linux/drivers/net/can/xilinx_can.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* Xilinx CAN device driver
   3 *
   4 * Copyright (C) 2012 - 2014 Xilinx, Inc.
   5 * Copyright (C) 2009 PetaLogix. All rights reserved.
   6 * Copyright (C) 2017 - 2018 Sandvik Mining and Construction Oy
   7 *
   8 * Description:
   9 * This driver is developed for Axi CAN IP and for Zynq CANPS Controller.
  10 */
  11
  12#include <linux/clk.h>
  13#include <linux/errno.h>
  14#include <linux/init.h>
  15#include <linux/interrupt.h>
  16#include <linux/io.h>
  17#include <linux/kernel.h>
  18#include <linux/module.h>
  19#include <linux/netdevice.h>
  20#include <linux/of.h>
  21#include <linux/of_device.h>
  22#include <linux/platform_device.h>
  23#include <linux/skbuff.h>
  24#include <linux/spinlock.h>
  25#include <linux/string.h>
  26#include <linux/types.h>
  27#include <linux/can/dev.h>
  28#include <linux/can/error.h>
  29#include <linux/can/led.h>
  30#include <linux/pm_runtime.h>
  31
  32#define DRIVER_NAME     "xilinx_can"
  33
  34/* CAN registers set */
  35enum xcan_reg {
  36        XCAN_SRR_OFFSET         = 0x00, /* Software reset */
  37        XCAN_MSR_OFFSET         = 0x04, /* Mode select */
  38        XCAN_BRPR_OFFSET        = 0x08, /* Baud rate prescaler */
  39        XCAN_BTR_OFFSET         = 0x0C, /* Bit timing */
  40        XCAN_ECR_OFFSET         = 0x10, /* Error counter */
  41        XCAN_ESR_OFFSET         = 0x14, /* Error status */
  42        XCAN_SR_OFFSET          = 0x18, /* Status */
  43        XCAN_ISR_OFFSET         = 0x1C, /* Interrupt status */
  44        XCAN_IER_OFFSET         = 0x20, /* Interrupt enable */
  45        XCAN_ICR_OFFSET         = 0x24, /* Interrupt clear */
  46
  47        /* not on CAN FD cores */
  48        XCAN_TXFIFO_OFFSET      = 0x30, /* TX FIFO base */
  49        XCAN_RXFIFO_OFFSET      = 0x50, /* RX FIFO base */
  50        XCAN_AFR_OFFSET         = 0x60, /* Acceptance Filter */
  51
  52        /* only on CAN FD cores */
  53        XCAN_F_BRPR_OFFSET      = 0x088, /* Data Phase Baud Rate
  54                                          * Prescalar
  55                                          */
  56        XCAN_F_BTR_OFFSET       = 0x08C, /* Data Phase Bit Timing */
  57        XCAN_TRR_OFFSET         = 0x0090, /* TX Buffer Ready Request */
  58        XCAN_AFR_EXT_OFFSET     = 0x00E0, /* Acceptance Filter */
  59        XCAN_FSR_OFFSET         = 0x00E8, /* RX FIFO Status */
  60        XCAN_TXMSG_BASE_OFFSET  = 0x0100, /* TX Message Space */
  61        XCAN_RXMSG_BASE_OFFSET  = 0x1100, /* RX Message Space */
  62        XCAN_RXMSG_2_BASE_OFFSET        = 0x2100, /* RX Message Space */
  63        XCAN_AFR_2_MASK_OFFSET  = 0x0A00, /* Acceptance Filter MASK */
  64        XCAN_AFR_2_ID_OFFSET    = 0x0A04, /* Acceptance Filter ID */
  65};
  66
  67#define XCAN_FRAME_ID_OFFSET(frame_base)        ((frame_base) + 0x00)
  68#define XCAN_FRAME_DLC_OFFSET(frame_base)       ((frame_base) + 0x04)
  69#define XCAN_FRAME_DW1_OFFSET(frame_base)       ((frame_base) + 0x08)
  70#define XCAN_FRAME_DW2_OFFSET(frame_base)       ((frame_base) + 0x0C)
  71#define XCANFD_FRAME_DW_OFFSET(frame_base)      ((frame_base) + 0x08)
  72
  73#define XCAN_CANFD_FRAME_SIZE           0x48
  74#define XCAN_TXMSG_FRAME_OFFSET(n)      (XCAN_TXMSG_BASE_OFFSET + \
  75                                         XCAN_CANFD_FRAME_SIZE * (n))
  76#define XCAN_RXMSG_FRAME_OFFSET(n)      (XCAN_RXMSG_BASE_OFFSET + \
  77                                         XCAN_CANFD_FRAME_SIZE * (n))
  78#define XCAN_RXMSG_2_FRAME_OFFSET(n)    (XCAN_RXMSG_2_BASE_OFFSET + \
  79                                         XCAN_CANFD_FRAME_SIZE * (n))
  80
  81/* the single TX mailbox used by this driver on CAN FD HW */
  82#define XCAN_TX_MAILBOX_IDX             0
  83
  84/* CAN register bit masks - XCAN_<REG>_<BIT>_MASK */
  85#define XCAN_SRR_CEN_MASK               0x00000002 /* CAN enable */
  86#define XCAN_SRR_RESET_MASK             0x00000001 /* Soft Reset the CAN core */
  87#define XCAN_MSR_LBACK_MASK             0x00000002 /* Loop back mode select */
  88#define XCAN_MSR_SLEEP_MASK             0x00000001 /* Sleep mode select */
  89#define XCAN_BRPR_BRP_MASK              0x000000FF /* Baud rate prescaler */
  90#define XCAN_BTR_SJW_MASK               0x00000180 /* Synchronous jump width */
  91#define XCAN_BTR_TS2_MASK               0x00000070 /* Time segment 2 */
  92#define XCAN_BTR_TS1_MASK               0x0000000F /* Time segment 1 */
  93#define XCAN_BTR_SJW_MASK_CANFD         0x000F0000 /* Synchronous jump width */
  94#define XCAN_BTR_TS2_MASK_CANFD         0x00000F00 /* Time segment 2 */
  95#define XCAN_BTR_TS1_MASK_CANFD         0x0000003F /* Time segment 1 */
  96#define XCAN_ECR_REC_MASK               0x0000FF00 /* Receive error counter */
  97#define XCAN_ECR_TEC_MASK               0x000000FF /* Transmit error counter */
  98#define XCAN_ESR_ACKER_MASK             0x00000010 /* ACK error */
  99#define XCAN_ESR_BERR_MASK              0x00000008 /* Bit error */
 100#define XCAN_ESR_STER_MASK              0x00000004 /* Stuff error */
 101#define XCAN_ESR_FMER_MASK              0x00000002 /* Form error */
 102#define XCAN_ESR_CRCER_MASK             0x00000001 /* CRC error */
 103#define XCAN_SR_TXFLL_MASK              0x00000400 /* TX FIFO is full */
 104#define XCAN_SR_ESTAT_MASK              0x00000180 /* Error status */
 105#define XCAN_SR_ERRWRN_MASK             0x00000040 /* Error warning */
 106#define XCAN_SR_NORMAL_MASK             0x00000008 /* Normal mode */
 107#define XCAN_SR_LBACK_MASK              0x00000002 /* Loop back mode */
 108#define XCAN_SR_CONFIG_MASK             0x00000001 /* Configuration mode */
 109#define XCAN_IXR_RXMNF_MASK             0x00020000 /* RX match not finished */
 110#define XCAN_IXR_TXFEMP_MASK            0x00004000 /* TX FIFO Empty */
 111#define XCAN_IXR_WKUP_MASK              0x00000800 /* Wake up interrupt */
 112#define XCAN_IXR_SLP_MASK               0x00000400 /* Sleep interrupt */
 113#define XCAN_IXR_BSOFF_MASK             0x00000200 /* Bus off interrupt */
 114#define XCAN_IXR_ERROR_MASK             0x00000100 /* Error interrupt */
 115#define XCAN_IXR_RXNEMP_MASK            0x00000080 /* RX FIFO NotEmpty intr */
 116#define XCAN_IXR_RXOFLW_MASK            0x00000040 /* RX FIFO Overflow intr */
 117#define XCAN_IXR_RXOK_MASK              0x00000010 /* Message received intr */
 118#define XCAN_IXR_TXFLL_MASK             0x00000004 /* Tx FIFO Full intr */
 119#define XCAN_IXR_TXOK_MASK              0x00000002 /* TX successful intr */
 120#define XCAN_IXR_ARBLST_MASK            0x00000001 /* Arbitration lost intr */
 121#define XCAN_IDR_ID1_MASK               0xFFE00000 /* Standard msg identifier */
 122#define XCAN_IDR_SRR_MASK               0x00100000 /* Substitute remote TXreq */
 123#define XCAN_IDR_IDE_MASK               0x00080000 /* Identifier extension */
 124#define XCAN_IDR_ID2_MASK               0x0007FFFE /* Extended message ident */
 125#define XCAN_IDR_RTR_MASK               0x00000001 /* Remote TX request */
 126#define XCAN_DLCR_DLC_MASK              0xF0000000 /* Data length code */
 127#define XCAN_FSR_FL_MASK                0x00003F00 /* RX Fill Level */
 128#define XCAN_2_FSR_FL_MASK              0x00007F00 /* RX Fill Level */
 129#define XCAN_FSR_IRI_MASK               0x00000080 /* RX Increment Read Index */
 130#define XCAN_FSR_RI_MASK                0x0000001F /* RX Read Index */
 131#define XCAN_2_FSR_RI_MASK              0x0000003F /* RX Read Index */
 132#define XCAN_DLCR_EDL_MASK              0x08000000 /* EDL Mask in DLC */
 133#define XCAN_DLCR_BRS_MASK              0x04000000 /* BRS Mask in DLC */
 134
 135/* CAN register bit shift - XCAN_<REG>_<BIT>_SHIFT */
 136#define XCAN_BTR_SJW_SHIFT              7  /* Synchronous jump width */
 137#define XCAN_BTR_TS2_SHIFT              4  /* Time segment 2 */
 138#define XCAN_BTR_SJW_SHIFT_CANFD        16 /* Synchronous jump width */
 139#define XCAN_BTR_TS2_SHIFT_CANFD        8  /* Time segment 2 */
 140#define XCAN_IDR_ID1_SHIFT              21 /* Standard Messg Identifier */
 141#define XCAN_IDR_ID2_SHIFT              1  /* Extended Message Identifier */
 142#define XCAN_DLCR_DLC_SHIFT             28 /* Data length code */
 143#define XCAN_ESR_REC_SHIFT              8  /* Rx Error Count */
 144
 145/* CAN frame length constants */
 146#define XCAN_FRAME_MAX_DATA_LEN         8
 147#define XCANFD_DW_BYTES                 4
 148#define XCAN_TIMEOUT                    (1 * HZ)
 149
 150/* TX-FIFO-empty interrupt available */
 151#define XCAN_FLAG_TXFEMP        0x0001
 152/* RX Match Not Finished interrupt available */
 153#define XCAN_FLAG_RXMNF         0x0002
 154/* Extended acceptance filters with control at 0xE0 */
 155#define XCAN_FLAG_EXT_FILTERS   0x0004
 156/* TX mailboxes instead of TX FIFO */
 157#define XCAN_FLAG_TX_MAILBOXES  0x0008
 158/* RX FIFO with each buffer in separate registers at 0x1100
 159 * instead of the regular FIFO at 0x50
 160 */
 161#define XCAN_FLAG_RX_FIFO_MULTI 0x0010
 162#define XCAN_FLAG_CANFD_2       0x0020
 163
 164enum xcan_ip_type {
 165        XAXI_CAN = 0,
 166        XZYNQ_CANPS,
 167        XAXI_CANFD,
 168        XAXI_CANFD_2_0,
 169};
 170
 171struct xcan_devtype_data {
 172        enum xcan_ip_type cantype;
 173        unsigned int flags;
 174        const struct can_bittiming_const *bittiming_const;
 175        const char *bus_clk_name;
 176        unsigned int btr_ts2_shift;
 177        unsigned int btr_sjw_shift;
 178};
 179
 180/**
 181 * struct xcan_priv - This definition define CAN driver instance
 182 * @can:                        CAN private data structure.
 183 * @tx_lock:                    Lock for synchronizing TX interrupt handling
 184 * @tx_head:                    Tx CAN packets ready to send on the queue
 185 * @tx_tail:                    Tx CAN packets successfully sended on the queue
 186 * @tx_max:                     Maximum number packets the driver can send
 187 * @napi:                       NAPI structure
 188 * @read_reg:                   For reading data from CAN registers
 189 * @write_reg:                  For writing data to CAN registers
 190 * @dev:                        Network device data structure
 191 * @reg_base:                   Ioremapped address to registers
 192 * @irq_flags:                  For request_irq()
 193 * @bus_clk:                    Pointer to struct clk
 194 * @can_clk:                    Pointer to struct clk
 195 * @devtype:                    Device type specific constants
 196 */
 197struct xcan_priv {
 198        struct can_priv can;
 199        spinlock_t tx_lock; /* Lock for synchronizing TX interrupt handling */
 200        unsigned int tx_head;
 201        unsigned int tx_tail;
 202        unsigned int tx_max;
 203        struct napi_struct napi;
 204        u32 (*read_reg)(const struct xcan_priv *priv, enum xcan_reg reg);
 205        void (*write_reg)(const struct xcan_priv *priv, enum xcan_reg reg,
 206                          u32 val);
 207        struct device *dev;
 208        void __iomem *reg_base;
 209        unsigned long irq_flags;
 210        struct clk *bus_clk;
 211        struct clk *can_clk;
 212        struct xcan_devtype_data devtype;
 213};
 214
 215/* CAN Bittiming constants as per Xilinx CAN specs */
 216static const struct can_bittiming_const xcan_bittiming_const = {
 217        .name = DRIVER_NAME,
 218        .tseg1_min = 1,
 219        .tseg1_max = 16,
 220        .tseg2_min = 1,
 221        .tseg2_max = 8,
 222        .sjw_max = 4,
 223        .brp_min = 1,
 224        .brp_max = 256,
 225        .brp_inc = 1,
 226};
 227
 228/* AXI CANFD Arbitration Bittiming constants as per AXI CANFD 1.0 spec */
 229static const struct can_bittiming_const xcan_bittiming_const_canfd = {
 230        .name = DRIVER_NAME,
 231        .tseg1_min = 1,
 232        .tseg1_max = 64,
 233        .tseg2_min = 1,
 234        .tseg2_max = 16,
 235        .sjw_max = 16,
 236        .brp_min = 1,
 237        .brp_max = 256,
 238        .brp_inc = 1,
 239};
 240
 241/* AXI CANFD Data Bittiming constants as per AXI CANFD 1.0 specs */
 242static struct can_bittiming_const xcan_data_bittiming_const_canfd = {
 243        .name = DRIVER_NAME,
 244        .tseg1_min = 1,
 245        .tseg1_max = 16,
 246        .tseg2_min = 1,
 247        .tseg2_max = 8,
 248        .sjw_max = 8,
 249        .brp_min = 1,
 250        .brp_max = 256,
 251        .brp_inc = 1,
 252};
 253
 254/* AXI CANFD 2.0 Arbitration Bittiming constants as per AXI CANFD 2.0 spec */
 255static const struct can_bittiming_const xcan_bittiming_const_canfd2 = {
 256        .name = DRIVER_NAME,
 257        .tseg1_min = 1,
 258        .tseg1_max = 256,
 259        .tseg2_min = 1,
 260        .tseg2_max = 128,
 261        .sjw_max = 128,
 262        .brp_min = 1,
 263        .brp_max = 256,
 264        .brp_inc = 1,
 265};
 266
 267/* AXI CANFD 2.0 Data Bittiming constants as per AXI CANFD 2.0 spec */
 268static struct can_bittiming_const xcan_data_bittiming_const_canfd2 = {
 269        .name = DRIVER_NAME,
 270        .tseg1_min = 1,
 271        .tseg1_max = 32,
 272        .tseg2_min = 1,
 273        .tseg2_max = 16,
 274        .sjw_max = 16,
 275        .brp_min = 1,
 276        .brp_max = 256,
 277        .brp_inc = 1,
 278};
 279
 280/**
 281 * xcan_write_reg_le - Write a value to the device register little endian
 282 * @priv:       Driver private data structure
 283 * @reg:        Register offset
 284 * @val:        Value to write at the Register offset
 285 *
 286 * Write data to the paricular CAN register
 287 */
 288static void xcan_write_reg_le(const struct xcan_priv *priv, enum xcan_reg reg,
 289                              u32 val)
 290{
 291        iowrite32(val, priv->reg_base + reg);
 292}
 293
 294/**
 295 * xcan_read_reg_le - Read a value from the device register little endian
 296 * @priv:       Driver private data structure
 297 * @reg:        Register offset
 298 *
 299 * Read data from the particular CAN register
 300 * Return: value read from the CAN register
 301 */
 302static u32 xcan_read_reg_le(const struct xcan_priv *priv, enum xcan_reg reg)
 303{
 304        return ioread32(priv->reg_base + reg);
 305}
 306
 307/**
 308 * xcan_write_reg_be - Write a value to the device register big endian
 309 * @priv:       Driver private data structure
 310 * @reg:        Register offset
 311 * @val:        Value to write at the Register offset
 312 *
 313 * Write data to the paricular CAN register
 314 */
 315static void xcan_write_reg_be(const struct xcan_priv *priv, enum xcan_reg reg,
 316                              u32 val)
 317{
 318        iowrite32be(val, priv->reg_base + reg);
 319}
 320
 321/**
 322 * xcan_read_reg_be - Read a value from the device register big endian
 323 * @priv:       Driver private data structure
 324 * @reg:        Register offset
 325 *
 326 * Read data from the particular CAN register
 327 * Return: value read from the CAN register
 328 */
 329static u32 xcan_read_reg_be(const struct xcan_priv *priv, enum xcan_reg reg)
 330{
 331        return ioread32be(priv->reg_base + reg);
 332}
 333
 334/**
 335 * xcan_rx_int_mask - Get the mask for the receive interrupt
 336 * @priv:       Driver private data structure
 337 *
 338 * Return: The receive interrupt mask used by the driver on this HW
 339 */
 340static u32 xcan_rx_int_mask(const struct xcan_priv *priv)
 341{
 342        /* RXNEMP is better suited for our use case as it cannot be cleared
 343         * while the FIFO is non-empty, but CAN FD HW does not have it
 344         */
 345        if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
 346                return XCAN_IXR_RXOK_MASK;
 347        else
 348                return XCAN_IXR_RXNEMP_MASK;
 349}
 350
 351/**
 352 * set_reset_mode - Resets the CAN device mode
 353 * @ndev:       Pointer to net_device structure
 354 *
 355 * This is the driver reset mode routine.The driver
 356 * enters into configuration mode.
 357 *
 358 * Return: 0 on success and failure value on error
 359 */
 360static int set_reset_mode(struct net_device *ndev)
 361{
 362        struct xcan_priv *priv = netdev_priv(ndev);
 363        unsigned long timeout;
 364
 365        priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
 366
 367        timeout = jiffies + XCAN_TIMEOUT;
 368        while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & XCAN_SR_CONFIG_MASK)) {
 369                if (time_after(jiffies, timeout)) {
 370                        netdev_warn(ndev, "timed out for config mode\n");
 371                        return -ETIMEDOUT;
 372                }
 373                usleep_range(500, 10000);
 374        }
 375
 376        /* reset clears FIFOs */
 377        priv->tx_head = 0;
 378        priv->tx_tail = 0;
 379
 380        return 0;
 381}
 382
 383/**
 384 * xcan_set_bittiming - CAN set bit timing routine
 385 * @ndev:       Pointer to net_device structure
 386 *
 387 * This is the driver set bittiming  routine.
 388 * Return: 0 on success and failure value on error
 389 */
 390static int xcan_set_bittiming(struct net_device *ndev)
 391{
 392        struct xcan_priv *priv = netdev_priv(ndev);
 393        struct can_bittiming *bt = &priv->can.bittiming;
 394        struct can_bittiming *dbt = &priv->can.data_bittiming;
 395        u32 btr0, btr1;
 396        u32 is_config_mode;
 397
 398        /* Check whether Xilinx CAN is in configuration mode.
 399         * It cannot set bit timing if Xilinx CAN is not in configuration mode.
 400         */
 401        is_config_mode = priv->read_reg(priv, XCAN_SR_OFFSET) &
 402                                XCAN_SR_CONFIG_MASK;
 403        if (!is_config_mode) {
 404                netdev_alert(ndev,
 405                             "BUG! Cannot set bittiming - CAN is not in config mode\n");
 406                return -EPERM;
 407        }
 408
 409        /* Setting Baud Rate prescalar value in BRPR Register */
 410        btr0 = (bt->brp - 1);
 411
 412        /* Setting Time Segment 1 in BTR Register */
 413        btr1 = (bt->prop_seg + bt->phase_seg1 - 1);
 414
 415        /* Setting Time Segment 2 in BTR Register */
 416        btr1 |= (bt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
 417
 418        /* Setting Synchronous jump width in BTR Register */
 419        btr1 |= (bt->sjw - 1) << priv->devtype.btr_sjw_shift;
 420
 421        priv->write_reg(priv, XCAN_BRPR_OFFSET, btr0);
 422        priv->write_reg(priv, XCAN_BTR_OFFSET, btr1);
 423
 424        if (priv->devtype.cantype == XAXI_CANFD ||
 425            priv->devtype.cantype == XAXI_CANFD_2_0) {
 426                /* Setting Baud Rate prescalar value in F_BRPR Register */
 427                btr0 = dbt->brp - 1;
 428
 429                /* Setting Time Segment 1 in BTR Register */
 430                btr1 = dbt->prop_seg + dbt->phase_seg1 - 1;
 431
 432                /* Setting Time Segment 2 in BTR Register */
 433                btr1 |= (dbt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
 434
 435                /* Setting Synchronous jump width in BTR Register */
 436                btr1 |= (dbt->sjw - 1) << priv->devtype.btr_sjw_shift;
 437
 438                priv->write_reg(priv, XCAN_F_BRPR_OFFSET, btr0);
 439                priv->write_reg(priv, XCAN_F_BTR_OFFSET, btr1);
 440        }
 441
 442        netdev_dbg(ndev, "BRPR=0x%08x, BTR=0x%08x\n",
 443                   priv->read_reg(priv, XCAN_BRPR_OFFSET),
 444                   priv->read_reg(priv, XCAN_BTR_OFFSET));
 445
 446        return 0;
 447}
 448
 449/**
 450 * xcan_chip_start - This the drivers start routine
 451 * @ndev:       Pointer to net_device structure
 452 *
 453 * This is the drivers start routine.
 454 * Based on the State of the CAN device it puts
 455 * the CAN device into a proper mode.
 456 *
 457 * Return: 0 on success and failure value on error
 458 */
 459static int xcan_chip_start(struct net_device *ndev)
 460{
 461        struct xcan_priv *priv = netdev_priv(ndev);
 462        u32 reg_msr;
 463        int err;
 464        u32 ier;
 465
 466        /* Check if it is in reset mode */
 467        err = set_reset_mode(ndev);
 468        if (err < 0)
 469                return err;
 470
 471        err = xcan_set_bittiming(ndev);
 472        if (err < 0)
 473                return err;
 474
 475        /* Enable interrupts
 476         *
 477         * We enable the ERROR interrupt even with
 478         * CAN_CTRLMODE_BERR_REPORTING disabled as there is no
 479         * dedicated interrupt for a state change to
 480         * ERROR_WARNING/ERROR_PASSIVE.
 481         */
 482        ier = XCAN_IXR_TXOK_MASK | XCAN_IXR_BSOFF_MASK |
 483                XCAN_IXR_WKUP_MASK | XCAN_IXR_SLP_MASK |
 484                XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
 485                XCAN_IXR_ARBLST_MASK | xcan_rx_int_mask(priv);
 486
 487        if (priv->devtype.flags & XCAN_FLAG_RXMNF)
 488                ier |= XCAN_IXR_RXMNF_MASK;
 489
 490        priv->write_reg(priv, XCAN_IER_OFFSET, ier);
 491
 492        /* Check whether it is loopback mode or normal mode  */
 493        if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
 494                reg_msr = XCAN_MSR_LBACK_MASK;
 495        else
 496                reg_msr = 0x0;
 497
 498        /* enable the first extended filter, if any, as cores with extended
 499         * filtering default to non-receipt if all filters are disabled
 500         */
 501        if (priv->devtype.flags & XCAN_FLAG_EXT_FILTERS)
 502                priv->write_reg(priv, XCAN_AFR_EXT_OFFSET, 0x00000001);
 503
 504        priv->write_reg(priv, XCAN_MSR_OFFSET, reg_msr);
 505        priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK);
 506
 507        netdev_dbg(ndev, "status:#x%08x\n",
 508                   priv->read_reg(priv, XCAN_SR_OFFSET));
 509
 510        priv->can.state = CAN_STATE_ERROR_ACTIVE;
 511        return 0;
 512}
 513
 514/**
 515 * xcan_do_set_mode - This sets the mode of the driver
 516 * @ndev:       Pointer to net_device structure
 517 * @mode:       Tells the mode of the driver
 518 *
 519 * This check the drivers state and calls the
 520 * the corresponding modes to set.
 521 *
 522 * Return: 0 on success and failure value on error
 523 */
 524static int xcan_do_set_mode(struct net_device *ndev, enum can_mode mode)
 525{
 526        int ret;
 527
 528        switch (mode) {
 529        case CAN_MODE_START:
 530                ret = xcan_chip_start(ndev);
 531                if (ret < 0) {
 532                        netdev_err(ndev, "xcan_chip_start failed!\n");
 533                        return ret;
 534                }
 535                netif_wake_queue(ndev);
 536                break;
 537        default:
 538                ret = -EOPNOTSUPP;
 539                break;
 540        }
 541
 542        return ret;
 543}
 544
 545/**
 546 * xcan_write_frame - Write a frame to HW
 547 * @ndev:               Pointer to net_device structure
 548 * @skb:                sk_buff pointer that contains data to be Txed
 549 * @frame_offset:       Register offset to write the frame to
 550 */
 551static void xcan_write_frame(struct net_device *ndev, struct sk_buff *skb,
 552                             int frame_offset)
 553{
 554        u32 id, dlc, data[2] = {0, 0};
 555        struct canfd_frame *cf = (struct canfd_frame *)skb->data;
 556        u32 ramoff, dwindex = 0, i;
 557        struct xcan_priv *priv = netdev_priv(ndev);
 558
 559        /* Watch carefully on the bit sequence */
 560        if (cf->can_id & CAN_EFF_FLAG) {
 561                /* Extended CAN ID format */
 562                id = ((cf->can_id & CAN_EFF_MASK) << XCAN_IDR_ID2_SHIFT) &
 563                        XCAN_IDR_ID2_MASK;
 564                id |= (((cf->can_id & CAN_EFF_MASK) >>
 565                        (CAN_EFF_ID_BITS - CAN_SFF_ID_BITS)) <<
 566                        XCAN_IDR_ID1_SHIFT) & XCAN_IDR_ID1_MASK;
 567
 568                /* The substibute remote TX request bit should be "1"
 569                 * for extended frames as in the Xilinx CAN datasheet
 570                 */
 571                id |= XCAN_IDR_IDE_MASK | XCAN_IDR_SRR_MASK;
 572
 573                if (cf->can_id & CAN_RTR_FLAG)
 574                        /* Extended frames remote TX request */
 575                        id |= XCAN_IDR_RTR_MASK;
 576        } else {
 577                /* Standard CAN ID format */
 578                id = ((cf->can_id & CAN_SFF_MASK) << XCAN_IDR_ID1_SHIFT) &
 579                        XCAN_IDR_ID1_MASK;
 580
 581                if (cf->can_id & CAN_RTR_FLAG)
 582                        /* Standard frames remote TX request */
 583                        id |= XCAN_IDR_SRR_MASK;
 584        }
 585
 586        dlc = can_len2dlc(cf->len) << XCAN_DLCR_DLC_SHIFT;
 587        if (can_is_canfd_skb(skb)) {
 588                if (cf->flags & CANFD_BRS)
 589                        dlc |= XCAN_DLCR_BRS_MASK;
 590                dlc |= XCAN_DLCR_EDL_MASK;
 591        }
 592
 593        if (!(priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES) &&
 594            (priv->devtype.flags & XCAN_FLAG_TXFEMP))
 595                can_put_echo_skb(skb, ndev, priv->tx_head % priv->tx_max);
 596        else
 597                can_put_echo_skb(skb, ndev, 0);
 598
 599        priv->tx_head++;
 600
 601        priv->write_reg(priv, XCAN_FRAME_ID_OFFSET(frame_offset), id);
 602        /* If the CAN frame is RTR frame this write triggers transmission
 603         * (not on CAN FD)
 604         */
 605        priv->write_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_offset), dlc);
 606        if (priv->devtype.cantype == XAXI_CANFD ||
 607            priv->devtype.cantype == XAXI_CANFD_2_0) {
 608                for (i = 0; i < cf->len; i += 4) {
 609                        ramoff = XCANFD_FRAME_DW_OFFSET(frame_offset) +
 610                                        (dwindex * XCANFD_DW_BYTES);
 611                        priv->write_reg(priv, ramoff,
 612                                        be32_to_cpup((__be32 *)(cf->data + i)));
 613                        dwindex++;
 614                }
 615        } else {
 616                if (cf->len > 0)
 617                        data[0] = be32_to_cpup((__be32 *)(cf->data + 0));
 618                if (cf->len > 4)
 619                        data[1] = be32_to_cpup((__be32 *)(cf->data + 4));
 620
 621                if (!(cf->can_id & CAN_RTR_FLAG)) {
 622                        priv->write_reg(priv,
 623                                        XCAN_FRAME_DW1_OFFSET(frame_offset),
 624                                        data[0]);
 625                        /* If the CAN frame is Standard/Extended frame this
 626                         * write triggers transmission (not on CAN FD)
 627                         */
 628                        priv->write_reg(priv,
 629                                        XCAN_FRAME_DW2_OFFSET(frame_offset),
 630                                        data[1]);
 631                }
 632        }
 633}
 634
 635/**
 636 * xcan_start_xmit_fifo - Starts the transmission (FIFO mode)
 637 * @skb:        sk_buff pointer that contains data to be Txed
 638 * @ndev:       Pointer to net_device structure
 639 *
 640 * Return: 0 on success, -ENOSPC if FIFO is full.
 641 */
 642static int xcan_start_xmit_fifo(struct sk_buff *skb, struct net_device *ndev)
 643{
 644        struct xcan_priv *priv = netdev_priv(ndev);
 645        unsigned long flags;
 646
 647        /* Check if the TX buffer is full */
 648        if (unlikely(priv->read_reg(priv, XCAN_SR_OFFSET) &
 649                        XCAN_SR_TXFLL_MASK))
 650                return -ENOSPC;
 651
 652        spin_lock_irqsave(&priv->tx_lock, flags);
 653
 654        xcan_write_frame(ndev, skb, XCAN_TXFIFO_OFFSET);
 655
 656        /* Clear TX-FIFO-empty interrupt for xcan_tx_interrupt() */
 657        if (priv->tx_max > 1)
 658                priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXFEMP_MASK);
 659
 660        /* Check if the TX buffer is full */
 661        if ((priv->tx_head - priv->tx_tail) == priv->tx_max)
 662                netif_stop_queue(ndev);
 663
 664        spin_unlock_irqrestore(&priv->tx_lock, flags);
 665
 666        return 0;
 667}
 668
 669/**
 670 * xcan_start_xmit_mailbox - Starts the transmission (mailbox mode)
 671 * @skb:        sk_buff pointer that contains data to be Txed
 672 * @ndev:       Pointer to net_device structure
 673 *
 674 * Return: 0 on success, -ENOSPC if there is no space
 675 */
 676static int xcan_start_xmit_mailbox(struct sk_buff *skb, struct net_device *ndev)
 677{
 678        struct xcan_priv *priv = netdev_priv(ndev);
 679        unsigned long flags;
 680
 681        if (unlikely(priv->read_reg(priv, XCAN_TRR_OFFSET) &
 682                     BIT(XCAN_TX_MAILBOX_IDX)))
 683                return -ENOSPC;
 684
 685        spin_lock_irqsave(&priv->tx_lock, flags);
 686
 687        xcan_write_frame(ndev, skb,
 688                         XCAN_TXMSG_FRAME_OFFSET(XCAN_TX_MAILBOX_IDX));
 689
 690        /* Mark buffer as ready for transmit */
 691        priv->write_reg(priv, XCAN_TRR_OFFSET, BIT(XCAN_TX_MAILBOX_IDX));
 692
 693        netif_stop_queue(ndev);
 694
 695        spin_unlock_irqrestore(&priv->tx_lock, flags);
 696
 697        return 0;
 698}
 699
 700/**
 701 * xcan_start_xmit - Starts the transmission
 702 * @skb:        sk_buff pointer that contains data to be Txed
 703 * @ndev:       Pointer to net_device structure
 704 *
 705 * This function is invoked from upper layers to initiate transmission.
 706 *
 707 * Return: NETDEV_TX_OK on success and NETDEV_TX_BUSY when the tx queue is full
 708 */
 709static netdev_tx_t xcan_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 710{
 711        struct xcan_priv *priv = netdev_priv(ndev);
 712        int ret;
 713
 714        if (can_dropped_invalid_skb(ndev, skb))
 715                return NETDEV_TX_OK;
 716
 717        if (priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES)
 718                ret = xcan_start_xmit_mailbox(skb, ndev);
 719        else
 720                ret = xcan_start_xmit_fifo(skb, ndev);
 721
 722        if (ret < 0) {
 723                netdev_err(ndev, "BUG!, TX full when queue awake!\n");
 724                netif_stop_queue(ndev);
 725                return NETDEV_TX_BUSY;
 726        }
 727
 728        return NETDEV_TX_OK;
 729}
 730
 731/**
 732 * xcan_rx -  Is called from CAN isr to complete the received
 733 *              frame  processing
 734 * @ndev:       Pointer to net_device structure
 735 * @frame_base: Register offset to the frame to be read
 736 *
 737 * This function is invoked from the CAN isr(poll) to process the Rx frames. It
 738 * does minimal processing and invokes "netif_receive_skb" to complete further
 739 * processing.
 740 * Return: 1 on success and 0 on failure.
 741 */
 742static int xcan_rx(struct net_device *ndev, int frame_base)
 743{
 744        struct xcan_priv *priv = netdev_priv(ndev);
 745        struct net_device_stats *stats = &ndev->stats;
 746        struct can_frame *cf;
 747        struct sk_buff *skb;
 748        u32 id_xcan, dlc, data[2] = {0, 0};
 749
 750        skb = alloc_can_skb(ndev, &cf);
 751        if (unlikely(!skb)) {
 752                stats->rx_dropped++;
 753                return 0;
 754        }
 755
 756        /* Read a frame from Xilinx zynq CANPS */
 757        id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
 758        dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base)) >>
 759                                   XCAN_DLCR_DLC_SHIFT;
 760
 761        /* Change Xilinx CAN data length format to socketCAN data format */
 762        cf->can_dlc = get_can_dlc(dlc);
 763
 764        /* Change Xilinx CAN ID format to socketCAN ID format */
 765        if (id_xcan & XCAN_IDR_IDE_MASK) {
 766                /* The received frame is an Extended format frame */
 767                cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
 768                cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
 769                                XCAN_IDR_ID2_SHIFT;
 770                cf->can_id |= CAN_EFF_FLAG;
 771                if (id_xcan & XCAN_IDR_RTR_MASK)
 772                        cf->can_id |= CAN_RTR_FLAG;
 773        } else {
 774                /* The received frame is a standard format frame */
 775                cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
 776                                XCAN_IDR_ID1_SHIFT;
 777                if (id_xcan & XCAN_IDR_SRR_MASK)
 778                        cf->can_id |= CAN_RTR_FLAG;
 779        }
 780
 781        /* DW1/DW2 must always be read to remove message from RXFIFO */
 782        data[0] = priv->read_reg(priv, XCAN_FRAME_DW1_OFFSET(frame_base));
 783        data[1] = priv->read_reg(priv, XCAN_FRAME_DW2_OFFSET(frame_base));
 784
 785        if (!(cf->can_id & CAN_RTR_FLAG)) {
 786                /* Change Xilinx CAN data format to socketCAN data format */
 787                if (cf->can_dlc > 0)
 788                        *(__be32 *)(cf->data) = cpu_to_be32(data[0]);
 789                if (cf->can_dlc > 4)
 790                        *(__be32 *)(cf->data + 4) = cpu_to_be32(data[1]);
 791        }
 792
 793        stats->rx_bytes += cf->can_dlc;
 794        stats->rx_packets++;
 795        netif_receive_skb(skb);
 796
 797        return 1;
 798}
 799
 800/**
 801 * xcanfd_rx -  Is called from CAN isr to complete the received
 802 *              frame  processing
 803 * @ndev:       Pointer to net_device structure
 804 * @frame_base: Register offset to the frame to be read
 805 *
 806 * This function is invoked from the CAN isr(poll) to process the Rx frames. It
 807 * does minimal processing and invokes "netif_receive_skb" to complete further
 808 * processing.
 809 * Return: 1 on success and 0 on failure.
 810 */
 811static int xcanfd_rx(struct net_device *ndev, int frame_base)
 812{
 813        struct xcan_priv *priv = netdev_priv(ndev);
 814        struct net_device_stats *stats = &ndev->stats;
 815        struct canfd_frame *cf;
 816        struct sk_buff *skb;
 817        u32 id_xcan, dlc, data[2] = {0, 0}, dwindex = 0, i, dw_offset;
 818
 819        id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
 820        dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base));
 821        if (dlc & XCAN_DLCR_EDL_MASK)
 822                skb = alloc_canfd_skb(ndev, &cf);
 823        else
 824                skb = alloc_can_skb(ndev, (struct can_frame **)&cf);
 825
 826        if (unlikely(!skb)) {
 827                stats->rx_dropped++;
 828                return 0;
 829        }
 830
 831        /* Change Xilinx CANFD data length format to socketCAN data
 832         * format
 833         */
 834        if (dlc & XCAN_DLCR_EDL_MASK)
 835                cf->len = can_dlc2len((dlc & XCAN_DLCR_DLC_MASK) >>
 836                                  XCAN_DLCR_DLC_SHIFT);
 837        else
 838                cf->len = get_can_dlc((dlc & XCAN_DLCR_DLC_MASK) >>
 839                                          XCAN_DLCR_DLC_SHIFT);
 840
 841        /* Change Xilinx CAN ID format to socketCAN ID format */
 842        if (id_xcan & XCAN_IDR_IDE_MASK) {
 843                /* The received frame is an Extended format frame */
 844                cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
 845                cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
 846                                XCAN_IDR_ID2_SHIFT;
 847                cf->can_id |= CAN_EFF_FLAG;
 848                if (id_xcan & XCAN_IDR_RTR_MASK)
 849                        cf->can_id |= CAN_RTR_FLAG;
 850        } else {
 851                /* The received frame is a standard format frame */
 852                cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
 853                                XCAN_IDR_ID1_SHIFT;
 854                if (!(dlc & XCAN_DLCR_EDL_MASK) && (id_xcan &
 855                                        XCAN_IDR_SRR_MASK))
 856                        cf->can_id |= CAN_RTR_FLAG;
 857        }
 858
 859        /* Check the frame received is FD or not*/
 860        if (dlc & XCAN_DLCR_EDL_MASK) {
 861                for (i = 0; i < cf->len; i += 4) {
 862                        dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base) +
 863                                        (dwindex * XCANFD_DW_BYTES);
 864                        data[0] = priv->read_reg(priv, dw_offset);
 865                        *(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
 866                        dwindex++;
 867                }
 868        } else {
 869                for (i = 0; i < cf->len; i += 4) {
 870                        dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base);
 871                        data[0] = priv->read_reg(priv, dw_offset + i);
 872                        *(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
 873                }
 874        }
 875        stats->rx_bytes += cf->len;
 876        stats->rx_packets++;
 877        netif_receive_skb(skb);
 878
 879        return 1;
 880}
 881
 882/**
 883 * xcan_current_error_state - Get current error state from HW
 884 * @ndev:       Pointer to net_device structure
 885 *
 886 * Checks the current CAN error state from the HW. Note that this
 887 * only checks for ERROR_PASSIVE and ERROR_WARNING.
 888 *
 889 * Return:
 890 * ERROR_PASSIVE or ERROR_WARNING if either is active, ERROR_ACTIVE
 891 * otherwise.
 892 */
 893static enum can_state xcan_current_error_state(struct net_device *ndev)
 894{
 895        struct xcan_priv *priv = netdev_priv(ndev);
 896        u32 status = priv->read_reg(priv, XCAN_SR_OFFSET);
 897
 898        if ((status & XCAN_SR_ESTAT_MASK) == XCAN_SR_ESTAT_MASK)
 899                return CAN_STATE_ERROR_PASSIVE;
 900        else if (status & XCAN_SR_ERRWRN_MASK)
 901                return CAN_STATE_ERROR_WARNING;
 902        else
 903                return CAN_STATE_ERROR_ACTIVE;
 904}
 905
 906/**
 907 * xcan_set_error_state - Set new CAN error state
 908 * @ndev:       Pointer to net_device structure
 909 * @new_state:  The new CAN state to be set
 910 * @cf:         Error frame to be populated or NULL
 911 *
 912 * Set new CAN error state for the device, updating statistics and
 913 * populating the error frame if given.
 914 */
 915static void xcan_set_error_state(struct net_device *ndev,
 916                                 enum can_state new_state,
 917                                 struct can_frame *cf)
 918{
 919        struct xcan_priv *priv = netdev_priv(ndev);
 920        u32 ecr = priv->read_reg(priv, XCAN_ECR_OFFSET);
 921        u32 txerr = ecr & XCAN_ECR_TEC_MASK;
 922        u32 rxerr = (ecr & XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT;
 923        enum can_state tx_state = txerr >= rxerr ? new_state : 0;
 924        enum can_state rx_state = txerr <= rxerr ? new_state : 0;
 925
 926        /* non-ERROR states are handled elsewhere */
 927        if (WARN_ON(new_state > CAN_STATE_ERROR_PASSIVE))
 928                return;
 929
 930        can_change_state(ndev, cf, tx_state, rx_state);
 931
 932        if (cf) {
 933                cf->data[6] = txerr;
 934                cf->data[7] = rxerr;
 935        }
 936}
 937
 938/**
 939 * xcan_update_error_state_after_rxtx - Update CAN error state after RX/TX
 940 * @ndev:       Pointer to net_device structure
 941 *
 942 * If the device is in a ERROR-WARNING or ERROR-PASSIVE state, check if
 943 * the performed RX/TX has caused it to drop to a lesser state and set
 944 * the interface state accordingly.
 945 */
 946static void xcan_update_error_state_after_rxtx(struct net_device *ndev)
 947{
 948        struct xcan_priv *priv = netdev_priv(ndev);
 949        enum can_state old_state = priv->can.state;
 950        enum can_state new_state;
 951
 952        /* changing error state due to successful frame RX/TX can only
 953         * occur from these states
 954         */
 955        if (old_state != CAN_STATE_ERROR_WARNING &&
 956            old_state != CAN_STATE_ERROR_PASSIVE)
 957                return;
 958
 959        new_state = xcan_current_error_state(ndev);
 960
 961        if (new_state != old_state) {
 962                struct sk_buff *skb;
 963                struct can_frame *cf;
 964
 965                skb = alloc_can_err_skb(ndev, &cf);
 966
 967                xcan_set_error_state(ndev, new_state, skb ? cf : NULL);
 968
 969                if (skb) {
 970                        struct net_device_stats *stats = &ndev->stats;
 971
 972                        stats->rx_packets++;
 973                        stats->rx_bytes += cf->can_dlc;
 974                        netif_rx(skb);
 975                }
 976        }
 977}
 978
 979/**
 980 * xcan_err_interrupt - error frame Isr
 981 * @ndev:       net_device pointer
 982 * @isr:        interrupt status register value
 983 *
 984 * This is the CAN error interrupt and it will
 985 * check the the type of error and forward the error
 986 * frame to upper layers.
 987 */
 988static void xcan_err_interrupt(struct net_device *ndev, u32 isr)
 989{
 990        struct xcan_priv *priv = netdev_priv(ndev);
 991        struct net_device_stats *stats = &ndev->stats;
 992        struct can_frame cf = { };
 993        u32 err_status;
 994
 995        err_status = priv->read_reg(priv, XCAN_ESR_OFFSET);
 996        priv->write_reg(priv, XCAN_ESR_OFFSET, err_status);
 997
 998        if (isr & XCAN_IXR_BSOFF_MASK) {
 999                priv->can.state = CAN_STATE_BUS_OFF;
1000                priv->can.can_stats.bus_off++;
1001                /* Leave device in Config Mode in bus-off state */
1002                priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
1003                can_bus_off(ndev);
1004                cf.can_id |= CAN_ERR_BUSOFF;
1005        } else {
1006                enum can_state new_state = xcan_current_error_state(ndev);
1007
1008                if (new_state != priv->can.state)
1009                        xcan_set_error_state(ndev, new_state, &cf);
1010        }
1011
1012        /* Check for Arbitration lost interrupt */
1013        if (isr & XCAN_IXR_ARBLST_MASK) {
1014                priv->can.can_stats.arbitration_lost++;
1015                cf.can_id |= CAN_ERR_LOSTARB;
1016                cf.data[0] = CAN_ERR_LOSTARB_UNSPEC;
1017        }
1018
1019        /* Check for RX FIFO Overflow interrupt */
1020        if (isr & XCAN_IXR_RXOFLW_MASK) {
1021                stats->rx_over_errors++;
1022                stats->rx_errors++;
1023                cf.can_id |= CAN_ERR_CRTL;
1024                cf.data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
1025        }
1026
1027        /* Check for RX Match Not Finished interrupt */
1028        if (isr & XCAN_IXR_RXMNF_MASK) {
1029                stats->rx_dropped++;
1030                stats->rx_errors++;
1031                netdev_err(ndev, "RX match not finished, frame discarded\n");
1032                cf.can_id |= CAN_ERR_CRTL;
1033                cf.data[1] |= CAN_ERR_CRTL_UNSPEC;
1034        }
1035
1036        /* Check for error interrupt */
1037        if (isr & XCAN_IXR_ERROR_MASK) {
1038                bool berr_reporting = false;
1039
1040                if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) {
1041                        berr_reporting = true;
1042                        cf.can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1043                }
1044
1045                /* Check for Ack error interrupt */
1046                if (err_status & XCAN_ESR_ACKER_MASK) {
1047                        stats->tx_errors++;
1048                        if (berr_reporting) {
1049                                cf.can_id |= CAN_ERR_ACK;
1050                                cf.data[3] = CAN_ERR_PROT_LOC_ACK;
1051                        }
1052                }
1053
1054                /* Check for Bit error interrupt */
1055                if (err_status & XCAN_ESR_BERR_MASK) {
1056                        stats->tx_errors++;
1057                        if (berr_reporting) {
1058                                cf.can_id |= CAN_ERR_PROT;
1059                                cf.data[2] = CAN_ERR_PROT_BIT;
1060                        }
1061                }
1062
1063                /* Check for Stuff error interrupt */
1064                if (err_status & XCAN_ESR_STER_MASK) {
1065                        stats->rx_errors++;
1066                        if (berr_reporting) {
1067                                cf.can_id |= CAN_ERR_PROT;
1068                                cf.data[2] = CAN_ERR_PROT_STUFF;
1069                        }
1070                }
1071
1072                /* Check for Form error interrupt */
1073                if (err_status & XCAN_ESR_FMER_MASK) {
1074                        stats->rx_errors++;
1075                        if (berr_reporting) {
1076                                cf.can_id |= CAN_ERR_PROT;
1077                                cf.data[2] = CAN_ERR_PROT_FORM;
1078                        }
1079                }
1080
1081                /* Check for CRC error interrupt */
1082                if (err_status & XCAN_ESR_CRCER_MASK) {
1083                        stats->rx_errors++;
1084                        if (berr_reporting) {
1085                                cf.can_id |= CAN_ERR_PROT;
1086                                cf.data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
1087                        }
1088                }
1089                priv->can.can_stats.bus_error++;
1090        }
1091
1092        if (cf.can_id) {
1093                struct can_frame *skb_cf;
1094                struct sk_buff *skb = alloc_can_err_skb(ndev, &skb_cf);
1095
1096                if (skb) {
1097                        skb_cf->can_id |= cf.can_id;
1098                        memcpy(skb_cf->data, cf.data, CAN_ERR_DLC);
1099                        stats->rx_packets++;
1100                        stats->rx_bytes += CAN_ERR_DLC;
1101                        netif_rx(skb);
1102                }
1103        }
1104
1105        netdev_dbg(ndev, "%s: error status register:0x%x\n",
1106                   __func__, priv->read_reg(priv, XCAN_ESR_OFFSET));
1107}
1108
1109/**
1110 * xcan_state_interrupt - It will check the state of the CAN device
1111 * @ndev:       net_device pointer
1112 * @isr:        interrupt status register value
1113 *
1114 * This will checks the state of the CAN device
1115 * and puts the device into appropriate state.
1116 */
1117static void xcan_state_interrupt(struct net_device *ndev, u32 isr)
1118{
1119        struct xcan_priv *priv = netdev_priv(ndev);
1120
1121        /* Check for Sleep interrupt if set put CAN device in sleep state */
1122        if (isr & XCAN_IXR_SLP_MASK)
1123                priv->can.state = CAN_STATE_SLEEPING;
1124
1125        /* Check for Wake up interrupt if set put CAN device in Active state */
1126        if (isr & XCAN_IXR_WKUP_MASK)
1127                priv->can.state = CAN_STATE_ERROR_ACTIVE;
1128}
1129
1130/**
1131 * xcan_rx_fifo_get_next_frame - Get register offset of next RX frame
1132 * @priv:       Driver private data structure
1133 *
1134 * Return: Register offset of the next frame in RX FIFO.
1135 */
1136static int xcan_rx_fifo_get_next_frame(struct xcan_priv *priv)
1137{
1138        int offset;
1139
1140        if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI) {
1141                u32 fsr, mask;
1142
1143                /* clear RXOK before the is-empty check so that any newly
1144                 * received frame will reassert it without a race
1145                 */
1146                priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_RXOK_MASK);
1147
1148                fsr = priv->read_reg(priv, XCAN_FSR_OFFSET);
1149
1150                /* check if RX FIFO is empty */
1151                if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1152                        mask = XCAN_2_FSR_FL_MASK;
1153                else
1154                        mask = XCAN_FSR_FL_MASK;
1155
1156                if (!(fsr & mask))
1157                        return -ENOENT;
1158
1159                if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1160                        offset =
1161                          XCAN_RXMSG_2_FRAME_OFFSET(fsr & XCAN_2_FSR_RI_MASK);
1162                else
1163                        offset =
1164                          XCAN_RXMSG_FRAME_OFFSET(fsr & XCAN_FSR_RI_MASK);
1165
1166        } else {
1167                /* check if RX FIFO is empty */
1168                if (!(priv->read_reg(priv, XCAN_ISR_OFFSET) &
1169                      XCAN_IXR_RXNEMP_MASK))
1170                        return -ENOENT;
1171
1172                /* frames are read from a static offset */
1173                offset = XCAN_RXFIFO_OFFSET;
1174        }
1175
1176        return offset;
1177}
1178
1179/**
1180 * xcan_rx_poll - Poll routine for rx packets (NAPI)
1181 * @napi:       napi structure pointer
1182 * @quota:      Max number of rx packets to be processed.
1183 *
1184 * This is the poll routine for rx part.
1185 * It will process the packets maximux quota value.
1186 *
1187 * Return: number of packets received
1188 */
1189static int xcan_rx_poll(struct napi_struct *napi, int quota)
1190{
1191        struct net_device *ndev = napi->dev;
1192        struct xcan_priv *priv = netdev_priv(ndev);
1193        u32 ier;
1194        int work_done = 0;
1195        int frame_offset;
1196
1197        while ((frame_offset = xcan_rx_fifo_get_next_frame(priv)) >= 0 &&
1198               (work_done < quota)) {
1199                if (xcan_rx_int_mask(priv) & XCAN_IXR_RXOK_MASK)
1200                        work_done += xcanfd_rx(ndev, frame_offset);
1201                else
1202                        work_done += xcan_rx(ndev, frame_offset);
1203
1204                if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
1205                        /* increment read index */
1206                        priv->write_reg(priv, XCAN_FSR_OFFSET,
1207                                        XCAN_FSR_IRI_MASK);
1208                else
1209                        /* clear rx-not-empty (will actually clear only if
1210                         * empty)
1211                         */
1212                        priv->write_reg(priv, XCAN_ICR_OFFSET,
1213                                        XCAN_IXR_RXNEMP_MASK);
1214        }
1215
1216        if (work_done) {
1217                can_led_event(ndev, CAN_LED_EVENT_RX);
1218                xcan_update_error_state_after_rxtx(ndev);
1219        }
1220
1221        if (work_done < quota) {
1222                napi_complete_done(napi, work_done);
1223                ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1224                ier |= xcan_rx_int_mask(priv);
1225                priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1226        }
1227        return work_done;
1228}
1229
1230/**
1231 * xcan_tx_interrupt - Tx Done Isr
1232 * @ndev:       net_device pointer
1233 * @isr:        Interrupt status register value
1234 */
1235static void xcan_tx_interrupt(struct net_device *ndev, u32 isr)
1236{
1237        struct xcan_priv *priv = netdev_priv(ndev);
1238        struct net_device_stats *stats = &ndev->stats;
1239        unsigned int frames_in_fifo;
1240        int frames_sent = 1; /* TXOK => at least 1 frame was sent */
1241        unsigned long flags;
1242        int retries = 0;
1243
1244        /* Synchronize with xmit as we need to know the exact number
1245         * of frames in the FIFO to stay in sync due to the TXFEMP
1246         * handling.
1247         * This also prevents a race between netif_wake_queue() and
1248         * netif_stop_queue().
1249         */
1250        spin_lock_irqsave(&priv->tx_lock, flags);
1251
1252        frames_in_fifo = priv->tx_head - priv->tx_tail;
1253
1254        if (WARN_ON_ONCE(frames_in_fifo == 0)) {
1255                /* clear TXOK anyway to avoid getting back here */
1256                priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1257                spin_unlock_irqrestore(&priv->tx_lock, flags);
1258                return;
1259        }
1260
1261        /* Check if 2 frames were sent (TXOK only means that at least 1
1262         * frame was sent).
1263         */
1264        if (frames_in_fifo > 1) {
1265                WARN_ON(frames_in_fifo > priv->tx_max);
1266
1267                /* Synchronize TXOK and isr so that after the loop:
1268                 * (1) isr variable is up-to-date at least up to TXOK clear
1269                 *     time. This avoids us clearing a TXOK of a second frame
1270                 *     but not noticing that the FIFO is now empty and thus
1271                 *     marking only a single frame as sent.
1272                 * (2) No TXOK is left. Having one could mean leaving a
1273                 *     stray TXOK as we might process the associated frame
1274                 *     via TXFEMP handling as we read TXFEMP *after* TXOK
1275                 *     clear to satisfy (1).
1276                 */
1277                while ((isr & XCAN_IXR_TXOK_MASK) &&
1278                       !WARN_ON(++retries == 100)) {
1279                        priv->write_reg(priv, XCAN_ICR_OFFSET,
1280                                        XCAN_IXR_TXOK_MASK);
1281                        isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1282                }
1283
1284                if (isr & XCAN_IXR_TXFEMP_MASK) {
1285                        /* nothing in FIFO anymore */
1286                        frames_sent = frames_in_fifo;
1287                }
1288        } else {
1289                /* single frame in fifo, just clear TXOK */
1290                priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1291        }
1292
1293        while (frames_sent--) {
1294                stats->tx_bytes += can_get_echo_skb(ndev, priv->tx_tail %
1295                                                    priv->tx_max);
1296                priv->tx_tail++;
1297                stats->tx_packets++;
1298        }
1299
1300        netif_wake_queue(ndev);
1301
1302        spin_unlock_irqrestore(&priv->tx_lock, flags);
1303
1304        can_led_event(ndev, CAN_LED_EVENT_TX);
1305        xcan_update_error_state_after_rxtx(ndev);
1306}
1307
1308/**
1309 * xcan_interrupt - CAN Isr
1310 * @irq:        irq number
1311 * @dev_id:     device id poniter
1312 *
1313 * This is the xilinx CAN Isr. It checks for the type of interrupt
1314 * and invokes the corresponding ISR.
1315 *
1316 * Return:
1317 * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
1318 */
1319static irqreturn_t xcan_interrupt(int irq, void *dev_id)
1320{
1321        struct net_device *ndev = (struct net_device *)dev_id;
1322        struct xcan_priv *priv = netdev_priv(ndev);
1323        u32 isr, ier;
1324        u32 isr_errors;
1325        u32 rx_int_mask = xcan_rx_int_mask(priv);
1326
1327        /* Get the interrupt status from Xilinx CAN */
1328        isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1329        if (!isr)
1330                return IRQ_NONE;
1331
1332        /* Check for the type of interrupt and Processing it */
1333        if (isr & (XCAN_IXR_SLP_MASK | XCAN_IXR_WKUP_MASK)) {
1334                priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_SLP_MASK |
1335                                XCAN_IXR_WKUP_MASK));
1336                xcan_state_interrupt(ndev, isr);
1337        }
1338
1339        /* Check for Tx interrupt and Processing it */
1340        if (isr & XCAN_IXR_TXOK_MASK)
1341                xcan_tx_interrupt(ndev, isr);
1342
1343        /* Check for the type of error interrupt and Processing it */
1344        isr_errors = isr & (XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
1345                            XCAN_IXR_BSOFF_MASK | XCAN_IXR_ARBLST_MASK |
1346                            XCAN_IXR_RXMNF_MASK);
1347        if (isr_errors) {
1348                priv->write_reg(priv, XCAN_ICR_OFFSET, isr_errors);
1349                xcan_err_interrupt(ndev, isr);
1350        }
1351
1352        /* Check for the type of receive interrupt and Processing it */
1353        if (isr & rx_int_mask) {
1354                ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1355                ier &= ~rx_int_mask;
1356                priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1357                napi_schedule(&priv->napi);
1358        }
1359        return IRQ_HANDLED;
1360}
1361
1362/**
1363 * xcan_chip_stop - Driver stop routine
1364 * @ndev:       Pointer to net_device structure
1365 *
1366 * This is the drivers stop routine. It will disable the
1367 * interrupts and put the device into configuration mode.
1368 */
1369static void xcan_chip_stop(struct net_device *ndev)
1370{
1371        struct xcan_priv *priv = netdev_priv(ndev);
1372
1373        /* Disable interrupts and leave the can in configuration mode */
1374        set_reset_mode(ndev);
1375        priv->can.state = CAN_STATE_STOPPED;
1376}
1377
1378/**
1379 * xcan_open - Driver open routine
1380 * @ndev:       Pointer to net_device structure
1381 *
1382 * This is the driver open routine.
1383 * Return: 0 on success and failure value on error
1384 */
1385static int xcan_open(struct net_device *ndev)
1386{
1387        struct xcan_priv *priv = netdev_priv(ndev);
1388        int ret;
1389
1390        ret = pm_runtime_get_sync(priv->dev);
1391        if (ret < 0) {
1392                netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1393                           __func__, ret);
1394                return ret;
1395        }
1396
1397        ret = request_irq(ndev->irq, xcan_interrupt, priv->irq_flags,
1398                          ndev->name, ndev);
1399        if (ret < 0) {
1400                netdev_err(ndev, "irq allocation for CAN failed\n");
1401                goto err;
1402        }
1403
1404        /* Set chip into reset mode */
1405        ret = set_reset_mode(ndev);
1406        if (ret < 0) {
1407                netdev_err(ndev, "mode resetting failed!\n");
1408                goto err_irq;
1409        }
1410
1411        /* Common open */
1412        ret = open_candev(ndev);
1413        if (ret)
1414                goto err_irq;
1415
1416        ret = xcan_chip_start(ndev);
1417        if (ret < 0) {
1418                netdev_err(ndev, "xcan_chip_start failed!\n");
1419                goto err_candev;
1420        }
1421
1422        can_led_event(ndev, CAN_LED_EVENT_OPEN);
1423        napi_enable(&priv->napi);
1424        netif_start_queue(ndev);
1425
1426        return 0;
1427
1428err_candev:
1429        close_candev(ndev);
1430err_irq:
1431        free_irq(ndev->irq, ndev);
1432err:
1433        pm_runtime_put(priv->dev);
1434
1435        return ret;
1436}
1437
1438/**
1439 * xcan_close - Driver close routine
1440 * @ndev:       Pointer to net_device structure
1441 *
1442 * Return: 0 always
1443 */
1444static int xcan_close(struct net_device *ndev)
1445{
1446        struct xcan_priv *priv = netdev_priv(ndev);
1447
1448        netif_stop_queue(ndev);
1449        napi_disable(&priv->napi);
1450        xcan_chip_stop(ndev);
1451        free_irq(ndev->irq, ndev);
1452        close_candev(ndev);
1453
1454        can_led_event(ndev, CAN_LED_EVENT_STOP);
1455        pm_runtime_put(priv->dev);
1456
1457        return 0;
1458}
1459
1460/**
1461 * xcan_get_berr_counter - error counter routine
1462 * @ndev:       Pointer to net_device structure
1463 * @bec:        Pointer to can_berr_counter structure
1464 *
1465 * This is the driver error counter routine.
1466 * Return: 0 on success and failure value on error
1467 */
1468static int xcan_get_berr_counter(const struct net_device *ndev,
1469                                 struct can_berr_counter *bec)
1470{
1471        struct xcan_priv *priv = netdev_priv(ndev);
1472        int ret;
1473
1474        ret = pm_runtime_get_sync(priv->dev);
1475        if (ret < 0) {
1476                netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1477                           __func__, ret);
1478                return ret;
1479        }
1480
1481        bec->txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
1482        bec->rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
1483                        XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
1484
1485        pm_runtime_put(priv->dev);
1486
1487        return 0;
1488}
1489
1490static const struct net_device_ops xcan_netdev_ops = {
1491        .ndo_open       = xcan_open,
1492        .ndo_stop       = xcan_close,
1493        .ndo_start_xmit = xcan_start_xmit,
1494        .ndo_change_mtu = can_change_mtu,
1495};
1496
1497/**
1498 * xcan_suspend - Suspend method for the driver
1499 * @dev:        Address of the device structure
1500 *
1501 * Put the driver into low power mode.
1502 * Return: 0 on success and failure value on error
1503 */
1504static int __maybe_unused xcan_suspend(struct device *dev)
1505{
1506        struct net_device *ndev = dev_get_drvdata(dev);
1507
1508        if (netif_running(ndev)) {
1509                netif_stop_queue(ndev);
1510                netif_device_detach(ndev);
1511                xcan_chip_stop(ndev);
1512        }
1513
1514        return pm_runtime_force_suspend(dev);
1515}
1516
1517/**
1518 * xcan_resume - Resume from suspend
1519 * @dev:        Address of the device structure
1520 *
1521 * Resume operation after suspend.
1522 * Return: 0 on success and failure value on error
1523 */
1524static int __maybe_unused xcan_resume(struct device *dev)
1525{
1526        struct net_device *ndev = dev_get_drvdata(dev);
1527        int ret;
1528
1529        ret = pm_runtime_force_resume(dev);
1530        if (ret) {
1531                dev_err(dev, "pm_runtime_force_resume failed on resume\n");
1532                return ret;
1533        }
1534
1535        if (netif_running(ndev)) {
1536                ret = xcan_chip_start(ndev);
1537                if (ret) {
1538                        dev_err(dev, "xcan_chip_start failed on resume\n");
1539                        return ret;
1540                }
1541
1542                netif_device_attach(ndev);
1543                netif_start_queue(ndev);
1544        }
1545
1546        return 0;
1547}
1548
1549/**
1550 * xcan_runtime_suspend - Runtime suspend method for the driver
1551 * @dev:        Address of the device structure
1552 *
1553 * Put the driver into low power mode.
1554 * Return: 0 always
1555 */
1556static int __maybe_unused xcan_runtime_suspend(struct device *dev)
1557{
1558        struct net_device *ndev = dev_get_drvdata(dev);
1559        struct xcan_priv *priv = netdev_priv(ndev);
1560
1561        clk_disable_unprepare(priv->bus_clk);
1562        clk_disable_unprepare(priv->can_clk);
1563
1564        return 0;
1565}
1566
1567/**
1568 * xcan_runtime_resume - Runtime resume from suspend
1569 * @dev:        Address of the device structure
1570 *
1571 * Resume operation after suspend.
1572 * Return: 0 on success and failure value on error
1573 */
1574static int __maybe_unused xcan_runtime_resume(struct device *dev)
1575{
1576        struct net_device *ndev = dev_get_drvdata(dev);
1577        struct xcan_priv *priv = netdev_priv(ndev);
1578        int ret;
1579
1580        ret = clk_prepare_enable(priv->bus_clk);
1581        if (ret) {
1582                dev_err(dev, "Cannot enable clock.\n");
1583                return ret;
1584        }
1585        ret = clk_prepare_enable(priv->can_clk);
1586        if (ret) {
1587                dev_err(dev, "Cannot enable clock.\n");
1588                clk_disable_unprepare(priv->bus_clk);
1589                return ret;
1590        }
1591
1592        return 0;
1593}
1594
1595static const struct dev_pm_ops xcan_dev_pm_ops = {
1596        SET_SYSTEM_SLEEP_PM_OPS(xcan_suspend, xcan_resume)
1597        SET_RUNTIME_PM_OPS(xcan_runtime_suspend, xcan_runtime_resume, NULL)
1598};
1599
1600static const struct xcan_devtype_data xcan_zynq_data = {
1601        .cantype = XZYNQ_CANPS,
1602        .flags = XCAN_FLAG_TXFEMP,
1603        .bittiming_const = &xcan_bittiming_const,
1604        .btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1605        .btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1606        .bus_clk_name = "pclk",
1607};
1608
1609static const struct xcan_devtype_data xcan_axi_data = {
1610        .cantype = XAXI_CAN,
1611        .bittiming_const = &xcan_bittiming_const,
1612        .btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1613        .btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1614        .bus_clk_name = "s_axi_aclk",
1615};
1616
1617static const struct xcan_devtype_data xcan_canfd_data = {
1618        .cantype = XAXI_CANFD,
1619        .flags = XCAN_FLAG_EXT_FILTERS |
1620                 XCAN_FLAG_RXMNF |
1621                 XCAN_FLAG_TX_MAILBOXES |
1622                 XCAN_FLAG_RX_FIFO_MULTI,
1623        .bittiming_const = &xcan_bittiming_const_canfd,
1624        .btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1625        .btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1626        .bus_clk_name = "s_axi_aclk",
1627};
1628
1629static const struct xcan_devtype_data xcan_canfd2_data = {
1630        .cantype = XAXI_CANFD_2_0,
1631        .flags = XCAN_FLAG_EXT_FILTERS |
1632                 XCAN_FLAG_RXMNF |
1633                 XCAN_FLAG_TX_MAILBOXES |
1634                 XCAN_FLAG_CANFD_2 |
1635                 XCAN_FLAG_RX_FIFO_MULTI,
1636        .bittiming_const = &xcan_bittiming_const_canfd2,
1637        .btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1638        .btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1639        .bus_clk_name = "s_axi_aclk",
1640};
1641
1642/* Match table for OF platform binding */
1643static const struct of_device_id xcan_of_match[] = {
1644        { .compatible = "xlnx,zynq-can-1.0", .data = &xcan_zynq_data },
1645        { .compatible = "xlnx,axi-can-1.00.a", .data = &xcan_axi_data },
1646        { .compatible = "xlnx,canfd-1.0", .data = &xcan_canfd_data },
1647        { .compatible = "xlnx,canfd-2.0", .data = &xcan_canfd2_data },
1648        { /* end of list */ },
1649};
1650MODULE_DEVICE_TABLE(of, xcan_of_match);
1651
1652/**
1653 * xcan_probe - Platform registration call
1654 * @pdev:       Handle to the platform device structure
1655 *
1656 * This function does all the memory allocation and registration for the CAN
1657 * device.
1658 *
1659 * Return: 0 on success and failure value on error
1660 */
1661static int xcan_probe(struct platform_device *pdev)
1662{
1663        struct net_device *ndev;
1664        struct xcan_priv *priv;
1665        const struct of_device_id *of_id;
1666        const struct xcan_devtype_data *devtype = &xcan_axi_data;
1667        void __iomem *addr;
1668        int ret;
1669        int rx_max, tx_max;
1670        int hw_tx_max, hw_rx_max;
1671        const char *hw_tx_max_property;
1672
1673        /* Get the virtual base address for the device */
1674        addr = devm_platform_ioremap_resource(pdev, 0);
1675        if (IS_ERR(addr)) {
1676                ret = PTR_ERR(addr);
1677                goto err;
1678        }
1679
1680        of_id = of_match_device(xcan_of_match, &pdev->dev);
1681        if (of_id && of_id->data)
1682                devtype = of_id->data;
1683
1684        hw_tx_max_property = devtype->flags & XCAN_FLAG_TX_MAILBOXES ?
1685                             "tx-mailbox-count" : "tx-fifo-depth";
1686
1687        ret = of_property_read_u32(pdev->dev.of_node, hw_tx_max_property,
1688                                   &hw_tx_max);
1689        if (ret < 0) {
1690                dev_err(&pdev->dev, "missing %s property\n",
1691                        hw_tx_max_property);
1692                goto err;
1693        }
1694
1695        ret = of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth",
1696                                   &hw_rx_max);
1697        if (ret < 0) {
1698                dev_err(&pdev->dev,
1699                        "missing rx-fifo-depth property (mailbox mode is not supported)\n");
1700                goto err;
1701        }
1702
1703        /* With TX FIFO:
1704         *
1705         * There is no way to directly figure out how many frames have been
1706         * sent when the TXOK interrupt is processed. If TXFEMP
1707         * is supported, we can have 2 frames in the FIFO and use TXFEMP
1708         * to determine if 1 or 2 frames have been sent.
1709         * Theoretically we should be able to use TXFWMEMP to determine up
1710         * to 3 frames, but it seems that after putting a second frame in the
1711         * FIFO, with watermark at 2 frames, it can happen that TXFWMEMP (less
1712         * than 2 frames in FIFO) is set anyway with no TXOK (a frame was
1713         * sent), which is not a sensible state - possibly TXFWMEMP is not
1714         * completely synchronized with the rest of the bits?
1715         *
1716         * With TX mailboxes:
1717         *
1718         * HW sends frames in CAN ID priority order. To preserve FIFO ordering
1719         * we submit frames one at a time.
1720         */
1721        if (!(devtype->flags & XCAN_FLAG_TX_MAILBOXES) &&
1722            (devtype->flags & XCAN_FLAG_TXFEMP))
1723                tx_max = min(hw_tx_max, 2);
1724        else
1725                tx_max = 1;
1726
1727        rx_max = hw_rx_max;
1728
1729        /* Create a CAN device instance */
1730        ndev = alloc_candev(sizeof(struct xcan_priv), tx_max);
1731        if (!ndev)
1732                return -ENOMEM;
1733
1734        priv = netdev_priv(ndev);
1735        priv->dev = &pdev->dev;
1736        priv->can.bittiming_const = devtype->bittiming_const;
1737        priv->can.do_set_mode = xcan_do_set_mode;
1738        priv->can.do_get_berr_counter = xcan_get_berr_counter;
1739        priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1740                                        CAN_CTRLMODE_BERR_REPORTING;
1741
1742        if (devtype->cantype == XAXI_CANFD)
1743                priv->can.data_bittiming_const =
1744                        &xcan_data_bittiming_const_canfd;
1745
1746        if (devtype->cantype == XAXI_CANFD_2_0)
1747                priv->can.data_bittiming_const =
1748                        &xcan_data_bittiming_const_canfd2;
1749
1750        if (devtype->cantype == XAXI_CANFD ||
1751            devtype->cantype == XAXI_CANFD_2_0)
1752                priv->can.ctrlmode_supported |= CAN_CTRLMODE_FD;
1753
1754        priv->reg_base = addr;
1755        priv->tx_max = tx_max;
1756        priv->devtype = *devtype;
1757        spin_lock_init(&priv->tx_lock);
1758
1759        /* Get IRQ for the device */
1760        ndev->irq = platform_get_irq(pdev, 0);
1761        ndev->flags |= IFF_ECHO;        /* We support local echo */
1762
1763        platform_set_drvdata(pdev, ndev);
1764        SET_NETDEV_DEV(ndev, &pdev->dev);
1765        ndev->netdev_ops = &xcan_netdev_ops;
1766
1767        /* Getting the CAN can_clk info */
1768        priv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
1769        if (IS_ERR(priv->can_clk)) {
1770                if (PTR_ERR(priv->can_clk) != -EPROBE_DEFER)
1771                        dev_err(&pdev->dev, "Device clock not found.\n");
1772                ret = PTR_ERR(priv->can_clk);
1773                goto err_free;
1774        }
1775
1776        priv->bus_clk = devm_clk_get(&pdev->dev, devtype->bus_clk_name);
1777        if (IS_ERR(priv->bus_clk)) {
1778                if (PTR_ERR(priv->bus_clk) != -EPROBE_DEFER)
1779                        dev_err(&pdev->dev, "bus clock not found\n");
1780                ret = PTR_ERR(priv->bus_clk);
1781                goto err_free;
1782        }
1783
1784        priv->write_reg = xcan_write_reg_le;
1785        priv->read_reg = xcan_read_reg_le;
1786
1787        pm_runtime_enable(&pdev->dev);
1788        ret = pm_runtime_get_sync(&pdev->dev);
1789        if (ret < 0) {
1790                netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1791                           __func__, ret);
1792                goto err_pmdisable;
1793        }
1794
1795        if (priv->read_reg(priv, XCAN_SR_OFFSET) != XCAN_SR_CONFIG_MASK) {
1796                priv->write_reg = xcan_write_reg_be;
1797                priv->read_reg = xcan_read_reg_be;
1798        }
1799
1800        priv->can.clock.freq = clk_get_rate(priv->can_clk);
1801
1802        netif_napi_add(ndev, &priv->napi, xcan_rx_poll, rx_max);
1803
1804        ret = register_candev(ndev);
1805        if (ret) {
1806                dev_err(&pdev->dev, "fail to register failed (err=%d)\n", ret);
1807                goto err_disableclks;
1808        }
1809
1810        devm_can_led_init(ndev);
1811
1812        pm_runtime_put(&pdev->dev);
1813
1814        if (priv->devtype.flags & XCAN_FLAG_CANFD_2) {
1815                priv->write_reg(priv, XCAN_AFR_2_ID_OFFSET, 0x00000000);
1816                priv->write_reg(priv, XCAN_AFR_2_MASK_OFFSET, 0x00000000);
1817        }
1818
1819        netdev_dbg(ndev, "reg_base=0x%p irq=%d clock=%d, tx buffers: actual %d, using %d\n",
1820                   priv->reg_base, ndev->irq, priv->can.clock.freq,
1821                   hw_tx_max, priv->tx_max);
1822
1823        return 0;
1824
1825err_disableclks:
1826        pm_runtime_put(priv->dev);
1827err_pmdisable:
1828        pm_runtime_disable(&pdev->dev);
1829err_free:
1830        free_candev(ndev);
1831err:
1832        return ret;
1833}
1834
1835/**
1836 * xcan_remove - Unregister the device after releasing the resources
1837 * @pdev:       Handle to the platform device structure
1838 *
1839 * This function frees all the resources allocated to the device.
1840 * Return: 0 always
1841 */
1842static int xcan_remove(struct platform_device *pdev)
1843{
1844        struct net_device *ndev = platform_get_drvdata(pdev);
1845        struct xcan_priv *priv = netdev_priv(ndev);
1846
1847        unregister_candev(ndev);
1848        pm_runtime_disable(&pdev->dev);
1849        netif_napi_del(&priv->napi);
1850        free_candev(ndev);
1851
1852        return 0;
1853}
1854
1855static struct platform_driver xcan_driver = {
1856        .probe = xcan_probe,
1857        .remove = xcan_remove,
1858        .driver = {
1859                .name = DRIVER_NAME,
1860                .pm = &xcan_dev_pm_ops,
1861                .of_match_table = xcan_of_match,
1862        },
1863};
1864
1865module_platform_driver(xcan_driver);
1866
1867MODULE_LICENSE("GPL");
1868MODULE_AUTHOR("Xilinx Inc");
1869MODULE_DESCRIPTION("Xilinx CAN interface");
1870