linux/drivers/net/ethernet/chelsio/cxgb3/sge.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved.
   3 *
   4 * This software is available to you under a choice of one of two
   5 * licenses.  You may choose to be licensed under the terms of the GNU
   6 * General Public License (GPL) Version 2, available from the file
   7 * COPYING in the main directory of this source tree, or the
   8 * OpenIB.org BSD license below:
   9 *
  10 *     Redistribution and use in source and binary forms, with or
  11 *     without modification, are permitted provided that the following
  12 *     conditions are met:
  13 *
  14 *      - Redistributions of source code must retain the above
  15 *        copyright notice, this list of conditions and the following
  16 *        disclaimer.
  17 *
  18 *      - Redistributions in binary form must reproduce the above
  19 *        copyright notice, this list of conditions and the following
  20 *        disclaimer in the documentation and/or other materials
  21 *        provided with the distribution.
  22 *
  23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30 * SOFTWARE.
  31 */
  32#include <linux/skbuff.h>
  33#include <linux/netdevice.h>
  34#include <linux/etherdevice.h>
  35#include <linux/if_vlan.h>
  36#include <linux/ip.h>
  37#include <linux/tcp.h>
  38#include <linux/dma-mapping.h>
  39#include <linux/slab.h>
  40#include <linux/prefetch.h>
  41#include <net/arp.h>
  42#include "common.h"
  43#include "regs.h"
  44#include "sge_defs.h"
  45#include "t3_cpl.h"
  46#include "firmware_exports.h"
  47#include "cxgb3_offload.h"
  48
  49#define USE_GTS 0
  50
  51#define SGE_RX_SM_BUF_SIZE 1536
  52
  53#define SGE_RX_COPY_THRES  256
  54#define SGE_RX_PULL_LEN    128
  55
  56#define SGE_PG_RSVD SMP_CACHE_BYTES
  57/*
  58 * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks.
  59 * It must be a divisor of PAGE_SIZE.  If set to 0 FL0 will use sk_buffs
  60 * directly.
  61 */
  62#define FL0_PG_CHUNK_SIZE  2048
  63#define FL0_PG_ORDER 0
  64#define FL0_PG_ALLOC_SIZE (PAGE_SIZE << FL0_PG_ORDER)
  65#define FL1_PG_CHUNK_SIZE (PAGE_SIZE > 8192 ? 16384 : 8192)
  66#define FL1_PG_ORDER (PAGE_SIZE > 8192 ? 0 : 1)
  67#define FL1_PG_ALLOC_SIZE (PAGE_SIZE << FL1_PG_ORDER)
  68
  69#define SGE_RX_DROP_THRES 16
  70#define RX_RECLAIM_PERIOD (HZ/4)
  71
  72/*
  73 * Max number of Rx buffers we replenish at a time.
  74 */
  75#define MAX_RX_REFILL 16U
  76/*
  77 * Period of the Tx buffer reclaim timer.  This timer does not need to run
  78 * frequently as Tx buffers are usually reclaimed by new Tx packets.
  79 */
  80#define TX_RECLAIM_PERIOD (HZ / 4)
  81#define TX_RECLAIM_TIMER_CHUNK 64U
  82#define TX_RECLAIM_CHUNK 16U
  83
  84/* WR size in bytes */
  85#define WR_LEN (WR_FLITS * 8)
  86
  87/*
  88 * Types of Tx queues in each queue set.  Order here matters, do not change.
  89 */
  90enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL };
  91
  92/* Values for sge_txq.flags */
  93enum {
  94        TXQ_RUNNING = 1 << 0,   /* fetch engine is running */
  95        TXQ_LAST_PKT_DB = 1 << 1,       /* last packet rang the doorbell */
  96};
  97
  98struct tx_desc {
  99        __be64 flit[TX_DESC_FLITS];
 100};
 101
 102struct rx_desc {
 103        __be32 addr_lo;
 104        __be32 len_gen;
 105        __be32 gen2;
 106        __be32 addr_hi;
 107};
 108
 109struct tx_sw_desc {             /* SW state per Tx descriptor */
 110        struct sk_buff *skb;
 111        u8 eop;       /* set if last descriptor for packet */
 112        u8 addr_idx;  /* buffer index of first SGL entry in descriptor */
 113        u8 fragidx;   /* first page fragment associated with descriptor */
 114        s8 sflit;     /* start flit of first SGL entry in descriptor */
 115};
 116
 117struct rx_sw_desc {                /* SW state per Rx descriptor */
 118        union {
 119                struct sk_buff *skb;
 120                struct fl_pg_chunk pg_chunk;
 121        };
 122        DEFINE_DMA_UNMAP_ADDR(dma_addr);
 123};
 124
 125struct rsp_desc {               /* response queue descriptor */
 126        struct rss_header rss_hdr;
 127        __be32 flags;
 128        __be32 len_cq;
 129        u8 imm_data[47];
 130        u8 intr_gen;
 131};
 132
 133/*
 134 * Holds unmapping information for Tx packets that need deferred unmapping.
 135 * This structure lives at skb->head and must be allocated by callers.
 136 */
 137struct deferred_unmap_info {
 138        struct pci_dev *pdev;
 139        dma_addr_t addr[MAX_SKB_FRAGS + 1];
 140};
 141
 142/*
 143 * Maps a number of flits to the number of Tx descriptors that can hold them.
 144 * The formula is
 145 *
 146 * desc = 1 + (flits - 2) / (WR_FLITS - 1).
 147 *
 148 * HW allows up to 4 descriptors to be combined into a WR.
 149 */
 150static u8 flit_desc_map[] = {
 151        0,
 152#if SGE_NUM_GENBITS == 1
 153        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 154        2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
 155        3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
 156        4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
 157#elif SGE_NUM_GENBITS == 2
 158        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 159        2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
 160        3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
 161        4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
 162#else
 163# error "SGE_NUM_GENBITS must be 1 or 2"
 164#endif
 165};
 166
 167static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx)
 168{
 169        return container_of(q, struct sge_qset, fl[qidx]);
 170}
 171
 172static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q)
 173{
 174        return container_of(q, struct sge_qset, rspq);
 175}
 176
 177static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx)
 178{
 179        return container_of(q, struct sge_qset, txq[qidx]);
 180}
 181
 182/**
 183 *      refill_rspq - replenish an SGE response queue
 184 *      @adapter: the adapter
 185 *      @q: the response queue to replenish
 186 *      @credits: how many new responses to make available
 187 *
 188 *      Replenishes a response queue by making the supplied number of responses
 189 *      available to HW.
 190 */
 191static inline void refill_rspq(struct adapter *adapter,
 192                               const struct sge_rspq *q, unsigned int credits)
 193{
 194        rmb();
 195        t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN,
 196                     V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
 197}
 198
 199/**
 200 *      need_skb_unmap - does the platform need unmapping of sk_buffs?
 201 *
 202 *      Returns true if the platform needs sk_buff unmapping.  The compiler
 203 *      optimizes away unnecessary code if this returns true.
 204 */
 205static inline int need_skb_unmap(void)
 206{
 207#ifdef CONFIG_NEED_DMA_MAP_STATE
 208        return 1;
 209#else
 210        return 0;
 211#endif
 212}
 213
 214/**
 215 *      unmap_skb - unmap a packet main body and its page fragments
 216 *      @skb: the packet
 217 *      @q: the Tx queue containing Tx descriptors for the packet
 218 *      @cidx: index of Tx descriptor
 219 *      @pdev: the PCI device
 220 *
 221 *      Unmap the main body of an sk_buff and its page fragments, if any.
 222 *      Because of the fairly complicated structure of our SGLs and the desire
 223 *      to conserve space for metadata, the information necessary to unmap an
 224 *      sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx
 225 *      descriptors (the physical addresses of the various data buffers), and
 226 *      the SW descriptor state (assorted indices).  The send functions
 227 *      initialize the indices for the first packet descriptor so we can unmap
 228 *      the buffers held in the first Tx descriptor here, and we have enough
 229 *      information at this point to set the state for the next Tx descriptor.
 230 *
 231 *      Note that it is possible to clean up the first descriptor of a packet
 232 *      before the send routines have written the next descriptors, but this
 233 *      race does not cause any problem.  We just end up writing the unmapping
 234 *      info for the descriptor first.
 235 */
 236static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q,
 237                             unsigned int cidx, struct pci_dev *pdev)
 238{
 239        const struct sg_ent *sgp;
 240        struct tx_sw_desc *d = &q->sdesc[cidx];
 241        int nfrags, frag_idx, curflit, j = d->addr_idx;
 242
 243        sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit];
 244        frag_idx = d->fragidx;
 245
 246        if (frag_idx == 0 && skb_headlen(skb)) {
 247                pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]),
 248                                 skb_headlen(skb), PCI_DMA_TODEVICE);
 249                j = 1;
 250        }
 251
 252        curflit = d->sflit + 1 + j;
 253        nfrags = skb_shinfo(skb)->nr_frags;
 254
 255        while (frag_idx < nfrags && curflit < WR_FLITS) {
 256                pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]),
 257                               skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]),
 258                               PCI_DMA_TODEVICE);
 259                j ^= 1;
 260                if (j == 0) {
 261                        sgp++;
 262                        curflit++;
 263                }
 264                curflit++;
 265                frag_idx++;
 266        }
 267
 268        if (frag_idx < nfrags) {   /* SGL continues into next Tx descriptor */
 269                d = cidx + 1 == q->size ? q->sdesc : d + 1;
 270                d->fragidx = frag_idx;
 271                d->addr_idx = j;
 272                d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */
 273        }
 274}
 275
 276/**
 277 *      free_tx_desc - reclaims Tx descriptors and their buffers
 278 *      @adapter: the adapter
 279 *      @q: the Tx queue to reclaim descriptors from
 280 *      @n: the number of descriptors to reclaim
 281 *
 282 *      Reclaims Tx descriptors from an SGE Tx queue and frees the associated
 283 *      Tx buffers.  Called with the Tx queue lock held.
 284 */
 285static void free_tx_desc(struct adapter *adapter, struct sge_txq *q,
 286                         unsigned int n)
 287{
 288        struct tx_sw_desc *d;
 289        struct pci_dev *pdev = adapter->pdev;
 290        unsigned int cidx = q->cidx;
 291
 292        const int need_unmap = need_skb_unmap() &&
 293                               q->cntxt_id >= FW_TUNNEL_SGEEC_START;
 294
 295        d = &q->sdesc[cidx];
 296        while (n--) {
 297                if (d->skb) {   /* an SGL is present */
 298                        if (need_unmap)
 299                                unmap_skb(d->skb, q, cidx, pdev);
 300                        if (d->eop) {
 301                                dev_consume_skb_any(d->skb);
 302                                d->skb = NULL;
 303                        }
 304                }
 305                ++d;
 306                if (++cidx == q->size) {
 307                        cidx = 0;
 308                        d = q->sdesc;
 309                }
 310        }
 311        q->cidx = cidx;
 312}
 313
 314/**
 315 *      reclaim_completed_tx - reclaims completed Tx descriptors
 316 *      @adapter: the adapter
 317 *      @q: the Tx queue to reclaim completed descriptors from
 318 *      @chunk: maximum number of descriptors to reclaim
 319 *
 320 *      Reclaims Tx descriptors that the SGE has indicated it has processed,
 321 *      and frees the associated buffers if possible.  Called with the Tx
 322 *      queue's lock held.
 323 */
 324static inline unsigned int reclaim_completed_tx(struct adapter *adapter,
 325                                                struct sge_txq *q,
 326                                                unsigned int chunk)
 327{
 328        unsigned int reclaim = q->processed - q->cleaned;
 329
 330        reclaim = min(chunk, reclaim);
 331        if (reclaim) {
 332                free_tx_desc(adapter, q, reclaim);
 333                q->cleaned += reclaim;
 334                q->in_use -= reclaim;
 335        }
 336        return q->processed - q->cleaned;
 337}
 338
 339/**
 340 *      should_restart_tx - are there enough resources to restart a Tx queue?
 341 *      @q: the Tx queue
 342 *
 343 *      Checks if there are enough descriptors to restart a suspended Tx queue.
 344 */
 345static inline int should_restart_tx(const struct sge_txq *q)
 346{
 347        unsigned int r = q->processed - q->cleaned;
 348
 349        return q->in_use - r < (q->size >> 1);
 350}
 351
 352static void clear_rx_desc(struct pci_dev *pdev, const struct sge_fl *q,
 353                          struct rx_sw_desc *d)
 354{
 355        if (q->use_pages && d->pg_chunk.page) {
 356                (*d->pg_chunk.p_cnt)--;
 357                if (!*d->pg_chunk.p_cnt)
 358                        pci_unmap_page(pdev,
 359                                       d->pg_chunk.mapping,
 360                                       q->alloc_size, PCI_DMA_FROMDEVICE);
 361
 362                put_page(d->pg_chunk.page);
 363                d->pg_chunk.page = NULL;
 364        } else {
 365                pci_unmap_single(pdev, dma_unmap_addr(d, dma_addr),
 366                                 q->buf_size, PCI_DMA_FROMDEVICE);
 367                kfree_skb(d->skb);
 368                d->skb = NULL;
 369        }
 370}
 371
 372/**
 373 *      free_rx_bufs - free the Rx buffers on an SGE free list
 374 *      @pdev: the PCI device associated with the adapter
 375 *      @rxq: the SGE free list to clean up
 376 *
 377 *      Release the buffers on an SGE free-buffer Rx queue.  HW fetching from
 378 *      this queue should be stopped before calling this function.
 379 */
 380static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q)
 381{
 382        unsigned int cidx = q->cidx;
 383
 384        while (q->credits--) {
 385                struct rx_sw_desc *d = &q->sdesc[cidx];
 386
 387
 388                clear_rx_desc(pdev, q, d);
 389                if (++cidx == q->size)
 390                        cidx = 0;
 391        }
 392
 393        if (q->pg_chunk.page) {
 394                __free_pages(q->pg_chunk.page, q->order);
 395                q->pg_chunk.page = NULL;
 396        }
 397}
 398
 399/**
 400 *      add_one_rx_buf - add a packet buffer to a free-buffer list
 401 *      @va:  buffer start VA
 402 *      @len: the buffer length
 403 *      @d: the HW Rx descriptor to write
 404 *      @sd: the SW Rx descriptor to write
 405 *      @gen: the generation bit value
 406 *      @pdev: the PCI device associated with the adapter
 407 *
 408 *      Add a buffer of the given length to the supplied HW and SW Rx
 409 *      descriptors.
 410 */
 411static inline int add_one_rx_buf(void *va, unsigned int len,
 412                                 struct rx_desc *d, struct rx_sw_desc *sd,
 413                                 unsigned int gen, struct pci_dev *pdev)
 414{
 415        dma_addr_t mapping;
 416
 417        mapping = pci_map_single(pdev, va, len, PCI_DMA_FROMDEVICE);
 418        if (unlikely(pci_dma_mapping_error(pdev, mapping)))
 419                return -ENOMEM;
 420
 421        dma_unmap_addr_set(sd, dma_addr, mapping);
 422
 423        d->addr_lo = cpu_to_be32(mapping);
 424        d->addr_hi = cpu_to_be32((u64) mapping >> 32);
 425        dma_wmb();
 426        d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
 427        d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
 428        return 0;
 429}
 430
 431static inline int add_one_rx_chunk(dma_addr_t mapping, struct rx_desc *d,
 432                                   unsigned int gen)
 433{
 434        d->addr_lo = cpu_to_be32(mapping);
 435        d->addr_hi = cpu_to_be32((u64) mapping >> 32);
 436        dma_wmb();
 437        d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
 438        d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
 439        return 0;
 440}
 441
 442static int alloc_pg_chunk(struct adapter *adapter, struct sge_fl *q,
 443                          struct rx_sw_desc *sd, gfp_t gfp,
 444                          unsigned int order)
 445{
 446        if (!q->pg_chunk.page) {
 447                dma_addr_t mapping;
 448
 449                q->pg_chunk.page = alloc_pages(gfp, order);
 450                if (unlikely(!q->pg_chunk.page))
 451                        return -ENOMEM;
 452                q->pg_chunk.va = page_address(q->pg_chunk.page);
 453                q->pg_chunk.p_cnt = q->pg_chunk.va + (PAGE_SIZE << order) -
 454                                    SGE_PG_RSVD;
 455                q->pg_chunk.offset = 0;
 456                mapping = pci_map_page(adapter->pdev, q->pg_chunk.page,
 457                                       0, q->alloc_size, PCI_DMA_FROMDEVICE);
 458                if (unlikely(pci_dma_mapping_error(adapter->pdev, mapping))) {
 459                        __free_pages(q->pg_chunk.page, order);
 460                        q->pg_chunk.page = NULL;
 461                        return -EIO;
 462                }
 463                q->pg_chunk.mapping = mapping;
 464        }
 465        sd->pg_chunk = q->pg_chunk;
 466
 467        prefetch(sd->pg_chunk.p_cnt);
 468
 469        q->pg_chunk.offset += q->buf_size;
 470        if (q->pg_chunk.offset == (PAGE_SIZE << order))
 471                q->pg_chunk.page = NULL;
 472        else {
 473                q->pg_chunk.va += q->buf_size;
 474                get_page(q->pg_chunk.page);
 475        }
 476
 477        if (sd->pg_chunk.offset == 0)
 478                *sd->pg_chunk.p_cnt = 1;
 479        else
 480                *sd->pg_chunk.p_cnt += 1;
 481
 482        return 0;
 483}
 484
 485static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
 486{
 487        if (q->pend_cred >= q->credits / 4) {
 488                q->pend_cred = 0;
 489                wmb();
 490                t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
 491        }
 492}
 493
 494/**
 495 *      refill_fl - refill an SGE free-buffer list
 496 *      @adapter: the adapter
 497 *      @q: the free-list to refill
 498 *      @n: the number of new buffers to allocate
 499 *      @gfp: the gfp flags for allocating new buffers
 500 *
 501 *      (Re)populate an SGE free-buffer list with up to @n new packet buffers,
 502 *      allocated with the supplied gfp flags.  The caller must assure that
 503 *      @n does not exceed the queue's capacity.
 504 */
 505static int refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp)
 506{
 507        struct rx_sw_desc *sd = &q->sdesc[q->pidx];
 508        struct rx_desc *d = &q->desc[q->pidx];
 509        unsigned int count = 0;
 510
 511        while (n--) {
 512                dma_addr_t mapping;
 513                int err;
 514
 515                if (q->use_pages) {
 516                        if (unlikely(alloc_pg_chunk(adap, q, sd, gfp,
 517                                                    q->order))) {
 518nomem:                          q->alloc_failed++;
 519                                break;
 520                        }
 521                        mapping = sd->pg_chunk.mapping + sd->pg_chunk.offset;
 522                        dma_unmap_addr_set(sd, dma_addr, mapping);
 523
 524                        add_one_rx_chunk(mapping, d, q->gen);
 525                        pci_dma_sync_single_for_device(adap->pdev, mapping,
 526                                                q->buf_size - SGE_PG_RSVD,
 527                                                PCI_DMA_FROMDEVICE);
 528                } else {
 529                        void *buf_start;
 530
 531                        struct sk_buff *skb = alloc_skb(q->buf_size, gfp);
 532                        if (!skb)
 533                                goto nomem;
 534
 535                        sd->skb = skb;
 536                        buf_start = skb->data;
 537                        err = add_one_rx_buf(buf_start, q->buf_size, d, sd,
 538                                             q->gen, adap->pdev);
 539                        if (unlikely(err)) {
 540                                clear_rx_desc(adap->pdev, q, sd);
 541                                break;
 542                        }
 543                }
 544
 545                d++;
 546                sd++;
 547                if (++q->pidx == q->size) {
 548                        q->pidx = 0;
 549                        q->gen ^= 1;
 550                        sd = q->sdesc;
 551                        d = q->desc;
 552                }
 553                count++;
 554        }
 555
 556        q->credits += count;
 557        q->pend_cred += count;
 558        ring_fl_db(adap, q);
 559
 560        return count;
 561}
 562
 563static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
 564{
 565        refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits),
 566                  GFP_ATOMIC | __GFP_COMP);
 567}
 568
 569/**
 570 *      recycle_rx_buf - recycle a receive buffer
 571 *      @adapter: the adapter
 572 *      @q: the SGE free list
 573 *      @idx: index of buffer to recycle
 574 *
 575 *      Recycles the specified buffer on the given free list by adding it at
 576 *      the next available slot on the list.
 577 */
 578static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q,
 579                           unsigned int idx)
 580{
 581        struct rx_desc *from = &q->desc[idx];
 582        struct rx_desc *to = &q->desc[q->pidx];
 583
 584        q->sdesc[q->pidx] = q->sdesc[idx];
 585        to->addr_lo = from->addr_lo;    /* already big endian */
 586        to->addr_hi = from->addr_hi;    /* likewise */
 587        dma_wmb();
 588        to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen));
 589        to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen));
 590
 591        if (++q->pidx == q->size) {
 592                q->pidx = 0;
 593                q->gen ^= 1;
 594        }
 595
 596        q->credits++;
 597        q->pend_cred++;
 598        ring_fl_db(adap, q);
 599}
 600
 601/**
 602 *      alloc_ring - allocate resources for an SGE descriptor ring
 603 *      @pdev: the PCI device
 604 *      @nelem: the number of descriptors
 605 *      @elem_size: the size of each descriptor
 606 *      @sw_size: the size of the SW state associated with each ring element
 607 *      @phys: the physical address of the allocated ring
 608 *      @metadata: address of the array holding the SW state for the ring
 609 *
 610 *      Allocates resources for an SGE descriptor ring, such as Tx queues,
 611 *      free buffer lists, or response queues.  Each SGE ring requires
 612 *      space for its HW descriptors plus, optionally, space for the SW state
 613 *      associated with each HW entry (the metadata).  The function returns
 614 *      three values: the virtual address for the HW ring (the return value
 615 *      of the function), the physical address of the HW ring, and the address
 616 *      of the SW ring.
 617 */
 618static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size,
 619                        size_t sw_size, dma_addr_t * phys, void *metadata)
 620{
 621        size_t len = nelem * elem_size;
 622        void *s = NULL;
 623        void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL);
 624
 625        if (!p)
 626                return NULL;
 627        if (sw_size && metadata) {
 628                s = kcalloc(nelem, sw_size, GFP_KERNEL);
 629
 630                if (!s) {
 631                        dma_free_coherent(&pdev->dev, len, p, *phys);
 632                        return NULL;
 633                }
 634                *(void **)metadata = s;
 635        }
 636        return p;
 637}
 638
 639/**
 640 *      t3_reset_qset - reset a sge qset
 641 *      @q: the queue set
 642 *
 643 *      Reset the qset structure.
 644 *      the NAPI structure is preserved in the event of
 645 *      the qset's reincarnation, for example during EEH recovery.
 646 */
 647static void t3_reset_qset(struct sge_qset *q)
 648{
 649        if (q->adap &&
 650            !(q->adap->flags & NAPI_INIT)) {
 651                memset(q, 0, sizeof(*q));
 652                return;
 653        }
 654
 655        q->adap = NULL;
 656        memset(&q->rspq, 0, sizeof(q->rspq));
 657        memset(q->fl, 0, sizeof(struct sge_fl) * SGE_RXQ_PER_SET);
 658        memset(q->txq, 0, sizeof(struct sge_txq) * SGE_TXQ_PER_SET);
 659        q->txq_stopped = 0;
 660        q->tx_reclaim_timer.function = NULL; /* for t3_stop_sge_timers() */
 661        q->rx_reclaim_timer.function = NULL;
 662        q->nomem = 0;
 663        napi_free_frags(&q->napi);
 664}
 665
 666
 667/**
 668 *      free_qset - free the resources of an SGE queue set
 669 *      @adapter: the adapter owning the queue set
 670 *      @q: the queue set
 671 *
 672 *      Release the HW and SW resources associated with an SGE queue set, such
 673 *      as HW contexts, packet buffers, and descriptor rings.  Traffic to the
 674 *      queue set must be quiesced prior to calling this.
 675 */
 676static void t3_free_qset(struct adapter *adapter, struct sge_qset *q)
 677{
 678        int i;
 679        struct pci_dev *pdev = adapter->pdev;
 680
 681        for (i = 0; i < SGE_RXQ_PER_SET; ++i)
 682                if (q->fl[i].desc) {
 683                        spin_lock_irq(&adapter->sge.reg_lock);
 684                        t3_sge_disable_fl(adapter, q->fl[i].cntxt_id);
 685                        spin_unlock_irq(&adapter->sge.reg_lock);
 686                        free_rx_bufs(pdev, &q->fl[i]);
 687                        kfree(q->fl[i].sdesc);
 688                        dma_free_coherent(&pdev->dev,
 689                                          q->fl[i].size *
 690                                          sizeof(struct rx_desc), q->fl[i].desc,
 691                                          q->fl[i].phys_addr);
 692                }
 693
 694        for (i = 0; i < SGE_TXQ_PER_SET; ++i)
 695                if (q->txq[i].desc) {
 696                        spin_lock_irq(&adapter->sge.reg_lock);
 697                        t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0);
 698                        spin_unlock_irq(&adapter->sge.reg_lock);
 699                        if (q->txq[i].sdesc) {
 700                                free_tx_desc(adapter, &q->txq[i],
 701                                             q->txq[i].in_use);
 702                                kfree(q->txq[i].sdesc);
 703                        }
 704                        dma_free_coherent(&pdev->dev,
 705                                          q->txq[i].size *
 706                                          sizeof(struct tx_desc),
 707                                          q->txq[i].desc, q->txq[i].phys_addr);
 708                        __skb_queue_purge(&q->txq[i].sendq);
 709                }
 710
 711        if (q->rspq.desc) {
 712                spin_lock_irq(&adapter->sge.reg_lock);
 713                t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id);
 714                spin_unlock_irq(&adapter->sge.reg_lock);
 715                dma_free_coherent(&pdev->dev,
 716                                  q->rspq.size * sizeof(struct rsp_desc),
 717                                  q->rspq.desc, q->rspq.phys_addr);
 718        }
 719
 720        t3_reset_qset(q);
 721}
 722
 723/**
 724 *      init_qset_cntxt - initialize an SGE queue set context info
 725 *      @qs: the queue set
 726 *      @id: the queue set id
 727 *
 728 *      Initializes the TIDs and context ids for the queues of a queue set.
 729 */
 730static void init_qset_cntxt(struct sge_qset *qs, unsigned int id)
 731{
 732        qs->rspq.cntxt_id = id;
 733        qs->fl[0].cntxt_id = 2 * id;
 734        qs->fl[1].cntxt_id = 2 * id + 1;
 735        qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
 736        qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
 737        qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
 738        qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
 739        qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;
 740}
 741
 742/**
 743 *      sgl_len - calculates the size of an SGL of the given capacity
 744 *      @n: the number of SGL entries
 745 *
 746 *      Calculates the number of flits needed for a scatter/gather list that
 747 *      can hold the given number of entries.
 748 */
 749static inline unsigned int sgl_len(unsigned int n)
 750{
 751        /* alternatively: 3 * (n / 2) + 2 * (n & 1) */
 752        return (3 * n) / 2 + (n & 1);
 753}
 754
 755/**
 756 *      flits_to_desc - returns the num of Tx descriptors for the given flits
 757 *      @n: the number of flits
 758 *
 759 *      Calculates the number of Tx descriptors needed for the supplied number
 760 *      of flits.
 761 */
 762static inline unsigned int flits_to_desc(unsigned int n)
 763{
 764        BUG_ON(n >= ARRAY_SIZE(flit_desc_map));
 765        return flit_desc_map[n];
 766}
 767
 768/**
 769 *      get_packet - return the next ingress packet buffer from a free list
 770 *      @adap: the adapter that received the packet
 771 *      @fl: the SGE free list holding the packet
 772 *      @len: the packet length including any SGE padding
 773 *      @drop_thres: # of remaining buffers before we start dropping packets
 774 *
 775 *      Get the next packet from a free list and complete setup of the
 776 *      sk_buff.  If the packet is small we make a copy and recycle the
 777 *      original buffer, otherwise we use the original buffer itself.  If a
 778 *      positive drop threshold is supplied packets are dropped and their
 779 *      buffers recycled if (a) the number of remaining buffers is under the
 780 *      threshold and the packet is too big to copy, or (b) the packet should
 781 *      be copied but there is no memory for the copy.
 782 */
 783static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl,
 784                                  unsigned int len, unsigned int drop_thres)
 785{
 786        struct sk_buff *skb = NULL;
 787        struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
 788
 789        prefetch(sd->skb->data);
 790        fl->credits--;
 791
 792        if (len <= SGE_RX_COPY_THRES) {
 793                skb = alloc_skb(len, GFP_ATOMIC);
 794                if (likely(skb != NULL)) {
 795                        __skb_put(skb, len);
 796                        pci_dma_sync_single_for_cpu(adap->pdev,
 797                                            dma_unmap_addr(sd, dma_addr), len,
 798                                            PCI_DMA_FROMDEVICE);
 799                        memcpy(skb->data, sd->skb->data, len);
 800                        pci_dma_sync_single_for_device(adap->pdev,
 801                                            dma_unmap_addr(sd, dma_addr), len,
 802                                            PCI_DMA_FROMDEVICE);
 803                } else if (!drop_thres)
 804                        goto use_orig_buf;
 805recycle:
 806                recycle_rx_buf(adap, fl, fl->cidx);
 807                return skb;
 808        }
 809
 810        if (unlikely(fl->credits < drop_thres) &&
 811            refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits - 1),
 812                      GFP_ATOMIC | __GFP_COMP) == 0)
 813                goto recycle;
 814
 815use_orig_buf:
 816        pci_unmap_single(adap->pdev, dma_unmap_addr(sd, dma_addr),
 817                         fl->buf_size, PCI_DMA_FROMDEVICE);
 818        skb = sd->skb;
 819        skb_put(skb, len);
 820        __refill_fl(adap, fl);
 821        return skb;
 822}
 823
 824/**
 825 *      get_packet_pg - return the next ingress packet buffer from a free list
 826 *      @adap: the adapter that received the packet
 827 *      @fl: the SGE free list holding the packet
 828 *      @len: the packet length including any SGE padding
 829 *      @drop_thres: # of remaining buffers before we start dropping packets
 830 *
 831 *      Get the next packet from a free list populated with page chunks.
 832 *      If the packet is small we make a copy and recycle the original buffer,
 833 *      otherwise we attach the original buffer as a page fragment to a fresh
 834 *      sk_buff.  If a positive drop threshold is supplied packets are dropped
 835 *      and their buffers recycled if (a) the number of remaining buffers is
 836 *      under the threshold and the packet is too big to copy, or (b) there's
 837 *      no system memory.
 838 *
 839 *      Note: this function is similar to @get_packet but deals with Rx buffers
 840 *      that are page chunks rather than sk_buffs.
 841 */
 842static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl,
 843                                     struct sge_rspq *q, unsigned int len,
 844                                     unsigned int drop_thres)
 845{
 846        struct sk_buff *newskb, *skb;
 847        struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
 848
 849        dma_addr_t dma_addr = dma_unmap_addr(sd, dma_addr);
 850
 851        newskb = skb = q->pg_skb;
 852        if (!skb && (len <= SGE_RX_COPY_THRES)) {
 853                newskb = alloc_skb(len, GFP_ATOMIC);
 854                if (likely(newskb != NULL)) {
 855                        __skb_put(newskb, len);
 856                        pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
 857                                            PCI_DMA_FROMDEVICE);
 858                        memcpy(newskb->data, sd->pg_chunk.va, len);
 859                        pci_dma_sync_single_for_device(adap->pdev, dma_addr,
 860                                                       len,
 861                                                       PCI_DMA_FROMDEVICE);
 862                } else if (!drop_thres)
 863                        return NULL;
 864recycle:
 865                fl->credits--;
 866                recycle_rx_buf(adap, fl, fl->cidx);
 867                q->rx_recycle_buf++;
 868                return newskb;
 869        }
 870
 871        if (unlikely(q->rx_recycle_buf || (!skb && fl->credits <= drop_thres)))
 872                goto recycle;
 873
 874        prefetch(sd->pg_chunk.p_cnt);
 875
 876        if (!skb)
 877                newskb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC);
 878
 879        if (unlikely(!newskb)) {
 880                if (!drop_thres)
 881                        return NULL;
 882                goto recycle;
 883        }
 884
 885        pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
 886                                    PCI_DMA_FROMDEVICE);
 887        (*sd->pg_chunk.p_cnt)--;
 888        if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
 889                pci_unmap_page(adap->pdev,
 890                               sd->pg_chunk.mapping,
 891                               fl->alloc_size,
 892                               PCI_DMA_FROMDEVICE);
 893        if (!skb) {
 894                __skb_put(newskb, SGE_RX_PULL_LEN);
 895                memcpy(newskb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN);
 896                skb_fill_page_desc(newskb, 0, sd->pg_chunk.page,
 897                                   sd->pg_chunk.offset + SGE_RX_PULL_LEN,
 898                                   len - SGE_RX_PULL_LEN);
 899                newskb->len = len;
 900                newskb->data_len = len - SGE_RX_PULL_LEN;
 901                newskb->truesize += newskb->data_len;
 902        } else {
 903                skb_fill_page_desc(newskb, skb_shinfo(newskb)->nr_frags,
 904                                   sd->pg_chunk.page,
 905                                   sd->pg_chunk.offset, len);
 906                newskb->len += len;
 907                newskb->data_len += len;
 908                newskb->truesize += len;
 909        }
 910
 911        fl->credits--;
 912        /*
 913         * We do not refill FLs here, we let the caller do it to overlap a
 914         * prefetch.
 915         */
 916        return newskb;
 917}
 918
 919/**
 920 *      get_imm_packet - return the next ingress packet buffer from a response
 921 *      @resp: the response descriptor containing the packet data
 922 *
 923 *      Return a packet containing the immediate data of the given response.
 924 */
 925static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp)
 926{
 927        struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC);
 928
 929        if (skb) {
 930                __skb_put(skb, IMMED_PKT_SIZE);
 931                skb_copy_to_linear_data(skb, resp->imm_data, IMMED_PKT_SIZE);
 932        }
 933        return skb;
 934}
 935
 936/**
 937 *      calc_tx_descs - calculate the number of Tx descriptors for a packet
 938 *      @skb: the packet
 939 *
 940 *      Returns the number of Tx descriptors needed for the given Ethernet
 941 *      packet.  Ethernet packets require addition of WR and CPL headers.
 942 */
 943static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
 944{
 945        unsigned int flits;
 946
 947        if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt))
 948                return 1;
 949
 950        flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2;
 951        if (skb_shinfo(skb)->gso_size)
 952                flits++;
 953        return flits_to_desc(flits);
 954}
 955
 956/*      map_skb - map a packet main body and its page fragments
 957 *      @pdev: the PCI device
 958 *      @skb: the packet
 959 *      @addr: placeholder to save the mapped addresses
 960 *
 961 *      map the main body of an sk_buff and its page fragments, if any.
 962 */
 963static int map_skb(struct pci_dev *pdev, const struct sk_buff *skb,
 964                   dma_addr_t *addr)
 965{
 966        const skb_frag_t *fp, *end;
 967        const struct skb_shared_info *si;
 968
 969        if (skb_headlen(skb)) {
 970                *addr = pci_map_single(pdev, skb->data, skb_headlen(skb),
 971                                       PCI_DMA_TODEVICE);
 972                if (pci_dma_mapping_error(pdev, *addr))
 973                        goto out_err;
 974                addr++;
 975        }
 976
 977        si = skb_shinfo(skb);
 978        end = &si->frags[si->nr_frags];
 979
 980        for (fp = si->frags; fp < end; fp++) {
 981                *addr = skb_frag_dma_map(&pdev->dev, fp, 0, skb_frag_size(fp),
 982                                         DMA_TO_DEVICE);
 983                if (pci_dma_mapping_error(pdev, *addr))
 984                        goto unwind;
 985                addr++;
 986        }
 987        return 0;
 988
 989unwind:
 990        while (fp-- > si->frags)
 991                dma_unmap_page(&pdev->dev, *--addr, skb_frag_size(fp),
 992                               DMA_TO_DEVICE);
 993
 994        pci_unmap_single(pdev, addr[-1], skb_headlen(skb), PCI_DMA_TODEVICE);
 995out_err:
 996        return -ENOMEM;
 997}
 998
 999/**
1000 *      write_sgl - populate a scatter/gather list for a packet
1001 *      @skb: the packet
1002 *      @sgp: the SGL to populate
1003 *      @start: start address of skb main body data to include in the SGL
1004 *      @len: length of skb main body data to include in the SGL
1005 *      @addr: the list of the mapped addresses
1006 *
1007 *      Copies the scatter/gather list for the buffers that make up a packet
1008 *      and returns the SGL size in 8-byte words.  The caller must size the SGL
1009 *      appropriately.
1010 */
1011static inline unsigned int write_sgl(const struct sk_buff *skb,
1012                                     struct sg_ent *sgp, unsigned char *start,
1013                                     unsigned int len, const dma_addr_t *addr)
1014{
1015        unsigned int i, j = 0, k = 0, nfrags;
1016
1017        if (len) {
1018                sgp->len[0] = cpu_to_be32(len);
1019                sgp->addr[j++] = cpu_to_be64(addr[k++]);
1020        }
1021
1022        nfrags = skb_shinfo(skb)->nr_frags;
1023        for (i = 0; i < nfrags; i++) {
1024                const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1025
1026                sgp->len[j] = cpu_to_be32(skb_frag_size(frag));
1027                sgp->addr[j] = cpu_to_be64(addr[k++]);
1028                j ^= 1;
1029                if (j == 0)
1030                        ++sgp;
1031        }
1032        if (j)
1033                sgp->len[j] = 0;
1034        return ((nfrags + (len != 0)) * 3) / 2 + j;
1035}
1036
1037/**
1038 *      check_ring_tx_db - check and potentially ring a Tx queue's doorbell
1039 *      @adap: the adapter
1040 *      @q: the Tx queue
1041 *
1042 *      Ring the doorbel if a Tx queue is asleep.  There is a natural race,
1043 *      where the HW is going to sleep just after we checked, however,
1044 *      then the interrupt handler will detect the outstanding TX packet
1045 *      and ring the doorbell for us.
1046 *
1047 *      When GTS is disabled we unconditionally ring the doorbell.
1048 */
1049static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q)
1050{
1051#if USE_GTS
1052        clear_bit(TXQ_LAST_PKT_DB, &q->flags);
1053        if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
1054                set_bit(TXQ_LAST_PKT_DB, &q->flags);
1055                t3_write_reg(adap, A_SG_KDOORBELL,
1056                             F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1057        }
1058#else
1059        wmb();                  /* write descriptors before telling HW */
1060        t3_write_reg(adap, A_SG_KDOORBELL,
1061                     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1062#endif
1063}
1064
1065static inline void wr_gen2(struct tx_desc *d, unsigned int gen)
1066{
1067#if SGE_NUM_GENBITS == 2
1068        d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen);
1069#endif
1070}
1071
1072/**
1073 *      write_wr_hdr_sgl - write a WR header and, optionally, SGL
1074 *      @ndesc: number of Tx descriptors spanned by the SGL
1075 *      @skb: the packet corresponding to the WR
1076 *      @d: first Tx descriptor to be written
1077 *      @pidx: index of above descriptors
1078 *      @q: the SGE Tx queue
1079 *      @sgl: the SGL
1080 *      @flits: number of flits to the start of the SGL in the first descriptor
1081 *      @sgl_flits: the SGL size in flits
1082 *      @gen: the Tx descriptor generation
1083 *      @wr_hi: top 32 bits of WR header based on WR type (big endian)
1084 *      @wr_lo: low 32 bits of WR header based on WR type (big endian)
1085 *
1086 *      Write a work request header and an associated SGL.  If the SGL is
1087 *      small enough to fit into one Tx descriptor it has already been written
1088 *      and we just need to write the WR header.  Otherwise we distribute the
1089 *      SGL across the number of descriptors it spans.
1090 */
1091static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb,
1092                             struct tx_desc *d, unsigned int pidx,
1093                             const struct sge_txq *q,
1094                             const struct sg_ent *sgl,
1095                             unsigned int flits, unsigned int sgl_flits,
1096                             unsigned int gen, __be32 wr_hi,
1097                             __be32 wr_lo)
1098{
1099        struct work_request_hdr *wrp = (struct work_request_hdr *)d;
1100        struct tx_sw_desc *sd = &q->sdesc[pidx];
1101
1102        sd->skb = skb;
1103        if (need_skb_unmap()) {
1104                sd->fragidx = 0;
1105                sd->addr_idx = 0;
1106                sd->sflit = flits;
1107        }
1108
1109        if (likely(ndesc == 1)) {
1110                sd->eop = 1;
1111                wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
1112                                   V_WR_SGLSFLT(flits)) | wr_hi;
1113                dma_wmb();
1114                wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) |
1115                                   V_WR_GEN(gen)) | wr_lo;
1116                wr_gen2(d, gen);
1117        } else {
1118                unsigned int ogen = gen;
1119                const u64 *fp = (const u64 *)sgl;
1120                struct work_request_hdr *wp = wrp;
1121
1122                wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
1123                                   V_WR_SGLSFLT(flits)) | wr_hi;
1124
1125                while (sgl_flits) {
1126                        unsigned int avail = WR_FLITS - flits;
1127
1128                        if (avail > sgl_flits)
1129                                avail = sgl_flits;
1130                        memcpy(&d->flit[flits], fp, avail * sizeof(*fp));
1131                        sgl_flits -= avail;
1132                        ndesc--;
1133                        if (!sgl_flits)
1134                                break;
1135
1136                        fp += avail;
1137                        d++;
1138                        sd->eop = 0;
1139                        sd++;
1140                        if (++pidx == q->size) {
1141                                pidx = 0;
1142                                gen ^= 1;
1143                                d = q->desc;
1144                                sd = q->sdesc;
1145                        }
1146
1147                        sd->skb = skb;
1148                        wrp = (struct work_request_hdr *)d;
1149                        wrp->wr_hi = htonl(V_WR_DATATYPE(1) |
1150                                           V_WR_SGLSFLT(1)) | wr_hi;
1151                        wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS,
1152                                                        sgl_flits + 1)) |
1153                                           V_WR_GEN(gen)) | wr_lo;
1154                        wr_gen2(d, gen);
1155                        flits = 1;
1156                }
1157                sd->eop = 1;
1158                wrp->wr_hi |= htonl(F_WR_EOP);
1159                dma_wmb();
1160                wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
1161                wr_gen2((struct tx_desc *)wp, ogen);
1162                WARN_ON(ndesc != 0);
1163        }
1164}
1165
1166/**
1167 *      write_tx_pkt_wr - write a TX_PKT work request
1168 *      @adap: the adapter
1169 *      @skb: the packet to send
1170 *      @pi: the egress interface
1171 *      @pidx: index of the first Tx descriptor to write
1172 *      @gen: the generation value to use
1173 *      @q: the Tx queue
1174 *      @ndesc: number of descriptors the packet will occupy
1175 *      @compl: the value of the COMPL bit to use
1176 *
1177 *      Generate a TX_PKT work request to send the supplied packet.
1178 */
1179static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb,
1180                            const struct port_info *pi,
1181                            unsigned int pidx, unsigned int gen,
1182                            struct sge_txq *q, unsigned int ndesc,
1183                            unsigned int compl, const dma_addr_t *addr)
1184{
1185        unsigned int flits, sgl_flits, cntrl, tso_info;
1186        struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1187        struct tx_desc *d = &q->desc[pidx];
1188        struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d;
1189
1190        cpl->len = htonl(skb->len);
1191        cntrl = V_TXPKT_INTF(pi->port_id);
1192
1193        if (skb_vlan_tag_present(skb))
1194                cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(skb_vlan_tag_get(skb));
1195
1196        tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size);
1197        if (tso_info) {
1198                int eth_type;
1199                struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl;
1200
1201                d->flit[2] = 0;
1202                cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
1203                hdr->cntrl = htonl(cntrl);
1204                eth_type = skb_network_offset(skb) == ETH_HLEN ?
1205                    CPL_ETH_II : CPL_ETH_II_VLAN;
1206                tso_info |= V_LSO_ETH_TYPE(eth_type) |
1207                    V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) |
1208                    V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff);
1209                hdr->lso_info = htonl(tso_info);
1210                flits = 3;
1211        } else {
1212                cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
1213                cntrl |= F_TXPKT_IPCSUM_DIS;    /* SW calculates IP csum */
1214                cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL);
1215                cpl->cntrl = htonl(cntrl);
1216
1217                if (skb->len <= WR_LEN - sizeof(*cpl)) {
1218                        q->sdesc[pidx].skb = NULL;
1219                        if (!skb->data_len)
1220                                skb_copy_from_linear_data(skb, &d->flit[2],
1221                                                          skb->len);
1222                        else
1223                                skb_copy_bits(skb, 0, &d->flit[2], skb->len);
1224
1225                        flits = (skb->len + 7) / 8 + 2;
1226                        cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) |
1227                                              V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT)
1228                                              | F_WR_SOP | F_WR_EOP | compl);
1229                        dma_wmb();
1230                        cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) |
1231                                              V_WR_TID(q->token));
1232                        wr_gen2(d, gen);
1233                        dev_consume_skb_any(skb);
1234                        return;
1235                }
1236
1237                flits = 2;
1238        }
1239
1240        sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1241        sgl_flits = write_sgl(skb, sgp, skb->data, skb_headlen(skb), addr);
1242
1243        write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen,
1244                         htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl),
1245                         htonl(V_WR_TID(q->token)));
1246}
1247
1248static inline void t3_stop_tx_queue(struct netdev_queue *txq,
1249                                    struct sge_qset *qs, struct sge_txq *q)
1250{
1251        netif_tx_stop_queue(txq);
1252        set_bit(TXQ_ETH, &qs->txq_stopped);
1253        q->stops++;
1254}
1255
1256/**
1257 *      eth_xmit - add a packet to the Ethernet Tx queue
1258 *      @skb: the packet
1259 *      @dev: the egress net device
1260 *
1261 *      Add a packet to an SGE Tx queue.  Runs with softirqs disabled.
1262 */
1263netdev_tx_t t3_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1264{
1265        int qidx;
1266        unsigned int ndesc, pidx, credits, gen, compl;
1267        const struct port_info *pi = netdev_priv(dev);
1268        struct adapter *adap = pi->adapter;
1269        struct netdev_queue *txq;
1270        struct sge_qset *qs;
1271        struct sge_txq *q;
1272        dma_addr_t addr[MAX_SKB_FRAGS + 1];
1273
1274        /*
1275         * The chip min packet length is 9 octets but play safe and reject
1276         * anything shorter than an Ethernet header.
1277         */
1278        if (unlikely(skb->len < ETH_HLEN)) {
1279                dev_kfree_skb_any(skb);
1280                return NETDEV_TX_OK;
1281        }
1282
1283        qidx = skb_get_queue_mapping(skb);
1284        qs = &pi->qs[qidx];
1285        q = &qs->txq[TXQ_ETH];
1286        txq = netdev_get_tx_queue(dev, qidx);
1287
1288        reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1289
1290        credits = q->size - q->in_use;
1291        ndesc = calc_tx_descs(skb);
1292
1293        if (unlikely(credits < ndesc)) {
1294                t3_stop_tx_queue(txq, qs, q);
1295                dev_err(&adap->pdev->dev,
1296                        "%s: Tx ring %u full while queue awake!\n",
1297                        dev->name, q->cntxt_id & 7);
1298                return NETDEV_TX_BUSY;
1299        }
1300
1301        /* Check if ethernet packet can't be sent as immediate data */
1302        if (skb->len > (WR_LEN - sizeof(struct cpl_tx_pkt))) {
1303                if (unlikely(map_skb(adap->pdev, skb, addr) < 0)) {
1304                        dev_kfree_skb(skb);
1305                        return NETDEV_TX_OK;
1306                }
1307        }
1308
1309        q->in_use += ndesc;
1310        if (unlikely(credits - ndesc < q->stop_thres)) {
1311                t3_stop_tx_queue(txq, qs, q);
1312
1313                if (should_restart_tx(q) &&
1314                    test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1315                        q->restarts++;
1316                        netif_tx_start_queue(txq);
1317                }
1318        }
1319
1320        gen = q->gen;
1321        q->unacked += ndesc;
1322        compl = (q->unacked & 8) << (S_WR_COMPL - 3);
1323        q->unacked &= 7;
1324        pidx = q->pidx;
1325        q->pidx += ndesc;
1326        if (q->pidx >= q->size) {
1327                q->pidx -= q->size;
1328                q->gen ^= 1;
1329        }
1330
1331        /* update port statistics */
1332        if (skb->ip_summed == CHECKSUM_PARTIAL)
1333                qs->port_stats[SGE_PSTAT_TX_CSUM]++;
1334        if (skb_shinfo(skb)->gso_size)
1335                qs->port_stats[SGE_PSTAT_TSO]++;
1336        if (skb_vlan_tag_present(skb))
1337                qs->port_stats[SGE_PSTAT_VLANINS]++;
1338
1339        /*
1340         * We do not use Tx completion interrupts to free DMAd Tx packets.
1341         * This is good for performance but means that we rely on new Tx
1342         * packets arriving to run the destructors of completed packets,
1343         * which open up space in their sockets' send queues.  Sometimes
1344         * we do not get such new packets causing Tx to stall.  A single
1345         * UDP transmitter is a good example of this situation.  We have
1346         * a clean up timer that periodically reclaims completed packets
1347         * but it doesn't run often enough (nor do we want it to) to prevent
1348         * lengthy stalls.  A solution to this problem is to run the
1349         * destructor early, after the packet is queued but before it's DMAd.
1350         * A cons is that we lie to socket memory accounting, but the amount
1351         * of extra memory is reasonable (limited by the number of Tx
1352         * descriptors), the packets do actually get freed quickly by new
1353         * packets almost always, and for protocols like TCP that wait for
1354         * acks to really free up the data the extra memory is even less.
1355         * On the positive side we run the destructors on the sending CPU
1356         * rather than on a potentially different completing CPU, usually a
1357         * good thing.  We also run them without holding our Tx queue lock,
1358         * unlike what reclaim_completed_tx() would otherwise do.
1359         *
1360         * Run the destructor before telling the DMA engine about the packet
1361         * to make sure it doesn't complete and get freed prematurely.
1362         */
1363        if (likely(!skb_shared(skb)))
1364                skb_orphan(skb);
1365
1366        write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl, addr);
1367        check_ring_tx_db(adap, q);
1368        return NETDEV_TX_OK;
1369}
1370
1371/**
1372 *      write_imm - write a packet into a Tx descriptor as immediate data
1373 *      @d: the Tx descriptor to write
1374 *      @skb: the packet
1375 *      @len: the length of packet data to write as immediate data
1376 *      @gen: the generation bit value to write
1377 *
1378 *      Writes a packet as immediate data into a Tx descriptor.  The packet
1379 *      contains a work request at its beginning.  We must write the packet
1380 *      carefully so the SGE doesn't read it accidentally before it's written
1381 *      in its entirety.
1382 */
1383static inline void write_imm(struct tx_desc *d, struct sk_buff *skb,
1384                             unsigned int len, unsigned int gen)
1385{
1386        struct work_request_hdr *from = (struct work_request_hdr *)skb->data;
1387        struct work_request_hdr *to = (struct work_request_hdr *)d;
1388
1389        if (likely(!skb->data_len))
1390                memcpy(&to[1], &from[1], len - sizeof(*from));
1391        else
1392                skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from));
1393
1394        to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP |
1395                                        V_WR_BCNTLFLT(len & 7));
1396        dma_wmb();
1397        to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) |
1398                                        V_WR_LEN((len + 7) / 8));
1399        wr_gen2(d, gen);
1400        kfree_skb(skb);
1401}
1402
1403/**
1404 *      check_desc_avail - check descriptor availability on a send queue
1405 *      @adap: the adapter
1406 *      @q: the send queue
1407 *      @skb: the packet needing the descriptors
1408 *      @ndesc: the number of Tx descriptors needed
1409 *      @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
1410 *
1411 *      Checks if the requested number of Tx descriptors is available on an
1412 *      SGE send queue.  If the queue is already suspended or not enough
1413 *      descriptors are available the packet is queued for later transmission.
1414 *      Must be called with the Tx queue locked.
1415 *
1416 *      Returns 0 if enough descriptors are available, 1 if there aren't
1417 *      enough descriptors and the packet has been queued, and 2 if the caller
1418 *      needs to retry because there weren't enough descriptors at the
1419 *      beginning of the call but some freed up in the mean time.
1420 */
1421static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q,
1422                                   struct sk_buff *skb, unsigned int ndesc,
1423                                   unsigned int qid)
1424{
1425        if (unlikely(!skb_queue_empty(&q->sendq))) {
1426              addq_exit:__skb_queue_tail(&q->sendq, skb);
1427                return 1;
1428        }
1429        if (unlikely(q->size - q->in_use < ndesc)) {
1430                struct sge_qset *qs = txq_to_qset(q, qid);
1431
1432                set_bit(qid, &qs->txq_stopped);
1433                smp_mb__after_atomic();
1434
1435                if (should_restart_tx(q) &&
1436                    test_and_clear_bit(qid, &qs->txq_stopped))
1437                        return 2;
1438
1439                q->stops++;
1440                goto addq_exit;
1441        }
1442        return 0;
1443}
1444
1445/**
1446 *      reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1447 *      @q: the SGE control Tx queue
1448 *
1449 *      This is a variant of reclaim_completed_tx() that is used for Tx queues
1450 *      that send only immediate data (presently just the control queues) and
1451 *      thus do not have any sk_buffs to release.
1452 */
1453static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1454{
1455        unsigned int reclaim = q->processed - q->cleaned;
1456
1457        q->in_use -= reclaim;
1458        q->cleaned += reclaim;
1459}
1460
1461static inline int immediate(const struct sk_buff *skb)
1462{
1463        return skb->len <= WR_LEN;
1464}
1465
1466/**
1467 *      ctrl_xmit - send a packet through an SGE control Tx queue
1468 *      @adap: the adapter
1469 *      @q: the control queue
1470 *      @skb: the packet
1471 *
1472 *      Send a packet through an SGE control Tx queue.  Packets sent through
1473 *      a control queue must fit entirely as immediate data in a single Tx
1474 *      descriptor and have no page fragments.
1475 */
1476static int ctrl_xmit(struct adapter *adap, struct sge_txq *q,
1477                     struct sk_buff *skb)
1478{
1479        int ret;
1480        struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data;
1481
1482        if (unlikely(!immediate(skb))) {
1483                WARN_ON(1);
1484                dev_kfree_skb(skb);
1485                return NET_XMIT_SUCCESS;
1486        }
1487
1488        wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP);
1489        wrp->wr_lo = htonl(V_WR_TID(q->token));
1490
1491        spin_lock(&q->lock);
1492      again:reclaim_completed_tx_imm(q);
1493
1494        ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL);
1495        if (unlikely(ret)) {
1496                if (ret == 1) {
1497                        spin_unlock(&q->lock);
1498                        return NET_XMIT_CN;
1499                }
1500                goto again;
1501        }
1502
1503        write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1504
1505        q->in_use++;
1506        if (++q->pidx >= q->size) {
1507                q->pidx = 0;
1508                q->gen ^= 1;
1509        }
1510        spin_unlock(&q->lock);
1511        wmb();
1512        t3_write_reg(adap, A_SG_KDOORBELL,
1513                     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1514        return NET_XMIT_SUCCESS;
1515}
1516
1517/**
1518 *      restart_ctrlq - restart a suspended control queue
1519 *      @qs: the queue set cotaining the control queue
1520 *
1521 *      Resumes transmission on a suspended Tx control queue.
1522 */
1523static void restart_ctrlq(unsigned long data)
1524{
1525        struct sk_buff *skb;
1526        struct sge_qset *qs = (struct sge_qset *)data;
1527        struct sge_txq *q = &qs->txq[TXQ_CTRL];
1528
1529        spin_lock(&q->lock);
1530      again:reclaim_completed_tx_imm(q);
1531
1532        while (q->in_use < q->size &&
1533               (skb = __skb_dequeue(&q->sendq)) != NULL) {
1534
1535                write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1536
1537                if (++q->pidx >= q->size) {
1538                        q->pidx = 0;
1539                        q->gen ^= 1;
1540                }
1541                q->in_use++;
1542        }
1543
1544        if (!skb_queue_empty(&q->sendq)) {
1545                set_bit(TXQ_CTRL, &qs->txq_stopped);
1546                smp_mb__after_atomic();
1547
1548                if (should_restart_tx(q) &&
1549                    test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
1550                        goto again;
1551                q->stops++;
1552        }
1553
1554        spin_unlock(&q->lock);
1555        wmb();
1556        t3_write_reg(qs->adap, A_SG_KDOORBELL,
1557                     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1558}
1559
1560/*
1561 * Send a management message through control queue 0
1562 */
1563int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1564{
1565        int ret;
1566        local_bh_disable();
1567        ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb);
1568        local_bh_enable();
1569
1570        return ret;
1571}
1572
1573/**
1574 *      deferred_unmap_destructor - unmap a packet when it is freed
1575 *      @skb: the packet
1576 *
1577 *      This is the packet destructor used for Tx packets that need to remain
1578 *      mapped until they are freed rather than until their Tx descriptors are
1579 *      freed.
1580 */
1581static void deferred_unmap_destructor(struct sk_buff *skb)
1582{
1583        int i;
1584        const dma_addr_t *p;
1585        const struct skb_shared_info *si;
1586        const struct deferred_unmap_info *dui;
1587
1588        dui = (struct deferred_unmap_info *)skb->head;
1589        p = dui->addr;
1590
1591        if (skb_tail_pointer(skb) - skb_transport_header(skb))
1592                pci_unmap_single(dui->pdev, *p++, skb_tail_pointer(skb) -
1593                                 skb_transport_header(skb), PCI_DMA_TODEVICE);
1594
1595        si = skb_shinfo(skb);
1596        for (i = 0; i < si->nr_frags; i++)
1597                pci_unmap_page(dui->pdev, *p++, skb_frag_size(&si->frags[i]),
1598                               PCI_DMA_TODEVICE);
1599}
1600
1601static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev,
1602                                     const struct sg_ent *sgl, int sgl_flits)
1603{
1604        dma_addr_t *p;
1605        struct deferred_unmap_info *dui;
1606
1607        dui = (struct deferred_unmap_info *)skb->head;
1608        dui->pdev = pdev;
1609        for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) {
1610                *p++ = be64_to_cpu(sgl->addr[0]);
1611                *p++ = be64_to_cpu(sgl->addr[1]);
1612        }
1613        if (sgl_flits)
1614                *p = be64_to_cpu(sgl->addr[0]);
1615}
1616
1617/**
1618 *      write_ofld_wr - write an offload work request
1619 *      @adap: the adapter
1620 *      @skb: the packet to send
1621 *      @q: the Tx queue
1622 *      @pidx: index of the first Tx descriptor to write
1623 *      @gen: the generation value to use
1624 *      @ndesc: number of descriptors the packet will occupy
1625 *
1626 *      Write an offload work request to send the supplied packet.  The packet
1627 *      data already carry the work request with most fields populated.
1628 */
1629static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb,
1630                          struct sge_txq *q, unsigned int pidx,
1631                          unsigned int gen, unsigned int ndesc,
1632                          const dma_addr_t *addr)
1633{
1634        unsigned int sgl_flits, flits;
1635        struct work_request_hdr *from;
1636        struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1637        struct tx_desc *d = &q->desc[pidx];
1638
1639        if (immediate(skb)) {
1640                q->sdesc[pidx].skb = NULL;
1641                write_imm(d, skb, skb->len, gen);
1642                return;
1643        }
1644
1645        /* Only TX_DATA builds SGLs */
1646
1647        from = (struct work_request_hdr *)skb->data;
1648        memcpy(&d->flit[1], &from[1],
1649               skb_transport_offset(skb) - sizeof(*from));
1650
1651        flits = skb_transport_offset(skb) / 8;
1652        sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1653        sgl_flits = write_sgl(skb, sgp, skb_transport_header(skb),
1654                              skb_tail_pointer(skb) - skb_transport_header(skb),
1655                              addr);
1656        if (need_skb_unmap()) {
1657                setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits);
1658                skb->destructor = deferred_unmap_destructor;
1659        }
1660
1661        write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits,
1662                         gen, from->wr_hi, from->wr_lo);
1663}
1664
1665/**
1666 *      calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
1667 *      @skb: the packet
1668 *
1669 *      Returns the number of Tx descriptors needed for the given offload
1670 *      packet.  These packets are already fully constructed.
1671 */
1672static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb)
1673{
1674        unsigned int flits, cnt;
1675
1676        if (skb->len <= WR_LEN)
1677                return 1;       /* packet fits as immediate data */
1678
1679        flits = skb_transport_offset(skb) / 8;  /* headers */
1680        cnt = skb_shinfo(skb)->nr_frags;
1681        if (skb_tail_pointer(skb) != skb_transport_header(skb))
1682                cnt++;
1683        return flits_to_desc(flits + sgl_len(cnt));
1684}
1685
1686/**
1687 *      ofld_xmit - send a packet through an offload queue
1688 *      @adap: the adapter
1689 *      @q: the Tx offload queue
1690 *      @skb: the packet
1691 *
1692 *      Send an offload packet through an SGE offload queue.
1693 */
1694static int ofld_xmit(struct adapter *adap, struct sge_txq *q,
1695                     struct sk_buff *skb)
1696{
1697        int ret;
1698        unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen;
1699
1700        spin_lock(&q->lock);
1701again:  reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1702
1703        ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD);
1704        if (unlikely(ret)) {
1705                if (ret == 1) {
1706                        skb->priority = ndesc;  /* save for restart */
1707                        spin_unlock(&q->lock);
1708                        return NET_XMIT_CN;
1709                }
1710                goto again;
1711        }
1712
1713        if (!immediate(skb) &&
1714            map_skb(adap->pdev, skb, (dma_addr_t *)skb->head)) {
1715                spin_unlock(&q->lock);
1716                return NET_XMIT_SUCCESS;
1717        }
1718
1719        gen = q->gen;
1720        q->in_use += ndesc;
1721        pidx = q->pidx;
1722        q->pidx += ndesc;
1723        if (q->pidx >= q->size) {
1724                q->pidx -= q->size;
1725                q->gen ^= 1;
1726        }
1727        spin_unlock(&q->lock);
1728
1729        write_ofld_wr(adap, skb, q, pidx, gen, ndesc, (dma_addr_t *)skb->head);
1730        check_ring_tx_db(adap, q);
1731        return NET_XMIT_SUCCESS;
1732}
1733
1734/**
1735 *      restart_offloadq - restart a suspended offload queue
1736 *      @qs: the queue set cotaining the offload queue
1737 *
1738 *      Resumes transmission on a suspended Tx offload queue.
1739 */
1740static void restart_offloadq(unsigned long data)
1741{
1742        struct sk_buff *skb;
1743        struct sge_qset *qs = (struct sge_qset *)data;
1744        struct sge_txq *q = &qs->txq[TXQ_OFLD];
1745        const struct port_info *pi = netdev_priv(qs->netdev);
1746        struct adapter *adap = pi->adapter;
1747        unsigned int written = 0;
1748
1749        spin_lock(&q->lock);
1750again:  reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1751
1752        while ((skb = skb_peek(&q->sendq)) != NULL) {
1753                unsigned int gen, pidx;
1754                unsigned int ndesc = skb->priority;
1755
1756                if (unlikely(q->size - q->in_use < ndesc)) {
1757                        set_bit(TXQ_OFLD, &qs->txq_stopped);
1758                        smp_mb__after_atomic();
1759
1760                        if (should_restart_tx(q) &&
1761                            test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
1762                                goto again;
1763                        q->stops++;
1764                        break;
1765                }
1766
1767                if (!immediate(skb) &&
1768                    map_skb(adap->pdev, skb, (dma_addr_t *)skb->head))
1769                        break;
1770
1771                gen = q->gen;
1772                q->in_use += ndesc;
1773                pidx = q->pidx;
1774                q->pidx += ndesc;
1775                written += ndesc;
1776                if (q->pidx >= q->size) {
1777                        q->pidx -= q->size;
1778                        q->gen ^= 1;
1779                }
1780                __skb_unlink(skb, &q->sendq);
1781                spin_unlock(&q->lock);
1782
1783                write_ofld_wr(adap, skb, q, pidx, gen, ndesc,
1784                              (dma_addr_t *)skb->head);
1785                spin_lock(&q->lock);
1786        }
1787        spin_unlock(&q->lock);
1788
1789#if USE_GTS
1790        set_bit(TXQ_RUNNING, &q->flags);
1791        set_bit(TXQ_LAST_PKT_DB, &q->flags);
1792#endif
1793        wmb();
1794        if (likely(written))
1795                t3_write_reg(adap, A_SG_KDOORBELL,
1796                             F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1797}
1798
1799/**
1800 *      queue_set - return the queue set a packet should use
1801 *      @skb: the packet
1802 *
1803 *      Maps a packet to the SGE queue set it should use.  The desired queue
1804 *      set is carried in bits 1-3 in the packet's priority.
1805 */
1806static inline int queue_set(const struct sk_buff *skb)
1807{
1808        return skb->priority >> 1;
1809}
1810
1811/**
1812 *      is_ctrl_pkt - return whether an offload packet is a control packet
1813 *      @skb: the packet
1814 *
1815 *      Determines whether an offload packet should use an OFLD or a CTRL
1816 *      Tx queue.  This is indicated by bit 0 in the packet's priority.
1817 */
1818static inline int is_ctrl_pkt(const struct sk_buff *skb)
1819{
1820        return skb->priority & 1;
1821}
1822
1823/**
1824 *      t3_offload_tx - send an offload packet
1825 *      @tdev: the offload device to send to
1826 *      @skb: the packet
1827 *
1828 *      Sends an offload packet.  We use the packet priority to select the
1829 *      appropriate Tx queue as follows: bit 0 indicates whether the packet
1830 *      should be sent as regular or control, bits 1-3 select the queue set.
1831 */
1832int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
1833{
1834        struct adapter *adap = tdev2adap(tdev);
1835        struct sge_qset *qs = &adap->sge.qs[queue_set(skb)];
1836
1837        if (unlikely(is_ctrl_pkt(skb)))
1838                return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb);
1839
1840        return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb);
1841}
1842
1843/**
1844 *      offload_enqueue - add an offload packet to an SGE offload receive queue
1845 *      @q: the SGE response queue
1846 *      @skb: the packet
1847 *
1848 *      Add a new offload packet to an SGE response queue's offload packet
1849 *      queue.  If the packet is the first on the queue it schedules the RX
1850 *      softirq to process the queue.
1851 */
1852static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb)
1853{
1854        int was_empty = skb_queue_empty(&q->rx_queue);
1855
1856        __skb_queue_tail(&q->rx_queue, skb);
1857
1858        if (was_empty) {
1859                struct sge_qset *qs = rspq_to_qset(q);
1860
1861                napi_schedule(&qs->napi);
1862        }
1863}
1864
1865/**
1866 *      deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
1867 *      @tdev: the offload device that will be receiving the packets
1868 *      @q: the SGE response queue that assembled the bundle
1869 *      @skbs: the partial bundle
1870 *      @n: the number of packets in the bundle
1871 *
1872 *      Delivers a (partial) bundle of Rx offload packets to an offload device.
1873 */
1874static inline void deliver_partial_bundle(struct t3cdev *tdev,
1875                                          struct sge_rspq *q,
1876                                          struct sk_buff *skbs[], int n)
1877{
1878        if (n) {
1879                q->offload_bundles++;
1880                tdev->recv(tdev, skbs, n);
1881        }
1882}
1883
1884/**
1885 *      ofld_poll - NAPI handler for offload packets in interrupt mode
1886 *      @dev: the network device doing the polling
1887 *      @budget: polling budget
1888 *
1889 *      The NAPI handler for offload packets when a response queue is serviced
1890 *      by the hard interrupt handler, i.e., when it's operating in non-polling
1891 *      mode.  Creates small packet batches and sends them through the offload
1892 *      receive handler.  Batches need to be of modest size as we do prefetches
1893 *      on the packets in each.
1894 */
1895static int ofld_poll(struct napi_struct *napi, int budget)
1896{
1897        struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
1898        struct sge_rspq *q = &qs->rspq;
1899        struct adapter *adapter = qs->adap;
1900        int work_done = 0;
1901
1902        while (work_done < budget) {
1903                struct sk_buff *skb, *tmp, *skbs[RX_BUNDLE_SIZE];
1904                struct sk_buff_head queue;
1905                int ngathered;
1906
1907                spin_lock_irq(&q->lock);
1908                __skb_queue_head_init(&queue);
1909                skb_queue_splice_init(&q->rx_queue, &queue);
1910                if (skb_queue_empty(&queue)) {
1911                        napi_complete_done(napi, work_done);
1912                        spin_unlock_irq(&q->lock);
1913                        return work_done;
1914                }
1915                spin_unlock_irq(&q->lock);
1916
1917                ngathered = 0;
1918                skb_queue_walk_safe(&queue, skb, tmp) {
1919                        if (work_done >= budget)
1920                                break;
1921                        work_done++;
1922
1923                        __skb_unlink(skb, &queue);
1924                        prefetch(skb->data);
1925                        skbs[ngathered] = skb;
1926                        if (++ngathered == RX_BUNDLE_SIZE) {
1927                                q->offload_bundles++;
1928                                adapter->tdev.recv(&adapter->tdev, skbs,
1929                                                   ngathered);
1930                                ngathered = 0;
1931                        }
1932                }
1933                if (!skb_queue_empty(&queue)) {
1934                        /* splice remaining packets back onto Rx queue */
1935                        spin_lock_irq(&q->lock);
1936                        skb_queue_splice(&queue, &q->rx_queue);
1937                        spin_unlock_irq(&q->lock);
1938                }
1939                deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered);
1940        }
1941
1942        return work_done;
1943}
1944
1945/**
1946 *      rx_offload - process a received offload packet
1947 *      @tdev: the offload device receiving the packet
1948 *      @rq: the response queue that received the packet
1949 *      @skb: the packet
1950 *      @rx_gather: a gather list of packets if we are building a bundle
1951 *      @gather_idx: index of the next available slot in the bundle
1952 *
1953 *      Process an ingress offload pakcet and add it to the offload ingress
1954 *      queue.  Returns the index of the next available slot in the bundle.
1955 */
1956static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq,
1957                             struct sk_buff *skb, struct sk_buff *rx_gather[],
1958                             unsigned int gather_idx)
1959{
1960        skb_reset_mac_header(skb);
1961        skb_reset_network_header(skb);
1962        skb_reset_transport_header(skb);
1963
1964        if (rq->polling) {
1965                rx_gather[gather_idx++] = skb;
1966                if (gather_idx == RX_BUNDLE_SIZE) {
1967                        tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE);
1968                        gather_idx = 0;
1969                        rq->offload_bundles++;
1970                }
1971        } else
1972                offload_enqueue(rq, skb);
1973
1974        return gather_idx;
1975}
1976
1977/**
1978 *      restart_tx - check whether to restart suspended Tx queues
1979 *      @qs: the queue set to resume
1980 *
1981 *      Restarts suspended Tx queues of an SGE queue set if they have enough
1982 *      free resources to resume operation.
1983 */
1984static void restart_tx(struct sge_qset *qs)
1985{
1986        if (test_bit(TXQ_ETH, &qs->txq_stopped) &&
1987            should_restart_tx(&qs->txq[TXQ_ETH]) &&
1988            test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1989                qs->txq[TXQ_ETH].restarts++;
1990                if (netif_running(qs->netdev))
1991                        netif_tx_wake_queue(qs->tx_q);
1992        }
1993
1994        if (test_bit(TXQ_OFLD, &qs->txq_stopped) &&
1995            should_restart_tx(&qs->txq[TXQ_OFLD]) &&
1996            test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
1997                qs->txq[TXQ_OFLD].restarts++;
1998                tasklet_schedule(&qs->txq[TXQ_OFLD].qresume_tsk);
1999        }
2000        if (test_bit(TXQ_CTRL, &qs->txq_stopped) &&
2001            should_restart_tx(&qs->txq[TXQ_CTRL]) &&
2002            test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
2003                qs->txq[TXQ_CTRL].restarts++;
2004                tasklet_schedule(&qs->txq[TXQ_CTRL].qresume_tsk);
2005        }
2006}
2007
2008/**
2009 *      cxgb3_arp_process - process an ARP request probing a private IP address
2010 *      @adapter: the adapter
2011 *      @skb: the skbuff containing the ARP request
2012 *
2013 *      Check if the ARP request is probing the private IP address
2014 *      dedicated to iSCSI, generate an ARP reply if so.
2015 */
2016static void cxgb3_arp_process(struct port_info *pi, struct sk_buff *skb)
2017{
2018        struct net_device *dev = skb->dev;
2019        struct arphdr *arp;
2020        unsigned char *arp_ptr;
2021        unsigned char *sha;
2022        __be32 sip, tip;
2023
2024        if (!dev)
2025                return;
2026
2027        skb_reset_network_header(skb);
2028        arp = arp_hdr(skb);
2029
2030        if (arp->ar_op != htons(ARPOP_REQUEST))
2031                return;
2032
2033        arp_ptr = (unsigned char *)(arp + 1);
2034        sha = arp_ptr;
2035        arp_ptr += dev->addr_len;
2036        memcpy(&sip, arp_ptr, sizeof(sip));
2037        arp_ptr += sizeof(sip);
2038        arp_ptr += dev->addr_len;
2039        memcpy(&tip, arp_ptr, sizeof(tip));
2040
2041        if (tip != pi->iscsi_ipv4addr)
2042                return;
2043
2044        arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
2045                 pi->iscsic.mac_addr, sha);
2046
2047}
2048
2049static inline int is_arp(struct sk_buff *skb)
2050{
2051        return skb->protocol == htons(ETH_P_ARP);
2052}
2053
2054static void cxgb3_process_iscsi_prov_pack(struct port_info *pi,
2055                                        struct sk_buff *skb)
2056{
2057        if (is_arp(skb)) {
2058                cxgb3_arp_process(pi, skb);
2059                return;
2060        }
2061
2062        if (pi->iscsic.recv)
2063                pi->iscsic.recv(pi, skb);
2064
2065}
2066
2067/**
2068 *      rx_eth - process an ingress ethernet packet
2069 *      @adap: the adapter
2070 *      @rq: the response queue that received the packet
2071 *      @skb: the packet
2072 *      @pad: amount of padding at the start of the buffer
2073 *
2074 *      Process an ingress ethernet pakcet and deliver it to the stack.
2075 *      The padding is 2 if the packet was delivered in an Rx buffer and 0
2076 *      if it was immediate data in a response.
2077 */
2078static void rx_eth(struct adapter *adap, struct sge_rspq *rq,
2079                   struct sk_buff *skb, int pad, int lro)
2080{
2081        struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad);
2082        struct sge_qset *qs = rspq_to_qset(rq);
2083        struct port_info *pi;
2084
2085        skb_pull(skb, sizeof(*p) + pad);
2086        skb->protocol = eth_type_trans(skb, adap->port[p->iff]);
2087        pi = netdev_priv(skb->dev);
2088        if ((skb->dev->features & NETIF_F_RXCSUM) && p->csum_valid &&
2089            p->csum == htons(0xffff) && !p->fragment) {
2090                qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
2091                skb->ip_summed = CHECKSUM_UNNECESSARY;
2092        } else
2093                skb_checksum_none_assert(skb);
2094        skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]);
2095
2096        if (p->vlan_valid) {
2097                qs->port_stats[SGE_PSTAT_VLANEX]++;
2098                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(p->vlan));
2099        }
2100        if (rq->polling) {
2101                if (lro)
2102                        napi_gro_receive(&qs->napi, skb);
2103                else {
2104                        if (unlikely(pi->iscsic.flags))
2105                                cxgb3_process_iscsi_prov_pack(pi, skb);
2106                        netif_receive_skb(skb);
2107                }
2108        } else
2109                netif_rx(skb);
2110}
2111
2112static inline int is_eth_tcp(u32 rss)
2113{
2114        return G_HASHTYPE(ntohl(rss)) == RSS_HASH_4_TUPLE;
2115}
2116
2117/**
2118 *      lro_add_page - add a page chunk to an LRO session
2119 *      @adap: the adapter
2120 *      @qs: the associated queue set
2121 *      @fl: the free list containing the page chunk to add
2122 *      @len: packet length
2123 *      @complete: Indicates the last fragment of a frame
2124 *
2125 *      Add a received packet contained in a page chunk to an existing LRO
2126 *      session.
2127 */
2128static void lro_add_page(struct adapter *adap, struct sge_qset *qs,
2129                         struct sge_fl *fl, int len, int complete)
2130{
2131        struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
2132        struct port_info *pi = netdev_priv(qs->netdev);
2133        struct sk_buff *skb = NULL;
2134        struct cpl_rx_pkt *cpl;
2135        skb_frag_t *rx_frag;
2136        int nr_frags;
2137        int offset = 0;
2138
2139        if (!qs->nomem) {
2140                skb = napi_get_frags(&qs->napi);
2141                qs->nomem = !skb;
2142        }
2143
2144        fl->credits--;
2145
2146        pci_dma_sync_single_for_cpu(adap->pdev,
2147                                    dma_unmap_addr(sd, dma_addr),
2148                                    fl->buf_size - SGE_PG_RSVD,
2149                                    PCI_DMA_FROMDEVICE);
2150
2151        (*sd->pg_chunk.p_cnt)--;
2152        if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
2153                pci_unmap_page(adap->pdev,
2154                               sd->pg_chunk.mapping,
2155                               fl->alloc_size,
2156                               PCI_DMA_FROMDEVICE);
2157
2158        if (!skb) {
2159                put_page(sd->pg_chunk.page);
2160                if (complete)
2161                        qs->nomem = 0;
2162                return;
2163        }
2164
2165        rx_frag = skb_shinfo(skb)->frags;
2166        nr_frags = skb_shinfo(skb)->nr_frags;
2167
2168        if (!nr_frags) {
2169                offset = 2 + sizeof(struct cpl_rx_pkt);
2170                cpl = qs->lro_va = sd->pg_chunk.va + 2;
2171
2172                if ((qs->netdev->features & NETIF_F_RXCSUM) &&
2173                     cpl->csum_valid && cpl->csum == htons(0xffff)) {
2174                        skb->ip_summed = CHECKSUM_UNNECESSARY;
2175                        qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
2176                } else
2177                        skb->ip_summed = CHECKSUM_NONE;
2178        } else
2179                cpl = qs->lro_va;
2180
2181        len -= offset;
2182
2183        rx_frag += nr_frags;
2184        __skb_frag_set_page(rx_frag, sd->pg_chunk.page);
2185        skb_frag_off_set(rx_frag, sd->pg_chunk.offset + offset);
2186        skb_frag_size_set(rx_frag, len);
2187
2188        skb->len += len;
2189        skb->data_len += len;
2190        skb->truesize += len;
2191        skb_shinfo(skb)->nr_frags++;
2192
2193        if (!complete)
2194                return;
2195
2196        skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]);
2197
2198        if (cpl->vlan_valid) {
2199                qs->port_stats[SGE_PSTAT_VLANEX]++;
2200                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cpl->vlan));
2201        }
2202        napi_gro_frags(&qs->napi);
2203}
2204
2205/**
2206 *      handle_rsp_cntrl_info - handles control information in a response
2207 *      @qs: the queue set corresponding to the response
2208 *      @flags: the response control flags
2209 *
2210 *      Handles the control information of an SGE response, such as GTS
2211 *      indications and completion credits for the queue set's Tx queues.
2212 *      HW coalesces credits, we don't do any extra SW coalescing.
2213 */
2214static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags)
2215{
2216        unsigned int credits;
2217
2218#if USE_GTS
2219        if (flags & F_RSPD_TXQ0_GTS)
2220                clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
2221#endif
2222
2223        credits = G_RSPD_TXQ0_CR(flags);
2224        if (credits)
2225                qs->txq[TXQ_ETH].processed += credits;
2226
2227        credits = G_RSPD_TXQ2_CR(flags);
2228        if (credits)
2229                qs->txq[TXQ_CTRL].processed += credits;
2230
2231# if USE_GTS
2232        if (flags & F_RSPD_TXQ1_GTS)
2233                clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
2234# endif
2235        credits = G_RSPD_TXQ1_CR(flags);
2236        if (credits)
2237                qs->txq[TXQ_OFLD].processed += credits;
2238}
2239
2240/**
2241 *      check_ring_db - check if we need to ring any doorbells
2242 *      @adapter: the adapter
2243 *      @qs: the queue set whose Tx queues are to be examined
2244 *      @sleeping: indicates which Tx queue sent GTS
2245 *
2246 *      Checks if some of a queue set's Tx queues need to ring their doorbells
2247 *      to resume transmission after idling while they still have unprocessed
2248 *      descriptors.
2249 */
2250static void check_ring_db(struct adapter *adap, struct sge_qset *qs,
2251                          unsigned int sleeping)
2252{
2253        if (sleeping & F_RSPD_TXQ0_GTS) {
2254                struct sge_txq *txq = &qs->txq[TXQ_ETH];
2255
2256                if (txq->cleaned + txq->in_use != txq->processed &&
2257                    !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2258                        set_bit(TXQ_RUNNING, &txq->flags);
2259                        t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2260                                     V_EGRCNTX(txq->cntxt_id));
2261                }
2262        }
2263
2264        if (sleeping & F_RSPD_TXQ1_GTS) {
2265                struct sge_txq *txq = &qs->txq[TXQ_OFLD];
2266
2267                if (txq->cleaned + txq->in_use != txq->processed &&
2268                    !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2269                        set_bit(TXQ_RUNNING, &txq->flags);
2270                        t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2271                                     V_EGRCNTX(txq->cntxt_id));
2272                }
2273        }
2274}
2275
2276/**
2277 *      is_new_response - check if a response is newly written
2278 *      @r: the response descriptor
2279 *      @q: the response queue
2280 *
2281 *      Returns true if a response descriptor contains a yet unprocessed
2282 *      response.
2283 */
2284static inline int is_new_response(const struct rsp_desc *r,
2285                                  const struct sge_rspq *q)
2286{
2287        return (r->intr_gen & F_RSPD_GEN2) == q->gen;
2288}
2289
2290static inline void clear_rspq_bufstate(struct sge_rspq * const q)
2291{
2292        q->pg_skb = NULL;
2293        q->rx_recycle_buf = 0;
2294}
2295
2296#define RSPD_GTS_MASK  (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
2297#define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
2298                        V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
2299                        V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
2300                        V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
2301
2302/* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
2303#define NOMEM_INTR_DELAY 2500
2304
2305/**
2306 *      process_responses - process responses from an SGE response queue
2307 *      @adap: the adapter
2308 *      @qs: the queue set to which the response queue belongs
2309 *      @budget: how many responses can be processed in this round
2310 *
2311 *      Process responses from an SGE response queue up to the supplied budget.
2312 *      Responses include received packets as well as credits and other events
2313 *      for the queues that belong to the response queue's queue set.
2314 *      A negative budget is effectively unlimited.
2315 *
2316 *      Additionally choose the interrupt holdoff time for the next interrupt
2317 *      on this queue.  If the system is under memory shortage use a fairly
2318 *      long delay to help recovery.
2319 */
2320static int process_responses(struct adapter *adap, struct sge_qset *qs,
2321                             int budget)
2322{
2323        struct sge_rspq *q = &qs->rspq;
2324        struct rsp_desc *r = &q->desc[q->cidx];
2325        int budget_left = budget;
2326        unsigned int sleeping = 0;
2327        struct sk_buff *offload_skbs[RX_BUNDLE_SIZE];
2328        int ngathered = 0;
2329
2330        q->next_holdoff = q->holdoff_tmr;
2331
2332        while (likely(budget_left && is_new_response(r, q))) {
2333                int packet_complete, eth, ethpad = 2;
2334                int lro = !!(qs->netdev->features & NETIF_F_GRO);
2335                struct sk_buff *skb = NULL;
2336                u32 len, flags;
2337                __be32 rss_hi, rss_lo;
2338
2339                dma_rmb();
2340                eth = r->rss_hdr.opcode == CPL_RX_PKT;
2341                rss_hi = *(const __be32 *)r;
2342                rss_lo = r->rss_hdr.rss_hash_val;
2343                flags = ntohl(r->flags);
2344
2345                if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) {
2346                        skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC);
2347                        if (!skb)
2348                                goto no_mem;
2349
2350                        __skb_put_data(skb, r, AN_PKT_SIZE);
2351                        skb->data[0] = CPL_ASYNC_NOTIF;
2352                        rss_hi = htonl(CPL_ASYNC_NOTIF << 24);
2353                        q->async_notif++;
2354                } else if (flags & F_RSPD_IMM_DATA_VALID) {
2355                        skb = get_imm_packet(r);
2356                        if (unlikely(!skb)) {
2357no_mem:
2358                                q->next_holdoff = NOMEM_INTR_DELAY;
2359                                q->nomem++;
2360                                /* consume one credit since we tried */
2361                                budget_left--;
2362                                break;
2363                        }
2364                        q->imm_data++;
2365                        ethpad = 0;
2366                } else if ((len = ntohl(r->len_cq)) != 0) {
2367                        struct sge_fl *fl;
2368
2369                        lro &= eth && is_eth_tcp(rss_hi);
2370
2371                        fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
2372                        if (fl->use_pages) {
2373                                void *addr = fl->sdesc[fl->cidx].pg_chunk.va;
2374
2375                                prefetch(addr);
2376#if L1_CACHE_BYTES < 128
2377                                prefetch(addr + L1_CACHE_BYTES);
2378#endif
2379                                __refill_fl(adap, fl);
2380                                if (lro > 0) {
2381                                        lro_add_page(adap, qs, fl,
2382                                                     G_RSPD_LEN(len),
2383                                                     flags & F_RSPD_EOP);
2384                                        goto next_fl;
2385                                }
2386
2387                                skb = get_packet_pg(adap, fl, q,
2388                                                    G_RSPD_LEN(len),
2389                                                    eth ?
2390                                                    SGE_RX_DROP_THRES : 0);
2391                                q->pg_skb = skb;
2392                        } else
2393                                skb = get_packet(adap, fl, G_RSPD_LEN(len),
2394                                                 eth ? SGE_RX_DROP_THRES : 0);
2395                        if (unlikely(!skb)) {
2396                                if (!eth)
2397                                        goto no_mem;
2398                                q->rx_drops++;
2399                        } else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT))
2400                                __skb_pull(skb, 2);
2401next_fl:
2402                        if (++fl->cidx == fl->size)
2403                                fl->cidx = 0;
2404                } else
2405                        q->pure_rsps++;
2406
2407                if (flags & RSPD_CTRL_MASK) {
2408                        sleeping |= flags & RSPD_GTS_MASK;
2409                        handle_rsp_cntrl_info(qs, flags);
2410                }
2411
2412                r++;
2413                if (unlikely(++q->cidx == q->size)) {
2414                        q->cidx = 0;
2415                        q->gen ^= 1;
2416                        r = q->desc;
2417                }
2418                prefetch(r);
2419
2420                if (++q->credits >= (q->size / 4)) {
2421                        refill_rspq(adap, q, q->credits);
2422                        q->credits = 0;
2423                }
2424
2425                packet_complete = flags &
2426                                  (F_RSPD_EOP | F_RSPD_IMM_DATA_VALID |
2427                                   F_RSPD_ASYNC_NOTIF);
2428
2429                if (skb != NULL && packet_complete) {
2430                        if (eth)
2431                                rx_eth(adap, q, skb, ethpad, lro);
2432                        else {
2433                                q->offload_pkts++;
2434                                /* Preserve the RSS info in csum & priority */
2435                                skb->csum = rss_hi;
2436                                skb->priority = rss_lo;
2437                                ngathered = rx_offload(&adap->tdev, q, skb,
2438                                                       offload_skbs,
2439                                                       ngathered);
2440                        }
2441
2442                        if (flags & F_RSPD_EOP)
2443                                clear_rspq_bufstate(q);
2444                }
2445                --budget_left;
2446        }
2447
2448        deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered);
2449
2450        if (sleeping)
2451                check_ring_db(adap, qs, sleeping);
2452
2453        smp_mb();               /* commit Tx queue .processed updates */
2454        if (unlikely(qs->txq_stopped != 0))
2455                restart_tx(qs);
2456
2457        budget -= budget_left;
2458        return budget;
2459}
2460
2461static inline int is_pure_response(const struct rsp_desc *r)
2462{
2463        __be32 n = r->flags & htonl(F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID);
2464
2465        return (n | r->len_cq) == 0;
2466}
2467
2468/**
2469 *      napi_rx_handler - the NAPI handler for Rx processing
2470 *      @napi: the napi instance
2471 *      @budget: how many packets we can process in this round
2472 *
2473 *      Handler for new data events when using NAPI.
2474 */
2475static int napi_rx_handler(struct napi_struct *napi, int budget)
2476{
2477        struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
2478        struct adapter *adap = qs->adap;
2479        int work_done = process_responses(adap, qs, budget);
2480
2481        if (likely(work_done < budget)) {
2482                napi_complete_done(napi, work_done);
2483
2484                /*
2485                 * Because we don't atomically flush the following
2486                 * write it is possible that in very rare cases it can
2487                 * reach the device in a way that races with a new
2488                 * response being written plus an error interrupt
2489                 * causing the NAPI interrupt handler below to return
2490                 * unhandled status to the OS.  To protect against
2491                 * this would require flushing the write and doing
2492                 * both the write and the flush with interrupts off.
2493                 * Way too expensive and unjustifiable given the
2494                 * rarity of the race.
2495                 *
2496                 * The race cannot happen at all with MSI-X.
2497                 */
2498                t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
2499                             V_NEWTIMER(qs->rspq.next_holdoff) |
2500                             V_NEWINDEX(qs->rspq.cidx));
2501        }
2502        return work_done;
2503}
2504
2505/*
2506 * Returns true if the device is already scheduled for polling.
2507 */
2508static inline int napi_is_scheduled(struct napi_struct *napi)
2509{
2510        return test_bit(NAPI_STATE_SCHED, &napi->state);
2511}
2512
2513/**
2514 *      process_pure_responses - process pure responses from a response queue
2515 *      @adap: the adapter
2516 *      @qs: the queue set owning the response queue
2517 *      @r: the first pure response to process
2518 *
2519 *      A simpler version of process_responses() that handles only pure (i.e.,
2520 *      non data-carrying) responses.  Such respones are too light-weight to
2521 *      justify calling a softirq under NAPI, so we handle them specially in
2522 *      the interrupt handler.  The function is called with a pointer to a
2523 *      response, which the caller must ensure is a valid pure response.
2524 *
2525 *      Returns 1 if it encounters a valid data-carrying response, 0 otherwise.
2526 */
2527static int process_pure_responses(struct adapter *adap, struct sge_qset *qs,
2528                                  struct rsp_desc *r)
2529{
2530        struct sge_rspq *q = &qs->rspq;
2531        unsigned int sleeping = 0;
2532
2533        do {
2534                u32 flags = ntohl(r->flags);
2535
2536                r++;
2537                if (unlikely(++q->cidx == q->size)) {
2538                        q->cidx = 0;
2539                        q->gen ^= 1;
2540                        r = q->desc;
2541                }
2542                prefetch(r);
2543
2544                if (flags & RSPD_CTRL_MASK) {
2545                        sleeping |= flags & RSPD_GTS_MASK;
2546                        handle_rsp_cntrl_info(qs, flags);
2547                }
2548
2549                q->pure_rsps++;
2550                if (++q->credits >= (q->size / 4)) {
2551                        refill_rspq(adap, q, q->credits);
2552                        q->credits = 0;
2553                }
2554                if (!is_new_response(r, q))
2555                        break;
2556                dma_rmb();
2557        } while (is_pure_response(r));
2558
2559        if (sleeping)
2560                check_ring_db(adap, qs, sleeping);
2561
2562        smp_mb();               /* commit Tx queue .processed updates */
2563        if (unlikely(qs->txq_stopped != 0))
2564                restart_tx(qs);
2565
2566        return is_new_response(r, q);
2567}
2568
2569/**
2570 *      handle_responses - decide what to do with new responses in NAPI mode
2571 *      @adap: the adapter
2572 *      @q: the response queue
2573 *
2574 *      This is used by the NAPI interrupt handlers to decide what to do with
2575 *      new SGE responses.  If there are no new responses it returns -1.  If
2576 *      there are new responses and they are pure (i.e., non-data carrying)
2577 *      it handles them straight in hard interrupt context as they are very
2578 *      cheap and don't deliver any packets.  Finally, if there are any data
2579 *      signaling responses it schedules the NAPI handler.  Returns 1 if it
2580 *      schedules NAPI, 0 if all new responses were pure.
2581 *
2582 *      The caller must ascertain NAPI is not already running.
2583 */
2584static inline int handle_responses(struct adapter *adap, struct sge_rspq *q)
2585{
2586        struct sge_qset *qs = rspq_to_qset(q);
2587        struct rsp_desc *r = &q->desc[q->cidx];
2588
2589        if (!is_new_response(r, q))
2590                return -1;
2591        dma_rmb();
2592        if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) {
2593                t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2594                             V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx));
2595                return 0;
2596        }
2597        napi_schedule(&qs->napi);
2598        return 1;
2599}
2600
2601/*
2602 * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case
2603 * (i.e., response queue serviced in hard interrupt).
2604 */
2605static irqreturn_t t3_sge_intr_msix(int irq, void *cookie)
2606{
2607        struct sge_qset *qs = cookie;
2608        struct adapter *adap = qs->adap;
2609        struct sge_rspq *q = &qs->rspq;
2610
2611        spin_lock(&q->lock);
2612        if (process_responses(adap, qs, -1) == 0)
2613                q->unhandled_irqs++;
2614        t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2615                     V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2616        spin_unlock(&q->lock);
2617        return IRQ_HANDLED;
2618}
2619
2620/*
2621 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
2622 * (i.e., response queue serviced by NAPI polling).
2623 */
2624static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie)
2625{
2626        struct sge_qset *qs = cookie;
2627        struct sge_rspq *q = &qs->rspq;
2628
2629        spin_lock(&q->lock);
2630
2631        if (handle_responses(qs->adap, q) < 0)
2632                q->unhandled_irqs++;
2633        spin_unlock(&q->lock);
2634        return IRQ_HANDLED;
2635}
2636
2637/*
2638 * The non-NAPI MSI interrupt handler.  This needs to handle data events from
2639 * SGE response queues as well as error and other async events as they all use
2640 * the same MSI vector.  We use one SGE response queue per port in this mode
2641 * and protect all response queues with queue 0's lock.
2642 */
2643static irqreturn_t t3_intr_msi(int irq, void *cookie)
2644{
2645        int new_packets = 0;
2646        struct adapter *adap = cookie;
2647        struct sge_rspq *q = &adap->sge.qs[0].rspq;
2648
2649        spin_lock(&q->lock);
2650
2651        if (process_responses(adap, &adap->sge.qs[0], -1)) {
2652                t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2653                             V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2654                new_packets = 1;
2655        }
2656
2657        if (adap->params.nports == 2 &&
2658            process_responses(adap, &adap->sge.qs[1], -1)) {
2659                struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2660
2661                t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) |
2662                             V_NEWTIMER(q1->next_holdoff) |
2663                             V_NEWINDEX(q1->cidx));
2664                new_packets = 1;
2665        }
2666
2667        if (!new_packets && t3_slow_intr_handler(adap) == 0)
2668                q->unhandled_irqs++;
2669
2670        spin_unlock(&q->lock);
2671        return IRQ_HANDLED;
2672}
2673
2674static int rspq_check_napi(struct sge_qset *qs)
2675{
2676        struct sge_rspq *q = &qs->rspq;
2677
2678        if (!napi_is_scheduled(&qs->napi) &&
2679            is_new_response(&q->desc[q->cidx], q)) {
2680                napi_schedule(&qs->napi);
2681                return 1;
2682        }
2683        return 0;
2684}
2685
2686/*
2687 * The MSI interrupt handler for the NAPI case (i.e., response queues serviced
2688 * by NAPI polling).  Handles data events from SGE response queues as well as
2689 * error and other async events as they all use the same MSI vector.  We use
2690 * one SGE response queue per port in this mode and protect all response
2691 * queues with queue 0's lock.
2692 */
2693static irqreturn_t t3_intr_msi_napi(int irq, void *cookie)
2694{
2695        int new_packets;
2696        struct adapter *adap = cookie;
2697        struct sge_rspq *q = &adap->sge.qs[0].rspq;
2698
2699        spin_lock(&q->lock);
2700
2701        new_packets = rspq_check_napi(&adap->sge.qs[0]);
2702        if (adap->params.nports == 2)
2703                new_packets += rspq_check_napi(&adap->sge.qs[1]);
2704        if (!new_packets && t3_slow_intr_handler(adap) == 0)
2705                q->unhandled_irqs++;
2706
2707        spin_unlock(&q->lock);
2708        return IRQ_HANDLED;
2709}
2710
2711/*
2712 * A helper function that processes responses and issues GTS.
2713 */
2714static inline int process_responses_gts(struct adapter *adap,
2715                                        struct sge_rspq *rq)
2716{
2717        int work;
2718
2719        work = process_responses(adap, rspq_to_qset(rq), -1);
2720        t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
2721                     V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
2722        return work;
2723}
2724
2725/*
2726 * The legacy INTx interrupt handler.  This needs to handle data events from
2727 * SGE response queues as well as error and other async events as they all use
2728 * the same interrupt pin.  We use one SGE response queue per port in this mode
2729 * and protect all response queues with queue 0's lock.
2730 */
2731static irqreturn_t t3_intr(int irq, void *cookie)
2732{
2733        int work_done, w0, w1;
2734        struct adapter *adap = cookie;
2735        struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2736        struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2737
2738        spin_lock(&q0->lock);
2739
2740        w0 = is_new_response(&q0->desc[q0->cidx], q0);
2741        w1 = adap->params.nports == 2 &&
2742            is_new_response(&q1->desc[q1->cidx], q1);
2743
2744        if (likely(w0 | w1)) {
2745                t3_write_reg(adap, A_PL_CLI, 0);
2746                t3_read_reg(adap, A_PL_CLI);    /* flush */
2747
2748                if (likely(w0))
2749                        process_responses_gts(adap, q0);
2750
2751                if (w1)
2752                        process_responses_gts(adap, q1);
2753
2754                work_done = w0 | w1;
2755        } else
2756                work_done = t3_slow_intr_handler(adap);
2757
2758        spin_unlock(&q0->lock);
2759        return IRQ_RETVAL(work_done != 0);
2760}
2761
2762/*
2763 * Interrupt handler for legacy INTx interrupts for T3B-based cards.
2764 * Handles data events from SGE response queues as well as error and other
2765 * async events as they all use the same interrupt pin.  We use one SGE
2766 * response queue per port in this mode and protect all response queues with
2767 * queue 0's lock.
2768 */
2769static irqreturn_t t3b_intr(int irq, void *cookie)
2770{
2771        u32 map;
2772        struct adapter *adap = cookie;
2773        struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2774
2775        t3_write_reg(adap, A_PL_CLI, 0);
2776        map = t3_read_reg(adap, A_SG_DATA_INTR);
2777
2778        if (unlikely(!map))     /* shared interrupt, most likely */
2779                return IRQ_NONE;
2780
2781        spin_lock(&q0->lock);
2782
2783        if (unlikely(map & F_ERRINTR))
2784                t3_slow_intr_handler(adap);
2785
2786        if (likely(map & 1))
2787                process_responses_gts(adap, q0);
2788
2789        if (map & 2)
2790                process_responses_gts(adap, &adap->sge.qs[1].rspq);
2791
2792        spin_unlock(&q0->lock);
2793        return IRQ_HANDLED;
2794}
2795
2796/*
2797 * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards.
2798 * Handles data events from SGE response queues as well as error and other
2799 * async events as they all use the same interrupt pin.  We use one SGE
2800 * response queue per port in this mode and protect all response queues with
2801 * queue 0's lock.
2802 */
2803static irqreturn_t t3b_intr_napi(int irq, void *cookie)
2804{
2805        u32 map;
2806        struct adapter *adap = cookie;
2807        struct sge_qset *qs0 = &adap->sge.qs[0];
2808        struct sge_rspq *q0 = &qs0->rspq;
2809
2810        t3_write_reg(adap, A_PL_CLI, 0);
2811        map = t3_read_reg(adap, A_SG_DATA_INTR);
2812
2813        if (unlikely(!map))     /* shared interrupt, most likely */
2814                return IRQ_NONE;
2815
2816        spin_lock(&q0->lock);
2817
2818        if (unlikely(map & F_ERRINTR))
2819                t3_slow_intr_handler(adap);
2820
2821        if (likely(map & 1))
2822                napi_schedule(&qs0->napi);
2823
2824        if (map & 2)
2825                napi_schedule(&adap->sge.qs[1].napi);
2826
2827        spin_unlock(&q0->lock);
2828        return IRQ_HANDLED;
2829}
2830
2831/**
2832 *      t3_intr_handler - select the top-level interrupt handler
2833 *      @adap: the adapter
2834 *      @polling: whether using NAPI to service response queues
2835 *
2836 *      Selects the top-level interrupt handler based on the type of interrupts
2837 *      (MSI-X, MSI, or legacy) and whether NAPI will be used to service the
2838 *      response queues.
2839 */
2840irq_handler_t t3_intr_handler(struct adapter *adap, int polling)
2841{
2842        if (adap->flags & USING_MSIX)
2843                return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix;
2844        if (adap->flags & USING_MSI)
2845                return polling ? t3_intr_msi_napi : t3_intr_msi;
2846        if (adap->params.rev > 0)
2847                return polling ? t3b_intr_napi : t3b_intr;
2848        return t3_intr;
2849}
2850
2851#define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
2852                    F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
2853                    V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
2854                    F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
2855                    F_HIRCQPARITYERROR)
2856#define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR)
2857#define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \
2858                      F_RSPQDISABLED)
2859
2860/**
2861 *      t3_sge_err_intr_handler - SGE async event interrupt handler
2862 *      @adapter: the adapter
2863 *
2864 *      Interrupt handler for SGE asynchronous (non-data) events.
2865 */
2866void t3_sge_err_intr_handler(struct adapter *adapter)
2867{
2868        unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE) &
2869                                 ~F_FLEMPTY;
2870
2871        if (status & SGE_PARERR)
2872                CH_ALERT(adapter, "SGE parity error (0x%x)\n",
2873                         status & SGE_PARERR);
2874        if (status & SGE_FRAMINGERR)
2875                CH_ALERT(adapter, "SGE framing error (0x%x)\n",
2876                         status & SGE_FRAMINGERR);
2877
2878        if (status & F_RSPQCREDITOVERFOW)
2879                CH_ALERT(adapter, "SGE response queue credit overflow\n");
2880
2881        if (status & F_RSPQDISABLED) {
2882                v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);
2883
2884                CH_ALERT(adapter,
2885                         "packet delivered to disabled response queue "
2886                         "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff);
2887        }
2888
2889        if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR))
2890                queue_work(cxgb3_wq, &adapter->db_drop_task);
2891
2892        if (status & (F_HIPRIORITYDBFULL | F_LOPRIORITYDBFULL))
2893                queue_work(cxgb3_wq, &adapter->db_full_task);
2894
2895        if (status & (F_HIPRIORITYDBEMPTY | F_LOPRIORITYDBEMPTY))
2896                queue_work(cxgb3_wq, &adapter->db_empty_task);
2897
2898        t3_write_reg(adapter, A_SG_INT_CAUSE, status);
2899        if (status &  SGE_FATALERR)
2900                t3_fatal_err(adapter);
2901}
2902
2903/**
2904 *      sge_timer_tx - perform periodic maintenance of an SGE qset
2905 *      @data: the SGE queue set to maintain
2906 *
2907 *      Runs periodically from a timer to perform maintenance of an SGE queue
2908 *      set.  It performs two tasks:
2909 *
2910 *      Cleans up any completed Tx descriptors that may still be pending.
2911 *      Normal descriptor cleanup happens when new packets are added to a Tx
2912 *      queue so this timer is relatively infrequent and does any cleanup only
2913 *      if the Tx queue has not seen any new packets in a while.  We make a
2914 *      best effort attempt to reclaim descriptors, in that we don't wait
2915 *      around if we cannot get a queue's lock (which most likely is because
2916 *      someone else is queueing new packets and so will also handle the clean
2917 *      up).  Since control queues use immediate data exclusively we don't
2918 *      bother cleaning them up here.
2919 *
2920 */
2921static void sge_timer_tx(struct timer_list *t)
2922{
2923        struct sge_qset *qs = from_timer(qs, t, tx_reclaim_timer);
2924        struct port_info *pi = netdev_priv(qs->netdev);
2925        struct adapter *adap = pi->adapter;
2926        unsigned int tbd[SGE_TXQ_PER_SET] = {0, 0};
2927        unsigned long next_period;
2928
2929        if (__netif_tx_trylock(qs->tx_q)) {
2930                tbd[TXQ_ETH] = reclaim_completed_tx(adap, &qs->txq[TXQ_ETH],
2931                                                     TX_RECLAIM_TIMER_CHUNK);
2932                __netif_tx_unlock(qs->tx_q);
2933        }
2934
2935        if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) {
2936                tbd[TXQ_OFLD] = reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD],
2937                                                     TX_RECLAIM_TIMER_CHUNK);
2938                spin_unlock(&qs->txq[TXQ_OFLD].lock);
2939        }
2940
2941        next_period = TX_RECLAIM_PERIOD >>
2942                      (max(tbd[TXQ_ETH], tbd[TXQ_OFLD]) /
2943                      TX_RECLAIM_TIMER_CHUNK);
2944        mod_timer(&qs->tx_reclaim_timer, jiffies + next_period);
2945}
2946
2947/**
2948 *      sge_timer_rx - perform periodic maintenance of an SGE qset
2949 *      @data: the SGE queue set to maintain
2950 *
2951 *      a) Replenishes Rx queues that have run out due to memory shortage.
2952 *      Normally new Rx buffers are added when existing ones are consumed but
2953 *      when out of memory a queue can become empty.  We try to add only a few
2954 *      buffers here, the queue will be replenished fully as these new buffers
2955 *      are used up if memory shortage has subsided.
2956 *
2957 *      b) Return coalesced response queue credits in case a response queue is
2958 *      starved.
2959 *
2960 */
2961static void sge_timer_rx(struct timer_list *t)
2962{
2963        spinlock_t *lock;
2964        struct sge_qset *qs = from_timer(qs, t, rx_reclaim_timer);
2965        struct port_info *pi = netdev_priv(qs->netdev);
2966        struct adapter *adap = pi->adapter;
2967        u32 status;
2968
2969        lock = adap->params.rev > 0 ?
2970               &qs->rspq.lock : &adap->sge.qs[0].rspq.lock;
2971
2972        if (!spin_trylock_irq(lock))
2973                goto out;
2974
2975        if (napi_is_scheduled(&qs->napi))
2976                goto unlock;
2977
2978        if (adap->params.rev < 4) {
2979                status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS);
2980
2981                if (status & (1 << qs->rspq.cntxt_id)) {
2982                        qs->rspq.starved++;
2983                        if (qs->rspq.credits) {
2984                                qs->rspq.credits--;
2985                                refill_rspq(adap, &qs->rspq, 1);
2986                                qs->rspq.restarted++;
2987                                t3_write_reg(adap, A_SG_RSPQ_FL_STATUS,
2988                                             1 << qs->rspq.cntxt_id);
2989                        }
2990                }
2991        }
2992
2993        if (qs->fl[0].credits < qs->fl[0].size)
2994                __refill_fl(adap, &qs->fl[0]);
2995        if (qs->fl[1].credits < qs->fl[1].size)
2996                __refill_fl(adap, &qs->fl[1]);
2997
2998unlock:
2999        spin_unlock_irq(lock);
3000out:
3001        mod_timer(&qs->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
3002}
3003
3004/**
3005 *      t3_update_qset_coalesce - update coalescing settings for a queue set
3006 *      @qs: the SGE queue set
3007 *      @p: new queue set parameters
3008 *
3009 *      Update the coalescing settings for an SGE queue set.  Nothing is done
3010 *      if the queue set is not initialized yet.
3011 */
3012void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
3013{
3014        qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */
3015        qs->rspq.polling = p->polling;
3016        qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll;
3017}
3018
3019/**
3020 *      t3_sge_alloc_qset - initialize an SGE queue set
3021 *      @adapter: the adapter
3022 *      @id: the queue set id
3023 *      @nports: how many Ethernet ports will be using this queue set
3024 *      @irq_vec_idx: the IRQ vector index for response queue interrupts
3025 *      @p: configuration parameters for this queue set
3026 *      @ntxq: number of Tx queues for the queue set
3027 *      @netdev: net device associated with this queue set
3028 *      @netdevq: net device TX queue associated with this queue set
3029 *
3030 *      Allocate resources and initialize an SGE queue set.  A queue set
3031 *      comprises a response queue, two Rx free-buffer queues, and up to 3
3032 *      Tx queues.  The Tx queues are assigned roles in the order Ethernet
3033 *      queue, offload queue, and control queue.
3034 */
3035int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports,
3036                      int irq_vec_idx, const struct qset_params *p,
3037                      int ntxq, struct net_device *dev,
3038                      struct netdev_queue *netdevq)
3039{
3040        int i, avail, ret = -ENOMEM;
3041        struct sge_qset *q = &adapter->sge.qs[id];
3042
3043        init_qset_cntxt(q, id);
3044        timer_setup(&q->tx_reclaim_timer, sge_timer_tx, 0);
3045        timer_setup(&q->rx_reclaim_timer, sge_timer_rx, 0);
3046
3047        q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size,
3048                                   sizeof(struct rx_desc),
3049                                   sizeof(struct rx_sw_desc),
3050                                   &q->fl[0].phys_addr, &q->fl[0].sdesc);
3051        if (!q->fl[0].desc)
3052                goto err;
3053
3054        q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size,
3055                                   sizeof(struct rx_desc),
3056                                   sizeof(struct rx_sw_desc),
3057                                   &q->fl[1].phys_addr, &q->fl[1].sdesc);
3058        if (!q->fl[1].desc)
3059                goto err;
3060
3061        q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size,
3062                                  sizeof(struct rsp_desc), 0,
3063                                  &q->rspq.phys_addr, NULL);
3064        if (!q->rspq.desc)
3065                goto err;
3066
3067        for (i = 0; i < ntxq; ++i) {
3068                /*
3069                 * The control queue always uses immediate data so does not
3070                 * need to keep track of any sk_buffs.
3071                 */
3072                size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);
3073
3074                q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i],
3075                                            sizeof(struct tx_desc), sz,
3076                                            &q->txq[i].phys_addr,
3077                                            &q->txq[i].sdesc);
3078                if (!q->txq[i].desc)
3079                        goto err;
3080
3081                q->txq[i].gen = 1;
3082                q->txq[i].size = p->txq_size[i];
3083                spin_lock_init(&q->txq[i].lock);
3084                skb_queue_head_init(&q->txq[i].sendq);
3085        }
3086
3087        tasklet_init(&q->txq[TXQ_OFLD].qresume_tsk, restart_offloadq,
3088                     (unsigned long)q);
3089        tasklet_init(&q->txq[TXQ_CTRL].qresume_tsk, restart_ctrlq,
3090                     (unsigned long)q);
3091
3092        q->fl[0].gen = q->fl[1].gen = 1;
3093        q->fl[0].size = p->fl_size;
3094        q->fl[1].size = p->jumbo_size;
3095
3096        q->rspq.gen = 1;
3097        q->rspq.size = p->rspq_size;
3098        spin_lock_init(&q->rspq.lock);
3099        skb_queue_head_init(&q->rspq.rx_queue);
3100
3101        q->txq[TXQ_ETH].stop_thres = nports *
3102            flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3);
3103
3104#if FL0_PG_CHUNK_SIZE > 0
3105        q->fl[0].buf_size = FL0_PG_CHUNK_SIZE;
3106#else
3107        q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data);
3108#endif
3109#if FL1_PG_CHUNK_SIZE > 0
3110        q->fl[1].buf_size = FL1_PG_CHUNK_SIZE;
3111#else
3112        q->fl[1].buf_size = is_offload(adapter) ?
3113                (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
3114                MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt);
3115#endif
3116
3117        q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0;
3118        q->fl[1].use_pages = FL1_PG_CHUNK_SIZE > 0;
3119        q->fl[0].order = FL0_PG_ORDER;
3120        q->fl[1].order = FL1_PG_ORDER;
3121        q->fl[0].alloc_size = FL0_PG_ALLOC_SIZE;
3122        q->fl[1].alloc_size = FL1_PG_ALLOC_SIZE;
3123
3124        spin_lock_irq(&adapter->sge.reg_lock);
3125
3126        /* FL threshold comparison uses < */
3127        ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx,
3128                                   q->rspq.phys_addr, q->rspq.size,
3129                                   q->fl[0].buf_size - SGE_PG_RSVD, 1, 0);
3130        if (ret)
3131                goto err_unlock;
3132
3133        for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
3134                ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0,
3135                                          q->fl[i].phys_addr, q->fl[i].size,
3136                                          q->fl[i].buf_size - SGE_PG_RSVD,
3137                                          p->cong_thres, 1, 0);
3138                if (ret)
3139                        goto err_unlock;
3140        }
3141
3142        ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
3143                                 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
3144                                 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
3145                                 1, 0);
3146        if (ret)
3147                goto err_unlock;
3148
3149        if (ntxq > 1) {
3150                ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id,
3151                                         USE_GTS, SGE_CNTXT_OFLD, id,
3152                                         q->txq[TXQ_OFLD].phys_addr,
3153                                         q->txq[TXQ_OFLD].size, 0, 1, 0);
3154                if (ret)
3155                        goto err_unlock;
3156        }
3157
3158        if (ntxq > 2) {
3159                ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0,
3160                                         SGE_CNTXT_CTRL, id,
3161                                         q->txq[TXQ_CTRL].phys_addr,
3162                                         q->txq[TXQ_CTRL].size,
3163                                         q->txq[TXQ_CTRL].token, 1, 0);
3164                if (ret)
3165                        goto err_unlock;
3166        }
3167
3168        spin_unlock_irq(&adapter->sge.reg_lock);
3169
3170        q->adap = adapter;
3171        q->netdev = dev;
3172        q->tx_q = netdevq;
3173        t3_update_qset_coalesce(q, p);
3174
3175        avail = refill_fl(adapter, &q->fl[0], q->fl[0].size,
3176                          GFP_KERNEL | __GFP_COMP);
3177        if (!avail) {
3178                CH_ALERT(adapter, "free list queue 0 initialization failed\n");
3179                goto err;
3180        }
3181        if (avail < q->fl[0].size)
3182                CH_WARN(adapter, "free list queue 0 enabled with %d credits\n",
3183                        avail);
3184
3185        avail = refill_fl(adapter, &q->fl[1], q->fl[1].size,
3186                          GFP_KERNEL | __GFP_COMP);
3187        if (avail < q->fl[1].size)
3188                CH_WARN(adapter, "free list queue 1 enabled with %d credits\n",
3189                        avail);
3190        refill_rspq(adapter, &q->rspq, q->rspq.size - 1);
3191
3192        t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
3193                     V_NEWTIMER(q->rspq.holdoff_tmr));
3194
3195        return 0;
3196
3197err_unlock:
3198        spin_unlock_irq(&adapter->sge.reg_lock);
3199err:
3200        t3_free_qset(adapter, q);
3201        return ret;
3202}
3203
3204/**
3205 *      t3_start_sge_timers - start SGE timer call backs
3206 *      @adap: the adapter
3207 *
3208 *      Starts each SGE queue set's timer call back
3209 */
3210void t3_start_sge_timers(struct adapter *adap)
3211{
3212        int i;
3213
3214        for (i = 0; i < SGE_QSETS; ++i) {
3215                struct sge_qset *q = &adap->sge.qs[i];
3216
3217                if (q->tx_reclaim_timer.function)
3218                        mod_timer(&q->tx_reclaim_timer,
3219                                  jiffies + TX_RECLAIM_PERIOD);
3220
3221                if (q->rx_reclaim_timer.function)
3222                        mod_timer(&q->rx_reclaim_timer,
3223                                  jiffies + RX_RECLAIM_PERIOD);
3224        }
3225}
3226
3227/**
3228 *      t3_stop_sge_timers - stop SGE timer call backs
3229 *      @adap: the adapter
3230 *
3231 *      Stops each SGE queue set's timer call back
3232 */
3233void t3_stop_sge_timers(struct adapter *adap)
3234{
3235        int i;
3236
3237        for (i = 0; i < SGE_QSETS; ++i) {
3238                struct sge_qset *q = &adap->sge.qs[i];
3239
3240                if (q->tx_reclaim_timer.function)
3241                        del_timer_sync(&q->tx_reclaim_timer);
3242                if (q->rx_reclaim_timer.function)
3243                        del_timer_sync(&q->rx_reclaim_timer);
3244        }
3245}
3246
3247/**
3248 *      t3_free_sge_resources - free SGE resources
3249 *      @adap: the adapter
3250 *
3251 *      Frees resources used by the SGE queue sets.
3252 */
3253void t3_free_sge_resources(struct adapter *adap)
3254{
3255        int i;
3256
3257        for (i = 0; i < SGE_QSETS; ++i)
3258                t3_free_qset(adap, &adap->sge.qs[i]);
3259}
3260
3261/**
3262 *      t3_sge_start - enable SGE
3263 *      @adap: the adapter
3264 *
3265 *      Enables the SGE for DMAs.  This is the last step in starting packet
3266 *      transfers.
3267 */
3268void t3_sge_start(struct adapter *adap)
3269{
3270        t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
3271}
3272
3273/**
3274 *      t3_sge_stop - disable SGE operation
3275 *      @adap: the adapter
3276 *
3277 *      Disables the DMA engine.  This can be called in emeregencies (e.g.,
3278 *      from error interrupts) or from normal process context.  In the latter
3279 *      case it also disables any pending queue restart tasklets.  Note that
3280 *      if it is called in interrupt context it cannot disable the restart
3281 *      tasklets as it cannot wait, however the tasklets will have no effect
3282 *      since the doorbells are disabled and the driver will call this again
3283 *      later from process context, at which time the tasklets will be stopped
3284 *      if they are still running.
3285 */
3286void t3_sge_stop(struct adapter *adap)
3287{
3288        t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0);
3289        if (!in_interrupt()) {
3290                int i;
3291
3292                for (i = 0; i < SGE_QSETS; ++i) {
3293                        struct sge_qset *qs = &adap->sge.qs[i];
3294
3295                        tasklet_kill(&qs->txq[TXQ_OFLD].qresume_tsk);
3296                        tasklet_kill(&qs->txq[TXQ_CTRL].qresume_tsk);
3297                }
3298        }
3299}
3300
3301/**
3302 *      t3_sge_init - initialize SGE
3303 *      @adap: the adapter
3304 *      @p: the SGE parameters
3305 *
3306 *      Performs SGE initialization needed every time after a chip reset.
3307 *      We do not initialize any of the queue sets here, instead the driver
3308 *      top-level must request those individually.  We also do not enable DMA
3309 *      here, that should be done after the queues have been set up.
3310 */
3311void t3_sge_init(struct adapter *adap, struct sge_params *p)
3312{
3313        unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12);
3314
3315        ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
3316            F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN |
3317            V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
3318            V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
3319#if SGE_NUM_GENBITS == 1
3320        ctrl |= F_EGRGENCTRL;
3321#endif
3322        if (adap->params.rev > 0) {
3323                if (!(adap->flags & (USING_MSIX | USING_MSI)))
3324                        ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
3325        }
3326        t3_write_reg(adap, A_SG_CONTROL, ctrl);
3327        t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
3328                     V_LORCQDRBTHRSH(512));
3329        t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
3330        t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
3331                     V_TIMEOUT(200 * core_ticks_per_usec(adap)));
3332        t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH,
3333                     adap->params.rev < T3_REV_C ? 1000 : 500);
3334        t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
3335        t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
3336        t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
3337        t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
3338        t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
3339}
3340
3341/**
3342 *      t3_sge_prep - one-time SGE initialization
3343 *      @adap: the associated adapter
3344 *      @p: SGE parameters
3345 *
3346 *      Performs one-time initialization of SGE SW state.  Includes determining
3347 *      defaults for the assorted SGE parameters, which admins can change until
3348 *      they are used to initialize the SGE.
3349 */
3350void t3_sge_prep(struct adapter *adap, struct sge_params *p)
3351{
3352        int i;
3353
3354        p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) -
3355            SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3356
3357        for (i = 0; i < SGE_QSETS; ++i) {
3358                struct qset_params *q = p->qset + i;
3359
3360                q->polling = adap->params.rev > 0;
3361                q->coalesce_usecs = 5;
3362                q->rspq_size = 1024;
3363                q->fl_size = 1024;
3364                q->jumbo_size = 512;
3365                q->txq_size[TXQ_ETH] = 1024;
3366                q->txq_size[TXQ_OFLD] = 1024;
3367                q->txq_size[TXQ_CTRL] = 256;
3368                q->cong_thres = 0;
3369        }
3370
3371        spin_lock_init(&adap->sge.reg_lock);
3372}
3373