linux/drivers/net/dsa/sja1105/sja1105_tas.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2019, Vladimir Oltean <olteanv@gmail.com>
   3 */
   4#include "sja1105.h"
   5
   6#define SJA1105_TAS_CLKSRC_DISABLED     0
   7#define SJA1105_TAS_CLKSRC_STANDALONE   1
   8#define SJA1105_TAS_CLKSRC_AS6802       2
   9#define SJA1105_TAS_CLKSRC_PTP          3
  10#define SJA1105_GATE_MASK               GENMASK_ULL(SJA1105_NUM_TC - 1, 0)
  11
  12#define work_to_sja1105_tas(d) \
  13        container_of((d), struct sja1105_tas_data, tas_work)
  14#define tas_to_sja1105(d) \
  15        container_of((d), struct sja1105_private, tas_data)
  16
  17static int sja1105_tas_set_runtime_params(struct sja1105_private *priv)
  18{
  19        struct sja1105_tas_data *tas_data = &priv->tas_data;
  20        struct sja1105_gating_config *gating_cfg = &tas_data->gating_cfg;
  21        struct dsa_switch *ds = priv->ds;
  22        s64 earliest_base_time = S64_MAX;
  23        s64 latest_base_time = 0;
  24        s64 its_cycle_time = 0;
  25        s64 max_cycle_time = 0;
  26        int port;
  27
  28        tas_data->enabled = false;
  29
  30        for (port = 0; port < SJA1105_NUM_PORTS; port++) {
  31                const struct tc_taprio_qopt_offload *offload;
  32
  33                offload = tas_data->offload[port];
  34                if (!offload)
  35                        continue;
  36
  37                tas_data->enabled = true;
  38
  39                if (max_cycle_time < offload->cycle_time)
  40                        max_cycle_time = offload->cycle_time;
  41                if (latest_base_time < offload->base_time)
  42                        latest_base_time = offload->base_time;
  43                if (earliest_base_time > offload->base_time) {
  44                        earliest_base_time = offload->base_time;
  45                        its_cycle_time = offload->cycle_time;
  46                }
  47        }
  48
  49        if (!list_empty(&gating_cfg->entries)) {
  50                tas_data->enabled = true;
  51
  52                if (max_cycle_time < gating_cfg->cycle_time)
  53                        max_cycle_time = gating_cfg->cycle_time;
  54                if (latest_base_time < gating_cfg->base_time)
  55                        latest_base_time = gating_cfg->base_time;
  56                if (earliest_base_time > gating_cfg->base_time) {
  57                        earliest_base_time = gating_cfg->base_time;
  58                        its_cycle_time = gating_cfg->cycle_time;
  59                }
  60        }
  61
  62        if (!tas_data->enabled)
  63                return 0;
  64
  65        /* Roll the earliest base time over until it is in a comparable
  66         * time base with the latest, then compare their deltas.
  67         * We want to enforce that all ports' base times are within
  68         * SJA1105_TAS_MAX_DELTA 200ns cycles of one another.
  69         */
  70        earliest_base_time = future_base_time(earliest_base_time,
  71                                              its_cycle_time,
  72                                              latest_base_time);
  73        while (earliest_base_time > latest_base_time)
  74                earliest_base_time -= its_cycle_time;
  75        if (latest_base_time - earliest_base_time >
  76            sja1105_delta_to_ns(SJA1105_TAS_MAX_DELTA)) {
  77                dev_err(ds->dev,
  78                        "Base times too far apart: min %llu max %llu\n",
  79                        earliest_base_time, latest_base_time);
  80                return -ERANGE;
  81        }
  82
  83        tas_data->earliest_base_time = earliest_base_time;
  84        tas_data->max_cycle_time = max_cycle_time;
  85
  86        dev_dbg(ds->dev, "earliest base time %lld ns\n", earliest_base_time);
  87        dev_dbg(ds->dev, "latest base time %lld ns\n", latest_base_time);
  88        dev_dbg(ds->dev, "longest cycle time %lld ns\n", max_cycle_time);
  89
  90        return 0;
  91}
  92
  93/* Lo and behold: the egress scheduler from hell.
  94 *
  95 * At the hardware level, the Time-Aware Shaper holds a global linear arrray of
  96 * all schedule entries for all ports. These are the Gate Control List (GCL)
  97 * entries, let's call them "timeslots" for short. This linear array of
  98 * timeslots is held in BLK_IDX_SCHEDULE.
  99 *
 100 * Then there are a maximum of 8 "execution threads" inside the switch, which
 101 * iterate cyclically through the "schedule". Each "cycle" has an entry point
 102 * and an exit point, both being timeslot indices in the schedule table. The
 103 * hardware calls each cycle a "subschedule".
 104 *
 105 * Subschedule (cycle) i starts when
 106 *   ptpclkval >= ptpschtm + BLK_IDX_SCHEDULE_ENTRY_POINTS[i].delta.
 107 *
 108 * The hardware scheduler iterates BLK_IDX_SCHEDULE with a k ranging from
 109 *   k = BLK_IDX_SCHEDULE_ENTRY_POINTS[i].address to
 110 *   k = BLK_IDX_SCHEDULE_PARAMS.subscheind[i]
 111 *
 112 * For each schedule entry (timeslot) k, the engine executes the gate control
 113 * list entry for the duration of BLK_IDX_SCHEDULE[k].delta.
 114 *
 115 *         +---------+
 116 *         |         | BLK_IDX_SCHEDULE_ENTRY_POINTS_PARAMS
 117 *         +---------+
 118 *              |
 119 *              +-----------------+
 120 *                                | .actsubsch
 121 *  BLK_IDX_SCHEDULE_ENTRY_POINTS v
 122 *                 +-------+-------+
 123 *                 |cycle 0|cycle 1|
 124 *                 +-------+-------+
 125 *                   |  |      |  |
 126 *  +----------------+  |      |  +-------------------------------------+
 127 *  |   .subschindx     |      |             .subschindx                |
 128 *  |                   |      +---------------+                        |
 129 *  |          .address |        .address      |                        |
 130 *  |                   |                      |                        |
 131 *  |                   |                      |                        |
 132 *  |  BLK_IDX_SCHEDULE v                      v                        |
 133 *  |              +-------+-------+-------+-------+-------+------+     |
 134 *  |              |entry 0|entry 1|entry 2|entry 3|entry 4|entry5|     |
 135 *  |              +-------+-------+-------+-------+-------+------+     |
 136 *  |                                  ^                    ^  ^  ^     |
 137 *  |                                  |                    |  |  |     |
 138 *  |        +-------------------------+                    |  |  |     |
 139 *  |        |              +-------------------------------+  |  |     |
 140 *  |        |              |              +-------------------+  |     |
 141 *  |        |              |              |                      |     |
 142 *  | +---------------------------------------------------------------+ |
 143 *  | |subscheind[0]<=subscheind[1]<=subscheind[2]<=...<=subscheind[7]| |
 144 *  | +---------------------------------------------------------------+ |
 145 *  |        ^              ^                BLK_IDX_SCHEDULE_PARAMS    |
 146 *  |        |              |                                           |
 147 *  +--------+              +-------------------------------------------+
 148 *
 149 *  In the above picture there are two subschedules (cycles):
 150 *
 151 *  - cycle 0: iterates the schedule table from 0 to 2 (and back)
 152 *  - cycle 1: iterates the schedule table from 3 to 5 (and back)
 153 *
 154 *  All other possible execution threads must be marked as unused by making
 155 *  their "subschedule end index" (subscheind) equal to the last valid
 156 *  subschedule's end index (in this case 5).
 157 */
 158int sja1105_init_scheduling(struct sja1105_private *priv)
 159{
 160        struct sja1105_schedule_entry_points_entry *schedule_entry_points;
 161        struct sja1105_schedule_entry_points_params_entry
 162                                        *schedule_entry_points_params;
 163        struct sja1105_schedule_params_entry *schedule_params;
 164        struct sja1105_tas_data *tas_data = &priv->tas_data;
 165        struct sja1105_gating_config *gating_cfg = &tas_data->gating_cfg;
 166        struct sja1105_schedule_entry *schedule;
 167        struct sja1105_table *table;
 168        int schedule_start_idx;
 169        s64 entry_point_delta;
 170        int schedule_end_idx;
 171        int num_entries = 0;
 172        int num_cycles = 0;
 173        int cycle = 0;
 174        int i, k = 0;
 175        int port, rc;
 176
 177        rc = sja1105_tas_set_runtime_params(priv);
 178        if (rc < 0)
 179                return rc;
 180
 181        /* Discard previous Schedule Table */
 182        table = &priv->static_config.tables[BLK_IDX_SCHEDULE];
 183        if (table->entry_count) {
 184                kfree(table->entries);
 185                table->entry_count = 0;
 186        }
 187
 188        /* Discard previous Schedule Entry Points Parameters Table */
 189        table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS_PARAMS];
 190        if (table->entry_count) {
 191                kfree(table->entries);
 192                table->entry_count = 0;
 193        }
 194
 195        /* Discard previous Schedule Parameters Table */
 196        table = &priv->static_config.tables[BLK_IDX_SCHEDULE_PARAMS];
 197        if (table->entry_count) {
 198                kfree(table->entries);
 199                table->entry_count = 0;
 200        }
 201
 202        /* Discard previous Schedule Entry Points Table */
 203        table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS];
 204        if (table->entry_count) {
 205                kfree(table->entries);
 206                table->entry_count = 0;
 207        }
 208
 209        /* Figure out the dimensioning of the problem */
 210        for (port = 0; port < SJA1105_NUM_PORTS; port++) {
 211                if (tas_data->offload[port]) {
 212                        num_entries += tas_data->offload[port]->num_entries;
 213                        num_cycles++;
 214                }
 215        }
 216
 217        if (!list_empty(&gating_cfg->entries)) {
 218                num_entries += gating_cfg->num_entries;
 219                num_cycles++;
 220        }
 221
 222        /* Nothing to do */
 223        if (!num_cycles)
 224                return 0;
 225
 226        /* Pre-allocate space in the static config tables */
 227
 228        /* Schedule Table */
 229        table = &priv->static_config.tables[BLK_IDX_SCHEDULE];
 230        table->entries = kcalloc(num_entries, table->ops->unpacked_entry_size,
 231                                 GFP_KERNEL);
 232        if (!table->entries)
 233                return -ENOMEM;
 234        table->entry_count = num_entries;
 235        schedule = table->entries;
 236
 237        /* Schedule Points Parameters Table */
 238        table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS_PARAMS];
 239        table->entries = kcalloc(SJA1105_MAX_SCHEDULE_ENTRY_POINTS_PARAMS_COUNT,
 240                                 table->ops->unpacked_entry_size, GFP_KERNEL);
 241        if (!table->entries)
 242                /* Previously allocated memory will be freed automatically in
 243                 * sja1105_static_config_free. This is true for all early
 244                 * returns below.
 245                 */
 246                return -ENOMEM;
 247        table->entry_count = SJA1105_MAX_SCHEDULE_ENTRY_POINTS_PARAMS_COUNT;
 248        schedule_entry_points_params = table->entries;
 249
 250        /* Schedule Parameters Table */
 251        table = &priv->static_config.tables[BLK_IDX_SCHEDULE_PARAMS];
 252        table->entries = kcalloc(SJA1105_MAX_SCHEDULE_PARAMS_COUNT,
 253                                 table->ops->unpacked_entry_size, GFP_KERNEL);
 254        if (!table->entries)
 255                return -ENOMEM;
 256        table->entry_count = SJA1105_MAX_SCHEDULE_PARAMS_COUNT;
 257        schedule_params = table->entries;
 258
 259        /* Schedule Entry Points Table */
 260        table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS];
 261        table->entries = kcalloc(num_cycles, table->ops->unpacked_entry_size,
 262                                 GFP_KERNEL);
 263        if (!table->entries)
 264                return -ENOMEM;
 265        table->entry_count = num_cycles;
 266        schedule_entry_points = table->entries;
 267
 268        /* Finally start populating the static config tables */
 269        schedule_entry_points_params->clksrc = SJA1105_TAS_CLKSRC_PTP;
 270        schedule_entry_points_params->actsubsch = num_cycles - 1;
 271
 272        for (port = 0; port < SJA1105_NUM_PORTS; port++) {
 273                const struct tc_taprio_qopt_offload *offload;
 274                /* Relative base time */
 275                s64 rbt;
 276
 277                offload = tas_data->offload[port];
 278                if (!offload)
 279                        continue;
 280
 281                schedule_start_idx = k;
 282                schedule_end_idx = k + offload->num_entries - 1;
 283                /* This is the base time expressed as a number of TAS ticks
 284                 * relative to PTPSCHTM, which we'll (perhaps improperly) call
 285                 * the operational base time.
 286                 */
 287                rbt = future_base_time(offload->base_time,
 288                                       offload->cycle_time,
 289                                       tas_data->earliest_base_time);
 290                rbt -= tas_data->earliest_base_time;
 291                /* UM10944.pdf 4.2.2. Schedule Entry Points table says that
 292                 * delta cannot be zero, which is shitty. Advance all relative
 293                 * base times by 1 TAS delta, so that even the earliest base
 294                 * time becomes 1 in relative terms. Then start the operational
 295                 * base time (PTPSCHTM) one TAS delta earlier than planned.
 296                 */
 297                entry_point_delta = ns_to_sja1105_delta(rbt) + 1;
 298
 299                schedule_entry_points[cycle].subschindx = cycle;
 300                schedule_entry_points[cycle].delta = entry_point_delta;
 301                schedule_entry_points[cycle].address = schedule_start_idx;
 302
 303                /* The subschedule end indices need to be
 304                 * monotonically increasing.
 305                 */
 306                for (i = cycle; i < 8; i++)
 307                        schedule_params->subscheind[i] = schedule_end_idx;
 308
 309                for (i = 0; i < offload->num_entries; i++, k++) {
 310                        s64 delta_ns = offload->entries[i].interval;
 311
 312                        schedule[k].delta = ns_to_sja1105_delta(delta_ns);
 313                        schedule[k].destports = BIT(port);
 314                        schedule[k].resmedia_en = true;
 315                        schedule[k].resmedia = SJA1105_GATE_MASK &
 316                                        ~offload->entries[i].gate_mask;
 317                }
 318                cycle++;
 319        }
 320
 321        if (!list_empty(&gating_cfg->entries)) {
 322                struct sja1105_gate_entry *e;
 323
 324                /* Relative base time */
 325                s64 rbt;
 326
 327                schedule_start_idx = k;
 328                schedule_end_idx = k + gating_cfg->num_entries - 1;
 329                rbt = future_base_time(gating_cfg->base_time,
 330                                       gating_cfg->cycle_time,
 331                                       tas_data->earliest_base_time);
 332                rbt -= tas_data->earliest_base_time;
 333                entry_point_delta = ns_to_sja1105_delta(rbt) + 1;
 334
 335                schedule_entry_points[cycle].subschindx = cycle;
 336                schedule_entry_points[cycle].delta = entry_point_delta;
 337                schedule_entry_points[cycle].address = schedule_start_idx;
 338
 339                for (i = cycle; i < 8; i++)
 340                        schedule_params->subscheind[i] = schedule_end_idx;
 341
 342                list_for_each_entry(e, &gating_cfg->entries, list) {
 343                        schedule[k].delta = ns_to_sja1105_delta(e->interval);
 344                        schedule[k].destports = e->rule->vl.destports;
 345                        schedule[k].setvalid = true;
 346                        schedule[k].txen = true;
 347                        schedule[k].vlindex = e->rule->vl.sharindx;
 348                        schedule[k].winstindex = e->rule->vl.sharindx;
 349                        if (e->gate_state) /* Gate open */
 350                                schedule[k].winst = true;
 351                        else /* Gate closed */
 352                                schedule[k].winend = true;
 353                        k++;
 354                }
 355        }
 356
 357        return 0;
 358}
 359
 360/* Be there 2 port subschedules, each executing an arbitrary number of gate
 361 * open/close events cyclically.
 362 * None of those gate events must ever occur at the exact same time, otherwise
 363 * the switch is known to act in exotically strange ways.
 364 * However the hardware doesn't bother performing these integrity checks.
 365 * So here we are with the task of validating whether the new @admin offload
 366 * has any conflict with the already established TAS configuration in
 367 * tas_data->offload.  We already know the other ports are in harmony with one
 368 * another, otherwise we wouldn't have saved them.
 369 * Each gate event executes periodically, with a period of @cycle_time and a
 370 * phase given by its cycle's @base_time plus its offset within the cycle
 371 * (which in turn is given by the length of the events prior to it).
 372 * There are two aspects to possible collisions:
 373 * - Collisions within one cycle's (actually the longest cycle's) time frame.
 374 *   For that, we need to compare the cartesian product of each possible
 375 *   occurrence of each event within one cycle time.
 376 * - Collisions in the future. Events may not collide within one cycle time,
 377 *   but if two port schedules don't have the same periodicity (aka the cycle
 378 *   times aren't multiples of one another), they surely will some time in the
 379 *   future (actually they will collide an infinite amount of times).
 380 */
 381static bool
 382sja1105_tas_check_conflicts(struct sja1105_private *priv, int port,
 383                            const struct tc_taprio_qopt_offload *admin)
 384{
 385        struct sja1105_tas_data *tas_data = &priv->tas_data;
 386        const struct tc_taprio_qopt_offload *offload;
 387        s64 max_cycle_time, min_cycle_time;
 388        s64 delta1, delta2;
 389        s64 rbt1, rbt2;
 390        s64 stop_time;
 391        s64 t1, t2;
 392        int i, j;
 393        s32 rem;
 394
 395        offload = tas_data->offload[port];
 396        if (!offload)
 397                return false;
 398
 399        /* Check if the two cycle times are multiples of one another.
 400         * If they aren't, then they will surely collide.
 401         */
 402        max_cycle_time = max(offload->cycle_time, admin->cycle_time);
 403        min_cycle_time = min(offload->cycle_time, admin->cycle_time);
 404        div_s64_rem(max_cycle_time, min_cycle_time, &rem);
 405        if (rem)
 406                return true;
 407
 408        /* Calculate the "reduced" base time of each of the two cycles
 409         * (transposed back as close to 0 as possible) by dividing to
 410         * the cycle time.
 411         */
 412        div_s64_rem(offload->base_time, offload->cycle_time, &rem);
 413        rbt1 = rem;
 414
 415        div_s64_rem(admin->base_time, admin->cycle_time, &rem);
 416        rbt2 = rem;
 417
 418        stop_time = max_cycle_time + max(rbt1, rbt2);
 419
 420        /* delta1 is the relative base time of each GCL entry within
 421         * the established ports' TAS config.
 422         */
 423        for (i = 0, delta1 = 0;
 424             i < offload->num_entries;
 425             delta1 += offload->entries[i].interval, i++) {
 426                /* delta2 is the relative base time of each GCL entry
 427                 * within the newly added TAS config.
 428                 */
 429                for (j = 0, delta2 = 0;
 430                     j < admin->num_entries;
 431                     delta2 += admin->entries[j].interval, j++) {
 432                        /* t1 follows all possible occurrences of the
 433                         * established ports' GCL entry i within the
 434                         * first cycle time.
 435                         */
 436                        for (t1 = rbt1 + delta1;
 437                             t1 <= stop_time;
 438                             t1 += offload->cycle_time) {
 439                                /* t2 follows all possible occurrences
 440                                 * of the newly added GCL entry j
 441                                 * within the first cycle time.
 442                                 */
 443                                for (t2 = rbt2 + delta2;
 444                                     t2 <= stop_time;
 445                                     t2 += admin->cycle_time) {
 446                                        if (t1 == t2) {
 447                                                dev_warn(priv->ds->dev,
 448                                                         "GCL entry %d collides with entry %d of port %d\n",
 449                                                         j, i, port);
 450                                                return true;
 451                                        }
 452                                }
 453                        }
 454                }
 455        }
 456
 457        return false;
 458}
 459
 460/* Check the tc-taprio configuration on @port for conflicts with the tc-gate
 461 * global subschedule. If @port is -1, check it against all ports.
 462 * To reuse the sja1105_tas_check_conflicts logic without refactoring it,
 463 * convert the gating configuration to a dummy tc-taprio offload structure.
 464 */
 465bool sja1105_gating_check_conflicts(struct sja1105_private *priv, int port,
 466                                    struct netlink_ext_ack *extack)
 467{
 468        struct sja1105_gating_config *gating_cfg = &priv->tas_data.gating_cfg;
 469        size_t num_entries = gating_cfg->num_entries;
 470        struct tc_taprio_qopt_offload *dummy;
 471        struct sja1105_gate_entry *e;
 472        bool conflict;
 473        int i = 0;
 474
 475        if (list_empty(&gating_cfg->entries))
 476                return false;
 477
 478        dummy = kzalloc(struct_size(dummy, entries, num_entries), GFP_KERNEL);
 479        if (!dummy) {
 480                NL_SET_ERR_MSG_MOD(extack, "Failed to allocate memory");
 481                return true;
 482        }
 483
 484        dummy->num_entries = num_entries;
 485        dummy->base_time = gating_cfg->base_time;
 486        dummy->cycle_time = gating_cfg->cycle_time;
 487
 488        list_for_each_entry(e, &gating_cfg->entries, list)
 489                dummy->entries[i++].interval = e->interval;
 490
 491        if (port != -1) {
 492                conflict = sja1105_tas_check_conflicts(priv, port, dummy);
 493        } else {
 494                for (port = 0; port < SJA1105_NUM_PORTS; port++) {
 495                        conflict = sja1105_tas_check_conflicts(priv, port,
 496                                                               dummy);
 497                        if (conflict)
 498                                break;
 499                }
 500        }
 501
 502        kfree(dummy);
 503
 504        return conflict;
 505}
 506
 507int sja1105_setup_tc_taprio(struct dsa_switch *ds, int port,
 508                            struct tc_taprio_qopt_offload *admin)
 509{
 510        struct sja1105_private *priv = ds->priv;
 511        struct sja1105_tas_data *tas_data = &priv->tas_data;
 512        int other_port, rc, i;
 513
 514        /* Can't change an already configured port (must delete qdisc first).
 515         * Can't delete the qdisc from an unconfigured port.
 516         */
 517        if (!!tas_data->offload[port] == admin->enable)
 518                return -EINVAL;
 519
 520        if (!admin->enable) {
 521                taprio_offload_free(tas_data->offload[port]);
 522                tas_data->offload[port] = NULL;
 523
 524                rc = sja1105_init_scheduling(priv);
 525                if (rc < 0)
 526                        return rc;
 527
 528                return sja1105_static_config_reload(priv, SJA1105_SCHEDULING);
 529        }
 530
 531        /* The cycle time extension is the amount of time the last cycle from
 532         * the old OPER needs to be extended in order to phase-align with the
 533         * base time of the ADMIN when that becomes the new OPER.
 534         * But of course our switch needs to be reset to switch-over between
 535         * the ADMIN and the OPER configs - so much for a seamless transition.
 536         * So don't add insult over injury and just say we don't support cycle
 537         * time extension.
 538         */
 539        if (admin->cycle_time_extension)
 540                return -ENOTSUPP;
 541
 542        for (i = 0; i < admin->num_entries; i++) {
 543                s64 delta_ns = admin->entries[i].interval;
 544                s64 delta_cycles = ns_to_sja1105_delta(delta_ns);
 545                bool too_long, too_short;
 546
 547                too_long = (delta_cycles >= SJA1105_TAS_MAX_DELTA);
 548                too_short = (delta_cycles == 0);
 549                if (too_long || too_short) {
 550                        dev_err(priv->ds->dev,
 551                                "Interval %llu too %s for GCL entry %d\n",
 552                                delta_ns, too_long ? "long" : "short", i);
 553                        return -ERANGE;
 554                }
 555        }
 556
 557        for (other_port = 0; other_port < SJA1105_NUM_PORTS; other_port++) {
 558                if (other_port == port)
 559                        continue;
 560
 561                if (sja1105_tas_check_conflicts(priv, other_port, admin))
 562                        return -ERANGE;
 563        }
 564
 565        if (sja1105_gating_check_conflicts(priv, port, NULL)) {
 566                dev_err(ds->dev, "Conflict with tc-gate schedule\n");
 567                return -ERANGE;
 568        }
 569
 570        tas_data->offload[port] = taprio_offload_get(admin);
 571
 572        rc = sja1105_init_scheduling(priv);
 573        if (rc < 0)
 574                return rc;
 575
 576        return sja1105_static_config_reload(priv, SJA1105_SCHEDULING);
 577}
 578
 579static int sja1105_tas_check_running(struct sja1105_private *priv)
 580{
 581        struct sja1105_tas_data *tas_data = &priv->tas_data;
 582        struct dsa_switch *ds = priv->ds;
 583        struct sja1105_ptp_cmd cmd = {0};
 584        int rc;
 585
 586        rc = sja1105_ptp_commit(ds, &cmd, SPI_READ);
 587        if (rc < 0)
 588                return rc;
 589
 590        if (cmd.ptpstrtsch == 1)
 591                /* Schedule successfully started */
 592                tas_data->state = SJA1105_TAS_STATE_RUNNING;
 593        else if (cmd.ptpstopsch == 1)
 594                /* Schedule is stopped */
 595                tas_data->state = SJA1105_TAS_STATE_DISABLED;
 596        else
 597                /* Schedule is probably not configured with PTP clock source */
 598                rc = -EINVAL;
 599
 600        return rc;
 601}
 602
 603/* Write to PTPCLKCORP */
 604static int sja1105_tas_adjust_drift(struct sja1105_private *priv,
 605                                    u64 correction)
 606{
 607        const struct sja1105_regs *regs = priv->info->regs;
 608        u32 ptpclkcorp = ns_to_sja1105_ticks(correction);
 609
 610        return sja1105_xfer_u32(priv, SPI_WRITE, regs->ptpclkcorp,
 611                                &ptpclkcorp, NULL);
 612}
 613
 614/* Write to PTPSCHTM */
 615static int sja1105_tas_set_base_time(struct sja1105_private *priv,
 616                                     u64 base_time)
 617{
 618        const struct sja1105_regs *regs = priv->info->regs;
 619        u64 ptpschtm = ns_to_sja1105_ticks(base_time);
 620
 621        return sja1105_xfer_u64(priv, SPI_WRITE, regs->ptpschtm,
 622                                &ptpschtm, NULL);
 623}
 624
 625static int sja1105_tas_start(struct sja1105_private *priv)
 626{
 627        struct sja1105_tas_data *tas_data = &priv->tas_data;
 628        struct sja1105_ptp_cmd *cmd = &priv->ptp_data.cmd;
 629        struct dsa_switch *ds = priv->ds;
 630        int rc;
 631
 632        dev_dbg(ds->dev, "Starting the TAS\n");
 633
 634        if (tas_data->state == SJA1105_TAS_STATE_ENABLED_NOT_RUNNING ||
 635            tas_data->state == SJA1105_TAS_STATE_RUNNING) {
 636                dev_err(ds->dev, "TAS already started\n");
 637                return -EINVAL;
 638        }
 639
 640        cmd->ptpstrtsch = 1;
 641        cmd->ptpstopsch = 0;
 642
 643        rc = sja1105_ptp_commit(ds, cmd, SPI_WRITE);
 644        if (rc < 0)
 645                return rc;
 646
 647        tas_data->state = SJA1105_TAS_STATE_ENABLED_NOT_RUNNING;
 648
 649        return 0;
 650}
 651
 652static int sja1105_tas_stop(struct sja1105_private *priv)
 653{
 654        struct sja1105_tas_data *tas_data = &priv->tas_data;
 655        struct sja1105_ptp_cmd *cmd = &priv->ptp_data.cmd;
 656        struct dsa_switch *ds = priv->ds;
 657        int rc;
 658
 659        dev_dbg(ds->dev, "Stopping the TAS\n");
 660
 661        if (tas_data->state == SJA1105_TAS_STATE_DISABLED) {
 662                dev_err(ds->dev, "TAS already disabled\n");
 663                return -EINVAL;
 664        }
 665
 666        cmd->ptpstopsch = 1;
 667        cmd->ptpstrtsch = 0;
 668
 669        rc = sja1105_ptp_commit(ds, cmd, SPI_WRITE);
 670        if (rc < 0)
 671                return rc;
 672
 673        tas_data->state = SJA1105_TAS_STATE_DISABLED;
 674
 675        return 0;
 676}
 677
 678/* The schedule engine and the PTP clock are driven by the same oscillator, and
 679 * they run in parallel. But whilst the PTP clock can keep an absolute
 680 * time-of-day, the schedule engine is only running in 'ticks' (25 ticks make
 681 * up a delta, which is 200ns), and wrapping around at the end of each cycle.
 682 * The schedule engine is started when the PTP clock reaches the PTPSCHTM time
 683 * (in PTP domain).
 684 * Because the PTP clock can be rate-corrected (accelerated or slowed down) by
 685 * a software servo, and the schedule engine clock runs in parallel to the PTP
 686 * clock, there is logic internal to the switch that periodically keeps the
 687 * schedule engine from drifting away. The frequency with which this internal
 688 * syntonization happens is the PTP clock correction period (PTPCLKCORP). It is
 689 * a value also in the PTP clock domain, and is also rate-corrected.
 690 * To be precise, during a correction period, there is logic to determine by
 691 * how many scheduler clock ticks has the PTP clock drifted. At the end of each
 692 * correction period/beginning of new one, the length of a delta is shrunk or
 693 * expanded with an integer number of ticks, compared with the typical 25.
 694 * So a delta lasts for 200ns (or 25 ticks) only on average.
 695 * Sometimes it is longer, sometimes it is shorter. The internal syntonization
 696 * logic can adjust for at most 5 ticks each 20 ticks.
 697 *
 698 * The first implication is that you should choose your schedule correction
 699 * period to be an integer multiple of the schedule length. Preferably one.
 700 * In case there are schedules of multiple ports active, then the correction
 701 * period needs to be a multiple of them all. Given the restriction that the
 702 * cycle times have to be multiples of one another anyway, this means the
 703 * correction period can simply be the largest cycle time, hence the current
 704 * choice. This way, the updates are always synchronous to the transmission
 705 * cycle, and therefore predictable.
 706 *
 707 * The second implication is that at the beginning of a correction period, the
 708 * first few deltas will be modulated in time, until the schedule engine is
 709 * properly phase-aligned with the PTP clock. For this reason, you should place
 710 * your best-effort traffic at the beginning of a cycle, and your
 711 * time-triggered traffic afterwards.
 712 *
 713 * The third implication is that once the schedule engine is started, it can
 714 * only adjust for so much drift within a correction period. In the servo you
 715 * can only change the PTPCLKRATE, but not step the clock (PTPCLKADD). If you
 716 * want to do the latter, you need to stop and restart the schedule engine,
 717 * which is what the state machine handles.
 718 */
 719static void sja1105_tas_state_machine(struct work_struct *work)
 720{
 721        struct sja1105_tas_data *tas_data = work_to_sja1105_tas(work);
 722        struct sja1105_private *priv = tas_to_sja1105(tas_data);
 723        struct sja1105_ptp_data *ptp_data = &priv->ptp_data;
 724        struct timespec64 base_time_ts, now_ts;
 725        struct dsa_switch *ds = priv->ds;
 726        struct timespec64 diff;
 727        s64 base_time, now;
 728        int rc = 0;
 729
 730        mutex_lock(&ptp_data->lock);
 731
 732        switch (tas_data->state) {
 733        case SJA1105_TAS_STATE_DISABLED:
 734                /* Can't do anything at all if clock is still being stepped */
 735                if (tas_data->last_op != SJA1105_PTP_ADJUSTFREQ)
 736                        break;
 737
 738                rc = sja1105_tas_adjust_drift(priv, tas_data->max_cycle_time);
 739                if (rc < 0)
 740                        break;
 741
 742                rc = __sja1105_ptp_gettimex(ds, &now, NULL);
 743                if (rc < 0)
 744                        break;
 745
 746                /* Plan to start the earliest schedule first. The others
 747                 * will be started in hardware, by way of their respective
 748                 * entry points delta.
 749                 * Try our best to avoid fringe cases (race condition between
 750                 * ptpschtm and ptpstrtsch) by pushing the oper_base_time at
 751                 * least one second in the future from now. This is not ideal,
 752                 * but this only needs to buy us time until the
 753                 * sja1105_tas_start command below gets executed.
 754                 */
 755                base_time = future_base_time(tas_data->earliest_base_time,
 756                                             tas_data->max_cycle_time,
 757                                             now + 1ull * NSEC_PER_SEC);
 758                base_time -= sja1105_delta_to_ns(1);
 759
 760                rc = sja1105_tas_set_base_time(priv, base_time);
 761                if (rc < 0)
 762                        break;
 763
 764                tas_data->oper_base_time = base_time;
 765
 766                rc = sja1105_tas_start(priv);
 767                if (rc < 0)
 768                        break;
 769
 770                base_time_ts = ns_to_timespec64(base_time);
 771                now_ts = ns_to_timespec64(now);
 772
 773                dev_dbg(ds->dev, "OPER base time %lld.%09ld (now %lld.%09ld)\n",
 774                        base_time_ts.tv_sec, base_time_ts.tv_nsec,
 775                        now_ts.tv_sec, now_ts.tv_nsec);
 776
 777                break;
 778
 779        case SJA1105_TAS_STATE_ENABLED_NOT_RUNNING:
 780                if (tas_data->last_op != SJA1105_PTP_ADJUSTFREQ) {
 781                        /* Clock was stepped.. bad news for TAS */
 782                        sja1105_tas_stop(priv);
 783                        break;
 784                }
 785
 786                /* Check if TAS has actually started, by comparing the
 787                 * scheduled start time with the SJA1105 PTP clock
 788                 */
 789                rc = __sja1105_ptp_gettimex(ds, &now, NULL);
 790                if (rc < 0)
 791                        break;
 792
 793                if (now < tas_data->oper_base_time) {
 794                        /* TAS has not started yet */
 795                        diff = ns_to_timespec64(tas_data->oper_base_time - now);
 796                        dev_dbg(ds->dev, "time to start: [%lld.%09ld]",
 797                                diff.tv_sec, diff.tv_nsec);
 798                        break;
 799                }
 800
 801                /* Time elapsed, what happened? */
 802                rc = sja1105_tas_check_running(priv);
 803                if (rc < 0)
 804                        break;
 805
 806                if (tas_data->state != SJA1105_TAS_STATE_RUNNING)
 807                        /* TAS has started */
 808                        dev_err(ds->dev,
 809                                "TAS not started despite time elapsed\n");
 810
 811                break;
 812
 813        case SJA1105_TAS_STATE_RUNNING:
 814                /* Clock was stepped.. bad news for TAS */
 815                if (tas_data->last_op != SJA1105_PTP_ADJUSTFREQ) {
 816                        sja1105_tas_stop(priv);
 817                        break;
 818                }
 819
 820                rc = sja1105_tas_check_running(priv);
 821                if (rc < 0)
 822                        break;
 823
 824                if (tas_data->state != SJA1105_TAS_STATE_RUNNING)
 825                        dev_err(ds->dev, "TAS surprisingly stopped\n");
 826
 827                break;
 828
 829        default:
 830                if (net_ratelimit())
 831                        dev_err(ds->dev, "TAS in an invalid state (incorrect use of API)!\n");
 832        }
 833
 834        if (rc && net_ratelimit())
 835                dev_err(ds->dev, "An operation returned %d\n", rc);
 836
 837        mutex_unlock(&ptp_data->lock);
 838}
 839
 840void sja1105_tas_clockstep(struct dsa_switch *ds)
 841{
 842        struct sja1105_private *priv = ds->priv;
 843        struct sja1105_tas_data *tas_data = &priv->tas_data;
 844
 845        if (!tas_data->enabled)
 846                return;
 847
 848        tas_data->last_op = SJA1105_PTP_CLOCKSTEP;
 849        schedule_work(&tas_data->tas_work);
 850}
 851
 852void sja1105_tas_adjfreq(struct dsa_switch *ds)
 853{
 854        struct sja1105_private *priv = ds->priv;
 855        struct sja1105_tas_data *tas_data = &priv->tas_data;
 856
 857        if (!tas_data->enabled)
 858                return;
 859
 860        /* No reason to schedule the workqueue, nothing changed */
 861        if (tas_data->state == SJA1105_TAS_STATE_RUNNING)
 862                return;
 863
 864        tas_data->last_op = SJA1105_PTP_ADJUSTFREQ;
 865        schedule_work(&tas_data->tas_work);
 866}
 867
 868void sja1105_tas_setup(struct dsa_switch *ds)
 869{
 870        struct sja1105_private *priv = ds->priv;
 871        struct sja1105_tas_data *tas_data = &priv->tas_data;
 872
 873        INIT_WORK(&tas_data->tas_work, sja1105_tas_state_machine);
 874        tas_data->state = SJA1105_TAS_STATE_DISABLED;
 875        tas_data->last_op = SJA1105_PTP_NONE;
 876
 877        INIT_LIST_HEAD(&tas_data->gating_cfg.entries);
 878}
 879
 880void sja1105_tas_teardown(struct dsa_switch *ds)
 881{
 882        struct sja1105_private *priv = ds->priv;
 883        struct tc_taprio_qopt_offload *offload;
 884        int port;
 885
 886        cancel_work_sync(&priv->tas_data.tas_work);
 887
 888        for (port = 0; port < SJA1105_NUM_PORTS; port++) {
 889                offload = priv->tas_data.offload[port];
 890                if (!offload)
 891                        continue;
 892
 893                taprio_offload_free(offload);
 894        }
 895}
 896