, sizeof(*tbl->entries),
 135                                     GFP_KERNEL);
 136        if (!tbl->entries)
 137                goto err;
 138
 139        for (i = 0; i < nentries; i++)
 140                tbl->entries[i].pnum = UBI_LEB_UNMAPPED;
 141
 142        return tbl;
 143
 144err:
 145        kfree(tbl->entries);
 146        kfree(tbl);
 147
 148        return ERR_PTR(err);
 149}
 150
 151/**
 152 * ubi_eba_destroy_table - destroy an EBA table
 153 * @tbl: the table to destroy
 154 *
 155 * Destroy an EBA table.
 156 */
 157void ubi_eba_destroy_table(struct ubi_eba_table *tbl)
 158{
 159        if (!tbl)
 160                return;
 161
 162        kfree(tbl->entries);
 163        kfree(tbl);
 164}
 165
 166/**
 167 * ubi_eba_copy_table - copy the EBA table attached to vol into another table
 168 * @vol: volume containing the EBA table to copy
 169 * @dst: destination
 170 * @nentries: number of entries to copy
 171 *
 172 * Copy the EBA table stored in vol into the one pointed by dst.
 173 */
 174void ubi_eba_copy_table(struct ubi_volume *vol, struct ubi_eba_table *dst,
 175                        int nentries)
 176{
 177        struct ubi_eba_table *src;
 178        int i;
 179
 180        ubi_assert(dst && vol && vol->eba_tbl);
 181
 182        src = vol->eba_tbl;
 183
 184        for (i = 0; i < nentries; i++)
 185                dst->entries[i].pnum = src->entries[i].pnum;
 186}
 187
 188/**
 189 * ubi_eba_replace_table - assign a new EBA table to a volume
 190 * @vol: volume containing the EBA table to copy
 191 * @tbl: new EBA table
 192 *
 193 * Assign a new EBA table to the volume and release the old one.
 194 */
 195void ubi_eba_replace_table(struct ubi_volume *vol, struct ubi_eba_table *tbl)
 196{
 197        ubi_eba_destroy_table(vol->eba_tbl);
 198        vol->eba_tbl = tbl;
 199}
 200
 201/**
 202 * ltree_lookup - look up the lock tree.
 203 * @ubi: UBI device description object
 204 * @vol_id: volume ID
 205 * @lnum: logical eraseblock number
 206 *
 207 * This function returns a pointer to the corresponding &struct ubi_ltree_entry
 208 * object if the logical eraseblock is locked and %NULL if it is not.
 209 * @ubi->ltree_lock has to be locked.
 210 */
 211static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
 212                                            int lnum)
 213{
 214        struct rb_node *p;
 215
 216        p = ubi->ltree.rb_node;
 217        while (p) {
 218                struct ubi_ltree_entry *le;
 219
 220                le = rb_entry(p, struct ubi_ltree_entry, rb);
 221
 222                if (vol_id < le->vol_id)
 223                        p = p->rb_left;
 224                else if (vol_id > le->vol_id)
 225                        p = p->rb_right;
 226                else {
 227                        if (lnum < le->lnum)
 228                                p = p->rb_left;
 229                        else if (lnum > le->lnum)
 230                                p = p->rb_right;
 231                        else
 232                                return le;
 233                }
 234        }
 235
 236        return NULL;
 237}
 238
 239/**
 240 * ltree_add_entry - add new entry to the lock tree.
 241 * @ubi: UBI device description object
 242 * @vol_id: volume ID
 243 * @lnum: logical eraseblock number
 244 *
 245 * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
 246 * lock tree. If such entry is already there, its usage counter is increased.
 247 * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
 248 * failed.
 249 */
 250static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
 251                                               int vol_id, int lnum)
 252{
 253        struct ubi_ltree_entry *le, *le1, *le_free;
 254
 255        le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
 256        if (!le)
 257                return ERR_PTR(-ENOMEM);
 258
 259        le->users = 0;
 260        init_rwsem(&le->mutex);
 261        le->vol_id = vol_id;
 262        le->lnum = lnum;
 263
 264        spin_lock(&ubi->ltree_lock);
 265        le1 = ltree_lookup(ubi, vol_id, lnum);
 266
 267        if (le1) {
 268                /*
 269                 * This logical eraseblock is already locked. The newly
 270                 * allocated lock entry is not needed.
 271                 */
 272                le_free = le;
 273                le = le1;
 274        } else {
 275                struct rb_node **p, *parent = NULL;
 276
 277                /*
 278                 * No lock entry, add the newly allocated one to the
 279                 * @ubi->ltree RB-tree.
 280                 */
 281                le_free = NULL;
 282
 283                p = &ubi->ltree.rb_node;
 284                while (*p) {
 285                        parent = *p;
 286                        le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
 287
 288                        if (vol_id < le1->vol_id)
 289                                p = &(*p)->rb_left;
 290                        else if (vol_id > le1->vol_id)
 291                                p = &(*p)->rb_right;
 292                        else {
 293                                ubi_assert(lnum != le1->lnum);
 294                                if (lnum < le1->lnum)
 295                                        p = &(*p)->rb_left;
 296                                else
 297                                        p = &(*p)->rb_right;
 298                        }
 299                }
 300
 301                rb_link_node(&le->rb, parent, p);
 302                rb_insert_color(&le->rb, &ubi->ltree);
 303        }
 304        le->users += 1;
 305        spin_unlock(&ubi->ltree_lock);
 306
 307        kfree(le_free);
 308        return le;
 309}
 310
 311/**
 312 * leb_read_lock - lock logical eraseblock for reading.
 313 * @ubi: UBI device description object
 314 * @vol_id: volume ID
 315 * @lnum: logical eraseblock number
 316 *
 317 * This function locks a logical eraseblock for reading. Returns zero in case
 318 * of success and a negative error code in case of failure.
 319 */
 320static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
 321{
 322        struct ubi_ltree_entry *le;
 323
 324        le = ltree_add_entry(ubi, vol_id, lnum);
 325        if (IS_ERR(le))
 326                return PTR_ERR(le);
 327        down_read(&le->mutex);
 328        return 0;
 329}
 330
 331/**
 332 * leb_read_unlock - unlock logical eraseblock.
 333 * @ubi: UBI device description object
 334 * @vol_id: volume ID
 335 * @lnum: logical eraseblock number
 336 */
 337static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
 338{
 339        struct ubi_ltree_entry *le;
 340
 341        spin_lock(&ubi->ltree_lock);
 342        le = ltree_lookup(ubi, vol_id, lnum);
 343        le->users -= 1;
 344        ubi_assert(le->users >= 0);
 345        up_read(&le->mutex);
 346        if (le->users == 0) {
 347                rb_erase(&le->rb, &ubi->ltree);
 348                kfree(le);
 349        }
 350        spin_unlock(&ubi->ltree_lock);
 351}
 352
 353/**
 354 * leb_write_lock - lock logical eraseblock for writing.
 355 * @ubi: UBI device description object
 356 * @vol_id: volume ID
 357 * @lnum: logical eraseblock number
 358 *
 359 * This function locks a logical eraseblock for writing. Returns zero in case
 360 * of success and a negative error code in case of failure.
 361 */
 362static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
 363{
 364        struct ubi_ltree_entry *le;
 365
 366        le = ltree_add_entry(ubi, vol_id, lnum);
 367        if (IS_ERR(le))
 368                return PTR_ERR(le);
 369        down_write(&le->mutex);
 370        return 0;
 371}
 372
 373/**
 374 * leb_write_trylock - try to lock logical eraseblock for writing.
 375 * @ubi: UBI device description object
 376 * @vol_id: volume ID
 377 * @lnum: logical eraseblock number
 378 *
 379 * This function locks a logical eraseblock for writing if there is no
 380 * contention and does nothing if there is contention. Returns %0 in case of
 381 * success, %1 in case of contention, and and a negative error code in case of
 382 * failure.
 383 */
 384static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
 385{
 386        struct ubi_ltree_entry *le;
 387
 388        le = ltree_add_entry(ubi, vol_id, lnum);
 389        if (IS_ERR(le))
 390                return PTR_ERR(le);
 391        if (down_write_trylock(&le->mutex))
 392                return 0;
 393
 394        /* Contention, cancel */
 395        spin_lock(&ubi->ltree_lock);
 396        le->users -= 1;
 397        ubi_assert(le->users >= 0);
 398        if (le->users == 0) {
 399                rb_erase(&le->rb, &ubi->ltree);
 400                kfree(le);
 401        }
 402        spin_unlock(&ubi->ltree_lock);
 403
 404        return 1;
 405}
 406
 407/**
 408 * leb_write_unlock - unlock logical eraseblock.
 409 * @ubi: UBI device description object
 410 * @vol_id: volume ID
 411 * @lnum: logical eraseblock number
 412 */
 413static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
 414{
 415        struct ubi_ltree_entry *le;
 416
 417        spin_lock(&ubi->ltree_lock);
 418        le = ltree_lookup(ubi, vol_id, lnum);
 419        le->users -= 1;
 420        ubi_assert(le->users >= 0);
 421        up_write(&le->mutex);
 422        if (le->users == 0) {
 423                rb_erase(&le->rb, &ubi->ltree);
 424                kfree(le);
 425        }
 426        spin_unlock(&ubi->ltree_lock);
 427}
 428
 429/**
 430 * ubi_eba_is_mapped - check if a LEB is mapped.
 431 * @vol: volume description object
 432 * @lnum: logical eraseblock number
 433 *
 434 * This function returns true if the LEB is mapped, false otherwise.
 435 */
 436bool ubi_eba_is_mapped(struct ubi_volume *vol, int lnum)
 437{
 438        return vol->eba_tbl->entries[lnum].pnum >= 0;
 439}
 440
 441/**
 442 * ubi_eba_unmap_leb - un-map logical eraseblock.
 443 * @ubi: UBI device description object
 444 * @vol: volume description object
 445 * @lnum: logical eraseblock number
 446 *
 447 * This function un-maps logical eraseblock @lnum and schedules corresponding
 448 * physical eraseblock for erasure. Returns zero in case of success and a
 449 * negative error code in case of failure.
 450 */
 451int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
 452                      int lnum)
 453{
 454        int err, pnum, vol_id = vol->vol_id;
 455
 456        if (ubi->ro_mode)
 457                return -EROFS;
 458
 459        err = leb_write_lock(ubi, vol_id, lnum);
 460        if (err)
 461                return err;
 462
 463        pnum = vol->eba_tbl->entries[lnum].pnum;
 464        if (pnum < 0)
 465                /* This logical eraseblock is already unmapped */
 466                goto out_unlock;
 467
 468        dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
 469
 470        down_read(&ubi->fm_eba_sem);
 471        vol->eba_tbl->entries[lnum].pnum = UBI_LEB_UNMAPPED;
 472        up_read(&ubi->fm_eba_sem);
 473        err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0);
 474
 475out_unlock:
 476        leb_write_unlock(ubi, vol_id, lnum);
 477        return err;
 478}
 479
 480#ifdef CONFIG_MTD_UBI_FASTMAP
 481/**
 482 * check_mapping - check and fixup a mapping
 483 * @ubi: UBI device description object
 484 * @vol: volume description object
 485 * @lnum: logical eraseblock number
 486 * @pnum: physical eraseblock number
 487 *
 488 * Checks whether a given mapping is valid. Fastmap cannot track LEB unmap
 489 * operations, if such an operation is interrupted the mapping still looks
 490 * good, but upon first read an ECC is reported to the upper layer.
 491 * Normaly during the full-scan at attach time this is fixed, for Fastmap
 492 * we have to deal with it while reading.
 493 * If the PEB behind a LEB shows this symthom we change the mapping to
 494 * %UBI_LEB_UNMAPPED and schedule the PEB for erasure.
 495 *
 496 * Returns 0 on success, negative error code in case of failure.
 497 */
 498static int check_mapping(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
 499                         int *pnum)
 500{
 501        int err;
 502        struct ubi_vid_io_buf *vidb;
 503        struct ubi_vid_hdr *vid_hdr;
 504
 505        if (!ubi->fast_attach)
 506                return 0;
 507
 508        if (!vol->checkmap || test_bit(lnum, vol->checkmap))
 509                return 0;
 510
 511        vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
 512        if (!vidb)
 513                return -ENOMEM;
 514
 515        err = ubi_io_read_vid_hdr(ubi, *pnum, vidb, 0);
 516        if (err > 0 && err != UBI_IO_BITFLIPS) {
 517                int torture = 0;
 518
 519                switch (err) {
 520                        case UBI_IO_FF:
 521                        case UBI_IO_FF_BITFLIPS:
 522                        case UBI_IO_BAD_HDR:
 523                        case UBI_IO_BAD_HDR_EBADMSG:
 524                                break;
 525                        default:
 526                                ubi_assert(0);
 527                }
 528
 529                if (err == UBI_IO_BAD_HDR_EBADMSG || err == UBI_IO_FF_BITFLIPS)
 530                        torture = 1;
 531
 532                down_read(&ubi->fm_eba_sem);
 533                vol->eba_tbl->entries[lnum].pnum = UBI_LEB_UNMAPPED;
 534                up_read(&ubi->fm_eba_sem);
 535                ubi_wl_put_peb(ubi, vol->vol_id, lnum, *pnum, torture);
 536
 537                *pnum = UBI_LEB_UNMAPPED;
 538        } else if (err < 0) {
 539                ubi_err(ubi, "unable to read VID header back from PEB %i: %i",
 540                        *pnum, err);
 541
 542                goto out_free;
 543        } else {
 544                int found_vol_id, found_lnum;
 545
 546                ubi_assert(err == 0 || err == UBI_IO_BITFLIPS);
 547
 548                vid_hdr = ubi_get_vid_hdr(vidb);
 549                found_vol_id = be32_to_cpu(vid_hdr->vol_id);
 550                found_lnum = be32_to_cpu(vid_hdr->lnum);
 551
 552                if (found_lnum != lnum || found_vol_id != vol->vol_id) {
 553                        ubi_err(ubi, "EBA mismatch! PEB %i is LEB %i:%i instead of LEB %i:%i",
 554                                *pnum, found_vol_id, found_lnum, vol->vol_id, lnum);
 555                        ubi_ro_mode(ubi);
 556                        err = -EINVAL;
 557                        goto out_free;
 558                }
 559        }
 560
 561        set_bit(lnum, vol->checkmap);
 562        err = 0;
 563
 564out_free:
 565        ubi_free_vid_buf(vidb);
 566
 567        return err;
 568}
 569#else
 570static int check_mapping(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
 571                  int *pnum)
 572{
 573        return 0;
 574}
 575#endif
 576
 577/**
 578 * ubi_eba_read_leb - read data.
 579 * @ubi: UBI device description object
 580 * @vol: volume description object
 581 * @lnum: logical eraseblock number
 582 * @buf: buffer to store the read data
 583 * @offset: offset from where to read
 584 * @len: how many bytes to read
 585 * @check: data CRC check flag
 586 *
 587 * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
 588 * bytes. The @check flag only makes sense for static volumes and forces
 589 * eraseblock data CRC checking.
 590 *
 591 * In case of success this function returns zero. In case of a static volume,
 592 * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
 593 * returned for any volume type if an ECC error was detected by the MTD device
 594 * driver. Other negative error cored may be returned in case of other errors.
 595 */
 596int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
 597                     void *buf, int offset, int len, int check)
 598{
 599        int err, pnum, scrub = 0, vol_id = vol->vol_id;
 600        struct ubi_vid_io_buf *vidb;
 601        struct ubi_vid_hdr *vid_hdr;
 602        uint32_t crc;
 603
 604        err = leb_read_lock(ubi, vol_id, lnum);
 605        if (err)
 606                return err;
 607
 608        pnum = vol->eba_tbl->entries[lnum].pnum;
 609        if (pnum >= 0) {
 610                err = check_mapping(ubi, vol, lnum, &pnum);
 611                if (err < 0)
 612                        goto out_unlock;
 613        }
 614
 615        if (pnum == UBI_LEB_UNMAPPED) {
 616                /*
 617                 * The logical eraseblock is not mapped, fill the whole buffer
 618                 * with 0xFF bytes. The exception is static volumes for which
 619                 * it is an error to read unmapped logical eraseblocks.
 620                 */
 621                dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
 622                        len, offset, vol_id, lnum);
 623                leb_read_unlock(ubi, vol_id, lnum);
 624                ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
 625                memset(buf, 0xFF, len);
 626                return 0;
 627        }
 628
 629        dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
 630                len, offset, vol_id, lnum, pnum);
 631
 632        if (vol->vol_type == UBI_DYNAMIC_VOLUME)
 633                check = 0;
 634
 635retry:
 636        if (check) {
 637                vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
 638                if (!vidb) {
 639                        err = -ENOMEM;
 640                        goto out_unlock;
 641                }
 642
 643                vid_hdr = ubi_get_vid_hdr(vidb);
 644
 645                err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 1);
 646                if (err && err != UBI_IO_BITFLIPS) {
 647                        if (err > 0) {
 648                                /*
 649                                 * The header is either absent or corrupted.
 650                                 * The former case means there is a bug -
 651                                 * switch to read-only mode just in case.
 652                                 * The latter case means a real corruption - we
 653                                 * may try to recover data. FIXME: but this is
 654                                 * not implemented.
 655                                 */
 656                                if (err == UBI_IO_BAD_HDR_EBADMSG ||
 657                                    err == UBI_IO_BAD_HDR) {
 658                                        ubi_warn(ubi, "corrupted VID header at PEB %d, LEB %d:%d",
 659                                                 pnum, vol_id, lnum);
 660                                        err = -EBADMSG;
 661                                } else {
 662                                        /*
 663                                         * Ending up here in the non-Fastmap case
 664                                         * is a clear bug as the VID header had to
 665                                         * be present at scan time to have it referenced.
 666                                         * With fastmap the story is more complicated.
 667                                         * Fastmap has the mapping info without the need
 668                                         * of a full scan. So the LEB could have been
 669                                         * unmapped, Fastmap cannot know this and keeps
 670                                         * the LEB referenced.
 671                                         * This is valid and works as the layer above UBI
 672                                         * has to do bookkeeping about used/referenced
 673                                         * LEBs in any case.
 674                                         */
 675                                        if (ubi->fast_attach) {
 676                                                err = -EBADMSG;
 677                                        } else {
 678                                                err = -EINVAL;
 679                                                ubi_ro_mode(ubi);
 680                                        }
 681                                }
 682                        }
 683                        goto out_free;
 684                } else if (err == UBI_IO_BITFLIPS)
 685                        scrub = 1;
 686
 687                ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
 688                ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
 689
 690                crc = be32_to_cpu(vid_hdr->data_crc);
 691                ubi_free_vid_buf(vidb);
 692        }
 693
 694        err = ubi_io_read_data(ubi, buf, pnum, offset, len);
 695        if (err) {
 696                if (err == UBI_IO_BITFLIPS)
 697                        scrub = 1;
 698                else if (mtd_is_eccerr(err)) {
 699                        if (vol->vol_type == UBI_DYNAMIC_VOLUME)
 700                                goto out_unlock;
 701                        scrub = 1;
 702                        if (!check) {
 703                                ubi_msg(ubi, "force data checking");
 704                                check = 1;
 705                                goto retry;
 706                        }
 707                } else
 708                        goto out_unlock;
 709        }
 710
 711        if (check) {
 712                uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
 713                if (crc1 != crc) {
 714                        ubi_warn(ubi, "CRC error: calculated %#08x, must be %#08x",
 715                                 crc1, crc);
 716                        err = -EBADMSG;
 717                        goto out_unlock;
 718                }
 719        }
 720
 721        if (scrub)
 722                err = ubi_wl_scrub_peb(ubi, pnum);
 723
 724        leb_read_unlock(ubi, vol_id, lnum);
 725        return err;
 726
 727out_free:
 728        ubi_free_vid_buf(vidb);
 729out_unlock:
 730        leb_read_unlock(ubi, vol_id, lnum);
 731        return err;
 732}
 733
 734/**
 735 * ubi_eba_read_leb_sg - read data into a scatter gather list.
 736 * @ubi: UBI device description object
 737 * @vol: volume description object
 738 * @lnum: logical eraseblock number
 739 * @sgl: UBI scatter gather list to store the read data
 740 * @offset: offset from where to read
 741 * @len: how many bytes to read
 742 * @check: data CRC check flag
 743 *
 744 * This function works exactly like ubi_eba_read_leb(). But instead of
 745 * storing the read data into a buffer it writes to an UBI scatter gather
 746 * list.
 747 */
 748int ubi_eba_read_leb_sg(struct ubi_device *ubi, struct ubi_volume *vol,
 749                        struct ubi_sgl *sgl, int lnum, int offset, int len,
 750                        int check)
 751{
 752        int to_read;
 753        int ret;
 754        struct scatterlist *sg;
 755
 756        for (;;) {
 757                ubi_assert(sgl->list_pos < UBI_MAX_SG_COUNT);
 758                sg = &sgl->sg[sgl->list_pos];
 759                if (len < sg->length - sgl->page_pos)
 760                        to_read = len;
 761                else
 762                        to_read = sg->length - sgl->page_pos;
 763
 764                ret = ubi_eba_read_leb(ubi, vol, lnum,
 765                                       sg_virt(sg) + sgl->page_pos, offset,
 766                                       to_read, check);
 767                if (ret < 0)
 768                        return ret;
 769
 770                offset += to_read;
 771                len -= to_read;
 772                if (!len) {
 773                        sgl->page_pos += to_read;
 774                        if (sgl->page_pos == sg->length) {
 775                                sgl->list_pos++;
 776                                sgl->page_pos = 0;
 777                        }
 778
 779                        break;
 780                }
 781
 782                sgl->list_pos++;
 783                sgl->page_pos = 0;
 784        }
 785
 786        return ret;
 787}
 788
 789/**
 790 * try_recover_peb - try to recover from write failure.
 791 * @vol: volume description object
 792 * @pnum: the physical eraseblock to recover
 793 * @lnum: logical eraseblock number
 794 * @buf: data which was not written because of the write failure
 795 * @offset: offset of the failed write
 796 * @len: how many bytes should have been written
 797 * @vidb: VID buffer
 798 * @retry: whether the caller should retry in case of failure
 799 *
 800 * This function is called in case of a write failure and moves all good data
 801 * from the potentially bad physical eraseblock to a good physical eraseblock.
 802 * This function also writes the data which was not written due to the failure.
 803 * Returns 0 in case of success, and a negative error code in case of failure.
 804 * In case of failure, the %retry parameter is set to false if this is a fatal
 805 * error (retrying won't help), and true otherwise.
 806 */
 807static int try_recover_peb(struct ubi_volume *vol, int pnum, int lnum,
 808                           const void *buf, int offset, int len,
 809                           struct ubi_vid_io_buf *vidb, bool *retry)
 810{
 811        struct ubi_device *ubi = vol->ubi;
 812        struct ubi_vid_hdr *vid_hdr;
 813        int new_pnum, err, vol_id = vol->vol_id, data_size;
 814        uint32_t crc;
 815
 816        *retry = false;
 817
 818        new_pnum = ubi_wl_get_peb(ubi);
 819        if (new_pnum < 0) {
 820                err = new_pnum;
 821                goto out_put;
 822        }
 823
 824        ubi_msg(ubi, "recover PEB %d, move data to PEB %d",
 825                pnum, new_pnum);
 826
 827        err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 1);
 828        if (err && err != UBI_IO_BITFLIPS) {
 829                if (err > 0)
 830                        err = -EIO;
 831                goto out_put;
 832        }
 833
 834        vid_hdr = ubi_get_vid_hdr(vidb);
 835        ubi_assert(vid_hdr->vol_type == UBI_VID_DYNAMIC);
 836
 837        mutex_lock(&ubi->buf_mutex);
 838        memset(ubi->peb_buf + offset, 0xFF, len);
 839
 840        /* Read everything before the area where the write failure happened */
 841        if (offset > 0) {
 842                err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset);
 843                if (err && err != UBI_IO_BITFLIPS)
 844                        goto out_unlock;
 845        }
 846
 847        *retry = true;
 848
 849        memcpy(ubi->peb_buf + offset, buf, len);
 850
 851        data_size = offset + len;
 852        crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
 853        vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
 854        vid_hdr->copy_flag = 1;
 855        vid_hdr->data_size = cpu_to_be32(data_size);
 856        vid_hdr->data_crc = cpu_to_be32(crc);
 857        err = ubi_io_write_vid_hdr(ubi, new_pnum, vidb);
 858        if (err)
 859                goto out_unlock;
 860
 861        err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size);
 862
 863out_unlock:
 864        mutex_unlock(&ubi->buf_mutex);
 865
 866        if (!err)
 867                vol->eba_tbl->entries[lnum].pnum = new_pnum;
 868
 869out_put:
 870        up_read(&ubi->fm_eba_sem);
 871
 872        if (!err) {
 873                ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
 874                ubi_msg(ubi, "data was successfully recovered");
 875        } else if (new_pnum >= 0) {
 876                /*
 877                 * Bad luck? This physical eraseblock is bad too? Crud. Let's
 878                 * try to get another one.
 879                 */
 880                ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
 881                ubi_warn(ubi, "failed to write to PEB %d", new_pnum);
 882        }
 883
 884        return err;
 885}
 886
 887/**
 888 * recover_peb - recover from write failure.
 889 * @ubi: UBI device description object
 890 * @pnum: the physical eraseblock to recover
 891 * @vol_id: volume ID
 892 * @lnum: logical eraseblock number
 893 * @buf: data which was not written because of the write failure
 894 * @offset: offset of the failed write
 895 * @len: how many bytes should have been written
 896 *
 897 * This function is called in case of a write failure and moves all good data
 898 * from the potentially bad physical eraseblock to a good physical eraseblock.
 899 * This function also writes the data which was not written due to the failure.
 900 * Returns 0 in case of success, and a negative error code in case of failure.
 901 * This function tries %UBI_IO_RETRIES before giving up.
 902 */
 903static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
 904                       const void *buf, int offset, int len)
 905{
 906        int err, idx = vol_id2idx(ubi, vol_id), tries;
 907        struct ubi_volume *vol = ubi->volumes[idx];
 908        struct ubi_vid_io_buf *vidb;
 909
 910        vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
 911        if (!vidb)
 912                return -ENOMEM;
 913
 914        for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
 915                bool retry;
 916
 917                err = try_recover_peb(vol, pnum, lnum, buf, offset, len, vidb,
 918                                      &retry);
 919                if (!err || !retry)
 920                        break;
 921
 922                ubi_msg(ubi, "try again");
 923        }
 924
 925        ubi_free_vid_buf(vidb);
 926
 927        return err;
 928}
 929
 930/**
 931 * try_write_vid_and_data - try to write VID header and data to a new PEB.
 932 * @vol: volume description object
 933 * @lnum: logical eraseblock number
 934 * @vidb: the VID buffer to write
 935 * @buf: buffer containing the data
 936 * @offset: where to start writing data
 937 * @len: how many bytes should be written
 938 *
 939 * This function tries to write VID header and data belonging to logical
 940 * eraseblock @lnum of volume @vol to a new physical eraseblock. Returns zero
 941 * in case of success and a negative error code in case of failure.
 942 * In case of error, it is possible that something was still written to the
 943 * flash media, but may be some garbage.
 944 */
 945static int try_write_vid_and_data(struct ubi_volume *vol, int lnum,
 946                                  struct ubi_vid_io_buf *vidb, const void *buf,
 947                                  int offset, int len)
 948{
 949        struct ubi_device *ubi = vol->ubi;
 950        int pnum, opnum, err, vol_id = vol->vol_id;
 951
 952        pnum = ubi_wl_get_peb(ubi);
 953        if (pnum < 0) {
 954                err = pnum;
 955                goto out_put;
 956        }
 957
 958        opnum = vol->eba_tbl->entries[lnum].pnum;
 959
 960        dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
 961                len, offset, vol_id, lnum, pnum);
 962
 963        err = ubi_io_write_vid_hdr(ubi, pnum, vidb);
 964        if (err) {
 965                ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
 966                         vol_id, lnum, pnum);
 967                goto out_put;
 968        }
 969
 970        if (len) {
 971                err = ubi_io_write_data(ubi, buf, pnum, offset, len);
 972                if (err) {
 973                        ubi_warn(ubi,
 974                                 "failed to write %d bytes at offset %d of LEB %d:%d, PEB %d",
 975                                 len, offset, vol_id, lnum, pnum);
 976                        goto out_put;
 977                }
 978        }
 979
 980        vol->eba_tbl->entries[lnum].pnum = pnum;
 981
 982out_put:
 983        up_read(&ubi->fm_eba_sem);
 984
 985        if (err && pnum >= 0)
 986                err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
 987        else if (!err && opnum >= 0)
 988                err = ubi_wl_put_peb(ubi, vol_id, lnum, opnum, 0);
 989
 990        return err;
 991}
 992
 993/**
 994 * ubi_eba_write_leb - write data to dynamic volume.
 995 * @ubi: UBI device description object
 996 * @vol: volume description object
 997 * @lnum: logical eraseblock number
 998 * @buf: the data to write
 999 * @offset: offset within the logical eraseblock where to write
1000 * @len: how many bytes to write
1001 *
1002 * This function writes data to logical eraseblock @lnum of a dynamic volume
1003 * @vol. Returns zero in case of success and a negative error code in case
1004 * of failure. In case of error, it is possible that something was still
1005 * written to the flash media, but may be some garbage.
1006 * This function retries %UBI_IO_RETRIES times before giving up.
1007 */
1008int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
1009                      const void *buf, int offset, int len)
1010{
1011        int err, pnum, tries, vol_id = vol->vol_id;
1012        struct ubi_vid_io_buf *vidb;
1013        struct ubi_vid_hdr *vid_hdr;
1014
1015        if (ubi->ro_mode)
1016                return -EROFS;
1017
1018        err = leb_write_lock(ubi, vol_id, lnum);
1019        if (err)
1020                return err;
1021
1022        pnum = vol->eba_tbl->entries[lnum].pnum;
1023        if (pnum >= 0) {
1024                err = check_mapping(ubi, vol, lnum, &pnum);
1025                if (err < 0)
1026                        goto out;
1027        }
1028
1029        if (pnum >= 0) {
1030                dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
1031                        len, offset, vol_id, lnum, pnum);
1032
1033                err = ubi_io_write_data(ubi, buf, pnum, offset, len);
1034                if (err) {
1035                        ubi_warn(ubi, "failed to write data to PEB %d", pnum);
1036                        if (err == -EIO && ubi->bad_allowed)
1037                                err = recover_peb(ubi, pnum, vol_id, lnum, buf,
1038                                                  offset, len);
1039                }
1040
1041                goto out;
1042        }
1043
1044        /*
1045         * The logical eraseblock is not mapped. We have to get a free physical
1046         * eraseblock and write the volume identifier header there first.
1047         */
1048        vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
1049        if (!vidb) {
1050                leb_write_unlock(ubi, vol_id, lnum);
1051                return -ENOMEM;
1052        }
1053
1054        vid_hdr = ubi_get_vid_hdr(vidb);
1055
1056        vid_hdr->vol_type = UBI_VID_DYNAMIC;
1057        vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1058        vid_hdr->vol_id = cpu_to_be32(vol_id);
1059        vid_hdr->lnum = cpu_to_be32(lnum);
1060        vid_hdr->compat = ubi_get_compat(ubi, vol_id);
1061        vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
1062
1063        for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
1064                err = try_write_vid_and_data(vol, lnum, vidb, buf, offset, len);
1065                if (err != -EIO || !ubi->bad_allowed)
1066                        break;
1067
1068                /*
1069                 * Fortunately, this is the first write operation to this
1070                 * physical eraseblock, so just put it and request a new one.
1071                 * We assume that if this physical eraseblock went bad, the
1072                 * erase code will handle that.
1073                 */
1074                vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1075                ubi_msg(ubi, "try another PEB");
1076        }
1077
1078        ubi_free_vid_buf(vidb);
1079
1080out:
1081        if (err)
1082                ubi_ro_mode(ubi);
1083
1084        leb_write_unlock(ubi, vol_id, lnum);
1085
1086        return err;
1087}
1088
1089/**
1090 * ubi_eba_write_leb_st - write data to static volume.
1091 * @ubi: UBI device description object
1092 * @vol: volume description object
1093 * @lnum: logical eraseblock number
1094 * @buf: data to write
1095 * @len: how many bytes to write
1096 * @used_ebs: how many logical eraseblocks will this volume contain
1097 *
1098 * This function writes data to logical eraseblock @lnum of static volume
1099 * @vol. The @used_ebs argument should contain total number of logical
1100 * eraseblock in this static volume.
1101 *
1102 * When writing to the last logical eraseblock, the @len argument doesn't have
1103 * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
1104 * to the real data size, although the @buf buffer has to contain the
1105 * alignment. In all other cases, @len has to be aligned.
1106 *
1107 * It is prohibited to write more than once to logical eraseblocks of static
1108 * volumes. This function returns zero in case of success and a negative error
1109 * code in case of failure.
1110 */
1111int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
1112                         int lnum, const void *buf, int len, int used_ebs)
1113{
1114        int err, tries, data_size = len, vol_id = vol->vol_id;
1115        struct ubi_vid_io_buf *vidb;
1116        struct ubi_vid_hdr *vid_hdr;
1117        uint32_t crc;
1118
1119        if (ubi->ro_mode)
1120                return -EROFS;
1121
1122        if (lnum == used_ebs - 1)
1123                /* If this is the last LEB @len may be unaligned */
1124                len = ALIGN(data_size, ubi->min_io_size);
1125        else
1126                ubi_assert(!(len & (ubi->min_io_size - 1)));
1127
1128        vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
1129        if (!vidb)
1130                return -ENOMEM;
1131
1132        vid_hdr = ubi_get_vid_hdr(vidb);
1133
1134        err = leb_write_lock(ubi, vol_id, lnum);
1135        if (err)
1136                goto out;
1137
1138        vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1139        vid_hdr->vol_id = cpu_to_be32(vol_id);
1140        vid_hdr->lnum = cpu_to_be32(lnum);
1141        vid_hdr->compat = ubi_get_compat(ubi, vol_id);
1142        vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
1143
1144        crc = crc32(UBI_CRC32_INIT, buf, data_size);
1145        vid_hdr->vol_type = UBI_VID_STATIC;
1146        vid_hdr->data_size = cpu_to_be32(data_size);
1147        vid_hdr->used_ebs = cpu_to_be32(used_ebs);
1148        vid_hdr->data_crc = cpu_to_be32(crc);
1149
1150        ubi_assert(vol->eba_tbl->entries[lnum].pnum < 0);
1151
1152        for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
1153                err = try_write_vid_and_data(vol, lnum, vidb, buf, 0, len);
1154                if (err != -EIO || !ubi->bad_allowed)
1155                        break;
1156
1157                vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1158                ubi_msg(ubi, "try another PEB");
1159        }
1160
1161        if (err)
1162                ubi_ro_mode(ubi);
1163
1164        leb_write_unlock(ubi, vol_id, lnum);
1165
1166out:
1167        ubi_free_vid_buf(vidb);
1168
1169        return err;
1170}
1171
1172/*
1173 * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
1174 * @ubi: UBI device description object
1175 * @vol: volume description object
1176 * @lnum: logical eraseblock number
1177 * @buf: data to write
1178 * @len: how many bytes to write
1179 *
1180 * This function changes the contents of a logical eraseblock atomically. @buf
1181 * has to contain new logical eraseblock data, and @len - the length of the
1182 * data, which has to be aligned. This function guarantees that in case of an
1183 * unclean reboot the old contents is preserved. Returns zero in case of
1184 * success and a negative error code in case of failure.
1185 *
1186 * UBI reserves one LEB for the "atomic LEB change" operation, so only one
1187 * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
1188 */
1189int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
1190                              int lnum, const void *buf, int len)
1191{
1192        int err, tries, vol_id = vol->vol_id;
1193        struct ubi_vid_io_buf *vidb;
1194        struct ubi_vid_hdr *vid_hdr;
1195        uint32_t crc;
1196
1197        if (ubi->ro_mode)
1198                return -EROFS;
1199
1200        if (len == 0) {
1201                /*
1202                 * Special case when data length is zero. In this case the LEB
1203                 * has to be unmapped and mapped somewhere else.
1204                 */
1205                err = ubi_eba_unmap_leb(ubi, vol, lnum);
1206                if (err)
1207                        return err;
1208                return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0);
1209        }
1210
1211        vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
1212        if (!vidb)
1213                return -ENOMEM;
1214
1215        vid_hdr = ubi_get_vid_hdr(vidb);
1216
1217        mutex_lock(&ubi->alc_mutex);
1218        err = leb_write_lock(ubi, vol_id, lnum);
1219        if (err)
1220                goto out_mutex;
1221
1222        vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1223        vid_hdr->vol_id = cpu_to_be32(vol_id);
1224        vid_hdr->lnum = cpu_to_be32(lnum);
1225        vid_hdr->compat = ubi_get_compat(ubi, vol_id);
1226        vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
1227
1228        crc = crc32(UBI_CRC32_INIT, buf, len);
1229        vid_hdr->vol_type = UBI_VID_DYNAMIC;
1230        vid_hdr->data_size = cpu_to_be32(len);
1231        vid_hdr->copy_flag = 1;
1232        vid_hdr->data_crc = cpu_to_be32(crc);
1233
1234        dbg_eba("change LEB %d:%d", vol_id, lnum);
1235
1236        for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
1237                err = try_write_vid_and_data(vol, lnum, vidb, buf, 0, len);
1238                if (err != -EIO || !ubi->bad_allowed)
1239                        break;
1240
1241                vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1242                ubi_msg(ubi, "try another PEB");
1243        }
1244
1245        /*
1246         * This flash device does not admit of bad eraseblocks or
1247         * something nasty and unexpected happened. Switch to read-only
1248         * mode just in case.
1249         */
1250        if (err)
1251                ubi_ro_mode(ubi);
1252
1253        leb_write_unlock(ubi, vol_id, lnum);
1254
1255out_mutex:
1256        mutex_unlock(&ubi->alc_mutex);
1257        ubi_free_vid_buf(vidb);
1258        return err;
1259}
1260
1261/**
1262 * is_error_sane - check whether a read error is sane.
1263 * @err: code of the error happened during reading
1264 *
1265 * This is a helper function for 'ubi_eba_copy_leb()' which is called when we
1266 * cannot read data from the target PEB (an error @err happened). If the error
1267 * code is sane, then we treat this error as non-fatal. Otherwise the error is
1268 * fatal and UBI will be switched to R/O mode later.
1269 *
1270 * The idea is that we try not to switch to R/O mode if the read error is
1271 * something which suggests there was a real read problem. E.g., %-EIO. Or a
1272 * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O
1273 * mode, simply because we do not know what happened at the MTD level, and we
1274 * cannot handle this. E.g., the underlying driver may have become crazy, and
1275 * it is safer to switch to R/O mode to preserve the data.
1276 *
1277 * And bear in mind, this is about reading from the target PEB, i.e. the PEB
1278 * which we have just written.
1279 */
1280static int is_error_sane(int err)
1281{
1282        if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR ||
1283            err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT)
1284                return 0;
1285        return 1;
1286}
1287
1288/**
1289 * ubi_eba_copy_leb - copy logical eraseblock.
1290 * @ubi: UBI device description object
1291 * @from: physical eraseblock number from where to copy
1292 * @to: physical eraseblock number where to copy
1293 * @vid_hdr: VID header of the @from physical eraseblock
1294 *
1295 * This function copies logical eraseblock from physical eraseblock @from to
1296 * physical eraseblock @to. The @vid_hdr buffer may be changed by this
1297 * function. Returns:
1298 *   o %0 in case of success;
1299 *   o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc;
1300 *   o a negative error code in case of failure.
1301 */
1302int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
1303                     struct ubi_vid_io_buf *vidb)
1304{
1305        int err, vol_id, lnum, data_size, aldata_size, idx;
1306        struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb);
1307        struct ubi_volume *vol;
1308        uint32_t crc;
1309
1310        ubi_assert(rwsem_is_locked(&ubi->fm_eba_sem));
1311
1312        vol_id = be32_to_cpu(vid_hdr->vol_id);
1313        lnum = be32_to_cpu(vid_hdr->lnum);
1314
1315        dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
1316
1317        if (vid_hdr->vol_type == UBI_VID_STATIC) {
1318                data_size = be32_to_cpu(vid_hdr->data_size);
1319                aldata_size = ALIGN(data_size, ubi->min_io_size);
1320        } else
1321                data_size = aldata_size =
1322                            ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
1323
1324        idx = vol_id2idx(ubi, vol_id);
1325        spin_lock(&ubi->volumes_lock);
1326        /*
1327         * Note, we may race with volume deletion, which means that the volume
1328         * this logical eraseblock belongs to might be being deleted. Since the
1329         * volume deletion un-maps all the volume's logical eraseblocks, it will
1330         * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
1331         */
1332        vol = ubi->volumes[idx];
1333        spin_unlock(&ubi->volumes_lock);
1334        if (!vol) {
1335                /* No need to do further work, cancel */
1336                dbg_wl("volume %d is being removed, cancel", vol_id);
1337                return MOVE_CANCEL_RACE;
1338        }
1339
1340        /*
1341         * We do not want anybody to write to this logical eraseblock while we
1342         * are moving it, so lock it.
1343         *
1344         * Note, we are using non-waiting locking here, because we cannot sleep
1345         * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1346         * unmapping the LEB which is mapped to the PEB we are going to move
1347         * (@from). This task locks the LEB and goes sleep in the
1348         * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1349         * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
1350         * LEB is already locked, we just do not move it and return
1351         * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because
1352         * we do not know the reasons of the contention - it may be just a
1353         * normal I/O on this LEB, so we want to re-try.
1354         */
1355        err = leb_write_trylock(ubi, vol_id, lnum);
1356        if (err) {
1357                dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum);
1358                return MOVE_RETRY;
1359        }
1360
1361        /*
1362         * The LEB might have been put meanwhile, and the task which put it is
1363         * probably waiting on @ubi->move_mutex. No need to continue the work,
1364         * cancel it.
1365         */
1366        if (vol->eba_tbl->entries[lnum].pnum != from) {
1367                dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel",
1368                       vol_id, lnum, from, vol->eba_tbl->entries[lnum].pnum);
1369                err = MOVE_CANCEL_RACE;
1370                goto out_unlock_leb;
1371        }
1372
1373        /*
1374         * OK, now the LEB is locked and we can safely start moving it. Since
1375         * this function utilizes the @ubi->peb_buf buffer which is shared
1376         * with some other functions - we lock the buffer by taking the
1377         * @ubi->buf_mutex.
1378         */
1379        mutex_lock(&ubi->buf_mutex);
1380        dbg_wl("read %d bytes of data", aldata_size);
1381        err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size);
1382        if (err && err != UBI_IO_BITFLIPS) {
1383                ubi_warn(ubi, "error %d while reading data from PEB %d",
1384                         err, from);
1385                err = MOVE_SOURCE_RD_ERR;
1386                goto out_unlock_buf;
1387        }
1388
1389        /*
1390         * Now we have got to calculate how much data we have to copy. In
1391         * case of a static volume it is fairly easy - the VID header contains
1392         * the data size. In case of a dynamic volume it is more difficult - we
1393         * have to read the contents, cut 0xFF bytes from the end and copy only
1394         * the first part. We must do this to avoid writing 0xFF bytes as it
1395         * may have some side-effects. And not only this. It is important not
1396         * to include those 0xFFs to CRC because later the they may be filled
1397         * by data.
1398         */
1399        if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
1400                aldata_size = data_size =
1401                        ubi_calc_data_len(ubi, ubi->peb_buf, data_size);
1402
1403        cond_resched();
1404        crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
1405        cond_resched();
1406
1407        /*
1408         * It may turn out to be that the whole @from physical eraseblock
1409         * contains only 0xFF bytes. Then we have to only write the VID header
1410         * and do not write any data. This also means we should not set
1411         * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1412         */
1413        if (data_size > 0) {
1414                vid_hdr->copy_flag = 1;
1415                vid_hdr->data_size = cpu_to_be32(data_size);
1416                vid_hdr->data_crc = cpu_to_be32(crc);
1417        }
1418        vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1419
1420        err = ubi_io_write_vid_hdr(ubi, to, vidb);
1421        if (err) {
1422                if (err == -EIO)
1423                        err = MOVE_TARGET_WR_ERR;
1424                goto out_unlock_buf;
1425        }
1426
1427        cond_resched();
1428
1429        /* Read the VID header back and check if it was written correctly */
1430        err = ubi_io_read_vid_hdr(ubi, to, vidb, 1);
1431        if (err) {
1432                if (err != UBI_IO_BITFLIPS) {
1433                        ubi_warn(ubi, "error %d while reading VID header back from PEB %d",
1434                                 err, to);
1435                        if (is_error_sane(err))
1436                                err = MOVE_TARGET_RD_ERR;
1437                } else
1438                        err = MOVE_TARGET_BITFLIPS;
1439                goto out_unlock_buf;
1440        }
1441
1442        if (data_size > 0) {
1443                err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size);
1444                if (err) {
1445                        if (err == -EIO)
1446                                err = MOVE_TARGET_WR_ERR;
1447                        goto out_unlock_buf;
1448                }
1449
1450                cond_resched();
1451        }
1452
1453        ubi_assert(vol->eba_tbl->entries[lnum].pnum == from);
1454        vol->eba_tbl->entries[lnum].pnum = to;
1455
1456out_unlock_buf:
1457        mutex_unlock(&ubi->buf_mutex);
1458out_unlock_leb:
1459        leb_write_unlock(ubi, vol_id, lnum);
1460        return err;
1461}
1462
1463/**
1464 * print_rsvd_warning - warn about not having enough reserved PEBs.
1465 * @ubi: UBI device description object
1466 *
1467 * This is a helper function for 'ubi_eba_init()' which is called when UBI
1468 * cannot reserve enough PEBs for bad block handling. This function makes a
1469 * decision whether we have to print a warning or not. The algorithm is as
1470 * follows:
1471 *   o if this is a new UBI image, then just print the warning
1472 *   o if this is an UBI image which has already been used for some time, print
1473 *     a warning only if we can reserve less than 10% of the expected amount of
1474 *     the reserved PEB.
1475 *
1476 * The idea is that when UBI is used, PEBs become bad, and the reserved pool
1477 * of PEBs becomes smaller, which is normal and we do not want to scare users
1478 * with a warning every time they attach the MTD device. This was an issue
1479 * reported by real users.
1480 */
1481static void print_rsvd_warning(struct ubi_device *ubi,
1482                               struct ubi_attach_info *ai)
1483{
1484        /*
1485         * The 1 << 18 (256KiB) number is picked randomly, just a reasonably
1486         * large number to distinguish between newly flashed and used images.
1487         */
1488        if (ai->max_sqnum > (1 << 18)) {
1489                int min = ubi->beb_rsvd_level / 10;
1490
1491                if (!min)
1492                        min = 1;
1493                if (ubi->beb_rsvd_pebs > min)
1494                        return;
1495        }
1496
1497        ubi_warn(ubi, "cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d",
1498                 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
1499        if (ubi->corr_peb_count)
1500                ubi_warn(ubi, "%d PEBs are corrupted and not used",
1501                         ubi->corr_peb_count);
1502}
1503
1504/**
1505 * self_check_eba - run a self check on the EBA table constructed by fastmap.
1506 * @ubi: UBI device description object
1507 * @ai_fastmap: UBI attach info object created by fastmap
1508 * @ai_scan: UBI attach info object created by scanning
1509 *
1510 * Returns < 0 in case of an internal error, 0 otherwise.
1511 * If a bad EBA table entry was found it will be printed out and
1512 * ubi_assert() triggers.
1513 */
1514int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap,
1515                   struct ubi_attach_info *ai_scan)
1516{
1517        int i, j, num_volumes, ret = 0;
1518        int **scan_eba, **fm_eba;
1519        struct ubi_ainf_volume *av;
1520        struct ubi_volume *vol;
1521        struct ubi_ainf_peb *aeb;
1522        struct rb_node *rb;
1523
1524        num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1525
1526        scan_eba = kmalloc_array(num_volumes, sizeof(*scan_eba), GFP_KERNEL);
1527        if (!scan_eba)
1528                return -ENOMEM;
1529
1530        fm_eba = kmalloc_array(num_volumes, sizeof(*fm_eba), GFP_KERNEL);
1531        if (!fm_eba) {
1532                kfree(scan_eba);
1533                return -ENOMEM;
1534        }
1535
1536        for (i = 0; i < num_volumes; i++) {
1537                vol = ubi->volumes[i];
1538                if (!vol)
1539                        continue;
1540
1541                scan_eba[i] = kmalloc_array(vol->reserved_pebs,
1542                                            sizeof(**scan_eba),
1543                                            GFP_KERNEL);
1544                if (!scan_eba[i]) {
1545                        ret = -ENOMEM;
1546                        goto out_free;
1547                }
1548
1549                fm_eba[i] = kmalloc_array(vol->reserved_pebs,
1550                                          sizeof(**fm_eba),
1551                                          GFP_KERNEL);
1552                if (!fm_eba[i]) {
1553                        ret = -ENOMEM;
1554                        goto out_free;
1555                }
1556
1557                for (j = 0; j < vol->reserved_pebs; j++)
1558                        scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED;
1559
1560                av = ubi_find_av(ai_scan, idx2vol_id(ubi, i));
1561                if (!av)
1562                        continue;
1563
1564                ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1565                        scan_eba[i][aeb->lnum] = aeb->pnum;
1566
1567                av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i));
1568                if (!av)
1569                        continue;
1570
1571                ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1572                        fm_eba[i][aeb->lnum] = aeb->pnum;
1573
1574                for (j = 0; j < vol->reserved_pebs; j++) {
1575                        if (scan_eba[i][j] != fm_eba[i][j]) {
1576                                if (scan_eba[i][j] == UBI_LEB_UNMAPPED ||
1577                                        fm_eba[i][j] == UBI_LEB_UNMAPPED)
1578                                        continue;
1579
1580                                ubi_err(ubi, "LEB:%i:%i is PEB:%i instead of %i!",
1581                                        vol->vol_id, j, fm_eba[i][j],
1582                                        scan_eba[i][j]);
1583                                ubi_assert(0);
1584                        }
1585                }
1586        }
1587
1588out_free:
1589        for (i = 0; i < num_volumes; i++) {
1590                if (!ubi->volumes[i])
1591                        continue;
1592
1593                kfree(scan_eba[i]);
1594                kfree(fm_eba[i]);
1595        }
1596
1597        kfree(scan_eba);
1598        kfree(fm_eba);
1599        return ret;
1600}
1601
1602/**
1603 * ubi_eba_init - initialize the EBA sub-system using attaching information.
1604 * @ubi: UBI device description object
1605 * @ai: attaching information
1606 *
1607 * This function returns zero in case of success and a negative error code in
1608 * case of failure.
1609 */
1610int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1611{
1612        int i, err, num_volumes;
1613        struct ubi_ainf_volume *av;
1614        struct ubi_volume *vol;
1615        struct ubi_ainf_peb *aeb;
1616        struct rb_node *rb;
1617
1618        dbg_eba("initialize EBA sub-system");
1619
1620        spin_lock_init(&ubi->ltree_lock);
1621        mutex_init(&ubi->alc_mutex);
1622        ubi->ltree = RB_ROOT;
1623
1624        ubi->global_sqnum = ai->max_sqnum + 1;
1625        num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1626
1627        for (i = 0; i < num_volumes; i++) {
1628                struct ubi_eba_table *tbl;
1629
1630                vol = ubi->volumes[i];
1631                if (!vol)
1632                        continue;
1633
1634                cond_resched();
1635
1636                tbl = ubi_eba_create_table(vol, vol->reserved_pebs);
1637                if (IS_ERR(tbl)) {
1638                        err = PTR_ERR(tbl);
1639                        goto out_free;
1640                }
1641
1642                ubi_eba_replace_table(vol, tbl);
1643
1644                av = ubi_find_av(ai, idx2vol_id(ubi, i));
1645                if (!av)
1646                        continue;
1647
1648                ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
1649                        if (aeb->lnum >= vol->reserved_pebs) {
1650                                /*
1651                                 * This may happen in case of an unclean reboot
1652                                 * during re-size.
1653                                 */
1654                                ubi_move_aeb_to_list(av, aeb, &ai->erase);
1655                        } else {
1656                                struct ubi_eba_entry *entry;
1657
1658                                entry = &vol->eba_tbl->entries[aeb->lnum];
1659                                entry->pnum = aeb->pnum;
1660                        }
1661                }
1662        }
1663
1664        if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
1665                ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1666                        ubi->avail_pebs, EBA_RESERVED_PEBS);
1667                if (ubi->corr_peb_count)
1668                        ubi_err(ubi, "%d PEBs are corrupted and not used",
1669                                ubi->corr_peb_count);
1670                err = -ENOSPC;
1671                goto out_free;
1672        }
1673        ubi->avail_pebs -= EBA_RESERVED_PEBS;
1674        ubi->rsvd_pebs += EBA_RESERVED_PEBS;
1675
1676        if (ubi->bad_allowed) {
1677                ubi_calculate_reserved(ubi);
1678
1679                if (ubi->avail_pebs < ubi->beb_rsvd_level) {
1680                        /* No enough free physical eraseblocks */
1681                        ubi->beb_rsvd_pebs = ubi->avail_pebs;
1682                        print_rsvd_warning(ubi, ai);
1683                } else
1684                        ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
1685
1686                ubi->avail_pebs -= ubi->beb_rsvd_pebs;
1687                ubi->rsvd_pebs  += ubi->beb_rsvd_pebs;
1688        }
1689
1690        dbg_eba("EBA sub-system is initialized");
1691        return 0;
1692
1693out_free:
1694        for (i = 0; i < num_volumes; i++) {
1695                if (!ubi->volumes[i])
1696                        continue;
1697                ubi_eba_replace_table(ubi->volumes[i], NULL);
1698        }
1699        return err;
1700}
1701