linux/drivers/net/ethernet/chelsio/cxgb4/cxgb4_main.c
<<
>>
Prefs
   1/*
   2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
   3 *
   4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
   5 *
   6 * This software is available to you under a choice of one of two
   7 * licenses.  You may choose to be licensed under the terms of the GNU
   8 * General Public License (GPL) Version 2, available from the file
   9 * COPYING in the main directory of this source tree, or the
  10 * OpenIB.org BSD license below:
  11 *
  12 *     Redistribution and use in source and binary forms, with or
  13 *     without modification, are permitted provided that the following
  14 *     conditions are met:
  15 *
  16 *      - Redistributions of source code must retain the above
  17 *        copyright notice, this list of conditions and the following
  18 *        disclaimer.
  19 *
  20 *      - Redistributions in binary form must reproduce the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer in the documentation and/or other materials
  23 *        provided with the distribution.
  24 *
  25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  32 * SOFTWARE.
  33 */
  34
  35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  36
  37#include <linux/bitmap.h>
  38#include <linux/crc32.h>
  39#include <linux/ctype.h>
  40#include <linux/debugfs.h>
  41#include <linux/err.h>
  42#include <linux/etherdevice.h>
  43#include <linux/firmware.h>
  44#include <linux/if.h>
  45#include <linux/if_vlan.h>
  46#include <linux/init.h>
  47#include <linux/log2.h>
  48#include <linux/mdio.h>
  49#include <linux/module.h>
  50#include <linux/moduleparam.h>
  51#include <linux/mutex.h>
  52#include <linux/netdevice.h>
  53#include <linux/pci.h>
  54#include <linux/aer.h>
  55#include <linux/rtnetlink.h>
  56#include <linux/sched.h>
  57#include <linux/seq_file.h>
  58#include <linux/sockios.h>
  59#include <linux/vmalloc.h>
  60#include <linux/workqueue.h>
  61#include <net/neighbour.h>
  62#include <net/netevent.h>
  63#include <net/addrconf.h>
  64#include <net/bonding.h>
  65#include <linux/uaccess.h>
  66#include <linux/crash_dump.h>
  67#include <net/udp_tunnel.h>
  68#include <net/xfrm.h>
  69#if defined(CONFIG_CHELSIO_TLS_DEVICE)
  70#include <net/tls.h>
  71#endif
  72
  73#include "cxgb4.h"
  74#include "cxgb4_filter.h"
  75#include "t4_regs.h"
  76#include "t4_values.h"
  77#include "t4_msg.h"
  78#include "t4fw_api.h"
  79#include "t4fw_version.h"
  80#include "cxgb4_dcb.h"
  81#include "srq.h"
  82#include "cxgb4_debugfs.h"
  83#include "clip_tbl.h"
  84#include "l2t.h"
  85#include "smt.h"
  86#include "sched.h"
  87#include "cxgb4_tc_u32.h"
  88#include "cxgb4_tc_flower.h"
  89#include "cxgb4_tc_mqprio.h"
  90#include "cxgb4_tc_matchall.h"
  91#include "cxgb4_ptp.h"
  92#include "cxgb4_cudbg.h"
  93
  94char cxgb4_driver_name[] = KBUILD_MODNAME;
  95
  96#define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
  97
  98#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
  99                         NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
 100                         NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
 101
 102/* Macros needed to support the PCI Device ID Table ...
 103 */
 104#define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
 105        static const struct pci_device_id cxgb4_pci_tbl[] = {
 106#define CXGB4_UNIFIED_PF 0x4
 107
 108#define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF
 109
 110/* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
 111 * called for both.
 112 */
 113#define CH_PCI_DEVICE_ID_FUNCTION2 0x0
 114
 115#define CH_PCI_ID_TABLE_ENTRY(devid) \
 116                {PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF}
 117
 118#define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
 119                { 0, } \
 120        }
 121
 122#include "t4_pci_id_tbl.h"
 123
 124#define FW4_FNAME "cxgb4/t4fw.bin"
 125#define FW5_FNAME "cxgb4/t5fw.bin"
 126#define FW6_FNAME "cxgb4/t6fw.bin"
 127#define FW4_CFNAME "cxgb4/t4-config.txt"
 128#define FW5_CFNAME "cxgb4/t5-config.txt"
 129#define FW6_CFNAME "cxgb4/t6-config.txt"
 130#define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
 131#define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
 132#define PHY_AQ1202_DEVICEID 0x4409
 133#define PHY_BCM84834_DEVICEID 0x4486
 134
 135MODULE_DESCRIPTION(DRV_DESC);
 136MODULE_AUTHOR("Chelsio Communications");
 137MODULE_LICENSE("Dual BSD/GPL");
 138MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
 139MODULE_FIRMWARE(FW4_FNAME);
 140MODULE_FIRMWARE(FW5_FNAME);
 141MODULE_FIRMWARE(FW6_FNAME);
 142
 143/*
 144 * The driver uses the best interrupt scheme available on a platform in the
 145 * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
 146 * of these schemes the driver may consider as follows:
 147 *
 148 * msi = 2: choose from among all three options
 149 * msi = 1: only consider MSI and INTx interrupts
 150 * msi = 0: force INTx interrupts
 151 */
 152static int msi = 2;
 153
 154module_param(msi, int, 0644);
 155MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
 156
 157/*
 158 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
 159 * offset by 2 bytes in order to have the IP headers line up on 4-byte
 160 * boundaries.  This is a requirement for many architectures which will throw
 161 * a machine check fault if an attempt is made to access one of the 4-byte IP
 162 * header fields on a non-4-byte boundary.  And it's a major performance issue
 163 * even on some architectures which allow it like some implementations of the
 164 * x86 ISA.  However, some architectures don't mind this and for some very
 165 * edge-case performance sensitive applications (like forwarding large volumes
 166 * of small packets), setting this DMA offset to 0 will decrease the number of
 167 * PCI-E Bus transfers enough to measurably affect performance.
 168 */
 169static int rx_dma_offset = 2;
 170
 171/* TX Queue select used to determine what algorithm to use for selecting TX
 172 * queue. Select between the kernel provided function (select_queue=0) or user
 173 * cxgb_select_queue function (select_queue=1)
 174 *
 175 * Default: select_queue=0
 176 */
 177static int select_queue;
 178module_param(select_queue, int, 0644);
 179MODULE_PARM_DESC(select_queue,
 180                 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
 181
 182static struct dentry *cxgb4_debugfs_root;
 183
 184LIST_HEAD(adapter_list);
 185DEFINE_MUTEX(uld_mutex);
 186LIST_HEAD(uld_list);
 187
 188static int cfg_queues(struct adapter *adap);
 189
 190static void link_report(struct net_device *dev)
 191{
 192        if (!netif_carrier_ok(dev))
 193                netdev_info(dev, "link down\n");
 194        else {
 195                static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
 196
 197                const char *s;
 198                const struct port_info *p = netdev_priv(dev);
 199
 200                switch (p->link_cfg.speed) {
 201                case 100:
 202                        s = "100Mbps";
 203                        break;
 204                case 1000:
 205                        s = "1Gbps";
 206                        break;
 207                case 10000:
 208                        s = "10Gbps";
 209                        break;
 210                case 25000:
 211                        s = "25Gbps";
 212                        break;
 213                case 40000:
 214                        s = "40Gbps";
 215                        break;
 216                case 50000:
 217                        s = "50Gbps";
 218                        break;
 219                case 100000:
 220                        s = "100Gbps";
 221                        break;
 222                default:
 223                        pr_info("%s: unsupported speed: %d\n",
 224                                dev->name, p->link_cfg.speed);
 225                        return;
 226                }
 227
 228                netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
 229                            fc[p->link_cfg.fc]);
 230        }
 231}
 232
 233#ifdef CONFIG_CHELSIO_T4_DCB
 234/* Set up/tear down Data Center Bridging Priority mapping for a net device. */
 235static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
 236{
 237        struct port_info *pi = netdev_priv(dev);
 238        struct adapter *adap = pi->adapter;
 239        struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
 240        int i;
 241
 242        /* We use a simple mapping of Port TX Queue Index to DCB
 243         * Priority when we're enabling DCB.
 244         */
 245        for (i = 0; i < pi->nqsets; i++, txq++) {
 246                u32 name, value;
 247                int err;
 248
 249                name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
 250                        FW_PARAMS_PARAM_X_V(
 251                                FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
 252                        FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
 253                value = enable ? i : 0xffffffff;
 254
 255                /* Since we can be called while atomic (from "interrupt
 256                 * level") we need to issue the Set Parameters Commannd
 257                 * without sleeping (timeout < 0).
 258                 */
 259                err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
 260                                            &name, &value,
 261                                            -FW_CMD_MAX_TIMEOUT);
 262
 263                if (err)
 264                        dev_err(adap->pdev_dev,
 265                                "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
 266                                enable ? "set" : "unset", pi->port_id, i, -err);
 267                else
 268                        txq->dcb_prio = enable ? value : 0;
 269        }
 270}
 271
 272int cxgb4_dcb_enabled(const struct net_device *dev)
 273{
 274        struct port_info *pi = netdev_priv(dev);
 275
 276        if (!pi->dcb.enabled)
 277                return 0;
 278
 279        return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
 280                (pi->dcb.state == CXGB4_DCB_STATE_HOST));
 281}
 282#endif /* CONFIG_CHELSIO_T4_DCB */
 283
 284void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
 285{
 286        struct net_device *dev = adapter->port[port_id];
 287
 288        /* Skip changes from disabled ports. */
 289        if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
 290                if (link_stat)
 291                        netif_carrier_on(dev);
 292                else {
 293#ifdef CONFIG_CHELSIO_T4_DCB
 294                        if (cxgb4_dcb_enabled(dev)) {
 295                                cxgb4_dcb_reset(dev);
 296                                dcb_tx_queue_prio_enable(dev, false);
 297                        }
 298#endif /* CONFIG_CHELSIO_T4_DCB */
 299                        netif_carrier_off(dev);
 300                }
 301
 302                link_report(dev);
 303        }
 304}
 305
 306void t4_os_portmod_changed(struct adapter *adap, int port_id)
 307{
 308        static const char *mod_str[] = {
 309                NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
 310        };
 311
 312        struct net_device *dev = adap->port[port_id];
 313        struct port_info *pi = netdev_priv(dev);
 314
 315        if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
 316                netdev_info(dev, "port module unplugged\n");
 317        else if (pi->mod_type < ARRAY_SIZE(mod_str))
 318                netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
 319        else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
 320                netdev_info(dev, "%s: unsupported port module inserted\n",
 321                            dev->name);
 322        else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
 323                netdev_info(dev, "%s: unknown port module inserted\n",
 324                            dev->name);
 325        else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
 326                netdev_info(dev, "%s: transceiver module error\n", dev->name);
 327        else
 328                netdev_info(dev, "%s: unknown module type %d inserted\n",
 329                            dev->name, pi->mod_type);
 330
 331        /* If the interface is running, then we'll need any "sticky" Link
 332         * Parameters redone with a new Transceiver Module.
 333         */
 334        pi->link_cfg.redo_l1cfg = netif_running(dev);
 335}
 336
 337int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
 338module_param(dbfifo_int_thresh, int, 0644);
 339MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
 340
 341/*
 342 * usecs to sleep while draining the dbfifo
 343 */
 344static int dbfifo_drain_delay = 1000;
 345module_param(dbfifo_drain_delay, int, 0644);
 346MODULE_PARM_DESC(dbfifo_drain_delay,
 347                 "usecs to sleep while draining the dbfifo");
 348
 349static inline int cxgb4_set_addr_hash(struct port_info *pi)
 350{
 351        struct adapter *adap = pi->adapter;
 352        u64 vec = 0;
 353        bool ucast = false;
 354        struct hash_mac_addr *entry;
 355
 356        /* Calculate the hash vector for the updated list and program it */
 357        list_for_each_entry(entry, &adap->mac_hlist, list) {
 358                ucast |= is_unicast_ether_addr(entry->addr);
 359                vec |= (1ULL << hash_mac_addr(entry->addr));
 360        }
 361        return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
 362                                vec, false);
 363}
 364
 365static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
 366{
 367        struct port_info *pi = netdev_priv(netdev);
 368        struct adapter *adap = pi->adapter;
 369        int ret;
 370        u64 mhash = 0;
 371        u64 uhash = 0;
 372        /* idx stores the index of allocated filters,
 373         * its size should be modified based on the number of
 374         * MAC addresses that we allocate filters for
 375         */
 376
 377        u16 idx[1] = {};
 378        bool free = false;
 379        bool ucast = is_unicast_ether_addr(mac_addr);
 380        const u8 *maclist[1] = {mac_addr};
 381        struct hash_mac_addr *new_entry;
 382
 383        ret = cxgb4_alloc_mac_filt(adap, pi->viid, free, 1, maclist,
 384                                   idx, ucast ? &uhash : &mhash, false);
 385        if (ret < 0)
 386                goto out;
 387        /* if hash != 0, then add the addr to hash addr list
 388         * so on the end we will calculate the hash for the
 389         * list and program it
 390         */
 391        if (uhash || mhash) {
 392                new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
 393                if (!new_entry)
 394                        return -ENOMEM;
 395                ether_addr_copy(new_entry->addr, mac_addr);
 396                list_add_tail(&new_entry->list, &adap->mac_hlist);
 397                ret = cxgb4_set_addr_hash(pi);
 398        }
 399out:
 400        return ret < 0 ? ret : 0;
 401}
 402
 403static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
 404{
 405        struct port_info *pi = netdev_priv(netdev);
 406        struct adapter *adap = pi->adapter;
 407        int ret;
 408        const u8 *maclist[1] = {mac_addr};
 409        struct hash_mac_addr *entry, *tmp;
 410
 411        /* If the MAC address to be removed is in the hash addr
 412         * list, delete it from the list and update hash vector
 413         */
 414        list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
 415                if (ether_addr_equal(entry->addr, mac_addr)) {
 416                        list_del(&entry->list);
 417                        kfree(entry);
 418                        return cxgb4_set_addr_hash(pi);
 419                }
 420        }
 421
 422        ret = cxgb4_free_mac_filt(adap, pi->viid, 1, maclist, false);
 423        return ret < 0 ? -EINVAL : 0;
 424}
 425
 426/*
 427 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
 428 * If @mtu is -1 it is left unchanged.
 429 */
 430static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
 431{
 432        struct port_info *pi = netdev_priv(dev);
 433        struct adapter *adapter = pi->adapter;
 434
 435        __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
 436        __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
 437
 438        return t4_set_rxmode(adapter, adapter->mbox, pi->viid, pi->viid_mirror,
 439                             mtu, (dev->flags & IFF_PROMISC) ? 1 : 0,
 440                             (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
 441                             sleep_ok);
 442}
 443
 444/**
 445 *      cxgb4_change_mac - Update match filter for a MAC address.
 446 *      @pi: the port_info
 447 *      @viid: the VI id
 448 *      @tcam_idx: TCAM index of existing filter for old value of MAC address,
 449 *                 or -1
 450 *      @addr: the new MAC address value
 451 *      @persist: whether a new MAC allocation should be persistent
 452 *      @smt_idx: the destination to store the new SMT index.
 453 *
 454 *      Modifies an MPS filter and sets it to the new MAC address if
 455 *      @tcam_idx >= 0, or adds the MAC address to a new filter if
 456 *      @tcam_idx < 0. In the latter case the address is added persistently
 457 *      if @persist is %true.
 458 *      Addresses are programmed to hash region, if tcam runs out of entries.
 459 *
 460 */
 461int cxgb4_change_mac(struct port_info *pi, unsigned int viid,
 462                     int *tcam_idx, const u8 *addr, bool persist,
 463                     u8 *smt_idx)
 464{
 465        struct adapter *adapter = pi->adapter;
 466        struct hash_mac_addr *entry, *new_entry;
 467        int ret;
 468
 469        ret = t4_change_mac(adapter, adapter->mbox, viid,
 470                            *tcam_idx, addr, persist, smt_idx);
 471        /* We ran out of TCAM entries. try programming hash region. */
 472        if (ret == -ENOMEM) {
 473                /* If the MAC address to be updated is in the hash addr
 474                 * list, update it from the list
 475                 */
 476                list_for_each_entry(entry, &adapter->mac_hlist, list) {
 477                        if (entry->iface_mac) {
 478                                ether_addr_copy(entry->addr, addr);
 479                                goto set_hash;
 480                        }
 481                }
 482                new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL);
 483                if (!new_entry)
 484                        return -ENOMEM;
 485                ether_addr_copy(new_entry->addr, addr);
 486                new_entry->iface_mac = true;
 487                list_add_tail(&new_entry->list, &adapter->mac_hlist);
 488set_hash:
 489                ret = cxgb4_set_addr_hash(pi);
 490        } else if (ret >= 0) {
 491                *tcam_idx = ret;
 492                ret = 0;
 493        }
 494
 495        return ret;
 496}
 497
 498/*
 499 *      link_start - enable a port
 500 *      @dev: the port to enable
 501 *
 502 *      Performs the MAC and PHY actions needed to enable a port.
 503 */
 504static int link_start(struct net_device *dev)
 505{
 506        struct port_info *pi = netdev_priv(dev);
 507        unsigned int mb = pi->adapter->mbox;
 508        int ret;
 509
 510        /*
 511         * We do not set address filters and promiscuity here, the stack does
 512         * that step explicitly.
 513         */
 514        ret = t4_set_rxmode(pi->adapter, mb, pi->viid, pi->viid_mirror,
 515                            dev->mtu, -1, -1, -1,
 516                            !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
 517        if (ret == 0)
 518                ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
 519                                            dev->dev_addr, true, &pi->smt_idx);
 520        if (ret == 0)
 521                ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
 522                                    &pi->link_cfg);
 523        if (ret == 0) {
 524                local_bh_disable();
 525                ret = t4_enable_pi_params(pi->adapter, mb, pi, true,
 526                                          true, CXGB4_DCB_ENABLED);
 527                local_bh_enable();
 528        }
 529
 530        return ret;
 531}
 532
 533#ifdef CONFIG_CHELSIO_T4_DCB
 534/* Handle a Data Center Bridging update message from the firmware. */
 535static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
 536{
 537        int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
 538        struct net_device *dev = adap->port[adap->chan_map[port]];
 539        int old_dcb_enabled = cxgb4_dcb_enabled(dev);
 540        int new_dcb_enabled;
 541
 542        cxgb4_dcb_handle_fw_update(adap, pcmd);
 543        new_dcb_enabled = cxgb4_dcb_enabled(dev);
 544
 545        /* If the DCB has become enabled or disabled on the port then we're
 546         * going to need to set up/tear down DCB Priority parameters for the
 547         * TX Queues associated with the port.
 548         */
 549        if (new_dcb_enabled != old_dcb_enabled)
 550                dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
 551}
 552#endif /* CONFIG_CHELSIO_T4_DCB */
 553
 554/* Response queue handler for the FW event queue.
 555 */
 556static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
 557                          const struct pkt_gl *gl)
 558{
 559        u8 opcode = ((const struct rss_header *)rsp)->opcode;
 560
 561        rsp++;                                          /* skip RSS header */
 562
 563        /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
 564         */
 565        if (unlikely(opcode == CPL_FW4_MSG &&
 566           ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
 567                rsp++;
 568                opcode = ((const struct rss_header *)rsp)->opcode;
 569                rsp++;
 570                if (opcode != CPL_SGE_EGR_UPDATE) {
 571                        dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
 572                                , opcode);
 573                        goto out;
 574                }
 575        }
 576
 577        if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
 578                const struct cpl_sge_egr_update *p = (void *)rsp;
 579                unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
 580                struct sge_txq *txq;
 581
 582                txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
 583                txq->restarts++;
 584                if (txq->q_type == CXGB4_TXQ_ETH) {
 585                        struct sge_eth_txq *eq;
 586
 587                        eq = container_of(txq, struct sge_eth_txq, q);
 588                        t4_sge_eth_txq_egress_update(q->adap, eq, -1);
 589                } else {
 590                        struct sge_uld_txq *oq;
 591
 592                        oq = container_of(txq, struct sge_uld_txq, q);
 593                        tasklet_schedule(&oq->qresume_tsk);
 594                }
 595        } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
 596                const struct cpl_fw6_msg *p = (void *)rsp;
 597
 598#ifdef CONFIG_CHELSIO_T4_DCB
 599                const struct fw_port_cmd *pcmd = (const void *)p->data;
 600                unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
 601                unsigned int action =
 602                        FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
 603
 604                if (cmd == FW_PORT_CMD &&
 605                    (action == FW_PORT_ACTION_GET_PORT_INFO ||
 606                     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
 607                        int port = FW_PORT_CMD_PORTID_G(
 608                                        be32_to_cpu(pcmd->op_to_portid));
 609                        struct net_device *dev;
 610                        int dcbxdis, state_input;
 611
 612                        dev = q->adap->port[q->adap->chan_map[port]];
 613                        dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO
 614                          ? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F)
 615                          : !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32)
 616                               & FW_PORT_CMD_DCBXDIS32_F));
 617                        state_input = (dcbxdis
 618                                       ? CXGB4_DCB_INPUT_FW_DISABLED
 619                                       : CXGB4_DCB_INPUT_FW_ENABLED);
 620
 621                        cxgb4_dcb_state_fsm(dev, state_input);
 622                }
 623
 624                if (cmd == FW_PORT_CMD &&
 625                    action == FW_PORT_ACTION_L2_DCB_CFG)
 626                        dcb_rpl(q->adap, pcmd);
 627                else
 628#endif
 629                        if (p->type == 0)
 630                                t4_handle_fw_rpl(q->adap, p->data);
 631        } else if (opcode == CPL_L2T_WRITE_RPL) {
 632                const struct cpl_l2t_write_rpl *p = (void *)rsp;
 633
 634                do_l2t_write_rpl(q->adap, p);
 635        } else if (opcode == CPL_SMT_WRITE_RPL) {
 636                const struct cpl_smt_write_rpl *p = (void *)rsp;
 637
 638                do_smt_write_rpl(q->adap, p);
 639        } else if (opcode == CPL_SET_TCB_RPL) {
 640                const struct cpl_set_tcb_rpl *p = (void *)rsp;
 641
 642                filter_rpl(q->adap, p);
 643        } else if (opcode == CPL_ACT_OPEN_RPL) {
 644                const struct cpl_act_open_rpl *p = (void *)rsp;
 645
 646                hash_filter_rpl(q->adap, p);
 647        } else if (opcode == CPL_ABORT_RPL_RSS) {
 648                const struct cpl_abort_rpl_rss *p = (void *)rsp;
 649
 650                hash_del_filter_rpl(q->adap, p);
 651        } else if (opcode == CPL_SRQ_TABLE_RPL) {
 652                const struct cpl_srq_table_rpl *p = (void *)rsp;
 653
 654                do_srq_table_rpl(q->adap, p);
 655        } else
 656                dev_err(q->adap->pdev_dev,
 657                        "unexpected CPL %#x on FW event queue\n", opcode);
 658out:
 659        return 0;
 660}
 661
 662static void disable_msi(struct adapter *adapter)
 663{
 664        if (adapter->flags & CXGB4_USING_MSIX) {
 665                pci_disable_msix(adapter->pdev);
 666                adapter->flags &= ~CXGB4_USING_MSIX;
 667        } else if (adapter->flags & CXGB4_USING_MSI) {
 668                pci_disable_msi(adapter->pdev);
 669                adapter->flags &= ~CXGB4_USING_MSI;
 670        }
 671}
 672
 673/*
 674 * Interrupt handler for non-data events used with MSI-X.
 675 */
 676static irqreturn_t t4_nondata_intr(int irq, void *cookie)
 677{
 678        struct adapter *adap = cookie;
 679        u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
 680
 681        if (v & PFSW_F) {
 682                adap->swintr = 1;
 683                t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
 684        }
 685        if (adap->flags & CXGB4_MASTER_PF)
 686                t4_slow_intr_handler(adap);
 687        return IRQ_HANDLED;
 688}
 689
 690int cxgb4_set_msix_aff(struct adapter *adap, unsigned short vec,
 691                       cpumask_var_t *aff_mask, int idx)
 692{
 693        int rv;
 694
 695        if (!zalloc_cpumask_var(aff_mask, GFP_KERNEL)) {
 696                dev_err(adap->pdev_dev, "alloc_cpumask_var failed\n");
 697                return -ENOMEM;
 698        }
 699
 700        cpumask_set_cpu(cpumask_local_spread(idx, dev_to_node(adap->pdev_dev)),
 701                        *aff_mask);
 702
 703        rv = irq_set_affinity_hint(vec, *aff_mask);
 704        if (rv)
 705                dev_warn(adap->pdev_dev,
 706                         "irq_set_affinity_hint %u failed %d\n",
 707                         vec, rv);
 708
 709        return 0;
 710}
 711
 712void cxgb4_clear_msix_aff(unsigned short vec, cpumask_var_t aff_mask)
 713{
 714        irq_set_affinity_hint(vec, NULL);
 715        free_cpumask_var(aff_mask);
 716}
 717
 718static int request_msix_queue_irqs(struct adapter *adap)
 719{
 720        struct sge *s = &adap->sge;
 721        struct msix_info *minfo;
 722        int err, ethqidx;
 723
 724        if (s->fwevtq_msix_idx < 0)
 725                return -ENOMEM;
 726
 727        err = request_irq(adap->msix_info[s->fwevtq_msix_idx].vec,
 728                          t4_sge_intr_msix, 0,
 729                          adap->msix_info[s->fwevtq_msix_idx].desc,
 730                          &s->fw_evtq);
 731        if (err)
 732                return err;
 733
 734        for_each_ethrxq(s, ethqidx) {
 735                minfo = s->ethrxq[ethqidx].msix;
 736                err = request_irq(minfo->vec,
 737                                  t4_sge_intr_msix, 0,
 738                                  minfo->desc,
 739                                  &s->ethrxq[ethqidx].rspq);
 740                if (err)
 741                        goto unwind;
 742
 743                cxgb4_set_msix_aff(adap, minfo->vec,
 744                                   &minfo->aff_mask, ethqidx);
 745        }
 746        return 0;
 747
 748unwind:
 749        while (--ethqidx >= 0) {
 750                minfo = s->ethrxq[ethqidx].msix;
 751                cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
 752                free_irq(minfo->vec, &s->ethrxq[ethqidx].rspq);
 753        }
 754        free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq);
 755        return err;
 756}
 757
 758static void free_msix_queue_irqs(struct adapter *adap)
 759{
 760        struct sge *s = &adap->sge;
 761        struct msix_info *minfo;
 762        int i;
 763
 764        free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq);
 765        for_each_ethrxq(s, i) {
 766                minfo = s->ethrxq[i].msix;
 767                cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
 768                free_irq(minfo->vec, &s->ethrxq[i].rspq);
 769        }
 770}
 771
 772static int setup_ppod_edram(struct adapter *adap)
 773{
 774        unsigned int param, val;
 775        int ret;
 776
 777        /* Driver sends FW_PARAMS_PARAM_DEV_PPOD_EDRAM read command to check
 778         * if firmware supports ppod edram feature or not. If firmware
 779         * returns 1, then driver can enable this feature by sending
 780         * FW_PARAMS_PARAM_DEV_PPOD_EDRAM write command with value 1 to
 781         * enable ppod edram feature.
 782         */
 783        param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
 784                FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PPOD_EDRAM));
 785
 786        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
 787        if (ret < 0) {
 788                dev_warn(adap->pdev_dev,
 789                         "querying PPOD_EDRAM support failed: %d\n",
 790                         ret);
 791                return -1;
 792        }
 793
 794        if (val != 1)
 795                return -1;
 796
 797        ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
 798        if (ret < 0) {
 799                dev_err(adap->pdev_dev,
 800                        "setting PPOD_EDRAM failed: %d\n", ret);
 801                return -1;
 802        }
 803        return 0;
 804}
 805
 806static void adap_config_hpfilter(struct adapter *adapter)
 807{
 808        u32 param, val = 0;
 809        int ret;
 810
 811        /* Enable HP filter region. Older fw will fail this request and
 812         * it is fine.
 813         */
 814        param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT);
 815        ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0,
 816                            1, &param, &val);
 817
 818        /* An error means FW doesn't know about HP filter support,
 819         * it's not a problem, don't return an error.
 820         */
 821        if (ret < 0)
 822                dev_err(adapter->pdev_dev,
 823                        "HP filter region isn't supported by FW\n");
 824}
 825
 826static int cxgb4_config_rss(const struct port_info *pi, u16 *rss,
 827                            u16 rss_size, u16 viid)
 828{
 829        struct adapter *adap = pi->adapter;
 830        int ret;
 831
 832        ret = t4_config_rss_range(adap, adap->mbox, viid, 0, rss_size, rss,
 833                                  rss_size);
 834        if (ret)
 835                return ret;
 836
 837        /* If Tunnel All Lookup isn't specified in the global RSS
 838         * Configuration, then we need to specify a default Ingress
 839         * Queue for any ingress packets which aren't hashed.  We'll
 840         * use our first ingress queue ...
 841         */
 842        return t4_config_vi_rss(adap, adap->mbox, viid,
 843                                FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
 844                                FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
 845                                FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
 846                                FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
 847                                FW_RSS_VI_CONFIG_CMD_UDPEN_F,
 848                                rss[0]);
 849}
 850
 851/**
 852 *      cxgb4_write_rss - write the RSS table for a given port
 853 *      @pi: the port
 854 *      @queues: array of queue indices for RSS
 855 *
 856 *      Sets up the portion of the HW RSS table for the port's VI to distribute
 857 *      packets to the Rx queues in @queues.
 858 *      Should never be called before setting up sge eth rx queues
 859 */
 860int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
 861{
 862        struct adapter *adapter = pi->adapter;
 863        const struct sge_eth_rxq *rxq;
 864        int i, err;
 865        u16 *rss;
 866
 867        rxq = &adapter->sge.ethrxq[pi->first_qset];
 868        rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL);
 869        if (!rss)
 870                return -ENOMEM;
 871
 872        /* map the queue indices to queue ids */
 873        for (i = 0; i < pi->rss_size; i++, queues++)
 874                rss[i] = rxq[*queues].rspq.abs_id;
 875
 876        err = cxgb4_config_rss(pi, rss, pi->rss_size, pi->viid);
 877        kfree(rss);
 878        return err;
 879}
 880
 881/**
 882 *      setup_rss - configure RSS
 883 *      @adap: the adapter
 884 *
 885 *      Sets up RSS for each port.
 886 */
 887static int setup_rss(struct adapter *adap)
 888{
 889        int i, j, err;
 890
 891        for_each_port(adap, i) {
 892                const struct port_info *pi = adap2pinfo(adap, i);
 893
 894                /* Fill default values with equal distribution */
 895                for (j = 0; j < pi->rss_size; j++)
 896                        pi->rss[j] = j % pi->nqsets;
 897
 898                err = cxgb4_write_rss(pi, pi->rss);
 899                if (err)
 900                        return err;
 901        }
 902        return 0;
 903}
 904
 905/*
 906 * Return the channel of the ingress queue with the given qid.
 907 */
 908static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
 909{
 910        qid -= p->ingr_start;
 911        return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
 912}
 913
 914void cxgb4_quiesce_rx(struct sge_rspq *q)
 915{
 916        if (q->handler)
 917                napi_disable(&q->napi);
 918}
 919
 920/*
 921 * Wait until all NAPI handlers are descheduled.
 922 */
 923static void quiesce_rx(struct adapter *adap)
 924{
 925        int i;
 926
 927        for (i = 0; i < adap->sge.ingr_sz; i++) {
 928                struct sge_rspq *q = adap->sge.ingr_map[i];
 929
 930                if (!q)
 931                        continue;
 932
 933                cxgb4_quiesce_rx(q);
 934        }
 935}
 936
 937/* Disable interrupt and napi handler */
 938static void disable_interrupts(struct adapter *adap)
 939{
 940        struct sge *s = &adap->sge;
 941
 942        if (adap->flags & CXGB4_FULL_INIT_DONE) {
 943                t4_intr_disable(adap);
 944                if (adap->flags & CXGB4_USING_MSIX) {
 945                        free_msix_queue_irqs(adap);
 946                        free_irq(adap->msix_info[s->nd_msix_idx].vec,
 947                                 adap);
 948                } else {
 949                        free_irq(adap->pdev->irq, adap);
 950                }
 951                quiesce_rx(adap);
 952        }
 953}
 954
 955void cxgb4_enable_rx(struct adapter *adap, struct sge_rspq *q)
 956{
 957        if (q->handler)
 958                napi_enable(&q->napi);
 959
 960        /* 0-increment GTS to start the timer and enable interrupts */
 961        t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
 962                     SEINTARM_V(q->intr_params) |
 963                     INGRESSQID_V(q->cntxt_id));
 964}
 965
 966/*
 967 * Enable NAPI scheduling and interrupt generation for all Rx queues.
 968 */
 969static void enable_rx(struct adapter *adap)
 970{
 971        int i;
 972
 973        for (i = 0; i < adap->sge.ingr_sz; i++) {
 974                struct sge_rspq *q = adap->sge.ingr_map[i];
 975
 976                if (!q)
 977                        continue;
 978
 979                cxgb4_enable_rx(adap, q);
 980        }
 981}
 982
 983static int setup_non_data_intr(struct adapter *adap)
 984{
 985        int msix;
 986
 987        adap->sge.nd_msix_idx = -1;
 988        if (!(adap->flags & CXGB4_USING_MSIX))
 989                return 0;
 990
 991        /* Request MSI-X vector for non-data interrupt */
 992        msix = cxgb4_get_msix_idx_from_bmap(adap);
 993        if (msix < 0)
 994                return -ENOMEM;
 995
 996        snprintf(adap->msix_info[msix].desc,
 997                 sizeof(adap->msix_info[msix].desc),
 998                 "%s", adap->port[0]->name);
 999
1000        adap->sge.nd_msix_idx = msix;
1001        return 0;
1002}
1003
1004static int setup_fw_sge_queues(struct adapter *adap)
1005{
1006        struct sge *s = &adap->sge;
1007        int msix, err = 0;
1008
1009        bitmap_zero(s->starving_fl, s->egr_sz);
1010        bitmap_zero(s->txq_maperr, s->egr_sz);
1011
1012        if (adap->flags & CXGB4_USING_MSIX) {
1013                s->fwevtq_msix_idx = -1;
1014                msix = cxgb4_get_msix_idx_from_bmap(adap);
1015                if (msix < 0)
1016                        return -ENOMEM;
1017
1018                snprintf(adap->msix_info[msix].desc,
1019                         sizeof(adap->msix_info[msix].desc),
1020                         "%s-FWeventq", adap->port[0]->name);
1021        } else {
1022                err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1023                                       NULL, NULL, NULL, -1);
1024                if (err)
1025                        return err;
1026                msix = -((int)s->intrq.abs_id + 1);
1027        }
1028
1029        err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1030                               msix, NULL, fwevtq_handler, NULL, -1);
1031        if (err && msix >= 0)
1032                cxgb4_free_msix_idx_in_bmap(adap, msix);
1033
1034        s->fwevtq_msix_idx = msix;
1035        return err;
1036}
1037
1038/**
1039 *      setup_sge_queues - configure SGE Tx/Rx/response queues
1040 *      @adap: the adapter
1041 *
1042 *      Determines how many sets of SGE queues to use and initializes them.
1043 *      We support multiple queue sets per port if we have MSI-X, otherwise
1044 *      just one queue set per port.
1045 */
1046static int setup_sge_queues(struct adapter *adap)
1047{
1048        struct sge_uld_rxq_info *rxq_info = NULL;
1049        struct sge *s = &adap->sge;
1050        unsigned int cmplqid = 0;
1051        int err, i, j, msix = 0;
1052
1053        if (is_uld(adap))
1054                rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
1055
1056        if (!(adap->flags & CXGB4_USING_MSIX))
1057                msix = -((int)s->intrq.abs_id + 1);
1058
1059        for_each_port(adap, i) {
1060                struct net_device *dev = adap->port[i];
1061                struct port_info *pi = netdev_priv(dev);
1062                struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1063                struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1064
1065                for (j = 0; j < pi->nqsets; j++, q++) {
1066                        if (msix >= 0) {
1067                                msix = cxgb4_get_msix_idx_from_bmap(adap);
1068                                if (msix < 0) {
1069                                        err = msix;
1070                                        goto freeout;
1071                                }
1072
1073                                snprintf(adap->msix_info[msix].desc,
1074                                         sizeof(adap->msix_info[msix].desc),
1075                                         "%s-Rx%d", dev->name, j);
1076                                q->msix = &adap->msix_info[msix];
1077                        }
1078
1079                        err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1080                                               msix, &q->fl,
1081                                               t4_ethrx_handler,
1082                                               NULL,
1083                                               t4_get_tp_ch_map(adap,
1084                                                                pi->tx_chan));
1085                        if (err)
1086                                goto freeout;
1087                        q->rspq.idx = j;
1088                        memset(&q->stats, 0, sizeof(q->stats));
1089                }
1090
1091                q = &s->ethrxq[pi->first_qset];
1092                for (j = 0; j < pi->nqsets; j++, t++, q++) {
1093                        err = t4_sge_alloc_eth_txq(adap, t, dev,
1094                                        netdev_get_tx_queue(dev, j),
1095                                        q->rspq.cntxt_id,
1096                                        !!(adap->flags & CXGB4_SGE_DBQ_TIMER));
1097                        if (err)
1098                                goto freeout;
1099                }
1100        }
1101
1102        for_each_port(adap, i) {
1103                /* Note that cmplqid below is 0 if we don't
1104                 * have RDMA queues, and that's the right value.
1105                 */
1106                if (rxq_info)
1107                        cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id;
1108
1109                err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1110                                            s->fw_evtq.cntxt_id, cmplqid);
1111                if (err)
1112                        goto freeout;
1113        }
1114
1115        if (!is_t4(adap->params.chip)) {
1116                err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0],
1117                                           netdev_get_tx_queue(adap->port[0], 0)
1118                                           , s->fw_evtq.cntxt_id, false);
1119                if (err)
1120                        goto freeout;
1121        }
1122
1123        t4_write_reg(adap, is_t4(adap->params.chip) ?
1124                                MPS_TRC_RSS_CONTROL_A :
1125                                MPS_T5_TRC_RSS_CONTROL_A,
1126                     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1127                     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1128        return 0;
1129freeout:
1130        dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err);
1131        t4_free_sge_resources(adap);
1132        return err;
1133}
1134
1135static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1136                             struct net_device *sb_dev)
1137{
1138        int txq;
1139
1140#ifdef CONFIG_CHELSIO_T4_DCB
1141        /* If a Data Center Bridging has been successfully negotiated on this
1142         * link then we'll use the skb's priority to map it to a TX Queue.
1143         * The skb's priority is determined via the VLAN Tag Priority Code
1144         * Point field.
1145         */
1146        if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) {
1147                u16 vlan_tci;
1148                int err;
1149
1150                err = vlan_get_tag(skb, &vlan_tci);
1151                if (unlikely(err)) {
1152                        if (net_ratelimit())
1153                                netdev_warn(dev,
1154                                            "TX Packet without VLAN Tag on DCB Link\n");
1155                        txq = 0;
1156                } else {
1157                        txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1158#ifdef CONFIG_CHELSIO_T4_FCOE
1159                        if (skb->protocol == htons(ETH_P_FCOE))
1160                                txq = skb->priority & 0x7;
1161#endif /* CONFIG_CHELSIO_T4_FCOE */
1162                }
1163                return txq;
1164        }
1165#endif /* CONFIG_CHELSIO_T4_DCB */
1166
1167        if (dev->num_tc) {
1168                struct port_info *pi = netdev2pinfo(dev);
1169                u8 ver, proto;
1170
1171                ver = ip_hdr(skb)->version;
1172                proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr :
1173                                     ip_hdr(skb)->protocol;
1174
1175                /* Send unsupported traffic pattern to normal NIC queues. */
1176                txq = netdev_pick_tx(dev, skb, sb_dev);
1177                if (xfrm_offload(skb) || is_ptp_enabled(skb, dev) ||
1178                    skb->encapsulation ||
1179                    (proto != IPPROTO_TCP && proto != IPPROTO_UDP))
1180                        txq = txq % pi->nqsets;
1181
1182                return txq;
1183        }
1184
1185        if (select_queue) {
1186                txq = (skb_rx_queue_recorded(skb)
1187                        ? skb_get_rx_queue(skb)
1188                        : smp_processor_id());
1189
1190                while (unlikely(txq >= dev->real_num_tx_queues))
1191                        txq -= dev->real_num_tx_queues;
1192
1193                return txq;
1194        }
1195
1196        return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
1197}
1198
1199static int closest_timer(const struct sge *s, int time)
1200{
1201        int i, delta, match = 0, min_delta = INT_MAX;
1202
1203        for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1204                delta = time - s->timer_val[i];
1205                if (delta < 0)
1206                        delta = -delta;
1207                if (delta < min_delta) {
1208                        min_delta = delta;
1209                        match = i;
1210                }
1211        }
1212        return match;
1213}
1214
1215static int closest_thres(const struct sge *s, int thres)
1216{
1217        int i, delta, match = 0, min_delta = INT_MAX;
1218
1219        for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1220                delta = thres - s->counter_val[i];
1221                if (delta < 0)
1222                        delta = -delta;
1223                if (delta < min_delta) {
1224                        min_delta = delta;
1225                        match = i;
1226                }
1227        }
1228        return match;
1229}
1230
1231/**
1232 *      cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1233 *      @q: the Rx queue
1234 *      @us: the hold-off time in us, or 0 to disable timer
1235 *      @cnt: the hold-off packet count, or 0 to disable counter
1236 *
1237 *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
1238 *      one of the two needs to be enabled for the queue to generate interrupts.
1239 */
1240int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1241                               unsigned int us, unsigned int cnt)
1242{
1243        struct adapter *adap = q->adap;
1244
1245        if ((us | cnt) == 0)
1246                cnt = 1;
1247
1248        if (cnt) {
1249                int err;
1250                u32 v, new_idx;
1251
1252                new_idx = closest_thres(&adap->sge, cnt);
1253                if (q->desc && q->pktcnt_idx != new_idx) {
1254                        /* the queue has already been created, update it */
1255                        v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1256                            FW_PARAMS_PARAM_X_V(
1257                                        FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1258                            FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1259                        err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1260                                            &v, &new_idx);
1261                        if (err)
1262                                return err;
1263                }
1264                q->pktcnt_idx = new_idx;
1265        }
1266
1267        us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1268        q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1269        return 0;
1270}
1271
1272static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1273{
1274        netdev_features_t changed = dev->features ^ features;
1275        const struct port_info *pi = netdev_priv(dev);
1276        int err;
1277
1278        if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1279                return 0;
1280
1281        err = t4_set_rxmode(pi->adapter, pi->adapter->mbox, pi->viid,
1282                            pi->viid_mirror, -1, -1, -1, -1,
1283                            !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1284        if (unlikely(err))
1285                dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1286        return err;
1287}
1288
1289static int setup_debugfs(struct adapter *adap)
1290{
1291        if (IS_ERR_OR_NULL(adap->debugfs_root))
1292                return -1;
1293
1294#ifdef CONFIG_DEBUG_FS
1295        t4_setup_debugfs(adap);
1296#endif
1297        return 0;
1298}
1299
1300static void cxgb4_port_mirror_free_rxq(struct adapter *adap,
1301                                       struct sge_eth_rxq *mirror_rxq)
1302{
1303        if ((adap->flags & CXGB4_FULL_INIT_DONE) &&
1304            !(adap->flags & CXGB4_SHUTTING_DOWN))
1305                cxgb4_quiesce_rx(&mirror_rxq->rspq);
1306
1307        if (adap->flags & CXGB4_USING_MSIX) {
1308                cxgb4_clear_msix_aff(mirror_rxq->msix->vec,
1309                                     mirror_rxq->msix->aff_mask);
1310                free_irq(mirror_rxq->msix->vec, &mirror_rxq->rspq);
1311                cxgb4_free_msix_idx_in_bmap(adap, mirror_rxq->msix->idx);
1312        }
1313
1314        free_rspq_fl(adap, &mirror_rxq->rspq, &mirror_rxq->fl);
1315}
1316
1317static int cxgb4_port_mirror_alloc_queues(struct net_device *dev)
1318{
1319        struct port_info *pi = netdev2pinfo(dev);
1320        struct adapter *adap = netdev2adap(dev);
1321        struct sge_eth_rxq *mirror_rxq;
1322        struct sge *s = &adap->sge;
1323        int ret = 0, msix = 0;
1324        u16 i, rxqid;
1325        u16 *rss;
1326
1327        if (!pi->vi_mirror_count)
1328                return 0;
1329
1330        if (s->mirror_rxq[pi->port_id])
1331                return 0;
1332
1333        mirror_rxq = kcalloc(pi->nmirrorqsets, sizeof(*mirror_rxq), GFP_KERNEL);
1334        if (!mirror_rxq)
1335                return -ENOMEM;
1336
1337        s->mirror_rxq[pi->port_id] = mirror_rxq;
1338
1339        if (!(adap->flags & CXGB4_USING_MSIX))
1340                msix = -((int)adap->sge.intrq.abs_id + 1);
1341
1342        for (i = 0, rxqid = 0; i < pi->nmirrorqsets; i++, rxqid++) {
1343                mirror_rxq = &s->mirror_rxq[pi->port_id][i];
1344
1345                /* Allocate Mirror Rxqs */
1346                if (msix >= 0) {
1347                        msix = cxgb4_get_msix_idx_from_bmap(adap);
1348                        if (msix < 0) {
1349                                ret = msix;
1350                                goto out_free_queues;
1351                        }
1352
1353                        mirror_rxq->msix = &adap->msix_info[msix];
1354                        snprintf(mirror_rxq->msix->desc,
1355                                 sizeof(mirror_rxq->msix->desc),
1356                                 "%s-mirrorrxq%d", dev->name, i);
1357                }
1358
1359                init_rspq(adap, &mirror_rxq->rspq,
1360                          CXGB4_MIRROR_RXQ_DEFAULT_INTR_USEC,
1361                          CXGB4_MIRROR_RXQ_DEFAULT_PKT_CNT,
1362                          CXGB4_MIRROR_RXQ_DEFAULT_DESC_NUM,
1363                          CXGB4_MIRROR_RXQ_DEFAULT_DESC_SIZE);
1364
1365                mirror_rxq->fl.size = CXGB4_MIRROR_FLQ_DEFAULT_DESC_NUM;
1366
1367                ret = t4_sge_alloc_rxq(adap, &mirror_rxq->rspq, false,
1368                                       dev, msix, &mirror_rxq->fl,
1369                                       t4_ethrx_handler, NULL, 0);
1370                if (ret)
1371                        goto out_free_msix_idx;
1372
1373                /* Setup MSI-X vectors for Mirror Rxqs */
1374                if (adap->flags & CXGB4_USING_MSIX) {
1375                        ret = request_irq(mirror_rxq->msix->vec,
1376                                          t4_sge_intr_msix, 0,
1377                                          mirror_rxq->msix->desc,
1378                                          &mirror_rxq->rspq);
1379                        if (ret)
1380                                goto out_free_rxq;
1381
1382                        cxgb4_set_msix_aff(adap, mirror_rxq->msix->vec,
1383                                           &mirror_rxq->msix->aff_mask, i);
1384                }
1385
1386                /* Start NAPI for Mirror Rxqs */
1387                cxgb4_enable_rx(adap, &mirror_rxq->rspq);
1388        }
1389
1390        /* Setup RSS for Mirror Rxqs */
1391        rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
1392        if (!rss) {
1393                ret = -ENOMEM;
1394                goto out_free_queues;
1395        }
1396
1397        mirror_rxq = &s->mirror_rxq[pi->port_id][0];
1398        for (i = 0; i < pi->rss_size; i++)
1399                rss[i] = mirror_rxq[i % pi->nmirrorqsets].rspq.abs_id;
1400
1401        ret = cxgb4_config_rss(pi, rss, pi->rss_size, pi->viid_mirror);
1402        kfree(rss);
1403        if (ret)
1404                goto out_free_queues;
1405
1406        return 0;
1407
1408out_free_rxq:
1409        free_rspq_fl(adap, &mirror_rxq->rspq, &mirror_rxq->fl);
1410
1411out_free_msix_idx:
1412        cxgb4_free_msix_idx_in_bmap(adap, mirror_rxq->msix->idx);
1413
1414out_free_queues:
1415        while (rxqid-- > 0)
1416                cxgb4_port_mirror_free_rxq(adap,
1417                                           &s->mirror_rxq[pi->port_id][rxqid]);
1418
1419        kfree(s->mirror_rxq[pi->port_id]);
1420        s->mirror_rxq[pi->port_id] = NULL;
1421        return ret;
1422}
1423
1424static void cxgb4_port_mirror_free_queues(struct net_device *dev)
1425{
1426        struct port_info *pi = netdev2pinfo(dev);
1427        struct adapter *adap = netdev2adap(dev);
1428        struct sge *s = &adap->sge;
1429        u16 i;
1430
1431        if (!pi->vi_mirror_count)
1432                return;
1433
1434        if (!s->mirror_rxq[pi->port_id])
1435                return;
1436
1437        for (i = 0; i < pi->nmirrorqsets; i++)
1438                cxgb4_port_mirror_free_rxq(adap,
1439                                           &s->mirror_rxq[pi->port_id][i]);
1440
1441        kfree(s->mirror_rxq[pi->port_id]);
1442        s->mirror_rxq[pi->port_id] = NULL;
1443}
1444
1445static int cxgb4_port_mirror_start(struct net_device *dev)
1446{
1447        struct port_info *pi = netdev2pinfo(dev);
1448        struct adapter *adap = netdev2adap(dev);
1449        int ret, idx = -1;
1450
1451        if (!pi->vi_mirror_count)
1452                return 0;
1453
1454        /* Mirror VIs can be created dynamically after stack had
1455         * already setup Rx modes like MTU, promisc, allmulti, etc.
1456         * on main VI. So, parse what the stack had setup on the
1457         * main VI and update the same on the mirror VI.
1458         */
1459        ret = t4_set_rxmode(adap, adap->mbox, pi->viid, pi->viid_mirror,
1460                            dev->mtu, (dev->flags & IFF_PROMISC) ? 1 : 0,
1461                            (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1,
1462                            !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
1463        if (ret) {
1464                dev_err(adap->pdev_dev,
1465                        "Failed start up Rx mode for Mirror VI 0x%x, ret: %d\n",
1466                        pi->viid_mirror, ret);
1467                return ret;
1468        }
1469
1470        /* Enable replication bit for the device's MAC address
1471         * in MPS TCAM, so that the packets for the main VI are
1472         * replicated to mirror VI.
1473         */
1474        ret = cxgb4_update_mac_filt(pi, pi->viid_mirror, &idx,
1475                                    dev->dev_addr, true, NULL);
1476        if (ret) {
1477                dev_err(adap->pdev_dev,
1478                        "Failed updating MAC filter for Mirror VI 0x%x, ret: %d\n",
1479                        pi->viid_mirror, ret);
1480                return ret;
1481        }
1482
1483        /* Enabling a Virtual Interface can result in an interrupt
1484         * during the processing of the VI Enable command and, in some
1485         * paths, result in an attempt to issue another command in the
1486         * interrupt context. Thus, we disable interrupts during the
1487         * course of the VI Enable command ...
1488         */
1489        local_bh_disable();
1490        ret = t4_enable_vi_params(adap, adap->mbox, pi->viid_mirror, true, true,
1491                                  false);
1492        local_bh_enable();
1493        if (ret)
1494                dev_err(adap->pdev_dev,
1495                        "Failed starting Mirror VI 0x%x, ret: %d\n",
1496                        pi->viid_mirror, ret);
1497
1498        return ret;
1499}
1500
1501static void cxgb4_port_mirror_stop(struct net_device *dev)
1502{
1503        struct port_info *pi = netdev2pinfo(dev);
1504        struct adapter *adap = netdev2adap(dev);
1505
1506        if (!pi->vi_mirror_count)
1507                return;
1508
1509        t4_enable_vi_params(adap, adap->mbox, pi->viid_mirror, false, false,
1510                            false);
1511}
1512
1513int cxgb4_port_mirror_alloc(struct net_device *dev)
1514{
1515        struct port_info *pi = netdev2pinfo(dev);
1516        struct adapter *adap = netdev2adap(dev);
1517        int ret = 0;
1518
1519        if (!pi->nmirrorqsets)
1520                return -EOPNOTSUPP;
1521
1522        mutex_lock(&pi->vi_mirror_mutex);
1523        if (pi->viid_mirror) {
1524                pi->vi_mirror_count++;
1525                goto out_unlock;
1526        }
1527
1528        ret = t4_init_port_mirror(pi, adap->mbox, pi->port_id, adap->pf, 0,
1529                                  &pi->viid_mirror);
1530        if (ret)
1531                goto out_unlock;
1532
1533        pi->vi_mirror_count = 1;
1534
1535        if (adap->flags & CXGB4_FULL_INIT_DONE) {
1536                ret = cxgb4_port_mirror_alloc_queues(dev);
1537                if (ret)
1538                        goto out_free_vi;
1539
1540                ret = cxgb4_port_mirror_start(dev);
1541                if (ret)
1542                        goto out_free_queues;
1543        }
1544
1545        mutex_unlock(&pi->vi_mirror_mutex);
1546        return 0;
1547
1548out_free_queues:
1549        cxgb4_port_mirror_free_queues(dev);
1550
1551out_free_vi:
1552        pi->vi_mirror_count = 0;
1553        t4_free_vi(adap, adap->mbox, adap->pf, 0, pi->viid_mirror);
1554        pi->viid_mirror = 0;
1555
1556out_unlock:
1557        mutex_unlock(&pi->vi_mirror_mutex);
1558        return ret;
1559}
1560
1561void cxgb4_port_mirror_free(struct net_device *dev)
1562{
1563        struct port_info *pi = netdev2pinfo(dev);
1564        struct adapter *adap = netdev2adap(dev);
1565
1566        mutex_lock(&pi->vi_mirror_mutex);
1567        if (!pi->viid_mirror)
1568                goto out_unlock;
1569
1570        if (pi->vi_mirror_count > 1) {
1571                pi->vi_mirror_count--;
1572                goto out_unlock;
1573        }
1574
1575        cxgb4_port_mirror_stop(dev);
1576        cxgb4_port_mirror_free_queues(dev);
1577
1578        pi->vi_mirror_count = 0;
1579        t4_free_vi(adap, adap->mbox, adap->pf, 0, pi->viid_mirror);
1580        pi->viid_mirror = 0;
1581
1582out_unlock:
1583        mutex_unlock(&pi->vi_mirror_mutex);
1584}
1585
1586/*
1587 * upper-layer driver support
1588 */
1589
1590/*
1591 * Allocate an active-open TID and set it to the supplied value.
1592 */
1593int cxgb4_alloc_atid(struct tid_info *t, void *data)
1594{
1595        int atid = -1;
1596
1597        spin_lock_bh(&t->atid_lock);
1598        if (t->afree) {
1599                union aopen_entry *p = t->afree;
1600
1601                atid = (p - t->atid_tab) + t->atid_base;
1602                t->afree = p->next;
1603                p->data = data;
1604                t->atids_in_use++;
1605        }
1606        spin_unlock_bh(&t->atid_lock);
1607        return atid;
1608}
1609EXPORT_SYMBOL(cxgb4_alloc_atid);
1610
1611/*
1612 * Release an active-open TID.
1613 */
1614void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1615{
1616        union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1617
1618        spin_lock_bh(&t->atid_lock);
1619        p->next = t->afree;
1620        t->afree = p;
1621        t->atids_in_use--;
1622        spin_unlock_bh(&t->atid_lock);
1623}
1624EXPORT_SYMBOL(cxgb4_free_atid);
1625
1626/*
1627 * Allocate a server TID and set it to the supplied value.
1628 */
1629int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1630{
1631        int stid;
1632
1633        spin_lock_bh(&t->stid_lock);
1634        if (family == PF_INET) {
1635                stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1636                if (stid < t->nstids)
1637                        __set_bit(stid, t->stid_bmap);
1638                else
1639                        stid = -1;
1640        } else {
1641                stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1642                if (stid < 0)
1643                        stid = -1;
1644        }
1645        if (stid >= 0) {
1646                t->stid_tab[stid].data = data;
1647                stid += t->stid_base;
1648                /* IPv6 requires max of 520 bits or 16 cells in TCAM
1649                 * This is equivalent to 4 TIDs. With CLIP enabled it
1650                 * needs 2 TIDs.
1651                 */
1652                if (family == PF_INET6) {
1653                        t->stids_in_use += 2;
1654                        t->v6_stids_in_use += 2;
1655                } else {
1656                        t->stids_in_use++;
1657                }
1658        }
1659        spin_unlock_bh(&t->stid_lock);
1660        return stid;
1661}
1662EXPORT_SYMBOL(cxgb4_alloc_stid);
1663
1664/* Allocate a server filter TID and set it to the supplied value.
1665 */
1666int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1667{
1668        int stid;
1669
1670        spin_lock_bh(&t->stid_lock);
1671        if (family == PF_INET) {
1672                stid = find_next_zero_bit(t->stid_bmap,
1673                                t->nstids + t->nsftids, t->nstids);
1674                if (stid < (t->nstids + t->nsftids))
1675                        __set_bit(stid, t->stid_bmap);
1676                else
1677                        stid = -1;
1678        } else {
1679                stid = -1;
1680        }
1681        if (stid >= 0) {
1682                t->stid_tab[stid].data = data;
1683                stid -= t->nstids;
1684                stid += t->sftid_base;
1685                t->sftids_in_use++;
1686        }
1687        spin_unlock_bh(&t->stid_lock);
1688        return stid;
1689}
1690EXPORT_SYMBOL(cxgb4_alloc_sftid);
1691
1692/* Release a server TID.
1693 */
1694void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1695{
1696        /* Is it a server filter TID? */
1697        if (t->nsftids && (stid >= t->sftid_base)) {
1698                stid -= t->sftid_base;
1699                stid += t->nstids;
1700        } else {
1701                stid -= t->stid_base;
1702        }
1703
1704        spin_lock_bh(&t->stid_lock);
1705        if (family == PF_INET)
1706                __clear_bit(stid, t->stid_bmap);
1707        else
1708                bitmap_release_region(t->stid_bmap, stid, 1);
1709        t->stid_tab[stid].data = NULL;
1710        if (stid < t->nstids) {
1711                if (family == PF_INET6) {
1712                        t->stids_in_use -= 2;
1713                        t->v6_stids_in_use -= 2;
1714                } else {
1715                        t->stids_in_use--;
1716                }
1717        } else {
1718                t->sftids_in_use--;
1719        }
1720
1721        spin_unlock_bh(&t->stid_lock);
1722}
1723EXPORT_SYMBOL(cxgb4_free_stid);
1724
1725/*
1726 * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1727 */
1728static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1729                           unsigned int tid)
1730{
1731        struct cpl_tid_release *req;
1732
1733        set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1734        req = __skb_put(skb, sizeof(*req));
1735        INIT_TP_WR(req, tid);
1736        OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1737}
1738
1739/*
1740 * Queue a TID release request and if necessary schedule a work queue to
1741 * process it.
1742 */
1743static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1744                                    unsigned int tid)
1745{
1746        struct adapter *adap = container_of(t, struct adapter, tids);
1747        void **p = &t->tid_tab[tid - t->tid_base];
1748
1749        spin_lock_bh(&adap->tid_release_lock);
1750        *p = adap->tid_release_head;
1751        /* Low 2 bits encode the Tx channel number */
1752        adap->tid_release_head = (void **)((uintptr_t)p | chan);
1753        if (!adap->tid_release_task_busy) {
1754                adap->tid_release_task_busy = true;
1755                queue_work(adap->workq, &adap->tid_release_task);
1756        }
1757        spin_unlock_bh(&adap->tid_release_lock);
1758}
1759
1760/*
1761 * Process the list of pending TID release requests.
1762 */
1763static void process_tid_release_list(struct work_struct *work)
1764{
1765        struct sk_buff *skb;
1766        struct adapter *adap;
1767
1768        adap = container_of(work, struct adapter, tid_release_task);
1769
1770        spin_lock_bh(&adap->tid_release_lock);
1771        while (adap->tid_release_head) {
1772                void **p = adap->tid_release_head;
1773                unsigned int chan = (uintptr_t)p & 3;
1774                p = (void *)p - chan;
1775
1776                adap->tid_release_head = *p;
1777                *p = NULL;
1778                spin_unlock_bh(&adap->tid_release_lock);
1779
1780                while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1781                                         GFP_KERNEL)))
1782                        schedule_timeout_uninterruptible(1);
1783
1784                mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1785                t4_ofld_send(adap, skb);
1786                spin_lock_bh(&adap->tid_release_lock);
1787        }
1788        adap->tid_release_task_busy = false;
1789        spin_unlock_bh(&adap->tid_release_lock);
1790}
1791
1792/*
1793 * Release a TID and inform HW.  If we are unable to allocate the release
1794 * message we defer to a work queue.
1795 */
1796void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
1797                      unsigned short family)
1798{
1799        struct adapter *adap = container_of(t, struct adapter, tids);
1800        struct sk_buff *skb;
1801
1802        WARN_ON(tid_out_of_range(&adap->tids, tid));
1803
1804        if (t->tid_tab[tid - adap->tids.tid_base]) {
1805                t->tid_tab[tid - adap->tids.tid_base] = NULL;
1806                atomic_dec(&t->conns_in_use);
1807                if (t->hash_base && (tid >= t->hash_base)) {
1808                        if (family == AF_INET6)
1809                                atomic_sub(2, &t->hash_tids_in_use);
1810                        else
1811                                atomic_dec(&t->hash_tids_in_use);
1812                } else {
1813                        if (family == AF_INET6)
1814                                atomic_sub(2, &t->tids_in_use);
1815                        else
1816                                atomic_dec(&t->tids_in_use);
1817                }
1818        }
1819
1820        skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1821        if (likely(skb)) {
1822                mk_tid_release(skb, chan, tid);
1823                t4_ofld_send(adap, skb);
1824        } else
1825                cxgb4_queue_tid_release(t, chan, tid);
1826}
1827EXPORT_SYMBOL(cxgb4_remove_tid);
1828
1829/*
1830 * Allocate and initialize the TID tables.  Returns 0 on success.
1831 */
1832static int tid_init(struct tid_info *t)
1833{
1834        struct adapter *adap = container_of(t, struct adapter, tids);
1835        unsigned int max_ftids = t->nftids + t->nsftids;
1836        unsigned int natids = t->natids;
1837        unsigned int hpftid_bmap_size;
1838        unsigned int eotid_bmap_size;
1839        unsigned int stid_bmap_size;
1840        unsigned int ftid_bmap_size;
1841        size_t size;
1842
1843        stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1844        ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1845        hpftid_bmap_size = BITS_TO_LONGS(t->nhpftids);
1846        eotid_bmap_size = BITS_TO_LONGS(t->neotids);
1847        size = t->ntids * sizeof(*t->tid_tab) +
1848               natids * sizeof(*t->atid_tab) +
1849               t->nstids * sizeof(*t->stid_tab) +
1850               t->nsftids * sizeof(*t->stid_tab) +
1851               stid_bmap_size * sizeof(long) +
1852               t->nhpftids * sizeof(*t->hpftid_tab) +
1853               hpftid_bmap_size * sizeof(long) +
1854               max_ftids * sizeof(*t->ftid_tab) +
1855               ftid_bmap_size * sizeof(long) +
1856               t->neotids * sizeof(*t->eotid_tab) +
1857               eotid_bmap_size * sizeof(long);
1858
1859        t->tid_tab = kvzalloc(size, GFP_KERNEL);
1860        if (!t->tid_tab)
1861                return -ENOMEM;
1862
1863        t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1864        t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1865        t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1866        t->hpftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1867        t->hpftid_bmap = (unsigned long *)&t->hpftid_tab[t->nhpftids];
1868        t->ftid_tab = (struct filter_entry *)&t->hpftid_bmap[hpftid_bmap_size];
1869        t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1870        t->eotid_tab = (struct eotid_entry *)&t->ftid_bmap[ftid_bmap_size];
1871        t->eotid_bmap = (unsigned long *)&t->eotid_tab[t->neotids];
1872        spin_lock_init(&t->stid_lock);
1873        spin_lock_init(&t->atid_lock);
1874        spin_lock_init(&t->ftid_lock);
1875
1876        t->stids_in_use = 0;
1877        t->v6_stids_in_use = 0;
1878        t->sftids_in_use = 0;
1879        t->afree = NULL;
1880        t->atids_in_use = 0;
1881        atomic_set(&t->tids_in_use, 0);
1882        atomic_set(&t->conns_in_use, 0);
1883        atomic_set(&t->hash_tids_in_use, 0);
1884        atomic_set(&t->eotids_in_use, 0);
1885
1886        /* Setup the free list for atid_tab and clear the stid bitmap. */
1887        if (natids) {
1888                while (--natids)
1889                        t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1890                t->afree = t->atid_tab;
1891        }
1892
1893        if (is_offload(adap)) {
1894                bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1895                /* Reserve stid 0 for T4/T5 adapters */
1896                if (!t->stid_base &&
1897                    CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1898                        __set_bit(0, t->stid_bmap);
1899
1900                if (t->neotids)
1901                        bitmap_zero(t->eotid_bmap, t->neotids);
1902        }
1903
1904        if (t->nhpftids)
1905                bitmap_zero(t->hpftid_bmap, t->nhpftids);
1906        bitmap_zero(t->ftid_bmap, t->nftids);
1907        return 0;
1908}
1909
1910/**
1911 *      cxgb4_create_server - create an IP server
1912 *      @dev: the device
1913 *      @stid: the server TID
1914 *      @sip: local IP address to bind server to
1915 *      @sport: the server's TCP port
1916 *      @vlan: the VLAN header information
1917 *      @queue: queue to direct messages from this server to
1918 *
1919 *      Create an IP server for the given port and address.
1920 *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1921 */
1922int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1923                        __be32 sip, __be16 sport, __be16 vlan,
1924                        unsigned int queue)
1925{
1926        unsigned int chan;
1927        struct sk_buff *skb;
1928        struct adapter *adap;
1929        struct cpl_pass_open_req *req;
1930        int ret;
1931
1932        skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1933        if (!skb)
1934                return -ENOMEM;
1935
1936        adap = netdev2adap(dev);
1937        req = __skb_put(skb, sizeof(*req));
1938        INIT_TP_WR(req, 0);
1939        OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1940        req->local_port = sport;
1941        req->peer_port = htons(0);
1942        req->local_ip = sip;
1943        req->peer_ip = htonl(0);
1944        chan = rxq_to_chan(&adap->sge, queue);
1945        req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1946        req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1947                                SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1948        ret = t4_mgmt_tx(adap, skb);
1949        return net_xmit_eval(ret);
1950}
1951EXPORT_SYMBOL(cxgb4_create_server);
1952
1953/*      cxgb4_create_server6 - create an IPv6 server
1954 *      @dev: the device
1955 *      @stid: the server TID
1956 *      @sip: local IPv6 address to bind server to
1957 *      @sport: the server's TCP port
1958 *      @queue: queue to direct messages from this server to
1959 *
1960 *      Create an IPv6 server for the given port and address.
1961 *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1962 */
1963int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1964                         const struct in6_addr *sip, __be16 sport,
1965                         unsigned int queue)
1966{
1967        unsigned int chan;
1968        struct sk_buff *skb;
1969        struct adapter *adap;
1970        struct cpl_pass_open_req6 *req;
1971        int ret;
1972
1973        skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1974        if (!skb)
1975                return -ENOMEM;
1976
1977        adap = netdev2adap(dev);
1978        req = __skb_put(skb, sizeof(*req));
1979        INIT_TP_WR(req, 0);
1980        OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1981        req->local_port = sport;
1982        req->peer_port = htons(0);
1983        req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1984        req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1985        req->peer_ip_hi = cpu_to_be64(0);
1986        req->peer_ip_lo = cpu_to_be64(0);
1987        chan = rxq_to_chan(&adap->sge, queue);
1988        req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1989        req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1990                                SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1991        ret = t4_mgmt_tx(adap, skb);
1992        return net_xmit_eval(ret);
1993}
1994EXPORT_SYMBOL(cxgb4_create_server6);
1995
1996int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1997                        unsigned int queue, bool ipv6)
1998{
1999        struct sk_buff *skb;
2000        struct adapter *adap;
2001        struct cpl_close_listsvr_req *req;
2002        int ret;
2003
2004        adap = netdev2adap(dev);
2005
2006        skb = alloc_skb(sizeof(*req), GFP_KERNEL);
2007        if (!skb)
2008                return -ENOMEM;
2009
2010        req = __skb_put(skb, sizeof(*req));
2011        INIT_TP_WR(req, 0);
2012        OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
2013        req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
2014                                LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
2015        ret = t4_mgmt_tx(adap, skb);
2016        return net_xmit_eval(ret);
2017}
2018EXPORT_SYMBOL(cxgb4_remove_server);
2019
2020/**
2021 *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
2022 *      @mtus: the HW MTU table
2023 *      @mtu: the target MTU
2024 *      @idx: index of selected entry in the MTU table
2025 *
2026 *      Returns the index and the value in the HW MTU table that is closest to
2027 *      but does not exceed @mtu, unless @mtu is smaller than any value in the
2028 *      table, in which case that smallest available value is selected.
2029 */
2030unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
2031                            unsigned int *idx)
2032{
2033        unsigned int i = 0;
2034
2035        while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
2036                ++i;
2037        if (idx)
2038                *idx = i;
2039        return mtus[i];
2040}
2041EXPORT_SYMBOL(cxgb4_best_mtu);
2042
2043/**
2044 *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
2045 *     @mtus: the HW MTU table
2046 *     @header_size: Header Size
2047 *     @data_size_max: maximum Data Segment Size
2048 *     @data_size_align: desired Data Segment Size Alignment (2^N)
2049 *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
2050 *
2051 *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
2052 *     MTU Table based solely on a Maximum MTU parameter, we break that
2053 *     parameter up into a Header Size and Maximum Data Segment Size, and
2054 *     provide a desired Data Segment Size Alignment.  If we find an MTU in
2055 *     the Hardware MTU Table which will result in a Data Segment Size with
2056 *     the requested alignment _and_ that MTU isn't "too far" from the
2057 *     closest MTU, then we'll return that rather than the closest MTU.
2058 */
2059unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
2060                                    unsigned short header_size,
2061                                    unsigned short data_size_max,
2062                                    unsigned short data_size_align,
2063                                    unsigned int *mtu_idxp)
2064{
2065        unsigned short max_mtu = header_size + data_size_max;
2066        unsigned short data_size_align_mask = data_size_align - 1;
2067        int mtu_idx, aligned_mtu_idx;
2068
2069        /* Scan the MTU Table till we find an MTU which is larger than our
2070         * Maximum MTU or we reach the end of the table.  Along the way,
2071         * record the last MTU found, if any, which will result in a Data
2072         * Segment Length matching the requested alignment.
2073         */
2074        for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
2075                unsigned short data_size = mtus[mtu_idx] - header_size;
2076
2077                /* If this MTU minus the Header Size would result in a
2078                 * Data Segment Size of the desired alignment, remember it.
2079                 */
2080                if ((data_size & data_size_align_mask) == 0)
2081                        aligned_mtu_idx = mtu_idx;
2082
2083                /* If we're not at the end of the Hardware MTU Table and the
2084                 * next element is larger than our Maximum MTU, drop out of
2085                 * the loop.
2086                 */
2087                if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
2088                        break;
2089        }
2090
2091        /* If we fell out of the loop because we ran to the end of the table,
2092         * then we just have to use the last [largest] entry.
2093         */
2094        if (mtu_idx == NMTUS)
2095                mtu_idx--;
2096
2097        /* If we found an MTU which resulted in the requested Data Segment
2098         * Length alignment and that's "not far" from the largest MTU which is
2099         * less than or equal to the maximum MTU, then use that.
2100         */
2101        if (aligned_mtu_idx >= 0 &&
2102            mtu_idx - aligned_mtu_idx <= 1)
2103                mtu_idx = aligned_mtu_idx;
2104
2105        /* If the caller has passed in an MTU Index pointer, pass the
2106         * MTU Index back.  Return the MTU value.
2107         */
2108        if (mtu_idxp)
2109                *mtu_idxp = mtu_idx;
2110        return mtus[mtu_idx];
2111}
2112EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
2113
2114/**
2115 *      cxgb4_port_chan - get the HW channel of a port
2116 *      @dev: the net device for the port
2117 *
2118 *      Return the HW Tx channel of the given port.
2119 */
2120unsigned int cxgb4_port_chan(const struct net_device *dev)
2121{
2122        return netdev2pinfo(dev)->tx_chan;
2123}
2124EXPORT_SYMBOL(cxgb4_port_chan);
2125
2126/**
2127 *      cxgb4_port_e2cchan - get the HW c-channel of a port
2128 *      @dev: the net device for the port
2129 *
2130 *      Return the HW RX c-channel of the given port.
2131 */
2132unsigned int cxgb4_port_e2cchan(const struct net_device *dev)
2133{
2134        return netdev2pinfo(dev)->rx_cchan;
2135}
2136EXPORT_SYMBOL(cxgb4_port_e2cchan);
2137
2138unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
2139{
2140        struct adapter *adap = netdev2adap(dev);
2141        u32 v1, v2, lp_count, hp_count;
2142
2143        v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2144        v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2145        if (is_t4(adap->params.chip)) {
2146                lp_count = LP_COUNT_G(v1);
2147                hp_count = HP_COUNT_G(v1);
2148        } else {
2149                lp_count = LP_COUNT_T5_G(v1);
2150                hp_count = HP_COUNT_T5_G(v2);
2151        }
2152        return lpfifo ? lp_count : hp_count;
2153}
2154EXPORT_SYMBOL(cxgb4_dbfifo_count);
2155
2156/**
2157 *      cxgb4_port_viid - get the VI id of a port
2158 *      @dev: the net device for the port
2159 *
2160 *      Return the VI id of the given port.
2161 */
2162unsigned int cxgb4_port_viid(const struct net_device *dev)
2163{
2164        return netdev2pinfo(dev)->viid;
2165}
2166EXPORT_SYMBOL(cxgb4_port_viid);
2167
2168/**
2169 *      cxgb4_port_idx - get the index of a port
2170 *      @dev: the net device for the port
2171 *
2172 *      Return the index of the given port.
2173 */
2174unsigned int cxgb4_port_idx(const struct net_device *dev)
2175{
2176        return netdev2pinfo(dev)->port_id;
2177}
2178EXPORT_SYMBOL(cxgb4_port_idx);
2179
2180void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
2181                         struct tp_tcp_stats *v6)
2182{
2183        struct adapter *adap = pci_get_drvdata(pdev);
2184
2185        spin_lock(&adap->stats_lock);
2186        t4_tp_get_tcp_stats(adap, v4, v6, false);
2187        spin_unlock(&adap->stats_lock);
2188}
2189EXPORT_SYMBOL(cxgb4_get_tcp_stats);
2190
2191void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
2192                      const unsigned int *pgsz_order)
2193{
2194        struct adapter *adap = netdev2adap(dev);
2195
2196        t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
2197        t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
2198                     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
2199                     HPZ3_V(pgsz_order[3]));
2200}
2201EXPORT_SYMBOL(cxgb4_iscsi_init);
2202
2203int cxgb4_flush_eq_cache(struct net_device *dev)
2204{
2205        struct adapter *adap = netdev2adap(dev);
2206
2207        return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS);
2208}
2209EXPORT_SYMBOL(cxgb4_flush_eq_cache);
2210
2211static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
2212{
2213        u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
2214        __be64 indices;
2215        int ret;
2216
2217        spin_lock(&adap->win0_lock);
2218        ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2219                           sizeof(indices), (__be32 *)&indices,
2220                           T4_MEMORY_READ);
2221        spin_unlock(&adap->win0_lock);
2222        if (!ret) {
2223                *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2224                *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
2225        }
2226        return ret;
2227}
2228
2229int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2230                        u16 size)
2231{
2232        struct adapter *adap = netdev2adap(dev);
2233        u16 hw_pidx, hw_cidx;
2234        int ret;
2235
2236        ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2237        if (ret)
2238                goto out;
2239
2240        if (pidx != hw_pidx) {
2241                u16 delta;
2242                u32 val;
2243
2244                if (pidx >= hw_pidx)
2245                        delta = pidx - hw_pidx;
2246                else
2247                        delta = size - hw_pidx + pidx;
2248
2249                if (is_t4(adap->params.chip))
2250                        val = PIDX_V(delta);
2251                else
2252                        val = PIDX_T5_V(delta);
2253                wmb();
2254                t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2255                             QID_V(qid) | val);
2256        }
2257out:
2258        return ret;
2259}
2260EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2261
2262int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2263{
2264        u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
2265        u32 edc0_end, edc1_end, mc0_end, mc1_end;
2266        u32 offset, memtype, memaddr;
2267        struct adapter *adap;
2268        u32 hma_size = 0;
2269        int ret;
2270
2271        adap = netdev2adap(dev);
2272
2273        offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2274
2275        /* Figure out where the offset lands in the Memory Type/Address scheme.
2276         * This code assumes that the memory is laid out starting at offset 0
2277         * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2278         * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
2279         * MC0, and some have both MC0 and MC1.
2280         */
2281        size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2282        edc0_size = EDRAM0_SIZE_G(size) << 20;
2283        size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2284        edc1_size = EDRAM1_SIZE_G(size) << 20;
2285        size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2286        mc0_size = EXT_MEM0_SIZE_G(size) << 20;
2287
2288        if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) {
2289                size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2290                hma_size = EXT_MEM1_SIZE_G(size) << 20;
2291        }
2292        edc0_end = edc0_size;
2293        edc1_end = edc0_end + edc1_size;
2294        mc0_end = edc1_end + mc0_size;
2295
2296        if (offset < edc0_end) {
2297                memtype = MEM_EDC0;
2298                memaddr = offset;
2299        } else if (offset < edc1_end) {
2300                memtype = MEM_EDC1;
2301                memaddr = offset - edc0_end;
2302        } else {
2303                if (hma_size && (offset < (edc1_end + hma_size))) {
2304                        memtype = MEM_HMA;
2305                        memaddr = offset - edc1_end;
2306                } else if (offset < mc0_end) {
2307                        memtype = MEM_MC0;
2308                        memaddr = offset - edc1_end;
2309                } else if (is_t5(adap->params.chip)) {
2310                        size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2311                        mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2312                        mc1_end = mc0_end + mc1_size;
2313                        if (offset < mc1_end) {
2314                                memtype = MEM_MC1;
2315                                memaddr = offset - mc0_end;
2316                        } else {
2317                                /* offset beyond the end of any memory */
2318                                goto err;
2319                        }
2320                } else {
2321                        /* T4/T6 only has a single memory channel */
2322                        goto err;
2323                }
2324        }
2325
2326        spin_lock(&adap->win0_lock);
2327        ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2328        spin_unlock(&adap->win0_lock);
2329        return ret;
2330
2331err:
2332        dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2333                stag, offset);
2334        return -EINVAL;
2335}
2336EXPORT_SYMBOL(cxgb4_read_tpte);
2337
2338u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2339{
2340        u32 hi, lo;
2341        struct adapter *adap;
2342
2343        adap = netdev2adap(dev);
2344        lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2345        hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2346
2347        return ((u64)hi << 32) | (u64)lo;
2348}
2349EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2350
2351int cxgb4_bar2_sge_qregs(struct net_device *dev,
2352                         unsigned int qid,
2353                         enum cxgb4_bar2_qtype qtype,
2354                         int user,
2355                         u64 *pbar2_qoffset,
2356                         unsigned int *pbar2_qid)
2357{
2358        return t4_bar2_sge_qregs(netdev2adap(dev),
2359                                 qid,
2360                                 (qtype == CXGB4_BAR2_QTYPE_EGRESS
2361                                  ? T4_BAR2_QTYPE_EGRESS
2362                                  : T4_BAR2_QTYPE_INGRESS),
2363                                 user,
2364                                 pbar2_qoffset,
2365                                 pbar2_qid);
2366}
2367EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2368
2369static struct pci_driver cxgb4_driver;
2370
2371static void check_neigh_update(struct neighbour *neigh)
2372{
2373        const struct device *parent;
2374        const struct net_device *netdev = neigh->dev;
2375
2376        if (is_vlan_dev(netdev))
2377                netdev = vlan_dev_real_dev(netdev);
2378        parent = netdev->dev.parent;
2379        if (parent && parent->driver == &cxgb4_driver.driver)
2380                t4_l2t_update(dev_get_drvdata(parent), neigh);
2381}
2382
2383static int netevent_cb(struct notifier_block *nb, unsigned long event,
2384                       void *data)
2385{
2386        switch (event) {
2387        case NETEVENT_NEIGH_UPDATE:
2388                check_neigh_update(data);
2389                break;
2390        case NETEVENT_REDIRECT:
2391        default:
2392                break;
2393        }
2394        return 0;
2395}
2396
2397static bool netevent_registered;
2398static struct notifier_block cxgb4_netevent_nb = {
2399        .notifier_call = netevent_cb
2400};
2401
2402static void drain_db_fifo(struct adapter *adap, int usecs)
2403{
2404        u32 v1, v2, lp_count, hp_count;
2405
2406        do {
2407                v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2408                v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2409                if (is_t4(adap->params.chip)) {
2410                        lp_count = LP_COUNT_G(v1);
2411                        hp_count = HP_COUNT_G(v1);
2412                } else {
2413                        lp_count = LP_COUNT_T5_G(v1);
2414                        hp_count = HP_COUNT_T5_G(v2);
2415                }
2416
2417                if (lp_count == 0 && hp_count == 0)
2418                        break;
2419                set_current_state(TASK_UNINTERRUPTIBLE);
2420                schedule_timeout(usecs_to_jiffies(usecs));
2421        } while (1);
2422}
2423
2424static void disable_txq_db(struct sge_txq *q)
2425{
2426        unsigned long flags;
2427
2428        spin_lock_irqsave(&q->db_lock, flags);
2429        q->db_disabled = 1;
2430        spin_unlock_irqrestore(&q->db_lock, flags);
2431}
2432
2433static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2434{
2435        spin_lock_irq(&q->db_lock);
2436        if (q->db_pidx_inc) {
2437                /* Make sure that all writes to the TX descriptors
2438                 * are committed before we tell HW about them.
2439                 */
2440                wmb();
2441                t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2442                             QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2443                q->db_pidx_inc = 0;
2444        }
2445        q->db_disabled = 0;
2446        spin_unlock_irq(&q->db_lock);
2447}
2448
2449static void disable_dbs(struct adapter *adap)
2450{
2451        int i;
2452
2453        for_each_ethrxq(&adap->sge, i)
2454                disable_txq_db(&adap->sge.ethtxq[i].q);
2455        if (is_offload(adap)) {
2456                struct sge_uld_txq_info *txq_info =
2457                        adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2458
2459                if (txq_info) {
2460                        for_each_ofldtxq(&adap->sge, i) {
2461                                struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2462
2463                                disable_txq_db(&txq->q);
2464                        }
2465                }
2466        }
2467        for_each_port(adap, i)
2468                disable_txq_db(&adap->sge.ctrlq[i].q);
2469}
2470
2471static void enable_dbs(struct adapter *adap)
2472{
2473        int i;
2474
2475        for_each_ethrxq(&adap->sge, i)
2476                enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2477        if (is_offload(adap)) {
2478                struct sge_uld_txq_info *txq_info =
2479                        adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2480
2481                if (txq_info) {
2482                        for_each_ofldtxq(&adap->sge, i) {
2483                                struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2484
2485                                enable_txq_db(adap, &txq->q);
2486                        }
2487                }
2488        }
2489        for_each_port(adap, i)
2490                enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2491}
2492
2493static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2494{
2495        enum cxgb4_uld type = CXGB4_ULD_RDMA;
2496
2497        if (adap->uld && adap->uld[type].handle)
2498                adap->uld[type].control(adap->uld[type].handle, cmd);
2499}
2500
2501static void process_db_full(struct work_struct *work)
2502{
2503        struct adapter *adap;
2504
2505        adap = container_of(work, struct adapter, db_full_task);
2506
2507        drain_db_fifo(adap, dbfifo_drain_delay);
2508        enable_dbs(adap);
2509        notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2510        if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2511                t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2512                                 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2513                                 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2514        else
2515                t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2516                                 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2517}
2518
2519static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2520{
2521        u16 hw_pidx, hw_cidx;
2522        int ret;
2523
2524        spin_lock_irq(&q->db_lock);
2525        ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2526        if (ret)
2527                goto out;
2528        if (q->db_pidx != hw_pidx) {
2529                u16 delta;
2530                u32 val;
2531
2532                if (q->db_pidx >= hw_pidx)
2533                        delta = q->db_pidx - hw_pidx;
2534                else
2535                        delta = q->size - hw_pidx + q->db_pidx;
2536
2537                if (is_t4(adap->params.chip))
2538                        val = PIDX_V(delta);
2539                else
2540                        val = PIDX_T5_V(delta);
2541                wmb();
2542                t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2543                             QID_V(q->cntxt_id) | val);
2544        }
2545out:
2546        q->db_disabled = 0;
2547        q->db_pidx_inc = 0;
2548        spin_unlock_irq(&q->db_lock);
2549        if (ret)
2550                CH_WARN(adap, "DB drop recovery failed.\n");
2551}
2552
2553static void recover_all_queues(struct adapter *adap)
2554{
2555        int i;
2556
2557        for_each_ethrxq(&adap->sge, i)
2558                sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2559        if (is_offload(adap)) {
2560                struct sge_uld_txq_info *txq_info =
2561                        adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2562                if (txq_info) {
2563                        for_each_ofldtxq(&adap->sge, i) {
2564                                struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2565
2566                                sync_txq_pidx(adap, &txq->q);
2567                        }
2568                }
2569        }
2570        for_each_port(adap, i)
2571                sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2572}
2573
2574static void process_db_drop(struct work_struct *work)
2575{
2576        struct adapter *adap;
2577
2578        adap = container_of(work, struct adapter, db_drop_task);
2579
2580        if (is_t4(adap->params.chip)) {
2581                drain_db_fifo(adap, dbfifo_drain_delay);
2582                notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2583                drain_db_fifo(adap, dbfifo_drain_delay);
2584                recover_all_queues(adap);
2585                drain_db_fifo(adap, dbfifo_drain_delay);
2586                enable_dbs(adap);
2587                notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2588        } else if (is_t5(adap->params.chip)) {
2589                u32 dropped_db = t4_read_reg(adap, 0x010ac);
2590                u16 qid = (dropped_db >> 15) & 0x1ffff;
2591                u16 pidx_inc = dropped_db & 0x1fff;
2592                u64 bar2_qoffset;
2593                unsigned int bar2_qid;
2594                int ret;
2595
2596                ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2597                                        0, &bar2_qoffset, &bar2_qid);
2598                if (ret)
2599                        dev_err(adap->pdev_dev, "doorbell drop recovery: "
2600                                "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2601                else
2602                        writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2603                               adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2604
2605                /* Re-enable BAR2 WC */
2606                t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2607        }
2608
2609        if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2610                t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2611}
2612
2613void t4_db_full(struct adapter *adap)
2614{
2615        if (is_t4(adap->params.chip)) {
2616                disable_dbs(adap);
2617                notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2618                t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2619                                 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2620                queue_work(adap->workq, &adap->db_full_task);
2621        }
2622}
2623
2624void t4_db_dropped(struct adapter *adap)
2625{
2626        if (is_t4(adap->params.chip)) {
2627                disable_dbs(adap);
2628                notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2629        }
2630        queue_work(adap->workq, &adap->db_drop_task);
2631}
2632
2633void t4_register_netevent_notifier(void)
2634{
2635        if (!netevent_registered) {
2636                register_netevent_notifier(&cxgb4_netevent_nb);
2637                netevent_registered = true;
2638        }
2639}
2640
2641static void detach_ulds(struct adapter *adap)
2642{
2643        unsigned int i;
2644
2645        mutex_lock(&uld_mutex);
2646        list_del(&adap->list_node);
2647
2648        for (i = 0; i < CXGB4_ULD_MAX; i++)
2649                if (adap->uld && adap->uld[i].handle)
2650                        adap->uld[i].state_change(adap->uld[i].handle,
2651                                             CXGB4_STATE_DETACH);
2652
2653        if (netevent_registered && list_empty(&adapter_list)) {
2654                unregister_netevent_notifier(&cxgb4_netevent_nb);
2655                netevent_registered = false;
2656        }
2657        mutex_unlock(&uld_mutex);
2658}
2659
2660static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2661{
2662        unsigned int i;
2663
2664        mutex_lock(&uld_mutex);
2665        for (i = 0; i < CXGB4_ULD_MAX; i++)
2666                if (adap->uld && adap->uld[i].handle)
2667                        adap->uld[i].state_change(adap->uld[i].handle,
2668                                                  new_state);
2669        mutex_unlock(&uld_mutex);
2670}
2671
2672#if IS_ENABLED(CONFIG_IPV6)
2673static int cxgb4_inet6addr_handler(struct notifier_block *this,
2674                                   unsigned long event, void *data)
2675{
2676        struct inet6_ifaddr *ifa = data;
2677        struct net_device *event_dev = ifa->idev->dev;
2678        const struct device *parent = NULL;
2679#if IS_ENABLED(CONFIG_BONDING)
2680        struct adapter *adap;
2681#endif
2682        if (is_vlan_dev(event_dev))
2683                event_dev = vlan_dev_real_dev(event_dev);
2684#if IS_ENABLED(CONFIG_BONDING)
2685        if (event_dev->flags & IFF_MASTER) {
2686                list_for_each_entry(adap, &adapter_list, list_node) {
2687                        switch (event) {
2688                        case NETDEV_UP:
2689                                cxgb4_clip_get(adap->port[0],
2690                                               (const u32 *)ifa, 1);
2691                                break;
2692                        case NETDEV_DOWN:
2693                                cxgb4_clip_release(adap->port[0],
2694                                                   (const u32 *)ifa, 1);
2695                                break;
2696                        default:
2697                                break;
2698                        }
2699                }
2700                return NOTIFY_OK;
2701        }
2702#endif
2703
2704        if (event_dev)
2705                parent = event_dev->dev.parent;
2706
2707        if (parent && parent->driver == &cxgb4_driver.driver) {
2708                switch (event) {
2709                case NETDEV_UP:
2710                        cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2711                        break;
2712                case NETDEV_DOWN:
2713                        cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2714                        break;
2715                default:
2716                        break;
2717                }
2718        }
2719        return NOTIFY_OK;
2720}
2721
2722static bool inet6addr_registered;
2723static struct notifier_block cxgb4_inet6addr_notifier = {
2724        .notifier_call = cxgb4_inet6addr_handler
2725};
2726
2727static void update_clip(const struct adapter *adap)
2728{
2729        int i;
2730        struct net_device *dev;
2731        int ret;
2732
2733        rcu_read_lock();
2734
2735        for (i = 0; i < MAX_NPORTS; i++) {
2736                dev = adap->port[i];
2737                ret = 0;
2738
2739                if (dev)
2740                        ret = cxgb4_update_root_dev_clip(dev);
2741
2742                if (ret < 0)
2743                        break;
2744        }
2745        rcu_read_unlock();
2746}
2747#endif /* IS_ENABLED(CONFIG_IPV6) */
2748
2749/**
2750 *      cxgb_up - enable the adapter
2751 *      @adap: adapter being enabled
2752 *
2753 *      Called when the first port is enabled, this function performs the
2754 *      actions necessary to make an adapter operational, such as completing
2755 *      the initialization of HW modules, and enabling interrupts.
2756 *
2757 *      Must be called with the rtnl lock held.
2758 */
2759static int cxgb_up(struct adapter *adap)
2760{
2761        struct sge *s = &adap->sge;
2762        int err;
2763
2764        mutex_lock(&uld_mutex);
2765        err = setup_sge_queues(adap);
2766        if (err)
2767                goto rel_lock;
2768        err = setup_rss(adap);
2769        if (err)
2770                goto freeq;
2771
2772        if (adap->flags & CXGB4_USING_MSIX) {
2773                if (s->nd_msix_idx < 0) {
2774                        err = -ENOMEM;
2775                        goto irq_err;
2776                }
2777
2778                err = request_irq(adap->msix_info[s->nd_msix_idx].vec,
2779                                  t4_nondata_intr, 0,
2780                                  adap->msix_info[s->nd_msix_idx].desc, adap);
2781                if (err)
2782                        goto irq_err;
2783
2784                err = request_msix_queue_irqs(adap);
2785                if (err)
2786                        goto irq_err_free_nd_msix;
2787        } else {
2788                err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2789                                  (adap->flags & CXGB4_USING_MSI) ? 0
2790                                                                  : IRQF_SHARED,
2791                                  adap->port[0]->name, adap);
2792                if (err)
2793                        goto irq_err;
2794        }
2795
2796        enable_rx(adap);
2797        t4_sge_start(adap);
2798        t4_intr_enable(adap);
2799        adap->flags |= CXGB4_FULL_INIT_DONE;
2800        mutex_unlock(&uld_mutex);
2801
2802        notify_ulds(adap, CXGB4_STATE_UP);
2803#if IS_ENABLED(CONFIG_IPV6)
2804        update_clip(adap);
2805#endif
2806        return err;
2807
2808irq_err_free_nd_msix:
2809        free_irq(adap->msix_info[s->nd_msix_idx].vec, adap);
2810irq_err:
2811        dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2812freeq:
2813        t4_free_sge_resources(adap);
2814rel_lock:
2815        mutex_unlock(&uld_mutex);
2816        return err;
2817}
2818
2819static void cxgb_down(struct adapter *adapter)
2820{
2821        cancel_work_sync(&adapter->tid_release_task);
2822        cancel_work_sync(&adapter->db_full_task);
2823        cancel_work_sync(&adapter->db_drop_task);
2824        adapter->tid_release_task_busy = false;
2825        adapter->tid_release_head = NULL;
2826
2827        t4_sge_stop(adapter);
2828        t4_free_sge_resources(adapter);
2829
2830        adapter->flags &= ~CXGB4_FULL_INIT_DONE;
2831}
2832
2833/*
2834 * net_device operations
2835 */
2836int cxgb_open(struct net_device *dev)
2837{
2838        struct port_info *pi = netdev_priv(dev);
2839        struct adapter *adapter = pi->adapter;
2840        int err;
2841
2842        netif_carrier_off(dev);
2843
2844        if (!(adapter->flags & CXGB4_FULL_INIT_DONE)) {
2845                err = cxgb_up(adapter);
2846                if (err < 0)
2847                        return err;
2848        }
2849
2850        /* It's possible that the basic port information could have
2851         * changed since we first read it.
2852         */
2853        err = t4_update_port_info(pi);
2854        if (err < 0)
2855                return err;
2856
2857        err = link_start(dev);
2858        if (err)
2859                return err;
2860
2861        if (pi->nmirrorqsets) {
2862                mutex_lock(&pi->vi_mirror_mutex);
2863                err = cxgb4_port_mirror_alloc_queues(dev);
2864                if (err)
2865                        goto out_unlock;
2866
2867                err = cxgb4_port_mirror_start(dev);
2868                if (err)
2869                        goto out_free_queues;
2870                mutex_unlock(&pi->vi_mirror_mutex);
2871        }
2872
2873        netif_tx_start_all_queues(dev);
2874        return 0;
2875
2876out_free_queues:
2877        cxgb4_port_mirror_free_queues(dev);
2878
2879out_unlock:
2880        mutex_unlock(&pi->vi_mirror_mutex);
2881        return err;
2882}
2883
2884int cxgb_close(struct net_device *dev)
2885{
2886        struct port_info *pi = netdev_priv(dev);
2887        struct adapter *adapter = pi->adapter;
2888        int ret;
2889
2890        netif_tx_stop_all_queues(dev);
2891        netif_carrier_off(dev);
2892        ret = t4_enable_pi_params(adapter, adapter->pf, pi,
2893                                  false, false, false);
2894#ifdef CONFIG_CHELSIO_T4_DCB
2895        cxgb4_dcb_reset(dev);
2896        dcb_tx_queue_prio_enable(dev, false);
2897#endif
2898        if (ret)
2899                return ret;
2900
2901        if (pi->nmirrorqsets) {
2902                mutex_lock(&pi->vi_mirror_mutex);
2903                cxgb4_port_mirror_stop(dev);
2904                cxgb4_port_mirror_free_queues(dev);
2905                mutex_unlock(&pi->vi_mirror_mutex);
2906        }
2907
2908        return 0;
2909}
2910
2911int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2912                __be32 sip, __be16 sport, __be16 vlan,
2913                unsigned int queue, unsigned char port, unsigned char mask)
2914{
2915        int ret;
2916        struct filter_entry *f;
2917        struct adapter *adap;
2918        int i;
2919        u8 *val;
2920
2921        adap = netdev2adap(dev);
2922
2923        /* Adjust stid to correct filter index */
2924        stid -= adap->tids.sftid_base;
2925        stid += adap->tids.nftids;
2926
2927        /* Check to make sure the filter requested is writable ...
2928         */
2929        f = &adap->tids.ftid_tab[stid];
2930        ret = writable_filter(f);
2931        if (ret)
2932                return ret;
2933
2934        /* Clear out any old resources being used by the filter before
2935         * we start constructing the new filter.
2936         */
2937        if (f->valid)
2938                clear_filter(adap, f);
2939
2940        /* Clear out filter specifications */
2941        memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2942        f->fs.val.lport = be16_to_cpu(sport);
2943        f->fs.mask.lport  = ~0;
2944        val = (u8 *)&sip;
2945        if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2946                for (i = 0; i < 4; i++) {
2947                        f->fs.val.lip[i] = val[i];
2948                        f->fs.mask.lip[i] = ~0;
2949                }
2950                if (adap->params.tp.vlan_pri_map & PORT_F) {
2951                        f->fs.val.iport = port;
2952                        f->fs.mask.iport = mask;
2953                }
2954        }
2955
2956        if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2957                f->fs.val.proto = IPPROTO_TCP;
2958                f->fs.mask.proto = ~0;
2959        }
2960
2961        f->fs.dirsteer = 1;
2962        f->fs.iq = queue;
2963        /* Mark filter as locked */
2964        f->locked = 1;
2965        f->fs.rpttid = 1;
2966
2967        /* Save the actual tid. We need this to get the corresponding
2968         * filter entry structure in filter_rpl.
2969         */
2970        f->tid = stid + adap->tids.ftid_base;
2971        ret = set_filter_wr(adap, stid);
2972        if (ret) {
2973                clear_filter(adap, f);
2974                return ret;
2975        }
2976
2977        return 0;
2978}
2979EXPORT_SYMBOL(cxgb4_create_server_filter);
2980
2981int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2982                unsigned int queue, bool ipv6)
2983{
2984        struct filter_entry *f;
2985        struct adapter *adap;
2986
2987        adap = netdev2adap(dev);
2988
2989        /* Adjust stid to correct filter index */
2990        stid -= adap->tids.sftid_base;
2991        stid += adap->tids.nftids;
2992
2993        f = &adap->tids.ftid_tab[stid];
2994        /* Unlock the filter */
2995        f->locked = 0;
2996
2997        return delete_filter(adap, stid);
2998}
2999EXPORT_SYMBOL(cxgb4_remove_server_filter);
3000
3001static void cxgb_get_stats(struct net_device *dev,
3002                           struct rtnl_link_stats64 *ns)
3003{
3004        struct port_stats stats;
3005        struct port_info *p = netdev_priv(dev);
3006        struct adapter *adapter = p->adapter;
3007
3008        /* Block retrieving statistics during EEH error
3009         * recovery. Otherwise, the recovery might fail
3010         * and the PCI device will be removed permanently
3011         */
3012        spin_lock(&adapter->stats_lock);
3013        if (!netif_device_present(dev)) {
3014                spin_unlock(&adapter->stats_lock);
3015                return;
3016        }
3017        t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
3018                                 &p->stats_base);
3019        spin_unlock(&adapter->stats_lock);
3020
3021        ns->tx_bytes   = stats.tx_octets;
3022        ns->tx_packets = stats.tx_frames;
3023        ns->rx_bytes   = stats.rx_octets;
3024        ns->rx_packets = stats.rx_frames;
3025        ns->multicast  = stats.rx_mcast_frames;
3026
3027        /* detailed rx_errors */
3028        ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
3029                               stats.rx_runt;
3030        ns->rx_over_errors   = 0;
3031        ns->rx_crc_errors    = stats.rx_fcs_err;
3032        ns->rx_frame_errors  = stats.rx_symbol_err;
3033        ns->rx_dropped       = stats.rx_ovflow0 + stats.rx_ovflow1 +
3034                               stats.rx_ovflow2 + stats.rx_ovflow3 +
3035                               stats.rx_trunc0 + stats.rx_trunc1 +
3036                               stats.rx_trunc2 + stats.rx_trunc3;
3037        ns->rx_missed_errors = 0;
3038
3039        /* detailed tx_errors */
3040        ns->tx_aborted_errors   = 0;
3041        ns->tx_carrier_errors   = 0;
3042        ns->tx_fifo_errors      = 0;
3043        ns->tx_heartbeat_errors = 0;
3044        ns->tx_window_errors    = 0;
3045
3046        ns->tx_errors = stats.tx_error_frames;
3047        ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
3048                ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
3049}
3050
3051static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
3052{
3053        unsigned int mbox;
3054        int ret = 0, prtad, devad;
3055        struct port_info *pi = netdev_priv(dev);
3056        struct adapter *adapter = pi->adapter;
3057        struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
3058
3059        switch (cmd) {
3060        case SIOCGMIIPHY:
3061                if (pi->mdio_addr < 0)
3062                        return -EOPNOTSUPP;
3063                data->phy_id = pi->mdio_addr;
3064                break;
3065        case SIOCGMIIREG:
3066        case SIOCSMIIREG:
3067                if (mdio_phy_id_is_c45(data->phy_id)) {
3068                        prtad = mdio_phy_id_prtad(data->phy_id);
3069                        devad = mdio_phy_id_devad(data->phy_id);
3070                } else if (data->phy_id < 32) {
3071                        prtad = data->phy_id;
3072                        devad = 0;
3073                        data->reg_num &= 0x1f;
3074                } else
3075                        return -EINVAL;
3076
3077                mbox = pi->adapter->pf;
3078                if (cmd == SIOCGMIIREG)
3079                        ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
3080                                         data->reg_num, &data->val_out);
3081                else
3082                        ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
3083                                         data->reg_num, data->val_in);
3084                break;
3085        case SIOCGHWTSTAMP:
3086                return copy_to_user(req->ifr_data, &pi->tstamp_config,
3087                                    sizeof(pi->tstamp_config)) ?
3088                        -EFAULT : 0;
3089        case SIOCSHWTSTAMP:
3090                if (copy_from_user(&pi->tstamp_config, req->ifr_data,
3091                                   sizeof(pi->tstamp_config)))
3092                        return -EFAULT;
3093
3094                if (!is_t4(adapter->params.chip)) {
3095                        switch (pi->tstamp_config.tx_type) {
3096                        case HWTSTAMP_TX_OFF:
3097                        case HWTSTAMP_TX_ON:
3098                                break;
3099                        default:
3100                                return -ERANGE;
3101                        }
3102
3103                        switch (pi->tstamp_config.rx_filter) {
3104                        case HWTSTAMP_FILTER_NONE:
3105                                pi->rxtstamp = false;
3106                                break;
3107                        case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3108                        case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3109                                cxgb4_ptprx_timestamping(pi, pi->port_id,
3110                                                         PTP_TS_L4);
3111                                break;
3112                        case HWTSTAMP_FILTER_PTP_V2_EVENT:
3113                                cxgb4_ptprx_timestamping(pi, pi->port_id,
3114                                                         PTP_TS_L2_L4);
3115                                break;
3116                        case HWTSTAMP_FILTER_ALL:
3117                        case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3118                        case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3119                        case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3120                        case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3121                                pi->rxtstamp = true;
3122                                break;
3123                        default:
3124                                pi->tstamp_config.rx_filter =
3125                                        HWTSTAMP_FILTER_NONE;
3126                                return -ERANGE;
3127                        }
3128
3129                        if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) &&
3130                            (pi->tstamp_config.rx_filter ==
3131                                HWTSTAMP_FILTER_NONE)) {
3132                                if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0)
3133                                        pi->ptp_enable = false;
3134                        }
3135
3136                        if (pi->tstamp_config.rx_filter !=
3137                                HWTSTAMP_FILTER_NONE) {
3138                                if (cxgb4_ptp_redirect_rx_packet(adapter,
3139                                                                 pi) >= 0)
3140                                        pi->ptp_enable = true;
3141                        }
3142                } else {
3143                        /* For T4 Adapters */
3144                        switch (pi->tstamp_config.rx_filter) {
3145                        case HWTSTAMP_FILTER_NONE:
3146                        pi->rxtstamp = false;
3147                        break;
3148                        case HWTSTAMP_FILTER_ALL:
3149                        pi->rxtstamp = true;
3150                        break;
3151                        default:
3152                        pi->tstamp_config.rx_filter =
3153                        HWTSTAMP_FILTER_NONE;
3154                        return -ERANGE;
3155                        }
3156                }
3157                return copy_to_user(req->ifr_data, &pi->tstamp_config,
3158                                    sizeof(pi->tstamp_config)) ?
3159                        -EFAULT : 0;
3160        default:
3161                return -EOPNOTSUPP;
3162        }
3163        return ret;
3164}
3165
3166static void cxgb_set_rxmode(struct net_device *dev)
3167{
3168        /* unfortunately we can't return errors to the stack */
3169        set_rxmode(dev, -1, false);
3170}
3171
3172static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
3173{
3174        struct port_info *pi = netdev_priv(dev);
3175        int ret;
3176
3177        ret = t4_set_rxmode(pi->adapter, pi->adapter->mbox, pi->viid,
3178                            pi->viid_mirror, new_mtu, -1, -1, -1, -1, true);
3179        if (!ret)
3180                dev->mtu = new_mtu;
3181        return ret;
3182}
3183
3184#ifdef CONFIG_PCI_IOV
3185static int cxgb4_mgmt_open(struct net_device *dev)
3186{
3187        /* Turn carrier off since we don't have to transmit anything on this
3188         * interface.
3189         */
3190        netif_carrier_off(dev);
3191        return 0;
3192}
3193
3194/* Fill MAC address that will be assigned by the FW */
3195static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap)
3196{
3197        u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
3198        unsigned int i, vf, nvfs;
3199        u16 a, b;
3200        int err;
3201        u8 *na;
3202
3203        adap->params.pci.vpd_cap_addr = pci_find_capability(adap->pdev,
3204                                                            PCI_CAP_ID_VPD);
3205        err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
3206        if (err)
3207                return;
3208
3209        na = adap->params.vpd.na;
3210        for (i = 0; i < ETH_ALEN; i++)
3211                hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
3212                              hex2val(na[2 * i + 1]));
3213
3214        a = (hw_addr[0] << 8) | hw_addr[1];
3215        b = (hw_addr[1] << 8) | hw_addr[2];
3216        a ^= b;
3217        a |= 0x0200;    /* locally assigned Ethernet MAC address */
3218        a &= ~0x0100;   /* not a multicast Ethernet MAC address */
3219        macaddr[0] = a >> 8;
3220        macaddr[1] = a & 0xff;
3221
3222        for (i = 2; i < 5; i++)
3223                macaddr[i] = hw_addr[i + 1];
3224
3225        for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev);
3226                vf < nvfs; vf++) {
3227                macaddr[5] = adap->pf * nvfs + vf;
3228                ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr);
3229        }
3230}
3231
3232static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
3233{
3234        struct port_info *pi = netdev_priv(dev);
3235        struct adapter *adap = pi->adapter;
3236        int ret;
3237
3238        /* verify MAC addr is valid */
3239        if (!is_valid_ether_addr(mac)) {
3240                dev_err(pi->adapter->pdev_dev,
3241                        "Invalid Ethernet address %pM for VF %d\n",
3242                        mac, vf);
3243                return -EINVAL;
3244        }
3245
3246        dev_info(pi->adapter->pdev_dev,
3247                 "Setting MAC %pM on VF %d\n", mac, vf);
3248        ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
3249        if (!ret)
3250                ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
3251        return ret;
3252}
3253
3254static int cxgb4_mgmt_get_vf_config(struct net_device *dev,
3255                                    int vf, struct ifla_vf_info *ivi)
3256{
3257        struct port_info *pi = netdev_priv(dev);
3258        struct adapter *adap = pi->adapter;
3259        struct vf_info *vfinfo;
3260
3261        if (vf >= adap->num_vfs)
3262                return -EINVAL;
3263        vfinfo = &adap->vfinfo[vf];
3264
3265        ivi->vf = vf;
3266        ivi->max_tx_rate = vfinfo->tx_rate;
3267        ivi->min_tx_rate = 0;
3268        ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr);
3269        ivi->vlan = vfinfo->vlan;
3270        ivi->linkstate = vfinfo->link_state;
3271        return 0;
3272}
3273
3274static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev,
3275                                       struct netdev_phys_item_id *ppid)
3276{
3277        struct port_info *pi = netdev_priv(dev);
3278        unsigned int phy_port_id;
3279
3280        phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
3281        ppid->id_len = sizeof(phy_port_id);
3282        memcpy(ppid->id, &phy_port_id, ppid->id_len);
3283        return 0;
3284}
3285
3286static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf,
3287                                  int min_tx_rate, int max_tx_rate)
3288{
3289        struct port_info *pi = netdev_priv(dev);
3290        struct adapter *adap = pi->adapter;
3291        unsigned int link_ok, speed, mtu;
3292        u32 fw_pfvf, fw_class;
3293        int class_id = vf;
3294        int ret;
3295        u16 pktsize;
3296
3297        if (vf >= adap->num_vfs)
3298                return -EINVAL;
3299
3300        if (min_tx_rate) {
3301                dev_err(adap->pdev_dev,
3302                        "Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
3303                        min_tx_rate, vf);
3304                return -EINVAL;
3305        }
3306
3307        if (max_tx_rate == 0) {
3308                /* unbind VF to to any Traffic Class */
3309                fw_pfvf =
3310                    (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3311                     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
3312                fw_class = 0xffffffff;
3313                ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
3314                                    &fw_pfvf, &fw_class);
3315                if (ret) {
3316                        dev_err(adap->pdev_dev,
3317                                "Err %d in unbinding PF %d VF %d from TX Rate Limiting\n",
3318                                ret, adap->pf, vf);
3319                        return -EINVAL;
3320                }
3321                dev_info(adap->pdev_dev,
3322                         "PF %d VF %d is unbound from TX Rate Limiting\n",
3323                         adap->pf, vf);
3324                adap->vfinfo[vf].tx_rate = 0;
3325                return 0;
3326        }
3327
3328        ret = t4_get_link_params(pi, &link_ok, &speed, &mtu);
3329        if (ret != FW_SUCCESS) {
3330                dev_err(adap->pdev_dev,
3331                        "Failed to get link information for VF %d\n", vf);
3332                return -EINVAL;
3333        }
3334
3335        if (!link_ok) {
3336                dev_err(adap->pdev_dev, "Link down for VF %d\n", vf);
3337                return -EINVAL;
3338        }
3339
3340        if (max_tx_rate > speed) {
3341                dev_err(adap->pdev_dev,
3342                        "Max tx rate %d for VF %d can't be > link-speed %u",
3343                        max_tx_rate, vf, speed);
3344                return -EINVAL;
3345        }
3346
3347        pktsize = mtu;
3348        /* subtract ethhdr size and 4 bytes crc since, f/w appends it */
3349        pktsize = pktsize - sizeof(struct ethhdr) - 4;
3350        /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
3351        pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr);
3352        /* configure Traffic Class for rate-limiting */
3353        ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET,
3354                              SCHED_CLASS_LEVEL_CL_RL,
3355                              SCHED_CLASS_MODE_CLASS,
3356                              SCHED_CLASS_RATEUNIT_BITS,
3357                              SCHED_CLASS_RATEMODE_ABS,
3358                              pi->tx_chan, class_id, 0,
3359                              max_tx_rate * 1000, 0, pktsize, 0);
3360        if (ret) {
3361                dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n",
3362                        ret);
3363                return -EINVAL;
3364        }
3365        dev_info(adap->pdev_dev,
3366                 "Class %d with MSS %u configured with rate %u\n",
3367                 class_id, pktsize, max_tx_rate);
3368
3369        /* bind VF to configured Traffic Class */
3370        fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3371                   FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
3372        fw_class = class_id;
3373        ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf,
3374                            &fw_class);
3375        if (ret) {
3376                dev_err(adap->pdev_dev,
3377                        "Err %d in binding PF %d VF %d to Traffic Class %d\n",
3378                        ret, adap->pf, vf, class_id);
3379                return -EINVAL;
3380        }
3381        dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n",
3382                 adap->pf, vf, class_id);
3383        adap->vfinfo[vf].tx_rate = max_tx_rate;
3384        return 0;
3385}
3386
3387static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf,
3388                                  u16 vlan, u8 qos, __be16 vlan_proto)
3389{
3390        struct port_info *pi = netdev_priv(dev);
3391        struct adapter *adap = pi->adapter;
3392        int ret;
3393
3394        if (vf >= adap->num_vfs || vlan > 4095 || qos > 7)
3395                return -EINVAL;
3396
3397        if (vlan_proto != htons(ETH_P_8021Q) || qos != 0)
3398                return -EPROTONOSUPPORT;
3399
3400        ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan);
3401        if (!ret) {
3402                adap->vfinfo[vf].vlan = vlan;
3403                return 0;
3404        }
3405
3406        dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n",
3407                ret, (vlan ? "setting" : "clearing"), adap->pf, vf);
3408        return ret;
3409}
3410
3411static int cxgb4_mgmt_set_vf_link_state(struct net_device *dev, int vf,
3412                                        int link)
3413{
3414        struct port_info *pi = netdev_priv(dev);
3415        struct adapter *adap = pi->adapter;
3416        u32 param, val;
3417        int ret = 0;
3418
3419        if (vf >= adap->num_vfs)
3420                return -EINVAL;
3421
3422        switch (link) {
3423        case IFLA_VF_LINK_STATE_AUTO:
3424                val = FW_VF_LINK_STATE_AUTO;
3425                break;
3426
3427        case IFLA_VF_LINK_STATE_ENABLE:
3428                val = FW_VF_LINK_STATE_ENABLE;
3429                break;
3430
3431        case IFLA_VF_LINK_STATE_DISABLE:
3432                val = FW_VF_LINK_STATE_DISABLE;
3433                break;
3434
3435        default:
3436                return -EINVAL;
3437        }
3438
3439        param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3440                 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_LINK_STATE));
3441        ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
3442                            &param, &val);
3443        if (ret) {
3444                dev_err(adap->pdev_dev,
3445                        "Error %d in setting PF %d VF %d link state\n",
3446                        ret, adap->pf, vf);
3447                return -EINVAL;
3448        }
3449
3450        adap->vfinfo[vf].link_state = link;
3451        return ret;
3452}
3453#endif /* CONFIG_PCI_IOV */
3454
3455static int cxgb_set_mac_addr(struct net_device *dev, void *p)
3456{
3457        int ret;
3458        struct sockaddr *addr = p;
3459        struct port_info *pi = netdev_priv(dev);
3460
3461        if (!is_valid_ether_addr(addr->sa_data))
3462                return -EADDRNOTAVAIL;
3463
3464        ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
3465                                    addr->sa_data, true, &pi->smt_idx);
3466        if (ret < 0)
3467                return ret;
3468
3469        memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3470        return 0;
3471}
3472
3473#ifdef CONFIG_NET_POLL_CONTROLLER
3474static void cxgb_netpoll(struct net_device *dev)
3475{
3476        struct port_info *pi = netdev_priv(dev);
3477        struct adapter *adap = pi->adapter;
3478
3479        if (adap->flags & CXGB4_USING_MSIX) {
3480                int i;
3481                struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3482
3483                for (i = pi->nqsets; i; i--, rx++)
3484                        t4_sge_intr_msix(0, &rx->rspq);
3485        } else
3486                t4_intr_handler(adap)(0, adap);
3487}
3488#endif
3489
3490static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
3491{
3492        struct port_info *pi = netdev_priv(dev);
3493        struct adapter *adap = pi->adapter;
3494        struct ch_sched_queue qe = { 0 };
3495        struct ch_sched_params p = { 0 };
3496        struct sched_class *e;
3497        u32 req_rate;
3498        int err = 0;
3499
3500        if (!can_sched(dev))
3501                return -ENOTSUPP;
3502
3503        if (index < 0 || index > pi->nqsets - 1)
3504                return -EINVAL;
3505
3506        if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3507                dev_err(adap->pdev_dev,
3508                        "Failed to rate limit on queue %d. Link Down?\n",
3509                        index);
3510                return -EINVAL;
3511        }
3512
3513        qe.queue = index;
3514        e = cxgb4_sched_queue_lookup(dev, &qe);
3515        if (e && e->info.u.params.level != SCHED_CLASS_LEVEL_CL_RL) {
3516                dev_err(adap->pdev_dev,
3517                        "Queue %u already bound to class %u of type: %u\n",
3518                        index, e->idx, e->info.u.params.level);
3519                return -EBUSY;
3520        }
3521
3522        /* Convert from Mbps to Kbps */
3523        req_rate = rate * 1000;
3524
3525        /* Max rate is 100 Gbps */
3526        if (req_rate > SCHED_MAX_RATE_KBPS) {
3527                dev_err(adap->pdev_dev,
3528                        "Invalid rate %u Mbps, Max rate is %u Mbps\n",
3529                        rate, SCHED_MAX_RATE_KBPS / 1000);
3530                return -ERANGE;
3531        }
3532
3533        /* First unbind the queue from any existing class */
3534        memset(&qe, 0, sizeof(qe));
3535        qe.queue = index;
3536        qe.class = SCHED_CLS_NONE;
3537
3538        err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
3539        if (err) {
3540                dev_err(adap->pdev_dev,
3541                        "Unbinding Queue %d on port %d fail. Err: %d\n",
3542                        index, pi->port_id, err);
3543                return err;
3544        }
3545
3546        /* Queue already unbound */
3547        if (!req_rate)
3548                return 0;
3549
3550        /* Fetch any available unused or matching scheduling class */
3551        p.type = SCHED_CLASS_TYPE_PACKET;
3552        p.u.params.level    = SCHED_CLASS_LEVEL_CL_RL;
3553        p.u.params.mode     = SCHED_CLASS_MODE_CLASS;
3554        p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
3555        p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
3556        p.u.params.channel  = pi->tx_chan;
3557        p.u.params.class    = SCHED_CLS_NONE;
3558        p.u.params.minrate  = 0;
3559        p.u.params.maxrate  = req_rate;
3560        p.u.params.weight   = 0;
3561        p.u.params.pktsize  = dev->mtu;
3562
3563        e = cxgb4_sched_class_alloc(dev, &p);
3564        if (!e)
3565                return -ENOMEM;
3566
3567        /* Bind the queue to a scheduling class */
3568        memset(&qe, 0, sizeof(qe));
3569        qe.queue = index;
3570        qe.class = e->idx;
3571
3572        err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
3573        if (err)
3574                dev_err(adap->pdev_dev,
3575                        "Queue rate limiting failed. Err: %d\n", err);
3576        return err;
3577}
3578
3579static int cxgb_setup_tc_flower(struct net_device *dev,
3580                                struct flow_cls_offload *cls_flower)
3581{
3582        switch (cls_flower->command) {
3583        case FLOW_CLS_REPLACE:
3584                return cxgb4_tc_flower_replace(dev, cls_flower);
3585        case FLOW_CLS_DESTROY:
3586                return cxgb4_tc_flower_destroy(dev, cls_flower);
3587        case FLOW_CLS_STATS:
3588                return cxgb4_tc_flower_stats(dev, cls_flower);
3589        default:
3590                return -EOPNOTSUPP;
3591        }
3592}
3593
3594static int cxgb_setup_tc_cls_u32(struct net_device *dev,
3595                                 struct tc_cls_u32_offload *cls_u32)
3596{
3597        switch (cls_u32->command) {
3598        case TC_CLSU32_NEW_KNODE:
3599        case TC_CLSU32_REPLACE_KNODE:
3600                return cxgb4_config_knode(dev, cls_u32);
3601        case TC_CLSU32_DELETE_KNODE:
3602                return cxgb4_delete_knode(dev, cls_u32);
3603        default:
3604                return -EOPNOTSUPP;
3605        }
3606}
3607
3608static int cxgb_setup_tc_matchall(struct net_device *dev,
3609                                  struct tc_cls_matchall_offload *cls_matchall,
3610                                  bool ingress)
3611{
3612        struct adapter *adap = netdev2adap(dev);
3613
3614        if (!adap->tc_matchall)
3615                return -ENOMEM;
3616
3617        switch (cls_matchall->command) {
3618        case TC_CLSMATCHALL_REPLACE:
3619                return cxgb4_tc_matchall_replace(dev, cls_matchall, ingress);
3620        case TC_CLSMATCHALL_DESTROY:
3621                return cxgb4_tc_matchall_destroy(dev, cls_matchall, ingress);
3622        case TC_CLSMATCHALL_STATS:
3623                if (ingress)
3624                        return cxgb4_tc_matchall_stats(dev, cls_matchall);
3625                break;
3626        default:
3627                break;
3628        }
3629
3630        return -EOPNOTSUPP;
3631}
3632
3633static int cxgb_setup_tc_block_ingress_cb(enum tc_setup_type type,
3634                                          void *type_data, void *cb_priv)
3635{
3636        struct net_device *dev = cb_priv;
3637        struct port_info *pi = netdev2pinfo(dev);
3638        struct adapter *adap = netdev2adap(dev);
3639
3640        if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3641                dev_err(adap->pdev_dev,
3642                        "Failed to setup tc on port %d. Link Down?\n",
3643                        pi->port_id);
3644                return -EINVAL;
3645        }
3646
3647        if (!tc_cls_can_offload_and_chain0(dev, type_data))
3648                return -EOPNOTSUPP;
3649
3650        switch (type) {
3651        case TC_SETUP_CLSU32:
3652                return cxgb_setup_tc_cls_u32(dev, type_data);
3653        case TC_SETUP_CLSFLOWER:
3654                return cxgb_setup_tc_flower(dev, type_data);
3655        case TC_SETUP_CLSMATCHALL:
3656                return cxgb_setup_tc_matchall(dev, type_data, true);
3657        default:
3658                return -EOPNOTSUPP;
3659        }
3660}
3661
3662static int cxgb_setup_tc_block_egress_cb(enum tc_setup_type type,
3663                                         void *type_data, void *cb_priv)
3664{
3665        struct net_device *dev = cb_priv;
3666        struct port_info *pi = netdev2pinfo(dev);
3667        struct adapter *adap = netdev2adap(dev);
3668
3669        if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3670                dev_err(adap->pdev_dev,
3671                        "Failed to setup tc on port %d. Link Down?\n",
3672                        pi->port_id);
3673                return -EINVAL;
3674        }
3675
3676        if (!tc_cls_can_offload_and_chain0(dev, type_data))
3677                return -EOPNOTSUPP;
3678
3679        switch (type) {
3680        case TC_SETUP_CLSMATCHALL:
3681                return cxgb_setup_tc_matchall(dev, type_data, false);
3682        default:
3683                break;
3684        }
3685
3686        return -EOPNOTSUPP;
3687}
3688
3689static int cxgb_setup_tc_mqprio(struct net_device *dev,
3690                                struct tc_mqprio_qopt_offload *mqprio)
3691{
3692        struct adapter *adap = netdev2adap(dev);
3693
3694        if (!is_ethofld(adap) || !adap->tc_mqprio)
3695                return -ENOMEM;
3696
3697        return cxgb4_setup_tc_mqprio(dev, mqprio);
3698}
3699
3700static LIST_HEAD(cxgb_block_cb_list);
3701
3702static int cxgb_setup_tc_block(struct net_device *dev,
3703                               struct flow_block_offload *f)
3704{
3705        struct port_info *pi = netdev_priv(dev);
3706        flow_setup_cb_t *cb;
3707        bool ingress_only;
3708
3709        pi->tc_block_shared = f->block_shared;
3710        if (f->binder_type == FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS) {
3711                cb = cxgb_setup_tc_block_egress_cb;
3712                ingress_only = false;
3713        } else {
3714                cb = cxgb_setup_tc_block_ingress_cb;
3715                ingress_only = true;
3716        }
3717
3718        return flow_block_cb_setup_simple(f, &cxgb_block_cb_list,
3719                                          cb, pi, dev, ingress_only);
3720}
3721
3722static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type,
3723                         void *type_data)
3724{
3725        switch (type) {
3726        case TC_SETUP_QDISC_MQPRIO:
3727                return cxgb_setup_tc_mqprio(dev, type_data);
3728        case TC_SETUP_BLOCK:
3729                return cxgb_setup_tc_block(dev, type_data);
3730        default:
3731                return -EOPNOTSUPP;
3732        }
3733}
3734
3735static int cxgb_udp_tunnel_unset_port(struct net_device *netdev,
3736                                      unsigned int table, unsigned int entry,
3737                                      struct udp_tunnel_info *ti)
3738{
3739        struct port_info *pi = netdev_priv(netdev);
3740        struct adapter *adapter = pi->adapter;
3741        u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3742        int ret = 0, i;
3743
3744        switch (ti->type) {
3745        case UDP_TUNNEL_TYPE_VXLAN:
3746                adapter->vxlan_port = 0;
3747                t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0);
3748                break;
3749        case UDP_TUNNEL_TYPE_GENEVE:
3750                adapter->geneve_port = 0;
3751                t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0);
3752                break;
3753        default:
3754                return -EINVAL;
3755        }
3756
3757        /* Matchall mac entries can be deleted only after all tunnel ports
3758         * are brought down or removed.
3759         */
3760        if (!adapter->rawf_cnt)
3761                return 0;
3762        for_each_port(adapter, i) {
3763                pi = adap2pinfo(adapter, i);
3764                ret = t4_free_raw_mac_filt(adapter, pi->viid,
3765                                           match_all_mac, match_all_mac,
3766                                           adapter->rawf_start + pi->port_id,
3767                                           1, pi->port_id, false);
3768                if (ret < 0) {
3769                        netdev_info(netdev, "Failed to free mac filter entry, for port %d\n",
3770                                    i);
3771                        return ret;
3772                }
3773        }
3774
3775        return 0;
3776}
3777
3778static int cxgb_udp_tunnel_set_port(struct net_device *netdev,
3779                                    unsigned int table, unsigned int entry,
3780                                    struct udp_tunnel_info *ti)
3781{
3782        struct port_info *pi = netdev_priv(netdev);
3783        struct adapter *adapter = pi->adapter;
3784        u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3785        int i, ret;
3786
3787        switch (ti->type) {
3788        case UDP_TUNNEL_TYPE_VXLAN:
3789                adapter->vxlan_port = ti->port;
3790                t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A,
3791                             VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F);
3792                break;
3793        case UDP_TUNNEL_TYPE_GENEVE:
3794                adapter->geneve_port = ti->port;
3795                t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A,
3796                             GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F);
3797                break;
3798        default:
3799                return -EINVAL;
3800        }
3801
3802        /* Create a 'match all' mac filter entry for inner mac,
3803         * if raw mac interface is supported. Once the linux kernel provides
3804         * driver entry points for adding/deleting the inner mac addresses,
3805         * we will remove this 'match all' entry and fallback to adding
3806         * exact match filters.
3807         */
3808        for_each_port(adapter, i) {
3809                pi = adap2pinfo(adapter, i);
3810
3811                ret = t4_alloc_raw_mac_filt(adapter, pi->viid,
3812                                            match_all_mac,
3813                                            match_all_mac,
3814                                            adapter->rawf_start + pi->port_id,
3815                                            1, pi->port_id, false);
3816                if (ret < 0) {
3817                        netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n",
3818                                    be16_to_cpu(ti->port));
3819                        return ret;
3820                }
3821        }
3822
3823        return 0;
3824}
3825
3826static const struct udp_tunnel_nic_info cxgb_udp_tunnels = {
3827        .set_port       = cxgb_udp_tunnel_set_port,
3828        .unset_port     = cxgb_udp_tunnel_unset_port,
3829        .tables         = {
3830                { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
3831                { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
3832        },
3833};
3834
3835static netdev_features_t cxgb_features_check(struct sk_buff *skb,
3836                                             struct net_device *dev,
3837                                             netdev_features_t features)
3838{
3839        struct port_info *pi = netdev_priv(dev);
3840        struct adapter *adapter = pi->adapter;
3841
3842        if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3843                return features;
3844
3845        /* Check if hw supports offload for this packet */
3846        if (!skb->encapsulation || cxgb_encap_offload_supported(skb))
3847                return features;
3848
3849        /* Offload is not supported for this encapsulated packet */
3850        return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3851}
3852
3853static netdev_features_t cxgb_fix_features(struct net_device *dev,
3854                                           netdev_features_t features)
3855{
3856        /* Disable GRO, if RX_CSUM is disabled */
3857        if (!(features & NETIF_F_RXCSUM))
3858                features &= ~NETIF_F_GRO;
3859
3860        return features;
3861}
3862
3863static const struct net_device_ops cxgb4_netdev_ops = {
3864        .ndo_open             = cxgb_open,
3865        .ndo_stop             = cxgb_close,
3866        .ndo_start_xmit       = t4_start_xmit,
3867        .ndo_select_queue     = cxgb_select_queue,
3868        .ndo_get_stats64      = cxgb_get_stats,
3869        .ndo_set_rx_mode      = cxgb_set_rxmode,
3870        .ndo_set_mac_address  = cxgb_set_mac_addr,
3871        .ndo_set_features     = cxgb_set_features,
3872        .ndo_validate_addr    = eth_validate_addr,
3873        .ndo_do_ioctl         = cxgb_ioctl,
3874        .ndo_change_mtu       = cxgb_change_mtu,
3875#ifdef CONFIG_NET_POLL_CONTROLLER
3876        .ndo_poll_controller  = cxgb_netpoll,
3877#endif
3878#ifdef CONFIG_CHELSIO_T4_FCOE
3879        .ndo_fcoe_enable      = cxgb_fcoe_enable,
3880        .ndo_fcoe_disable     = cxgb_fcoe_disable,
3881#endif /* CONFIG_CHELSIO_T4_FCOE */
3882        .ndo_set_tx_maxrate   = cxgb_set_tx_maxrate,
3883        .ndo_setup_tc         = cxgb_setup_tc,
3884        .ndo_udp_tunnel_add   = udp_tunnel_nic_add_port,
3885        .ndo_udp_tunnel_del   = udp_tunnel_nic_del_port,
3886        .ndo_features_check   = cxgb_features_check,
3887        .ndo_fix_features     = cxgb_fix_features,
3888};
3889
3890#ifdef CONFIG_PCI_IOV
3891static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
3892        .ndo_open               = cxgb4_mgmt_open,
3893        .ndo_set_vf_mac         = cxgb4_mgmt_set_vf_mac,
3894        .ndo_get_vf_config      = cxgb4_mgmt_get_vf_config,
3895        .ndo_set_vf_rate        = cxgb4_mgmt_set_vf_rate,
3896        .ndo_get_phys_port_id   = cxgb4_mgmt_get_phys_port_id,
3897        .ndo_set_vf_vlan        = cxgb4_mgmt_set_vf_vlan,
3898        .ndo_set_vf_link_state  = cxgb4_mgmt_set_vf_link_state,
3899};
3900#endif
3901
3902static void cxgb4_mgmt_get_drvinfo(struct net_device *dev,
3903                                   struct ethtool_drvinfo *info)
3904{
3905        struct adapter *adapter = netdev2adap(dev);
3906
3907        strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
3908        strlcpy(info->bus_info, pci_name(adapter->pdev),
3909                sizeof(info->bus_info));
3910}
3911
3912static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
3913        .get_drvinfo       = cxgb4_mgmt_get_drvinfo,
3914};
3915
3916static void notify_fatal_err(struct work_struct *work)
3917{
3918        struct adapter *adap;
3919
3920        adap = container_of(work, struct adapter, fatal_err_notify_task);
3921        notify_ulds(adap, CXGB4_STATE_FATAL_ERROR);
3922}
3923
3924void t4_fatal_err(struct adapter *adap)
3925{
3926        int port;
3927
3928        if (pci_channel_offline(adap->pdev))
3929                return;
3930
3931        /* Disable the SGE since ULDs are going to free resources that
3932         * could be exposed to the adapter.  RDMA MWs for example...
3933         */
3934        t4_shutdown_adapter(adap);
3935        for_each_port(adap, port) {
3936                struct net_device *dev = adap->port[port];
3937
3938                /* If we get here in very early initialization the network
3939                 * devices may not have been set up yet.
3940                 */
3941                if (!dev)
3942                        continue;
3943
3944                netif_tx_stop_all_queues(dev);
3945                netif_carrier_off(dev);
3946        }
3947        dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3948        queue_work(adap->workq, &adap->fatal_err_notify_task);
3949}
3950
3951static void setup_memwin(struct adapter *adap)
3952{
3953        u32 nic_win_base = t4_get_util_window(adap);
3954
3955        t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3956}
3957
3958static void setup_memwin_rdma(struct adapter *adap)
3959{
3960        if (adap->vres.ocq.size) {
3961                u32 start;
3962                unsigned int sz_kb;
3963
3964                start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3965                start &= PCI_BASE_ADDRESS_MEM_MASK;
3966                start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3967                sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3968                t4_write_reg(adap,
3969                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3970                             start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3971                t4_write_reg(adap,
3972                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3973                             adap->vres.ocq.start);
3974                t4_read_reg(adap,
3975                            PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3976        }
3977}
3978
3979/* HMA Definitions */
3980
3981/* The maximum number of address that can be send in a single FW cmd */
3982#define HMA_MAX_ADDR_IN_CMD     5
3983
3984#define HMA_PAGE_SIZE           PAGE_SIZE
3985
3986#define HMA_MAX_NO_FW_ADDRESS   (16 << 10)  /* FW supports 16K addresses */
3987
3988#define HMA_PAGE_ORDER                                  \
3989        ((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ?      \
3990        ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0)
3991
3992/* The minimum and maximum possible HMA sizes that can be specified in the FW
3993 * configuration(in units of MB).
3994 */
3995#define HMA_MIN_TOTAL_SIZE      1
3996#define HMA_MAX_TOTAL_SIZE                              \
3997        (((HMA_PAGE_SIZE << HMA_PAGE_ORDER) *           \
3998          HMA_MAX_NO_FW_ADDRESS) >> 20)
3999
4000static void adap_free_hma_mem(struct adapter *adapter)
4001{
4002        struct scatterlist *iter;
4003        struct page *page;
4004        int i;
4005
4006        if (!adapter->hma.sgt)
4007                return;
4008
4009        if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) {
4010                dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl,
4011                             adapter->hma.sgt->nents, PCI_DMA_BIDIRECTIONAL);
4012                adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG;
4013        }
4014
4015        for_each_sg(adapter->hma.sgt->sgl, iter,
4016                    adapter->hma.sgt->orig_nents, i) {
4017                page = sg_page(iter);
4018                if (page)
4019                        __free_pages(page, HMA_PAGE_ORDER);
4020        }
4021
4022        kfree(adapter->hma.phy_addr);
4023        sg_free_table(adapter->hma.sgt);
4024        kfree(adapter->hma.sgt);
4025        adapter->hma.sgt = NULL;
4026}
4027
4028static int adap_config_hma(struct adapter *adapter)
4029{
4030        struct scatterlist *sgl, *iter;
4031        struct sg_table *sgt;
4032        struct page *newpage;
4033        unsigned int i, j, k;
4034        u32 param, hma_size;
4035        unsigned int ncmds;
4036        size_t page_size;
4037        u32 page_order;
4038        int node, ret;
4039
4040        /* HMA is supported only for T6+ cards.
4041         * Avoid initializing HMA in kdump kernels.
4042         */
4043        if (is_kdump_kernel() ||
4044            CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
4045                return 0;
4046
4047        /* Get the HMA region size required by fw */
4048        param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4049                 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE));
4050        ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
4051                              1, &param, &hma_size);
4052        /* An error means card has its own memory or HMA is not supported by
4053         * the firmware. Return without any errors.
4054         */
4055        if (ret || !hma_size)
4056                return 0;
4057
4058        if (hma_size < HMA_MIN_TOTAL_SIZE ||
4059            hma_size > HMA_MAX_TOTAL_SIZE) {
4060                dev_err(adapter->pdev_dev,
4061                        "HMA size %uMB beyond bounds(%u-%lu)MB\n",
4062                        hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE);
4063                return -EINVAL;
4064        }
4065
4066        page_size = HMA_PAGE_SIZE;
4067        page_order = HMA_PAGE_ORDER;
4068        adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL);
4069        if (unlikely(!adapter->hma.sgt)) {
4070                dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n");
4071                return -ENOMEM;
4072        }
4073        sgt = adapter->hma.sgt;
4074        /* FW returned value will be in MB's
4075         */
4076        sgt->orig_nents = (hma_size << 20) / (page_size << page_order);
4077        if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) {
4078                dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n");
4079                kfree(adapter->hma.sgt);
4080                adapter->hma.sgt = NULL;
4081                return -ENOMEM;
4082        }
4083
4084        sgl = adapter->hma.sgt->sgl;
4085        node = dev_to_node(adapter->pdev_dev);
4086        for_each_sg(sgl, iter, sgt->orig_nents, i) {
4087                newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL |
4088                                           __GFP_ZERO, page_order);
4089                if (!newpage) {
4090                        dev_err(adapter->pdev_dev,
4091                                "Not enough memory for HMA page allocation\n");
4092                        ret = -ENOMEM;
4093                        goto free_hma;
4094                }
4095                sg_set_page(iter, newpage, page_size << page_order, 0);
4096        }
4097
4098        sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents,
4099                                DMA_BIDIRECTIONAL);
4100        if (!sgt->nents) {
4101                dev_err(adapter->pdev_dev,
4102                        "Not enough memory for HMA DMA mapping");
4103                ret = -ENOMEM;
4104                goto free_hma;
4105        }
4106        adapter->hma.flags |= HMA_DMA_MAPPED_FLAG;
4107
4108        adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t),
4109                                        GFP_KERNEL);
4110        if (unlikely(!adapter->hma.phy_addr))
4111                goto free_hma;
4112
4113        for_each_sg(sgl, iter, sgt->nents, i) {
4114                newpage = sg_page(iter);
4115                adapter->hma.phy_addr[i] = sg_dma_address(iter);
4116        }
4117
4118        ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD);
4119        /* Pass on the addresses to firmware */
4120        for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) {
4121                struct fw_hma_cmd hma_cmd;
4122                u8 naddr = HMA_MAX_ADDR_IN_CMD;
4123                u8 soc = 0, eoc = 0;
4124                u8 hma_mode = 1; /* Presently we support only Page table mode */
4125
4126                soc = (i == 0) ? 1 : 0;
4127                eoc = (i == ncmds - 1) ? 1 : 0;
4128
4129                /* For last cmd, set naddr corresponding to remaining
4130                 * addresses
4131                 */
4132                if (i == ncmds - 1) {
4133                        naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD;
4134                        naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD;
4135                }
4136                memset(&hma_cmd, 0, sizeof(hma_cmd));
4137                hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) |
4138                                       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4139                hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd));
4140
4141                hma_cmd.mode_to_pcie_params =
4142                        htonl(FW_HMA_CMD_MODE_V(hma_mode) |
4143                              FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc));
4144
4145                /* HMA cmd size specified in MB's */
4146                hma_cmd.naddr_size =
4147                        htonl(FW_HMA_CMD_SIZE_V(hma_size) |
4148                              FW_HMA_CMD_NADDR_V(naddr));
4149
4150                /* Total Page size specified in units of 4K */
4151                hma_cmd.addr_size_pkd =
4152                        htonl(FW_HMA_CMD_ADDR_SIZE_V
4153                                ((page_size << page_order) >> 12));
4154
4155                /* Fill the 5 addresses */
4156                for (j = 0; j < naddr; j++) {
4157                        hma_cmd.phy_address[j] =
4158                                cpu_to_be64(adapter->hma.phy_addr[j + k]);
4159                }
4160                ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd,
4161                                 sizeof(hma_cmd), &hma_cmd);
4162                if (ret) {
4163                        dev_err(adapter->pdev_dev,
4164                                "HMA FW command failed with err %d\n", ret);
4165                        goto free_hma;
4166                }
4167        }
4168
4169        if (!ret)
4170                dev_info(adapter->pdev_dev,
4171                         "Reserved %uMB host memory for HMA\n", hma_size);
4172        return ret;
4173
4174free_hma:
4175        adap_free_hma_mem(adapter);
4176        return ret;
4177}
4178
4179static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
4180{
4181        u32 v;
4182        int ret;
4183
4184        /* Now that we've successfully configured and initialized the adapter
4185         * can ask the Firmware what resources it has provisioned for us.
4186         */
4187        ret = t4_get_pfres(adap);
4188        if (ret) {
4189                dev_err(adap->pdev_dev,
4190                        "Unable to retrieve resource provisioning information\n");
4191                return ret;
4192        }
4193
4194        /* get device capabilities */
4195        memset(c, 0, sizeof(*c));
4196        c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4197                               FW_CMD_REQUEST_F | FW_CMD_READ_F);
4198        c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
4199        ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
4200        if (ret < 0)
4201                return ret;
4202
4203        c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4204                               FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4205        ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
4206        if (ret < 0)
4207                return ret;
4208
4209        ret = t4_config_glbl_rss(adap, adap->pf,
4210                                 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
4211                                 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
4212                                 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
4213        if (ret < 0)
4214                return ret;
4215
4216        ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
4217                          MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
4218                          FW_CMD_CAP_PF);
4219        if (ret < 0)
4220                return ret;
4221
4222        t4_sge_init(adap);
4223
4224        /* tweak some settings */
4225        t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
4226        t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
4227        t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
4228        v = t4_read_reg(adap, TP_PIO_DATA_A);
4229        t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
4230
4231        /* first 4 Tx modulation queues point to consecutive Tx channels */
4232        adap->params.tp.tx_modq_map = 0xE4;
4233        t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
4234                     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
4235
4236        /* associate each Tx modulation queue with consecutive Tx channels */
4237        v = 0x84218421;
4238        t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4239                          &v, 1, TP_TX_SCHED_HDR_A);
4240        t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4241                          &v, 1, TP_TX_SCHED_FIFO_A);
4242        t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4243                          &v, 1, TP_TX_SCHED_PCMD_A);
4244
4245#define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
4246        if (is_offload(adap)) {
4247                t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
4248                             TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4249                             TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4250                             TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4251                             TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4252                t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
4253                             TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4254                             TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4255                             TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4256                             TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4257        }
4258
4259        /* get basic stuff going */
4260        return t4_early_init(adap, adap->pf);
4261}
4262
4263/*
4264 * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
4265 */
4266#define MAX_ATIDS 8192U
4267
4268/*
4269 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4270 *
4271 * If the firmware we're dealing with has Configuration File support, then
4272 * we use that to perform all configuration
4273 */
4274
4275/*
4276 * Tweak configuration based on module parameters, etc.  Most of these have
4277 * defaults assigned to them by Firmware Configuration Files (if we're using
4278 * them) but need to be explicitly set if we're using hard-coded
4279 * initialization.  But even in the case of using Firmware Configuration
4280 * Files, we'd like to expose the ability to change these via module
4281 * parameters so these are essentially common tweaks/settings for
4282 * Configuration Files and hard-coded initialization ...
4283 */
4284static int adap_init0_tweaks(struct adapter *adapter)
4285{
4286        /*
4287         * Fix up various Host-Dependent Parameters like Page Size, Cache
4288         * Line Size, etc.  The firmware default is for a 4KB Page Size and
4289         * 64B Cache Line Size ...
4290         */
4291        t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
4292
4293        /*
4294         * Process module parameters which affect early initialization.
4295         */
4296        if (rx_dma_offset != 2 && rx_dma_offset != 0) {
4297                dev_err(&adapter->pdev->dev,
4298                        "Ignoring illegal rx_dma_offset=%d, using 2\n",
4299                        rx_dma_offset);
4300                rx_dma_offset = 2;
4301        }
4302        t4_set_reg_field(adapter, SGE_CONTROL_A,
4303                         PKTSHIFT_V(PKTSHIFT_M),
4304                         PKTSHIFT_V(rx_dma_offset));
4305
4306        /*
4307         * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
4308         * adds the pseudo header itself.
4309         */
4310        t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
4311                               CSUM_HAS_PSEUDO_HDR_F, 0);
4312
4313        return 0;
4314}
4315
4316/* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
4317 * unto themselves and they contain their own firmware to perform their
4318 * tasks ...
4319 */
4320static int phy_aq1202_version(const u8 *phy_fw_data,
4321                              size_t phy_fw_size)
4322{
4323        int offset;
4324
4325        /* At offset 0x8 you're looking for the primary image's
4326         * starting offset which is 3 Bytes wide
4327         *
4328         * At offset 0xa of the primary image, you look for the offset
4329         * of the DRAM segment which is 3 Bytes wide.
4330         *
4331         * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
4332         * wide
4333         */
4334        #define be16(__p) (((__p)[0] << 8) | (__p)[1])
4335        #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
4336        #define le24(__p) (le16(__p) | ((__p)[2] << 16))
4337
4338        offset = le24(phy_fw_data + 0x8) << 12;
4339        offset = le24(phy_fw_data + offset + 0xa);
4340        return be16(phy_fw_data + offset + 0x27e);
4341
4342        #undef be16
4343        #undef le16
4344        #undef le24
4345}
4346
4347static struct info_10gbt_phy_fw {
4348        unsigned int phy_fw_id;         /* PCI Device ID */
4349        char *phy_fw_file;              /* /lib/firmware/ PHY Firmware file */
4350        int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
4351        int phy_flash;                  /* Has FLASH for PHY Firmware */
4352} phy_info_array[] = {
4353        {
4354                PHY_AQ1202_DEVICEID,
4355                PHY_AQ1202_FIRMWARE,
4356                phy_aq1202_version,
4357                1,
4358        },
4359        {
4360                PHY_BCM84834_DEVICEID,
4361                PHY_BCM84834_FIRMWARE,
4362                NULL,
4363                0,
4364        },
4365        { 0, NULL, NULL },
4366};
4367
4368static struct info_10gbt_phy_fw *find_phy_info(int devid)
4369{
4370        int i;
4371
4372        for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
4373                if (phy_info_array[i].phy_fw_id == devid)
4374                        return &phy_info_array[i];
4375        }
4376        return NULL;
4377}
4378
4379/* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
4380 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
4381 * we return a negative error number.  If we transfer new firmware we return 1
4382 * (from t4_load_phy_fw()).  If we don't do anything we return 0.
4383 */
4384static int adap_init0_phy(struct adapter *adap)
4385{
4386        const struct firmware *phyf;
4387        int ret;
4388        struct info_10gbt_phy_fw *phy_info;
4389
4390        /* Use the device ID to determine which PHY file to flash.
4391         */
4392        phy_info = find_phy_info(adap->pdev->device);
4393        if (!phy_info) {
4394                dev_warn(adap->pdev_dev,
4395                         "No PHY Firmware file found for this PHY\n");
4396                return -EOPNOTSUPP;
4397        }
4398
4399        /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
4400         * use that. The adapter firmware provides us with a memory buffer
4401         * where we can load a PHY firmware file from the host if we want to
4402         * override the PHY firmware File in flash.
4403         */
4404        ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
4405                                      adap->pdev_dev);
4406        if (ret < 0) {
4407                /* For adapters without FLASH attached to PHY for their
4408                 * firmware, it's obviously a fatal error if we can't get the
4409                 * firmware to the adapter.  For adapters with PHY firmware
4410                 * FLASH storage, it's worth a warning if we can't find the
4411                 * PHY Firmware but we'll neuter the error ...
4412                 */
4413                dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
4414                        "/lib/firmware/%s, error %d\n",
4415                        phy_info->phy_fw_file, -ret);
4416                if (phy_info->phy_flash) {
4417                        int cur_phy_fw_ver = 0;
4418
4419                        t4_phy_fw_ver(adap, &cur_phy_fw_ver);
4420                        dev_warn(adap->pdev_dev, "continuing with, on-adapter "
4421                                 "FLASH copy, version %#x\n", cur_phy_fw_ver);
4422                        ret = 0;
4423                }
4424
4425                return ret;
4426        }
4427
4428        /* Load PHY Firmware onto adapter.
4429         */
4430        spin_lock_bh(&adap->win0_lock);
4431        ret = t4_load_phy_fw(adap, MEMWIN_NIC, phy_info->phy_fw_version,
4432                             (u8 *)phyf->data, phyf->size);
4433        spin_unlock_bh(&adap->win0_lock);
4434        if (ret < 0)
4435                dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
4436                        -ret);
4437        else if (ret > 0) {
4438                int new_phy_fw_ver = 0;
4439
4440                if (phy_info->phy_fw_version)
4441                        new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
4442                                                                  phyf->size);
4443                dev_info(adap->pdev_dev, "Successfully transferred PHY "
4444                         "Firmware /lib/firmware/%s, version %#x\n",
4445                         phy_info->phy_fw_file, new_phy_fw_ver);
4446        }
4447
4448        release_firmware(phyf);
4449
4450        return ret;
4451}
4452
4453/*
4454 * Attempt to initialize the adapter via a Firmware Configuration File.
4455 */
4456static int adap_init0_config(struct adapter *adapter, int reset)
4457{
4458        char *fw_config_file, fw_config_file_path[256];
4459        u32 finiver, finicsum, cfcsum, param, val;
4460        struct fw_caps_config_cmd caps_cmd;
4461        unsigned long mtype = 0, maddr = 0;
4462        const struct firmware *cf;
4463        char *config_name = NULL;
4464        int config_issued = 0;
4465        int ret;
4466
4467        /*
4468         * Reset device if necessary.
4469         */
4470        if (reset) {
4471                ret = t4_fw_reset(adapter, adapter->mbox,
4472                                  PIORSTMODE_F | PIORST_F);
4473                if (ret < 0)
4474                        goto bye;
4475        }
4476
4477        /* If this is a 10Gb/s-BT adapter make sure the chip-external
4478         * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
4479         * to be performed after any global adapter RESET above since some
4480         * PHYs only have local RAM copies of the PHY firmware.
4481         */
4482        if (is_10gbt_device(adapter->pdev->device)) {
4483                ret = adap_init0_phy(adapter);
4484                if (ret < 0)
4485                        goto bye;
4486        }
4487        /*
4488         * If we have a T4 configuration file under /lib/firmware/cxgb4/,
4489         * then use that.  Otherwise, use the configuration file stored
4490         * in the adapter flash ...
4491         */
4492        switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
4493        case CHELSIO_T4:
4494                fw_config_file = FW4_CFNAME;
4495                break;
4496        case CHELSIO_T5:
4497                fw_config_file = FW5_CFNAME;
4498                break;
4499        case CHELSIO_T6:
4500                fw_config_file = FW6_CFNAME;
4501                break;
4502        default:
4503                dev_err(adapter->pdev_dev, "Device %d is not supported\n",
4504                       adapter->pdev->device);
4505                ret = -EINVAL;
4506                goto bye;
4507        }
4508
4509        ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
4510        if (ret < 0) {
4511                config_name = "On FLASH";
4512                mtype = FW_MEMTYPE_CF_FLASH;
4513                maddr = t4_flash_cfg_addr(adapter);
4514        } else {
4515                u32 params[7], val[7];
4516
4517                sprintf(fw_config_file_path,
4518                        "/lib/firmware/%s", fw_config_file);
4519                config_name = fw_config_file_path;
4520
4521                if (cf->size >= FLASH_CFG_MAX_SIZE)
4522                        ret = -ENOMEM;
4523                else {
4524                        params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4525                             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4526                        ret = t4_query_params(adapter, adapter->mbox,
4527                                              adapter->pf, 0, 1, params, val);
4528                        if (ret == 0) {
4529                                /*
4530                                 * For t4_memory_rw() below addresses and
4531                                 * sizes have to be in terms of multiples of 4
4532                                 * bytes.  So, if the Configuration File isn't
4533                                 * a multiple of 4 bytes in length we'll have
4534                                 * to write that out separately since we can't
4535                                 * guarantee that the bytes following the
4536                                 * residual byte in the buffer returned by
4537                                 * request_firmware() are zeroed out ...
4538                                 */
4539                                size_t resid = cf->size & 0x3;
4540                                size_t size = cf->size & ~0x3;
4541                                __be32 *data = (__be32 *)cf->data;
4542
4543                                mtype = FW_PARAMS_PARAM_Y_G(val[0]);
4544                                maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
4545
4546                                spin_lock(&adapter->win0_lock);
4547                                ret = t4_memory_rw(adapter, 0, mtype, maddr,
4548                                                   size, data, T4_MEMORY_WRITE);
4549                                if (ret == 0 && resid != 0) {
4550                                        union {
4551                                                __be32 word;
4552                                                char buf[4];
4553                                        } last;
4554                                        int i;
4555
4556                                        last.word = data[size >> 2];
4557                                        for (i = resid; i < 4; i++)
4558                                                last.buf[i] = 0;
4559                                        ret = t4_memory_rw(adapter, 0, mtype,
4560                                                           maddr + size,
4561                                                           4, &last.word,
4562                                                           T4_MEMORY_WRITE);
4563                                }
4564                                spin_unlock(&adapter->win0_lock);
4565                        }
4566                }
4567
4568                release_firmware(cf);
4569                if (ret)
4570                        goto bye;
4571        }
4572
4573        val = 0;
4574
4575        /* Ofld + Hash filter is supported. Older fw will fail this request and
4576         * it is fine.
4577         */
4578        param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4579                 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HASHFILTER_WITH_OFLD));
4580        ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0,
4581                            1, &param, &val);
4582
4583        /* FW doesn't know about Hash filter + ofld support,
4584         * it's not a problem, don't return an error.
4585         */
4586        if (ret < 0) {
4587                dev_warn(adapter->pdev_dev,
4588                         "Hash filter with ofld is not supported by FW\n");
4589        }
4590
4591        /*
4592         * Issue a Capability Configuration command to the firmware to get it
4593         * to parse the Configuration File.  We don't use t4_fw_config_file()
4594         * because we want the ability to modify various features after we've
4595         * processed the configuration file ...
4596         */
4597        memset(&caps_cmd, 0, sizeof(caps_cmd));
4598        caps_cmd.op_to_write =
4599                htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4600                      FW_CMD_REQUEST_F |
4601                      FW_CMD_READ_F);
4602        caps_cmd.cfvalid_to_len16 =
4603                htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
4604                      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
4605                      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
4606                      FW_LEN16(caps_cmd));
4607        ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4608                         &caps_cmd);
4609
4610        /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
4611         * Configuration File in FLASH), our last gasp effort is to use the
4612         * Firmware Configuration File which is embedded in the firmware.  A
4613         * very few early versions of the firmware didn't have one embedded
4614         * but we can ignore those.
4615         */
4616        if (ret == -ENOENT) {
4617                memset(&caps_cmd, 0, sizeof(caps_cmd));
4618                caps_cmd.op_to_write =
4619                        htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4620                                        FW_CMD_REQUEST_F |
4621                                        FW_CMD_READ_F);
4622                caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4623                ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
4624                                sizeof(caps_cmd), &caps_cmd);
4625                config_name = "Firmware Default";
4626        }
4627
4628        config_issued = 1;
4629        if (ret < 0)
4630                goto bye;
4631
4632        finiver = ntohl(caps_cmd.finiver);
4633        finicsum = ntohl(caps_cmd.finicsum);
4634        cfcsum = ntohl(caps_cmd.cfcsum);
4635        if (finicsum != cfcsum)
4636                dev_warn(adapter->pdev_dev, "Configuration File checksum "\
4637                         "mismatch: [fini] csum=%#x, computed csum=%#x\n",
4638                         finicsum, cfcsum);
4639
4640        /*
4641         * And now tell the firmware to use the configuration we just loaded.
4642         */
4643        caps_cmd.op_to_write =
4644                htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4645                      FW_CMD_REQUEST_F |
4646                      FW_CMD_WRITE_F);
4647        caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4648        ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4649                         NULL);
4650        if (ret < 0)
4651                goto bye;
4652
4653        /*
4654         * Tweak configuration based on system architecture, module
4655         * parameters, etc.
4656         */
4657        ret = adap_init0_tweaks(adapter);
4658        if (ret < 0)
4659                goto bye;
4660
4661        /* We will proceed even if HMA init fails. */
4662        ret = adap_config_hma(adapter);
4663        if (ret)
4664                dev_err(adapter->pdev_dev,
4665                        "HMA configuration failed with error %d\n", ret);
4666
4667        if (is_t6(adapter->params.chip)) {
4668                adap_config_hpfilter(adapter);
4669                ret = setup_ppod_edram(adapter);
4670                if (!ret)
4671                        dev_info(adapter->pdev_dev, "Successfully enabled "
4672                                 "ppod edram feature\n");
4673        }
4674
4675        /*
4676         * And finally tell the firmware to initialize itself using the
4677         * parameters from the Configuration File.
4678         */
4679        ret = t4_fw_initialize(adapter, adapter->mbox);
4680        if (ret < 0)
4681                goto bye;
4682
4683        /* Emit Firmware Configuration File information and return
4684         * successfully.
4685         */
4686        dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
4687                 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
4688                 config_name, finiver, cfcsum);
4689        return 0;
4690
4691        /*
4692         * Something bad happened.  Return the error ...  (If the "error"
4693         * is that there's no Configuration File on the adapter we don't
4694         * want to issue a warning since this is fairly common.)
4695         */
4696bye:
4697        if (config_issued && ret != -ENOENT)
4698                dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
4699                         config_name, -ret);
4700        return ret;
4701}
4702
4703static struct fw_info fw_info_array[] = {
4704        {
4705                .chip = CHELSIO_T4,
4706                .fs_name = FW4_CFNAME,
4707                .fw_mod_name = FW4_FNAME,
4708                .fw_hdr = {
4709                        .chip = FW_HDR_CHIP_T4,
4710                        .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
4711                        .intfver_nic = FW_INTFVER(T4, NIC),
4712                        .intfver_vnic = FW_INTFVER(T4, VNIC),
4713                        .intfver_ri = FW_INTFVER(T4, RI),
4714                        .intfver_iscsi = FW_INTFVER(T4, ISCSI),
4715                        .intfver_fcoe = FW_INTFVER(T4, FCOE),
4716                },
4717        }, {
4718                .chip = CHELSIO_T5,
4719                .fs_name = FW5_CFNAME,
4720                .fw_mod_name = FW5_FNAME,
4721                .fw_hdr = {
4722                        .chip = FW_HDR_CHIP_T5,
4723                        .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
4724                        .intfver_nic = FW_INTFVER(T5, NIC),
4725                        .intfver_vnic = FW_INTFVER(T5, VNIC),
4726                        .intfver_ri = FW_INTFVER(T5, RI),
4727                        .intfver_iscsi = FW_INTFVER(T5, ISCSI),
4728                        .intfver_fcoe = FW_INTFVER(T5, FCOE),
4729                },
4730        }, {
4731                .chip = CHELSIO_T6,
4732                .fs_name = FW6_CFNAME,
4733                .fw_mod_name = FW6_FNAME,
4734                .fw_hdr = {
4735                        .chip = FW_HDR_CHIP_T6,
4736                        .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
4737                        .intfver_nic = FW_INTFVER(T6, NIC),
4738                        .intfver_vnic = FW_INTFVER(T6, VNIC),
4739                        .intfver_ofld = FW_INTFVER(T6, OFLD),
4740                        .intfver_ri = FW_INTFVER(T6, RI),
4741                        .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4742                        .intfver_iscsi = FW_INTFVER(T6, ISCSI),
4743                        .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4744                        .intfver_fcoe = FW_INTFVER(T6, FCOE),
4745                },
4746        }
4747
4748};
4749
4750static struct fw_info *find_fw_info(int chip)
4751{
4752        int i;
4753
4754        for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
4755                if (fw_info_array[i].chip == chip)
4756                        return &fw_info_array[i];
4757        }
4758        return NULL;
4759}
4760
4761/*
4762 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4763 */
4764static int adap_init0(struct adapter *adap, int vpd_skip)
4765{
4766        struct fw_caps_config_cmd caps_cmd;
4767        u32 params[7], val[7];
4768        enum dev_state state;
4769        u32 v, port_vec;
4770        int reset = 1;
4771        int ret;
4772
4773        /* Grab Firmware Device Log parameters as early as possible so we have
4774         * access to it for debugging, etc.
4775         */
4776        ret = t4_init_devlog_params(adap);
4777        if (ret < 0)
4778                return ret;
4779
4780        /* Contact FW, advertising Master capability */
4781        ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
4782                          is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
4783        if (ret < 0) {
4784                dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
4785                        ret);
4786                return ret;
4787        }
4788        if (ret == adap->mbox)
4789                adap->flags |= CXGB4_MASTER_PF;
4790
4791        /*
4792         * If we're the Master PF Driver and the device is uninitialized,
4793         * then let's consider upgrading the firmware ...  (We always want
4794         * to check the firmware version number in order to A. get it for
4795         * later reporting and B. to warn if the currently loaded firmware
4796         * is excessively mismatched relative to the driver.)
4797         */
4798
4799        t4_get_version_info(adap);
4800        ret = t4_check_fw_version(adap);
4801        /* If firmware is too old (not supported by driver) force an update. */
4802        if (ret)
4803                state = DEV_STATE_UNINIT;
4804        if ((adap->flags & CXGB4_MASTER_PF) && state != DEV_STATE_INIT) {
4805                struct fw_info *fw_info;
4806                struct fw_hdr *card_fw;
4807                const struct firmware *fw;
4808                const u8 *fw_data = NULL;
4809                unsigned int fw_size = 0;
4810
4811                /* This is the firmware whose headers the driver was compiled
4812                 * against
4813                 */
4814                fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
4815                if (fw_info == NULL) {
4816                        dev_err(adap->pdev_dev,
4817                                "unable to get firmware info for chip %d.\n",
4818                                CHELSIO_CHIP_VERSION(adap->params.chip));
4819                        return -EINVAL;
4820                }
4821
4822                /* allocate memory to read the header of the firmware on the
4823                 * card
4824                 */
4825                card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
4826                if (!card_fw) {
4827                        ret = -ENOMEM;
4828                        goto bye;
4829                }
4830
4831                /* Get FW from from /lib/firmware/ */
4832                ret = request_firmware(&fw, fw_info->fw_mod_name,
4833                                       adap->pdev_dev);
4834                if (ret < 0) {
4835                        dev_err(adap->pdev_dev,
4836                                "unable to load firmware image %s, error %d\n",
4837                                fw_info->fw_mod_name, ret);
4838                } else {
4839                        fw_data = fw->data;
4840                        fw_size = fw->size;
4841                }
4842
4843                /* upgrade FW logic */
4844                ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
4845                                 state, &reset);
4846
4847                /* Cleaning up */
4848                release_firmware(fw);
4849                kvfree(card_fw);
4850
4851                if (ret < 0)
4852                        goto bye;
4853        }
4854
4855        /* If the firmware is initialized already, emit a simply note to that
4856         * effect. Otherwise, it's time to try initializing the adapter.
4857         */
4858        if (state == DEV_STATE_INIT) {
4859                ret = adap_config_hma(adap);
4860                if (ret)
4861                        dev_err(adap->pdev_dev,
4862                                "HMA configuration failed with error %d\n",
4863                                ret);
4864                dev_info(adap->pdev_dev, "Coming up as %s: "\
4865                         "Adapter already initialized\n",
4866                         adap->flags & CXGB4_MASTER_PF ? "MASTER" : "SLAVE");
4867        } else {
4868                dev_info(adap->pdev_dev, "Coming up as MASTER: "\
4869                         "Initializing adapter\n");
4870
4871                /* Find out whether we're dealing with a version of the
4872                 * firmware which has configuration file support.
4873                 */
4874                params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4875                             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4876                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
4877                                      params, val);
4878
4879                /* If the firmware doesn't support Configuration Files,
4880                 * return an error.
4881                 */
4882                if (ret < 0) {
4883                        dev_err(adap->pdev_dev, "firmware doesn't support "
4884                                "Firmware Configuration Files\n");
4885                        goto bye;
4886                }
4887
4888                /* The firmware provides us with a memory buffer where we can
4889                 * load a Configuration File from the host if we want to
4890                 * override the Configuration File in flash.
4891                 */
4892                ret = adap_init0_config(adap, reset);
4893                if (ret == -ENOENT) {
4894                        dev_err(adap->pdev_dev, "no Configuration File "
4895                                "present on adapter.\n");
4896                        goto bye;
4897                }
4898                if (ret < 0) {
4899                        dev_err(adap->pdev_dev, "could not initialize "
4900                                "adapter, error %d\n", -ret);
4901                        goto bye;
4902                }
4903        }
4904
4905        /* Now that we've successfully configured and initialized the adapter
4906         * (or found it already initialized), we can ask the Firmware what
4907         * resources it has provisioned for us.
4908         */
4909        ret = t4_get_pfres(adap);
4910        if (ret) {
4911                dev_err(adap->pdev_dev,
4912                        "Unable to retrieve resource provisioning information\n");
4913                goto bye;
4914        }
4915
4916        /* Grab VPD parameters.  This should be done after we establish a
4917         * connection to the firmware since some of the VPD parameters
4918         * (notably the Core Clock frequency) are retrieved via requests to
4919         * the firmware.  On the other hand, we need these fairly early on
4920         * so we do this right after getting ahold of the firmware.
4921         *
4922         * We need to do this after initializing the adapter because someone
4923         * could have FLASHed a new VPD which won't be read by the firmware
4924         * until we do the RESET ...
4925         */
4926        if (!vpd_skip) {
4927                ret = t4_get_vpd_params(adap, &adap->params.vpd);
4928                if (ret < 0)
4929                        goto bye;
4930        }
4931
4932        /* Find out what ports are available to us.  Note that we need to do
4933         * this before calling adap_init0_no_config() since it needs nports
4934         * and portvec ...
4935         */
4936        v =
4937            FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4938            FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
4939        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
4940        if (ret < 0)
4941                goto bye;
4942
4943        adap->params.nports = hweight32(port_vec);
4944        adap->params.portvec = port_vec;
4945
4946        /* Give the SGE code a chance to pull in anything that it needs ...
4947         * Note that this must be called after we retrieve our VPD parameters
4948         * in order to know how to convert core ticks to seconds, etc.
4949         */
4950        ret = t4_sge_init(adap);
4951        if (ret < 0)
4952                goto bye;
4953
4954        /* Grab the SGE Doorbell Queue Timer values.  If successful, that
4955         * indicates that the Firmware and Hardware support this.
4956         */
4957        params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4958                    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMERTICK));
4959        ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4960                              1, params, val);
4961
4962        if (!ret) {
4963                adap->sge.dbqtimer_tick = val[0];
4964                ret = t4_read_sge_dbqtimers(adap,
4965                                            ARRAY_SIZE(adap->sge.dbqtimer_val),
4966                                            adap->sge.dbqtimer_val);
4967        }
4968
4969        if (!ret)
4970                adap->flags |= CXGB4_SGE_DBQ_TIMER;
4971
4972        if (is_bypass_device(adap->pdev->device))
4973                adap->params.bypass = 1;
4974
4975        /*
4976         * Grab some of our basic fundamental operating parameters.
4977         */
4978        params[0] = FW_PARAM_PFVF(EQ_START);
4979        params[1] = FW_PARAM_PFVF(L2T_START);
4980        params[2] = FW_PARAM_PFVF(L2T_END);
4981        params[3] = FW_PARAM_PFVF(FILTER_START);
4982        params[4] = FW_PARAM_PFVF(FILTER_END);
4983        params[5] = FW_PARAM_PFVF(IQFLINT_START);
4984        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
4985        if (ret < 0)
4986                goto bye;
4987        adap->sge.egr_start = val[0];
4988        adap->l2t_start = val[1];
4989        adap->l2t_end = val[2];
4990        adap->tids.ftid_base = val[3];
4991        adap->tids.nftids = val[4] - val[3] + 1;
4992        adap->sge.ingr_start = val[5];
4993
4994        if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
4995                params[0] = FW_PARAM_PFVF(HPFILTER_START);
4996                params[1] = FW_PARAM_PFVF(HPFILTER_END);
4997                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4998                                      params, val);
4999                if (ret < 0)
5000                        goto bye;
5001
5002                adap->tids.hpftid_base = val[0];
5003                adap->tids.nhpftids = val[1] - val[0] + 1;
5004
5005                /* Read the raw mps entries. In T6, the last 2 tcam entries
5006                 * are reserved for raw mac addresses (rawf = 2, one per port).
5007                 */
5008                params[0] = FW_PARAM_PFVF(RAWF_START);
5009                params[1] = FW_PARAM_PFVF(RAWF_END);
5010                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5011                                      params, val);
5012                if (ret == 0) {
5013                        adap->rawf_start = val[0];
5014                        adap->rawf_cnt = val[1] - val[0] + 1;
5015                }
5016
5017                adap->tids.tid_base =
5018                        t4_read_reg(adap, LE_DB_ACTIVE_TABLE_START_INDEX_A);
5019        }
5020
5021        /* qids (ingress/egress) returned from firmware can be anywhere
5022         * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
5023         * Hence driver needs to allocate memory for this range to
5024         * store the queue info. Get the highest IQFLINT/EQ index returned
5025         * in FW_EQ_*_CMD.alloc command.
5026         */
5027        params[0] = FW_PARAM_PFVF(EQ_END);
5028        params[1] = FW_PARAM_PFVF(IQFLINT_END);
5029        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
5030        if (ret < 0)
5031                goto bye;
5032        adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
5033        adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
5034
5035        adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
5036                                    sizeof(*adap->sge.egr_map), GFP_KERNEL);
5037        if (!adap->sge.egr_map) {
5038                ret = -ENOMEM;
5039                goto bye;
5040        }
5041
5042        adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
5043                                     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
5044        if (!adap->sge.ingr_map) {
5045                ret = -ENOMEM;
5046                goto bye;
5047        }
5048
5049        /* Allocate the memory for the vaious egress queue bitmaps
5050         * ie starving_fl, txq_maperr and blocked_fl.
5051         */
5052        adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
5053                                        sizeof(long), GFP_KERNEL);
5054        if (!adap->sge.starving_fl) {
5055                ret = -ENOMEM;
5056                goto bye;
5057        }
5058
5059        adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
5060                                       sizeof(long), GFP_KERNEL);
5061        if (!adap->sge.txq_maperr) {
5062                ret = -ENOMEM;
5063                goto bye;
5064        }
5065
5066#ifdef CONFIG_DEBUG_FS
5067        adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
5068                                       sizeof(long), GFP_KERNEL);
5069        if (!adap->sge.blocked_fl) {
5070                ret = -ENOMEM;
5071                goto bye;
5072        }
5073#endif
5074
5075        params[0] = FW_PARAM_PFVF(CLIP_START);
5076        params[1] = FW_PARAM_PFVF(CLIP_END);
5077        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
5078        if (ret < 0)
5079                goto bye;
5080        adap->clipt_start = val[0];
5081        adap->clipt_end = val[1];
5082
5083        /* Get the supported number of traffic classes */
5084        params[0] = FW_PARAM_DEV(NUM_TM_CLASS);
5085        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
5086        if (ret < 0) {
5087                /* We couldn't retrieve the number of Traffic Classes
5088                 * supported by the hardware/firmware. So we hard
5089                 * code it here.
5090                 */
5091                adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
5092        } else {
5093                adap->params.nsched_cls = val[0];
5094        }
5095
5096        /* query params related to active filter region */
5097        params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
5098        params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
5099        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
5100        /* If Active filter size is set we enable establishing
5101         * offload connection through firmware work request
5102         */
5103        if ((val[0] != val[1]) && (ret >= 0)) {
5104                adap->flags |= CXGB4_FW_OFLD_CONN;
5105                adap->tids.aftid_base = val[0];
5106                adap->tids.aftid_end = val[1];
5107        }
5108
5109        /* If we're running on newer firmware, let it know that we're
5110         * prepared to deal with encapsulated CPL messages.  Older
5111         * firmware won't understand this and we'll just get
5112         * unencapsulated messages ...
5113         */
5114        params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5115        val[0] = 1;
5116        (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
5117
5118        /*
5119         * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
5120         * capability.  Earlier versions of the firmware didn't have the
5121         * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
5122         * permission to use ULPTX MEMWRITE DSGL.
5123         */
5124        if (is_t4(adap->params.chip)) {
5125                adap->params.ulptx_memwrite_dsgl = false;
5126        } else {
5127                params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5128                ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5129                                      1, params, val);
5130                adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
5131        }
5132
5133        /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
5134        params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
5135        ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5136                              1, params, val);
5137        adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
5138
5139        /* See if FW supports FW_FILTER2 work request */
5140        if (is_t4(adap->params.chip)) {
5141                adap->params.filter2_wr_support = 0;
5142        } else {
5143                params[0] = FW_PARAM_DEV(FILTER2_WR);
5144                ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5145                                      1, params, val);
5146                adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
5147        }
5148
5149        /* Check if FW supports returning vin and smt index.
5150         * If this is not supported, driver will interpret
5151         * these values from viid.
5152         */
5153        params[0] = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
5154        ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5155                              1, params, val);
5156        adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0);
5157
5158        /*
5159         * Get device capabilities so we can determine what resources we need
5160         * to manage.
5161         */
5162        memset(&caps_cmd, 0, sizeof(caps_cmd));
5163        caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
5164                                     FW_CMD_REQUEST_F | FW_CMD_READ_F);
5165        caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5166        ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
5167                         &caps_cmd);
5168        if (ret < 0)
5169                goto bye;
5170
5171        /* hash filter has some mandatory register settings to be tested and for
5172         * that it needs to test whether offload is enabled or not, hence
5173         * checking and setting it here.
5174         */
5175        if (caps_cmd.ofldcaps)
5176                adap->params.offload = 1;
5177
5178        if (caps_cmd.ofldcaps ||
5179            (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) ||
5180            (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD))) {
5181                /* query offload-related parameters */
5182                params[0] = FW_PARAM_DEV(NTID);
5183                params[1] = FW_PARAM_PFVF(SERVER_START);
5184                params[2] = FW_PARAM_PFVF(SERVER_END);
5185                params[3] = FW_PARAM_PFVF(TDDP_START);
5186                params[4] = FW_PARAM_PFVF(TDDP_END);
5187                params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5188                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
5189                                      params, val);
5190                if (ret < 0)
5191                        goto bye;
5192                adap->tids.ntids = val[0];
5193                adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
5194                adap->tids.stid_base = val[1];
5195                adap->tids.nstids = val[2] - val[1] + 1;
5196                /*
5197                 * Setup server filter region. Divide the available filter
5198                 * region into two parts. Regular filters get 1/3rd and server
5199                 * filters get 2/3rd part. This is only enabled if workarond
5200                 * path is enabled.
5201                 * 1. For regular filters.
5202                 * 2. Server filter: This are special filters which are used
5203                 * to redirect SYN packets to offload queue.
5204                 */
5205                if (adap->flags & CXGB4_FW_OFLD_CONN && !is_bypass(adap)) {
5206                        adap->tids.sftid_base = adap->tids.ftid_base +
5207                                        DIV_ROUND_UP(adap->tids.nftids, 3);
5208                        adap->tids.nsftids = adap->tids.nftids -
5209                                         DIV_ROUND_UP(adap->tids.nftids, 3);
5210                        adap->tids.nftids = adap->tids.sftid_base -
5211                                                adap->tids.ftid_base;
5212                }
5213                adap->vres.ddp.start = val[3];
5214                adap->vres.ddp.size = val[4] - val[3] + 1;
5215                adap->params.ofldq_wr_cred = val[5];
5216
5217                if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
5218                        init_hash_filter(adap);
5219                } else {
5220                        adap->num_ofld_uld += 1;
5221                }
5222
5223                if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD)) {
5224                        params[0] = FW_PARAM_PFVF(ETHOFLD_START);
5225                        params[1] = FW_PARAM_PFVF(ETHOFLD_END);
5226                        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5227                                              params, val);
5228                        if (!ret) {
5229                                adap->tids.eotid_base = val[0];
5230                                adap->tids.neotids = min_t(u32, MAX_ATIDS,
5231                                                           val[1] - val[0] + 1);
5232                                adap->params.ethofld = 1;
5233                        }
5234                }
5235        }
5236        if (caps_cmd.rdmacaps) {
5237                params[0] = FW_PARAM_PFVF(STAG_START);
5238                params[1] = FW_PARAM_PFVF(STAG_END);
5239                params[2] = FW_PARAM_PFVF(RQ_START);
5240                params[3] = FW_PARAM_PFVF(RQ_END);
5241                params[4] = FW_PARAM_PFVF(PBL_START);
5242                params[5] = FW_PARAM_PFVF(PBL_END);
5243                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
5244                                      params, val);
5245                if (ret < 0)
5246                        goto bye;
5247                adap->vres.stag.start = val[0];
5248                adap->vres.stag.size = val[1] - val[0] + 1;
5249                adap->vres.rq.start = val[2];
5250                adap->vres.rq.size = val[3] - val[2] + 1;
5251                adap->vres.pbl.start = val[4];
5252                adap->vres.pbl.size = val[5] - val[4] + 1;
5253
5254                params[0] = FW_PARAM_PFVF(SRQ_START);
5255                params[1] = FW_PARAM_PFVF(SRQ_END);
5256                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5257                                      params, val);
5258                if (!ret) {
5259                        adap->vres.srq.start = val[0];
5260                        adap->vres.srq.size = val[1] - val[0] + 1;
5261                }
5262                if (adap->vres.srq.size) {
5263                        adap->srq = t4_init_srq(adap->vres.srq.size);
5264                        if (!adap->srq)
5265                                dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n");
5266                }
5267
5268                params[0] = FW_PARAM_PFVF(SQRQ_START);
5269                params[1] = FW_PARAM_PFVF(SQRQ_END);
5270                params[2] = FW_PARAM_PFVF(CQ_START);
5271                params[3] = FW_PARAM_PFVF(CQ_END);
5272                params[4] = FW_PARAM_PFVF(OCQ_START);
5273                params[5] = FW_PARAM_PFVF(OCQ_END);
5274                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
5275                                      val);
5276                if (ret < 0)
5277                        goto bye;
5278                adap->vres.qp.start = val[0];
5279                adap->vres.qp.size = val[1] - val[0] + 1;
5280                adap->vres.cq.start = val[2];
5281                adap->vres.cq.size = val[3] - val[2] + 1;
5282                adap->vres.ocq.start = val[4];
5283                adap->vres.ocq.size = val[5] - val[4] + 1;
5284
5285                params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
5286                params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5287                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
5288                                      val);
5289                if (ret < 0) {
5290                        adap->params.max_ordird_qp = 8;
5291                        adap->params.max_ird_adapter = 32 * adap->tids.ntids;
5292                        ret = 0;
5293                } else {
5294                        adap->params.max_ordird_qp = val[0];
5295                        adap->params.max_ird_adapter = val[1];
5296                }
5297                dev_info(adap->pdev_dev,
5298                         "max_ordird_qp %d max_ird_adapter %d\n",
5299                         adap->params.max_ordird_qp,
5300                         adap->params.max_ird_adapter);
5301
5302                /* Enable write_with_immediate if FW supports it */
5303                params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM);
5304                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
5305                                      val);
5306                adap->params.write_w_imm_support = (ret == 0 && val[0] != 0);
5307
5308                /* Enable write_cmpl if FW supports it */
5309                params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR);
5310                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
5311                                      val);
5312                adap->params.write_cmpl_support = (ret == 0 && val[0] != 0);
5313                adap->num_ofld_uld += 2;
5314        }
5315        if (caps_cmd.iscsicaps) {
5316                params[0] = FW_PARAM_PFVF(ISCSI_START);
5317                params[1] = FW_PARAM_PFVF(ISCSI_END);
5318                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5319                                      params, val);
5320                if (ret < 0)
5321                        goto bye;
5322                adap->vres.iscsi.start = val[0];
5323                adap->vres.iscsi.size = val[1] - val[0] + 1;
5324                if (is_t6(adap->params.chip)) {
5325                        params[0] = FW_PARAM_PFVF(PPOD_EDRAM_START);
5326                        params[1] = FW_PARAM_PFVF(PPOD_EDRAM_END);
5327                        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5328                                              params, val);
5329                        if (!ret) {
5330                                adap->vres.ppod_edram.start = val[0];
5331                                adap->vres.ppod_edram.size =
5332                                        val[1] - val[0] + 1;
5333
5334                                dev_info(adap->pdev_dev,
5335                                         "ppod edram start 0x%x end 0x%x size 0x%x\n",
5336                                         val[0], val[1],
5337                                         adap->vres.ppod_edram.size);
5338                        }
5339                }
5340                /* LIO target and cxgb4i initiaitor */
5341                adap->num_ofld_uld += 2;
5342        }
5343        if (caps_cmd.cryptocaps) {
5344                if (ntohs(caps_cmd.cryptocaps) &
5345                    FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) {
5346                        params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
5347                        ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5348                                              2, params, val);
5349                        if (ret < 0) {
5350                                if (ret != -EINVAL)
5351                                        goto bye;
5352                        } else {
5353                                adap->vres.ncrypto_fc = val[0];
5354                        }
5355                        adap->num_ofld_uld += 1;
5356                }
5357                if (ntohs(caps_cmd.cryptocaps) &
5358                    FW_CAPS_CONFIG_TLS_INLINE) {
5359                        params[0] = FW_PARAM_PFVF(TLS_START);
5360                        params[1] = FW_PARAM_PFVF(TLS_END);
5361                        ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5362                                              2, params, val);
5363                        if (ret < 0)
5364                                goto bye;
5365                        adap->vres.key.start = val[0];
5366                        adap->vres.key.size = val[1] - val[0] + 1;
5367                        adap->num_uld += 1;
5368                }
5369                adap->params.crypto = ntohs(caps_cmd.cryptocaps);
5370        }
5371
5372        /* The MTU/MSS Table is initialized by now, so load their values.  If
5373         * we're initializing the adapter, then we'll make any modifications
5374         * we want to the MTU/MSS Table and also initialize the congestion
5375         * parameters.
5376         */
5377        t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
5378        if (state != DEV_STATE_INIT) {
5379                int i;
5380
5381                /* The default MTU Table contains values 1492 and 1500.
5382                 * However, for TCP, it's better to have two values which are
5383                 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
5384                 * This allows us to have a TCP Data Payload which is a
5385                 * multiple of 8 regardless of what combination of TCP Options
5386                 * are in use (always a multiple of 4 bytes) which is
5387                 * important for performance reasons.  For instance, if no
5388                 * options are in use, then we have a 20-byte IP header and a
5389                 * 20-byte TCP header.  In this case, a 1500-byte MSS would
5390                 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
5391                 * which is not a multiple of 8.  So using an MSS of 1488 in
5392                 * this case results in a TCP Data Payload of 1448 bytes which
5393                 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
5394                 * Stamps have been negotiated, then an MTU of 1500 bytes
5395                 * results in a TCP Data Payload of 1448 bytes which, as
5396                 * above, is a multiple of 8 bytes ...
5397                 */
5398                for (i = 0; i < NMTUS; i++)
5399                        if (adap->params.mtus[i] == 1492) {
5400                                adap->params.mtus[i] = 1488;
5401                                break;
5402                        }
5403
5404                t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5405                             adap->params.b_wnd);
5406        }
5407        t4_init_sge_params(adap);
5408        adap->flags |= CXGB4_FW_OK;
5409        t4_init_tp_params(adap, true);
5410        return 0;
5411
5412        /*
5413         * Something bad happened.  If a command timed out or failed with EIO
5414         * FW does not operate within its spec or something catastrophic
5415         * happened to HW/FW, stop issuing commands.
5416         */
5417bye:
5418        adap_free_hma_mem(adap);
5419        kfree(adap->sge.egr_map);
5420        kfree(adap->sge.ingr_map);
5421        kfree(adap->sge.starving_fl);
5422        kfree(adap->sge.txq_maperr);
5423#ifdef CONFIG_DEBUG_FS
5424        kfree(adap->sge.blocked_fl);
5425#endif
5426        if (ret != -ETIMEDOUT && ret != -EIO)
5427                t4_fw_bye(adap, adap->mbox);
5428        return ret;
5429}
5430
5431/* EEH callbacks */
5432
5433static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
5434                                         pci_channel_state_t state)
5435{
5436        int i;
5437        struct adapter *adap = pci_get_drvdata(pdev);
5438
5439        if (!adap)
5440                goto out;
5441
5442        rtnl_lock();
5443        adap->flags &= ~CXGB4_FW_OK;
5444        notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
5445        spin_lock(&adap->stats_lock);
5446        for_each_port(adap, i) {
5447                struct net_device *dev = adap->port[i];
5448                if (dev) {
5449                        netif_device_detach(dev);
5450                        netif_carrier_off(dev);
5451                }
5452        }
5453        spin_unlock(&adap->stats_lock);
5454        disable_interrupts(adap);
5455        if (adap->flags & CXGB4_FULL_INIT_DONE)
5456                cxgb_down(adap);
5457        rtnl_unlock();
5458        if ((adap->flags & CXGB4_DEV_ENABLED)) {
5459                pci_disable_device(pdev);
5460                adap->flags &= ~CXGB4_DEV_ENABLED;
5461        }
5462out:    return state == pci_channel_io_perm_failure ?
5463                PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
5464}
5465
5466static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
5467{
5468        int i, ret;
5469        struct fw_caps_config_cmd c;
5470        struct adapter *adap = pci_get_drvdata(pdev);
5471
5472        if (!adap) {
5473                pci_restore_state(pdev);
5474                pci_save_state(pdev);
5475                return PCI_ERS_RESULT_RECOVERED;
5476        }
5477
5478        if (!(adap->flags & CXGB4_DEV_ENABLED)) {
5479                if (pci_enable_device(pdev)) {
5480                        dev_err(&pdev->dev, "Cannot reenable PCI "
5481                                            "device after reset\n");
5482                        return PCI_ERS_RESULT_DISCONNECT;
5483                }
5484                adap->flags |= CXGB4_DEV_ENABLED;
5485        }
5486
5487        pci_set_master(pdev);
5488        pci_restore_state(pdev);
5489        pci_save_state(pdev);
5490
5491        if (t4_wait_dev_ready(adap->regs) < 0)
5492                return PCI_ERS_RESULT_DISCONNECT;
5493        if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
5494                return PCI_ERS_RESULT_DISCONNECT;
5495        adap->flags |= CXGB4_FW_OK;
5496        if (adap_init1(adap, &c))
5497                return PCI_ERS_RESULT_DISCONNECT;
5498
5499        for_each_port(adap, i) {
5500                struct port_info *pi = adap2pinfo(adap, i);
5501                u8 vivld = 0, vin = 0;
5502
5503                ret = t4_alloc_vi(adap, adap->mbox, pi->tx_chan, adap->pf, 0, 1,
5504                                  NULL, NULL, &vivld, &vin);
5505                if (ret < 0)
5506                        return PCI_ERS_RESULT_DISCONNECT;
5507                pi->viid = ret;
5508                pi->xact_addr_filt = -1;
5509                /* If fw supports returning the VIN as part of FW_VI_CMD,
5510                 * save the returned values.
5511                 */
5512                if (adap->params.viid_smt_extn_support) {
5513                        pi->vivld = vivld;
5514                        pi->vin = vin;
5515                } else {
5516                        /* Retrieve the values from VIID */
5517                        pi->vivld = FW_VIID_VIVLD_G(pi->viid);
5518                        pi->vin = FW_VIID_VIN_G(pi->viid);
5519                }
5520        }
5521
5522        t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5523                     adap->params.b_wnd);
5524        setup_memwin(adap);
5525        if (cxgb_up(adap))
5526                return PCI_ERS_RESULT_DISCONNECT;
5527        return PCI_ERS_RESULT_RECOVERED;
5528}
5529
5530static void eeh_resume(struct pci_dev *pdev)
5531{
5532        int i;
5533        struct adapter *adap = pci_get_drvdata(pdev);
5534
5535        if (!adap)
5536                return;
5537
5538        rtnl_lock();
5539        for_each_port(adap, i) {
5540                struct net_device *dev = adap->port[i];
5541                if (dev) {
5542                        if (netif_running(dev)) {
5543                                link_start(dev);
5544                                cxgb_set_rxmode(dev);
5545                        }
5546                        netif_device_attach(dev);
5547                }
5548        }
5549        rtnl_unlock();
5550}
5551
5552static void eeh_reset_prepare(struct pci_dev *pdev)
5553{
5554        struct adapter *adapter = pci_get_drvdata(pdev);
5555        int i;
5556
5557        if (adapter->pf != 4)
5558                return;
5559
5560        adapter->flags &= ~CXGB4_FW_OK;
5561
5562        notify_ulds(adapter, CXGB4_STATE_DOWN);
5563
5564        for_each_port(adapter, i)
5565                if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5566                        cxgb_close(adapter->port[i]);
5567
5568        disable_interrupts(adapter);
5569        cxgb4_free_mps_ref_entries(adapter);
5570
5571        adap_free_hma_mem(adapter);
5572
5573        if (adapter->flags & CXGB4_FULL_INIT_DONE)
5574                cxgb_down(adapter);
5575}
5576
5577static void eeh_reset_done(struct pci_dev *pdev)
5578{
5579        struct adapter *adapter = pci_get_drvdata(pdev);
5580        int err, i;
5581
5582        if (adapter->pf != 4)
5583                return;
5584
5585        err = t4_wait_dev_ready(adapter->regs);
5586        if (err < 0) {
5587                dev_err(adapter->pdev_dev,
5588                        "Device not ready, err %d", err);
5589                return;
5590        }
5591
5592        setup_memwin(adapter);
5593
5594        err = adap_init0(adapter, 1);
5595        if (err) {
5596                dev_err(adapter->pdev_dev,
5597                        "Adapter init failed, err %d", err);
5598                return;
5599        }
5600
5601        setup_memwin_rdma(adapter);
5602
5603        if (adapter->flags & CXGB4_FW_OK) {
5604                err = t4_port_init(adapter, adapter->pf, adapter->pf, 0);
5605                if (err) {
5606                        dev_err(adapter->pdev_dev,
5607                                "Port init failed, err %d", err);
5608                        return;
5609                }
5610        }
5611
5612        err = cfg_queues(adapter);
5613        if (err) {
5614                dev_err(adapter->pdev_dev,
5615                        "Config queues failed, err %d", err);
5616                return;
5617        }
5618
5619        cxgb4_init_mps_ref_entries(adapter);
5620
5621        err = setup_fw_sge_queues(adapter);
5622        if (err) {
5623                dev_err(adapter->pdev_dev,
5624                        "FW sge queue allocation failed, err %d", err);
5625                return;
5626        }
5627
5628        for_each_port(adapter, i)
5629                if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5630                        cxgb_open(adapter->port[i]);
5631}
5632
5633static const struct pci_error_handlers cxgb4_eeh = {
5634        .error_detected = eeh_err_detected,
5635        .slot_reset     = eeh_slot_reset,
5636        .resume         = eeh_resume,
5637        .reset_prepare  = eeh_reset_prepare,
5638        .reset_done     = eeh_reset_done,
5639};
5640
5641/* Return true if the Link Configuration supports "High Speeds" (those greater
5642 * than 1Gb/s).
5643 */
5644static inline bool is_x_10g_port(const struct link_config *lc)
5645{
5646        unsigned int speeds, high_speeds;
5647
5648        speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps));
5649        high_speeds = speeds &
5650                        ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
5651
5652        return high_speeds != 0;
5653}
5654
5655/* Perform default configuration of DMA queues depending on the number and type
5656 * of ports we found and the number of available CPUs.  Most settings can be
5657 * modified by the admin prior to actual use.
5658 */
5659static int cfg_queues(struct adapter *adap)
5660{
5661        u32 avail_qsets, avail_eth_qsets, avail_uld_qsets;
5662        u32 ncpus = num_online_cpus();
5663        u32 niqflint, neq, num_ulds;
5664        struct sge *s = &adap->sge;
5665        u32 i, n10g = 0, qidx = 0;
5666        u32 q10g = 0, q1g;
5667
5668        /* Reduce memory usage in kdump environment, disable all offload. */
5669        if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) {
5670                adap->params.offload = 0;
5671                adap->params.crypto = 0;
5672                adap->params.ethofld = 0;
5673        }
5674
5675        /* Calculate the number of Ethernet Queue Sets available based on
5676         * resources provisioned for us.  We always have an Asynchronous
5677         * Firmware Event Ingress Queue.  If we're operating in MSI or Legacy
5678         * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt
5679         * Ingress Queue.  Meanwhile, we need two Egress Queues for each
5680         * Queue Set: one for the Free List and one for the Ethernet TX Queue.
5681         *
5682         * Note that we should also take into account all of the various
5683         * Offload Queues.  But, in any situation where we're operating in
5684         * a Resource Constrained Provisioning environment, doing any Offload
5685         * at all is problematic ...
5686         */
5687        niqflint = adap->params.pfres.niqflint - 1;
5688        if (!(adap->flags & CXGB4_USING_MSIX))
5689                niqflint--;
5690        neq = adap->params.pfres.neq / 2;
5691        avail_qsets = min(niqflint, neq);
5692
5693        if (avail_qsets < adap->params.nports) {
5694                dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n",
5695                        avail_qsets, adap->params.nports);
5696                return -ENOMEM;
5697        }
5698
5699        /* Count the number of 10Gb/s or better ports */
5700        for_each_port(adap, i)
5701                n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
5702
5703        avail_eth_qsets = min_t(u32, avail_qsets, MAX_ETH_QSETS);
5704
5705        /* We default to 1 queue per non-10G port and up to # of cores queues
5706         * per 10G port.
5707         */
5708        if (n10g)
5709                q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g;
5710
5711#ifdef CONFIG_CHELSIO_T4_DCB
5712        /* For Data Center Bridging support we need to be able to support up
5713         * to 8 Traffic Priorities; each of which will be assigned to its
5714         * own TX Queue in order to prevent Head-Of-Line Blocking.
5715         */
5716        q1g = 8;
5717        if (adap->params.nports * 8 > avail_eth_qsets) {
5718                dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n",
5719                        avail_eth_qsets, adap->params.nports * 8);
5720                return -ENOMEM;
5721        }
5722
5723        if (adap->params.nports * ncpus < avail_eth_qsets)
5724                q10g = max(8U, ncpus);
5725        else
5726                q10g = max(8U, q10g);
5727
5728        while ((q10g * n10g) >
5729               (avail_eth_qsets - (adap->params.nports - n10g) * q1g))
5730                q10g--;
5731
5732#else /* !CONFIG_CHELSIO_T4_DCB */
5733        q1g = 1;
5734        q10g = min(q10g, ncpus);
5735#endif /* !CONFIG_CHELSIO_T4_DCB */
5736        if (is_kdump_kernel()) {
5737                q10g = 1;
5738                q1g = 1;
5739        }
5740
5741        for_each_port(adap, i) {
5742                struct port_info *pi = adap2pinfo(adap, i);
5743
5744                pi->first_qset = qidx;
5745                pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : q1g;
5746                qidx += pi->nqsets;
5747        }
5748
5749        s->ethqsets = qidx;
5750        s->max_ethqsets = qidx;   /* MSI-X may lower it later */
5751        avail_qsets -= qidx;
5752
5753        if (is_uld(adap)) {
5754                /* For offload we use 1 queue/channel if all ports are up to 1G,
5755                 * otherwise we divide all available queues amongst the channels
5756                 * capped by the number of available cores.
5757                 */
5758                num_ulds = adap->num_uld + adap->num_ofld_uld;
5759                i = min_t(u32, MAX_OFLD_QSETS, ncpus);
5760                avail_uld_qsets = roundup(i, adap->params.nports);
5761                if (avail_qsets < num_ulds * adap->params.nports) {
5762                        adap->params.offload = 0;
5763                        adap->params.crypto = 0;
5764                        s->ofldqsets = 0;
5765                } else if (avail_qsets < num_ulds * avail_uld_qsets || !n10g) {
5766                        s->ofldqsets = adap->params.nports;
5767                } else {
5768                        s->ofldqsets = avail_uld_qsets;
5769                }
5770
5771                avail_qsets -= num_ulds * s->ofldqsets;
5772        }
5773
5774        /* ETHOFLD Queues used for QoS offload should follow same
5775         * allocation scheme as normal Ethernet Queues.
5776         */
5777        if (is_ethofld(adap)) {
5778                if (avail_qsets < s->max_ethqsets) {
5779                        adap->params.ethofld = 0;
5780                        s->eoqsets = 0;
5781                } else {
5782                        s->eoqsets = s->max_ethqsets;
5783                }
5784                avail_qsets -= s->eoqsets;
5785        }
5786
5787        /* Mirror queues must follow same scheme as normal Ethernet
5788         * Queues, when there are enough queues available. Otherwise,
5789         * allocate at least 1 queue per port. If even 1 queue is not
5790         * available, then disable mirror queues support.
5791         */
5792        if (avail_qsets >= s->max_ethqsets)
5793                s->mirrorqsets = s->max_ethqsets;
5794        else if (avail_qsets >= adap->params.nports)
5795                s->mirrorqsets = adap->params.nports;
5796        else
5797                s->mirrorqsets = 0;
5798        avail_qsets -= s->mirrorqsets;
5799
5800        for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
5801                struct sge_eth_rxq *r = &s->ethrxq[i];
5802
5803                init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
5804                r->fl.size = 72;
5805        }
5806
5807        for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
5808                s->ethtxq[i].q.size = 1024;
5809
5810        for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
5811                s->ctrlq[i].q.size = 512;
5812
5813        if (!is_t4(adap->params.chip))
5814                s->ptptxq.q.size = 8;
5815
5816        init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
5817        init_rspq(adap, &s->intrq, 0, 1, 512, 64);
5818
5819        return 0;
5820}
5821
5822/*
5823 * Reduce the number of Ethernet queues across all ports to at most n.
5824 * n provides at least one queue per port.
5825 */
5826static void reduce_ethqs(struct adapter *adap, int n)
5827{
5828        int i;
5829        struct port_info *pi;
5830
5831        while (n < adap->sge.ethqsets)
5832                for_each_port(adap, i) {
5833                        pi = adap2pinfo(adap, i);
5834                        if (pi->nqsets > 1) {
5835                                pi->nqsets--;
5836                                adap->sge.ethqsets--;
5837                                if (adap->sge.ethqsets <= n)
5838                                        break;
5839                        }
5840                }
5841
5842        n = 0;
5843        for_each_port(adap, i) {
5844                pi = adap2pinfo(adap, i);
5845                pi->first_qset = n;
5846                n += pi->nqsets;
5847        }
5848}
5849
5850static int alloc_msix_info(struct adapter *adap, u32 num_vec)
5851{
5852        struct msix_info *msix_info;
5853
5854        msix_info = kcalloc(num_vec, sizeof(*msix_info), GFP_KERNEL);
5855        if (!msix_info)
5856                return -ENOMEM;
5857
5858        adap->msix_bmap.msix_bmap = kcalloc(BITS_TO_LONGS(num_vec),
5859                                            sizeof(long), GFP_KERNEL);
5860        if (!adap->msix_bmap.msix_bmap) {
5861                kfree(msix_info);
5862                return -ENOMEM;
5863        }
5864
5865        spin_lock_init(&adap->msix_bmap.lock);
5866        adap->msix_bmap.mapsize = num_vec;
5867
5868        adap->msix_info = msix_info;
5869        return 0;
5870}
5871
5872static void free_msix_info(struct adapter *adap)
5873{
5874        kfree(adap->msix_bmap.msix_bmap);
5875        kfree(adap->msix_info);
5876}
5877
5878int cxgb4_get_msix_idx_from_bmap(struct adapter *adap)
5879{
5880        struct msix_bmap *bmap = &adap->msix_bmap;
5881        unsigned int msix_idx;
5882        unsigned long flags;
5883
5884        spin_lock_irqsave(&bmap->lock, flags);
5885        msix_idx = find_first_zero_bit(bmap->msix_bmap, bmap->mapsize);
5886        if (msix_idx < bmap->mapsize) {
5887                __set_bit(msix_idx, bmap->msix_bmap);
5888        } else {
5889                spin_unlock_irqrestore(&bmap->lock, flags);
5890                return -ENOSPC;
5891        }
5892
5893        spin_unlock_irqrestore(&bmap->lock, flags);
5894        return msix_idx;
5895}
5896
5897void cxgb4_free_msix_idx_in_bmap(struct adapter *adap,
5898                                 unsigned int msix_idx)
5899{
5900        struct msix_bmap *bmap = &adap->msix_bmap;
5901        unsigned long flags;
5902
5903        spin_lock_irqsave(&bmap->lock, flags);
5904        __clear_bit(msix_idx, bmap->msix_bmap);
5905        spin_unlock_irqrestore(&bmap->lock, flags);
5906}
5907
5908/* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
5909#define EXTRA_VECS 2
5910
5911static int enable_msix(struct adapter *adap)
5912{
5913        u32 eth_need, uld_need = 0, ethofld_need = 0, mirror_need = 0;
5914        u32 ethqsets = 0, ofldqsets = 0, eoqsets = 0, mirrorqsets = 0;
5915        u8 num_uld = 0, nchan = adap->params.nports;
5916        u32 i, want, need, num_vec;
5917        struct sge *s = &adap->sge;
5918        struct msix_entry *entries;
5919        struct port_info *pi;
5920        int allocated, ret;
5921
5922        want = s->max_ethqsets;
5923#ifdef CONFIG_CHELSIO_T4_DCB
5924        /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
5925         * each port.
5926         */
5927        need = 8 * nchan;
5928#else
5929        need = nchan;
5930#endif
5931        eth_need = need;
5932        if (is_uld(adap)) {
5933                num_uld = adap->num_ofld_uld + adap->num_uld;
5934                want += num_uld * s->ofldqsets;
5935                uld_need = num_uld * nchan;
5936                need += uld_need;
5937        }
5938
5939        if (is_ethofld(adap)) {
5940                want += s->eoqsets;
5941                ethofld_need = eth_need;
5942                need += ethofld_need;
5943        }
5944
5945        if (s->mirrorqsets) {
5946                want += s->mirrorqsets;
5947                mirror_need = nchan;
5948                need += mirror_need;
5949        }
5950
5951        want += EXTRA_VECS;
5952        need += EXTRA_VECS;
5953
5954        entries = kmalloc_array(want, sizeof(*entries), GFP_KERNEL);
5955        if (!entries)
5956                return -ENOMEM;
5957
5958        for (i = 0; i < want; i++)
5959                entries[i].entry = i;
5960
5961        allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
5962        if (allocated < 0) {
5963                /* Disable offload and attempt to get vectors for NIC
5964                 * only mode.
5965                 */
5966                want = s->max_ethqsets + EXTRA_VECS;
5967                need = eth_need + EXTRA_VECS;
5968                allocated = pci_enable_msix_range(adap->pdev, entries,
5969                                                  need, want);
5970                if (allocated < 0) {
5971                        dev_info(adap->pdev_dev,
5972                                 "Disabling MSI-X due to insufficient MSI-X vectors\n");
5973                        ret = allocated;
5974                        goto out_free;
5975                }
5976
5977                dev_info(adap->pdev_dev,
5978                         "Disabling offload due to insufficient MSI-X vectors\n");
5979                adap->params.offload = 0;
5980                adap->params.crypto = 0;
5981                adap->params.ethofld = 0;
5982                s->ofldqsets = 0;
5983                s->eoqsets = 0;
5984                s->mirrorqsets = 0;
5985                uld_need = 0;
5986                ethofld_need = 0;
5987                mirror_need = 0;
5988        }
5989
5990        num_vec = allocated;
5991        if (num_vec < want) {
5992                /* Distribute available vectors to the various queue groups.
5993                 * Every group gets its minimum requirement and NIC gets top
5994                 * priority for leftovers.
5995                 */
5996                ethqsets = eth_need;
5997                if (is_uld(adap))
5998                        ofldqsets = nchan;
5999                if (is_ethofld(adap))
6000                        eoqsets = ethofld_need;
6001                if (s->mirrorqsets)
6002                        mirrorqsets = mirror_need;
6003
6004                num_vec -= need;
6005                while (num_vec) {
6006                        if (num_vec < eth_need + ethofld_need ||
6007                            ethqsets > s->max_ethqsets)
6008                                break;
6009
6010                        for_each_port(adap, i) {
6011                                pi = adap2pinfo(adap, i);
6012                                if (pi->nqsets < 2)
6013                                        continue;
6014
6015                                ethqsets++;
6016                                num_vec--;
6017                                if (ethofld_need) {
6018                                        eoqsets++;
6019                                        num_vec--;
6020                                }
6021                        }
6022                }
6023
6024                if (is_uld(adap)) {
6025                        while (num_vec) {
6026                                if (num_vec < uld_need ||
6027                                    ofldqsets > s->ofldqsets)
6028                                        break;
6029
6030                                ofldqsets++;
6031                                num_vec -= uld_need;
6032                        }
6033                }
6034
6035                if (s->mirrorqsets) {
6036                        while (num_vec) {
6037                                if (num_vec < mirror_need ||
6038                                    mirrorqsets > s->mirrorqsets)
6039                                        break;
6040
6041                                mirrorqsets++;
6042                                num_vec -= mirror_need;
6043                        }
6044                }
6045        } else {
6046                ethqsets = s->max_ethqsets;
6047                if (is_uld(adap))
6048                        ofldqsets = s->ofldqsets;
6049                if (is_ethofld(adap))
6050                        eoqsets = s->eoqsets;
6051                if (s->mirrorqsets)
6052                        mirrorqsets = s->mirrorqsets;
6053        }
6054
6055        if (ethqsets < s->max_ethqsets) {
6056                s->max_ethqsets = ethqsets;
6057                reduce_ethqs(adap, ethqsets);
6058        }
6059
6060        if (is_uld(adap)) {
6061                s->ofldqsets = ofldqsets;
6062                s->nqs_per_uld = s->ofldqsets;
6063        }
6064
6065        if (is_ethofld(adap))
6066                s->eoqsets = eoqsets;
6067
6068        if (s->mirrorqsets) {
6069                s->mirrorqsets = mirrorqsets;
6070                for_each_port(adap, i) {
6071                        pi = adap2pinfo(adap, i);
6072                        pi->nmirrorqsets = s->mirrorqsets / nchan;
6073                        mutex_init(&pi->vi_mirror_mutex);
6074                }
6075        }
6076
6077        /* map for msix */
6078        ret = alloc_msix_info(adap, allocated);
6079        if (ret)
6080                goto out_disable_msix;
6081
6082        for (i = 0; i < allocated; i++) {
6083                adap->msix_info[i].vec = entries[i].vector;
6084                adap->msix_info[i].idx = i;
6085        }
6086
6087        dev_info(adap->pdev_dev,
6088                 "%d MSI-X vectors allocated, nic %d eoqsets %d per uld %d mirrorqsets %d\n",
6089                 allocated, s->max_ethqsets, s->eoqsets, s->nqs_per_uld,
6090                 s->mirrorqsets);
6091
6092        kfree(entries);
6093        return 0;
6094
6095out_disable_msix:
6096        pci_disable_msix(adap->pdev);
6097
6098out_free:
6099        kfree(entries);
6100        return ret;
6101}
6102
6103#undef EXTRA_VECS
6104
6105static int init_rss(struct adapter *adap)
6106{
6107        unsigned int i;
6108        int err;
6109
6110        err = t4_init_rss_mode(adap, adap->mbox);
6111        if (err)
6112                return err;
6113
6114        for_each_port(adap, i) {
6115                struct port_info *pi = adap2pinfo(adap, i);
6116
6117                pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
6118                if (!pi->rss)
6119                        return -ENOMEM;
6120        }
6121        return 0;
6122}
6123
6124/* Dump basic information about the adapter */
6125static void print_adapter_info(struct adapter *adapter)
6126{
6127        /* Hardware/Firmware/etc. Version/Revision IDs */
6128        t4_dump_version_info(adapter);
6129
6130        /* Software/Hardware configuration */
6131        dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
6132                 is_offload(adapter) ? "R" : "",
6133                 ((adapter->flags & CXGB4_USING_MSIX) ? "MSI-X" :
6134                  (adapter->flags & CXGB4_USING_MSI) ? "MSI" : ""),
6135                 is_offload(adapter) ? "Offload" : "non-Offload");
6136}
6137
6138static void print_port_info(const struct net_device *dev)
6139{
6140        char buf[80];
6141        char *bufp = buf;
6142        const struct port_info *pi = netdev_priv(dev);
6143        const struct adapter *adap = pi->adapter;
6144
6145        if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
6146                bufp += sprintf(bufp, "100M/");
6147        if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
6148                bufp += sprintf(bufp, "1G/");
6149        if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
6150                bufp += sprintf(bufp, "10G/");
6151        if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
6152                bufp += sprintf(bufp, "25G/");
6153        if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
6154                bufp += sprintf(bufp, "40G/");
6155        if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
6156                bufp += sprintf(bufp, "50G/");
6157        if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
6158                bufp += sprintf(bufp, "100G/");
6159        if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G)
6160                bufp += sprintf(bufp, "200G/");
6161        if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G)
6162                bufp += sprintf(bufp, "400G/");
6163        if (bufp != buf)
6164                --bufp;
6165        sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
6166
6167        netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
6168                    dev->name, adap->params.vpd.id, adap->name, buf);
6169}
6170
6171/*
6172 * Free the following resources:
6173 * - memory used for tables
6174 * - MSI/MSI-X
6175 * - net devices
6176 * - resources FW is holding for us
6177 */
6178static void free_some_resources(struct adapter *adapter)
6179{
6180        unsigned int i;
6181
6182        kvfree(adapter->smt);
6183        kvfree(adapter->l2t);
6184        kvfree(adapter->srq);
6185        t4_cleanup_sched(adapter);
6186        kvfree(adapter->tids.tid_tab);
6187        cxgb4_cleanup_tc_matchall(adapter);
6188        cxgb4_cleanup_tc_mqprio(adapter);
6189        cxgb4_cleanup_tc_flower(adapter);
6190        cxgb4_cleanup_tc_u32(adapter);
6191        cxgb4_cleanup_ethtool_filters(adapter);
6192        kfree(adapter->sge.egr_map);
6193        kfree(adapter->sge.ingr_map);
6194        kfree(adapter->sge.starving_fl);
6195        kfree(adapter->sge.txq_maperr);
6196#ifdef CONFIG_DEBUG_FS
6197        kfree(adapter->sge.blocked_fl);
6198#endif
6199        disable_msi(adapter);
6200
6201        for_each_port(adapter, i)
6202                if (adapter->port[i]) {
6203                        struct port_info *pi = adap2pinfo(adapter, i);
6204
6205                        if (pi->viid != 0)
6206                                t4_free_vi(adapter, adapter->mbox, adapter->pf,
6207                                           0, pi->viid);
6208                        kfree(adap2pinfo(adapter, i)->rss);
6209                        free_netdev(adapter->port[i]);
6210                }
6211        if (adapter->flags & CXGB4_FW_OK)
6212                t4_fw_bye(adapter, adapter->pf);
6213}
6214
6215#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN | \
6216                   NETIF_F_GSO_UDP_L4)
6217#define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
6218                   NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
6219#define SEGMENT_SIZE 128
6220
6221static int t4_get_chip_type(struct adapter *adap, int ver)
6222{
6223        u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A));
6224
6225        switch (ver) {
6226        case CHELSIO_T4:
6227                return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
6228        case CHELSIO_T5:
6229                return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
6230        case CHELSIO_T6:
6231                return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
6232        default:
6233                break;
6234        }
6235        return -EINVAL;
6236}
6237
6238#ifdef CONFIG_PCI_IOV
6239static void cxgb4_mgmt_setup(struct net_device *dev)
6240{
6241        dev->type = ARPHRD_NONE;
6242        dev->mtu = 0;
6243        dev->hard_header_len = 0;
6244        dev->addr_len = 0;
6245        dev->tx_queue_len = 0;
6246        dev->flags |= IFF_NOARP;
6247        dev->priv_flags |= IFF_NO_QUEUE;
6248
6249        /* Initialize the device structure. */
6250        dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
6251        dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
6252}
6253
6254static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
6255{
6256        struct adapter *adap = pci_get_drvdata(pdev);
6257        int err = 0;
6258        int current_vfs = pci_num_vf(pdev);
6259        u32 pcie_fw;
6260
6261        pcie_fw = readl(adap->regs + PCIE_FW_A);
6262        /* Check if fw is initialized */
6263        if (!(pcie_fw & PCIE_FW_INIT_F)) {
6264                dev_warn(&pdev->dev, "Device not initialized\n");
6265                return -EOPNOTSUPP;
6266        }
6267
6268        /* If any of the VF's is already assigned to Guest OS, then
6269         * SRIOV for the same cannot be modified
6270         */
6271        if (current_vfs && pci_vfs_assigned(pdev)) {
6272                dev_err(&pdev->dev,
6273                        "Cannot modify SR-IOV while VFs are assigned\n");
6274                return current_vfs;
6275        }
6276        /* Note that the upper-level code ensures that we're never called with
6277         * a non-zero "num_vfs" when we already have VFs instantiated.  But
6278         * it never hurts to code defensively.
6279         */
6280        if (num_vfs != 0 && current_vfs != 0)
6281                return -EBUSY;
6282
6283        /* Nothing to do for no change. */
6284        if (num_vfs == current_vfs)
6285                return num_vfs;
6286
6287        /* Disable SRIOV when zero is passed. */
6288        if (!num_vfs) {
6289                pci_disable_sriov(pdev);
6290                /* free VF Management Interface */
6291                unregister_netdev(adap->port[0]);
6292                free_netdev(adap->port[0]);
6293                adap->port[0] = NULL;
6294
6295                /* free VF resources */
6296                adap->num_vfs = 0;
6297                kfree(adap->vfinfo);
6298                adap->vfinfo = NULL;
6299                return 0;
6300        }
6301
6302        if (!current_vfs) {
6303                struct fw_pfvf_cmd port_cmd, port_rpl;
6304                struct net_device *netdev;
6305                unsigned int pmask, port;
6306                struct pci_dev *pbridge;
6307                struct port_info *pi;
6308                char name[IFNAMSIZ];
6309                u32 devcap2;
6310                u16 flags;
6311
6312                /* If we want to instantiate Virtual Functions, then our
6313                 * parent bridge's PCI-E needs to support Alternative Routing
6314                 * ID (ARI) because our VFs will show up at function offset 8
6315                 * and above.
6316                 */
6317                pbridge = pdev->bus->self;
6318                pcie_capability_read_word(pbridge, PCI_EXP_FLAGS, &flags);
6319                pcie_capability_read_dword(pbridge, PCI_EXP_DEVCAP2, &devcap2);
6320
6321                if ((flags & PCI_EXP_FLAGS_VERS) < 2 ||
6322                    !(devcap2 & PCI_EXP_DEVCAP2_ARI)) {
6323                        /* Our parent bridge does not support ARI so issue a
6324                         * warning and skip instantiating the VFs.  They
6325                         * won't be reachable.
6326                         */
6327                        dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n",
6328                                 pbridge->bus->number, PCI_SLOT(pbridge->devfn),
6329                                 PCI_FUNC(pbridge->devfn));
6330                        return -ENOTSUPP;
6331                }
6332                memset(&port_cmd, 0, sizeof(port_cmd));
6333                port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
6334                                                 FW_CMD_REQUEST_F |
6335                                                 FW_CMD_READ_F |
6336                                                 FW_PFVF_CMD_PFN_V(adap->pf) |
6337                                                 FW_PFVF_CMD_VFN_V(0));
6338                port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd));
6339                err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd),
6340                                 &port_rpl);
6341                if (err)
6342                        return err;
6343                pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq));
6344                port = ffs(pmask) - 1;
6345                /* Allocate VF Management Interface. */
6346                snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx,
6347                         adap->pf);
6348                netdev = alloc_netdev(sizeof(struct port_info),
6349                                      name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup);
6350                if (!netdev)
6351                        return -ENOMEM;
6352
6353                pi = netdev_priv(netdev);
6354                pi->adapter = adap;
6355                pi->lport = port;
6356                pi->tx_chan = port;
6357                SET_NETDEV_DEV(netdev, &pdev->dev);
6358
6359                adap->port[0] = netdev;
6360                pi->port_id = 0;
6361
6362                err = register_netdev(adap->port[0]);
6363                if (err) {
6364                        pr_info("Unable to register VF mgmt netdev %s\n", name);
6365                        free_netdev(adap->port[0]);
6366                        adap->port[0] = NULL;
6367                        return err;
6368                }
6369                /* Allocate and set up VF Information. */
6370                adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev),
6371                                       sizeof(struct vf_info), GFP_KERNEL);
6372                if (!adap->vfinfo) {
6373                        unregister_netdev(adap->port[0]);
6374                        free_netdev(adap->port[0]);
6375                        adap->port[0] = NULL;
6376                        return -ENOMEM;
6377                }
6378                cxgb4_mgmt_fill_vf_station_mac_addr(adap);
6379        }
6380        /* Instantiate the requested number of VFs. */
6381        err = pci_enable_sriov(pdev, num_vfs);
6382        if (err) {
6383                pr_info("Unable to instantiate %d VFs\n", num_vfs);
6384                if (!current_vfs) {
6385                        unregister_netdev(adap->port[0]);
6386                        free_netdev(adap->port[0]);
6387                        adap->port[0] = NULL;
6388                        kfree(adap->vfinfo);
6389                        adap->vfinfo = NULL;
6390                }
6391                return err;
6392        }
6393
6394        adap->num_vfs = num_vfs;
6395        return num_vfs;
6396}
6397#endif /* CONFIG_PCI_IOV */
6398
6399#if defined(CONFIG_CHELSIO_TLS_DEVICE)
6400
6401static int cxgb4_ktls_dev_add(struct net_device *netdev, struct sock *sk,
6402                              enum tls_offload_ctx_dir direction,
6403                              struct tls_crypto_info *crypto_info,
6404                              u32 tcp_sn)
6405{
6406        struct adapter *adap = netdev2adap(netdev);
6407        int ret = 0;
6408
6409        mutex_lock(&uld_mutex);
6410        if (!adap->uld[CXGB4_ULD_CRYPTO].handle) {
6411                dev_err(adap->pdev_dev, "chcr driver is not loaded\n");
6412                ret = -EOPNOTSUPP;
6413                goto out_unlock;
6414        }
6415
6416        if (!adap->uld[CXGB4_ULD_CRYPTO].tlsdev_ops) {
6417                dev_err(adap->pdev_dev,
6418                        "chcr driver has no registered tlsdev_ops()\n");
6419                ret = -EOPNOTSUPP;
6420                goto out_unlock;
6421        }
6422
6423        ret = cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_ENABLE);
6424        if (ret)
6425                goto out_unlock;
6426
6427        ret = adap->uld[CXGB4_ULD_CRYPTO].tlsdev_ops->tls_dev_add(netdev, sk,
6428                                                                  direction,
6429                                                                  crypto_info,
6430                                                                  tcp_sn);
6431        /* if there is a failure, clear the refcount */
6432        if (ret)
6433                cxgb4_set_ktls_feature(adap,
6434                                       FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE);
6435out_unlock:
6436        mutex_unlock(&uld_mutex);
6437        return ret;
6438}
6439
6440static void cxgb4_ktls_dev_del(struct net_device *netdev,
6441                               struct tls_context *tls_ctx,
6442                               enum tls_offload_ctx_dir direction)
6443{
6444        struct adapter *adap = netdev2adap(netdev);
6445
6446        mutex_lock(&uld_mutex);
6447        if (!adap->uld[CXGB4_ULD_CRYPTO].handle) {
6448                dev_err(adap->pdev_dev, "chcr driver is not loaded\n");
6449                goto out_unlock;
6450        }
6451
6452        if (!adap->uld[CXGB4_ULD_CRYPTO].tlsdev_ops) {
6453                dev_err(adap->pdev_dev,
6454                        "chcr driver has no registered tlsdev_ops\n");
6455                goto out_unlock;
6456        }
6457
6458        adap->uld[CXGB4_ULD_CRYPTO].tlsdev_ops->tls_dev_del(netdev, tls_ctx,
6459                                                            direction);
6460        cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE);
6461
6462out_unlock:
6463        mutex_unlock(&uld_mutex);
6464}
6465
6466static const struct tlsdev_ops cxgb4_ktls_ops = {
6467        .tls_dev_add = cxgb4_ktls_dev_add,
6468        .tls_dev_del = cxgb4_ktls_dev_del,
6469};
6470#endif /* CONFIG_CHELSIO_TLS_DEVICE */
6471
6472static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6473{
6474        struct net_device *netdev;
6475        struct adapter *adapter;
6476        static int adap_idx = 1;
6477        int s_qpp, qpp, num_seg;
6478        struct port_info *pi;
6479        bool highdma = false;
6480        enum chip_type chip;
6481        void __iomem *regs;
6482        int func, chip_ver;
6483        u16 device_id;
6484        int i, err;
6485        u32 whoami;
6486
6487        err = pci_request_regions(pdev, KBUILD_MODNAME);
6488        if (err) {
6489                /* Just info, some other driver may have claimed the device. */
6490                dev_info(&pdev->dev, "cannot obtain PCI resources\n");
6491                return err;
6492        }
6493
6494        err = pci_enable_device(pdev);
6495        if (err) {
6496                dev_err(&pdev->dev, "cannot enable PCI device\n");
6497                goto out_release_regions;
6498        }
6499
6500        regs = pci_ioremap_bar(pdev, 0);
6501        if (!regs) {
6502                dev_err(&pdev->dev, "cannot map device registers\n");
6503                err = -ENOMEM;
6504                goto out_disable_device;
6505        }
6506
6507        adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
6508        if (!adapter) {
6509                err = -ENOMEM;
6510                goto out_unmap_bar0;
6511        }
6512
6513        adapter->regs = regs;
6514        err = t4_wait_dev_ready(regs);
6515        if (err < 0)
6516                goto out_free_adapter;
6517
6518        /* We control everything through one PF */
6519        whoami = t4_read_reg(adapter, PL_WHOAMI_A);
6520        pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
6521        chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id));
6522        if ((int)chip < 0) {
6523                dev_err(&pdev->dev, "Device %d is not supported\n", device_id);
6524                err = chip;
6525                goto out_free_adapter;
6526        }
6527        chip_ver = CHELSIO_CHIP_VERSION(chip);
6528        func = chip_ver <= CHELSIO_T5 ?
6529               SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
6530
6531        adapter->pdev = pdev;
6532        adapter->pdev_dev = &pdev->dev;
6533        adapter->name = pci_name(pdev);
6534        adapter->mbox = func;
6535        adapter->pf = func;
6536        adapter->params.chip = chip;
6537        adapter->adap_idx = adap_idx;
6538        adapter->msg_enable = DFLT_MSG_ENABLE;
6539        adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
6540                                    (sizeof(struct mbox_cmd) *
6541                                     T4_OS_LOG_MBOX_CMDS),
6542                                    GFP_KERNEL);
6543        if (!adapter->mbox_log) {
6544                err = -ENOMEM;
6545                goto out_free_adapter;
6546        }
6547        spin_lock_init(&adapter->mbox_lock);
6548        INIT_LIST_HEAD(&adapter->mlist.list);
6549        adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
6550        pci_set_drvdata(pdev, adapter);
6551
6552        if (func != ent->driver_data) {
6553                pci_disable_device(pdev);
6554                pci_save_state(pdev);        /* to restore SR-IOV later */
6555                return 0;
6556        }
6557
6558        if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
6559                highdma = true;
6560                err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
6561                if (err) {
6562                        dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
6563                                "coherent allocations\n");
6564                        goto out_free_adapter;
6565                }
6566        } else {
6567                err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6568                if (err) {
6569                        dev_err(&pdev->dev, "no usable DMA configuration\n");
6570                        goto out_free_adapter;
6571                }
6572        }
6573
6574        pci_enable_pcie_error_reporting(pdev);
6575        pci_set_master(pdev);
6576        pci_save_state(pdev);
6577        adap_idx++;
6578        adapter->workq = create_singlethread_workqueue("cxgb4");
6579        if (!adapter->workq) {
6580                err = -ENOMEM;
6581                goto out_free_adapter;
6582        }
6583
6584        /* PCI device has been enabled */
6585        adapter->flags |= CXGB4_DEV_ENABLED;
6586        memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
6587
6588        /* If possible, we use PCIe Relaxed Ordering Attribute to deliver
6589         * Ingress Packet Data to Free List Buffers in order to allow for
6590         * chipset performance optimizations between the Root Complex and
6591         * Memory Controllers.  (Messages to the associated Ingress Queue
6592         * notifying new Packet Placement in the Free Lists Buffers will be
6593         * send without the Relaxed Ordering Attribute thus guaranteeing that
6594         * all preceding PCIe Transaction Layer Packets will be processed
6595         * first.)  But some Root Complexes have various issues with Upstream
6596         * Transaction Layer Packets with the Relaxed Ordering Attribute set.
6597         * The PCIe devices which under the Root Complexes will be cleared the
6598         * Relaxed Ordering bit in the configuration space, So we check our
6599         * PCIe configuration space to see if it's flagged with advice against
6600         * using Relaxed Ordering.
6601         */
6602        if (!pcie_relaxed_ordering_enabled(pdev))
6603                adapter->flags |= CXGB4_ROOT_NO_RELAXED_ORDERING;
6604
6605        spin_lock_init(&adapter->stats_lock);
6606        spin_lock_init(&adapter->tid_release_lock);
6607        spin_lock_init(&adapter->win0_lock);
6608
6609        INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
6610        INIT_WORK(&adapter->db_full_task, process_db_full);
6611        INIT_WORK(&adapter->db_drop_task, process_db_drop);
6612        INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err);
6613
6614        err = t4_prep_adapter(adapter);
6615        if (err)
6616                goto out_free_adapter;
6617
6618        if (is_kdump_kernel()) {
6619                /* Collect hardware state and append to /proc/vmcore */
6620                err = cxgb4_cudbg_vmcore_add_dump(adapter);
6621                if (err) {
6622                        dev_warn(adapter->pdev_dev,
6623                                 "Fail collecting vmcore device dump, err: %d. Continuing\n",
6624                                 err);
6625                        err = 0;
6626                }
6627        }
6628
6629        if (!is_t4(adapter->params.chip)) {
6630                s_qpp = (QUEUESPERPAGEPF0_S +
6631                        (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
6632                        adapter->pf);
6633                qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
6634                      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
6635                num_seg = PAGE_SIZE / SEGMENT_SIZE;
6636
6637                /* Each segment size is 128B. Write coalescing is enabled only
6638                 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
6639                 * queue is less no of segments that can be accommodated in
6640                 * a page size.
6641                 */
6642                if (qpp > num_seg) {
6643                        dev_err(&pdev->dev,
6644                                "Incorrect number of egress queues per page\n");
6645                        err = -EINVAL;
6646                        goto out_free_adapter;
6647                }
6648                adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
6649                pci_resource_len(pdev, 2));
6650                if (!adapter->bar2) {
6651                        dev_err(&pdev->dev, "cannot map device bar2 region\n");
6652                        err = -ENOMEM;
6653                        goto out_free_adapter;
6654                }
6655        }
6656
6657        setup_memwin(adapter);
6658        err = adap_init0(adapter, 0);
6659#ifdef CONFIG_DEBUG_FS
6660        bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
6661#endif
6662        setup_memwin_rdma(adapter);
6663        if (err)
6664                goto out_unmap_bar;
6665
6666        /* configure SGE_STAT_CFG_A to read WC stats */
6667        if (!is_t4(adapter->params.chip))
6668                t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
6669                             (is_t5(adapter->params.chip) ? STATMODE_V(0) :
6670                              T6_STATMODE_V(0)));
6671
6672        /* Initialize hash mac addr list */
6673        INIT_LIST_HEAD(&adapter->mac_hlist);
6674
6675        for_each_port(adapter, i) {
6676                /* For supporting MQPRIO Offload, need some extra
6677                 * queues for each ETHOFLD TIDs. Keep it equal to
6678                 * MAX_ATIDs for now. Once we connect to firmware
6679                 * later and query the EOTID params, we'll come to
6680                 * know the actual # of EOTIDs supported.
6681                 */
6682                netdev = alloc_etherdev_mq(sizeof(struct port_info),
6683                                           MAX_ETH_QSETS + MAX_ATIDS);
6684                if (!netdev) {
6685                        err = -ENOMEM;
6686                        goto out_free_dev;
6687                }
6688
6689                SET_NETDEV_DEV(netdev, &pdev->dev);
6690
6691                adapter->port[i] = netdev;
6692                pi = netdev_priv(netdev);
6693                pi->adapter = adapter;
6694                pi->xact_addr_filt = -1;
6695                pi->port_id = i;
6696                netdev->irq = pdev->irq;
6697
6698                netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
6699                        NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6700                        NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_GRO |
6701                        NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
6702                        NETIF_F_HW_TC | NETIF_F_NTUPLE;
6703
6704                if (chip_ver > CHELSIO_T5) {
6705                        netdev->hw_enc_features |= NETIF_F_IP_CSUM |
6706                                                   NETIF_F_IPV6_CSUM |
6707                                                   NETIF_F_RXCSUM |
6708                                                   NETIF_F_GSO_UDP_TUNNEL |
6709                                                   NETIF_F_GSO_UDP_TUNNEL_CSUM |
6710                                                   NETIF_F_TSO | NETIF_F_TSO6;
6711
6712                        netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL |
6713                                               NETIF_F_GSO_UDP_TUNNEL_CSUM |
6714                                               NETIF_F_HW_TLS_RECORD;
6715
6716                        if (adapter->rawf_cnt)
6717                                netdev->udp_tunnel_nic_info = &cxgb_udp_tunnels;
6718                }
6719
6720                if (highdma)
6721                        netdev->hw_features |= NETIF_F_HIGHDMA;
6722                netdev->features |= netdev->hw_features;
6723                netdev->vlan_features = netdev->features & VLAN_FEAT;
6724#if defined(CONFIG_CHELSIO_TLS_DEVICE)
6725                if (pi->adapter->params.crypto & FW_CAPS_CONFIG_TLS_HW) {
6726                        netdev->hw_features |= NETIF_F_HW_TLS_TX;
6727                        netdev->tlsdev_ops = &cxgb4_ktls_ops;
6728                        /* initialize the refcount */
6729                        refcount_set(&pi->adapter->chcr_ktls.ktls_refcount, 0);
6730                }
6731#endif
6732                netdev->priv_flags |= IFF_UNICAST_FLT;
6733
6734                /* MTU range: 81 - 9600 */
6735                netdev->min_mtu = 81;              /* accommodate SACK */
6736                netdev->max_mtu = MAX_MTU;
6737
6738                netdev->netdev_ops = &cxgb4_netdev_ops;
6739#ifdef CONFIG_CHELSIO_T4_DCB
6740                netdev->dcbnl_ops = &cxgb4_dcb_ops;
6741                cxgb4_dcb_state_init(netdev);
6742                cxgb4_dcb_version_init(netdev);
6743#endif
6744                cxgb4_set_ethtool_ops(netdev);
6745        }
6746
6747        cxgb4_init_ethtool_dump(adapter);
6748
6749        pci_set_drvdata(pdev, adapter);
6750
6751        if (adapter->flags & CXGB4_FW_OK) {
6752                err = t4_port_init(adapter, func, func, 0);
6753                if (err)
6754                        goto out_free_dev;
6755        } else if (adapter->params.nports == 1) {
6756                /* If we don't have a connection to the firmware -- possibly
6757                 * because of an error -- grab the raw VPD parameters so we
6758                 * can set the proper MAC Address on the debug network
6759                 * interface that we've created.
6760                 */
6761                u8 hw_addr[ETH_ALEN];
6762                u8 *na = adapter->params.vpd.na;
6763
6764                err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
6765                if (!err) {
6766                        for (i = 0; i < ETH_ALEN; i++)
6767                                hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
6768                                              hex2val(na[2 * i + 1]));
6769                        t4_set_hw_addr(adapter, 0, hw_addr);
6770                }
6771        }
6772
6773        if (!(adapter->flags & CXGB4_FW_OK))
6774                goto fw_attach_fail;
6775
6776        /* Configure queues and allocate tables now, they can be needed as
6777         * soon as the first register_netdev completes.
6778         */
6779        err = cfg_queues(adapter);
6780        if (err)
6781                goto out_free_dev;
6782
6783        adapter->smt = t4_init_smt();
6784        if (!adapter->smt) {
6785                /* We tolerate a lack of SMT, giving up some functionality */
6786                dev_warn(&pdev->dev, "could not allocate SMT, continuing\n");
6787        }
6788
6789        adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
6790        if (!adapter->l2t) {
6791                /* We tolerate a lack of L2T, giving up some functionality */
6792                dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
6793                adapter->params.offload = 0;
6794        }
6795
6796#if IS_ENABLED(CONFIG_IPV6)
6797        if (chip_ver <= CHELSIO_T5 &&
6798            (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
6799                /* CLIP functionality is not present in hardware,
6800                 * hence disable all offload features
6801                 */
6802                dev_warn(&pdev->dev,
6803                         "CLIP not enabled in hardware, continuing\n");
6804                adapter->params.offload = 0;
6805        } else {
6806                adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
6807                                                  adapter->clipt_end);
6808                if (!adapter->clipt) {
6809                        /* We tolerate a lack of clip_table, giving up
6810                         * some functionality
6811                         */
6812                        dev_warn(&pdev->dev,
6813                                 "could not allocate Clip table, continuing\n");
6814                        adapter->params.offload = 0;
6815                }
6816        }
6817#endif
6818
6819        for_each_port(adapter, i) {
6820                pi = adap2pinfo(adapter, i);
6821                pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
6822                if (!pi->sched_tbl)
6823                        dev_warn(&pdev->dev,
6824                                 "could not activate scheduling on port %d\n",
6825                                 i);
6826        }
6827
6828        if (is_offload(adapter) || is_hashfilter(adapter)) {
6829                if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
6830                        u32 v;
6831
6832                        v = t4_read_reg(adapter, LE_DB_HASH_CONFIG_A);
6833                        if (chip_ver <= CHELSIO_T5) {
6834                                adapter->tids.nhash = 1 << HASHTIDSIZE_G(v);
6835                                v = t4_read_reg(adapter, LE_DB_TID_HASHBASE_A);
6836                                adapter->tids.hash_base = v / 4;
6837                        } else {
6838                                adapter->tids.nhash = HASHTBLSIZE_G(v) << 3;
6839                                v = t4_read_reg(adapter,
6840                                                T6_LE_DB_HASH_TID_BASE_A);
6841                                adapter->tids.hash_base = v;
6842                        }
6843                }
6844        }
6845
6846        if (tid_init(&adapter->tids) < 0) {
6847                dev_warn(&pdev->dev, "could not allocate TID table, "
6848                         "continuing\n");
6849                adapter->params.offload = 0;
6850        } else {
6851                adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
6852                if (!adapter->tc_u32)
6853                        dev_warn(&pdev->dev,
6854                                 "could not offload tc u32, continuing\n");
6855
6856                if (cxgb4_init_tc_flower(adapter))
6857                        dev_warn(&pdev->dev,
6858                                 "could not offload tc flower, continuing\n");
6859
6860                if (cxgb4_init_tc_mqprio(adapter))
6861                        dev_warn(&pdev->dev,
6862                                 "could not offload tc mqprio, continuing\n");
6863
6864                if (cxgb4_init_tc_matchall(adapter))
6865                        dev_warn(&pdev->dev,
6866                                 "could not offload tc matchall, continuing\n");
6867                if (cxgb4_init_ethtool_filters(adapter))
6868                        dev_warn(&pdev->dev,
6869                                 "could not initialize ethtool filters, continuing\n");
6870        }
6871
6872        /* See what interrupts we'll be using */
6873        if (msi > 1 && enable_msix(adapter) == 0)
6874                adapter->flags |= CXGB4_USING_MSIX;
6875        else if (msi > 0 && pci_enable_msi(pdev) == 0) {
6876                adapter->flags |= CXGB4_USING_MSI;
6877                if (msi > 1)
6878                        free_msix_info(adapter);
6879        }
6880
6881        /* check for PCI Express bandwidth capabiltites */
6882        pcie_print_link_status(pdev);
6883
6884        cxgb4_init_mps_ref_entries(adapter);
6885
6886        err = init_rss(adapter);
6887        if (err)
6888                goto out_free_dev;
6889
6890        err = setup_non_data_intr(adapter);
6891        if (err) {
6892                dev_err(adapter->pdev_dev,
6893                        "Non Data interrupt allocation failed, err: %d\n", err);
6894                goto out_free_dev;
6895        }
6896
6897        err = setup_fw_sge_queues(adapter);
6898        if (err) {
6899                dev_err(adapter->pdev_dev,
6900                        "FW sge queue allocation failed, err %d", err);
6901                goto out_free_dev;
6902        }
6903
6904fw_attach_fail:
6905        /*
6906         * The card is now ready to go.  If any errors occur during device
6907         * registration we do not fail the whole card but rather proceed only
6908         * with the ports we manage to register successfully.  However we must
6909         * register at least one net device.
6910         */
6911        for_each_port(adapter, i) {
6912                pi = adap2pinfo(adapter, i);
6913                adapter->port[i]->dev_port = pi->lport;
6914                netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
6915                netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
6916
6917                netif_carrier_off(adapter->port[i]);
6918
6919                err = register_netdev(adapter->port[i]);
6920                if (err)
6921                        break;
6922                adapter->chan_map[pi->tx_chan] = i;
6923                print_port_info(adapter->port[i]);
6924        }
6925        if (i == 0) {
6926                dev_err(&pdev->dev, "could not register any net devices\n");
6927                goto out_free_dev;
6928        }
6929        if (err) {
6930                dev_warn(&pdev->dev, "only %d net devices registered\n", i);
6931                err = 0;
6932        }
6933
6934        if (cxgb4_debugfs_root) {
6935                adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
6936                                                           cxgb4_debugfs_root);
6937                setup_debugfs(adapter);
6938        }
6939
6940        /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
6941        pdev->needs_freset = 1;
6942
6943        if (is_uld(adapter))
6944                cxgb4_uld_enable(adapter);
6945
6946        if (!is_t4(adapter->params.chip))
6947                cxgb4_ptp_init(adapter);
6948
6949        if (IS_REACHABLE(CONFIG_THERMAL) &&
6950            !is_t4(adapter->params.chip) && (adapter->flags & CXGB4_FW_OK))
6951                cxgb4_thermal_init(adapter);
6952
6953        print_adapter_info(adapter);
6954        return 0;
6955
6956 out_free_dev:
6957        t4_free_sge_resources(adapter);
6958        free_some_resources(adapter);
6959        if (adapter->flags & CXGB4_USING_MSIX)
6960                free_msix_info(adapter);
6961        if (adapter->num_uld || adapter->num_ofld_uld)
6962                t4_uld_mem_free(adapter);
6963 out_unmap_bar:
6964        if (!is_t4(adapter->params.chip))
6965                iounmap(adapter->bar2);
6966 out_free_adapter:
6967        if (adapter->workq)
6968                destroy_workqueue(adapter->workq);
6969
6970        kfree(adapter->mbox_log);
6971        kfree(adapter);
6972 out_unmap_bar0:
6973        iounmap(regs);
6974 out_disable_device:
6975        pci_disable_pcie_error_reporting(pdev);
6976        pci_disable_device(pdev);
6977 out_release_regions:
6978        pci_release_regions(pdev);
6979        return err;
6980}
6981
6982static void remove_one(struct pci_dev *pdev)
6983{
6984        struct adapter *adapter = pci_get_drvdata(pdev);
6985        struct hash_mac_addr *entry, *tmp;
6986
6987        if (!adapter) {
6988                pci_release_regions(pdev);
6989                return;
6990        }
6991
6992        /* If we allocated filters, free up state associated with any
6993         * valid filters ...
6994         */
6995        clear_all_filters(adapter);
6996
6997        adapter->flags |= CXGB4_SHUTTING_DOWN;
6998
6999        if (adapter->pf == 4) {
7000                int i;
7001
7002                /* Tear down per-adapter Work Queue first since it can contain
7003                 * references to our adapter data structure.
7004                 */
7005                destroy_workqueue(adapter->workq);
7006
7007                if (is_uld(adapter)) {
7008                        detach_ulds(adapter);
7009                        t4_uld_clean_up(adapter);
7010                }
7011
7012                adap_free_hma_mem(adapter);
7013
7014                disable_interrupts(adapter);
7015
7016                cxgb4_free_mps_ref_entries(adapter);
7017
7018                for_each_port(adapter, i)
7019                        if (adapter->port[i]->reg_state == NETREG_REGISTERED)
7020                                unregister_netdev(adapter->port[i]);
7021
7022                debugfs_remove_recursive(adapter->debugfs_root);
7023
7024                if (!is_t4(adapter->params.chip))
7025                        cxgb4_ptp_stop(adapter);
7026                if (IS_REACHABLE(CONFIG_THERMAL))
7027                        cxgb4_thermal_remove(adapter);
7028
7029                if (adapter->flags & CXGB4_FULL_INIT_DONE)
7030                        cxgb_down(adapter);
7031
7032                if (adapter->flags & CXGB4_USING_MSIX)
7033                        free_msix_info(adapter);
7034                if (adapter->num_uld || adapter->num_ofld_uld)
7035                        t4_uld_mem_free(adapter);
7036                free_some_resources(adapter);
7037                list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist,
7038                                         list) {
7039                        list_del(&entry->list);
7040                        kfree(entry);
7041                }
7042
7043#if IS_ENABLED(CONFIG_IPV6)
7044                t4_cleanup_clip_tbl(adapter);
7045#endif
7046                if (!is_t4(adapter->params.chip))
7047                        iounmap(adapter->bar2);
7048        }
7049#ifdef CONFIG_PCI_IOV
7050        else {
7051                cxgb4_iov_configure(adapter->pdev, 0);
7052        }
7053#endif
7054        iounmap(adapter->regs);
7055        pci_disable_pcie_error_reporting(pdev);
7056        if ((adapter->flags & CXGB4_DEV_ENABLED)) {
7057                pci_disable_device(pdev);
7058                adapter->flags &= ~CXGB4_DEV_ENABLED;
7059        }
7060        pci_release_regions(pdev);
7061        kfree(adapter->mbox_log);
7062        synchronize_rcu();
7063        kfree(adapter);
7064}
7065
7066/* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
7067 * delivery.  This is essentially a stripped down version of the PCI remove()
7068 * function where we do the minimal amount of work necessary to shutdown any
7069 * further activity.
7070 */
7071static void shutdown_one(struct pci_dev *pdev)
7072{
7073        struct adapter *adapter = pci_get_drvdata(pdev);
7074
7075        /* As with remove_one() above (see extended comment), we only want do
7076         * do cleanup on PCI Devices which went all the way through init_one()
7077         * ...
7078         */
7079        if (!adapter) {
7080                pci_release_regions(pdev);
7081                return;
7082        }
7083
7084        adapter->flags |= CXGB4_SHUTTING_DOWN;
7085
7086        if (adapter->pf == 4) {
7087                int i;
7088
7089                for_each_port(adapter, i)
7090                        if (adapter->port[i]->reg_state == NETREG_REGISTERED)
7091                                cxgb_close(adapter->port[i]);
7092
7093                rtnl_lock();
7094                cxgb4_mqprio_stop_offload(adapter);
7095                rtnl_unlock();
7096
7097                if (is_uld(adapter)) {
7098                        detach_ulds(adapter);
7099                        t4_uld_clean_up(adapter);
7100                }
7101
7102                disable_interrupts(adapter);
7103                disable_msi(adapter);
7104
7105                t4_sge_stop(adapter);
7106                if (adapter->flags & CXGB4_FW_OK)
7107                        t4_fw_bye(adapter, adapter->mbox);
7108        }
7109}
7110
7111static struct pci_driver cxgb4_driver = {
7112        .name     = KBUILD_MODNAME,
7113        .id_table = cxgb4_pci_tbl,
7114        .probe    = init_one,
7115        .remove   = remove_one,
7116        .shutdown = shutdown_one,
7117#ifdef CONFIG_PCI_IOV
7118        .sriov_configure = cxgb4_iov_configure,
7119#endif
7120        .err_handler = &cxgb4_eeh,
7121};
7122
7123static int __init cxgb4_init_module(void)
7124{
7125        int ret;
7126
7127        cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
7128
7129        ret = pci_register_driver(&cxgb4_driver);
7130        if (ret < 0)
7131                goto err_pci;
7132
7133#if IS_ENABLED(CONFIG_IPV6)
7134        if (!inet6addr_registered) {
7135                ret = register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
7136                if (ret)
7137                        pci_unregister_driver(&cxgb4_driver);
7138                else
7139                        inet6addr_registered = true;
7140        }
7141#endif
7142
7143        if (ret == 0)
7144                return ret;
7145
7146err_pci:
7147        debugfs_remove(cxgb4_debugfs_root);
7148
7149        return ret;
7150}
7151
7152static void __exit cxgb4_cleanup_module(void)
7153{
7154#if IS_ENABLED(CONFIG_IPV6)
7155        if (inet6addr_registered) {
7156                unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
7157                inet6addr_registered = false;
7158        }
7159#endif
7160        pci_unregister_driver(&cxgb4_driver);
7161        debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
7162}
7163
7164module_init(cxgb4_init_module);
7165module_exit(cxgb4_cleanup_module);
7166