linux/drivers/net/ethernet/chelsio/cxgb4/t4_hw.c
<<
>>
Prefs
   1/*
   2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
   3 *
   4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
   5 *
   6 * This software is available to you under a choice of one of two
   7 * licenses.  You may choose to be licensed under the terms of the GNU
   8 * General Public License (GPL) Version 2, available from the file
   9 * COPYING in the main directory of this source tree, or the
  10 * OpenIB.org BSD license below:
  11 *
  12 *     Redistribution and use in source and binary forms, with or
  13 *     without modification, are permitted provided that the following
  14 *     conditions are met:
  15 *
  16 *      - Redistributions of source code must retain the above
  17 *        copyright notice, this list of conditions and the following
  18 *        disclaimer.
  19 *
  20 *      - Redistributions in binary form must reproduce the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer in the documentation and/or other materials
  23 *        provided with the distribution.
  24 *
  25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  32 * SOFTWARE.
  33 */
  34
  35#include <linux/delay.h>
  36#include "cxgb4.h"
  37#include "t4_regs.h"
  38#include "t4_values.h"
  39#include "t4fw_api.h"
  40#include "t4fw_version.h"
  41
  42/**
  43 *      t4_wait_op_done_val - wait until an operation is completed
  44 *      @adapter: the adapter performing the operation
  45 *      @reg: the register to check for completion
  46 *      @mask: a single-bit field within @reg that indicates completion
  47 *      @polarity: the value of the field when the operation is completed
  48 *      @attempts: number of check iterations
  49 *      @delay: delay in usecs between iterations
  50 *      @valp: where to store the value of the register at completion time
  51 *
  52 *      Wait until an operation is completed by checking a bit in a register
  53 *      up to @attempts times.  If @valp is not NULL the value of the register
  54 *      at the time it indicated completion is stored there.  Returns 0 if the
  55 *      operation completes and -EAGAIN otherwise.
  56 */
  57static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
  58                               int polarity, int attempts, int delay, u32 *valp)
  59{
  60        while (1) {
  61                u32 val = t4_read_reg(adapter, reg);
  62
  63                if (!!(val & mask) == polarity) {
  64                        if (valp)
  65                                *valp = val;
  66                        return 0;
  67                }
  68                if (--attempts == 0)
  69                        return -EAGAIN;
  70                if (delay)
  71                        udelay(delay);
  72        }
  73}
  74
  75static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
  76                                  int polarity, int attempts, int delay)
  77{
  78        return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
  79                                   delay, NULL);
  80}
  81
  82/**
  83 *      t4_set_reg_field - set a register field to a value
  84 *      @adapter: the adapter to program
  85 *      @addr: the register address
  86 *      @mask: specifies the portion of the register to modify
  87 *      @val: the new value for the register field
  88 *
  89 *      Sets a register field specified by the supplied mask to the
  90 *      given value.
  91 */
  92void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
  93                      u32 val)
  94{
  95        u32 v = t4_read_reg(adapter, addr) & ~mask;
  96
  97        t4_write_reg(adapter, addr, v | val);
  98        (void) t4_read_reg(adapter, addr);      /* flush */
  99}
 100
 101/**
 102 *      t4_read_indirect - read indirectly addressed registers
 103 *      @adap: the adapter
 104 *      @addr_reg: register holding the indirect address
 105 *      @data_reg: register holding the value of the indirect register
 106 *      @vals: where the read register values are stored
 107 *      @nregs: how many indirect registers to read
 108 *      @start_idx: index of first indirect register to read
 109 *
 110 *      Reads registers that are accessed indirectly through an address/data
 111 *      register pair.
 112 */
 113void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
 114                             unsigned int data_reg, u32 *vals,
 115                             unsigned int nregs, unsigned int start_idx)
 116{
 117        while (nregs--) {
 118                t4_write_reg(adap, addr_reg, start_idx);
 119                *vals++ = t4_read_reg(adap, data_reg);
 120                start_idx++;
 121        }
 122}
 123
 124/**
 125 *      t4_write_indirect - write indirectly addressed registers
 126 *      @adap: the adapter
 127 *      @addr_reg: register holding the indirect addresses
 128 *      @data_reg: register holding the value for the indirect registers
 129 *      @vals: values to write
 130 *      @nregs: how many indirect registers to write
 131 *      @start_idx: address of first indirect register to write
 132 *
 133 *      Writes a sequential block of registers that are accessed indirectly
 134 *      through an address/data register pair.
 135 */
 136void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
 137                       unsigned int data_reg, const u32 *vals,
 138                       unsigned int nregs, unsigned int start_idx)
 139{
 140        while (nregs--) {
 141                t4_write_reg(adap, addr_reg, start_idx++);
 142                t4_write_reg(adap, data_reg, *vals++);
 143        }
 144}
 145
 146/*
 147 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
 148 * mechanism.  This guarantees that we get the real value even if we're
 149 * operating within a Virtual Machine and the Hypervisor is trapping our
 150 * Configuration Space accesses.
 151 */
 152void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
 153{
 154        u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
 155
 156        if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
 157                req |= ENABLE_F;
 158        else
 159                req |= T6_ENABLE_F;
 160
 161        if (is_t4(adap->params.chip))
 162                req |= LOCALCFG_F;
 163
 164        t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
 165        *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
 166
 167        /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
 168         * Configuration Space read.  (None of the other fields matter when
 169         * ENABLE is 0 so a simple register write is easier than a
 170         * read-modify-write via t4_set_reg_field().)
 171         */
 172        t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
 173}
 174
 175/*
 176 * t4_report_fw_error - report firmware error
 177 * @adap: the adapter
 178 *
 179 * The adapter firmware can indicate error conditions to the host.
 180 * If the firmware has indicated an error, print out the reason for
 181 * the firmware error.
 182 */
 183static void t4_report_fw_error(struct adapter *adap)
 184{
 185        static const char *const reason[] = {
 186                "Crash",                        /* PCIE_FW_EVAL_CRASH */
 187                "During Device Preparation",    /* PCIE_FW_EVAL_PREP */
 188                "During Device Configuration",  /* PCIE_FW_EVAL_CONF */
 189                "During Device Initialization", /* PCIE_FW_EVAL_INIT */
 190                "Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
 191                "Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
 192                "Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
 193                "Reserved",                     /* reserved */
 194        };
 195        u32 pcie_fw;
 196
 197        pcie_fw = t4_read_reg(adap, PCIE_FW_A);
 198        if (pcie_fw & PCIE_FW_ERR_F) {
 199                dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
 200                        reason[PCIE_FW_EVAL_G(pcie_fw)]);
 201                adap->flags &= ~CXGB4_FW_OK;
 202        }
 203}
 204
 205/*
 206 * Get the reply to a mailbox command and store it in @rpl in big-endian order.
 207 */
 208static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
 209                         u32 mbox_addr)
 210{
 211        for ( ; nflit; nflit--, mbox_addr += 8)
 212                *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
 213}
 214
 215/*
 216 * Handle a FW assertion reported in a mailbox.
 217 */
 218static void fw_asrt(struct adapter *adap, u32 mbox_addr)
 219{
 220        struct fw_debug_cmd asrt;
 221
 222        get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
 223        dev_alert(adap->pdev_dev,
 224                  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
 225                  asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
 226                  be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
 227}
 228
 229/**
 230 *      t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
 231 *      @adapter: the adapter
 232 *      @cmd: the Firmware Mailbox Command or Reply
 233 *      @size: command length in bytes
 234 *      @access: the time (ms) needed to access the Firmware Mailbox
 235 *      @execute: the time (ms) the command spent being executed
 236 */
 237static void t4_record_mbox(struct adapter *adapter,
 238                           const __be64 *cmd, unsigned int size,
 239                           int access, int execute)
 240{
 241        struct mbox_cmd_log *log = adapter->mbox_log;
 242        struct mbox_cmd *entry;
 243        int i;
 244
 245        entry = mbox_cmd_log_entry(log, log->cursor++);
 246        if (log->cursor == log->size)
 247                log->cursor = 0;
 248
 249        for (i = 0; i < size / 8; i++)
 250                entry->cmd[i] = be64_to_cpu(cmd[i]);
 251        while (i < MBOX_LEN / 8)
 252                entry->cmd[i++] = 0;
 253        entry->timestamp = jiffies;
 254        entry->seqno = log->seqno++;
 255        entry->access = access;
 256        entry->execute = execute;
 257}
 258
 259/**
 260 *      t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
 261 *      @adap: the adapter
 262 *      @mbox: index of the mailbox to use
 263 *      @cmd: the command to write
 264 *      @size: command length in bytes
 265 *      @rpl: where to optionally store the reply
 266 *      @sleep_ok: if true we may sleep while awaiting command completion
 267 *      @timeout: time to wait for command to finish before timing out
 268 *
 269 *      Sends the given command to FW through the selected mailbox and waits
 270 *      for the FW to execute the command.  If @rpl is not %NULL it is used to
 271 *      store the FW's reply to the command.  The command and its optional
 272 *      reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
 273 *      to respond.  @sleep_ok determines whether we may sleep while awaiting
 274 *      the response.  If sleeping is allowed we use progressive backoff
 275 *      otherwise we spin.
 276 *
 277 *      The return value is 0 on success or a negative errno on failure.  A
 278 *      failure can happen either because we are not able to execute the
 279 *      command or FW executes it but signals an error.  In the latter case
 280 *      the return value is the error code indicated by FW (negated).
 281 */
 282int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
 283                            int size, void *rpl, bool sleep_ok, int timeout)
 284{
 285        static const int delay[] = {
 286                1, 1, 3, 5, 10, 10, 20, 50, 100, 200
 287        };
 288
 289        struct mbox_list entry;
 290        u16 access = 0;
 291        u16 execute = 0;
 292        u32 v;
 293        u64 res;
 294        int i, ms, delay_idx, ret;
 295        const __be64 *p = cmd;
 296        u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
 297        u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
 298        __be64 cmd_rpl[MBOX_LEN / 8];
 299        u32 pcie_fw;
 300
 301        if ((size & 15) || size > MBOX_LEN)
 302                return -EINVAL;
 303
 304        /*
 305         * If the device is off-line, as in EEH, commands will time out.
 306         * Fail them early so we don't waste time waiting.
 307         */
 308        if (adap->pdev->error_state != pci_channel_io_normal)
 309                return -EIO;
 310
 311        /* If we have a negative timeout, that implies that we can't sleep. */
 312        if (timeout < 0) {
 313                sleep_ok = false;
 314                timeout = -timeout;
 315        }
 316
 317        /* Queue ourselves onto the mailbox access list.  When our entry is at
 318         * the front of the list, we have rights to access the mailbox.  So we
 319         * wait [for a while] till we're at the front [or bail out with an
 320         * EBUSY] ...
 321         */
 322        spin_lock_bh(&adap->mbox_lock);
 323        list_add_tail(&entry.list, &adap->mlist.list);
 324        spin_unlock_bh(&adap->mbox_lock);
 325
 326        delay_idx = 0;
 327        ms = delay[0];
 328
 329        for (i = 0; ; i += ms) {
 330                /* If we've waited too long, return a busy indication.  This
 331                 * really ought to be based on our initial position in the
 332                 * mailbox access list but this is a start.  We very rarely
 333                 * contend on access to the mailbox ...
 334                 */
 335                pcie_fw = t4_read_reg(adap, PCIE_FW_A);
 336                if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
 337                        spin_lock_bh(&adap->mbox_lock);
 338                        list_del(&entry.list);
 339                        spin_unlock_bh(&adap->mbox_lock);
 340                        ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
 341                        t4_record_mbox(adap, cmd, size, access, ret);
 342                        return ret;
 343                }
 344
 345                /* If we're at the head, break out and start the mailbox
 346                 * protocol.
 347                 */
 348                if (list_first_entry(&adap->mlist.list, struct mbox_list,
 349                                     list) == &entry)
 350                        break;
 351
 352                /* Delay for a bit before checking again ... */
 353                if (sleep_ok) {
 354                        ms = delay[delay_idx];  /* last element may repeat */
 355                        if (delay_idx < ARRAY_SIZE(delay) - 1)
 356                                delay_idx++;
 357                        msleep(ms);
 358                } else {
 359                        mdelay(ms);
 360                }
 361        }
 362
 363        /* Loop trying to get ownership of the mailbox.  Return an error
 364         * if we can't gain ownership.
 365         */
 366        v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
 367        for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
 368                v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
 369        if (v != MBOX_OWNER_DRV) {
 370                spin_lock_bh(&adap->mbox_lock);
 371                list_del(&entry.list);
 372                spin_unlock_bh(&adap->mbox_lock);
 373                ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
 374                t4_record_mbox(adap, cmd, size, access, ret);
 375                return ret;
 376        }
 377
 378        /* Copy in the new mailbox command and send it on its way ... */
 379        t4_record_mbox(adap, cmd, size, access, 0);
 380        for (i = 0; i < size; i += 8)
 381                t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
 382
 383        t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
 384        t4_read_reg(adap, ctl_reg);          /* flush write */
 385
 386        delay_idx = 0;
 387        ms = delay[0];
 388
 389        for (i = 0;
 390             !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
 391             i < timeout;
 392             i += ms) {
 393                if (sleep_ok) {
 394                        ms = delay[delay_idx];  /* last element may repeat */
 395                        if (delay_idx < ARRAY_SIZE(delay) - 1)
 396                                delay_idx++;
 397                        msleep(ms);
 398                } else
 399                        mdelay(ms);
 400
 401                v = t4_read_reg(adap, ctl_reg);
 402                if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
 403                        if (!(v & MBMSGVALID_F)) {
 404                                t4_write_reg(adap, ctl_reg, 0);
 405                                continue;
 406                        }
 407
 408                        get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
 409                        res = be64_to_cpu(cmd_rpl[0]);
 410
 411                        if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
 412                                fw_asrt(adap, data_reg);
 413                                res = FW_CMD_RETVAL_V(EIO);
 414                        } else if (rpl) {
 415                                memcpy(rpl, cmd_rpl, size);
 416                        }
 417
 418                        t4_write_reg(adap, ctl_reg, 0);
 419
 420                        execute = i + ms;
 421                        t4_record_mbox(adap, cmd_rpl,
 422                                       MBOX_LEN, access, execute);
 423                        spin_lock_bh(&adap->mbox_lock);
 424                        list_del(&entry.list);
 425                        spin_unlock_bh(&adap->mbox_lock);
 426                        return -FW_CMD_RETVAL_G((int)res);
 427                }
 428        }
 429
 430        ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
 431        t4_record_mbox(adap, cmd, size, access, ret);
 432        dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
 433                *(const u8 *)cmd, mbox);
 434        t4_report_fw_error(adap);
 435        spin_lock_bh(&adap->mbox_lock);
 436        list_del(&entry.list);
 437        spin_unlock_bh(&adap->mbox_lock);
 438        t4_fatal_err(adap);
 439        return ret;
 440}
 441
 442int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
 443                    void *rpl, bool sleep_ok)
 444{
 445        return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
 446                                       FW_CMD_MAX_TIMEOUT);
 447}
 448
 449static int t4_edc_err_read(struct adapter *adap, int idx)
 450{
 451        u32 edc_ecc_err_addr_reg;
 452        u32 rdata_reg;
 453
 454        if (is_t4(adap->params.chip)) {
 455                CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
 456                return 0;
 457        }
 458        if (idx != 0 && idx != 1) {
 459                CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
 460                return 0;
 461        }
 462
 463        edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
 464        rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
 465
 466        CH_WARN(adap,
 467                "edc%d err addr 0x%x: 0x%x.\n",
 468                idx, edc_ecc_err_addr_reg,
 469                t4_read_reg(adap, edc_ecc_err_addr_reg));
 470        CH_WARN(adap,
 471                "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
 472                rdata_reg,
 473                (unsigned long long)t4_read_reg64(adap, rdata_reg),
 474                (unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
 475                (unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
 476                (unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
 477                (unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
 478                (unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
 479                (unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
 480                (unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
 481                (unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
 482
 483        return 0;
 484}
 485
 486/**
 487 * t4_memory_rw_init - Get memory window relative offset, base, and size.
 488 * @adap: the adapter
 489 * @win: PCI-E Memory Window to use
 490 * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC
 491 * @mem_off: memory relative offset with respect to @mtype.
 492 * @mem_base: configured memory base address.
 493 * @mem_aperture: configured memory window aperture.
 494 *
 495 * Get the configured memory window's relative offset, base, and size.
 496 */
 497int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off,
 498                      u32 *mem_base, u32 *mem_aperture)
 499{
 500        u32 edc_size, mc_size, mem_reg;
 501
 502        /* Offset into the region of memory which is being accessed
 503         * MEM_EDC0 = 0
 504         * MEM_EDC1 = 1
 505         * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
 506         * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
 507         * MEM_HMA  = 4
 508         */
 509        edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
 510        if (mtype == MEM_HMA) {
 511                *mem_off = 2 * (edc_size * 1024 * 1024);
 512        } else if (mtype != MEM_MC1) {
 513                *mem_off = (mtype * (edc_size * 1024 * 1024));
 514        } else {
 515                mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
 516                                                      MA_EXT_MEMORY0_BAR_A));
 517                *mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
 518        }
 519
 520        /* Each PCI-E Memory Window is programmed with a window size -- or
 521         * "aperture" -- which controls the granularity of its mapping onto
 522         * adapter memory.  We need to grab that aperture in order to know
 523         * how to use the specified window.  The window is also programmed
 524         * with the base address of the Memory Window in BAR0's address
 525         * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
 526         * the address is relative to BAR0.
 527         */
 528        mem_reg = t4_read_reg(adap,
 529                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
 530                                                  win));
 531        /* a dead adapter will return 0xffffffff for PIO reads */
 532        if (mem_reg == 0xffffffff)
 533                return -ENXIO;
 534
 535        *mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
 536        *mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
 537        if (is_t4(adap->params.chip))
 538                *mem_base -= adap->t4_bar0;
 539
 540        return 0;
 541}
 542
 543/**
 544 * t4_memory_update_win - Move memory window to specified address.
 545 * @adap: the adapter
 546 * @win: PCI-E Memory Window to use
 547 * @addr: location to move.
 548 *
 549 * Move memory window to specified address.
 550 */
 551void t4_memory_update_win(struct adapter *adap, int win, u32 addr)
 552{
 553        t4_write_reg(adap,
 554                     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
 555                     addr);
 556        /* Read it back to ensure that changes propagate before we
 557         * attempt to use the new value.
 558         */
 559        t4_read_reg(adap,
 560                    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
 561}
 562
 563/**
 564 * t4_memory_rw_residual - Read/Write residual data.
 565 * @adap: the adapter
 566 * @off: relative offset within residual to start read/write.
 567 * @addr: address within indicated memory type.
 568 * @buf: host memory buffer
 569 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
 570 *
 571 * Read/Write residual data less than 32-bits.
 572 */
 573void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf,
 574                           int dir)
 575{
 576        union {
 577                u32 word;
 578                char byte[4];
 579        } last;
 580        unsigned char *bp;
 581        int i;
 582
 583        if (dir == T4_MEMORY_READ) {
 584                last.word = le32_to_cpu((__force __le32)
 585                                        t4_read_reg(adap, addr));
 586                for (bp = (unsigned char *)buf, i = off; i < 4; i++)
 587                        bp[i] = last.byte[i];
 588        } else {
 589                last.word = *buf;
 590                for (i = off; i < 4; i++)
 591                        last.byte[i] = 0;
 592                t4_write_reg(adap, addr,
 593                             (__force u32)cpu_to_le32(last.word));
 594        }
 595}
 596
 597/**
 598 *      t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
 599 *      @adap: the adapter
 600 *      @win: PCI-E Memory Window to use
 601 *      @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
 602 *      @addr: address within indicated memory type
 603 *      @len: amount of memory to transfer
 604 *      @hbuf: host memory buffer
 605 *      @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
 606 *
 607 *      Reads/writes an [almost] arbitrary memory region in the firmware: the
 608 *      firmware memory address and host buffer must be aligned on 32-bit
 609 *      boundaries; the length may be arbitrary.  The memory is transferred as
 610 *      a raw byte sequence from/to the firmware's memory.  If this memory
 611 *      contains data structures which contain multi-byte integers, it's the
 612 *      caller's responsibility to perform appropriate byte order conversions.
 613 */
 614int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
 615                 u32 len, void *hbuf, int dir)
 616{
 617        u32 pos, offset, resid, memoffset;
 618        u32 win_pf, mem_aperture, mem_base;
 619        u32 *buf;
 620        int ret;
 621
 622        /* Argument sanity checks ...
 623         */
 624        if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
 625                return -EINVAL;
 626        buf = (u32 *)hbuf;
 627
 628        /* It's convenient to be able to handle lengths which aren't a
 629         * multiple of 32-bits because we often end up transferring files to
 630         * the firmware.  So we'll handle that by normalizing the length here
 631         * and then handling any residual transfer at the end.
 632         */
 633        resid = len & 0x3;
 634        len -= resid;
 635
 636        ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base,
 637                                &mem_aperture);
 638        if (ret)
 639                return ret;
 640
 641        /* Determine the PCIE_MEM_ACCESS_OFFSET */
 642        addr = addr + memoffset;
 643
 644        win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
 645
 646        /* Calculate our initial PCI-E Memory Window Position and Offset into
 647         * that Window.
 648         */
 649        pos = addr & ~(mem_aperture - 1);
 650        offset = addr - pos;
 651
 652        /* Set up initial PCI-E Memory Window to cover the start of our
 653         * transfer.
 654         */
 655        t4_memory_update_win(adap, win, pos | win_pf);
 656
 657        /* Transfer data to/from the adapter as long as there's an integral
 658         * number of 32-bit transfers to complete.
 659         *
 660         * A note on Endianness issues:
 661         *
 662         * The "register" reads and writes below from/to the PCI-E Memory
 663         * Window invoke the standard adapter Big-Endian to PCI-E Link
 664         * Little-Endian "swizzel."  As a result, if we have the following
 665         * data in adapter memory:
 666         *
 667         *     Memory:  ... | b0 | b1 | b2 | b3 | ...
 668         *     Address:      i+0  i+1  i+2  i+3
 669         *
 670         * Then a read of the adapter memory via the PCI-E Memory Window
 671         * will yield:
 672         *
 673         *     x = readl(i)
 674         *         31                  0
 675         *         [ b3 | b2 | b1 | b0 ]
 676         *
 677         * If this value is stored into local memory on a Little-Endian system
 678         * it will show up correctly in local memory as:
 679         *
 680         *     ( ..., b0, b1, b2, b3, ... )
 681         *
 682         * But on a Big-Endian system, the store will show up in memory
 683         * incorrectly swizzled as:
 684         *
 685         *     ( ..., b3, b2, b1, b0, ... )
 686         *
 687         * So we need to account for this in the reads and writes to the
 688         * PCI-E Memory Window below by undoing the register read/write
 689         * swizzels.
 690         */
 691        while (len > 0) {
 692                if (dir == T4_MEMORY_READ)
 693                        *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
 694                                                mem_base + offset));
 695                else
 696                        t4_write_reg(adap, mem_base + offset,
 697                                     (__force u32)cpu_to_le32(*buf++));
 698                offset += sizeof(__be32);
 699                len -= sizeof(__be32);
 700
 701                /* If we've reached the end of our current window aperture,
 702                 * move the PCI-E Memory Window on to the next.  Note that
 703                 * doing this here after "len" may be 0 allows us to set up
 704                 * the PCI-E Memory Window for a possible final residual
 705                 * transfer below ...
 706                 */
 707                if (offset == mem_aperture) {
 708                        pos += mem_aperture;
 709                        offset = 0;
 710                        t4_memory_update_win(adap, win, pos | win_pf);
 711                }
 712        }
 713
 714        /* If the original transfer had a length which wasn't a multiple of
 715         * 32-bits, now's where we need to finish off the transfer of the
 716         * residual amount.  The PCI-E Memory Window has already been moved
 717         * above (if necessary) to cover this final transfer.
 718         */
 719        if (resid)
 720                t4_memory_rw_residual(adap, resid, mem_base + offset,
 721                                      (u8 *)buf, dir);
 722
 723        return 0;
 724}
 725
 726/* Return the specified PCI-E Configuration Space register from our Physical
 727 * Function.  We try first via a Firmware LDST Command since we prefer to let
 728 * the firmware own all of these registers, but if that fails we go for it
 729 * directly ourselves.
 730 */
 731u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
 732{
 733        u32 val, ldst_addrspace;
 734
 735        /* If fw_attach != 0, construct and send the Firmware LDST Command to
 736         * retrieve the specified PCI-E Configuration Space register.
 737         */
 738        struct fw_ldst_cmd ldst_cmd;
 739        int ret;
 740
 741        memset(&ldst_cmd, 0, sizeof(ldst_cmd));
 742        ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
 743        ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
 744                                               FW_CMD_REQUEST_F |
 745                                               FW_CMD_READ_F |
 746                                               ldst_addrspace);
 747        ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
 748        ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
 749        ldst_cmd.u.pcie.ctrl_to_fn =
 750                (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
 751        ldst_cmd.u.pcie.r = reg;
 752
 753        /* If the LDST Command succeeds, return the result, otherwise
 754         * fall through to reading it directly ourselves ...
 755         */
 756        ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
 757                         &ldst_cmd);
 758        if (ret == 0)
 759                val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
 760        else
 761                /* Read the desired Configuration Space register via the PCI-E
 762                 * Backdoor mechanism.
 763                 */
 764                t4_hw_pci_read_cfg4(adap, reg, &val);
 765        return val;
 766}
 767
 768/* Get the window based on base passed to it.
 769 * Window aperture is currently unhandled, but there is no use case for it
 770 * right now
 771 */
 772static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
 773                         u32 memwin_base)
 774{
 775        u32 ret;
 776
 777        if (is_t4(adap->params.chip)) {
 778                u32 bar0;
 779
 780                /* Truncation intentional: we only read the bottom 32-bits of
 781                 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
 782                 * mechanism to read BAR0 instead of using
 783                 * pci_resource_start() because we could be operating from
 784                 * within a Virtual Machine which is trapping our accesses to
 785                 * our Configuration Space and we need to set up the PCI-E
 786                 * Memory Window decoders with the actual addresses which will
 787                 * be coming across the PCI-E link.
 788                 */
 789                bar0 = t4_read_pcie_cfg4(adap, pci_base);
 790                bar0 &= pci_mask;
 791                adap->t4_bar0 = bar0;
 792
 793                ret = bar0 + memwin_base;
 794        } else {
 795                /* For T5, only relative offset inside the PCIe BAR is passed */
 796                ret = memwin_base;
 797        }
 798        return ret;
 799}
 800
 801/* Get the default utility window (win0) used by everyone */
 802u32 t4_get_util_window(struct adapter *adap)
 803{
 804        return t4_get_window(adap, PCI_BASE_ADDRESS_0,
 805                             PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
 806}
 807
 808/* Set up memory window for accessing adapter memory ranges.  (Read
 809 * back MA register to ensure that changes propagate before we attempt
 810 * to use the new values.)
 811 */
 812void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
 813{
 814        t4_write_reg(adap,
 815                     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
 816                     memwin_base | BIR_V(0) |
 817                     WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
 818        t4_read_reg(adap,
 819                    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
 820}
 821
 822/**
 823 *      t4_get_regs_len - return the size of the chips register set
 824 *      @adapter: the adapter
 825 *
 826 *      Returns the size of the chip's BAR0 register space.
 827 */
 828unsigned int t4_get_regs_len(struct adapter *adapter)
 829{
 830        unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
 831
 832        switch (chip_version) {
 833        case CHELSIO_T4:
 834                return T4_REGMAP_SIZE;
 835
 836        case CHELSIO_T5:
 837        case CHELSIO_T6:
 838                return T5_REGMAP_SIZE;
 839        }
 840
 841        dev_err(adapter->pdev_dev,
 842                "Unsupported chip version %d\n", chip_version);
 843        return 0;
 844}
 845
 846/**
 847 *      t4_get_regs - read chip registers into provided buffer
 848 *      @adap: the adapter
 849 *      @buf: register buffer
 850 *      @buf_size: size (in bytes) of register buffer
 851 *
 852 *      If the provided register buffer isn't large enough for the chip's
 853 *      full register range, the register dump will be truncated to the
 854 *      register buffer's size.
 855 */
 856void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
 857{
 858        static const unsigned int t4_reg_ranges[] = {
 859                0x1008, 0x1108,
 860                0x1180, 0x1184,
 861                0x1190, 0x1194,
 862                0x11a0, 0x11a4,
 863                0x11b0, 0x11b4,
 864                0x11fc, 0x123c,
 865                0x1300, 0x173c,
 866                0x1800, 0x18fc,
 867                0x3000, 0x30d8,
 868                0x30e0, 0x30e4,
 869                0x30ec, 0x5910,
 870                0x5920, 0x5924,
 871                0x5960, 0x5960,
 872                0x5968, 0x5968,
 873                0x5970, 0x5970,
 874                0x5978, 0x5978,
 875                0x5980, 0x5980,
 876                0x5988, 0x5988,
 877                0x5990, 0x5990,
 878                0x5998, 0x5998,
 879                0x59a0, 0x59d4,
 880                0x5a00, 0x5ae0,
 881                0x5ae8, 0x5ae8,
 882                0x5af0, 0x5af0,
 883                0x5af8, 0x5af8,
 884                0x6000, 0x6098,
 885                0x6100, 0x6150,
 886                0x6200, 0x6208,
 887                0x6240, 0x6248,
 888                0x6280, 0x62b0,
 889                0x62c0, 0x6338,
 890                0x6370, 0x638c,
 891                0x6400, 0x643c,
 892                0x6500, 0x6524,
 893                0x6a00, 0x6a04,
 894                0x6a14, 0x6a38,
 895                0x6a60, 0x6a70,
 896                0x6a78, 0x6a78,
 897                0x6b00, 0x6b0c,
 898                0x6b1c, 0x6b84,
 899                0x6bf0, 0x6bf8,
 900                0x6c00, 0x6c0c,
 901                0x6c1c, 0x6c84,
 902                0x6cf0, 0x6cf8,
 903                0x6d00, 0x6d0c,
 904                0x6d1c, 0x6d84,
 905                0x6df0, 0x6df8,
 906                0x6e00, 0x6e0c,
 907                0x6e1c, 0x6e84,
 908                0x6ef0, 0x6ef8,
 909                0x6f00, 0x6f0c,
 910                0x6f1c, 0x6f84,
 911                0x6ff0, 0x6ff8,
 912                0x7000, 0x700c,
 913                0x701c, 0x7084,
 914                0x70f0, 0x70f8,
 915                0x7100, 0x710c,
 916                0x711c, 0x7184,
 917                0x71f0, 0x71f8,
 918                0x7200, 0x720c,
 919                0x721c, 0x7284,
 920                0x72f0, 0x72f8,
 921                0x7300, 0x730c,
 922                0x731c, 0x7384,
 923                0x73f0, 0x73f8,
 924                0x7400, 0x7450,
 925                0x7500, 0x7530,
 926                0x7600, 0x760c,
 927                0x7614, 0x761c,
 928                0x7680, 0x76cc,
 929                0x7700, 0x7798,
 930                0x77c0, 0x77fc,
 931                0x7900, 0x79fc,
 932                0x7b00, 0x7b58,
 933                0x7b60, 0x7b84,
 934                0x7b8c, 0x7c38,
 935                0x7d00, 0x7d38,
 936                0x7d40, 0x7d80,
 937                0x7d8c, 0x7ddc,
 938                0x7de4, 0x7e04,
 939                0x7e10, 0x7e1c,
 940                0x7e24, 0x7e38,
 941                0x7e40, 0x7e44,
 942                0x7e4c, 0x7e78,
 943                0x7e80, 0x7ea4,
 944                0x7eac, 0x7edc,
 945                0x7ee8, 0x7efc,
 946                0x8dc0, 0x8e04,
 947                0x8e10, 0x8e1c,
 948                0x8e30, 0x8e78,
 949                0x8ea0, 0x8eb8,
 950                0x8ec0, 0x8f6c,
 951                0x8fc0, 0x9008,
 952                0x9010, 0x9058,
 953                0x9060, 0x9060,
 954                0x9068, 0x9074,
 955                0x90fc, 0x90fc,
 956                0x9400, 0x9408,
 957                0x9410, 0x9458,
 958                0x9600, 0x9600,
 959                0x9608, 0x9638,
 960                0x9640, 0x96bc,
 961                0x9800, 0x9808,
 962                0x9820, 0x983c,
 963                0x9850, 0x9864,
 964                0x9c00, 0x9c6c,
 965                0x9c80, 0x9cec,
 966                0x9d00, 0x9d6c,
 967                0x9d80, 0x9dec,
 968                0x9e00, 0x9e6c,
 969                0x9e80, 0x9eec,
 970                0x9f00, 0x9f6c,
 971                0x9f80, 0x9fec,
 972                0xd004, 0xd004,
 973                0xd010, 0xd03c,
 974                0xdfc0, 0xdfe0,
 975                0xe000, 0xea7c,
 976                0xf000, 0x11110,
 977                0x11118, 0x11190,
 978                0x19040, 0x1906c,
 979                0x19078, 0x19080,
 980                0x1908c, 0x190e4,
 981                0x190f0, 0x190f8,
 982                0x19100, 0x19110,
 983                0x19120, 0x19124,
 984                0x19150, 0x19194,
 985                0x1919c, 0x191b0,
 986                0x191d0, 0x191e8,
 987                0x19238, 0x1924c,
 988                0x193f8, 0x1943c,
 989                0x1944c, 0x19474,
 990                0x19490, 0x194e0,
 991                0x194f0, 0x194f8,
 992                0x19800, 0x19c08,
 993                0x19c10, 0x19c90,
 994                0x19ca0, 0x19ce4,
 995                0x19cf0, 0x19d40,
 996                0x19d50, 0x19d94,
 997                0x19da0, 0x19de8,
 998                0x19df0, 0x19e40,
 999                0x19e50, 0x19e90,
1000                0x19ea0, 0x19f4c,
1001                0x1a000, 0x1a004,
1002                0x1a010, 0x1a06c,
1003                0x1a0b0, 0x1a0e4,
1004                0x1a0ec, 0x1a0f4,
1005                0x1a100, 0x1a108,
1006                0x1a114, 0x1a120,
1007                0x1a128, 0x1a130,
1008                0x1a138, 0x1a138,
1009                0x1a190, 0x1a1c4,
1010                0x1a1fc, 0x1a1fc,
1011                0x1e040, 0x1e04c,
1012                0x1e284, 0x1e28c,
1013                0x1e2c0, 0x1e2c0,
1014                0x1e2e0, 0x1e2e0,
1015                0x1e300, 0x1e384,
1016                0x1e3c0, 0x1e3c8,
1017                0x1e440, 0x1e44c,
1018                0x1e684, 0x1e68c,
1019                0x1e6c0, 0x1e6c0,
1020                0x1e6e0, 0x1e6e0,
1021                0x1e700, 0x1e784,
1022                0x1e7c0, 0x1e7c8,
1023                0x1e840, 0x1e84c,
1024                0x1ea84, 0x1ea8c,
1025                0x1eac0, 0x1eac0,
1026                0x1eae0, 0x1eae0,
1027                0x1eb00, 0x1eb84,
1028                0x1ebc0, 0x1ebc8,
1029                0x1ec40, 0x1ec4c,
1030                0x1ee84, 0x1ee8c,
1031                0x1eec0, 0x1eec0,
1032                0x1eee0, 0x1eee0,
1033                0x1ef00, 0x1ef84,
1034                0x1efc0, 0x1efc8,
1035                0x1f040, 0x1f04c,
1036                0x1f284, 0x1f28c,
1037                0x1f2c0, 0x1f2c0,
1038                0x1f2e0, 0x1f2e0,
1039                0x1f300, 0x1f384,
1040                0x1f3c0, 0x1f3c8,
1041                0x1f440, 0x1f44c,
1042                0x1f684, 0x1f68c,
1043                0x1f6c0, 0x1f6c0,
1044                0x1f6e0, 0x1f6e0,
1045                0x1f700, 0x1f784,
1046                0x1f7c0, 0x1f7c8,
1047                0x1f840, 0x1f84c,
1048                0x1fa84, 0x1fa8c,
1049                0x1fac0, 0x1fac0,
1050                0x1fae0, 0x1fae0,
1051                0x1fb00, 0x1fb84,
1052                0x1fbc0, 0x1fbc8,
1053                0x1fc40, 0x1fc4c,
1054                0x1fe84, 0x1fe8c,
1055                0x1fec0, 0x1fec0,
1056                0x1fee0, 0x1fee0,
1057                0x1ff00, 0x1ff84,
1058                0x1ffc0, 0x1ffc8,
1059                0x20000, 0x2002c,
1060                0x20100, 0x2013c,
1061                0x20190, 0x201a0,
1062                0x201a8, 0x201b8,
1063                0x201c4, 0x201c8,
1064                0x20200, 0x20318,
1065                0x20400, 0x204b4,
1066                0x204c0, 0x20528,
1067                0x20540, 0x20614,
1068                0x21000, 0x21040,
1069                0x2104c, 0x21060,
1070                0x210c0, 0x210ec,
1071                0x21200, 0x21268,
1072                0x21270, 0x21284,
1073                0x212fc, 0x21388,
1074                0x21400, 0x21404,
1075                0x21500, 0x21500,
1076                0x21510, 0x21518,
1077                0x2152c, 0x21530,
1078                0x2153c, 0x2153c,
1079                0x21550, 0x21554,
1080                0x21600, 0x21600,
1081                0x21608, 0x2161c,
1082                0x21624, 0x21628,
1083                0x21630, 0x21634,
1084                0x2163c, 0x2163c,
1085                0x21700, 0x2171c,
1086                0x21780, 0x2178c,
1087                0x21800, 0x21818,
1088                0x21820, 0x21828,
1089                0x21830, 0x21848,
1090                0x21850, 0x21854,
1091                0x21860, 0x21868,
1092                0x21870, 0x21870,
1093                0x21878, 0x21898,
1094                0x218a0, 0x218a8,
1095                0x218b0, 0x218c8,
1096                0x218d0, 0x218d4,
1097                0x218e0, 0x218e8,
1098                0x218f0, 0x218f0,
1099                0x218f8, 0x21a18,
1100                0x21a20, 0x21a28,
1101                0x21a30, 0x21a48,
1102                0x21a50, 0x21a54,
1103                0x21a60, 0x21a68,
1104                0x21a70, 0x21a70,
1105                0x21a78, 0x21a98,
1106                0x21aa0, 0x21aa8,
1107                0x21ab0, 0x21ac8,
1108                0x21ad0, 0x21ad4,
1109                0x21ae0, 0x21ae8,
1110                0x21af0, 0x21af0,
1111                0x21af8, 0x21c18,
1112                0x21c20, 0x21c20,
1113                0x21c28, 0x21c30,
1114                0x21c38, 0x21c38,
1115                0x21c80, 0x21c98,
1116                0x21ca0, 0x21ca8,
1117                0x21cb0, 0x21cc8,
1118                0x21cd0, 0x21cd4,
1119                0x21ce0, 0x21ce8,
1120                0x21cf0, 0x21cf0,
1121                0x21cf8, 0x21d7c,
1122                0x21e00, 0x21e04,
1123                0x22000, 0x2202c,
1124                0x22100, 0x2213c,
1125                0x22190, 0x221a0,
1126                0x221a8, 0x221b8,
1127                0x221c4, 0x221c8,
1128                0x22200, 0x22318,
1129                0x22400, 0x224b4,
1130                0x224c0, 0x22528,
1131                0x22540, 0x22614,
1132                0x23000, 0x23040,
1133                0x2304c, 0x23060,
1134                0x230c0, 0x230ec,
1135                0x23200, 0x23268,
1136                0x23270, 0x23284,
1137                0x232fc, 0x23388,
1138                0x23400, 0x23404,
1139                0x23500, 0x23500,
1140                0x23510, 0x23518,
1141                0x2352c, 0x23530,
1142                0x2353c, 0x2353c,
1143                0x23550, 0x23554,
1144                0x23600, 0x23600,
1145                0x23608, 0x2361c,
1146                0x23624, 0x23628,
1147                0x23630, 0x23634,
1148                0x2363c, 0x2363c,
1149                0x23700, 0x2371c,
1150                0x23780, 0x2378c,
1151                0x23800, 0x23818,
1152                0x23820, 0x23828,
1153                0x23830, 0x23848,
1154                0x23850, 0x23854,
1155                0x23860, 0x23868,
1156                0x23870, 0x23870,
1157                0x23878, 0x23898,
1158                0x238a0, 0x238a8,
1159                0x238b0, 0x238c8,
1160                0x238d0, 0x238d4,
1161                0x238e0, 0x238e8,
1162                0x238f0, 0x238f0,
1163                0x238f8, 0x23a18,
1164                0x23a20, 0x23a28,
1165                0x23a30, 0x23a48,
1166                0x23a50, 0x23a54,
1167                0x23a60, 0x23a68,
1168                0x23a70, 0x23a70,
1169                0x23a78, 0x23a98,
1170                0x23aa0, 0x23aa8,
1171                0x23ab0, 0x23ac8,
1172                0x23ad0, 0x23ad4,
1173                0x23ae0, 0x23ae8,
1174                0x23af0, 0x23af0,
1175                0x23af8, 0x23c18,
1176                0x23c20, 0x23c20,
1177                0x23c28, 0x23c30,
1178                0x23c38, 0x23c38,
1179                0x23c80, 0x23c98,
1180                0x23ca0, 0x23ca8,
1181                0x23cb0, 0x23cc8,
1182                0x23cd0, 0x23cd4,
1183                0x23ce0, 0x23ce8,
1184                0x23cf0, 0x23cf0,
1185                0x23cf8, 0x23d7c,
1186                0x23e00, 0x23e04,
1187                0x24000, 0x2402c,
1188                0x24100, 0x2413c,
1189                0x24190, 0x241a0,
1190                0x241a8, 0x241b8,
1191                0x241c4, 0x241c8,
1192                0x24200, 0x24318,
1193                0x24400, 0x244b4,
1194                0x244c0, 0x24528,
1195                0x24540, 0x24614,
1196                0x25000, 0x25040,
1197                0x2504c, 0x25060,
1198                0x250c0, 0x250ec,
1199                0x25200, 0x25268,
1200                0x25270, 0x25284,
1201                0x252fc, 0x25388,
1202                0x25400, 0x25404,
1203                0x25500, 0x25500,
1204                0x25510, 0x25518,
1205                0x2552c, 0x25530,
1206                0x2553c, 0x2553c,
1207                0x25550, 0x25554,
1208                0x25600, 0x25600,
1209                0x25608, 0x2561c,
1210                0x25624, 0x25628,
1211                0x25630, 0x25634,
1212                0x2563c, 0x2563c,
1213                0x25700, 0x2571c,
1214                0x25780, 0x2578c,
1215                0x25800, 0x25818,
1216                0x25820, 0x25828,
1217                0x25830, 0x25848,
1218                0x25850, 0x25854,
1219                0x25860, 0x25868,
1220                0x25870, 0x25870,
1221                0x25878, 0x25898,
1222                0x258a0, 0x258a8,
1223                0x258b0, 0x258c8,
1224                0x258d0, 0x258d4,
1225                0x258e0, 0x258e8,
1226                0x258f0, 0x258f0,
1227                0x258f8, 0x25a18,
1228                0x25a20, 0x25a28,
1229                0x25a30, 0x25a48,
1230                0x25a50, 0x25a54,
1231                0x25a60, 0x25a68,
1232                0x25a70, 0x25a70,
1233                0x25a78, 0x25a98,
1234                0x25aa0, 0x25aa8,
1235                0x25ab0, 0x25ac8,
1236                0x25ad0, 0x25ad4,
1237                0x25ae0, 0x25ae8,
1238                0x25af0, 0x25af0,
1239                0x25af8, 0x25c18,
1240                0x25c20, 0x25c20,
1241                0x25c28, 0x25c30,
1242                0x25c38, 0x25c38,
1243                0x25c80, 0x25c98,
1244                0x25ca0, 0x25ca8,
1245                0x25cb0, 0x25cc8,
1246                0x25cd0, 0x25cd4,
1247                0x25ce0, 0x25ce8,
1248                0x25cf0, 0x25cf0,
1249                0x25cf8, 0x25d7c,
1250                0x25e00, 0x25e04,
1251                0x26000, 0x2602c,
1252                0x26100, 0x2613c,
1253                0x26190, 0x261a0,
1254                0x261a8, 0x261b8,
1255                0x261c4, 0x261c8,
1256                0x26200, 0x26318,
1257                0x26400, 0x264b4,
1258                0x264c0, 0x26528,
1259                0x26540, 0x26614,
1260                0x27000, 0x27040,
1261                0x2704c, 0x27060,
1262                0x270c0, 0x270ec,
1263                0x27200, 0x27268,
1264                0x27270, 0x27284,
1265                0x272fc, 0x27388,
1266                0x27400, 0x27404,
1267                0x27500, 0x27500,
1268                0x27510, 0x27518,
1269                0x2752c, 0x27530,
1270                0x2753c, 0x2753c,
1271                0x27550, 0x27554,
1272                0x27600, 0x27600,
1273                0x27608, 0x2761c,
1274                0x27624, 0x27628,
1275                0x27630, 0x27634,
1276                0x2763c, 0x2763c,
1277                0x27700, 0x2771c,
1278                0x27780, 0x2778c,
1279                0x27800, 0x27818,
1280                0x27820, 0x27828,
1281                0x27830, 0x27848,
1282                0x27850, 0x27854,
1283                0x27860, 0x27868,
1284                0x27870, 0x27870,
1285                0x27878, 0x27898,
1286                0x278a0, 0x278a8,
1287                0x278b0, 0x278c8,
1288                0x278d0, 0x278d4,
1289                0x278e0, 0x278e8,
1290                0x278f0, 0x278f0,
1291                0x278f8, 0x27a18,
1292                0x27a20, 0x27a28,
1293                0x27a30, 0x27a48,
1294                0x27a50, 0x27a54,
1295                0x27a60, 0x27a68,
1296                0x27a70, 0x27a70,
1297                0x27a78, 0x27a98,
1298                0x27aa0, 0x27aa8,
1299                0x27ab0, 0x27ac8,
1300                0x27ad0, 0x27ad4,
1301                0x27ae0, 0x27ae8,
1302                0x27af0, 0x27af0,
1303                0x27af8, 0x27c18,
1304                0x27c20, 0x27c20,
1305                0x27c28, 0x27c30,
1306                0x27c38, 0x27c38,
1307                0x27c80, 0x27c98,
1308                0x27ca0, 0x27ca8,
1309                0x27cb0, 0x27cc8,
1310                0x27cd0, 0x27cd4,
1311                0x27ce0, 0x27ce8,
1312                0x27cf0, 0x27cf0,
1313                0x27cf8, 0x27d7c,
1314                0x27e00, 0x27e04,
1315        };
1316
1317        static const unsigned int t5_reg_ranges[] = {
1318                0x1008, 0x10c0,
1319                0x10cc, 0x10f8,
1320                0x1100, 0x1100,
1321                0x110c, 0x1148,
1322                0x1180, 0x1184,
1323                0x1190, 0x1194,
1324                0x11a0, 0x11a4,
1325                0x11b0, 0x11b4,
1326                0x11fc, 0x123c,
1327                0x1280, 0x173c,
1328                0x1800, 0x18fc,
1329                0x3000, 0x3028,
1330                0x3060, 0x30b0,
1331                0x30b8, 0x30d8,
1332                0x30e0, 0x30fc,
1333                0x3140, 0x357c,
1334                0x35a8, 0x35cc,
1335                0x35ec, 0x35ec,
1336                0x3600, 0x5624,
1337                0x56cc, 0x56ec,
1338                0x56f4, 0x5720,
1339                0x5728, 0x575c,
1340                0x580c, 0x5814,
1341                0x5890, 0x589c,
1342                0x58a4, 0x58ac,
1343                0x58b8, 0x58bc,
1344                0x5940, 0x59c8,
1345                0x59d0, 0x59dc,
1346                0x59fc, 0x5a18,
1347                0x5a60, 0x5a70,
1348                0x5a80, 0x5a9c,
1349                0x5b94, 0x5bfc,
1350                0x6000, 0x6020,
1351                0x6028, 0x6040,
1352                0x6058, 0x609c,
1353                0x60a8, 0x614c,
1354                0x7700, 0x7798,
1355                0x77c0, 0x78fc,
1356                0x7b00, 0x7b58,
1357                0x7b60, 0x7b84,
1358                0x7b8c, 0x7c54,
1359                0x7d00, 0x7d38,
1360                0x7d40, 0x7d80,
1361                0x7d8c, 0x7ddc,
1362                0x7de4, 0x7e04,
1363                0x7e10, 0x7e1c,
1364                0x7e24, 0x7e38,
1365                0x7e40, 0x7e44,
1366                0x7e4c, 0x7e78,
1367                0x7e80, 0x7edc,
1368                0x7ee8, 0x7efc,
1369                0x8dc0, 0x8de0,
1370                0x8df8, 0x8e04,
1371                0x8e10, 0x8e84,
1372                0x8ea0, 0x8f84,
1373                0x8fc0, 0x9058,
1374                0x9060, 0x9060,
1375                0x9068, 0x90f8,
1376                0x9400, 0x9408,
1377                0x9410, 0x9470,
1378                0x9600, 0x9600,
1379                0x9608, 0x9638,
1380                0x9640, 0x96f4,
1381                0x9800, 0x9808,
1382                0x9810, 0x9864,
1383                0x9c00, 0x9c6c,
1384                0x9c80, 0x9cec,
1385                0x9d00, 0x9d6c,
1386                0x9d80, 0x9dec,
1387                0x9e00, 0x9e6c,
1388                0x9e80, 0x9eec,
1389                0x9f00, 0x9f6c,
1390                0x9f80, 0xa020,
1391                0xd000, 0xd004,
1392                0xd010, 0xd03c,
1393                0xdfc0, 0xdfe0,
1394                0xe000, 0x1106c,
1395                0x11074, 0x11088,
1396                0x1109c, 0x1117c,
1397                0x11190, 0x11204,
1398                0x19040, 0x1906c,
1399                0x19078, 0x19080,
1400                0x1908c, 0x190e8,
1401                0x190f0, 0x190f8,
1402                0x19100, 0x19110,
1403                0x19120, 0x19124,
1404                0x19150, 0x19194,
1405                0x1919c, 0x191b0,
1406                0x191d0, 0x191e8,
1407                0x19238, 0x19290,
1408                0x193f8, 0x19428,
1409                0x19430, 0x19444,
1410                0x1944c, 0x1946c,
1411                0x19474, 0x19474,
1412                0x19490, 0x194cc,
1413                0x194f0, 0x194f8,
1414                0x19c00, 0x19c08,
1415                0x19c10, 0x19c60,
1416                0x19c94, 0x19ce4,
1417                0x19cf0, 0x19d40,
1418                0x19d50, 0x19d94,
1419                0x19da0, 0x19de8,
1420                0x19df0, 0x19e10,
1421                0x19e50, 0x19e90,
1422                0x19ea0, 0x19f24,
1423                0x19f34, 0x19f34,
1424                0x19f40, 0x19f50,
1425                0x19f90, 0x19fb4,
1426                0x19fc4, 0x19fe4,
1427                0x1a000, 0x1a004,
1428                0x1a010, 0x1a06c,
1429                0x1a0b0, 0x1a0e4,
1430                0x1a0ec, 0x1a0f8,
1431                0x1a100, 0x1a108,
1432                0x1a114, 0x1a130,
1433                0x1a138, 0x1a1c4,
1434                0x1a1fc, 0x1a1fc,
1435                0x1e008, 0x1e00c,
1436                0x1e040, 0x1e044,
1437                0x1e04c, 0x1e04c,
1438                0x1e284, 0x1e290,
1439                0x1e2c0, 0x1e2c0,
1440                0x1e2e0, 0x1e2e0,
1441                0x1e300, 0x1e384,
1442                0x1e3c0, 0x1e3c8,
1443                0x1e408, 0x1e40c,
1444                0x1e440, 0x1e444,
1445                0x1e44c, 0x1e44c,
1446                0x1e684, 0x1e690,
1447                0x1e6c0, 0x1e6c0,
1448                0x1e6e0, 0x1e6e0,
1449                0x1e700, 0x1e784,
1450                0x1e7c0, 0x1e7c8,
1451                0x1e808, 0x1e80c,
1452                0x1e840, 0x1e844,
1453                0x1e84c, 0x1e84c,
1454                0x1ea84, 0x1ea90,
1455                0x1eac0, 0x1eac0,
1456                0x1eae0, 0x1eae0,
1457                0x1eb00, 0x1eb84,
1458                0x1ebc0, 0x1ebc8,
1459                0x1ec08, 0x1ec0c,
1460                0x1ec40, 0x1ec44,
1461                0x1ec4c, 0x1ec4c,
1462                0x1ee84, 0x1ee90,
1463                0x1eec0, 0x1eec0,
1464                0x1eee0, 0x1eee0,
1465                0x1ef00, 0x1ef84,
1466                0x1efc0, 0x1efc8,
1467                0x1f008, 0x1f00c,
1468                0x1f040, 0x1f044,
1469                0x1f04c, 0x1f04c,
1470                0x1f284, 0x1f290,
1471                0x1f2c0, 0x1f2c0,
1472                0x1f2e0, 0x1f2e0,
1473                0x1f300, 0x1f384,
1474                0x1f3c0, 0x1f3c8,
1475                0x1f408, 0x1f40c,
1476                0x1f440, 0x1f444,
1477                0x1f44c, 0x1f44c,
1478                0x1f684, 0x1f690,
1479                0x1f6c0, 0x1f6c0,
1480                0x1f6e0, 0x1f6e0,
1481                0x1f700, 0x1f784,
1482                0x1f7c0, 0x1f7c8,
1483                0x1f808, 0x1f80c,
1484                0x1f840, 0x1f844,
1485                0x1f84c, 0x1f84c,
1486                0x1fa84, 0x1fa90,
1487                0x1fac0, 0x1fac0,
1488                0x1fae0, 0x1fae0,
1489                0x1fb00, 0x1fb84,
1490                0x1fbc0, 0x1fbc8,
1491                0x1fc08, 0x1fc0c,
1492                0x1fc40, 0x1fc44,
1493                0x1fc4c, 0x1fc4c,
1494                0x1fe84, 0x1fe90,
1495                0x1fec0, 0x1fec0,
1496                0x1fee0, 0x1fee0,
1497                0x1ff00, 0x1ff84,
1498                0x1ffc0, 0x1ffc8,
1499                0x30000, 0x30030,
1500                0x30100, 0x30144,
1501                0x30190, 0x301a0,
1502                0x301a8, 0x301b8,
1503                0x301c4, 0x301c8,
1504                0x301d0, 0x301d0,
1505                0x30200, 0x30318,
1506                0x30400, 0x304b4,
1507                0x304c0, 0x3052c,
1508                0x30540, 0x3061c,
1509                0x30800, 0x30828,
1510                0x30834, 0x30834,
1511                0x308c0, 0x30908,
1512                0x30910, 0x309ac,
1513                0x30a00, 0x30a14,
1514                0x30a1c, 0x30a2c,
1515                0x30a44, 0x30a50,
1516                0x30a74, 0x30a74,
1517                0x30a7c, 0x30afc,
1518                0x30b08, 0x30c24,
1519                0x30d00, 0x30d00,
1520                0x30d08, 0x30d14,
1521                0x30d1c, 0x30d20,
1522                0x30d3c, 0x30d3c,
1523                0x30d48, 0x30d50,
1524                0x31200, 0x3120c,
1525                0x31220, 0x31220,
1526                0x31240, 0x31240,
1527                0x31600, 0x3160c,
1528                0x31a00, 0x31a1c,
1529                0x31e00, 0x31e20,
1530                0x31e38, 0x31e3c,
1531                0x31e80, 0x31e80,
1532                0x31e88, 0x31ea8,
1533                0x31eb0, 0x31eb4,
1534                0x31ec8, 0x31ed4,
1535                0x31fb8, 0x32004,
1536                0x32200, 0x32200,
1537                0x32208, 0x32240,
1538                0x32248, 0x32280,
1539                0x32288, 0x322c0,
1540                0x322c8, 0x322fc,
1541                0x32600, 0x32630,
1542                0x32a00, 0x32abc,
1543                0x32b00, 0x32b10,
1544                0x32b20, 0x32b30,
1545                0x32b40, 0x32b50,
1546                0x32b60, 0x32b70,
1547                0x33000, 0x33028,
1548                0x33030, 0x33048,
1549                0x33060, 0x33068,
1550                0x33070, 0x3309c,
1551                0x330f0, 0x33128,
1552                0x33130, 0x33148,
1553                0x33160, 0x33168,
1554                0x33170, 0x3319c,
1555                0x331f0, 0x33238,
1556                0x33240, 0x33240,
1557                0x33248, 0x33250,
1558                0x3325c, 0x33264,
1559                0x33270, 0x332b8,
1560                0x332c0, 0x332e4,
1561                0x332f8, 0x33338,
1562                0x33340, 0x33340,
1563                0x33348, 0x33350,
1564                0x3335c, 0x33364,
1565                0x33370, 0x333b8,
1566                0x333c0, 0x333e4,
1567                0x333f8, 0x33428,
1568                0x33430, 0x33448,
1569                0x33460, 0x33468,
1570                0x33470, 0x3349c,
1571                0x334f0, 0x33528,
1572                0x33530, 0x33548,
1573                0x33560, 0x33568,
1574                0x33570, 0x3359c,
1575                0x335f0, 0x33638,
1576                0x33640, 0x33640,
1577                0x33648, 0x33650,
1578                0x3365c, 0x33664,
1579                0x33670, 0x336b8,
1580                0x336c0, 0x336e4,
1581                0x336f8, 0x33738,
1582                0x33740, 0x33740,
1583                0x33748, 0x33750,
1584                0x3375c, 0x33764,
1585                0x33770, 0x337b8,
1586                0x337c0, 0x337e4,
1587                0x337f8, 0x337fc,
1588                0x33814, 0x33814,
1589                0x3382c, 0x3382c,
1590                0x33880, 0x3388c,
1591                0x338e8, 0x338ec,
1592                0x33900, 0x33928,
1593                0x33930, 0x33948,
1594                0x33960, 0x33968,
1595                0x33970, 0x3399c,
1596                0x339f0, 0x33a38,
1597                0x33a40, 0x33a40,
1598                0x33a48, 0x33a50,
1599                0x33a5c, 0x33a64,
1600                0x33a70, 0x33ab8,
1601                0x33ac0, 0x33ae4,
1602                0x33af8, 0x33b10,
1603                0x33b28, 0x33b28,
1604                0x33b3c, 0x33b50,
1605                0x33bf0, 0x33c10,
1606                0x33c28, 0x33c28,
1607                0x33c3c, 0x33c50,
1608                0x33cf0, 0x33cfc,
1609                0x34000, 0x34030,
1610                0x34100, 0x34144,
1611                0x34190, 0x341a0,
1612                0x341a8, 0x341b8,
1613                0x341c4, 0x341c8,
1614                0x341d0, 0x341d0,
1615                0x34200, 0x34318,
1616                0x34400, 0x344b4,
1617                0x344c0, 0x3452c,
1618                0x34540, 0x3461c,
1619                0x34800, 0x34828,
1620                0x34834, 0x34834,
1621                0x348c0, 0x34908,
1622                0x34910, 0x349ac,
1623                0x34a00, 0x34a14,
1624                0x34a1c, 0x34a2c,
1625                0x34a44, 0x34a50,
1626                0x34a74, 0x34a74,
1627                0x34a7c, 0x34afc,
1628                0x34b08, 0x34c24,
1629                0x34d00, 0x34d00,
1630                0x34d08, 0x34d14,
1631                0x34d1c, 0x34d20,
1632                0x34d3c, 0x34d3c,
1633                0x34d48, 0x34d50,
1634                0x35200, 0x3520c,
1635                0x35220, 0x35220,
1636                0x35240, 0x35240,
1637                0x35600, 0x3560c,
1638                0x35a00, 0x35a1c,
1639                0x35e00, 0x35e20,
1640                0x35e38, 0x35e3c,
1641                0x35e80, 0x35e80,
1642                0x35e88, 0x35ea8,
1643                0x35eb0, 0x35eb4,
1644                0x35ec8, 0x35ed4,
1645                0x35fb8, 0x36004,
1646                0x36200, 0x36200,
1647                0x36208, 0x36240,
1648                0x36248, 0x36280,
1649                0x36288, 0x362c0,
1650                0x362c8, 0x362fc,
1651                0x36600, 0x36630,
1652                0x36a00, 0x36abc,
1653                0x36b00, 0x36b10,
1654                0x36b20, 0x36b30,
1655                0x36b40, 0x36b50,
1656                0x36b60, 0x36b70,
1657                0x37000, 0x37028,
1658                0x37030, 0x37048,
1659                0x37060, 0x37068,
1660                0x37070, 0x3709c,
1661                0x370f0, 0x37128,
1662                0x37130, 0x37148,
1663                0x37160, 0x37168,
1664                0x37170, 0x3719c,
1665                0x371f0, 0x37238,
1666                0x37240, 0x37240,
1667                0x37248, 0x37250,
1668                0x3725c, 0x37264,
1669                0x37270, 0x372b8,
1670                0x372c0, 0x372e4,
1671                0x372f8, 0x37338,
1672                0x37340, 0x37340,
1673                0x37348, 0x37350,
1674                0x3735c, 0x37364,
1675                0x37370, 0x373b8,
1676                0x373c0, 0x373e4,
1677                0x373f8, 0x37428,
1678                0x37430, 0x37448,
1679                0x37460, 0x37468,
1680                0x37470, 0x3749c,
1681                0x374f0, 0x37528,
1682                0x37530, 0x37548,
1683                0x37560, 0x37568,
1684                0x37570, 0x3759c,
1685                0x375f0, 0x37638,
1686                0x37640, 0x37640,
1687                0x37648, 0x37650,
1688                0x3765c, 0x37664,
1689                0x37670, 0x376b8,
1690                0x376c0, 0x376e4,
1691                0x376f8, 0x37738,
1692                0x37740, 0x37740,
1693                0x37748, 0x37750,
1694                0x3775c, 0x37764,
1695                0x37770, 0x377b8,
1696                0x377c0, 0x377e4,
1697                0x377f8, 0x377fc,
1698                0x37814, 0x37814,
1699                0x3782c, 0x3782c,
1700                0x37880, 0x3788c,
1701                0x378e8, 0x378ec,
1702                0x37900, 0x37928,
1703                0x37930, 0x37948,
1704                0x37960, 0x37968,
1705                0x37970, 0x3799c,
1706                0x379f0, 0x37a38,
1707                0x37a40, 0x37a40,
1708                0x37a48, 0x37a50,
1709                0x37a5c, 0x37a64,
1710                0x37a70, 0x37ab8,
1711                0x37ac0, 0x37ae4,
1712                0x37af8, 0x37b10,
1713                0x37b28, 0x37b28,
1714                0x37b3c, 0x37b50,
1715                0x37bf0, 0x37c10,
1716                0x37c28, 0x37c28,
1717                0x37c3c, 0x37c50,
1718                0x37cf0, 0x37cfc,
1719                0x38000, 0x38030,
1720                0x38100, 0x38144,
1721                0x38190, 0x381a0,
1722                0x381a8, 0x381b8,
1723                0x381c4, 0x381c8,
1724                0x381d0, 0x381d0,
1725                0x38200, 0x38318,
1726                0x38400, 0x384b4,
1727                0x384c0, 0x3852c,
1728                0x38540, 0x3861c,
1729                0x38800, 0x38828,
1730                0x38834, 0x38834,
1731                0x388c0, 0x38908,
1732                0x38910, 0x389ac,
1733                0x38a00, 0x38a14,
1734                0x38a1c, 0x38a2c,
1735                0x38a44, 0x38a50,
1736                0x38a74, 0x38a74,
1737                0x38a7c, 0x38afc,
1738                0x38b08, 0x38c24,
1739                0x38d00, 0x38d00,
1740                0x38d08, 0x38d14,
1741                0x38d1c, 0x38d20,
1742                0x38d3c, 0x38d3c,
1743                0x38d48, 0x38d50,
1744                0x39200, 0x3920c,
1745                0x39220, 0x39220,
1746                0x39240, 0x39240,
1747                0x39600, 0x3960c,
1748                0x39a00, 0x39a1c,
1749                0x39e00, 0x39e20,
1750                0x39e38, 0x39e3c,
1751                0x39e80, 0x39e80,
1752                0x39e88, 0x39ea8,
1753                0x39eb0, 0x39eb4,
1754                0x39ec8, 0x39ed4,
1755                0x39fb8, 0x3a004,
1756                0x3a200, 0x3a200,
1757                0x3a208, 0x3a240,
1758                0x3a248, 0x3a280,
1759                0x3a288, 0x3a2c0,
1760                0x3a2c8, 0x3a2fc,
1761                0x3a600, 0x3a630,
1762                0x3aa00, 0x3aabc,
1763                0x3ab00, 0x3ab10,
1764                0x3ab20, 0x3ab30,
1765                0x3ab40, 0x3ab50,
1766                0x3ab60, 0x3ab70,
1767                0x3b000, 0x3b028,
1768                0x3b030, 0x3b048,
1769                0x3b060, 0x3b068,
1770                0x3b070, 0x3b09c,
1771                0x3b0f0, 0x3b128,
1772                0x3b130, 0x3b148,
1773                0x3b160, 0x3b168,
1774                0x3b170, 0x3b19c,
1775                0x3b1f0, 0x3b238,
1776                0x3b240, 0x3b240,
1777                0x3b248, 0x3b250,
1778                0x3b25c, 0x3b264,
1779                0x3b270, 0x3b2b8,
1780                0x3b2c0, 0x3b2e4,
1781                0x3b2f8, 0x3b338,
1782                0x3b340, 0x3b340,
1783                0x3b348, 0x3b350,
1784                0x3b35c, 0x3b364,
1785                0x3b370, 0x3b3b8,
1786                0x3b3c0, 0x3b3e4,
1787                0x3b3f8, 0x3b428,
1788                0x3b430, 0x3b448,
1789                0x3b460, 0x3b468,
1790                0x3b470, 0x3b49c,
1791                0x3b4f0, 0x3b528,
1792                0x3b530, 0x3b548,
1793                0x3b560, 0x3b568,
1794                0x3b570, 0x3b59c,
1795                0x3b5f0, 0x3b638,
1796                0x3b640, 0x3b640,
1797                0x3b648, 0x3b650,
1798                0x3b65c, 0x3b664,
1799                0x3b670, 0x3b6b8,
1800                0x3b6c0, 0x3b6e4,
1801                0x3b6f8, 0x3b738,
1802                0x3b740, 0x3b740,
1803                0x3b748, 0x3b750,
1804                0x3b75c, 0x3b764,
1805                0x3b770, 0x3b7b8,
1806                0x3b7c0, 0x3b7e4,
1807                0x3b7f8, 0x3b7fc,
1808                0x3b814, 0x3b814,
1809                0x3b82c, 0x3b82c,
1810                0x3b880, 0x3b88c,
1811                0x3b8e8, 0x3b8ec,
1812                0x3b900, 0x3b928,
1813                0x3b930, 0x3b948,
1814                0x3b960, 0x3b968,
1815                0x3b970, 0x3b99c,
1816                0x3b9f0, 0x3ba38,
1817                0x3ba40, 0x3ba40,
1818                0x3ba48, 0x3ba50,
1819                0x3ba5c, 0x3ba64,
1820                0x3ba70, 0x3bab8,
1821                0x3bac0, 0x3bae4,
1822                0x3baf8, 0x3bb10,
1823                0x3bb28, 0x3bb28,
1824                0x3bb3c, 0x3bb50,
1825                0x3bbf0, 0x3bc10,
1826                0x3bc28, 0x3bc28,
1827                0x3bc3c, 0x3bc50,
1828                0x3bcf0, 0x3bcfc,
1829                0x3c000, 0x3c030,
1830                0x3c100, 0x3c144,
1831                0x3c190, 0x3c1a0,
1832                0x3c1a8, 0x3c1b8,
1833                0x3c1c4, 0x3c1c8,
1834                0x3c1d0, 0x3c1d0,
1835                0x3c200, 0x3c318,
1836                0x3c400, 0x3c4b4,
1837                0x3c4c0, 0x3c52c,
1838                0x3c540, 0x3c61c,
1839                0x3c800, 0x3c828,
1840                0x3c834, 0x3c834,
1841                0x3c8c0, 0x3c908,
1842                0x3c910, 0x3c9ac,
1843                0x3ca00, 0x3ca14,
1844                0x3ca1c, 0x3ca2c,
1845                0x3ca44, 0x3ca50,
1846                0x3ca74, 0x3ca74,
1847                0x3ca7c, 0x3cafc,
1848                0x3cb08, 0x3cc24,
1849                0x3cd00, 0x3cd00,
1850                0x3cd08, 0x3cd14,
1851                0x3cd1c, 0x3cd20,
1852                0x3cd3c, 0x3cd3c,
1853                0x3cd48, 0x3cd50,
1854                0x3d200, 0x3d20c,
1855                0x3d220, 0x3d220,
1856                0x3d240, 0x3d240,
1857                0x3d600, 0x3d60c,
1858                0x3da00, 0x3da1c,
1859                0x3de00, 0x3de20,
1860                0x3de38, 0x3de3c,
1861                0x3de80, 0x3de80,
1862                0x3de88, 0x3dea8,
1863                0x3deb0, 0x3deb4,
1864                0x3dec8, 0x3ded4,
1865                0x3dfb8, 0x3e004,
1866                0x3e200, 0x3e200,
1867                0x3e208, 0x3e240,
1868                0x3e248, 0x3e280,
1869                0x3e288, 0x3e2c0,
1870                0x3e2c8, 0x3e2fc,
1871                0x3e600, 0x3e630,
1872                0x3ea00, 0x3eabc,
1873                0x3eb00, 0x3eb10,
1874                0x3eb20, 0x3eb30,
1875                0x3eb40, 0x3eb50,
1876                0x3eb60, 0x3eb70,
1877                0x3f000, 0x3f028,
1878                0x3f030, 0x3f048,
1879                0x3f060, 0x3f068,
1880                0x3f070, 0x3f09c,
1881                0x3f0f0, 0x3f128,
1882                0x3f130, 0x3f148,
1883                0x3f160, 0x3f168,
1884                0x3f170, 0x3f19c,
1885                0x3f1f0, 0x3f238,
1886                0x3f240, 0x3f240,
1887                0x3f248, 0x3f250,
1888                0x3f25c, 0x3f264,
1889                0x3f270, 0x3f2b8,
1890                0x3f2c0, 0x3f2e4,
1891                0x3f2f8, 0x3f338,
1892                0x3f340, 0x3f340,
1893                0x3f348, 0x3f350,
1894                0x3f35c, 0x3f364,
1895                0x3f370, 0x3f3b8,
1896                0x3f3c0, 0x3f3e4,
1897                0x3f3f8, 0x3f428,
1898                0x3f430, 0x3f448,
1899                0x3f460, 0x3f468,
1900                0x3f470, 0x3f49c,
1901                0x3f4f0, 0x3f528,
1902                0x3f530, 0x3f548,
1903                0x3f560, 0x3f568,
1904                0x3f570, 0x3f59c,
1905                0x3f5f0, 0x3f638,
1906                0x3f640, 0x3f640,
1907                0x3f648, 0x3f650,
1908                0x3f65c, 0x3f664,
1909                0x3f670, 0x3f6b8,
1910                0x3f6c0, 0x3f6e4,
1911                0x3f6f8, 0x3f738,
1912                0x3f740, 0x3f740,
1913                0x3f748, 0x3f750,
1914                0x3f75c, 0x3f764,
1915                0x3f770, 0x3f7b8,
1916                0x3f7c0, 0x3f7e4,
1917                0x3f7f8, 0x3f7fc,
1918                0x3f814, 0x3f814,
1919                0x3f82c, 0x3f82c,
1920                0x3f880, 0x3f88c,
1921                0x3f8e8, 0x3f8ec,
1922                0x3f900, 0x3f928,
1923                0x3f930, 0x3f948,
1924                0x3f960, 0x3f968,
1925                0x3f970, 0x3f99c,
1926                0x3f9f0, 0x3fa38,
1927                0x3fa40, 0x3fa40,
1928                0x3fa48, 0x3fa50,
1929                0x3fa5c, 0x3fa64,
1930                0x3fa70, 0x3fab8,
1931                0x3fac0, 0x3fae4,
1932                0x3faf8, 0x3fb10,
1933                0x3fb28, 0x3fb28,
1934                0x3fb3c, 0x3fb50,
1935                0x3fbf0, 0x3fc10,
1936                0x3fc28, 0x3fc28,
1937                0x3fc3c, 0x3fc50,
1938                0x3fcf0, 0x3fcfc,
1939                0x40000, 0x4000c,
1940                0x40040, 0x40050,
1941                0x40060, 0x40068,
1942                0x4007c, 0x4008c,
1943                0x40094, 0x400b0,
1944                0x400c0, 0x40144,
1945                0x40180, 0x4018c,
1946                0x40200, 0x40254,
1947                0x40260, 0x40264,
1948                0x40270, 0x40288,
1949                0x40290, 0x40298,
1950                0x402ac, 0x402c8,
1951                0x402d0, 0x402e0,
1952                0x402f0, 0x402f0,
1953                0x40300, 0x4033c,
1954                0x403f8, 0x403fc,
1955                0x41304, 0x413c4,
1956                0x41400, 0x4140c,
1957                0x41414, 0x4141c,
1958                0x41480, 0x414d0,
1959                0x44000, 0x44054,
1960                0x4405c, 0x44078,
1961                0x440c0, 0x44174,
1962                0x44180, 0x441ac,
1963                0x441b4, 0x441b8,
1964                0x441c0, 0x44254,
1965                0x4425c, 0x44278,
1966                0x442c0, 0x44374,
1967                0x44380, 0x443ac,
1968                0x443b4, 0x443b8,
1969                0x443c0, 0x44454,
1970                0x4445c, 0x44478,
1971                0x444c0, 0x44574,
1972                0x44580, 0x445ac,
1973                0x445b4, 0x445b8,
1974                0x445c0, 0x44654,
1975                0x4465c, 0x44678,
1976                0x446c0, 0x44774,
1977                0x44780, 0x447ac,
1978                0x447b4, 0x447b8,
1979                0x447c0, 0x44854,
1980                0x4485c, 0x44878,
1981                0x448c0, 0x44974,
1982                0x44980, 0x449ac,
1983                0x449b4, 0x449b8,
1984                0x449c0, 0x449fc,
1985                0x45000, 0x45004,
1986                0x45010, 0x45030,
1987                0x45040, 0x45060,
1988                0x45068, 0x45068,
1989                0x45080, 0x45084,
1990                0x450a0, 0x450b0,
1991                0x45200, 0x45204,
1992                0x45210, 0x45230,
1993                0x45240, 0x45260,
1994                0x45268, 0x45268,
1995                0x45280, 0x45284,
1996                0x452a0, 0x452b0,
1997                0x460c0, 0x460e4,
1998                0x47000, 0x4703c,
1999                0x47044, 0x4708c,
2000                0x47200, 0x47250,
2001                0x47400, 0x47408,
2002                0x47414, 0x47420,
2003                0x47600, 0x47618,
2004                0x47800, 0x47814,
2005                0x48000, 0x4800c,
2006                0x48040, 0x48050,
2007                0x48060, 0x48068,
2008                0x4807c, 0x4808c,
2009                0x48094, 0x480b0,
2010                0x480c0, 0x48144,
2011                0x48180, 0x4818c,
2012                0x48200, 0x48254,
2013                0x48260, 0x48264,
2014                0x48270, 0x48288,
2015                0x48290, 0x48298,
2016                0x482ac, 0x482c8,
2017                0x482d0, 0x482e0,
2018                0x482f0, 0x482f0,
2019                0x48300, 0x4833c,
2020                0x483f8, 0x483fc,
2021                0x49304, 0x493c4,
2022                0x49400, 0x4940c,
2023                0x49414, 0x4941c,
2024                0x49480, 0x494d0,
2025                0x4c000, 0x4c054,
2026                0x4c05c, 0x4c078,
2027                0x4c0c0, 0x4c174,
2028                0x4c180, 0x4c1ac,
2029                0x4c1b4, 0x4c1b8,
2030                0x4c1c0, 0x4c254,
2031                0x4c25c, 0x4c278,
2032                0x4c2c0, 0x4c374,
2033                0x4c380, 0x4c3ac,
2034                0x4c3b4, 0x4c3b8,
2035                0x4c3c0, 0x4c454,
2036                0x4c45c, 0x4c478,
2037                0x4c4c0, 0x4c574,
2038                0x4c580, 0x4c5ac,
2039                0x4c5b4, 0x4c5b8,
2040                0x4c5c0, 0x4c654,
2041                0x4c65c, 0x4c678,
2042                0x4c6c0, 0x4c774,
2043                0x4c780, 0x4c7ac,
2044                0x4c7b4, 0x4c7b8,
2045                0x4c7c0, 0x4c854,
2046                0x4c85c, 0x4c878,
2047                0x4c8c0, 0x4c974,
2048                0x4c980, 0x4c9ac,
2049                0x4c9b4, 0x4c9b8,
2050                0x4c9c0, 0x4c9fc,
2051                0x4d000, 0x4d004,
2052                0x4d010, 0x4d030,
2053                0x4d040, 0x4d060,
2054                0x4d068, 0x4d068,
2055                0x4d080, 0x4d084,
2056                0x4d0a0, 0x4d0b0,
2057                0x4d200, 0x4d204,
2058                0x4d210, 0x4d230,
2059                0x4d240, 0x4d260,
2060                0x4d268, 0x4d268,
2061                0x4d280, 0x4d284,
2062                0x4d2a0, 0x4d2b0,
2063                0x4e0c0, 0x4e0e4,
2064                0x4f000, 0x4f03c,
2065                0x4f044, 0x4f08c,
2066                0x4f200, 0x4f250,
2067                0x4f400, 0x4f408,
2068                0x4f414, 0x4f420,
2069                0x4f600, 0x4f618,
2070                0x4f800, 0x4f814,
2071                0x50000, 0x50084,
2072                0x50090, 0x500cc,
2073                0x50400, 0x50400,
2074                0x50800, 0x50884,
2075                0x50890, 0x508cc,
2076                0x50c00, 0x50c00,
2077                0x51000, 0x5101c,
2078                0x51300, 0x51308,
2079        };
2080
2081        static const unsigned int t6_reg_ranges[] = {
2082                0x1008, 0x101c,
2083                0x1024, 0x10a8,
2084                0x10b4, 0x10f8,
2085                0x1100, 0x1114,
2086                0x111c, 0x112c,
2087                0x1138, 0x113c,
2088                0x1144, 0x114c,
2089                0x1180, 0x1184,
2090                0x1190, 0x1194,
2091                0x11a0, 0x11a4,
2092                0x11b0, 0x11b4,
2093                0x11fc, 0x1274,
2094                0x1280, 0x133c,
2095                0x1800, 0x18fc,
2096                0x3000, 0x302c,
2097                0x3060, 0x30b0,
2098                0x30b8, 0x30d8,
2099                0x30e0, 0x30fc,
2100                0x3140, 0x357c,
2101                0x35a8, 0x35cc,
2102                0x35ec, 0x35ec,
2103                0x3600, 0x5624,
2104                0x56cc, 0x56ec,
2105                0x56f4, 0x5720,
2106                0x5728, 0x575c,
2107                0x580c, 0x5814,
2108                0x5890, 0x589c,
2109                0x58a4, 0x58ac,
2110                0x58b8, 0x58bc,
2111                0x5940, 0x595c,
2112                0x5980, 0x598c,
2113                0x59b0, 0x59c8,
2114                0x59d0, 0x59dc,
2115                0x59fc, 0x5a18,
2116                0x5a60, 0x5a6c,
2117                0x5a80, 0x5a8c,
2118                0x5a94, 0x5a9c,
2119                0x5b94, 0x5bfc,
2120                0x5c10, 0x5e48,
2121                0x5e50, 0x5e94,
2122                0x5ea0, 0x5eb0,
2123                0x5ec0, 0x5ec0,
2124                0x5ec8, 0x5ed0,
2125                0x5ee0, 0x5ee0,
2126                0x5ef0, 0x5ef0,
2127                0x5f00, 0x5f00,
2128                0x6000, 0x6020,
2129                0x6028, 0x6040,
2130                0x6058, 0x609c,
2131                0x60a8, 0x619c,
2132                0x7700, 0x7798,
2133                0x77c0, 0x7880,
2134                0x78cc, 0x78fc,
2135                0x7b00, 0x7b58,
2136                0x7b60, 0x7b84,
2137                0x7b8c, 0x7c54,
2138                0x7d00, 0x7d38,
2139                0x7d40, 0x7d84,
2140                0x7d8c, 0x7ddc,
2141                0x7de4, 0x7e04,
2142                0x7e10, 0x7e1c,
2143                0x7e24, 0x7e38,
2144                0x7e40, 0x7e44,
2145                0x7e4c, 0x7e78,
2146                0x7e80, 0x7edc,
2147                0x7ee8, 0x7efc,
2148                0x8dc0, 0x8de4,
2149                0x8df8, 0x8e04,
2150                0x8e10, 0x8e84,
2151                0x8ea0, 0x8f88,
2152                0x8fb8, 0x9058,
2153                0x9060, 0x9060,
2154                0x9068, 0x90f8,
2155                0x9100, 0x9124,
2156                0x9400, 0x9470,
2157                0x9600, 0x9600,
2158                0x9608, 0x9638,
2159                0x9640, 0x9704,
2160                0x9710, 0x971c,
2161                0x9800, 0x9808,
2162                0x9810, 0x9864,
2163                0x9c00, 0x9c6c,
2164                0x9c80, 0x9cec,
2165                0x9d00, 0x9d6c,
2166                0x9d80, 0x9dec,
2167                0x9e00, 0x9e6c,
2168                0x9e80, 0x9eec,
2169                0x9f00, 0x9f6c,
2170                0x9f80, 0xa020,
2171                0xd000, 0xd03c,
2172                0xd100, 0xd118,
2173                0xd200, 0xd214,
2174                0xd220, 0xd234,
2175                0xd240, 0xd254,
2176                0xd260, 0xd274,
2177                0xd280, 0xd294,
2178                0xd2a0, 0xd2b4,
2179                0xd2c0, 0xd2d4,
2180                0xd2e0, 0xd2f4,
2181                0xd300, 0xd31c,
2182                0xdfc0, 0xdfe0,
2183                0xe000, 0xf008,
2184                0xf010, 0xf018,
2185                0xf020, 0xf028,
2186                0x11000, 0x11014,
2187                0x11048, 0x1106c,
2188                0x11074, 0x11088,
2189                0x11098, 0x11120,
2190                0x1112c, 0x1117c,
2191                0x11190, 0x112e0,
2192                0x11300, 0x1130c,
2193                0x12000, 0x1206c,
2194                0x19040, 0x1906c,
2195                0x19078, 0x19080,
2196                0x1908c, 0x190e8,
2197                0x190f0, 0x190f8,
2198                0x19100, 0x19110,
2199                0x19120, 0x19124,
2200                0x19150, 0x19194,
2201                0x1919c, 0x191b0,
2202                0x191d0, 0x191e8,
2203                0x19238, 0x19290,
2204                0x192a4, 0x192b0,
2205                0x192bc, 0x192bc,
2206                0x19348, 0x1934c,
2207                0x193f8, 0x19418,
2208                0x19420, 0x19428,
2209                0x19430, 0x19444,
2210                0x1944c, 0x1946c,
2211                0x19474, 0x19474,
2212                0x19490, 0x194cc,
2213                0x194f0, 0x194f8,
2214                0x19c00, 0x19c48,
2215                0x19c50, 0x19c80,
2216                0x19c94, 0x19c98,
2217                0x19ca0, 0x19cbc,
2218                0x19ce4, 0x19ce4,
2219                0x19cf0, 0x19cf8,
2220                0x19d00, 0x19d28,
2221                0x19d50, 0x19d78,
2222                0x19d94, 0x19d98,
2223                0x19da0, 0x19dc8,
2224                0x19df0, 0x19e10,
2225                0x19e50, 0x19e6c,
2226                0x19ea0, 0x19ebc,
2227                0x19ec4, 0x19ef4,
2228                0x19f04, 0x19f2c,
2229                0x19f34, 0x19f34,
2230                0x19f40, 0x19f50,
2231                0x19f90, 0x19fac,
2232                0x19fc4, 0x19fc8,
2233                0x19fd0, 0x19fe4,
2234                0x1a000, 0x1a004,
2235                0x1a010, 0x1a06c,
2236                0x1a0b0, 0x1a0e4,
2237                0x1a0ec, 0x1a0f8,
2238                0x1a100, 0x1a108,
2239                0x1a114, 0x1a130,
2240                0x1a138, 0x1a1c4,
2241                0x1a1fc, 0x1a1fc,
2242                0x1e008, 0x1e00c,
2243                0x1e040, 0x1e044,
2244                0x1e04c, 0x1e04c,
2245                0x1e284, 0x1e290,
2246                0x1e2c0, 0x1e2c0,
2247                0x1e2e0, 0x1e2e0,
2248                0x1e300, 0x1e384,
2249                0x1e3c0, 0x1e3c8,
2250                0x1e408, 0x1e40c,
2251                0x1e440, 0x1e444,
2252                0x1e44c, 0x1e44c,
2253                0x1e684, 0x1e690,
2254                0x1e6c0, 0x1e6c0,
2255                0x1e6e0, 0x1e6e0,
2256                0x1e700, 0x1e784,
2257                0x1e7c0, 0x1e7c8,
2258                0x1e808, 0x1e80c,
2259                0x1e840, 0x1e844,
2260                0x1e84c, 0x1e84c,
2261                0x1ea84, 0x1ea90,
2262                0x1eac0, 0x1eac0,
2263                0x1eae0, 0x1eae0,
2264                0x1eb00, 0x1eb84,
2265                0x1ebc0, 0x1ebc8,
2266                0x1ec08, 0x1ec0c,
2267                0x1ec40, 0x1ec44,
2268                0x1ec4c, 0x1ec4c,
2269                0x1ee84, 0x1ee90,
2270                0x1eec0, 0x1eec0,
2271                0x1eee0, 0x1eee0,
2272                0x1ef00, 0x1ef84,
2273                0x1efc0, 0x1efc8,
2274                0x1f008, 0x1f00c,
2275                0x1f040, 0x1f044,
2276                0x1f04c, 0x1f04c,
2277                0x1f284, 0x1f290,
2278                0x1f2c0, 0x1f2c0,
2279                0x1f2e0, 0x1f2e0,
2280                0x1f300, 0x1f384,
2281                0x1f3c0, 0x1f3c8,
2282                0x1f408, 0x1f40c,
2283                0x1f440, 0x1f444,
2284                0x1f44c, 0x1f44c,
2285                0x1f684, 0x1f690,
2286                0x1f6c0, 0x1f6c0,
2287                0x1f6e0, 0x1f6e0,
2288                0x1f700, 0x1f784,
2289                0x1f7c0, 0x1f7c8,
2290                0x1f808, 0x1f80c,
2291                0x1f840, 0x1f844,
2292                0x1f84c, 0x1f84c,
2293                0x1fa84, 0x1fa90,
2294                0x1fac0, 0x1fac0,
2295                0x1fae0, 0x1fae0,
2296                0x1fb00, 0x1fb84,
2297                0x1fbc0, 0x1fbc8,
2298                0x1fc08, 0x1fc0c,
2299                0x1fc40, 0x1fc44,
2300                0x1fc4c, 0x1fc4c,
2301                0x1fe84, 0x1fe90,
2302                0x1fec0, 0x1fec0,
2303                0x1fee0, 0x1fee0,
2304                0x1ff00, 0x1ff84,
2305                0x1ffc0, 0x1ffc8,
2306                0x30000, 0x30030,
2307                0x30100, 0x30168,
2308                0x30190, 0x301a0,
2309                0x301a8, 0x301b8,
2310                0x301c4, 0x301c8,
2311                0x301d0, 0x301d0,
2312                0x30200, 0x30320,
2313                0x30400, 0x304b4,
2314                0x304c0, 0x3052c,
2315                0x30540, 0x3061c,
2316                0x30800, 0x308a0,
2317                0x308c0, 0x30908,
2318                0x30910, 0x309b8,
2319                0x30a00, 0x30a04,
2320                0x30a0c, 0x30a14,
2321                0x30a1c, 0x30a2c,
2322                0x30a44, 0x30a50,
2323                0x30a74, 0x30a74,
2324                0x30a7c, 0x30afc,
2325                0x30b08, 0x30c24,
2326                0x30d00, 0x30d14,
2327                0x30d1c, 0x30d3c,
2328                0x30d44, 0x30d4c,
2329                0x30d54, 0x30d74,
2330                0x30d7c, 0x30d7c,
2331                0x30de0, 0x30de0,
2332                0x30e00, 0x30ed4,
2333                0x30f00, 0x30fa4,
2334                0x30fc0, 0x30fc4,
2335                0x31000, 0x31004,
2336                0x31080, 0x310fc,
2337                0x31208, 0x31220,
2338                0x3123c, 0x31254,
2339                0x31300, 0x31300,
2340                0x31308, 0x3131c,
2341                0x31338, 0x3133c,
2342                0x31380, 0x31380,
2343                0x31388, 0x313a8,
2344                0x313b4, 0x313b4,
2345                0x31400, 0x31420,
2346                0x31438, 0x3143c,
2347                0x31480, 0x31480,
2348                0x314a8, 0x314a8,
2349                0x314b0, 0x314b4,
2350                0x314c8, 0x314d4,
2351                0x31a40, 0x31a4c,
2352                0x31af0, 0x31b20,
2353                0x31b38, 0x31b3c,
2354                0x31b80, 0x31b80,
2355                0x31ba8, 0x31ba8,
2356                0x31bb0, 0x31bb4,
2357                0x31bc8, 0x31bd4,
2358                0x32140, 0x3218c,
2359                0x321f0, 0x321f4,
2360                0x32200, 0x32200,
2361                0x32218, 0x32218,
2362                0x32400, 0x32400,
2363                0x32408, 0x3241c,
2364                0x32618, 0x32620,
2365                0x32664, 0x32664,
2366                0x326a8, 0x326a8,
2367                0x326ec, 0x326ec,
2368                0x32a00, 0x32abc,
2369                0x32b00, 0x32b18,
2370                0x32b20, 0x32b38,
2371                0x32b40, 0x32b58,
2372                0x32b60, 0x32b78,
2373                0x32c00, 0x32c00,
2374                0x32c08, 0x32c3c,
2375                0x33000, 0x3302c,
2376                0x33034, 0x33050,
2377                0x33058, 0x33058,
2378                0x33060, 0x3308c,
2379                0x3309c, 0x330ac,
2380                0x330c0, 0x330c0,
2381                0x330c8, 0x330d0,
2382                0x330d8, 0x330e0,
2383                0x330ec, 0x3312c,
2384                0x33134, 0x33150,
2385                0x33158, 0x33158,
2386                0x33160, 0x3318c,
2387                0x3319c, 0x331ac,
2388                0x331c0, 0x331c0,
2389                0x331c8, 0x331d0,
2390                0x331d8, 0x331e0,
2391                0x331ec, 0x33290,
2392                0x33298, 0x332c4,
2393                0x332e4, 0x33390,
2394                0x33398, 0x333c4,
2395                0x333e4, 0x3342c,
2396                0x33434, 0x33450,
2397                0x33458, 0x33458,
2398                0x33460, 0x3348c,
2399                0x3349c, 0x334ac,
2400                0x334c0, 0x334c0,
2401                0x334c8, 0x334d0,
2402                0x334d8, 0x334e0,
2403                0x334ec, 0x3352c,
2404                0x33534, 0x33550,
2405                0x33558, 0x33558,
2406                0x33560, 0x3358c,
2407                0x3359c, 0x335ac,
2408                0x335c0, 0x335c0,
2409                0x335c8, 0x335d0,
2410                0x335d8, 0x335e0,
2411                0x335ec, 0x33690,
2412                0x33698, 0x336c4,
2413                0x336e4, 0x33790,
2414                0x33798, 0x337c4,
2415                0x337e4, 0x337fc,
2416                0x33814, 0x33814,
2417                0x33854, 0x33868,
2418                0x33880, 0x3388c,
2419                0x338c0, 0x338d0,
2420                0x338e8, 0x338ec,
2421                0x33900, 0x3392c,
2422                0x33934, 0x33950,
2423                0x33958, 0x33958,
2424                0x33960, 0x3398c,
2425                0x3399c, 0x339ac,
2426                0x339c0, 0x339c0,
2427                0x339c8, 0x339d0,
2428                0x339d8, 0x339e0,
2429                0x339ec, 0x33a90,
2430                0x33a98, 0x33ac4,
2431                0x33ae4, 0x33b10,
2432                0x33b24, 0x33b28,
2433                0x33b38, 0x33b50,
2434                0x33bf0, 0x33c10,
2435                0x33c24, 0x33c28,
2436                0x33c38, 0x33c50,
2437                0x33cf0, 0x33cfc,
2438                0x34000, 0x34030,
2439                0x34100, 0x34168,
2440                0x34190, 0x341a0,
2441                0x341a8, 0x341b8,
2442                0x341c4, 0x341c8,
2443                0x341d0, 0x341d0,
2444                0x34200, 0x34320,
2445                0x34400, 0x344b4,
2446                0x344c0, 0x3452c,
2447                0x34540, 0x3461c,
2448                0x34800, 0x348a0,
2449                0x348c0, 0x34908,
2450                0x34910, 0x349b8,
2451                0x34a00, 0x34a04,
2452                0x34a0c, 0x34a14,
2453                0x34a1c, 0x34a2c,
2454                0x34a44, 0x34a50,
2455                0x34a74, 0x34a74,
2456                0x34a7c, 0x34afc,
2457                0x34b08, 0x34c24,
2458                0x34d00, 0x34d14,
2459                0x34d1c, 0x34d3c,
2460                0x34d44, 0x34d4c,
2461                0x34d54, 0x34d74,
2462                0x34d7c, 0x34d7c,
2463                0x34de0, 0x34de0,
2464                0x34e00, 0x34ed4,
2465                0x34f00, 0x34fa4,
2466                0x34fc0, 0x34fc4,
2467                0x35000, 0x35004,
2468                0x35080, 0x350fc,
2469                0x35208, 0x35220,
2470                0x3523c, 0x35254,
2471                0x35300, 0x35300,
2472                0x35308, 0x3531c,
2473                0x35338, 0x3533c,
2474                0x35380, 0x35380,
2475                0x35388, 0x353a8,
2476                0x353b4, 0x353b4,
2477                0x35400, 0x35420,
2478                0x35438, 0x3543c,
2479                0x35480, 0x35480,
2480                0x354a8, 0x354a8,
2481                0x354b0, 0x354b4,
2482                0x354c8, 0x354d4,
2483                0x35a40, 0x35a4c,
2484                0x35af0, 0x35b20,
2485                0x35b38, 0x35b3c,
2486                0x35b80, 0x35b80,
2487                0x35ba8, 0x35ba8,
2488                0x35bb0, 0x35bb4,
2489                0x35bc8, 0x35bd4,
2490                0x36140, 0x3618c,
2491                0x361f0, 0x361f4,
2492                0x36200, 0x36200,
2493                0x36218, 0x36218,
2494                0x36400, 0x36400,
2495                0x36408, 0x3641c,
2496                0x36618, 0x36620,
2497                0x36664, 0x36664,
2498                0x366a8, 0x366a8,
2499                0x366ec, 0x366ec,
2500                0x36a00, 0x36abc,
2501                0x36b00, 0x36b18,
2502                0x36b20, 0x36b38,
2503                0x36b40, 0x36b58,
2504                0x36b60, 0x36b78,
2505                0x36c00, 0x36c00,
2506                0x36c08, 0x36c3c,
2507                0x37000, 0x3702c,
2508                0x37034, 0x37050,
2509                0x37058, 0x37058,
2510                0x37060, 0x3708c,
2511                0x3709c, 0x370ac,
2512                0x370c0, 0x370c0,
2513                0x370c8, 0x370d0,
2514                0x370d8, 0x370e0,
2515                0x370ec, 0x3712c,
2516                0x37134, 0x37150,
2517                0x37158, 0x37158,
2518                0x37160, 0x3718c,
2519                0x3719c, 0x371ac,
2520                0x371c0, 0x371c0,
2521                0x371c8, 0x371d0,
2522                0x371d8, 0x371e0,
2523                0x371ec, 0x37290,
2524                0x37298, 0x372c4,
2525                0x372e4, 0x37390,
2526                0x37398, 0x373c4,
2527                0x373e4, 0x3742c,
2528                0x37434, 0x37450,
2529                0x37458, 0x37458,
2530                0x37460, 0x3748c,
2531                0x3749c, 0x374ac,
2532                0x374c0, 0x374c0,
2533                0x374c8, 0x374d0,
2534                0x374d8, 0x374e0,
2535                0x374ec, 0x3752c,
2536                0x37534, 0x37550,
2537                0x37558, 0x37558,
2538                0x37560, 0x3758c,
2539                0x3759c, 0x375ac,
2540                0x375c0, 0x375c0,
2541                0x375c8, 0x375d0,
2542                0x375d8, 0x375e0,
2543                0x375ec, 0x37690,
2544                0x37698, 0x376c4,
2545                0x376e4, 0x37790,
2546                0x37798, 0x377c4,
2547                0x377e4, 0x377fc,
2548                0x37814, 0x37814,
2549                0x37854, 0x37868,
2550                0x37880, 0x3788c,
2551                0x378c0, 0x378d0,
2552                0x378e8, 0x378ec,
2553                0x37900, 0x3792c,
2554                0x37934, 0x37950,
2555                0x37958, 0x37958,
2556                0x37960, 0x3798c,
2557                0x3799c, 0x379ac,
2558                0x379c0, 0x379c0,
2559                0x379c8, 0x379d0,
2560                0x379d8, 0x379e0,
2561                0x379ec, 0x37a90,
2562                0x37a98, 0x37ac4,
2563                0x37ae4, 0x37b10,
2564                0x37b24, 0x37b28,
2565                0x37b38, 0x37b50,
2566                0x37bf0, 0x37c10,
2567                0x37c24, 0x37c28,
2568                0x37c38, 0x37c50,
2569                0x37cf0, 0x37cfc,
2570                0x40040, 0x40040,
2571                0x40080, 0x40084,
2572                0x40100, 0x40100,
2573                0x40140, 0x401bc,
2574                0x40200, 0x40214,
2575                0x40228, 0x40228,
2576                0x40240, 0x40258,
2577                0x40280, 0x40280,
2578                0x40304, 0x40304,
2579                0x40330, 0x4033c,
2580                0x41304, 0x413c8,
2581                0x413d0, 0x413dc,
2582                0x413f0, 0x413f0,
2583                0x41400, 0x4140c,
2584                0x41414, 0x4141c,
2585                0x41480, 0x414d0,
2586                0x44000, 0x4407c,
2587                0x440c0, 0x441ac,
2588                0x441b4, 0x4427c,
2589                0x442c0, 0x443ac,
2590                0x443b4, 0x4447c,
2591                0x444c0, 0x445ac,
2592                0x445b4, 0x4467c,
2593                0x446c0, 0x447ac,
2594                0x447b4, 0x4487c,
2595                0x448c0, 0x449ac,
2596                0x449b4, 0x44a7c,
2597                0x44ac0, 0x44bac,
2598                0x44bb4, 0x44c7c,
2599                0x44cc0, 0x44dac,
2600                0x44db4, 0x44e7c,
2601                0x44ec0, 0x44fac,
2602                0x44fb4, 0x4507c,
2603                0x450c0, 0x451ac,
2604                0x451b4, 0x451fc,
2605                0x45800, 0x45804,
2606                0x45810, 0x45830,
2607                0x45840, 0x45860,
2608                0x45868, 0x45868,
2609                0x45880, 0x45884,
2610                0x458a0, 0x458b0,
2611                0x45a00, 0x45a04,
2612                0x45a10, 0x45a30,
2613                0x45a40, 0x45a60,
2614                0x45a68, 0x45a68,
2615                0x45a80, 0x45a84,
2616                0x45aa0, 0x45ab0,
2617                0x460c0, 0x460e4,
2618                0x47000, 0x4703c,
2619                0x47044, 0x4708c,
2620                0x47200, 0x47250,
2621                0x47400, 0x47408,
2622                0x47414, 0x47420,
2623                0x47600, 0x47618,
2624                0x47800, 0x47814,
2625                0x47820, 0x4782c,
2626                0x50000, 0x50084,
2627                0x50090, 0x500cc,
2628                0x50300, 0x50384,
2629                0x50400, 0x50400,
2630                0x50800, 0x50884,
2631                0x50890, 0x508cc,
2632                0x50b00, 0x50b84,
2633                0x50c00, 0x50c00,
2634                0x51000, 0x51020,
2635                0x51028, 0x510b0,
2636                0x51300, 0x51324,
2637        };
2638
2639        u32 *buf_end = (u32 *)((char *)buf + buf_size);
2640        const unsigned int *reg_ranges;
2641        int reg_ranges_size, range;
2642        unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2643
2644        /* Select the right set of register ranges to dump depending on the
2645         * adapter chip type.
2646         */
2647        switch (chip_version) {
2648        case CHELSIO_T4:
2649                reg_ranges = t4_reg_ranges;
2650                reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2651                break;
2652
2653        case CHELSIO_T5:
2654                reg_ranges = t5_reg_ranges;
2655                reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2656                break;
2657
2658        case CHELSIO_T6:
2659                reg_ranges = t6_reg_ranges;
2660                reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2661                break;
2662
2663        default:
2664                dev_err(adap->pdev_dev,
2665                        "Unsupported chip version %d\n", chip_version);
2666                return;
2667        }
2668
2669        /* Clear the register buffer and insert the appropriate register
2670         * values selected by the above register ranges.
2671         */
2672        memset(buf, 0, buf_size);
2673        for (range = 0; range < reg_ranges_size; range += 2) {
2674                unsigned int reg = reg_ranges[range];
2675                unsigned int last_reg = reg_ranges[range + 1];
2676                u32 *bufp = (u32 *)((char *)buf + reg);
2677
2678                /* Iterate across the register range filling in the register
2679                 * buffer but don't write past the end of the register buffer.
2680                 */
2681                while (reg <= last_reg && bufp < buf_end) {
2682                        *bufp++ = t4_read_reg(adap, reg);
2683                        reg += sizeof(u32);
2684                }
2685        }
2686}
2687
2688#define EEPROM_STAT_ADDR   0x7bfc
2689#define VPD_BASE           0x400
2690#define VPD_BASE_OLD       0
2691#define VPD_LEN            1024
2692#define CHELSIO_VPD_UNIQUE_ID 0x82
2693
2694/**
2695 * t4_eeprom_ptov - translate a physical EEPROM address to virtual
2696 * @phys_addr: the physical EEPROM address
2697 * @fn: the PCI function number
2698 * @sz: size of function-specific area
2699 *
2700 * Translate a physical EEPROM address to virtual.  The first 1K is
2701 * accessed through virtual addresses starting at 31K, the rest is
2702 * accessed through virtual addresses starting at 0.
2703 *
2704 * The mapping is as follows:
2705 * [0..1K) -> [31K..32K)
2706 * [1K..1K+A) -> [31K-A..31K)
2707 * [1K+A..ES) -> [0..ES-A-1K)
2708 *
2709 * where A = @fn * @sz, and ES = EEPROM size.
2710 */
2711int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2712{
2713        fn *= sz;
2714        if (phys_addr < 1024)
2715                return phys_addr + (31 << 10);
2716        if (phys_addr < 1024 + fn)
2717                return 31744 - fn + phys_addr - 1024;
2718        if (phys_addr < EEPROMSIZE)
2719                return phys_addr - 1024 - fn;
2720        return -EINVAL;
2721}
2722
2723/**
2724 *      t4_seeprom_wp - enable/disable EEPROM write protection
2725 *      @adapter: the adapter
2726 *      @enable: whether to enable or disable write protection
2727 *
2728 *      Enables or disables write protection on the serial EEPROM.
2729 */
2730int t4_seeprom_wp(struct adapter *adapter, bool enable)
2731{
2732        unsigned int v = enable ? 0xc : 0;
2733        int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2734        return ret < 0 ? ret : 0;
2735}
2736
2737/**
2738 *      t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2739 *      @adapter: adapter to read
2740 *      @p: where to store the parameters
2741 *
2742 *      Reads card parameters stored in VPD EEPROM.
2743 */
2744int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2745{
2746        int i, ret = 0, addr;
2747        int ec, sn, pn, na;
2748        u8 *vpd, csum;
2749        unsigned int vpdr_len, kw_offset, id_len;
2750
2751        vpd = vmalloc(VPD_LEN);
2752        if (!vpd)
2753                return -ENOMEM;
2754
2755        /* Card information normally starts at VPD_BASE but early cards had
2756         * it at 0.
2757         */
2758        ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2759        if (ret < 0)
2760                goto out;
2761
2762        /* The VPD shall have a unique identifier specified by the PCI SIG.
2763         * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2764         * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2765         * is expected to automatically put this entry at the
2766         * beginning of the VPD.
2767         */
2768        addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2769
2770        ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2771        if (ret < 0)
2772                goto out;
2773
2774        if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2775                dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2776                ret = -EINVAL;
2777                goto out;
2778        }
2779
2780        id_len = pci_vpd_lrdt_size(vpd);
2781        if (id_len > ID_LEN)
2782                id_len = ID_LEN;
2783
2784        i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2785        if (i < 0) {
2786                dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2787                ret = -EINVAL;
2788                goto out;
2789        }
2790
2791        vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2792        kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2793        if (vpdr_len + kw_offset > VPD_LEN) {
2794                dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2795                ret = -EINVAL;
2796                goto out;
2797        }
2798
2799#define FIND_VPD_KW(var, name) do { \
2800        var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2801        if (var < 0) { \
2802                dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2803                ret = -EINVAL; \
2804                goto out; \
2805        } \
2806        var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2807} while (0)
2808
2809        FIND_VPD_KW(i, "RV");
2810        for (csum = 0; i >= 0; i--)
2811                csum += vpd[i];
2812
2813        if (csum) {
2814                dev_err(adapter->pdev_dev,
2815                        "corrupted VPD EEPROM, actual csum %u\n", csum);
2816                ret = -EINVAL;
2817                goto out;
2818        }
2819
2820        FIND_VPD_KW(ec, "EC");
2821        FIND_VPD_KW(sn, "SN");
2822        FIND_VPD_KW(pn, "PN");
2823        FIND_VPD_KW(na, "NA");
2824#undef FIND_VPD_KW
2825
2826        memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2827        strim(p->id);
2828        memcpy(p->ec, vpd + ec, EC_LEN);
2829        strim(p->ec);
2830        i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2831        memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2832        strim(p->sn);
2833        i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2834        memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2835        strim(p->pn);
2836        memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2837        strim((char *)p->na);
2838
2839out:
2840        vfree(vpd);
2841        return ret < 0 ? ret : 0;
2842}
2843
2844/**
2845 *      t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2846 *      @adapter: adapter to read
2847 *      @p: where to store the parameters
2848 *
2849 *      Reads card parameters stored in VPD EEPROM and retrieves the Core
2850 *      Clock.  This can only be called after a connection to the firmware
2851 *      is established.
2852 */
2853int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2854{
2855        u32 cclk_param, cclk_val;
2856        int ret;
2857
2858        /* Grab the raw VPD parameters.
2859         */
2860        ret = t4_get_raw_vpd_params(adapter, p);
2861        if (ret)
2862                return ret;
2863
2864        /* Ask firmware for the Core Clock since it knows how to translate the
2865         * Reference Clock ('V2') VPD field into a Core Clock value ...
2866         */
2867        cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2868                      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2869        ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2870                              1, &cclk_param, &cclk_val);
2871
2872        if (ret)
2873                return ret;
2874        p->cclk = cclk_val;
2875
2876        return 0;
2877}
2878
2879/**
2880 *      t4_get_pfres - retrieve VF resource limits
2881 *      @adapter: the adapter
2882 *
2883 *      Retrieves configured resource limits and capabilities for a physical
2884 *      function.  The results are stored in @adapter->pfres.
2885 */
2886int t4_get_pfres(struct adapter *adapter)
2887{
2888        struct pf_resources *pfres = &adapter->params.pfres;
2889        struct fw_pfvf_cmd cmd, rpl;
2890        int v;
2891        u32 word;
2892
2893        /* Execute PFVF Read command to get VF resource limits; bail out early
2894         * with error on command failure.
2895         */
2896        memset(&cmd, 0, sizeof(cmd));
2897        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
2898                                    FW_CMD_REQUEST_F |
2899                                    FW_CMD_READ_F |
2900                                    FW_PFVF_CMD_PFN_V(adapter->pf) |
2901                                    FW_PFVF_CMD_VFN_V(0));
2902        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
2903        v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl);
2904        if (v != FW_SUCCESS)
2905                return v;
2906
2907        /* Extract PF resource limits and return success.
2908         */
2909        word = be32_to_cpu(rpl.niqflint_niq);
2910        pfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
2911        pfres->niq = FW_PFVF_CMD_NIQ_G(word);
2912
2913        word = be32_to_cpu(rpl.type_to_neq);
2914        pfres->neq = FW_PFVF_CMD_NEQ_G(word);
2915        pfres->pmask = FW_PFVF_CMD_PMASK_G(word);
2916
2917        word = be32_to_cpu(rpl.tc_to_nexactf);
2918        pfres->tc = FW_PFVF_CMD_TC_G(word);
2919        pfres->nvi = FW_PFVF_CMD_NVI_G(word);
2920        pfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
2921
2922        word = be32_to_cpu(rpl.r_caps_to_nethctrl);
2923        pfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
2924        pfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
2925        pfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
2926
2927        return 0;
2928}
2929
2930/* serial flash and firmware constants */
2931enum {
2932        SF_ATTEMPTS = 10,             /* max retries for SF operations */
2933
2934        /* flash command opcodes */
2935        SF_PROG_PAGE    = 2,          /* program page */
2936        SF_WR_DISABLE   = 4,          /* disable writes */
2937        SF_RD_STATUS    = 5,          /* read status register */
2938        SF_WR_ENABLE    = 6,          /* enable writes */
2939        SF_RD_DATA_FAST = 0xb,        /* read flash */
2940        SF_RD_ID        = 0x9f,       /* read ID */
2941        SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2942};
2943
2944/**
2945 *      sf1_read - read data from the serial flash
2946 *      @adapter: the adapter
2947 *      @byte_cnt: number of bytes to read
2948 *      @cont: whether another operation will be chained
2949 *      @lock: whether to lock SF for PL access only
2950 *      @valp: where to store the read data
2951 *
2952 *      Reads up to 4 bytes of data from the serial flash.  The location of
2953 *      the read needs to be specified prior to calling this by issuing the
2954 *      appropriate commands to the serial flash.
2955 */
2956static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2957                    int lock, u32 *valp)
2958{
2959        int ret;
2960
2961        if (!byte_cnt || byte_cnt > 4)
2962                return -EINVAL;
2963        if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2964                return -EBUSY;
2965        t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2966                     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2967        ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2968        if (!ret)
2969                *valp = t4_read_reg(adapter, SF_DATA_A);
2970        return ret;
2971}
2972
2973/**
2974 *      sf1_write - write data to the serial flash
2975 *      @adapter: the adapter
2976 *      @byte_cnt: number of bytes to write
2977 *      @cont: whether another operation will be chained
2978 *      @lock: whether to lock SF for PL access only
2979 *      @val: value to write
2980 *
2981 *      Writes up to 4 bytes of data to the serial flash.  The location of
2982 *      the write needs to be specified prior to calling this by issuing the
2983 *      appropriate commands to the serial flash.
2984 */
2985static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2986                     int lock, u32 val)
2987{
2988        if (!byte_cnt || byte_cnt > 4)
2989                return -EINVAL;
2990        if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2991                return -EBUSY;
2992        t4_write_reg(adapter, SF_DATA_A, val);
2993        t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2994                     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2995        return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2996}
2997
2998/**
2999 *      flash_wait_op - wait for a flash operation to complete
3000 *      @adapter: the adapter
3001 *      @attempts: max number of polls of the status register
3002 *      @delay: delay between polls in ms
3003 *
3004 *      Wait for a flash operation to complete by polling the status register.
3005 */
3006static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3007{
3008        int ret;
3009        u32 status;
3010
3011        while (1) {
3012                if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3013                    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3014                        return ret;
3015                if (!(status & 1))
3016                        return 0;
3017                if (--attempts == 0)
3018                        return -EAGAIN;
3019                if (delay)
3020                        msleep(delay);
3021        }
3022}
3023
3024/**
3025 *      t4_read_flash - read words from serial flash
3026 *      @adapter: the adapter
3027 *      @addr: the start address for the read
3028 *      @nwords: how many 32-bit words to read
3029 *      @data: where to store the read data
3030 *      @byte_oriented: whether to store data as bytes or as words
3031 *
3032 *      Read the specified number of 32-bit words from the serial flash.
3033 *      If @byte_oriented is set the read data is stored as a byte array
3034 *      (i.e., big-endian), otherwise as 32-bit words in the platform's
3035 *      natural endianness.
3036 */
3037int t4_read_flash(struct adapter *adapter, unsigned int addr,
3038                  unsigned int nwords, u32 *data, int byte_oriented)
3039{
3040        int ret;
3041
3042        if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3043                return -EINVAL;
3044
3045        addr = swab32(addr) | SF_RD_DATA_FAST;
3046
3047        if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3048            (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3049                return ret;
3050
3051        for ( ; nwords; nwords--, data++) {
3052                ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3053                if (nwords == 1)
3054                        t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3055                if (ret)
3056                        return ret;
3057                if (byte_oriented)
3058                        *data = (__force __u32)(cpu_to_be32(*data));
3059        }
3060        return 0;
3061}
3062
3063/**
3064 *      t4_write_flash - write up to a page of data to the serial flash
3065 *      @adapter: the adapter
3066 *      @addr: the start address to write
3067 *      @n: length of data to write in bytes
3068 *      @data: the data to write
3069 *
3070 *      Writes up to a page of data (256 bytes) to the serial flash starting
3071 *      at the given address.  All the data must be written to the same page.
3072 */
3073static int t4_write_flash(struct adapter *adapter, unsigned int addr,
3074                          unsigned int n, const u8 *data)
3075{
3076        int ret;
3077        u32 buf[64];
3078        unsigned int i, c, left, val, offset = addr & 0xff;
3079
3080        if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3081                return -EINVAL;
3082
3083        val = swab32(addr) | SF_PROG_PAGE;
3084
3085        if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3086            (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3087                goto unlock;
3088
3089        for (left = n; left; left -= c) {
3090                c = min(left, 4U);
3091                for (val = 0, i = 0; i < c; ++i)
3092                        val = (val << 8) + *data++;
3093
3094                ret = sf1_write(adapter, c, c != left, 1, val);
3095                if (ret)
3096                        goto unlock;
3097        }
3098        ret = flash_wait_op(adapter, 8, 1);
3099        if (ret)
3100                goto unlock;
3101
3102        t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3103
3104        /* Read the page to verify the write succeeded */
3105        ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
3106        if (ret)
3107                return ret;
3108
3109        if (memcmp(data - n, (u8 *)buf + offset, n)) {
3110                dev_err(adapter->pdev_dev,
3111                        "failed to correctly write the flash page at %#x\n",
3112                        addr);
3113                return -EIO;
3114        }
3115        return 0;
3116
3117unlock:
3118        t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3119        return ret;
3120}
3121
3122/**
3123 *      t4_get_fw_version - read the firmware version
3124 *      @adapter: the adapter
3125 *      @vers: where to place the version
3126 *
3127 *      Reads the FW version from flash.
3128 */
3129int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3130{
3131        return t4_read_flash(adapter, FLASH_FW_START +
3132                             offsetof(struct fw_hdr, fw_ver), 1,
3133                             vers, 0);
3134}
3135
3136/**
3137 *      t4_get_bs_version - read the firmware bootstrap version
3138 *      @adapter: the adapter
3139 *      @vers: where to place the version
3140 *
3141 *      Reads the FW Bootstrap version from flash.
3142 */
3143int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3144{
3145        return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3146                             offsetof(struct fw_hdr, fw_ver), 1,
3147                             vers, 0);
3148}
3149
3150/**
3151 *      t4_get_tp_version - read the TP microcode version
3152 *      @adapter: the adapter
3153 *      @vers: where to place the version
3154 *
3155 *      Reads the TP microcode version from flash.
3156 */
3157int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3158{
3159        return t4_read_flash(adapter, FLASH_FW_START +
3160                             offsetof(struct fw_hdr, tp_microcode_ver),
3161                             1, vers, 0);
3162}
3163
3164/**
3165 *      t4_get_exprom_version - return the Expansion ROM version (if any)
3166 *      @adap: the adapter
3167 *      @vers: where to place the version
3168 *
3169 *      Reads the Expansion ROM header from FLASH and returns the version
3170 *      number (if present) through the @vers return value pointer.  We return
3171 *      this in the Firmware Version Format since it's convenient.  Return
3172 *      0 on success, -ENOENT if no Expansion ROM is present.
3173 */
3174int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3175{
3176        struct exprom_header {
3177                unsigned char hdr_arr[16];      /* must start with 0x55aa */
3178                unsigned char hdr_ver[4];       /* Expansion ROM version */
3179        } *hdr;
3180        u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3181                                           sizeof(u32))];
3182        int ret;
3183
3184        ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3185                            ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3186                            0);
3187        if (ret)
3188                return ret;
3189
3190        hdr = (struct exprom_header *)exprom_header_buf;
3191        if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3192                return -ENOENT;
3193
3194        *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3195                 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3196                 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3197                 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3198        return 0;
3199}
3200
3201/**
3202 *      t4_get_vpd_version - return the VPD version
3203 *      @adapter: the adapter
3204 *      @vers: where to place the version
3205 *
3206 *      Reads the VPD via the Firmware interface (thus this can only be called
3207 *      once we're ready to issue Firmware commands).  The format of the
3208 *      VPD version is adapter specific.  Returns 0 on success, an error on
3209 *      failure.
3210 *
3211 *      Note that early versions of the Firmware didn't include the ability
3212 *      to retrieve the VPD version, so we zero-out the return-value parameter
3213 *      in that case to avoid leaving it with garbage in it.
3214 *
3215 *      Also note that the Firmware will return its cached copy of the VPD
3216 *      Revision ID, not the actual Revision ID as written in the Serial
3217 *      EEPROM.  This is only an issue if a new VPD has been written and the
3218 *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3219 *      to defer calling this routine till after a FW_RESET_CMD has been issued
3220 *      if the Host Driver will be performing a full adapter initialization.
3221 */
3222int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3223{
3224        u32 vpdrev_param;
3225        int ret;
3226
3227        vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3228                        FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV));
3229        ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3230                              1, &vpdrev_param, vers);
3231        if (ret)
3232                *vers = 0;
3233        return ret;
3234}
3235
3236/**
3237 *      t4_get_scfg_version - return the Serial Configuration version
3238 *      @adapter: the adapter
3239 *      @vers: where to place the version
3240 *
3241 *      Reads the Serial Configuration Version via the Firmware interface
3242 *      (thus this can only be called once we're ready to issue Firmware
3243 *      commands).  The format of the Serial Configuration version is
3244 *      adapter specific.  Returns 0 on success, an error on failure.
3245 *
3246 *      Note that early versions of the Firmware didn't include the ability
3247 *      to retrieve the Serial Configuration version, so we zero-out the
3248 *      return-value parameter in that case to avoid leaving it with
3249 *      garbage in it.
3250 *
3251 *      Also note that the Firmware will return its cached copy of the Serial
3252 *      Initialization Revision ID, not the actual Revision ID as written in
3253 *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3254 *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3255 *      it's best to defer calling this routine till after a FW_RESET_CMD has
3256 *      been issued if the Host Driver will be performing a full adapter
3257 *      initialization.
3258 */
3259int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3260{
3261        u32 scfgrev_param;
3262        int ret;
3263
3264        scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3265                         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV));
3266        ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3267                              1, &scfgrev_param, vers);
3268        if (ret)
3269                *vers = 0;
3270        return ret;
3271}
3272
3273/**
3274 *      t4_get_version_info - extract various chip/firmware version information
3275 *      @adapter: the adapter
3276 *
3277 *      Reads various chip/firmware version numbers and stores them into the
3278 *      adapter Adapter Parameters structure.  If any of the efforts fails
3279 *      the first failure will be returned, but all of the version numbers
3280 *      will be read.
3281 */
3282int t4_get_version_info(struct adapter *adapter)
3283{
3284        int ret = 0;
3285
3286        #define FIRST_RET(__getvinfo) \
3287        do { \
3288                int __ret = __getvinfo; \
3289                if (__ret && !ret) \
3290                        ret = __ret; \
3291        } while (0)
3292
3293        FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3294        FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3295        FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3296        FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3297        FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3298        FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3299
3300        #undef FIRST_RET
3301        return ret;
3302}
3303
3304/**
3305 *      t4_dump_version_info - dump all of the adapter configuration IDs
3306 *      @adapter: the adapter
3307 *
3308 *      Dumps all of the various bits of adapter configuration version/revision
3309 *      IDs information.  This is typically called at some point after
3310 *      t4_get_version_info() has been called.
3311 */
3312void t4_dump_version_info(struct adapter *adapter)
3313{
3314        /* Device information */
3315        dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
3316                 adapter->params.vpd.id,
3317                 CHELSIO_CHIP_RELEASE(adapter->params.chip));
3318        dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
3319                 adapter->params.vpd.sn, adapter->params.vpd.pn);
3320
3321        /* Firmware Version */
3322        if (!adapter->params.fw_vers)
3323                dev_warn(adapter->pdev_dev, "No firmware loaded\n");
3324        else
3325                dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
3326                         FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
3327                         FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
3328                         FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
3329                         FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
3330
3331        /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
3332         * Firmware, so dev_info() is more appropriate here.)
3333         */
3334        if (!adapter->params.bs_vers)
3335                dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
3336        else
3337                dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
3338                         FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
3339                         FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
3340                         FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
3341                         FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
3342
3343        /* TP Microcode Version */
3344        if (!adapter->params.tp_vers)
3345                dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
3346        else
3347                dev_info(adapter->pdev_dev,
3348                         "TP Microcode version: %u.%u.%u.%u\n",
3349                         FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
3350                         FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
3351                         FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
3352                         FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
3353
3354        /* Expansion ROM version */
3355        if (!adapter->params.er_vers)
3356                dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
3357        else
3358                dev_info(adapter->pdev_dev,
3359                         "Expansion ROM version: %u.%u.%u.%u\n",
3360                         FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
3361                         FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
3362                         FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
3363                         FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
3364
3365        /* Serial Configuration version */
3366        dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n",
3367                 adapter->params.scfg_vers);
3368
3369        /* VPD Version */
3370        dev_info(adapter->pdev_dev, "VPD version: %#x\n",
3371                 adapter->params.vpd_vers);
3372}
3373
3374/**
3375 *      t4_check_fw_version - check if the FW is supported with this driver
3376 *      @adap: the adapter
3377 *
3378 *      Checks if an adapter's FW is compatible with the driver.  Returns 0
3379 *      if there's exact match, a negative error if the version could not be
3380 *      read or there's a major version mismatch
3381 */
3382int t4_check_fw_version(struct adapter *adap)
3383{
3384        int i, ret, major, minor, micro;
3385        int exp_major, exp_minor, exp_micro;
3386        unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3387
3388        ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3389        /* Try multiple times before returning error */
3390        for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3391                ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3392
3393        if (ret)
3394                return ret;
3395
3396        major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3397        minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3398        micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3399
3400        switch (chip_version) {
3401        case CHELSIO_T4:
3402                exp_major = T4FW_MIN_VERSION_MAJOR;
3403                exp_minor = T4FW_MIN_VERSION_MINOR;
3404                exp_micro = T4FW_MIN_VERSION_MICRO;
3405                break;
3406        case CHELSIO_T5:
3407                exp_major = T5FW_MIN_VERSION_MAJOR;
3408                exp_minor = T5FW_MIN_VERSION_MINOR;
3409                exp_micro = T5FW_MIN_VERSION_MICRO;
3410                break;
3411        case CHELSIO_T6:
3412                exp_major = T6FW_MIN_VERSION_MAJOR;
3413                exp_minor = T6FW_MIN_VERSION_MINOR;
3414                exp_micro = T6FW_MIN_VERSION_MICRO;
3415                break;
3416        default:
3417                dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3418                        adap->chip);
3419                return -EINVAL;
3420        }
3421
3422        if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3423            (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3424                dev_err(adap->pdev_dev,
3425                        "Card has firmware version %u.%u.%u, minimum "
3426                        "supported firmware is %u.%u.%u.\n", major, minor,
3427                        micro, exp_major, exp_minor, exp_micro);
3428                return -EFAULT;
3429        }
3430        return 0;
3431}
3432
3433/* Is the given firmware API compatible with the one the driver was compiled
3434 * with?
3435 */
3436static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3437{
3438
3439        /* short circuit if it's the exact same firmware version */
3440        if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3441                return 1;
3442
3443#define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3444        if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3445            SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3446                return 1;
3447#undef SAME_INTF
3448
3449        return 0;
3450}
3451
3452/* The firmware in the filesystem is usable, but should it be installed?
3453 * This routine explains itself in detail if it indicates the filesystem
3454 * firmware should be installed.
3455 */
3456static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3457                                int k, int c)
3458{
3459        const char *reason;
3460
3461        if (!card_fw_usable) {
3462                reason = "incompatible or unusable";
3463                goto install;
3464        }
3465
3466        if (k > c) {
3467                reason = "older than the version supported with this driver";
3468                goto install;
3469        }
3470
3471        return 0;
3472
3473install:
3474        dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3475                "installing firmware %u.%u.%u.%u on card.\n",
3476                FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3477                FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3478                FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3479                FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3480
3481        return 1;
3482}
3483
3484int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3485               const u8 *fw_data, unsigned int fw_size,
3486               struct fw_hdr *card_fw, enum dev_state state,
3487               int *reset)
3488{
3489        int ret, card_fw_usable, fs_fw_usable;
3490        const struct fw_hdr *fs_fw;
3491        const struct fw_hdr *drv_fw;
3492
3493        drv_fw = &fw_info->fw_hdr;
3494
3495        /* Read the header of the firmware on the card */
3496        ret = t4_read_flash(adap, FLASH_FW_START,
3497                            sizeof(*card_fw) / sizeof(uint32_t),
3498                            (uint32_t *)card_fw, 1);
3499        if (ret == 0) {
3500                card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3501        } else {
3502                dev_err(adap->pdev_dev,
3503                        "Unable to read card's firmware header: %d\n", ret);
3504                card_fw_usable = 0;
3505        }
3506
3507        if (fw_data != NULL) {
3508                fs_fw = (const void *)fw_data;
3509                fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3510        } else {
3511                fs_fw = NULL;
3512                fs_fw_usable = 0;
3513        }
3514
3515        if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3516            (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3517                /* Common case: the firmware on the card is an exact match and
3518                 * the filesystem one is an exact match too, or the filesystem
3519                 * one is absent/incompatible.
3520                 */
3521        } else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3522                   should_install_fs_fw(adap, card_fw_usable,
3523                                        be32_to_cpu(fs_fw->fw_ver),
3524                                        be32_to_cpu(card_fw->fw_ver))) {
3525                ret = t4_fw_upgrade(adap, adap->mbox, fw_data,
3526                                    fw_size, 0);
3527                if (ret != 0) {
3528                        dev_err(adap->pdev_dev,
3529                                "failed to install firmware: %d\n", ret);
3530                        goto bye;
3531                }
3532
3533                /* Installed successfully, update the cached header too. */
3534                *card_fw = *fs_fw;
3535                card_fw_usable = 1;
3536                *reset = 0;     /* already reset as part of load_fw */
3537        }
3538
3539        if (!card_fw_usable) {
3540                uint32_t d, c, k;
3541
3542                d = be32_to_cpu(drv_fw->fw_ver);
3543                c = be32_to_cpu(card_fw->fw_ver);
3544                k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3545
3546                dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3547                        "chip state %d, "
3548                        "driver compiled with %d.%d.%d.%d, "
3549                        "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3550                        state,
3551                        FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3552                        FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3553                        FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3554                        FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3555                        FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3556                        FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3557                ret = -EINVAL;
3558                goto bye;
3559        }
3560
3561        /* We're using whatever's on the card and it's known to be good. */
3562        adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3563        adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3564
3565bye:
3566        return ret;
3567}
3568
3569/**
3570 *      t4_flash_erase_sectors - erase a range of flash sectors
3571 *      @adapter: the adapter
3572 *      @start: the first sector to erase
3573 *      @end: the last sector to erase
3574 *
3575 *      Erases the sectors in the given inclusive range.
3576 */
3577static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3578{
3579        int ret = 0;
3580
3581        if (end >= adapter->params.sf_nsec)
3582                return -EINVAL;
3583
3584        while (start <= end) {
3585                if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3586                    (ret = sf1_write(adapter, 4, 0, 1,
3587                                     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3588                    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3589                        dev_err(adapter->pdev_dev,
3590                                "erase of flash sector %d failed, error %d\n",
3591                                start, ret);
3592                        break;
3593                }
3594                start++;
3595        }
3596        t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3597        return ret;
3598}
3599
3600/**
3601 *      t4_flash_cfg_addr - return the address of the flash configuration file
3602 *      @adapter: the adapter
3603 *
3604 *      Return the address within the flash where the Firmware Configuration
3605 *      File is stored.
3606 */
3607unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3608{
3609        if (adapter->params.sf_size == 0x100000)
3610                return FLASH_FPGA_CFG_START;
3611        else
3612                return FLASH_CFG_START;
3613}
3614
3615/* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3616 * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3617 * and emit an error message for mismatched firmware to save our caller the
3618 * effort ...
3619 */
3620static bool t4_fw_matches_chip(const struct adapter *adap,
3621                               const struct fw_hdr *hdr)
3622{
3623        /* The expression below will return FALSE for any unsupported adapter
3624         * which will keep us "honest" in the future ...
3625         */
3626        if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3627            (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3628            (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3629                return true;
3630
3631        dev_err(adap->pdev_dev,
3632                "FW image (%d) is not suitable for this adapter (%d)\n",
3633                hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3634        return false;
3635}
3636
3637/**
3638 *      t4_load_fw - download firmware
3639 *      @adap: the adapter
3640 *      @fw_data: the firmware image to write
3641 *      @size: image size
3642 *
3643 *      Write the supplied firmware image to the card's serial flash.
3644 */
3645int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3646{
3647        u32 csum;
3648        int ret, addr;
3649        unsigned int i;
3650        u8 first_page[SF_PAGE_SIZE];
3651        const __be32 *p = (const __be32 *)fw_data;
3652        const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3653        unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3654        unsigned int fw_start_sec = FLASH_FW_START_SEC;
3655        unsigned int fw_size = FLASH_FW_MAX_SIZE;
3656        unsigned int fw_start = FLASH_FW_START;
3657
3658        if (!size) {
3659                dev_err(adap->pdev_dev, "FW image has no data\n");
3660                return -EINVAL;
3661        }
3662        if (size & 511) {
3663                dev_err(adap->pdev_dev,
3664                        "FW image size not multiple of 512 bytes\n");
3665                return -EINVAL;
3666        }
3667        if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3668                dev_err(adap->pdev_dev,
3669                        "FW image size differs from size in FW header\n");
3670                return -EINVAL;
3671        }
3672        if (size > fw_size) {
3673                dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3674                        fw_size);
3675                return -EFBIG;
3676        }
3677        if (!t4_fw_matches_chip(adap, hdr))
3678                return -EINVAL;
3679
3680        for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3681                csum += be32_to_cpu(p[i]);
3682
3683        if (csum != 0xffffffff) {
3684                dev_err(adap->pdev_dev,
3685                        "corrupted firmware image, checksum %#x\n", csum);
3686                return -EINVAL;
3687        }
3688
3689        i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3690        ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3691        if (ret)
3692                goto out;
3693
3694        /*
3695         * We write the correct version at the end so the driver can see a bad
3696         * version if the FW write fails.  Start by writing a copy of the
3697         * first page with a bad version.
3698         */
3699        memcpy(first_page, fw_data, SF_PAGE_SIZE);
3700        ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3701        ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page);
3702        if (ret)
3703                goto out;
3704
3705        addr = fw_start;
3706        for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3707                addr += SF_PAGE_SIZE;
3708                fw_data += SF_PAGE_SIZE;
3709                ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3710                if (ret)
3711                        goto out;
3712        }
3713
3714        ret = t4_write_flash(adap,
3715                             fw_start + offsetof(struct fw_hdr, fw_ver),
3716                             sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3717out:
3718        if (ret)
3719                dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3720                        ret);
3721        else
3722                ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3723        return ret;
3724}
3725
3726/**
3727 *      t4_phy_fw_ver - return current PHY firmware version
3728 *      @adap: the adapter
3729 *      @phy_fw_ver: return value buffer for PHY firmware version
3730 *
3731 *      Returns the current version of external PHY firmware on the
3732 *      adapter.
3733 */
3734int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3735{
3736        u32 param, val;
3737        int ret;
3738
3739        param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3740                 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3741                 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3742                 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3743        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3744                              &param, &val);
3745        if (ret)
3746                return ret;
3747        *phy_fw_ver = val;
3748        return 0;
3749}
3750
3751/**
3752 *      t4_load_phy_fw - download port PHY firmware
3753 *      @adap: the adapter
3754 *      @win: the PCI-E Memory Window index to use for t4_memory_rw()
3755 *      @phy_fw_version: function to check PHY firmware versions
3756 *      @phy_fw_data: the PHY firmware image to write
3757 *      @phy_fw_size: image size
3758 *
3759 *      Transfer the specified PHY firmware to the adapter.  If a non-NULL
3760 *      @phy_fw_version is supplied, then it will be used to determine if
3761 *      it's necessary to perform the transfer by comparing the version
3762 *      of any existing adapter PHY firmware with that of the passed in
3763 *      PHY firmware image.
3764 *
3765 *      A negative error number will be returned if an error occurs.  If
3766 *      version number support is available and there's no need to upgrade
3767 *      the firmware, 0 will be returned.  If firmware is successfully
3768 *      transferred to the adapter, 1 will be returned.
3769 *
3770 *      NOTE: some adapters only have local RAM to store the PHY firmware.  As
3771 *      a result, a RESET of the adapter would cause that RAM to lose its
3772 *      contents.  Thus, loading PHY firmware on such adapters must happen
3773 *      after any FW_RESET_CMDs ...
3774 */
3775int t4_load_phy_fw(struct adapter *adap, int win,
3776                   int (*phy_fw_version)(const u8 *, size_t),
3777                   const u8 *phy_fw_data, size_t phy_fw_size)
3778{
3779        int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3780        unsigned long mtype = 0, maddr = 0;
3781        u32 param, val;
3782        int ret;
3783
3784        /* If we have version number support, then check to see if the adapter
3785         * already has up-to-date PHY firmware loaded.
3786         */
3787        if (phy_fw_version) {
3788                new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3789                ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3790                if (ret < 0)
3791                        return ret;
3792
3793                if (cur_phy_fw_ver >= new_phy_fw_vers) {
3794                        CH_WARN(adap, "PHY Firmware already up-to-date, "
3795                                "version %#x\n", cur_phy_fw_ver);
3796                        return 0;
3797                }
3798        }
3799
3800        /* Ask the firmware where it wants us to copy the PHY firmware image.
3801         * The size of the file requires a special version of the READ command
3802         * which will pass the file size via the values field in PARAMS_CMD and
3803         * retrieve the return value from firmware and place it in the same
3804         * buffer values
3805         */
3806        param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3807                 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3808                 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3809                 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3810        val = phy_fw_size;
3811        ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3812                                 &param, &val, 1, true);
3813        if (ret < 0)
3814                return ret;
3815        mtype = val >> 8;
3816        maddr = (val & 0xff) << 16;
3817
3818        /* Copy the supplied PHY Firmware image to the adapter memory location
3819         * allocated by the adapter firmware.
3820         */
3821        ret = t4_memory_rw(adap, win, mtype, maddr,
3822                           phy_fw_size, (__be32 *)phy_fw_data,
3823                           T4_MEMORY_WRITE);
3824        if (ret)
3825                return ret;
3826
3827        /* Tell the firmware that the PHY firmware image has been written to
3828         * RAM and it can now start copying it over to the PHYs.  The chip
3829         * firmware will RESET the affected PHYs as part of this operation
3830         * leaving them running the new PHY firmware image.
3831         */
3832        param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3833                 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3834                 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3835                 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3836        ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3837                                    &param, &val, 30000);
3838
3839        /* If we have version number support, then check to see that the new
3840         * firmware got loaded properly.
3841         */
3842        if (phy_fw_version) {
3843                ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3844                if (ret < 0)
3845                        return ret;
3846
3847                if (cur_phy_fw_ver != new_phy_fw_vers) {
3848                        CH_WARN(adap, "PHY Firmware did not update: "
3849                                "version on adapter %#x, "
3850                                "version flashed %#x\n",
3851                                cur_phy_fw_ver, new_phy_fw_vers);
3852                        return -ENXIO;
3853                }
3854        }
3855
3856        return 1;
3857}
3858
3859/**
3860 *      t4_fwcache - firmware cache operation
3861 *      @adap: the adapter
3862 *      @op  : the operation (flush or flush and invalidate)
3863 */
3864int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3865{
3866        struct fw_params_cmd c;
3867
3868        memset(&c, 0, sizeof(c));
3869        c.op_to_vfn =
3870                cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3871                            FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3872                            FW_PARAMS_CMD_PFN_V(adap->pf) |
3873                            FW_PARAMS_CMD_VFN_V(0));
3874        c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3875        c.param[0].mnem =
3876                cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3877                            FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3878        c.param[0].val = cpu_to_be32(op);
3879
3880        return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3881}
3882
3883void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3884                        unsigned int *pif_req_wrptr,
3885                        unsigned int *pif_rsp_wrptr)
3886{
3887        int i, j;
3888        u32 cfg, val, req, rsp;
3889
3890        cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3891        if (cfg & LADBGEN_F)
3892                t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3893
3894        val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3895        req = POLADBGWRPTR_G(val);
3896        rsp = PILADBGWRPTR_G(val);
3897        if (pif_req_wrptr)
3898                *pif_req_wrptr = req;
3899        if (pif_rsp_wrptr)
3900                *pif_rsp_wrptr = rsp;
3901
3902        for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3903                for (j = 0; j < 6; j++) {
3904                        t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3905                                     PILADBGRDPTR_V(rsp));
3906                        *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3907                        *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3908                        req++;
3909                        rsp++;
3910                }
3911                req = (req + 2) & POLADBGRDPTR_M;
3912                rsp = (rsp + 2) & PILADBGRDPTR_M;
3913        }
3914        t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3915}
3916
3917void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3918{
3919        u32 cfg;
3920        int i, j, idx;
3921
3922        cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3923        if (cfg & LADBGEN_F)
3924                t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3925
3926        for (i = 0; i < CIM_MALA_SIZE; i++) {
3927                for (j = 0; j < 5; j++) {
3928                        idx = 8 * i + j;
3929                        t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3930                                     PILADBGRDPTR_V(idx));
3931                        *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3932                        *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3933                }
3934        }
3935        t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3936}
3937
3938void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3939{
3940        unsigned int i, j;
3941
3942        for (i = 0; i < 8; i++) {
3943                u32 *p = la_buf + i;
3944
3945                t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3946                j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3947                t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3948                for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3949                        *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3950        }
3951}
3952
3953/* The ADVERT_MASK is used to mask out all of the Advertised Firmware Port
3954 * Capabilities which we control with separate controls -- see, for instance,
3955 * Pause Frames and Forward Error Correction.  In order to determine what the
3956 * full set of Advertised Port Capabilities are, the base Advertised Port
3957 * Capabilities (masked by ADVERT_MASK) must be combined with the Advertised
3958 * Port Capabilities associated with those other controls.  See
3959 * t4_link_acaps() for how this is done.
3960 */
3961#define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
3962                     FW_PORT_CAP32_ANEG)
3963
3964/**
3965 *      fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3966 *      @caps16: a 16-bit Port Capabilities value
3967 *
3968 *      Returns the equivalent 32-bit Port Capabilities value.
3969 */
3970static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
3971{
3972        fw_port_cap32_t caps32 = 0;
3973
3974        #define CAP16_TO_CAP32(__cap) \
3975                do { \
3976                        if (caps16 & FW_PORT_CAP_##__cap) \
3977                                caps32 |= FW_PORT_CAP32_##__cap; \
3978                } while (0)
3979
3980        CAP16_TO_CAP32(SPEED_100M);
3981        CAP16_TO_CAP32(SPEED_1G);
3982        CAP16_TO_CAP32(SPEED_25G);
3983        CAP16_TO_CAP32(SPEED_10G);
3984        CAP16_TO_CAP32(SPEED_40G);
3985        CAP16_TO_CAP32(SPEED_100G);
3986        CAP16_TO_CAP32(FC_RX);
3987        CAP16_TO_CAP32(FC_TX);
3988        CAP16_TO_CAP32(ANEG);
3989        CAP16_TO_CAP32(FORCE_PAUSE);
3990        CAP16_TO_CAP32(MDIAUTO);
3991        CAP16_TO_CAP32(MDISTRAIGHT);
3992        CAP16_TO_CAP32(FEC_RS);
3993        CAP16_TO_CAP32(FEC_BASER_RS);
3994        CAP16_TO_CAP32(802_3_PAUSE);
3995        CAP16_TO_CAP32(802_3_ASM_DIR);
3996
3997        #undef CAP16_TO_CAP32
3998
3999        return caps32;
4000}
4001
4002/**
4003 *      fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
4004 *      @caps32: a 32-bit Port Capabilities value
4005 *
4006 *      Returns the equivalent 16-bit Port Capabilities value.  Note that
4007 *      not all 32-bit Port Capabilities can be represented in the 16-bit
4008 *      Port Capabilities and some fields/values may not make it.
4009 */
4010static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
4011{
4012        fw_port_cap16_t caps16 = 0;
4013
4014        #define CAP32_TO_CAP16(__cap) \
4015                do { \
4016                        if (caps32 & FW_PORT_CAP32_##__cap) \
4017                                caps16 |= FW_PORT_CAP_##__cap; \
4018                } while (0)
4019
4020        CAP32_TO_CAP16(SPEED_100M);
4021        CAP32_TO_CAP16(SPEED_1G);
4022        CAP32_TO_CAP16(SPEED_10G);
4023        CAP32_TO_CAP16(SPEED_25G);
4024        CAP32_TO_CAP16(SPEED_40G);
4025        CAP32_TO_CAP16(SPEED_100G);
4026        CAP32_TO_CAP16(FC_RX);
4027        CAP32_TO_CAP16(FC_TX);
4028        CAP32_TO_CAP16(802_3_PAUSE);
4029        CAP32_TO_CAP16(802_3_ASM_DIR);
4030        CAP32_TO_CAP16(ANEG);
4031        CAP32_TO_CAP16(FORCE_PAUSE);
4032        CAP32_TO_CAP16(MDIAUTO);
4033        CAP32_TO_CAP16(MDISTRAIGHT);
4034        CAP32_TO_CAP16(FEC_RS);
4035        CAP32_TO_CAP16(FEC_BASER_RS);
4036
4037        #undef CAP32_TO_CAP16
4038
4039        return caps16;
4040}
4041
4042/* Translate Firmware Port Capabilities Pause specification to Common Code */
4043static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
4044{
4045        enum cc_pause cc_pause = 0;
4046
4047        if (fw_pause & FW_PORT_CAP32_FC_RX)
4048                cc_pause |= PAUSE_RX;
4049        if (fw_pause & FW_PORT_CAP32_FC_TX)
4050                cc_pause |= PAUSE_TX;
4051
4052        return cc_pause;
4053}
4054
4055/* Translate Common Code Pause specification into Firmware Port Capabilities */
4056static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
4057{
4058        /* Translate orthogonal RX/TX Pause Controls for L1 Configure
4059         * commands, etc.
4060         */
4061        fw_port_cap32_t fw_pause = 0;
4062
4063        if (cc_pause & PAUSE_RX)
4064                fw_pause |= FW_PORT_CAP32_FC_RX;
4065        if (cc_pause & PAUSE_TX)
4066                fw_pause |= FW_PORT_CAP32_FC_TX;
4067        if (!(cc_pause & PAUSE_AUTONEG))
4068                fw_pause |= FW_PORT_CAP32_FORCE_PAUSE;
4069
4070        /* Translate orthogonal Pause controls into IEEE 802.3 Pause,
4071         * Asymmetrical Pause for use in reporting to upper layer OS code, etc.
4072         * Note that these bits are ignored in L1 Configure commands.
4073         */
4074        if (cc_pause & PAUSE_RX) {
4075                if (cc_pause & PAUSE_TX)
4076                        fw_pause |= FW_PORT_CAP32_802_3_PAUSE;
4077                else
4078                        fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR |
4079                                    FW_PORT_CAP32_802_3_PAUSE;
4080        } else if (cc_pause & PAUSE_TX) {
4081                fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR;
4082        }
4083
4084        return fw_pause;
4085}
4086
4087/* Translate Firmware Forward Error Correction specification to Common Code */
4088static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
4089{
4090        enum cc_fec cc_fec = 0;
4091
4092        if (fw_fec & FW_PORT_CAP32_FEC_RS)
4093                cc_fec |= FEC_RS;
4094        if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
4095                cc_fec |= FEC_BASER_RS;
4096
4097        return cc_fec;
4098}
4099
4100/* Translate Common Code Forward Error Correction specification to Firmware */
4101static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
4102{
4103        fw_port_cap32_t fw_fec = 0;
4104
4105        if (cc_fec & FEC_RS)
4106                fw_fec |= FW_PORT_CAP32_FEC_RS;
4107        if (cc_fec & FEC_BASER_RS)
4108                fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
4109
4110        return fw_fec;
4111}
4112
4113/**
4114 *      t4_link_acaps - compute Link Advertised Port Capabilities
4115 *      @adapter: the adapter
4116 *      @port: the Port ID
4117 *      @lc: the Port's Link Configuration
4118 *
4119 *      Synthesize the Advertised Port Capabilities we'll be using based on
4120 *      the base Advertised Port Capabilities (which have been filtered by
4121 *      ADVERT_MASK) plus the individual controls for things like Pause
4122 *      Frames, Forward Error Correction, MDI, etc.
4123 */
4124fw_port_cap32_t t4_link_acaps(struct adapter *adapter, unsigned int port,
4125                              struct link_config *lc)
4126{
4127        fw_port_cap32_t fw_fc, fw_fec, acaps;
4128        unsigned int fw_mdi;
4129        char cc_fec;
4130
4131        fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps);
4132
4133        /* Convert driver coding of Pause Frame Flow Control settings into the
4134         * Firmware's API.
4135         */
4136        fw_fc = cc_to_fwcap_pause(lc->requested_fc);
4137
4138        /* Convert Common Code Forward Error Control settings into the
4139         * Firmware's API.  If the current Requested FEC has "Automatic"
4140         * (IEEE 802.3) specified, then we use whatever the Firmware
4141         * sent us as part of its IEEE 802.3-based interpretation of
4142         * the Transceiver Module EPROM FEC parameters.  Otherwise we
4143         * use whatever is in the current Requested FEC settings.
4144         */
4145        if (lc->requested_fec & FEC_AUTO)
4146                cc_fec = fwcap_to_cc_fec(lc->def_acaps);
4147        else
4148                cc_fec = lc->requested_fec;
4149        fw_fec = cc_to_fwcap_fec(cc_fec);
4150
4151        /* Figure out what our Requested Port Capabilities are going to be.
4152         * Note parallel structure in t4_handle_get_port_info() and
4153         * init_link_config().
4154         */
4155        if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
4156                acaps = lc->acaps | fw_fc | fw_fec;
4157                lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4158                lc->fec = cc_fec;
4159        } else if (lc->autoneg == AUTONEG_DISABLE) {
4160                acaps = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
4161                lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4162                lc->fec = cc_fec;
4163        } else {
4164                acaps = lc->acaps | fw_fc | fw_fec | fw_mdi;
4165        }
4166
4167        /* Some Requested Port Capabilities are trivially wrong if they exceed
4168         * the Physical Port Capabilities.  We can check that here and provide
4169         * moderately useful feedback in the system log.
4170         *
4171         * Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so
4172         * we need to exclude this from this check in order to maintain
4173         * compatibility ...
4174         */
4175        if ((acaps & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) {
4176                dev_err(adapter->pdev_dev, "Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n",
4177                        acaps, lc->pcaps);
4178                return -EINVAL;
4179        }
4180
4181        return acaps;
4182}
4183
4184/**
4185 *      t4_link_l1cfg_core - apply link configuration to MAC/PHY
4186 *      @adapter: the adapter
4187 *      @mbox: the Firmware Mailbox to use
4188 *      @port: the Port ID
4189 *      @lc: the Port's Link Configuration
4190 *      @sleep_ok: if true we may sleep while awaiting command completion
4191 *      @timeout: time to wait for command to finish before timing out
4192 *              (negative implies @sleep_ok=false)
4193 *
4194 *      Set up a port's MAC and PHY according to a desired link configuration.
4195 *      - If the PHY can auto-negotiate first decide what to advertise, then
4196 *        enable/disable auto-negotiation as desired, and reset.
4197 *      - If the PHY does not auto-negotiate just reset it.
4198 *      - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
4199 *        otherwise do it later based on the outcome of auto-negotiation.
4200 */
4201int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox,
4202                       unsigned int port, struct link_config *lc,
4203                       u8 sleep_ok, int timeout)
4204{
4205        unsigned int fw_caps = adapter->params.fw_caps_support;
4206        struct fw_port_cmd cmd;
4207        fw_port_cap32_t rcap;
4208        int ret;
4209
4210        if (!(lc->pcaps & FW_PORT_CAP32_ANEG) &&
4211            lc->autoneg == AUTONEG_ENABLE) {
4212                return -EINVAL;
4213        }
4214
4215        /* Compute our Requested Port Capabilities and send that on to the
4216         * Firmware.
4217         */
4218        rcap = t4_link_acaps(adapter, port, lc);
4219        memset(&cmd, 0, sizeof(cmd));
4220        cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4221                                       FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4222                                       FW_PORT_CMD_PORTID_V(port));
4223        cmd.action_to_len16 =
4224                cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4225                                                 ? FW_PORT_ACTION_L1_CFG
4226                                                 : FW_PORT_ACTION_L1_CFG32) |
4227                                                 FW_LEN16(cmd));
4228        if (fw_caps == FW_CAPS16)
4229                cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4230        else
4231                cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4232
4233        ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL,
4234                                      sleep_ok, timeout);
4235
4236        /* Unfortunately, even if the Requested Port Capabilities "fit" within
4237         * the Physical Port Capabilities, some combinations of features may
4238         * still not be legal.  For example, 40Gb/s and Reed-Solomon Forward
4239         * Error Correction.  So if the Firmware rejects the L1 Configure
4240         * request, flag that here.
4241         */
4242        if (ret) {
4243                dev_err(adapter->pdev_dev,
4244                        "Requested Port Capabilities %#x rejected, error %d\n",
4245                        rcap, -ret);
4246                return ret;
4247        }
4248        return 0;
4249}
4250
4251/**
4252 *      t4_restart_aneg - restart autonegotiation
4253 *      @adap: the adapter
4254 *      @mbox: mbox to use for the FW command
4255 *      @port: the port id
4256 *
4257 *      Restarts autonegotiation for the selected port.
4258 */
4259int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4260{
4261        unsigned int fw_caps = adap->params.fw_caps_support;
4262        struct fw_port_cmd c;
4263
4264        memset(&c, 0, sizeof(c));
4265        c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4266                                     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4267                                     FW_PORT_CMD_PORTID_V(port));
4268        c.action_to_len16 =
4269                cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4270                                                 ? FW_PORT_ACTION_L1_CFG
4271                                                 : FW_PORT_ACTION_L1_CFG32) |
4272                            FW_LEN16(c));
4273        if (fw_caps == FW_CAPS16)
4274                c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
4275        else
4276                c.u.l1cfg32.rcap32 = cpu_to_be32(FW_PORT_CAP32_ANEG);
4277        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4278}
4279
4280typedef void (*int_handler_t)(struct adapter *adap);
4281
4282struct intr_info {
4283        unsigned int mask;       /* bits to check in interrupt status */
4284        const char *msg;         /* message to print or NULL */
4285        short stat_idx;          /* stat counter to increment or -1 */
4286        unsigned short fatal;    /* whether the condition reported is fatal */
4287        int_handler_t int_handler; /* platform-specific int handler */
4288};
4289
4290/**
4291 *      t4_handle_intr_status - table driven interrupt handler
4292 *      @adapter: the adapter that generated the interrupt
4293 *      @reg: the interrupt status register to process
4294 *      @acts: table of interrupt actions
4295 *
4296 *      A table driven interrupt handler that applies a set of masks to an
4297 *      interrupt status word and performs the corresponding actions if the
4298 *      interrupts described by the mask have occurred.  The actions include
4299 *      optionally emitting a warning or alert message.  The table is terminated
4300 *      by an entry specifying mask 0.  Returns the number of fatal interrupt
4301 *      conditions.
4302 */
4303static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
4304                                 const struct intr_info *acts)
4305{
4306        int fatal = 0;
4307        unsigned int mask = 0;
4308        unsigned int status = t4_read_reg(adapter, reg);
4309
4310        for ( ; acts->mask; ++acts) {
4311                if (!(status & acts->mask))
4312                        continue;
4313                if (acts->fatal) {
4314                        fatal++;
4315                        dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4316                                  status & acts->mask);
4317                } else if (acts->msg && printk_ratelimit())
4318                        dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4319                                 status & acts->mask);
4320                if (acts->int_handler)
4321                        acts->int_handler(adapter);
4322                mask |= acts->mask;
4323        }
4324        status &= mask;
4325        if (status)                           /* clear processed interrupts */
4326                t4_write_reg(adapter, reg, status);
4327        return fatal;
4328}
4329
4330/*
4331 * Interrupt handler for the PCIE module.
4332 */
4333static void pcie_intr_handler(struct adapter *adapter)
4334{
4335        static const struct intr_info sysbus_intr_info[] = {
4336                { RNPP_F, "RXNP array parity error", -1, 1 },
4337                { RPCP_F, "RXPC array parity error", -1, 1 },
4338                { RCIP_F, "RXCIF array parity error", -1, 1 },
4339                { RCCP_F, "Rx completions control array parity error", -1, 1 },
4340                { RFTP_F, "RXFT array parity error", -1, 1 },
4341                { 0 }
4342        };
4343        static const struct intr_info pcie_port_intr_info[] = {
4344                { TPCP_F, "TXPC array parity error", -1, 1 },
4345                { TNPP_F, "TXNP array parity error", -1, 1 },
4346                { TFTP_F, "TXFT array parity error", -1, 1 },
4347                { TCAP_F, "TXCA array parity error", -1, 1 },
4348                { TCIP_F, "TXCIF array parity error", -1, 1 },
4349                { RCAP_F, "RXCA array parity error", -1, 1 },
4350                { OTDD_F, "outbound request TLP discarded", -1, 1 },
4351                { RDPE_F, "Rx data parity error", -1, 1 },
4352                { TDUE_F, "Tx uncorrectable data error", -1, 1 },
4353                { 0 }
4354        };
4355        static const struct intr_info pcie_intr_info[] = {
4356                { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
4357                { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
4358                { MSIDATAPERR_F, "MSI data parity error", -1, 1 },
4359                { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4360                { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4361                { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4362                { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4363                { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
4364                { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
4365                { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4366                { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
4367                { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4368                { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4369                { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
4370                { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4371                { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4372                { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
4373                { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4374                { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4375                { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4376                { FIDPERR_F, "PCI FID parity error", -1, 1 },
4377                { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
4378                { MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
4379                { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4380                { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
4381                { RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
4382                { RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
4383                { PCIESINT_F, "PCI core secondary fault", -1, 1 },
4384                { PCIEPINT_F, "PCI core primary fault", -1, 1 },
4385                { UNXSPLCPLERR_F, "PCI unexpected split completion error",
4386                  -1, 0 },
4387                { 0 }
4388        };
4389
4390        static struct intr_info t5_pcie_intr_info[] = {
4391                { MSTGRPPERR_F, "Master Response Read Queue parity error",
4392                  -1, 1 },
4393                { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
4394                { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
4395                { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4396                { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4397                { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4398                { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4399                { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
4400                  -1, 1 },
4401                { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
4402                  -1, 1 },
4403                { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4404                { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
4405                { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4406                { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4407                { DREQWRPERR_F, "PCI DMA channel write request parity error",
4408                  -1, 1 },
4409                { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4410                { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4411                { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
4412                { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4413                { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4414                { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4415                { FIDPERR_F, "PCI FID parity error", -1, 1 },
4416                { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
4417                { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
4418                { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4419                { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
4420                  -1, 1 },
4421                { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
4422                  -1, 1 },
4423                { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
4424                { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
4425                { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4426                { READRSPERR_F, "Outbound read error", -1, 0 },
4427                { 0 }
4428        };
4429
4430        int fat;
4431
4432        if (is_t4(adapter->params.chip))
4433                fat = t4_handle_intr_status(adapter,
4434                                PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
4435                                sysbus_intr_info) +
4436                        t4_handle_intr_status(adapter,
4437                                        PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
4438                                        pcie_port_intr_info) +
4439                        t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4440                                              pcie_intr_info);
4441        else
4442                fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4443                                            t5_pcie_intr_info);
4444
4445        if (fat)
4446                t4_fatal_err(adapter);
4447}
4448
4449/*
4450 * TP interrupt handler.
4451 */
4452static void tp_intr_handler(struct adapter *adapter)
4453{
4454        static const struct intr_info tp_intr_info[] = {
4455                { 0x3fffffff, "TP parity error", -1, 1 },
4456                { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
4457                { 0 }
4458        };
4459
4460        if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
4461                t4_fatal_err(adapter);
4462}
4463
4464/*
4465 * SGE interrupt handler.
4466 */
4467static void sge_intr_handler(struct adapter *adapter)
4468{
4469        u32 v = 0, perr;
4470        u32 err;
4471
4472        static const struct intr_info sge_intr_info[] = {
4473                { ERR_CPL_EXCEED_IQE_SIZE_F,
4474                  "SGE received CPL exceeding IQE size", -1, 1 },
4475                { ERR_INVALID_CIDX_INC_F,
4476                  "SGE GTS CIDX increment too large", -1, 0 },
4477                { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
4478                { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
4479                { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
4480                  "SGE IQID > 1023 received CPL for FL", -1, 0 },
4481                { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
4482                  0 },
4483                { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
4484                  0 },
4485                { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
4486                  0 },
4487                { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
4488                  0 },
4489                { ERR_ING_CTXT_PRIO_F,
4490                  "SGE too many priority ingress contexts", -1, 0 },
4491                { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
4492                { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
4493                { 0 }
4494        };
4495
4496        static struct intr_info t4t5_sge_intr_info[] = {
4497                { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
4498                { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
4499                { ERR_EGR_CTXT_PRIO_F,
4500                  "SGE too many priority egress contexts", -1, 0 },
4501                { 0 }
4502        };
4503
4504        perr = t4_read_reg(adapter, SGE_INT_CAUSE1_A);
4505        if (perr) {
4506                v |= perr;
4507                dev_alert(adapter->pdev_dev, "SGE Cause1 Parity Error %#x\n",
4508                          perr);
4509        }
4510
4511        perr = t4_read_reg(adapter, SGE_INT_CAUSE2_A);
4512        if (perr) {
4513                v |= perr;
4514                dev_alert(adapter->pdev_dev, "SGE Cause2 Parity Error %#x\n",
4515                          perr);
4516        }
4517
4518        if (CHELSIO_CHIP_VERSION(adapter->params.chip) >= CHELSIO_T5) {
4519                perr = t4_read_reg(adapter, SGE_INT_CAUSE5_A);
4520                /* Parity error (CRC) for err_T_RxCRC is trivial, ignore it */
4521                perr &= ~ERR_T_RXCRC_F;
4522                if (perr) {
4523                        v |= perr;
4524                        dev_alert(adapter->pdev_dev,
4525                                  "SGE Cause5 Parity Error %#x\n", perr);
4526                }
4527        }
4528
4529        v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
4530        if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4531                v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
4532                                           t4t5_sge_intr_info);
4533
4534        err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
4535        if (err & ERROR_QID_VALID_F) {
4536                dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
4537                        ERROR_QID_G(err));
4538                if (err & UNCAPTURED_ERROR_F)
4539                        dev_err(adapter->pdev_dev,
4540                                "SGE UNCAPTURED_ERROR set (clearing)\n");
4541                t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
4542                             UNCAPTURED_ERROR_F);
4543        }
4544
4545        if (v != 0)
4546                t4_fatal_err(adapter);
4547}
4548
4549#define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4550                      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4551#define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4552                      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4553
4554/*
4555 * CIM interrupt handler.
4556 */
4557static void cim_intr_handler(struct adapter *adapter)
4558{
4559        static const struct intr_info cim_intr_info[] = {
4560                { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
4561                { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4562                { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4563                { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
4564                { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
4565                { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
4566                { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
4567                { TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 },
4568                { 0 }
4569        };
4570        static const struct intr_info cim_upintr_info[] = {
4571                { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
4572                { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
4573                { ILLWRINT_F, "CIM illegal write", -1, 1 },
4574                { ILLRDINT_F, "CIM illegal read", -1, 1 },
4575                { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
4576                { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
4577                { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
4578                { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
4579                { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
4580                { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
4581                { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
4582                { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
4583                { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
4584                { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
4585                { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
4586                { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
4587                { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
4588                { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
4589                { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
4590                { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
4591                { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
4592                { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
4593                { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4594                { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4595                { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4596                { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4597                { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4598                { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4599                { 0 }
4600        };
4601
4602        u32 val, fw_err;
4603        int fat;
4604
4605        fw_err = t4_read_reg(adapter, PCIE_FW_A);
4606        if (fw_err & PCIE_FW_ERR_F)
4607                t4_report_fw_error(adapter);
4608
4609        /* When the Firmware detects an internal error which normally
4610         * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt
4611         * in order to make sure the Host sees the Firmware Crash.  So
4612         * if we have a Timer0 interrupt and don't see a Firmware Crash,
4613         * ignore the Timer0 interrupt.
4614         */
4615
4616        val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A);
4617        if (val & TIMER0INT_F)
4618                if (!(fw_err & PCIE_FW_ERR_F) ||
4619                    (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH))
4620                        t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A,
4621                                     TIMER0INT_F);
4622
4623        fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4624                                    cim_intr_info) +
4625              t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4626                                    cim_upintr_info);
4627        if (fat)
4628                t4_fatal_err(adapter);
4629}
4630
4631/*
4632 * ULP RX interrupt handler.
4633 */
4634static void ulprx_intr_handler(struct adapter *adapter)
4635{
4636        static const struct intr_info ulprx_intr_info[] = {
4637                { 0x1800000, "ULPRX context error", -1, 1 },
4638                { 0x7fffff, "ULPRX parity error", -1, 1 },
4639                { 0 }
4640        };
4641
4642        if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4643                t4_fatal_err(adapter);
4644}
4645
4646/*
4647 * ULP TX interrupt handler.
4648 */
4649static void ulptx_intr_handler(struct adapter *adapter)
4650{
4651        static const struct intr_info ulptx_intr_info[] = {
4652                { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4653                  0 },
4654                { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4655                  0 },
4656                { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4657                  0 },
4658                { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4659                  0 },
4660                { 0xfffffff, "ULPTX parity error", -1, 1 },
4661                { 0 }
4662        };
4663
4664        if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4665                t4_fatal_err(adapter);
4666}
4667
4668/*
4669 * PM TX interrupt handler.
4670 */
4671static void pmtx_intr_handler(struct adapter *adapter)
4672{
4673        static const struct intr_info pmtx_intr_info[] = {
4674                { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4675                { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4676                { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4677                { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4678                { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4679                { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4680                { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4681                  -1, 1 },
4682                { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4683                { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4684                { 0 }
4685        };
4686
4687        if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4688                t4_fatal_err(adapter);
4689}
4690
4691/*
4692 * PM RX interrupt handler.
4693 */
4694static void pmrx_intr_handler(struct adapter *adapter)
4695{
4696        static const struct intr_info pmrx_intr_info[] = {
4697                { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4698                { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4699                { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4700                { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4701                  -1, 1 },
4702                { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4703                { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4704                { 0 }
4705        };
4706
4707        if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4708                t4_fatal_err(adapter);
4709}
4710
4711/*
4712 * CPL switch interrupt handler.
4713 */
4714static void cplsw_intr_handler(struct adapter *adapter)
4715{
4716        static const struct intr_info cplsw_intr_info[] = {
4717                { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4718                { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4719                { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4720                { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4721                { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4722                { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4723                { 0 }
4724        };
4725
4726        if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4727                t4_fatal_err(adapter);
4728}
4729
4730/*
4731 * LE interrupt handler.
4732 */
4733static void le_intr_handler(struct adapter *adap)
4734{
4735        enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4736        static const struct intr_info le_intr_info[] = {
4737                { LIPMISS_F, "LE LIP miss", -1, 0 },
4738                { LIP0_F, "LE 0 LIP error", -1, 0 },
4739                { PARITYERR_F, "LE parity error", -1, 1 },
4740                { UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4741                { REQQPARERR_F, "LE request queue parity error", -1, 1 },
4742                { 0 }
4743        };
4744
4745        static struct intr_info t6_le_intr_info[] = {
4746                { T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4747                { T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4748                { TCAMINTPERR_F, "LE parity error", -1, 1 },
4749                { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4750                { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4751                { 0 }
4752        };
4753
4754        if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4755                                  (chip <= CHELSIO_T5) ?
4756                                  le_intr_info : t6_le_intr_info))
4757                t4_fatal_err(adap);
4758}
4759
4760/*
4761 * MPS interrupt handler.
4762 */
4763static void mps_intr_handler(struct adapter *adapter)
4764{
4765        static const struct intr_info mps_rx_intr_info[] = {
4766                { 0xffffff, "MPS Rx parity error", -1, 1 },
4767                { 0 }
4768        };
4769        static const struct intr_info mps_tx_intr_info[] = {
4770                { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4771                { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4772                { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4773                  -1, 1 },
4774                { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4775                  -1, 1 },
4776                { BUBBLE_F, "MPS Tx underflow", -1, 1 },
4777                { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4778                { FRMERR_F, "MPS Tx framing error", -1, 1 },
4779                { 0 }
4780        };
4781        static const struct intr_info t6_mps_tx_intr_info[] = {
4782                { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4783                { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4784                { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4785                  -1, 1 },
4786                { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4787                  -1, 1 },
4788                /* MPS Tx Bubble is normal for T6 */
4789                { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4790                { FRMERR_F, "MPS Tx framing error", -1, 1 },
4791                { 0 }
4792        };
4793        static const struct intr_info mps_trc_intr_info[] = {
4794                { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4795                { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4796                  -1, 1 },
4797                { MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4798                { 0 }
4799        };
4800        static const struct intr_info mps_stat_sram_intr_info[] = {
4801                { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4802                { 0 }
4803        };
4804        static const struct intr_info mps_stat_tx_intr_info[] = {
4805                { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4806                { 0 }
4807        };
4808        static const struct intr_info mps_stat_rx_intr_info[] = {
4809                { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4810                { 0 }
4811        };
4812        static const struct intr_info mps_cls_intr_info[] = {
4813                { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4814                { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4815                { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4816                { 0 }
4817        };
4818
4819        int fat;
4820
4821        fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4822                                    mps_rx_intr_info) +
4823              t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4824                                    is_t6(adapter->params.chip)
4825                                    ? t6_mps_tx_intr_info
4826                                    : mps_tx_intr_info) +
4827              t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4828                                    mps_trc_intr_info) +
4829              t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4830                                    mps_stat_sram_intr_info) +
4831              t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4832                                    mps_stat_tx_intr_info) +
4833              t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4834                                    mps_stat_rx_intr_info) +
4835              t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4836                                    mps_cls_intr_info);
4837
4838        t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4839        t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4840        if (fat)
4841                t4_fatal_err(adapter);
4842}
4843
4844#define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4845                      ECC_UE_INT_CAUSE_F)
4846
4847/*
4848 * EDC/MC interrupt handler.
4849 */
4850static void mem_intr_handler(struct adapter *adapter, int idx)
4851{
4852        static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4853
4854        unsigned int addr, cnt_addr, v;
4855
4856        if (idx <= MEM_EDC1) {
4857                addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4858                cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4859        } else if (idx == MEM_MC) {
4860                if (is_t4(adapter->params.chip)) {
4861                        addr = MC_INT_CAUSE_A;
4862                        cnt_addr = MC_ECC_STATUS_A;
4863                } else {
4864                        addr = MC_P_INT_CAUSE_A;
4865                        cnt_addr = MC_P_ECC_STATUS_A;
4866                }
4867        } else {
4868                addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4869                cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4870        }
4871
4872        v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4873        if (v & PERR_INT_CAUSE_F)
4874                dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4875                          name[idx]);
4876        if (v & ECC_CE_INT_CAUSE_F) {
4877                u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4878
4879                t4_edc_err_read(adapter, idx);
4880
4881                t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4882                if (printk_ratelimit())
4883                        dev_warn(adapter->pdev_dev,
4884                                 "%u %s correctable ECC data error%s\n",
4885                                 cnt, name[idx], cnt > 1 ? "s" : "");
4886        }
4887        if (v & ECC_UE_INT_CAUSE_F)
4888                dev_alert(adapter->pdev_dev,
4889                          "%s uncorrectable ECC data error\n", name[idx]);
4890
4891        t4_write_reg(adapter, addr, v);
4892        if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4893                t4_fatal_err(adapter);
4894}
4895
4896/*
4897 * MA interrupt handler.
4898 */
4899static void ma_intr_handler(struct adapter *adap)
4900{
4901        u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4902
4903        if (status & MEM_PERR_INT_CAUSE_F) {
4904                dev_alert(adap->pdev_dev,
4905                          "MA parity error, parity status %#x\n",
4906                          t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4907                if (is_t5(adap->params.chip))
4908                        dev_alert(adap->pdev_dev,
4909                                  "MA parity error, parity status %#x\n",
4910                                  t4_read_reg(adap,
4911                                              MA_PARITY_ERROR_STATUS2_A));
4912        }
4913        if (status & MEM_WRAP_INT_CAUSE_F) {
4914                v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4915                dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4916                          "client %u to address %#x\n",
4917                          MEM_WRAP_CLIENT_NUM_G(v),
4918                          MEM_WRAP_ADDRESS_G(v) << 4);
4919        }
4920        t4_write_reg(adap, MA_INT_CAUSE_A, status);
4921        t4_fatal_err(adap);
4922}
4923
4924/*
4925 * SMB interrupt handler.
4926 */
4927static void smb_intr_handler(struct adapter *adap)
4928{
4929        static const struct intr_info smb_intr_info[] = {
4930                { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4931                { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4932                { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4933                { 0 }
4934        };
4935
4936        if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4937                t4_fatal_err(adap);
4938}
4939
4940/*
4941 * NC-SI interrupt handler.
4942 */
4943static void ncsi_intr_handler(struct adapter *adap)
4944{
4945        static const struct intr_info ncsi_intr_info[] = {
4946                { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4947                { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4948                { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4949                { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4950                { 0 }
4951        };
4952
4953        if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4954                t4_fatal_err(adap);
4955}
4956
4957/*
4958 * XGMAC interrupt handler.
4959 */
4960static void xgmac_intr_handler(struct adapter *adap, int port)
4961{
4962        u32 v, int_cause_reg;
4963
4964        if (is_t4(adap->params.chip))
4965                int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4966        else
4967                int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4968
4969        v = t4_read_reg(adap, int_cause_reg);
4970
4971        v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4972        if (!v)
4973                return;
4974
4975        if (v & TXFIFO_PRTY_ERR_F)
4976                dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4977                          port);
4978        if (v & RXFIFO_PRTY_ERR_F)
4979                dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4980                          port);
4981        t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4982        t4_fatal_err(adap);
4983}
4984
4985/*
4986 * PL interrupt handler.
4987 */
4988static void pl_intr_handler(struct adapter *adap)
4989{
4990        static const struct intr_info pl_intr_info[] = {
4991                { FATALPERR_F, "T4 fatal parity error", -1, 1 },
4992                { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4993                { 0 }
4994        };
4995
4996        if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4997                t4_fatal_err(adap);
4998}
4999
5000#define PF_INTR_MASK (PFSW_F)
5001#define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
5002                EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
5003                CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F)
5004
5005/**
5006 *      t4_slow_intr_handler - control path interrupt handler
5007 *      @adapter: the adapter
5008 *
5009 *      T4 interrupt handler for non-data global interrupt events, e.g., errors.
5010 *      The designation 'slow' is because it involves register reads, while
5011 *      data interrupts typically don't involve any MMIOs.
5012 */
5013int t4_slow_intr_handler(struct adapter *adapter)
5014{
5015        /* There are rare cases where a PL_INT_CAUSE bit may end up getting
5016         * set when the corresponding PL_INT_ENABLE bit isn't set.  It's
5017         * easiest just to mask that case here.
5018         */
5019        u32 raw_cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
5020        u32 enable = t4_read_reg(adapter, PL_INT_ENABLE_A);
5021        u32 cause = raw_cause & enable;
5022
5023        if (!(cause & GLBL_INTR_MASK))
5024                return 0;
5025        if (cause & CIM_F)
5026                cim_intr_handler(adapter);
5027        if (cause & MPS_F)
5028                mps_intr_handler(adapter);
5029        if (cause & NCSI_F)
5030                ncsi_intr_handler(adapter);
5031        if (cause & PL_F)
5032                pl_intr_handler(adapter);
5033        if (cause & SMB_F)
5034                smb_intr_handler(adapter);
5035        if (cause & XGMAC0_F)
5036                xgmac_intr_handler(adapter, 0);
5037        if (cause & XGMAC1_F)
5038                xgmac_intr_handler(adapter, 1);
5039        if (cause & XGMAC_KR0_F)
5040                xgmac_intr_handler(adapter, 2);
5041        if (cause & XGMAC_KR1_F)
5042                xgmac_intr_handler(adapter, 3);
5043        if (cause & PCIE_F)
5044                pcie_intr_handler(adapter);
5045        if (cause & MC_F)
5046                mem_intr_handler(adapter, MEM_MC);
5047        if (is_t5(adapter->params.chip) && (cause & MC1_F))
5048                mem_intr_handler(adapter, MEM_MC1);
5049        if (cause & EDC0_F)
5050                mem_intr_handler(adapter, MEM_EDC0);
5051        if (cause & EDC1_F)
5052                mem_intr_handler(adapter, MEM_EDC1);
5053        if (cause & LE_F)
5054                le_intr_handler(adapter);
5055        if (cause & TP_F)
5056                tp_intr_handler(adapter);
5057        if (cause & MA_F)
5058                ma_intr_handler(adapter);
5059        if (cause & PM_TX_F)
5060                pmtx_intr_handler(adapter);
5061        if (cause & PM_RX_F)
5062                pmrx_intr_handler(adapter);
5063        if (cause & ULP_RX_F)
5064                ulprx_intr_handler(adapter);
5065        if (cause & CPL_SWITCH_F)
5066                cplsw_intr_handler(adapter);
5067        if (cause & SGE_F)
5068                sge_intr_handler(adapter);
5069        if (cause & ULP_TX_F)
5070                ulptx_intr_handler(adapter);
5071
5072        /* Clear the interrupts just processed for which we are the master. */
5073        t4_write_reg(adapter, PL_INT_CAUSE_A, raw_cause & GLBL_INTR_MASK);
5074        (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
5075        return 1;
5076}
5077
5078/**
5079 *      t4_intr_enable - enable interrupts
5080 *      @adapter: the adapter whose interrupts should be enabled
5081 *
5082 *      Enable PF-specific interrupts for the calling function and the top-level
5083 *      interrupt concentrator for global interrupts.  Interrupts are already
5084 *      enabled at each module, here we just enable the roots of the interrupt
5085 *      hierarchies.
5086 *
5087 *      Note: this function should be called only when the driver manages
5088 *      non PF-specific interrupts from the various HW modules.  Only one PCI
5089 *      function at a time should be doing this.
5090 */
5091void t4_intr_enable(struct adapter *adapter)
5092{
5093        u32 val = 0;
5094        u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5095        u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5096                        SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5097
5098        if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
5099                val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
5100        t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
5101                     ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
5102                     ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
5103                     ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
5104                     ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
5105                     ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
5106                     DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
5107        t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
5108        t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
5109}
5110
5111/**
5112 *      t4_intr_disable - disable interrupts
5113 *      @adapter: the adapter whose interrupts should be disabled
5114 *
5115 *      Disable interrupts.  We only disable the top-level interrupt
5116 *      concentrators.  The caller must be a PCI function managing global
5117 *      interrupts.
5118 */
5119void t4_intr_disable(struct adapter *adapter)
5120{
5121        u32 whoami, pf;
5122
5123        if (pci_channel_offline(adapter->pdev))
5124                return;
5125
5126        whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5127        pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5128                        SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5129
5130        t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
5131        t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
5132}
5133
5134unsigned int t4_chip_rss_size(struct adapter *adap)
5135{
5136        if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
5137                return RSS_NENTRIES;
5138        else
5139                return T6_RSS_NENTRIES;
5140}
5141
5142/**
5143 *      t4_config_rss_range - configure a portion of the RSS mapping table
5144 *      @adapter: the adapter
5145 *      @mbox: mbox to use for the FW command
5146 *      @viid: virtual interface whose RSS subtable is to be written
5147 *      @start: start entry in the table to write
5148 *      @n: how many table entries to write
5149 *      @rspq: values for the response queue lookup table
5150 *      @nrspq: number of values in @rspq
5151 *
5152 *      Programs the selected part of the VI's RSS mapping table with the
5153 *      provided values.  If @nrspq < @n the supplied values are used repeatedly
5154 *      until the full table range is populated.
5155 *
5156 *      The caller must ensure the values in @rspq are in the range allowed for
5157 *      @viid.
5158 */
5159int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5160                        int start, int n, const u16 *rspq, unsigned int nrspq)
5161{
5162        int ret;
5163        const u16 *rsp = rspq;
5164        const u16 *rsp_end = rspq + nrspq;
5165        struct fw_rss_ind_tbl_cmd cmd;
5166
5167        memset(&cmd, 0, sizeof(cmd));
5168        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
5169                               FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5170                               FW_RSS_IND_TBL_CMD_VIID_V(viid));
5171        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5172
5173        /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
5174        while (n > 0) {
5175                int nq = min(n, 32);
5176                __be32 *qp = &cmd.iq0_to_iq2;
5177
5178                cmd.niqid = cpu_to_be16(nq);
5179                cmd.startidx = cpu_to_be16(start);
5180
5181                start += nq;
5182                n -= nq;
5183
5184                while (nq > 0) {
5185                        unsigned int v;
5186
5187                        v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
5188                        if (++rsp >= rsp_end)
5189                                rsp = rspq;
5190                        v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
5191                        if (++rsp >= rsp_end)
5192                                rsp = rspq;
5193                        v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
5194                        if (++rsp >= rsp_end)
5195                                rsp = rspq;
5196
5197                        *qp++ = cpu_to_be32(v);
5198                        nq -= 3;
5199                }
5200
5201                ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5202                if (ret)
5203                        return ret;
5204        }
5205        return 0;
5206}
5207
5208/**
5209 *      t4_config_glbl_rss - configure the global RSS mode
5210 *      @adapter: the adapter
5211 *      @mbox: mbox to use for the FW command
5212 *      @mode: global RSS mode
5213 *      @flags: mode-specific flags
5214 *
5215 *      Sets the global RSS mode.
5216 */
5217int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5218                       unsigned int flags)
5219{
5220        struct fw_rss_glb_config_cmd c;
5221
5222        memset(&c, 0, sizeof(c));
5223        c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
5224                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
5225        c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5226        if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5227                c.u.manual.mode_pkd =
5228                        cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5229        } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5230                c.u.basicvirtual.mode_pkd =
5231                        cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5232                c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5233        } else
5234                return -EINVAL;
5235        return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5236}
5237
5238/**
5239 *      t4_config_vi_rss - configure per VI RSS settings
5240 *      @adapter: the adapter
5241 *      @mbox: mbox to use for the FW command
5242 *      @viid: the VI id
5243 *      @flags: RSS flags
5244 *      @defq: id of the default RSS queue for the VI.
5245 *
5246 *      Configures VI-specific RSS properties.
5247 */
5248int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5249                     unsigned int flags, unsigned int defq)
5250{
5251        struct fw_rss_vi_config_cmd c;
5252
5253        memset(&c, 0, sizeof(c));
5254        c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
5255                                   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5256                                   FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
5257        c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5258        c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5259                                        FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
5260        return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5261}
5262
5263/* Read an RSS table row */
5264static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5265{
5266        t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
5267        return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
5268                                   5, 0, val);
5269}
5270
5271/**
5272 *      t4_read_rss - read the contents of the RSS mapping table
5273 *      @adapter: the adapter
5274 *      @map: holds the contents of the RSS mapping table
5275 *
5276 *      Reads the contents of the RSS hash->queue mapping table.
5277 */
5278int t4_read_rss(struct adapter *adapter, u16 *map)
5279{
5280        int i, ret, nentries;
5281        u32 val;
5282
5283        nentries = t4_chip_rss_size(adapter);
5284        for (i = 0; i < nentries / 2; ++i) {
5285                ret = rd_rss_row(adapter, i, &val);
5286                if (ret)
5287                        return ret;
5288                *map++ = LKPTBLQUEUE0_G(val);
5289                *map++ = LKPTBLQUEUE1_G(val);
5290        }
5291        return 0;
5292}
5293
5294static unsigned int t4_use_ldst(struct adapter *adap)
5295{
5296        return (adap->flags & CXGB4_FW_OK) && !adap->use_bd;
5297}
5298
5299/**
5300 * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5301 * @adap: the adapter
5302 * @cmd: TP fw ldst address space type
5303 * @vals: where the indirect register values are stored/written
5304 * @nregs: how many indirect registers to read/write
5305 * @start_index: index of first indirect register to read/write
5306 * @rw: Read (1) or Write (0)
5307 * @sleep_ok: if true we may sleep while awaiting command completion
5308 *
5309 * Access TP indirect registers through LDST
5310 */
5311static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5312                            unsigned int nregs, unsigned int start_index,
5313                            unsigned int rw, bool sleep_ok)
5314{
5315        int ret = 0;
5316        unsigned int i;
5317        struct fw_ldst_cmd c;
5318
5319        for (i = 0; i < nregs; i++) {
5320                memset(&c, 0, sizeof(c));
5321                c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5322                                                FW_CMD_REQUEST_F |
5323                                                (rw ? FW_CMD_READ_F :
5324                                                      FW_CMD_WRITE_F) |
5325                                                FW_LDST_CMD_ADDRSPACE_V(cmd));
5326                c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5327
5328                c.u.addrval.addr = cpu_to_be32(start_index + i);
5329                c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5330                ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5331                                      sleep_ok);
5332                if (ret)
5333                        return ret;
5334
5335                if (rw)
5336                        vals[i] = be32_to_cpu(c.u.addrval.val);
5337        }
5338        return 0;
5339}
5340
5341/**
5342 * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5343 * @adap: the adapter
5344 * @reg_addr: Address Register
5345 * @reg_data: Data register
5346 * @buff: where the indirect register values are stored/written
5347 * @nregs: how many indirect registers to read/write
5348 * @start_index: index of first indirect register to read/write
5349 * @rw: READ(1) or WRITE(0)
5350 * @sleep_ok: if true we may sleep while awaiting command completion
5351 *
5352 * Read/Write TP indirect registers through LDST if possible.
5353 * Else, use backdoor access
5354 **/
5355static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5356                              u32 *buff, u32 nregs, u32 start_index, int rw,
5357                              bool sleep_ok)
5358{
5359        int rc = -EINVAL;
5360        int cmd;
5361
5362        switch (reg_addr) {
5363        case TP_PIO_ADDR_A:
5364                cmd = FW_LDST_ADDRSPC_TP_PIO;
5365                break;
5366        case TP_TM_PIO_ADDR_A:
5367                cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5368                break;
5369        case TP_MIB_INDEX_A:
5370                cmd = FW_LDST_ADDRSPC_TP_MIB;
5371                break;
5372        default:
5373                goto indirect_access;
5374        }
5375
5376        if (t4_use_ldst(adap))
5377                rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5378                                      sleep_ok);
5379
5380indirect_access:
5381
5382        if (rc) {
5383                if (rw)
5384                        t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5385                                         start_index);
5386                else
5387                        t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5388                                          start_index);
5389        }
5390}
5391
5392/**
5393 * t4_tp_pio_read - Read TP PIO registers
5394 * @adap: the adapter
5395 * @buff: where the indirect register values are written
5396 * @nregs: how many indirect registers to read
5397 * @start_index: index of first indirect register to read
5398 * @sleep_ok: if true we may sleep while awaiting command completion
5399 *
5400 * Read TP PIO Registers
5401 **/
5402void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5403                    u32 start_index, bool sleep_ok)
5404{
5405        t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5406                          start_index, 1, sleep_ok);
5407}
5408
5409/**
5410 * t4_tp_pio_write - Write TP PIO registers
5411 * @adap: the adapter
5412 * @buff: where the indirect register values are stored
5413 * @nregs: how many indirect registers to write
5414 * @start_index: index of first indirect register to write
5415 * @sleep_ok: if true we may sleep while awaiting command completion
5416 *
5417 * Write TP PIO Registers
5418 **/
5419static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs,
5420                            u32 start_index, bool sleep_ok)
5421{
5422        t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5423                          start_index, 0, sleep_ok);
5424}
5425
5426/**
5427 * t4_tp_tm_pio_read - Read TP TM PIO registers
5428 * @adap: the adapter
5429 * @buff: where the indirect register values are written
5430 * @nregs: how many indirect registers to read
5431 * @start_index: index of first indirect register to read
5432 * @sleep_ok: if true we may sleep while awaiting command completion
5433 *
5434 * Read TP TM PIO Registers
5435 **/
5436void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5437                       u32 start_index, bool sleep_ok)
5438{
5439        t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff,
5440                          nregs, start_index, 1, sleep_ok);
5441}
5442
5443/**
5444 * t4_tp_mib_read - Read TP MIB registers
5445 * @adap: the adapter
5446 * @buff: where the indirect register values are written
5447 * @nregs: how many indirect registers to read
5448 * @start_index: index of first indirect register to read
5449 * @sleep_ok: if true we may sleep while awaiting command completion
5450 *
5451 * Read TP MIB Registers
5452 **/
5453void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5454                    bool sleep_ok)
5455{
5456        t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs,
5457                          start_index, 1, sleep_ok);
5458}
5459
5460/**
5461 *      t4_read_rss_key - read the global RSS key
5462 *      @adap: the adapter
5463 *      @key: 10-entry array holding the 320-bit RSS key
5464 *      @sleep_ok: if true we may sleep while awaiting command completion
5465 *
5466 *      Reads the global 320-bit RSS key.
5467 */
5468void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5469{
5470        t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5471}
5472
5473/**
5474 *      t4_write_rss_key - program one of the RSS keys
5475 *      @adap: the adapter
5476 *      @key: 10-entry array holding the 320-bit RSS key
5477 *      @idx: which RSS key to write
5478 *      @sleep_ok: if true we may sleep while awaiting command completion
5479 *
5480 *      Writes one of the RSS keys with the given 320-bit value.  If @idx is
5481 *      0..15 the corresponding entry in the RSS key table is written,
5482 *      otherwise the global RSS key is written.
5483 */
5484void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5485                      bool sleep_ok)
5486{
5487        u8 rss_key_addr_cnt = 16;
5488        u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
5489
5490        /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5491         * allows access to key addresses 16-63 by using KeyWrAddrX
5492         * as index[5:4](upper 2) into key table
5493         */
5494        if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
5495            (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
5496                rss_key_addr_cnt = 32;
5497
5498        t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5499
5500        if (idx >= 0 && idx < rss_key_addr_cnt) {
5501                if (rss_key_addr_cnt > 16)
5502                        t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5503                                     KEYWRADDRX_V(idx >> 4) |
5504                                     T6_VFWRADDR_V(idx) | KEYWREN_F);
5505                else
5506                        t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5507                                     KEYWRADDR_V(idx) | KEYWREN_F);
5508        }
5509}
5510
5511/**
5512 *      t4_read_rss_pf_config - read PF RSS Configuration Table
5513 *      @adapter: the adapter
5514 *      @index: the entry in the PF RSS table to read
5515 *      @valp: where to store the returned value
5516 *      @sleep_ok: if true we may sleep while awaiting command completion
5517 *
5518 *      Reads the PF RSS Configuration Table at the specified index and returns
5519 *      the value found there.
5520 */
5521void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5522                           u32 *valp, bool sleep_ok)
5523{
5524        t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok);
5525}
5526
5527/**
5528 *      t4_read_rss_vf_config - read VF RSS Configuration Table
5529 *      @adapter: the adapter
5530 *      @index: the entry in the VF RSS table to read
5531 *      @vfl: where to store the returned VFL
5532 *      @vfh: where to store the returned VFH
5533 *      @sleep_ok: if true we may sleep while awaiting command completion
5534 *
5535 *      Reads the VF RSS Configuration Table at the specified index and returns
5536 *      the (VFL, VFH) values found there.
5537 */
5538void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5539                           u32 *vfl, u32 *vfh, bool sleep_ok)
5540{
5541        u32 vrt, mask, data;
5542
5543        if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
5544                mask = VFWRADDR_V(VFWRADDR_M);
5545                data = VFWRADDR_V(index);
5546        } else {
5547                 mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
5548                 data = T6_VFWRADDR_V(index);
5549        }
5550
5551        /* Request that the index'th VF Table values be read into VFL/VFH.
5552         */
5553        vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
5554        vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
5555        vrt |= data | VFRDEN_F;
5556        t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
5557
5558        /* Grab the VFL/VFH values ...
5559         */
5560        t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok);
5561        t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok);
5562}
5563
5564/**
5565 *      t4_read_rss_pf_map - read PF RSS Map
5566 *      @adapter: the adapter
5567 *      @sleep_ok: if true we may sleep while awaiting command completion
5568 *
5569 *      Reads the PF RSS Map register and returns its value.
5570 */
5571u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5572{
5573        u32 pfmap;
5574
5575        t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok);
5576        return pfmap;
5577}
5578
5579/**
5580 *      t4_read_rss_pf_mask - read PF RSS Mask
5581 *      @adapter: the adapter
5582 *      @sleep_ok: if true we may sleep while awaiting command completion
5583 *
5584 *      Reads the PF RSS Mask register and returns its value.
5585 */
5586u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5587{
5588        u32 pfmask;
5589
5590        t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok);
5591        return pfmask;
5592}
5593
5594/**
5595 *      t4_tp_get_tcp_stats - read TP's TCP MIB counters
5596 *      @adap: the adapter
5597 *      @v4: holds the TCP/IP counter values
5598 *      @v6: holds the TCP/IPv6 counter values
5599 *      @sleep_ok: if true we may sleep while awaiting command completion
5600 *
5601 *      Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5602 *      Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5603 */
5604void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5605                         struct tp_tcp_stats *v6, bool sleep_ok)
5606{
5607        u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
5608
5609#define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
5610#define STAT(x)     val[STAT_IDX(x)]
5611#define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5612
5613        if (v4) {
5614                t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5615                               TP_MIB_TCP_OUT_RST_A, sleep_ok);
5616                v4->tcp_out_rsts = STAT(OUT_RST);
5617                v4->tcp_in_segs  = STAT64(IN_SEG);
5618                v4->tcp_out_segs = STAT64(OUT_SEG);
5619                v4->tcp_retrans_segs = STAT64(RXT_SEG);
5620        }
5621        if (v6) {
5622                t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5623                               TP_MIB_TCP_V6OUT_RST_A, sleep_ok);
5624                v6->tcp_out_rsts = STAT(OUT_RST);
5625                v6->tcp_in_segs  = STAT64(IN_SEG);
5626                v6->tcp_out_segs = STAT64(OUT_SEG);
5627                v6->tcp_retrans_segs = STAT64(RXT_SEG);
5628        }
5629#undef STAT64
5630#undef STAT
5631#undef STAT_IDX
5632}
5633
5634/**
5635 *      t4_tp_get_err_stats - read TP's error MIB counters
5636 *      @adap: the adapter
5637 *      @st: holds the counter values
5638 *      @sleep_ok: if true we may sleep while awaiting command completion
5639 *
5640 *      Returns the values of TP's error counters.
5641 */
5642void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5643                         bool sleep_ok)
5644{
5645        int nchan = adap->params.arch.nchan;
5646
5647        t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A,
5648                       sleep_ok);
5649        t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A,
5650                       sleep_ok);
5651        t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A,
5652                       sleep_ok);
5653        t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5654                       TP_MIB_TNL_CNG_DROP_0_A, sleep_ok);
5655        t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5656                       TP_MIB_OFD_CHN_DROP_0_A, sleep_ok);
5657        t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A,
5658                       sleep_ok);
5659        t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5660                       TP_MIB_OFD_VLN_DROP_0_A, sleep_ok);
5661        t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5662                       TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok);
5663        t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A,
5664                       sleep_ok);
5665}
5666
5667/**
5668 *      t4_tp_get_cpl_stats - read TP's CPL MIB counters
5669 *      @adap: the adapter
5670 *      @st: holds the counter values
5671 *      @sleep_ok: if true we may sleep while awaiting command completion
5672 *
5673 *      Returns the values of TP's CPL counters.
5674 */
5675void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5676                         bool sleep_ok)
5677{
5678        int nchan = adap->params.arch.nchan;
5679
5680        t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok);
5681
5682        t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok);
5683}
5684
5685/**
5686 *      t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5687 *      @adap: the adapter
5688 *      @st: holds the counter values
5689 *      @sleep_ok: if true we may sleep while awaiting command completion
5690 *
5691 *      Returns the values of TP's RDMA counters.
5692 */
5693void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5694                          bool sleep_ok)
5695{
5696        t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A,
5697                       sleep_ok);
5698}
5699
5700/**
5701 *      t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5702 *      @adap: the adapter
5703 *      @idx: the port index
5704 *      @st: holds the counter values
5705 *      @sleep_ok: if true we may sleep while awaiting command completion
5706 *
5707 *      Returns the values of TP's FCoE counters for the selected port.
5708 */
5709void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5710                       struct tp_fcoe_stats *st, bool sleep_ok)
5711{
5712        u32 val[2];
5713
5714        t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx,
5715                       sleep_ok);
5716
5717        t4_tp_mib_read(adap, &st->frames_drop, 1,
5718                       TP_MIB_FCOE_DROP_0_A + idx, sleep_ok);
5719
5720        t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx,
5721                       sleep_ok);
5722
5723        st->octets_ddp = ((u64)val[0] << 32) | val[1];
5724}
5725
5726/**
5727 *      t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5728 *      @adap: the adapter
5729 *      @st: holds the counter values
5730 *      @sleep_ok: if true we may sleep while awaiting command completion
5731 *
5732 *      Returns the values of TP's counters for non-TCP directly-placed packets.
5733 */
5734void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5735                      bool sleep_ok)
5736{
5737        u32 val[4];
5738
5739        t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok);
5740        st->frames = val[0];
5741        st->drops = val[1];
5742        st->octets = ((u64)val[2] << 32) | val[3];
5743}
5744
5745/**
5746 *      t4_read_mtu_tbl - returns the values in the HW path MTU table
5747 *      @adap: the adapter
5748 *      @mtus: where to store the MTU values
5749 *      @mtu_log: where to store the MTU base-2 log (may be %NULL)
5750 *
5751 *      Reads the HW path MTU table.
5752 */
5753void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5754{
5755        u32 v;
5756        int i;
5757
5758        for (i = 0; i < NMTUS; ++i) {
5759                t4_write_reg(adap, TP_MTU_TABLE_A,
5760                             MTUINDEX_V(0xff) | MTUVALUE_V(i));
5761                v = t4_read_reg(adap, TP_MTU_TABLE_A);
5762                mtus[i] = MTUVALUE_G(v);
5763                if (mtu_log)
5764                        mtu_log[i] = MTUWIDTH_G(v);
5765        }
5766}
5767
5768/**
5769 *      t4_read_cong_tbl - reads the congestion control table
5770 *      @adap: the adapter
5771 *      @incr: where to store the alpha values
5772 *
5773 *      Reads the additive increments programmed into the HW congestion
5774 *      control table.
5775 */
5776void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5777{
5778        unsigned int mtu, w;
5779
5780        for (mtu = 0; mtu < NMTUS; ++mtu)
5781                for (w = 0; w < NCCTRL_WIN; ++w) {
5782                        t4_write_reg(adap, TP_CCTRL_TABLE_A,
5783                                     ROWINDEX_V(0xffff) | (mtu << 5) | w);
5784                        incr[mtu][w] = (u16)t4_read_reg(adap,
5785                                                TP_CCTRL_TABLE_A) & 0x1fff;
5786                }
5787}
5788
5789/**
5790 *      t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5791 *      @adap: the adapter
5792 *      @addr: the indirect TP register address
5793 *      @mask: specifies the field within the register to modify
5794 *      @val: new value for the field
5795 *
5796 *      Sets a field of an indirect TP register to the given value.
5797 */
5798void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5799                            unsigned int mask, unsigned int val)
5800{
5801        t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5802        val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5803        t4_write_reg(adap, TP_PIO_DATA_A, val);
5804}
5805
5806/**
5807 *      init_cong_ctrl - initialize congestion control parameters
5808 *      @a: the alpha values for congestion control
5809 *      @b: the beta values for congestion control
5810 *
5811 *      Initialize the congestion control parameters.
5812 */
5813static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5814{
5815        a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5816        a[9] = 2;
5817        a[10] = 3;
5818        a[11] = 4;
5819        a[12] = 5;
5820        a[13] = 6;
5821        a[14] = 7;
5822        a[15] = 8;
5823        a[16] = 9;
5824        a[17] = 10;
5825        a[18] = 14;
5826        a[19] = 17;
5827        a[20] = 21;
5828        a[21] = 25;
5829        a[22] = 30;
5830        a[23] = 35;
5831        a[24] = 45;
5832        a[25] = 60;
5833        a[26] = 80;
5834        a[27] = 100;
5835        a[28] = 200;
5836        a[29] = 300;
5837        a[30] = 400;
5838        a[31] = 500;
5839
5840        b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5841        b[9] = b[10] = 1;
5842        b[11] = b[12] = 2;
5843        b[13] = b[14] = b[15] = b[16] = 3;
5844        b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5845        b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5846        b[28] = b[29] = 6;
5847        b[30] = b[31] = 7;
5848}
5849
5850/* The minimum additive increment value for the congestion control table */
5851#define CC_MIN_INCR 2U
5852
5853/**
5854 *      t4_load_mtus - write the MTU and congestion control HW tables
5855 *      @adap: the adapter
5856 *      @mtus: the values for the MTU table
5857 *      @alpha: the values for the congestion control alpha parameter
5858 *      @beta: the values for the congestion control beta parameter
5859 *
5860 *      Write the HW MTU table with the supplied MTUs and the high-speed
5861 *      congestion control table with the supplied alpha, beta, and MTUs.
5862 *      We write the two tables together because the additive increments
5863 *      depend on the MTUs.
5864 */
5865void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5866                  const unsigned short *alpha, const unsigned short *beta)
5867{
5868        static const unsigned int avg_pkts[NCCTRL_WIN] = {
5869                2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5870                896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5871                28672, 40960, 57344, 81920, 114688, 163840, 229376
5872        };
5873
5874        unsigned int i, w;
5875
5876        for (i = 0; i < NMTUS; ++i) {
5877                unsigned int mtu = mtus[i];
5878                unsigned int log2 = fls(mtu);
5879
5880                if (!(mtu & ((1 << log2) >> 2)))     /* round */
5881                        log2--;
5882                t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5883                             MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5884
5885                for (w = 0; w < NCCTRL_WIN; ++w) {
5886                        unsigned int inc;
5887
5888                        inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5889                                  CC_MIN_INCR);
5890
5891                        t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5892                                     (w << 16) | (beta[w] << 13) | inc);
5893                }
5894        }
5895}
5896
5897/* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5898 * clocks.  The formula is
5899 *
5900 * bytes/s = bytes256 * 256 * ClkFreq / 4096
5901 *
5902 * which is equivalent to
5903 *
5904 * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5905 */
5906static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5907{
5908        u64 v = bytes256 * adap->params.vpd.cclk;
5909
5910        return v * 62 + v / 2;
5911}
5912
5913/**
5914 *      t4_get_chan_txrate - get the current per channel Tx rates
5915 *      @adap: the adapter
5916 *      @nic_rate: rates for NIC traffic
5917 *      @ofld_rate: rates for offloaded traffic
5918 *
5919 *      Return the current Tx rates in bytes/s for NIC and offloaded traffic
5920 *      for each channel.
5921 */
5922void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5923{
5924        u32 v;
5925
5926        v = t4_read_reg(adap, TP_TX_TRATE_A);
5927        nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5928        nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5929        if (adap->params.arch.nchan == NCHAN) {
5930                nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5931                nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5932        }
5933
5934        v = t4_read_reg(adap, TP_TX_ORATE_A);
5935        ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5936        ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5937        if (adap->params.arch.nchan == NCHAN) {
5938                ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5939                ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5940        }
5941}
5942
5943/**
5944 *      t4_set_trace_filter - configure one of the tracing filters
5945 *      @adap: the adapter
5946 *      @tp: the desired trace filter parameters
5947 *      @idx: which filter to configure
5948 *      @enable: whether to enable or disable the filter
5949 *
5950 *      Configures one of the tracing filters available in HW.  If @enable is
5951 *      %0 @tp is not examined and may be %NULL. The user is responsible to
5952 *      set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5953 */
5954int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5955                        int idx, int enable)
5956{
5957        int i, ofst = idx * 4;
5958        u32 data_reg, mask_reg, cfg;
5959
5960        if (!enable) {
5961                t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5962                return 0;
5963        }
5964
5965        cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5966        if (cfg & TRCMULTIFILTER_F) {
5967                /* If multiple tracers are enabled, then maximum
5968                 * capture size is 2.5KB (FIFO size of a single channel)
5969                 * minus 2 flits for CPL_TRACE_PKT header.
5970                 */
5971                if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5972                        return -EINVAL;
5973        } else {
5974                /* If multiple tracers are disabled, to avoid deadlocks
5975                 * maximum packet capture size of 9600 bytes is recommended.
5976                 * Also in this mode, only trace0 can be enabled and running.
5977                 */
5978                if (tp->snap_len > 9600 || idx)
5979                        return -EINVAL;
5980        }
5981
5982        if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5983            tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5984            tp->min_len > TFMINPKTSIZE_M)
5985                return -EINVAL;
5986
5987        /* stop the tracer we'll be changing */
5988        t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5989
5990        idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5991        data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5992        mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5993
5994        for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5995                t4_write_reg(adap, data_reg, tp->data[i]);
5996                t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5997        }
5998        t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5999                     TFCAPTUREMAX_V(tp->snap_len) |
6000                     TFMINPKTSIZE_V(tp->min_len));
6001        t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
6002                     TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
6003                     (is_t4(adap->params.chip) ?
6004                     TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
6005                     T5_TFPORT_V(tp->port) | T5_TFEN_F |
6006                     T5_TFINVERTMATCH_V(tp->invert)));
6007
6008        return 0;
6009}
6010
6011/**
6012 *      t4_get_trace_filter - query one of the tracing filters
6013 *      @adap: the adapter
6014 *      @tp: the current trace filter parameters
6015 *      @idx: which trace filter to query
6016 *      @enabled: non-zero if the filter is enabled
6017 *
6018 *      Returns the current settings of one of the HW tracing filters.
6019 */
6020void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6021                         int *enabled)
6022{
6023        u32 ctla, ctlb;
6024        int i, ofst = idx * 4;
6025        u32 data_reg, mask_reg;
6026
6027        ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
6028        ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
6029
6030        if (is_t4(adap->params.chip)) {
6031                *enabled = !!(ctla & TFEN_F);
6032                tp->port =  TFPORT_G(ctla);
6033                tp->invert = !!(ctla & TFINVERTMATCH_F);
6034        } else {
6035                *enabled = !!(ctla & T5_TFEN_F);
6036                tp->port = T5_TFPORT_G(ctla);
6037                tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
6038        }
6039        tp->snap_len = TFCAPTUREMAX_G(ctlb);
6040        tp->min_len = TFMINPKTSIZE_G(ctlb);
6041        tp->skip_ofst = TFOFFSET_G(ctla);
6042        tp->skip_len = TFLENGTH_G(ctla);
6043
6044        ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
6045        data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
6046        mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
6047
6048        for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6049                tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6050                tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6051        }
6052}
6053
6054/**
6055 *      t4_pmtx_get_stats - returns the HW stats from PMTX
6056 *      @adap: the adapter
6057 *      @cnt: where to store the count statistics
6058 *      @cycles: where to store the cycle statistics
6059 *
6060 *      Returns performance statistics from PMTX.
6061 */
6062void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6063{
6064        int i;
6065        u32 data[2];
6066
6067        for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6068                t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
6069                cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
6070                if (is_t4(adap->params.chip)) {
6071                        cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
6072                } else {
6073                        t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
6074                                         PM_TX_DBG_DATA_A, data, 2,
6075                                         PM_TX_DBG_STAT_MSB_A);
6076                        cycles[i] = (((u64)data[0] << 32) | data[1]);
6077                }
6078        }
6079}
6080
6081/**
6082 *      t4_pmrx_get_stats - returns the HW stats from PMRX
6083 *      @adap: the adapter
6084 *      @cnt: where to store the count statistics
6085 *      @cycles: where to store the cycle statistics
6086 *
6087 *      Returns performance statistics from PMRX.
6088 */
6089void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6090{
6091        int i;
6092        u32 data[2];
6093
6094        for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6095                t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
6096                cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
6097                if (is_t4(adap->params.chip)) {
6098                        cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
6099                } else {
6100                        t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
6101                                         PM_RX_DBG_DATA_A, data, 2,
6102                                         PM_RX_DBG_STAT_MSB_A);
6103                        cycles[i] = (((u64)data[0] << 32) | data[1]);
6104                }
6105        }
6106}
6107
6108/**
6109 *      compute_mps_bg_map - compute the MPS Buffer Group Map for a Port
6110 *      @adapter: the adapter
6111 *      @pidx: the port index
6112 *
6113 *      Computes and returns a bitmap indicating which MPS buffer groups are
6114 *      associated with the given Port.  Bit i is set if buffer group i is
6115 *      used by the Port.
6116 */
6117static inline unsigned int compute_mps_bg_map(struct adapter *adapter,
6118                                              int pidx)
6119{
6120        unsigned int chip_version, nports;
6121
6122        chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6123        nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6124
6125        switch (chip_version) {
6126        case CHELSIO_T4:
6127        case CHELSIO_T5:
6128                switch (nports) {
6129                case 1: return 0xf;
6130                case 2: return 3 << (2 * pidx);
6131                case 4: return 1 << pidx;
6132                }
6133                break;
6134
6135        case CHELSIO_T6:
6136                switch (nports) {
6137                case 2: return 1 << (2 * pidx);
6138                }
6139                break;
6140        }
6141
6142        dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
6143                chip_version, nports);
6144
6145        return 0;
6146}
6147
6148/**
6149 *      t4_get_mps_bg_map - return the buffer groups associated with a port
6150 *      @adapter: the adapter
6151 *      @pidx: the port index
6152 *
6153 *      Returns a bitmap indicating which MPS buffer groups are associated
6154 *      with the given Port.  Bit i is set if buffer group i is used by the
6155 *      Port.
6156 */
6157unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx)
6158{
6159        u8 *mps_bg_map;
6160        unsigned int nports;
6161
6162        nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6163        if (pidx >= nports) {
6164                CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n",
6165                        pidx, nports);
6166                return 0;
6167        }
6168
6169        /* If we've already retrieved/computed this, just return the result.
6170         */
6171        mps_bg_map = adapter->params.mps_bg_map;
6172        if (mps_bg_map[pidx])
6173                return mps_bg_map[pidx];
6174
6175        /* Newer Firmware can tell us what the MPS Buffer Group Map is.
6176         * If we're talking to such Firmware, let it tell us.  If the new
6177         * API isn't supported, revert back to old hardcoded way.  The value
6178         * obtained from Firmware is encoded in below format:
6179         *
6180         * val = (( MPSBGMAP[Port 3] << 24 ) |
6181         *        ( MPSBGMAP[Port 2] << 16 ) |
6182         *        ( MPSBGMAP[Port 1] <<  8 ) |
6183         *        ( MPSBGMAP[Port 0] <<  0 ))
6184         */
6185        if (adapter->flags & CXGB4_FW_OK) {
6186                u32 param, val;
6187                int ret;
6188
6189                param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6190                         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP));
6191                ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6192                                         0, 1, &param, &val);
6193                if (!ret) {
6194                        int p;
6195
6196                        /* Store the BG Map for all of the Ports in order to
6197                         * avoid more calls to the Firmware in the future.
6198                         */
6199                        for (p = 0; p < MAX_NPORTS; p++, val >>= 8)
6200                                mps_bg_map[p] = val & 0xff;
6201
6202                        return mps_bg_map[pidx];
6203                }
6204        }
6205
6206        /* Either we're not talking to the Firmware or we're dealing with
6207         * older Firmware which doesn't support the new API to get the MPS
6208         * Buffer Group Map.  Fall back to computing it ourselves.
6209         */
6210        mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx);
6211        return mps_bg_map[pidx];
6212}
6213
6214/**
6215 *      t4_get_tp_e2c_map - return the E2C channel map associated with a port
6216 *      @adapter: the adapter
6217 *      @pidx: the port index
6218 */
6219static unsigned int t4_get_tp_e2c_map(struct adapter *adapter, int pidx)
6220{
6221        unsigned int nports;
6222        u32 param, val = 0;
6223        int ret;
6224
6225        nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6226        if (pidx >= nports) {
6227                CH_WARN(adapter, "TP E2C Channel Port Index %d >= Nports %d\n",
6228                        pidx, nports);
6229                return 0;
6230        }
6231
6232        /* FW version >= 1.16.44.0 can determine E2C channel map using
6233         * FW_PARAMS_PARAM_DEV_TPCHMAP API.
6234         */
6235        param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6236                 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPCHMAP));
6237        ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6238                                 0, 1, &param, &val);
6239        if (!ret)
6240                return (val >> (8 * pidx)) & 0xff;
6241
6242        return 0;
6243}
6244
6245/**
6246 *      t4_get_tp_ch_map - return TP ingress channels associated with a port
6247 *      @adap: the adapter
6248 *      @pidx: the port index
6249 *
6250 *      Returns a bitmap indicating which TP Ingress Channels are associated
6251 *      with a given Port.  Bit i is set if TP Ingress Channel i is used by
6252 *      the Port.
6253 */
6254unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx)
6255{
6256        unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
6257        unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
6258
6259        if (pidx >= nports) {
6260                dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n",
6261                         pidx, nports);
6262                return 0;
6263        }
6264
6265        switch (chip_version) {
6266        case CHELSIO_T4:
6267        case CHELSIO_T5:
6268                /* Note that this happens to be the same values as the MPS
6269                 * Buffer Group Map for these Chips.  But we replicate the code
6270                 * here because they're really separate concepts.
6271                 */
6272                switch (nports) {
6273                case 1: return 0xf;
6274                case 2: return 3 << (2 * pidx);
6275                case 4: return 1 << pidx;
6276                }
6277                break;
6278
6279        case CHELSIO_T6:
6280                switch (nports) {
6281                case 1:
6282                case 2: return 1 << pidx;
6283                }
6284                break;
6285        }
6286
6287        dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n",
6288                chip_version, nports);
6289        return 0;
6290}
6291
6292/**
6293 *      t4_get_port_type_description - return Port Type string description
6294 *      @port_type: firmware Port Type enumeration
6295 */
6296const char *t4_get_port_type_description(enum fw_port_type port_type)
6297{
6298        static const char *const port_type_description[] = {
6299                "Fiber_XFI",
6300                "Fiber_XAUI",
6301                "BT_SGMII",
6302                "BT_XFI",
6303                "BT_XAUI",
6304                "KX4",
6305                "CX4",
6306                "KX",
6307                "KR",
6308                "SFP",
6309                "BP_AP",
6310                "BP4_AP",
6311                "QSFP_10G",
6312                "QSA",
6313                "QSFP",
6314                "BP40_BA",
6315                "KR4_100G",
6316                "CR4_QSFP",
6317                "CR_QSFP",
6318                "CR2_QSFP",
6319                "SFP28",
6320                "KR_SFP28",
6321                "KR_XLAUI"
6322        };
6323
6324        if (port_type < ARRAY_SIZE(port_type_description))
6325                return port_type_description[port_type];
6326        return "UNKNOWN";
6327}
6328
6329/**
6330 *      t4_get_port_stats_offset - collect port stats relative to a previous
6331 *                                 snapshot
6332 *      @adap: The adapter
6333 *      @idx: The port
6334 *      @stats: Current stats to fill
6335 *      @offset: Previous stats snapshot
6336 */
6337void t4_get_port_stats_offset(struct adapter *adap, int idx,
6338                              struct port_stats *stats,
6339                              struct port_stats *offset)
6340{
6341        u64 *s, *o;
6342        int i;
6343
6344        t4_get_port_stats(adap, idx, stats);
6345        for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
6346                        i < (sizeof(struct port_stats) / sizeof(u64));
6347                        i++, s++, o++)
6348                *s -= *o;
6349}
6350
6351/**
6352 *      t4_get_port_stats - collect port statistics
6353 *      @adap: the adapter
6354 *      @idx: the port index
6355 *      @p: the stats structure to fill
6356 *
6357 *      Collect statistics related to the given port from HW.
6358 */
6359void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6360{
6361        u32 bgmap = t4_get_mps_bg_map(adap, idx);
6362        u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
6363
6364#define GET_STAT(name) \
6365        t4_read_reg64(adap, \
6366        (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
6367        T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
6368#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6369
6370        p->tx_octets           = GET_STAT(TX_PORT_BYTES);
6371        p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
6372        p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
6373        p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
6374        p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
6375        p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
6376        p->tx_frames_64        = GET_STAT(TX_PORT_64B);
6377        p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
6378        p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
6379        p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
6380        p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
6381        p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
6382        p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
6383        p->tx_drop             = GET_STAT(TX_PORT_DROP);
6384        p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
6385        p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
6386        p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
6387        p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
6388        p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
6389        p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
6390        p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
6391        p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
6392        p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
6393
6394        if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6395                if (stat_ctl & COUNTPAUSESTATTX_F)
6396                        p->tx_frames_64 -= p->tx_pause;
6397                if (stat_ctl & COUNTPAUSEMCTX_F)
6398                        p->tx_mcast_frames -= p->tx_pause;
6399        }
6400        p->rx_octets           = GET_STAT(RX_PORT_BYTES);
6401        p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
6402        p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
6403        p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
6404        p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
6405        p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
6406        p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6407        p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
6408        p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
6409        p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
6410        p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
6411        p->rx_frames_64        = GET_STAT(RX_PORT_64B);
6412        p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
6413        p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
6414        p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
6415        p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
6416        p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
6417        p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
6418        p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
6419        p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
6420        p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
6421        p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
6422        p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
6423        p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
6424        p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
6425        p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
6426        p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
6427
6428        if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6429                if (stat_ctl & COUNTPAUSESTATRX_F)
6430                        p->rx_frames_64 -= p->rx_pause;
6431                if (stat_ctl & COUNTPAUSEMCRX_F)
6432                        p->rx_mcast_frames -= p->rx_pause;
6433        }
6434
6435        p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6436        p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6437        p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6438        p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6439        p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6440        p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6441        p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6442        p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6443
6444#undef GET_STAT
6445#undef GET_STAT_COM
6446}
6447
6448/**
6449 *      t4_get_lb_stats - collect loopback port statistics
6450 *      @adap: the adapter
6451 *      @idx: the loopback port index
6452 *      @p: the stats structure to fill
6453 *
6454 *      Return HW statistics for the given loopback port.
6455 */
6456void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6457{
6458        u32 bgmap = t4_get_mps_bg_map(adap, idx);
6459
6460#define GET_STAT(name) \
6461        t4_read_reg64(adap, \
6462        (is_t4(adap->params.chip) ? \
6463        PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
6464        T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
6465#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6466
6467        p->octets           = GET_STAT(BYTES);
6468        p->frames           = GET_STAT(FRAMES);
6469        p->bcast_frames     = GET_STAT(BCAST);
6470        p->mcast_frames     = GET_STAT(MCAST);
6471        p->ucast_frames     = GET_STAT(UCAST);
6472        p->error_frames     = GET_STAT(ERROR);
6473
6474        p->frames_64        = GET_STAT(64B);
6475        p->frames_65_127    = GET_STAT(65B_127B);
6476        p->frames_128_255   = GET_STAT(128B_255B);
6477        p->frames_256_511   = GET_STAT(256B_511B);
6478        p->frames_512_1023  = GET_STAT(512B_1023B);
6479        p->frames_1024_1518 = GET_STAT(1024B_1518B);
6480        p->frames_1519_max  = GET_STAT(1519B_MAX);
6481        p->drop             = GET_STAT(DROP_FRAMES);
6482
6483        p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6484        p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6485        p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6486        p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6487        p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6488        p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6489        p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6490        p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6491
6492#undef GET_STAT
6493#undef GET_STAT_COM
6494}
6495
6496/*     t4_mk_filtdelwr - create a delete filter WR
6497 *     @ftid: the filter ID
6498 *     @wr: the filter work request to populate
6499 *     @qid: ingress queue to receive the delete notification
6500 *
6501 *     Creates a filter work request to delete the supplied filter.  If @qid is
6502 *     negative the delete notification is suppressed.
6503 */
6504void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6505{
6506        memset(wr, 0, sizeof(*wr));
6507        wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
6508        wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
6509        wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
6510                                    FW_FILTER_WR_NOREPLY_V(qid < 0));
6511        wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
6512        if (qid >= 0)
6513                wr->rx_chan_rx_rpl_iq =
6514                        cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
6515}
6516
6517#define INIT_CMD(var, cmd, rd_wr) do { \
6518        (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
6519                                        FW_CMD_REQUEST_F | \
6520                                        FW_CMD_##rd_wr##_F); \
6521        (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6522} while (0)
6523
6524int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6525                          u32 addr, u32 val)
6526{
6527        u32 ldst_addrspace;
6528        struct fw_ldst_cmd c;
6529
6530        memset(&c, 0, sizeof(c));
6531        ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
6532        c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6533                                        FW_CMD_REQUEST_F |
6534                                        FW_CMD_WRITE_F |
6535                                        ldst_addrspace);
6536        c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6537        c.u.addrval.addr = cpu_to_be32(addr);
6538        c.u.addrval.val = cpu_to_be32(val);
6539
6540        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6541}
6542
6543/**
6544 *      t4_mdio_rd - read a PHY register through MDIO
6545 *      @adap: the adapter
6546 *      @mbox: mailbox to use for the FW command
6547 *      @phy_addr: the PHY address
6548 *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
6549 *      @reg: the register to read
6550 *      @valp: where to store the value
6551 *
6552 *      Issues a FW command through the given mailbox to read a PHY register.
6553 */
6554int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6555               unsigned int mmd, unsigned int reg, u16 *valp)
6556{
6557        int ret;
6558        u32 ldst_addrspace;
6559        struct fw_ldst_cmd c;
6560
6561        memset(&c, 0, sizeof(c));
6562        ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6563        c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6564                                        FW_CMD_REQUEST_F | FW_CMD_READ_F |
6565                                        ldst_addrspace);
6566        c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6567        c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6568                                         FW_LDST_CMD_MMD_V(mmd));
6569        c.u.mdio.raddr = cpu_to_be16(reg);
6570
6571        ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6572        if (ret == 0)
6573                *valp = be16_to_cpu(c.u.mdio.rval);
6574        return ret;
6575}
6576
6577/**
6578 *      t4_mdio_wr - write a PHY register through MDIO
6579 *      @adap: the adapter
6580 *      @mbox: mailbox to use for the FW command
6581 *      @phy_addr: the PHY address
6582 *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
6583 *      @reg: the register to write
6584 *      @val: value to write
6585 *
6586 *      Issues a FW command through the given mailbox to write a PHY register.
6587 */
6588int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6589               unsigned int mmd, unsigned int reg, u16 val)
6590{
6591        u32 ldst_addrspace;
6592        struct fw_ldst_cmd c;
6593
6594        memset(&c, 0, sizeof(c));
6595        ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6596        c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6597                                        FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6598                                        ldst_addrspace);
6599        c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6600        c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6601                                         FW_LDST_CMD_MMD_V(mmd));
6602        c.u.mdio.raddr = cpu_to_be16(reg);
6603        c.u.mdio.rval = cpu_to_be16(val);
6604
6605        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6606}
6607
6608/**
6609 *      t4_sge_decode_idma_state - decode the idma state
6610 *      @adapter: the adapter
6611 *      @state: the state idma is stuck in
6612 */
6613void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6614{
6615        static const char * const t4_decode[] = {
6616                "IDMA_IDLE",
6617                "IDMA_PUSH_MORE_CPL_FIFO",
6618                "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6619                "Not used",
6620                "IDMA_PHYSADDR_SEND_PCIEHDR",
6621                "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6622                "IDMA_PHYSADDR_SEND_PAYLOAD",
6623                "IDMA_SEND_FIFO_TO_IMSG",
6624                "IDMA_FL_REQ_DATA_FL_PREP",
6625                "IDMA_FL_REQ_DATA_FL",
6626                "IDMA_FL_DROP",
6627                "IDMA_FL_H_REQ_HEADER_FL",
6628                "IDMA_FL_H_SEND_PCIEHDR",
6629                "IDMA_FL_H_PUSH_CPL_FIFO",
6630                "IDMA_FL_H_SEND_CPL",
6631                "IDMA_FL_H_SEND_IP_HDR_FIRST",
6632                "IDMA_FL_H_SEND_IP_HDR",
6633                "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6634                "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6635                "IDMA_FL_H_SEND_IP_HDR_PADDING",
6636                "IDMA_FL_D_SEND_PCIEHDR",
6637                "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6638                "IDMA_FL_D_REQ_NEXT_DATA_FL",
6639                "IDMA_FL_SEND_PCIEHDR",
6640                "IDMA_FL_PUSH_CPL_FIFO",
6641                "IDMA_FL_SEND_CPL",
6642                "IDMA_FL_SEND_PAYLOAD_FIRST",
6643                "IDMA_FL_SEND_PAYLOAD",
6644                "IDMA_FL_REQ_NEXT_DATA_FL",
6645                "IDMA_FL_SEND_NEXT_PCIEHDR",
6646                "IDMA_FL_SEND_PADDING",
6647                "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6648                "IDMA_FL_SEND_FIFO_TO_IMSG",
6649                "IDMA_FL_REQ_DATAFL_DONE",
6650                "IDMA_FL_REQ_HEADERFL_DONE",
6651        };
6652        static const char * const t5_decode[] = {
6653                "IDMA_IDLE",
6654                "IDMA_ALMOST_IDLE",
6655                "IDMA_PUSH_MORE_CPL_FIFO",
6656                "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6657                "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6658                "IDMA_PHYSADDR_SEND_PCIEHDR",
6659                "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6660                "IDMA_PHYSADDR_SEND_PAYLOAD",
6661                "IDMA_SEND_FIFO_TO_IMSG",
6662                "IDMA_FL_REQ_DATA_FL",
6663                "IDMA_FL_DROP",
6664                "IDMA_FL_DROP_SEND_INC",
6665                "IDMA_FL_H_REQ_HEADER_FL",
6666                "IDMA_FL_H_SEND_PCIEHDR",
6667                "IDMA_FL_H_PUSH_CPL_FIFO",
6668                "IDMA_FL_H_SEND_CPL",
6669                "IDMA_FL_H_SEND_IP_HDR_FIRST",
6670                "IDMA_FL_H_SEND_IP_HDR",
6671                "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6672                "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6673                "IDMA_FL_H_SEND_IP_HDR_PADDING",
6674                "IDMA_FL_D_SEND_PCIEHDR",
6675                "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6676                "IDMA_FL_D_REQ_NEXT_DATA_FL",
6677                "IDMA_FL_SEND_PCIEHDR",
6678                "IDMA_FL_PUSH_CPL_FIFO",
6679                "IDMA_FL_SEND_CPL",
6680                "IDMA_FL_SEND_PAYLOAD_FIRST",
6681                "IDMA_FL_SEND_PAYLOAD",
6682                "IDMA_FL_REQ_NEXT_DATA_FL",
6683                "IDMA_FL_SEND_NEXT_PCIEHDR",
6684                "IDMA_FL_SEND_PADDING",
6685                "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6686        };
6687        static const char * const t6_decode[] = {
6688                "IDMA_IDLE",
6689                "IDMA_PUSH_MORE_CPL_FIFO",
6690                "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6691                "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6692                "IDMA_PHYSADDR_SEND_PCIEHDR",
6693                "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6694                "IDMA_PHYSADDR_SEND_PAYLOAD",
6695                "IDMA_FL_REQ_DATA_FL",
6696                "IDMA_FL_DROP",
6697                "IDMA_FL_DROP_SEND_INC",
6698                "IDMA_FL_H_REQ_HEADER_FL",
6699                "IDMA_FL_H_SEND_PCIEHDR",
6700                "IDMA_FL_H_PUSH_CPL_FIFO",
6701                "IDMA_FL_H_SEND_CPL",
6702                "IDMA_FL_H_SEND_IP_HDR_FIRST",
6703                "IDMA_FL_H_SEND_IP_HDR",
6704                "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6705                "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6706                "IDMA_FL_H_SEND_IP_HDR_PADDING",
6707                "IDMA_FL_D_SEND_PCIEHDR",
6708                "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6709                "IDMA_FL_D_REQ_NEXT_DATA_FL",
6710                "IDMA_FL_SEND_PCIEHDR",
6711                "IDMA_FL_PUSH_CPL_FIFO",
6712                "IDMA_FL_SEND_CPL",
6713                "IDMA_FL_SEND_PAYLOAD_FIRST",
6714                "IDMA_FL_SEND_PAYLOAD",
6715                "IDMA_FL_REQ_NEXT_DATA_FL",
6716                "IDMA_FL_SEND_NEXT_PCIEHDR",
6717                "IDMA_FL_SEND_PADDING",
6718                "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6719        };
6720        static const u32 sge_regs[] = {
6721                SGE_DEBUG_DATA_LOW_INDEX_2_A,
6722                SGE_DEBUG_DATA_LOW_INDEX_3_A,
6723                SGE_DEBUG_DATA_HIGH_INDEX_10_A,
6724        };
6725        const char **sge_idma_decode;
6726        int sge_idma_decode_nstates;
6727        int i;
6728        unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6729
6730        /* Select the right set of decode strings to dump depending on the
6731         * adapter chip type.
6732         */
6733        switch (chip_version) {
6734        case CHELSIO_T4:
6735                sge_idma_decode = (const char **)t4_decode;
6736                sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6737                break;
6738
6739        case CHELSIO_T5:
6740                sge_idma_decode = (const char **)t5_decode;
6741                sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6742                break;
6743
6744        case CHELSIO_T6:
6745                sge_idma_decode = (const char **)t6_decode;
6746                sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6747                break;
6748
6749        default:
6750                dev_err(adapter->pdev_dev,
6751                        "Unsupported chip version %d\n", chip_version);
6752                return;
6753        }
6754
6755        if (is_t4(adapter->params.chip)) {
6756                sge_idma_decode = (const char **)t4_decode;
6757                sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6758        } else {
6759                sge_idma_decode = (const char **)t5_decode;
6760                sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6761        }
6762
6763        if (state < sge_idma_decode_nstates)
6764                CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6765        else
6766                CH_WARN(adapter, "idma state %d unknown\n", state);
6767
6768        for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6769                CH_WARN(adapter, "SGE register %#x value %#x\n",
6770                        sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6771}
6772
6773/**
6774 *      t4_sge_ctxt_flush - flush the SGE context cache
6775 *      @adap: the adapter
6776 *      @mbox: mailbox to use for the FW command
6777 *      @ctxt_type: Egress or Ingress
6778 *
6779 *      Issues a FW command through the given mailbox to flush the
6780 *      SGE context cache.
6781 */
6782int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
6783{
6784        int ret;
6785        u32 ldst_addrspace;
6786        struct fw_ldst_cmd c;
6787
6788        memset(&c, 0, sizeof(c));
6789        ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ?
6790                                                 FW_LDST_ADDRSPC_SGE_EGRC :
6791                                                 FW_LDST_ADDRSPC_SGE_INGC);
6792        c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6793                                        FW_CMD_REQUEST_F | FW_CMD_READ_F |
6794                                        ldst_addrspace);
6795        c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6796        c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
6797
6798        ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6799        return ret;
6800}
6801
6802/**
6803 *      t4_read_sge_dbqtimers - read SGE Doorbell Queue Timer values
6804 *      @adap: the adapter
6805 *      @ndbqtimers: size of the provided SGE Doorbell Queue Timer table
6806 *      @dbqtimers: SGE Doorbell Queue Timer table
6807 *
6808 *      Reads the SGE Doorbell Queue Timer values into the provided table.
6809 *      Returns 0 on success (Firmware and Hardware support this feature),
6810 *      an error on failure.
6811 */
6812int t4_read_sge_dbqtimers(struct adapter *adap, unsigned int ndbqtimers,
6813                          u16 *dbqtimers)
6814{
6815        int ret, dbqtimerix;
6816
6817        ret = 0;
6818        dbqtimerix = 0;
6819        while (dbqtimerix < ndbqtimers) {
6820                int nparams, param;
6821                u32 params[7], vals[7];
6822
6823                nparams = ndbqtimers - dbqtimerix;
6824                if (nparams > ARRAY_SIZE(params))
6825                        nparams = ARRAY_SIZE(params);
6826
6827                for (param = 0; param < nparams; param++)
6828                        params[param] =
6829                          (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6830                           FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMER) |
6831                           FW_PARAMS_PARAM_Y_V(dbqtimerix + param));
6832                ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
6833                                      nparams, params, vals);
6834                if (ret)
6835                        break;
6836
6837                for (param = 0; param < nparams; param++)
6838                        dbqtimers[dbqtimerix++] = vals[param];
6839        }
6840        return ret;
6841}
6842
6843/**
6844 *      t4_fw_hello - establish communication with FW
6845 *      @adap: the adapter
6846 *      @mbox: mailbox to use for the FW command
6847 *      @evt_mbox: mailbox to receive async FW events
6848 *      @master: specifies the caller's willingness to be the device master
6849 *      @state: returns the current device state (if non-NULL)
6850 *
6851 *      Issues a command to establish communication with FW.  Returns either
6852 *      an error (negative integer) or the mailbox of the Master PF.
6853 */
6854int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6855                enum dev_master master, enum dev_state *state)
6856{
6857        int ret;
6858        struct fw_hello_cmd c;
6859        u32 v;
6860        unsigned int master_mbox;
6861        int retries = FW_CMD_HELLO_RETRIES;
6862
6863retry:
6864        memset(&c, 0, sizeof(c));
6865        INIT_CMD(c, HELLO, WRITE);
6866        c.err_to_clearinit = cpu_to_be32(
6867                FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
6868                FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
6869                FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
6870                                        mbox : FW_HELLO_CMD_MBMASTER_M) |
6871                FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
6872                FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
6873                FW_HELLO_CMD_CLEARINIT_F);
6874
6875        /*
6876         * Issue the HELLO command to the firmware.  If it's not successful
6877         * but indicates that we got a "busy" or "timeout" condition, retry
6878         * the HELLO until we exhaust our retry limit.  If we do exceed our
6879         * retry limit, check to see if the firmware left us any error
6880         * information and report that if so.
6881         */
6882        ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6883        if (ret < 0) {
6884                if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6885                        goto retry;
6886                if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
6887                        t4_report_fw_error(adap);
6888                return ret;
6889        }
6890
6891        v = be32_to_cpu(c.err_to_clearinit);
6892        master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
6893        if (state) {
6894                if (v & FW_HELLO_CMD_ERR_F)
6895                        *state = DEV_STATE_ERR;
6896                else if (v & FW_HELLO_CMD_INIT_F)
6897                        *state = DEV_STATE_INIT;
6898                else
6899                        *state = DEV_STATE_UNINIT;
6900        }
6901
6902        /*
6903         * If we're not the Master PF then we need to wait around for the
6904         * Master PF Driver to finish setting up the adapter.
6905         *
6906         * Note that we also do this wait if we're a non-Master-capable PF and
6907         * there is no current Master PF; a Master PF may show up momentarily
6908         * and we wouldn't want to fail pointlessly.  (This can happen when an
6909         * OS loads lots of different drivers rapidly at the same time).  In
6910         * this case, the Master PF returned by the firmware will be
6911         * PCIE_FW_MASTER_M so the test below will work ...
6912         */
6913        if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
6914            master_mbox != mbox) {
6915                int waiting = FW_CMD_HELLO_TIMEOUT;
6916
6917                /*
6918                 * Wait for the firmware to either indicate an error or
6919                 * initialized state.  If we see either of these we bail out
6920                 * and report the issue to the caller.  If we exhaust the
6921                 * "hello timeout" and we haven't exhausted our retries, try
6922                 * again.  Otherwise bail with a timeout error.
6923                 */
6924                for (;;) {
6925                        u32 pcie_fw;
6926
6927                        msleep(50);
6928                        waiting -= 50;
6929
6930                        /*
6931                         * If neither Error nor Initialized are indicated
6932                         * by the firmware keep waiting till we exhaust our
6933                         * timeout ... and then retry if we haven't exhausted
6934                         * our retries ...
6935                         */
6936                        pcie_fw = t4_read_reg(adap, PCIE_FW_A);
6937                        if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
6938                                if (waiting <= 0) {
6939                                        if (retries-- > 0)
6940                                                goto retry;
6941
6942                                        return -ETIMEDOUT;
6943                                }
6944                                continue;
6945                        }
6946
6947                        /*
6948                         * We either have an Error or Initialized condition
6949                         * report errors preferentially.
6950                         */
6951                        if (state) {
6952                                if (pcie_fw & PCIE_FW_ERR_F)
6953                                        *state = DEV_STATE_ERR;
6954                                else if (pcie_fw & PCIE_FW_INIT_F)
6955                                        *state = DEV_STATE_INIT;
6956                        }
6957
6958                        /*
6959                         * If we arrived before a Master PF was selected and
6960                         * there's not a valid Master PF, grab its identity
6961                         * for our caller.
6962                         */
6963                        if (master_mbox == PCIE_FW_MASTER_M &&
6964                            (pcie_fw & PCIE_FW_MASTER_VLD_F))
6965                                master_mbox = PCIE_FW_MASTER_G(pcie_fw);
6966                        break;
6967                }
6968        }
6969
6970        return master_mbox;
6971}
6972
6973/**
6974 *      t4_fw_bye - end communication with FW
6975 *      @adap: the adapter
6976 *      @mbox: mailbox to use for the FW command
6977 *
6978 *      Issues a command to terminate communication with FW.
6979 */
6980int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6981{
6982        struct fw_bye_cmd c;
6983
6984        memset(&c, 0, sizeof(c));
6985        INIT_CMD(c, BYE, WRITE);
6986        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6987}
6988
6989/**
6990 *      t4_init_cmd - ask FW to initialize the device
6991 *      @adap: the adapter
6992 *      @mbox: mailbox to use for the FW command
6993 *
6994 *      Issues a command to FW to partially initialize the device.  This
6995 *      performs initialization that generally doesn't depend on user input.
6996 */
6997int t4_early_init(struct adapter *adap, unsigned int mbox)
6998{
6999        struct fw_initialize_cmd c;
7000
7001        memset(&c, 0, sizeof(c));
7002        INIT_CMD(c, INITIALIZE, WRITE);
7003        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7004}
7005
7006/**
7007 *      t4_fw_reset - issue a reset to FW
7008 *      @adap: the adapter
7009 *      @mbox: mailbox to use for the FW command
7010 *      @reset: specifies the type of reset to perform
7011 *
7012 *      Issues a reset command of the specified type to FW.
7013 */
7014int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
7015{
7016        struct fw_reset_cmd c;
7017
7018        memset(&c, 0, sizeof(c));
7019        INIT_CMD(c, RESET, WRITE);
7020        c.val = cpu_to_be32(reset);
7021        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7022}
7023
7024/**
7025 *      t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7026 *      @adap: the adapter
7027 *      @mbox: mailbox to use for the FW RESET command (if desired)
7028 *      @force: force uP into RESET even if FW RESET command fails
7029 *
7030 *      Issues a RESET command to firmware (if desired) with a HALT indication
7031 *      and then puts the microprocessor into RESET state.  The RESET command
7032 *      will only be issued if a legitimate mailbox is provided (mbox <=
7033 *      PCIE_FW_MASTER_M).
7034 *
7035 *      This is generally used in order for the host to safely manipulate the
7036 *      adapter without fear of conflicting with whatever the firmware might
7037 *      be doing.  The only way out of this state is to RESTART the firmware
7038 *      ...
7039 */
7040static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7041{
7042        int ret = 0;
7043
7044        /*
7045         * If a legitimate mailbox is provided, issue a RESET command
7046         * with a HALT indication.
7047         */
7048        if (mbox <= PCIE_FW_MASTER_M) {
7049                struct fw_reset_cmd c;
7050
7051                memset(&c, 0, sizeof(c));
7052                INIT_CMD(c, RESET, WRITE);
7053                c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
7054                c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
7055                ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7056        }
7057
7058        /*
7059         * Normally we won't complete the operation if the firmware RESET
7060         * command fails but if our caller insists we'll go ahead and put the
7061         * uP into RESET.  This can be useful if the firmware is hung or even
7062         * missing ...  We'll have to take the risk of putting the uP into
7063         * RESET without the cooperation of firmware in that case.
7064         *
7065         * We also force the firmware's HALT flag to be on in case we bypassed
7066         * the firmware RESET command above or we're dealing with old firmware
7067         * which doesn't have the HALT capability.  This will serve as a flag
7068         * for the incoming firmware to know that it's coming out of a HALT
7069         * rather than a RESET ... if it's new enough to understand that ...
7070         */
7071        if (ret == 0 || force) {
7072                t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
7073                t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
7074                                 PCIE_FW_HALT_F);
7075        }
7076
7077        /*
7078         * And we always return the result of the firmware RESET command
7079         * even when we force the uP into RESET ...
7080         */
7081        return ret;
7082}
7083
7084/**
7085 *      t4_fw_restart - restart the firmware by taking the uP out of RESET
7086 *      @adap: the adapter
7087 *      @mbox: mailbox to use for the FW command
7088 *      @reset: if we want to do a RESET to restart things
7089 *
7090 *      Restart firmware previously halted by t4_fw_halt().  On successful
7091 *      return the previous PF Master remains as the new PF Master and there
7092 *      is no need to issue a new HELLO command, etc.
7093 *
7094 *      We do this in two ways:
7095 *
7096 *       1. If we're dealing with newer firmware we'll simply want to take
7097 *          the chip's microprocessor out of RESET.  This will cause the
7098 *          firmware to start up from its start vector.  And then we'll loop
7099 *          until the firmware indicates it's started again (PCIE_FW.HALT
7100 *          reset to 0) or we timeout.
7101 *
7102 *       2. If we're dealing with older firmware then we'll need to RESET
7103 *          the chip since older firmware won't recognize the PCIE_FW.HALT
7104 *          flag and automatically RESET itself on startup.
7105 */
7106static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
7107{
7108        if (reset) {
7109                /*
7110                 * Since we're directing the RESET instead of the firmware
7111                 * doing it automatically, we need to clear the PCIE_FW.HALT
7112                 * bit.
7113                 */
7114                t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
7115
7116                /*
7117                 * If we've been given a valid mailbox, first try to get the
7118                 * firmware to do the RESET.  If that works, great and we can
7119                 * return success.  Otherwise, if we haven't been given a
7120                 * valid mailbox or the RESET command failed, fall back to
7121                 * hitting the chip with a hammer.
7122                 */
7123                if (mbox <= PCIE_FW_MASTER_M) {
7124                        t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7125                        msleep(100);
7126                        if (t4_fw_reset(adap, mbox,
7127                                        PIORST_F | PIORSTMODE_F) == 0)
7128                                return 0;
7129                }
7130
7131                t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
7132                msleep(2000);
7133        } else {
7134                int ms;
7135
7136                t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7137                for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7138                        if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
7139                                return 0;
7140                        msleep(100);
7141                        ms += 100;
7142                }
7143                return -ETIMEDOUT;
7144        }
7145        return 0;
7146}
7147
7148/**
7149 *      t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7150 *      @adap: the adapter
7151 *      @mbox: mailbox to use for the FW RESET command (if desired)
7152 *      @fw_data: the firmware image to write
7153 *      @size: image size
7154 *      @force: force upgrade even if firmware doesn't cooperate
7155 *
7156 *      Perform all of the steps necessary for upgrading an adapter's
7157 *      firmware image.  Normally this requires the cooperation of the
7158 *      existing firmware in order to halt all existing activities
7159 *      but if an invalid mailbox token is passed in we skip that step
7160 *      (though we'll still put the adapter microprocessor into RESET in
7161 *      that case).
7162 *
7163 *      On successful return the new firmware will have been loaded and
7164 *      the adapter will have been fully RESET losing all previous setup
7165 *      state.  On unsuccessful return the adapter may be completely hosed ...
7166 *      positive errno indicates that the adapter is ~probably~ intact, a
7167 *      negative errno indicates that things are looking bad ...
7168 */
7169int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7170                  const u8 *fw_data, unsigned int size, int force)
7171{
7172        const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7173        int reset, ret;
7174
7175        if (!t4_fw_matches_chip(adap, fw_hdr))
7176                return -EINVAL;
7177
7178        /* Disable CXGB4_FW_OK flag so that mbox commands with CXGB4_FW_OK flag
7179         * set wont be sent when we are flashing FW.
7180         */
7181        adap->flags &= ~CXGB4_FW_OK;
7182
7183        ret = t4_fw_halt(adap, mbox, force);
7184        if (ret < 0 && !force)
7185                goto out;
7186
7187        ret = t4_load_fw(adap, fw_data, size);
7188        if (ret < 0)
7189                goto out;
7190
7191        /*
7192         * If there was a Firmware Configuration File stored in FLASH,
7193         * there's a good chance that it won't be compatible with the new
7194         * Firmware.  In order to prevent difficult to diagnose adapter
7195         * initialization issues, we clear out the Firmware Configuration File
7196         * portion of the FLASH .  The user will need to re-FLASH a new
7197         * Firmware Configuration File which is compatible with the new
7198         * Firmware if that's desired.
7199         */
7200        (void)t4_load_cfg(adap, NULL, 0);
7201
7202        /*
7203         * Older versions of the firmware don't understand the new
7204         * PCIE_FW.HALT flag and so won't know to perform a RESET when they
7205         * restart.  So for newly loaded older firmware we'll have to do the
7206         * RESET for it so it starts up on a clean slate.  We can tell if
7207         * the newly loaded firmware will handle this right by checking
7208         * its header flags to see if it advertises the capability.
7209         */
7210        reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
7211        ret = t4_fw_restart(adap, mbox, reset);
7212
7213        /* Grab potentially new Firmware Device Log parameters so we can see
7214         * how healthy the new Firmware is.  It's okay to contact the new
7215         * Firmware for these parameters even though, as far as it's
7216         * concerned, we've never said "HELLO" to it ...
7217         */
7218        (void)t4_init_devlog_params(adap);
7219out:
7220        adap->flags |= CXGB4_FW_OK;
7221        return ret;
7222}
7223
7224/**
7225 *      t4_fl_pkt_align - return the fl packet alignment
7226 *      @adap: the adapter
7227 *
7228 *      T4 has a single field to specify the packing and padding boundary.
7229 *      T5 onwards has separate fields for this and hence the alignment for
7230 *      next packet offset is maximum of these two.
7231 *
7232 */
7233int t4_fl_pkt_align(struct adapter *adap)
7234{
7235        u32 sge_control, sge_control2;
7236        unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
7237
7238        sge_control = t4_read_reg(adap, SGE_CONTROL_A);
7239
7240        /* T4 uses a single control field to specify both the PCIe Padding and
7241         * Packing Boundary.  T5 introduced the ability to specify these
7242         * separately.  The actual Ingress Packet Data alignment boundary
7243         * within Packed Buffer Mode is the maximum of these two
7244         * specifications.  (Note that it makes no real practical sense to
7245         * have the Padding Boundary be larger than the Packing Boundary but you
7246         * could set the chip up that way and, in fact, legacy T4 code would
7247         * end doing this because it would initialize the Padding Boundary and
7248         * leave the Packing Boundary initialized to 0 (16 bytes).)
7249         * Padding Boundary values in T6 starts from 8B,
7250         * where as it is 32B for T4 and T5.
7251         */
7252        if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
7253                ingpad_shift = INGPADBOUNDARY_SHIFT_X;
7254        else
7255                ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
7256
7257        ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
7258
7259        fl_align = ingpadboundary;
7260        if (!is_t4(adap->params.chip)) {
7261                /* T5 has a weird interpretation of one of the PCIe Packing
7262                 * Boundary values.  No idea why ...
7263                 */
7264                sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
7265                ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
7266                if (ingpackboundary == INGPACKBOUNDARY_16B_X)
7267                        ingpackboundary = 16;
7268                else
7269                        ingpackboundary = 1 << (ingpackboundary +
7270                                                INGPACKBOUNDARY_SHIFT_X);
7271
7272                fl_align = max(ingpadboundary, ingpackboundary);
7273        }
7274        return fl_align;
7275}
7276
7277/**
7278 *      t4_fixup_host_params - fix up host-dependent parameters
7279 *      @adap: the adapter
7280 *      @page_size: the host's Base Page Size
7281 *      @cache_line_size: the host's Cache Line Size
7282 *
7283 *      Various registers in T4 contain values which are dependent on the
7284 *      host's Base Page and Cache Line Sizes.  This function will fix all of
7285 *      those registers with the appropriate values as passed in ...
7286 */
7287int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
7288                         unsigned int cache_line_size)
7289{
7290        unsigned int page_shift = fls(page_size) - 1;
7291        unsigned int sge_hps = page_shift - 10;
7292        unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
7293        unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
7294        unsigned int fl_align_log = fls(fl_align) - 1;
7295
7296        t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
7297                     HOSTPAGESIZEPF0_V(sge_hps) |
7298                     HOSTPAGESIZEPF1_V(sge_hps) |
7299                     HOSTPAGESIZEPF2_V(sge_hps) |
7300                     HOSTPAGESIZEPF3_V(sge_hps) |
7301                     HOSTPAGESIZEPF4_V(sge_hps) |
7302                     HOSTPAGESIZEPF5_V(sge_hps) |
7303                     HOSTPAGESIZEPF6_V(sge_hps) |
7304                     HOSTPAGESIZEPF7_V(sge_hps));
7305
7306        if (is_t4(adap->params.chip)) {
7307                t4_set_reg_field(adap, SGE_CONTROL_A,
7308                                 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7309                                 EGRSTATUSPAGESIZE_F,
7310                                 INGPADBOUNDARY_V(fl_align_log -
7311                                                  INGPADBOUNDARY_SHIFT_X) |
7312                                 EGRSTATUSPAGESIZE_V(stat_len != 64));
7313        } else {
7314                unsigned int pack_align;
7315                unsigned int ingpad, ingpack;
7316
7317                /* T5 introduced the separation of the Free List Padding and
7318                 * Packing Boundaries.  Thus, we can select a smaller Padding
7319                 * Boundary to avoid uselessly chewing up PCIe Link and Memory
7320                 * Bandwidth, and use a Packing Boundary which is large enough
7321                 * to avoid false sharing between CPUs, etc.
7322                 *
7323                 * For the PCI Link, the smaller the Padding Boundary the
7324                 * better.  For the Memory Controller, a smaller Padding
7325                 * Boundary is better until we cross under the Memory Line
7326                 * Size (the minimum unit of transfer to/from Memory).  If we
7327                 * have a Padding Boundary which is smaller than the Memory
7328                 * Line Size, that'll involve a Read-Modify-Write cycle on the
7329                 * Memory Controller which is never good.
7330                 */
7331
7332                /* We want the Packing Boundary to be based on the Cache Line
7333                 * Size in order to help avoid False Sharing performance
7334                 * issues between CPUs, etc.  We also want the Packing
7335                 * Boundary to incorporate the PCI-E Maximum Payload Size.  We
7336                 * get best performance when the Packing Boundary is a
7337                 * multiple of the Maximum Payload Size.
7338                 */
7339                pack_align = fl_align;
7340                if (pci_is_pcie(adap->pdev)) {
7341                        unsigned int mps, mps_log;
7342                        u16 devctl;
7343
7344                        /* The PCIe Device Control Maximum Payload Size field
7345                         * [bits 7:5] encodes sizes as powers of 2 starting at
7346                         * 128 bytes.
7347                         */
7348                        pcie_capability_read_word(adap->pdev, PCI_EXP_DEVCTL,
7349                                                  &devctl);
7350                        mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
7351                        mps = 1 << mps_log;
7352                        if (mps > pack_align)
7353                                pack_align = mps;
7354                }
7355
7356                /* N.B. T5/T6 have a crazy special interpretation of the "0"
7357                 * value for the Packing Boundary.  This corresponds to 16
7358                 * bytes instead of the expected 32 bytes.  So if we want 32
7359                 * bytes, the best we can really do is 64 bytes ...
7360                 */
7361                if (pack_align <= 16) {
7362                        ingpack = INGPACKBOUNDARY_16B_X;
7363                        fl_align = 16;
7364                } else if (pack_align == 32) {
7365                        ingpack = INGPACKBOUNDARY_64B_X;
7366                        fl_align = 64;
7367                } else {
7368                        unsigned int pack_align_log = fls(pack_align) - 1;
7369
7370                        ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
7371                        fl_align = pack_align;
7372                }
7373
7374                /* Use the smallest Ingress Padding which isn't smaller than
7375                 * the Memory Controller Read/Write Size.  We'll take that as
7376                 * being 8 bytes since we don't know of any system with a
7377                 * wider Memory Controller Bus Width.
7378                 */
7379                if (is_t5(adap->params.chip))
7380                        ingpad = INGPADBOUNDARY_32B_X;
7381                else
7382                        ingpad = T6_INGPADBOUNDARY_8B_X;
7383
7384                t4_set_reg_field(adap, SGE_CONTROL_A,
7385                                 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7386                                 EGRSTATUSPAGESIZE_F,
7387                                 INGPADBOUNDARY_V(ingpad) |
7388                                 EGRSTATUSPAGESIZE_V(stat_len != 64));
7389                t4_set_reg_field(adap, SGE_CONTROL2_A,
7390                                 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
7391                                 INGPACKBOUNDARY_V(ingpack));
7392        }
7393        /*
7394         * Adjust various SGE Free List Host Buffer Sizes.
7395         *
7396         * This is something of a crock since we're using fixed indices into
7397         * the array which are also known by the sge.c code and the T4
7398         * Firmware Configuration File.  We need to come up with a much better
7399         * approach to managing this array.  For now, the first four entries
7400         * are:
7401         *
7402         *   0: Host Page Size
7403         *   1: 64KB
7404         *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
7405         *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
7406         *
7407         * For the single-MTU buffers in unpacked mode we need to include
7408         * space for the SGE Control Packet Shift, 14 byte Ethernet header,
7409         * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
7410         * Padding boundary.  All of these are accommodated in the Factory
7411         * Default Firmware Configuration File but we need to adjust it for
7412         * this host's cache line size.
7413         */
7414        t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
7415        t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
7416                     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
7417                     & ~(fl_align-1));
7418        t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
7419                     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
7420                     & ~(fl_align-1));
7421
7422        t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
7423
7424        return 0;
7425}
7426
7427/**
7428 *      t4_fw_initialize - ask FW to initialize the device
7429 *      @adap: the adapter
7430 *      @mbox: mailbox to use for the FW command
7431 *
7432 *      Issues a command to FW to partially initialize the device.  This
7433 *      performs initialization that generally doesn't depend on user input.
7434 */
7435int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7436{
7437        struct fw_initialize_cmd c;
7438
7439        memset(&c, 0, sizeof(c));
7440        INIT_CMD(c, INITIALIZE, WRITE);
7441        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7442}
7443
7444/**
7445 *      t4_query_params_rw - query FW or device parameters
7446 *      @adap: the adapter
7447 *      @mbox: mailbox to use for the FW command
7448 *      @pf: the PF
7449 *      @vf: the VF
7450 *      @nparams: the number of parameters
7451 *      @params: the parameter names
7452 *      @val: the parameter values
7453 *      @rw: Write and read flag
7454 *      @sleep_ok: if true, we may sleep awaiting mbox cmd completion
7455 *
7456 *      Reads the value of FW or device parameters.  Up to 7 parameters can be
7457 *      queried at once.
7458 */
7459int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7460                       unsigned int vf, unsigned int nparams, const u32 *params,
7461                       u32 *val, int rw, bool sleep_ok)
7462{
7463        int i, ret;
7464        struct fw_params_cmd c;
7465        __be32 *p = &c.param[0].mnem;
7466
7467        if (nparams > 7)
7468                return -EINVAL;
7469
7470        memset(&c, 0, sizeof(c));
7471        c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7472                                  FW_CMD_REQUEST_F | FW_CMD_READ_F |
7473                                  FW_PARAMS_CMD_PFN_V(pf) |
7474                                  FW_PARAMS_CMD_VFN_V(vf));
7475        c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7476
7477        for (i = 0; i < nparams; i++) {
7478                *p++ = cpu_to_be32(*params++);
7479                if (rw)
7480                        *p = cpu_to_be32(*(val + i));
7481                p++;
7482        }
7483
7484        ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7485        if (ret == 0)
7486                for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7487                        *val++ = be32_to_cpu(*p);
7488        return ret;
7489}
7490
7491int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7492                    unsigned int vf, unsigned int nparams, const u32 *params,
7493                    u32 *val)
7494{
7495        return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7496                                  true);
7497}
7498
7499int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf,
7500                       unsigned int vf, unsigned int nparams, const u32 *params,
7501                       u32 *val)
7502{
7503        return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7504                                  false);
7505}
7506
7507/**
7508 *      t4_set_params_timeout - sets FW or device parameters
7509 *      @adap: the adapter
7510 *      @mbox: mailbox to use for the FW command
7511 *      @pf: the PF
7512 *      @vf: the VF
7513 *      @nparams: the number of parameters
7514 *      @params: the parameter names
7515 *      @val: the parameter values
7516 *      @timeout: the timeout time
7517 *
7518 *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7519 *      specified at once.
7520 */
7521int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7522                          unsigned int pf, unsigned int vf,
7523                          unsigned int nparams, const u32 *params,
7524                          const u32 *val, int timeout)
7525{
7526        struct fw_params_cmd c;
7527        __be32 *p = &c.param[0].mnem;
7528
7529        if (nparams > 7)
7530                return -EINVAL;
7531
7532        memset(&c, 0, sizeof(c));
7533        c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7534                                  FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7535                                  FW_PARAMS_CMD_PFN_V(pf) |
7536                                  FW_PARAMS_CMD_VFN_V(vf));
7537        c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7538
7539        while (nparams--) {
7540                *p++ = cpu_to_be32(*params++);
7541                *p++ = cpu_to_be32(*val++);
7542        }
7543
7544        return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7545}
7546
7547/**
7548 *      t4_set_params - sets FW or device parameters
7549 *      @adap: the adapter
7550 *      @mbox: mailbox to use for the FW command
7551 *      @pf: the PF
7552 *      @vf: the VF
7553 *      @nparams: the number of parameters
7554 *      @params: the parameter names
7555 *      @val: the parameter values
7556 *
7557 *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7558 *      specified at once.
7559 */
7560int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7561                  unsigned int vf, unsigned int nparams, const u32 *params,
7562                  const u32 *val)
7563{
7564        return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7565                                     FW_CMD_MAX_TIMEOUT);
7566}
7567
7568/**
7569 *      t4_cfg_pfvf - configure PF/VF resource limits
7570 *      @adap: the adapter
7571 *      @mbox: mailbox to use for the FW command
7572 *      @pf: the PF being configured
7573 *      @vf: the VF being configured
7574 *      @txq: the max number of egress queues
7575 *      @txq_eth_ctrl: the max number of egress Ethernet or control queues
7576 *      @rxqi: the max number of interrupt-capable ingress queues
7577 *      @rxq: the max number of interruptless ingress queues
7578 *      @tc: the PCI traffic class
7579 *      @vi: the max number of virtual interfaces
7580 *      @cmask: the channel access rights mask for the PF/VF
7581 *      @pmask: the port access rights mask for the PF/VF
7582 *      @nexact: the maximum number of exact MPS filters
7583 *      @rcaps: read capabilities
7584 *      @wxcaps: write/execute capabilities
7585 *
7586 *      Configures resource limits and capabilities for a physical or virtual
7587 *      function.
7588 */
7589int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7590                unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7591                unsigned int rxqi, unsigned int rxq, unsigned int tc,
7592                unsigned int vi, unsigned int cmask, unsigned int pmask,
7593                unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7594{
7595        struct fw_pfvf_cmd c;
7596
7597        memset(&c, 0, sizeof(c));
7598        c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
7599                                  FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
7600                                  FW_PFVF_CMD_VFN_V(vf));
7601        c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7602        c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
7603                                     FW_PFVF_CMD_NIQ_V(rxq));
7604        c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
7605                                    FW_PFVF_CMD_PMASK_V(pmask) |
7606                                    FW_PFVF_CMD_NEQ_V(txq));
7607        c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
7608                                      FW_PFVF_CMD_NVI_V(vi) |
7609                                      FW_PFVF_CMD_NEXACTF_V(nexact));
7610        c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
7611                                        FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
7612                                        FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
7613        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7614}
7615
7616/**
7617 *      t4_alloc_vi - allocate a virtual interface
7618 *      @adap: the adapter
7619 *      @mbox: mailbox to use for the FW command
7620 *      @port: physical port associated with the VI
7621 *      @pf: the PF owning the VI
7622 *      @vf: the VF owning the VI
7623 *      @nmac: number of MAC addresses needed (1 to 5)
7624 *      @mac: the MAC addresses of the VI
7625 *      @rss_size: size of RSS table slice associated with this VI
7626 *      @vivld: the destination to store the VI Valid value.
7627 *      @vin: the destination to store the VIN value.
7628 *
7629 *      Allocates a virtual interface for the given physical port.  If @mac is
7630 *      not %NULL it contains the MAC addresses of the VI as assigned by FW.
7631 *      @mac should be large enough to hold @nmac Ethernet addresses, they are
7632 *      stored consecutively so the space needed is @nmac * 6 bytes.
7633 *      Returns a negative error number or the non-negative VI id.
7634 */
7635int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7636                unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7637                unsigned int *rss_size, u8 *vivld, u8 *vin)
7638{
7639        int ret;
7640        struct fw_vi_cmd c;
7641
7642        memset(&c, 0, sizeof(c));
7643        c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
7644                                  FW_CMD_WRITE_F | FW_CMD_EXEC_F |
7645                                  FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
7646        c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
7647        c.portid_pkd = FW_VI_CMD_PORTID_V(port);
7648        c.nmac = nmac - 1;
7649
7650        ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7651        if (ret)
7652                return ret;
7653
7654        if (mac) {
7655                memcpy(mac, c.mac, sizeof(c.mac));
7656                switch (nmac) {
7657                case 5:
7658                        memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7659                        fallthrough;
7660                case 4:
7661                        memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7662                        fallthrough;
7663                case 3:
7664                        memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7665                        fallthrough;
7666                case 2:
7667                        memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7668                }
7669        }
7670        if (rss_size)
7671                *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
7672
7673        if (vivld)
7674                *vivld = FW_VI_CMD_VFVLD_G(be32_to_cpu(c.alloc_to_len16));
7675
7676        if (vin)
7677                *vin = FW_VI_CMD_VIN_G(be32_to_cpu(c.alloc_to_len16));
7678
7679        return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
7680}
7681
7682/**
7683 *      t4_free_vi - free a virtual interface
7684 *      @adap: the adapter
7685 *      @mbox: mailbox to use for the FW command
7686 *      @pf: the PF owning the VI
7687 *      @vf: the VF owning the VI
7688 *      @viid: virtual interface identifiler
7689 *
7690 *      Free a previously allocated virtual interface.
7691 */
7692int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7693               unsigned int vf, unsigned int viid)
7694{
7695        struct fw_vi_cmd c;
7696
7697        memset(&c, 0, sizeof(c));
7698        c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
7699                                  FW_CMD_REQUEST_F |
7700                                  FW_CMD_EXEC_F |
7701                                  FW_VI_CMD_PFN_V(pf) |
7702                                  FW_VI_CMD_VFN_V(vf));
7703        c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
7704        c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
7705
7706        return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7707}
7708
7709/**
7710 *      t4_set_rxmode - set Rx properties of a virtual interface
7711 *      @adap: the adapter
7712 *      @mbox: mailbox to use for the FW command
7713 *      @viid: the VI id
7714 *      @viid_mirror: the mirror VI id
7715 *      @mtu: the new MTU or -1
7716 *      @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7717 *      @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7718 *      @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7719 *      @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7720 *      @sleep_ok: if true we may sleep while awaiting command completion
7721 *
7722 *      Sets Rx properties of a virtual interface.
7723 */
7724int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7725                  unsigned int viid_mirror, int mtu, int promisc, int all_multi,
7726                  int bcast, int vlanex, bool sleep_ok)
7727{
7728        struct fw_vi_rxmode_cmd c, c_mirror;
7729        int ret;
7730
7731        /* convert to FW values */
7732        if (mtu < 0)
7733                mtu = FW_RXMODE_MTU_NO_CHG;
7734        if (promisc < 0)
7735                promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
7736        if (all_multi < 0)
7737                all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
7738        if (bcast < 0)
7739                bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
7740        if (vlanex < 0)
7741                vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
7742
7743        memset(&c, 0, sizeof(c));
7744        c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7745                                   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7746                                   FW_VI_RXMODE_CMD_VIID_V(viid));
7747        c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7748        c.mtu_to_vlanexen =
7749                cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
7750                            FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
7751                            FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
7752                            FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
7753                            FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
7754
7755        if (viid_mirror) {
7756                memcpy(&c_mirror, &c, sizeof(c_mirror));
7757                c_mirror.op_to_viid =
7758                        cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7759                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7760                                    FW_VI_RXMODE_CMD_VIID_V(viid_mirror));
7761        }
7762
7763        ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7764        if (ret)
7765                return ret;
7766
7767        if (viid_mirror)
7768                ret = t4_wr_mbox_meat(adap, mbox, &c_mirror, sizeof(c_mirror),
7769                                      NULL, sleep_ok);
7770
7771        return ret;
7772}
7773
7774/**
7775 *      t4_free_encap_mac_filt - frees MPS entry at given index
7776 *      @adap: the adapter
7777 *      @viid: the VI id
7778 *      @idx: index of MPS entry to be freed
7779 *      @sleep_ok: call is allowed to sleep
7780 *
7781 *      Frees the MPS entry at supplied index
7782 *
7783 *      Returns a negative error number or zero on success
7784 */
7785int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
7786                           int idx, bool sleep_ok)
7787{
7788        struct fw_vi_mac_exact *p;
7789        u8 addr[] = {0, 0, 0, 0, 0, 0};
7790        struct fw_vi_mac_cmd c;
7791        int ret = 0;
7792        u32 exact;
7793
7794        memset(&c, 0, sizeof(c));
7795        c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7796                                   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7797                                   FW_CMD_EXEC_V(0) |
7798                                   FW_VI_MAC_CMD_VIID_V(viid));
7799        exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC);
7800        c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7801                                          exact |
7802                                          FW_CMD_LEN16_V(1));
7803        p = c.u.exact;
7804        p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7805                                      FW_VI_MAC_CMD_IDX_V(idx));
7806        memcpy(p->macaddr, addr, sizeof(p->macaddr));
7807        ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7808        return ret;
7809}
7810
7811/**
7812 *      t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
7813 *      @adap: the adapter
7814 *      @viid: the VI id
7815 *      @addr: the MAC address
7816 *      @mask: the mask
7817 *      @idx: index of the entry in mps tcam
7818 *      @lookup_type: MAC address for inner (1) or outer (0) header
7819 *      @port_id: the port index
7820 *      @sleep_ok: call is allowed to sleep
7821 *
7822 *      Removes the mac entry at the specified index using raw mac interface.
7823 *
7824 *      Returns a negative error number on failure.
7825 */
7826int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
7827                         const u8 *addr, const u8 *mask, unsigned int idx,
7828                         u8 lookup_type, u8 port_id, bool sleep_ok)
7829{
7830        struct fw_vi_mac_cmd c;
7831        struct fw_vi_mac_raw *p = &c.u.raw;
7832        u32 val;
7833
7834        memset(&c, 0, sizeof(c));
7835        c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7836                                   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7837                                   FW_CMD_EXEC_V(0) |
7838                                   FW_VI_MAC_CMD_VIID_V(viid));
7839        val = FW_CMD_LEN16_V(1) |
7840              FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7841        c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7842                                          FW_CMD_LEN16_V(val));
7843
7844        p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) |
7845                                     FW_VI_MAC_ID_BASED_FREE);
7846
7847        /* Lookup Type. Outer header: 0, Inner header: 1 */
7848        p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7849                                   DATAPORTNUM_V(port_id));
7850        /* Lookup mask and port mask */
7851        p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7852                                    DATAPORTNUM_V(DATAPORTNUM_M));
7853
7854        /* Copy the address and the mask */
7855        memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7856        memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7857
7858        return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7859}
7860
7861/**
7862 *      t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
7863 *      @adap: the adapter
7864 *      @viid: the VI id
7865 *      @addr: the MAC address
7866 *      @mask: the mask
7867 *      @vni: the VNI id for the tunnel protocol
7868 *      @vni_mask: mask for the VNI id
7869 *      @dip_hit: to enable DIP match for the MPS entry
7870 *      @lookup_type: MAC address for inner (1) or outer (0) header
7871 *      @sleep_ok: call is allowed to sleep
7872 *
7873 *      Allocates an MPS entry with specified MAC address and VNI value.
7874 *
7875 *      Returns a negative error number or the allocated index for this mac.
7876 */
7877int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
7878                            const u8 *addr, const u8 *mask, unsigned int vni,
7879                            unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
7880                            bool sleep_ok)
7881{
7882        struct fw_vi_mac_cmd c;
7883        struct fw_vi_mac_vni *p = c.u.exact_vni;
7884        int ret = 0;
7885        u32 val;
7886
7887        memset(&c, 0, sizeof(c));
7888        c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7889                                   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7890                                   FW_VI_MAC_CMD_VIID_V(viid));
7891        val = FW_CMD_LEN16_V(1) |
7892              FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI);
7893        c.freemacs_to_len16 = cpu_to_be32(val);
7894        p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7895                                      FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
7896        memcpy(p->macaddr, addr, sizeof(p->macaddr));
7897        memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
7898
7899        p->lookup_type_to_vni =
7900                cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) |
7901                            FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) |
7902                            FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type));
7903        p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask));
7904        ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7905        if (ret == 0)
7906                ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7907        return ret;
7908}
7909
7910/**
7911 *      t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
7912 *      @adap: the adapter
7913 *      @viid: the VI id
7914 *      @addr: the MAC address
7915 *      @mask: the mask
7916 *      @idx: index at which to add this entry
7917 *      @lookup_type: MAC address for inner (1) or outer (0) header
7918 *      @port_id: the port index
7919 *      @sleep_ok: call is allowed to sleep
7920 *
7921 *      Adds the mac entry at the specified index using raw mac interface.
7922 *
7923 *      Returns a negative error number or the allocated index for this mac.
7924 */
7925int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
7926                          const u8 *addr, const u8 *mask, unsigned int idx,
7927                          u8 lookup_type, u8 port_id, bool sleep_ok)
7928{
7929        int ret = 0;
7930        struct fw_vi_mac_cmd c;
7931        struct fw_vi_mac_raw *p = &c.u.raw;
7932        u32 val;
7933
7934        memset(&c, 0, sizeof(c));
7935        c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7936                                   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7937                                   FW_VI_MAC_CMD_VIID_V(viid));
7938        val = FW_CMD_LEN16_V(1) |
7939              FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7940        c.freemacs_to_len16 = cpu_to_be32(val);
7941
7942        /* Specify that this is an inner mac address */
7943        p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx));
7944
7945        /* Lookup Type. Outer header: 0, Inner header: 1 */
7946        p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7947                                   DATAPORTNUM_V(port_id));
7948        /* Lookup mask and port mask */
7949        p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7950                                    DATAPORTNUM_V(DATAPORTNUM_M));
7951
7952        /* Copy the address and the mask */
7953        memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7954        memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7955
7956        ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7957        if (ret == 0) {
7958                ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd));
7959                if (ret != idx)
7960                        ret = -ENOMEM;
7961        }
7962
7963        return ret;
7964}
7965
7966/**
7967 *      t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7968 *      @adap: the adapter
7969 *      @mbox: mailbox to use for the FW command
7970 *      @viid: the VI id
7971 *      @free: if true any existing filters for this VI id are first removed
7972 *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
7973 *      @addr: the MAC address(es)
7974 *      @idx: where to store the index of each allocated filter
7975 *      @hash: pointer to hash address filter bitmap
7976 *      @sleep_ok: call is allowed to sleep
7977 *
7978 *      Allocates an exact-match filter for each of the supplied addresses and
7979 *      sets it to the corresponding address.  If @idx is not %NULL it should
7980 *      have at least @naddr entries, each of which will be set to the index of
7981 *      the filter allocated for the corresponding MAC address.  If a filter
7982 *      could not be allocated for an address its index is set to 0xffff.
7983 *      If @hash is not %NULL addresses that fail to allocate an exact filter
7984 *      are hashed and update the hash filter bitmap pointed at by @hash.
7985 *
7986 *      Returns a negative error number or the number of filters allocated.
7987 */
7988int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7989                      unsigned int viid, bool free, unsigned int naddr,
7990                      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7991{
7992        int offset, ret = 0;
7993        struct fw_vi_mac_cmd c;
7994        unsigned int nfilters = 0;
7995        unsigned int max_naddr = adap->params.arch.mps_tcam_size;
7996        unsigned int rem = naddr;
7997
7998        if (naddr > max_naddr)
7999                return -EINVAL;
8000
8001        for (offset = 0; offset < naddr ; /**/) {
8002                unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
8003                                         rem : ARRAY_SIZE(c.u.exact));
8004                size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8005                                                     u.exact[fw_naddr]), 16);
8006                struct fw_vi_mac_exact *p;
8007                int i;
8008
8009                memset(&c, 0, sizeof(c));
8010                c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8011                                           FW_CMD_REQUEST_F |
8012                                           FW_CMD_WRITE_F |
8013                                           FW_CMD_EXEC_V(free) |
8014                                           FW_VI_MAC_CMD_VIID_V(viid));
8015                c.freemacs_to_len16 =
8016                        cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
8017                                    FW_CMD_LEN16_V(len16));
8018
8019                for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8020                        p->valid_to_idx =
8021                                cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8022                                            FW_VI_MAC_CMD_IDX_V(
8023                                                    FW_VI_MAC_ADD_MAC));
8024                        memcpy(p->macaddr, addr[offset + i],
8025                               sizeof(p->macaddr));
8026                }
8027
8028                /* It's okay if we run out of space in our MAC address arena.
8029                 * Some of the addresses we submit may get stored so we need
8030                 * to run through the reply to see what the results were ...
8031                 */
8032                ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8033                if (ret && ret != -FW_ENOMEM)
8034                        break;
8035
8036                for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8037                        u16 index = FW_VI_MAC_CMD_IDX_G(
8038                                        be16_to_cpu(p->valid_to_idx));
8039
8040                        if (idx)
8041                                idx[offset + i] = (index >= max_naddr ?
8042                                                   0xffff : index);
8043                        if (index < max_naddr)
8044                                nfilters++;
8045                        else if (hash)
8046                                *hash |= (1ULL <<
8047                                          hash_mac_addr(addr[offset + i]));
8048                }
8049
8050                free = false;
8051                offset += fw_naddr;
8052                rem -= fw_naddr;
8053        }
8054
8055        if (ret == 0 || ret == -FW_ENOMEM)
8056                ret = nfilters;
8057        return ret;
8058}
8059
8060/**
8061 *      t4_free_mac_filt - frees exact-match filters of given MAC addresses
8062 *      @adap: the adapter
8063 *      @mbox: mailbox to use for the FW command
8064 *      @viid: the VI id
8065 *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
8066 *      @addr: the MAC address(es)
8067 *      @sleep_ok: call is allowed to sleep
8068 *
8069 *      Frees the exact-match filter for each of the supplied addresses
8070 *
8071 *      Returns a negative error number or the number of filters freed.
8072 */
8073int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
8074                     unsigned int viid, unsigned int naddr,
8075                     const u8 **addr, bool sleep_ok)
8076{
8077        int offset, ret = 0;
8078        struct fw_vi_mac_cmd c;
8079        unsigned int nfilters = 0;
8080        unsigned int max_naddr = is_t4(adap->params.chip) ?
8081                                       NUM_MPS_CLS_SRAM_L_INSTANCES :
8082                                       NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8083        unsigned int rem = naddr;
8084
8085        if (naddr > max_naddr)
8086                return -EINVAL;
8087
8088        for (offset = 0; offset < (int)naddr ; /**/) {
8089                unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8090                                         ? rem
8091                                         : ARRAY_SIZE(c.u.exact));
8092                size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8093                                                     u.exact[fw_naddr]), 16);
8094                struct fw_vi_mac_exact *p;
8095                int i;
8096
8097                memset(&c, 0, sizeof(c));
8098                c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8099                                     FW_CMD_REQUEST_F |
8100                                     FW_CMD_WRITE_F |
8101                                     FW_CMD_EXEC_V(0) |
8102                                     FW_VI_MAC_CMD_VIID_V(viid));
8103                c.freemacs_to_len16 =
8104                                cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
8105                                            FW_CMD_LEN16_V(len16));
8106
8107                for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
8108                        p->valid_to_idx = cpu_to_be16(
8109                                FW_VI_MAC_CMD_VALID_F |
8110                                FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
8111                        memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8112                }
8113
8114                ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8115                if (ret)
8116                        break;
8117
8118                for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8119                        u16 index = FW_VI_MAC_CMD_IDX_G(
8120                                                be16_to_cpu(p->valid_to_idx));
8121
8122                        if (index < max_naddr)
8123                                nfilters++;
8124                }
8125
8126                offset += fw_naddr;
8127                rem -= fw_naddr;
8128        }
8129
8130        if (ret == 0)
8131                ret = nfilters;
8132        return ret;
8133}
8134
8135/**
8136 *      t4_change_mac - modifies the exact-match filter for a MAC address
8137 *      @adap: the adapter
8138 *      @mbox: mailbox to use for the FW command
8139 *      @viid: the VI id
8140 *      @idx: index of existing filter for old value of MAC address, or -1
8141 *      @addr: the new MAC address value
8142 *      @persist: whether a new MAC allocation should be persistent
8143 *      @smt_idx: the destination to store the new SMT index.
8144 *
8145 *      Modifies an exact-match filter and sets it to the new MAC address.
8146 *      Note that in general it is not possible to modify the value of a given
8147 *      filter so the generic way to modify an address filter is to free the one
8148 *      being used by the old address value and allocate a new filter for the
8149 *      new address value.  @idx can be -1 if the address is a new addition.
8150 *
8151 *      Returns a negative error number or the index of the filter with the new
8152 *      MAC value.
8153 */
8154int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8155                  int idx, const u8 *addr, bool persist, u8 *smt_idx)
8156{
8157        int ret, mode;
8158        struct fw_vi_mac_cmd c;
8159        struct fw_vi_mac_exact *p = c.u.exact;
8160        unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
8161
8162        if (idx < 0)                             /* new allocation */
8163                idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8164        mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8165
8166        memset(&c, 0, sizeof(c));
8167        c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8168                                   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8169                                   FW_VI_MAC_CMD_VIID_V(viid));
8170        c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
8171        p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8172                                      FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
8173                                      FW_VI_MAC_CMD_IDX_V(idx));
8174        memcpy(p->macaddr, addr, sizeof(p->macaddr));
8175
8176        ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8177        if (ret == 0) {
8178                ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
8179                if (ret >= max_mac_addr)
8180                        ret = -ENOMEM;
8181                if (smt_idx) {
8182                        if (adap->params.viid_smt_extn_support) {
8183                                *smt_idx = FW_VI_MAC_CMD_SMTID_G
8184                                                    (be32_to_cpu(c.op_to_viid));
8185                        } else {
8186                                /* In T4/T5, SMT contains 256 SMAC entries
8187                                 * organized in 128 rows of 2 entries each.
8188                                 * In T6, SMT contains 256 SMAC entries in
8189                                 * 256 rows.
8190                                 */
8191                                if (CHELSIO_CHIP_VERSION(adap->params.chip) <=
8192                                                                     CHELSIO_T5)
8193                                        *smt_idx = (viid & FW_VIID_VIN_M) << 1;
8194                                else
8195                                        *smt_idx = (viid & FW_VIID_VIN_M);
8196                        }
8197                }
8198        }
8199        return ret;
8200}
8201
8202/**
8203 *      t4_set_addr_hash - program the MAC inexact-match hash filter
8204 *      @adap: the adapter
8205 *      @mbox: mailbox to use for the FW command
8206 *      @viid: the VI id
8207 *      @ucast: whether the hash filter should also match unicast addresses
8208 *      @vec: the value to be written to the hash filter
8209 *      @sleep_ok: call is allowed to sleep
8210 *
8211 *      Sets the 64-bit inexact-match hash filter for a virtual interface.
8212 */
8213int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8214                     bool ucast, u64 vec, bool sleep_ok)
8215{
8216        struct fw_vi_mac_cmd c;
8217
8218        memset(&c, 0, sizeof(c));
8219        c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8220                                   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8221                                   FW_VI_ENABLE_CMD_VIID_V(viid));
8222        c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
8223                                          FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
8224                                          FW_CMD_LEN16_V(1));
8225        c.u.hash.hashvec = cpu_to_be64(vec);
8226        return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8227}
8228
8229/**
8230 *      t4_enable_vi_params - enable/disable a virtual interface
8231 *      @adap: the adapter
8232 *      @mbox: mailbox to use for the FW command
8233 *      @viid: the VI id
8234 *      @rx_en: 1=enable Rx, 0=disable Rx
8235 *      @tx_en: 1=enable Tx, 0=disable Tx
8236 *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8237 *
8238 *      Enables/disables a virtual interface.  Note that setting DCB Enable
8239 *      only makes sense when enabling a Virtual Interface ...
8240 */
8241int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8242                        unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8243{
8244        struct fw_vi_enable_cmd c;
8245
8246        memset(&c, 0, sizeof(c));
8247        c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8248                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8249                                   FW_VI_ENABLE_CMD_VIID_V(viid));
8250        c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
8251                                     FW_VI_ENABLE_CMD_EEN_V(tx_en) |
8252                                     FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
8253                                     FW_LEN16(c));
8254        return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8255}
8256
8257/**
8258 *      t4_enable_vi - enable/disable a virtual interface
8259 *      @adap: the adapter
8260 *      @mbox: mailbox to use for the FW command
8261 *      @viid: the VI id
8262 *      @rx_en: 1=enable Rx, 0=disable Rx
8263 *      @tx_en: 1=enable Tx, 0=disable Tx
8264 *
8265 *      Enables/disables a virtual interface.
8266 */
8267int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8268                 bool rx_en, bool tx_en)
8269{
8270        return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8271}
8272
8273/**
8274 *      t4_enable_pi_params - enable/disable a Port's Virtual Interface
8275 *      @adap: the adapter
8276 *      @mbox: mailbox to use for the FW command
8277 *      @pi: the Port Information structure
8278 *      @rx_en: 1=enable Rx, 0=disable Rx
8279 *      @tx_en: 1=enable Tx, 0=disable Tx
8280 *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8281 *
8282 *      Enables/disables a Port's Virtual Interface.  Note that setting DCB
8283 *      Enable only makes sense when enabling a Virtual Interface ...
8284 *      If the Virtual Interface enable/disable operation is successful,
8285 *      we notify the OS-specific code of a potential Link Status change
8286 *      via the OS Contract API t4_os_link_changed().
8287 */
8288int t4_enable_pi_params(struct adapter *adap, unsigned int mbox,
8289                        struct port_info *pi,
8290                        bool rx_en, bool tx_en, bool dcb_en)
8291{
8292        int ret = t4_enable_vi_params(adap, mbox, pi->viid,
8293                                      rx_en, tx_en, dcb_en);
8294        if (ret)
8295                return ret;
8296        t4_os_link_changed(adap, pi->port_id,
8297                           rx_en && tx_en && pi->link_cfg.link_ok);
8298        return 0;
8299}
8300
8301/**
8302 *      t4_identify_port - identify a VI's port by blinking its LED
8303 *      @adap: the adapter
8304 *      @mbox: mailbox to use for the FW command
8305 *      @viid: the VI id
8306 *      @nblinks: how many times to blink LED at 2.5 Hz
8307 *
8308 *      Identifies a VI's port by blinking its LED.
8309 */
8310int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8311                     unsigned int nblinks)
8312{
8313        struct fw_vi_enable_cmd c;
8314
8315        memset(&c, 0, sizeof(c));
8316        c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8317                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8318                                   FW_VI_ENABLE_CMD_VIID_V(viid));
8319        c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
8320        c.blinkdur = cpu_to_be16(nblinks);
8321        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8322}
8323
8324/**
8325 *      t4_iq_stop - stop an ingress queue and its FLs
8326 *      @adap: the adapter
8327 *      @mbox: mailbox to use for the FW command
8328 *      @pf: the PF owning the queues
8329 *      @vf: the VF owning the queues
8330 *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8331 *      @iqid: ingress queue id
8332 *      @fl0id: FL0 queue id or 0xffff if no attached FL0
8333 *      @fl1id: FL1 queue id or 0xffff if no attached FL1
8334 *
8335 *      Stops an ingress queue and its associated FLs, if any.  This causes
8336 *      any current or future data/messages destined for these queues to be
8337 *      tossed.
8338 */
8339int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8340               unsigned int vf, unsigned int iqtype, unsigned int iqid,
8341               unsigned int fl0id, unsigned int fl1id)
8342{
8343        struct fw_iq_cmd c;
8344
8345        memset(&c, 0, sizeof(c));
8346        c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8347                                  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8348                                  FW_IQ_CMD_VFN_V(vf));
8349        c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
8350        c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8351        c.iqid = cpu_to_be16(iqid);
8352        c.fl0id = cpu_to_be16(fl0id);
8353        c.fl1id = cpu_to_be16(fl1id);
8354        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8355}
8356
8357/**
8358 *      t4_iq_free - free an ingress queue and its FLs
8359 *      @adap: the adapter
8360 *      @mbox: mailbox to use for the FW command
8361 *      @pf: the PF owning the queues
8362 *      @vf: the VF owning the queues
8363 *      @iqtype: the ingress queue type
8364 *      @iqid: ingress queue id
8365 *      @fl0id: FL0 queue id or 0xffff if no attached FL0
8366 *      @fl1id: FL1 queue id or 0xffff if no attached FL1
8367 *
8368 *      Frees an ingress queue and its associated FLs, if any.
8369 */
8370int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8371               unsigned int vf, unsigned int iqtype, unsigned int iqid,
8372               unsigned int fl0id, unsigned int fl1id)
8373{
8374        struct fw_iq_cmd c;
8375
8376        memset(&c, 0, sizeof(c));
8377        c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8378                                  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8379                                  FW_IQ_CMD_VFN_V(vf));
8380        c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
8381        c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8382        c.iqid = cpu_to_be16(iqid);
8383        c.fl0id = cpu_to_be16(fl0id);
8384        c.fl1id = cpu_to_be16(fl1id);
8385        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8386}
8387
8388/**
8389 *      t4_eth_eq_free - free an Ethernet egress queue
8390 *      @adap: the adapter
8391 *      @mbox: mailbox to use for the FW command
8392 *      @pf: the PF owning the queue
8393 *      @vf: the VF owning the queue
8394 *      @eqid: egress queue id
8395 *
8396 *      Frees an Ethernet egress queue.
8397 */
8398int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8399                   unsigned int vf, unsigned int eqid)
8400{
8401        struct fw_eq_eth_cmd c;
8402
8403        memset(&c, 0, sizeof(c));
8404        c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
8405                                  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8406                                  FW_EQ_ETH_CMD_PFN_V(pf) |
8407                                  FW_EQ_ETH_CMD_VFN_V(vf));
8408        c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
8409        c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
8410        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8411}
8412
8413/**
8414 *      t4_ctrl_eq_free - free a control egress queue
8415 *      @adap: the adapter
8416 *      @mbox: mailbox to use for the FW command
8417 *      @pf: the PF owning the queue
8418 *      @vf: the VF owning the queue
8419 *      @eqid: egress queue id
8420 *
8421 *      Frees a control egress queue.
8422 */
8423int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8424                    unsigned int vf, unsigned int eqid)
8425{
8426        struct fw_eq_ctrl_cmd c;
8427
8428        memset(&c, 0, sizeof(c));
8429        c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
8430                                  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8431                                  FW_EQ_CTRL_CMD_PFN_V(pf) |
8432                                  FW_EQ_CTRL_CMD_VFN_V(vf));
8433        c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
8434        c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
8435        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8436}
8437
8438/**
8439 *      t4_ofld_eq_free - free an offload egress queue
8440 *      @adap: the adapter
8441 *      @mbox: mailbox to use for the FW command
8442 *      @pf: the PF owning the queue
8443 *      @vf: the VF owning the queue
8444 *      @eqid: egress queue id
8445 *
8446 *      Frees a control egress queue.
8447 */
8448int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8449                    unsigned int vf, unsigned int eqid)
8450{
8451        struct fw_eq_ofld_cmd c;
8452
8453        memset(&c, 0, sizeof(c));
8454        c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
8455                                  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8456                                  FW_EQ_OFLD_CMD_PFN_V(pf) |
8457                                  FW_EQ_OFLD_CMD_VFN_V(vf));
8458        c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
8459        c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
8460        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8461}
8462
8463/**
8464 *      t4_link_down_rc_str - return a string for a Link Down Reason Code
8465 *      @link_down_rc: Link Down Reason Code
8466 *
8467 *      Returns a string representation of the Link Down Reason Code.
8468 */
8469static const char *t4_link_down_rc_str(unsigned char link_down_rc)
8470{
8471        static const char * const reason[] = {
8472                "Link Down",
8473                "Remote Fault",
8474                "Auto-negotiation Failure",
8475                "Reserved",
8476                "Insufficient Airflow",
8477                "Unable To Determine Reason",
8478                "No RX Signal Detected",
8479                "Reserved",
8480        };
8481
8482        if (link_down_rc >= ARRAY_SIZE(reason))
8483                return "Bad Reason Code";
8484
8485        return reason[link_down_rc];
8486}
8487
8488/* Return the highest speed set in the port capabilities, in Mb/s. */
8489static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
8490{
8491        #define TEST_SPEED_RETURN(__caps_speed, __speed) \
8492                do { \
8493                        if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8494                                return __speed; \
8495                } while (0)
8496
8497        TEST_SPEED_RETURN(400G, 400000);
8498        TEST_SPEED_RETURN(200G, 200000);
8499        TEST_SPEED_RETURN(100G, 100000);
8500        TEST_SPEED_RETURN(50G,   50000);
8501        TEST_SPEED_RETURN(40G,   40000);
8502        TEST_SPEED_RETURN(25G,   25000);
8503        TEST_SPEED_RETURN(10G,   10000);
8504        TEST_SPEED_RETURN(1G,     1000);
8505        TEST_SPEED_RETURN(100M,    100);
8506
8507        #undef TEST_SPEED_RETURN
8508
8509        return 0;
8510}
8511
8512/**
8513 *      fwcap_to_fwspeed - return highest speed in Port Capabilities
8514 *      @acaps: advertised Port Capabilities
8515 *
8516 *      Get the highest speed for the port from the advertised Port
8517 *      Capabilities.  It will be either the highest speed from the list of
8518 *      speeds or whatever user has set using ethtool.
8519 */
8520static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
8521{
8522        #define TEST_SPEED_RETURN(__caps_speed) \
8523                do { \
8524                        if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8525                                return FW_PORT_CAP32_SPEED_##__caps_speed; \
8526                } while (0)
8527
8528        TEST_SPEED_RETURN(400G);
8529        TEST_SPEED_RETURN(200G);
8530        TEST_SPEED_RETURN(100G);
8531        TEST_SPEED_RETURN(50G);
8532        TEST_SPEED_RETURN(40G);
8533        TEST_SPEED_RETURN(25G);
8534        TEST_SPEED_RETURN(10G);
8535        TEST_SPEED_RETURN(1G);
8536        TEST_SPEED_RETURN(100M);
8537
8538        #undef TEST_SPEED_RETURN
8539
8540        return 0;
8541}
8542
8543/**
8544 *      lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8545 *      @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8546 *
8547 *      Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8548 *      32-bit Port Capabilities value.
8549 */
8550static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
8551{
8552        fw_port_cap32_t linkattr = 0;
8553
8554        /* Unfortunately the format of the Link Status in the old
8555         * 16-bit Port Information message isn't the same as the
8556         * 16-bit Port Capabilities bitfield used everywhere else ...
8557         */
8558        if (lstatus & FW_PORT_CMD_RXPAUSE_F)
8559                linkattr |= FW_PORT_CAP32_FC_RX;
8560        if (lstatus & FW_PORT_CMD_TXPAUSE_F)
8561                linkattr |= FW_PORT_CAP32_FC_TX;
8562        if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
8563                linkattr |= FW_PORT_CAP32_SPEED_100M;
8564        if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
8565                linkattr |= FW_PORT_CAP32_SPEED_1G;
8566        if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
8567                linkattr |= FW_PORT_CAP32_SPEED_10G;
8568        if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
8569                linkattr |= FW_PORT_CAP32_SPEED_25G;
8570        if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
8571                linkattr |= FW_PORT_CAP32_SPEED_40G;
8572        if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
8573                linkattr |= FW_PORT_CAP32_SPEED_100G;
8574
8575        return linkattr;
8576}
8577
8578/**
8579 *      t4_handle_get_port_info - process a FW reply message
8580 *      @pi: the port info
8581 *      @rpl: start of the FW message
8582 *
8583 *      Processes a GET_PORT_INFO FW reply message.
8584 */
8585void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
8586{
8587        const struct fw_port_cmd *cmd = (const void *)rpl;
8588        fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
8589        struct link_config *lc = &pi->link_cfg;
8590        struct adapter *adapter = pi->adapter;
8591        unsigned int speed, fc, fec, adv_fc;
8592        enum fw_port_module_type mod_type;
8593        int action, link_ok, linkdnrc;
8594        enum fw_port_type port_type;
8595
8596        /* Extract the various fields from the Port Information message.
8597         */
8598        action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
8599        switch (action) {
8600        case FW_PORT_ACTION_GET_PORT_INFO: {
8601                u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
8602
8603                link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
8604                linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
8605                port_type = FW_PORT_CMD_PTYPE_G(lstatus);
8606                mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
8607                pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
8608                acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
8609                lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
8610                linkattr = lstatus_to_fwcap(lstatus);
8611                break;
8612        }
8613
8614        case FW_PORT_ACTION_GET_PORT_INFO32: {
8615                u32 lstatus32;
8616
8617                lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
8618                link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
8619                linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
8620                port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
8621                mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
8622                pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
8623                acaps = be32_to_cpu(cmd->u.info32.acaps32);
8624                lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
8625                linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
8626                break;
8627        }
8628
8629        default:
8630                dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
8631                        be32_to_cpu(cmd->action_to_len16));
8632                return;
8633        }
8634
8635        fec = fwcap_to_cc_fec(acaps);
8636        adv_fc = fwcap_to_cc_pause(acaps);
8637        fc = fwcap_to_cc_pause(linkattr);
8638        speed = fwcap_to_speed(linkattr);
8639
8640        /* Reset state for communicating new Transceiver Module status and
8641         * whether the OS-dependent layer wants us to redo the current
8642         * "sticky" L1 Configure Link Parameters.
8643         */
8644        lc->new_module = false;
8645        lc->redo_l1cfg = false;
8646
8647        if (mod_type != pi->mod_type) {
8648                /* With the newer SFP28 and QSFP28 Transceiver Module Types,
8649                 * various fundamental Port Capabilities which used to be
8650                 * immutable can now change radically.  We can now have
8651                 * Speeds, Auto-Negotiation, Forward Error Correction, etc.
8652                 * all change based on what Transceiver Module is inserted.
8653                 * So we need to record the Physical "Port" Capabilities on
8654                 * every Transceiver Module change.
8655                 */
8656                lc->pcaps = pcaps;
8657
8658                /* When a new Transceiver Module is inserted, the Firmware
8659                 * will examine its i2c EPROM to determine its type and
8660                 * general operating parameters including things like Forward
8661                 * Error Control, etc.  Various IEEE 802.3 standards dictate
8662                 * how to interpret these i2c values to determine default
8663                 * "sutomatic" settings.  We record these for future use when
8664                 * the user explicitly requests these standards-based values.
8665                 */
8666                lc->def_acaps = acaps;
8667
8668                /* Some versions of the early T6 Firmware "cheated" when
8669                 * handling different Transceiver Modules by changing the
8670                 * underlaying Port Type reported to the Host Drivers.  As
8671                 * such we need to capture whatever Port Type the Firmware
8672                 * sends us and record it in case it's different from what we
8673                 * were told earlier.  Unfortunately, since Firmware is
8674                 * forever, we'll need to keep this code here forever, but in
8675                 * later T6 Firmware it should just be an assignment of the
8676                 * same value already recorded.
8677                 */
8678                pi->port_type = port_type;
8679
8680                /* Record new Module Type information.
8681                 */
8682                pi->mod_type = mod_type;
8683
8684                /* Let the OS-dependent layer know if we have a new
8685                 * Transceiver Module inserted.
8686                 */
8687                lc->new_module = t4_is_inserted_mod_type(mod_type);
8688
8689                t4_os_portmod_changed(adapter, pi->port_id);
8690        }
8691
8692        if (link_ok != lc->link_ok || speed != lc->speed ||
8693            fc != lc->fc || adv_fc != lc->advertised_fc ||
8694            fec != lc->fec) {
8695                /* something changed */
8696                if (!link_ok && lc->link_ok) {
8697                        lc->link_down_rc = linkdnrc;
8698                        dev_warn_ratelimited(adapter->pdev_dev,
8699                                             "Port %d link down, reason: %s\n",
8700                                             pi->tx_chan,
8701                                             t4_link_down_rc_str(linkdnrc));
8702                }
8703                lc->link_ok = link_ok;
8704                lc->speed = speed;
8705                lc->advertised_fc = adv_fc;
8706                lc->fc = fc;
8707                lc->fec = fec;
8708
8709                lc->lpacaps = lpacaps;
8710                lc->acaps = acaps & ADVERT_MASK;
8711
8712                /* If we're not physically capable of Auto-Negotiation, note
8713                 * this as Auto-Negotiation disabled.  Otherwise, we track
8714                 * what Auto-Negotiation settings we have.  Note parallel
8715                 * structure in t4_link_l1cfg_core() and init_link_config().
8716                 */
8717                if (!(lc->acaps & FW_PORT_CAP32_ANEG)) {
8718                        lc->autoneg = AUTONEG_DISABLE;
8719                } else if (lc->acaps & FW_PORT_CAP32_ANEG) {
8720                        lc->autoneg = AUTONEG_ENABLE;
8721                } else {
8722                        /* When Autoneg is disabled, user needs to set
8723                         * single speed.
8724                         * Similar to cxgb4_ethtool.c: set_link_ksettings
8725                         */
8726                        lc->acaps = 0;
8727                        lc->speed_caps = fwcap_to_fwspeed(acaps);
8728                        lc->autoneg = AUTONEG_DISABLE;
8729                }
8730
8731                t4_os_link_changed(adapter, pi->port_id, link_ok);
8732        }
8733
8734        /* If we have a new Transceiver Module and the OS-dependent code has
8735         * told us that it wants us to redo whatever "sticky" L1 Configuration
8736         * Link Parameters are set, do that now.
8737         */
8738        if (lc->new_module && lc->redo_l1cfg) {
8739                struct link_config old_lc;
8740                int ret;
8741
8742                /* Save the current L1 Configuration and restore it if an
8743                 * error occurs.  We probably should fix the l1_cfg*()
8744                 * routines not to change the link_config when an error
8745                 * occurs ...
8746                 */
8747                old_lc = *lc;
8748                ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc);
8749                if (ret) {
8750                        *lc = old_lc;
8751                        dev_warn(adapter->pdev_dev,
8752                                 "Attempt to update new Transceiver Module settings failed\n");
8753                }
8754        }
8755        lc->new_module = false;
8756        lc->redo_l1cfg = false;
8757}
8758
8759/**
8760 *      t4_update_port_info - retrieve and update port information if changed
8761 *      @pi: the port_info
8762 *
8763 *      We issue a Get Port Information Command to the Firmware and, if
8764 *      successful, we check to see if anything is different from what we
8765 *      last recorded and update things accordingly.
8766 */
8767int t4_update_port_info(struct port_info *pi)
8768{
8769        unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8770        struct fw_port_cmd port_cmd;
8771        int ret;
8772
8773        memset(&port_cmd, 0, sizeof(port_cmd));
8774        port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8775                                            FW_CMD_REQUEST_F | FW_CMD_READ_F |
8776                                            FW_PORT_CMD_PORTID_V(pi->tx_chan));
8777        port_cmd.action_to_len16 = cpu_to_be32(
8778                FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
8779                                     ? FW_PORT_ACTION_GET_PORT_INFO
8780                                     : FW_PORT_ACTION_GET_PORT_INFO32) |
8781                FW_LEN16(port_cmd));
8782        ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8783                         &port_cmd, sizeof(port_cmd), &port_cmd);
8784        if (ret)
8785                return ret;
8786
8787        t4_handle_get_port_info(pi, (__be64 *)&port_cmd);
8788        return 0;
8789}
8790
8791/**
8792 *      t4_get_link_params - retrieve basic link parameters for given port
8793 *      @pi: the port
8794 *      @link_okp: value return pointer for link up/down
8795 *      @speedp: value return pointer for speed (Mb/s)
8796 *      @mtup: value return pointer for mtu
8797 *
8798 *      Retrieves basic link parameters for a port: link up/down, speed (Mb/s),
8799 *      and MTU for a specified port.  A negative error is returned on
8800 *      failure; 0 on success.
8801 */
8802int t4_get_link_params(struct port_info *pi, unsigned int *link_okp,
8803                       unsigned int *speedp, unsigned int *mtup)
8804{
8805        unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8806        unsigned int action, link_ok, mtu;
8807        struct fw_port_cmd port_cmd;
8808        fw_port_cap32_t linkattr;
8809        int ret;
8810
8811        memset(&port_cmd, 0, sizeof(port_cmd));
8812        port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8813                                            FW_CMD_REQUEST_F | FW_CMD_READ_F |
8814                                            FW_PORT_CMD_PORTID_V(pi->tx_chan));
8815        action = (fw_caps == FW_CAPS16
8816                  ? FW_PORT_ACTION_GET_PORT_INFO
8817                  : FW_PORT_ACTION_GET_PORT_INFO32);
8818        port_cmd.action_to_len16 = cpu_to_be32(
8819                FW_PORT_CMD_ACTION_V(action) |
8820                FW_LEN16(port_cmd));
8821        ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8822                         &port_cmd, sizeof(port_cmd), &port_cmd);
8823        if (ret)
8824                return ret;
8825
8826        if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8827                u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype);
8828
8829                link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F);
8830                linkattr = lstatus_to_fwcap(lstatus);
8831                mtu = be16_to_cpu(port_cmd.u.info.mtu);
8832        } else {
8833                u32 lstatus32 =
8834                           be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32);
8835
8836                link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F);
8837                linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32);
8838                mtu = FW_PORT_CMD_MTU32_G(
8839                        be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32));
8840        }
8841
8842        if (link_okp)
8843                *link_okp = link_ok;
8844        if (speedp)
8845                *speedp = fwcap_to_speed(linkattr);
8846        if (mtup)
8847                *mtup = mtu;
8848
8849        return 0;
8850}
8851
8852/**
8853 *      t4_handle_fw_rpl - process a FW reply message
8854 *      @adap: the adapter
8855 *      @rpl: start of the FW message
8856 *
8857 *      Processes a FW message, such as link state change messages.
8858 */
8859int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8860{
8861        u8 opcode = *(const u8 *)rpl;
8862
8863        /* This might be a port command ... this simplifies the following
8864         * conditionals ...  We can get away with pre-dereferencing
8865         * action_to_len16 because it's in the first 16 bytes and all messages
8866         * will be at least that long.
8867         */
8868        const struct fw_port_cmd *p = (const void *)rpl;
8869        unsigned int action =
8870                FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
8871
8872        if (opcode == FW_PORT_CMD &&
8873            (action == FW_PORT_ACTION_GET_PORT_INFO ||
8874             action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8875                int i;
8876                int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
8877                struct port_info *pi = NULL;
8878
8879                for_each_port(adap, i) {
8880                        pi = adap2pinfo(adap, i);
8881                        if (pi->tx_chan == chan)
8882                                break;
8883                }
8884
8885                t4_handle_get_port_info(pi, rpl);
8886        } else {
8887                dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n",
8888                         opcode);
8889                return -EINVAL;
8890        }
8891        return 0;
8892}
8893
8894static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
8895{
8896        u16 val;
8897
8898        if (pci_is_pcie(adapter->pdev)) {
8899                pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
8900                p->speed = val & PCI_EXP_LNKSTA_CLS;
8901                p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8902        }
8903}
8904
8905/**
8906 *      init_link_config - initialize a link's SW state
8907 *      @lc: pointer to structure holding the link state
8908 *      @pcaps: link Port Capabilities
8909 *      @acaps: link current Advertised Port Capabilities
8910 *
8911 *      Initializes the SW state maintained for each link, including the link's
8912 *      capabilities and default speed/flow-control/autonegotiation settings.
8913 */
8914static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
8915                             fw_port_cap32_t acaps)
8916{
8917        lc->pcaps = pcaps;
8918        lc->def_acaps = acaps;
8919        lc->lpacaps = 0;
8920        lc->speed_caps = 0;
8921        lc->speed = 0;
8922        lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
8923
8924        /* For Forward Error Control, we default to whatever the Firmware
8925         * tells us the Link is currently advertising.
8926         */
8927        lc->requested_fec = FEC_AUTO;
8928        lc->fec = fwcap_to_cc_fec(lc->def_acaps);
8929
8930        /* If the Port is capable of Auto-Negtotiation, initialize it as
8931         * "enabled" and copy over all of the Physical Port Capabilities
8932         * to the Advertised Port Capabilities.  Otherwise mark it as
8933         * Auto-Negotiate disabled and select the highest supported speed
8934         * for the link.  Note parallel structure in t4_link_l1cfg_core()
8935         * and t4_handle_get_port_info().
8936         */
8937        if (lc->pcaps & FW_PORT_CAP32_ANEG) {
8938                lc->acaps = lc->pcaps & ADVERT_MASK;
8939                lc->autoneg = AUTONEG_ENABLE;
8940                lc->requested_fc |= PAUSE_AUTONEG;
8941        } else {
8942                lc->acaps = 0;
8943                lc->autoneg = AUTONEG_DISABLE;
8944                lc->speed_caps = fwcap_to_fwspeed(acaps);
8945        }
8946}
8947
8948#define CIM_PF_NOACCESS 0xeeeeeeee
8949
8950int t4_wait_dev_ready(void __iomem *regs)
8951{
8952        u32 whoami;
8953
8954        whoami = readl(regs + PL_WHOAMI_A);
8955        if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
8956                return 0;
8957
8958        msleep(500);
8959        whoami = readl(regs + PL_WHOAMI_A);
8960        return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
8961}
8962
8963struct flash_desc {
8964        u32 vendor_and_model_id;
8965        u32 size_mb;
8966};
8967
8968static int t4_get_flash_params(struct adapter *adap)
8969{
8970        /* Table for non-Numonix supported flash parts.  Numonix parts are left
8971         * to the preexisting code.  All flash parts have 64KB sectors.
8972         */
8973        static struct flash_desc supported_flash[] = {
8974                { 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
8975        };
8976
8977        unsigned int part, manufacturer;
8978        unsigned int density, size = 0;
8979        u32 flashid = 0;
8980        int ret;
8981
8982        /* Issue a Read ID Command to the Flash part.  We decode supported
8983         * Flash parts and their sizes from this.  There's a newer Query
8984         * Command which can retrieve detailed geometry information but many
8985         * Flash parts don't support it.
8986         */
8987
8988        ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
8989        if (!ret)
8990                ret = sf1_read(adap, 3, 0, 1, &flashid);
8991        t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
8992        if (ret)
8993                return ret;
8994
8995        /* Check to see if it's one of our non-standard supported Flash parts.
8996         */
8997        for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
8998                if (supported_flash[part].vendor_and_model_id == flashid) {
8999                        adap->params.sf_size = supported_flash[part].size_mb;
9000                        adap->params.sf_nsec =
9001                                adap->params.sf_size / SF_SEC_SIZE;
9002                        goto found;
9003                }
9004
9005        /* Decode Flash part size.  The code below looks repetitive with
9006         * common encodings, but that's not guaranteed in the JEDEC
9007         * specification for the Read JEDEC ID command.  The only thing that
9008         * we're guaranteed by the JEDEC specification is where the
9009         * Manufacturer ID is in the returned result.  After that each
9010         * Manufacturer ~could~ encode things completely differently.
9011         * Note, all Flash parts must have 64KB sectors.
9012         */
9013        manufacturer = flashid & 0xff;
9014        switch (manufacturer) {
9015        case 0x20: { /* Micron/Numonix */
9016                /* This Density -> Size decoding table is taken from Micron
9017                 * Data Sheets.
9018                 */
9019                density = (flashid >> 16) & 0xff;
9020                switch (density) {
9021                case 0x14: /* 1MB */
9022                        size = 1 << 20;
9023                        break;
9024                case 0x15: /* 2MB */
9025                        size = 1 << 21;
9026                        break;
9027                case 0x16: /* 4MB */
9028                        size = 1 << 22;
9029                        break;
9030                case 0x17: /* 8MB */
9031                        size = 1 << 23;
9032                        break;
9033                case 0x18: /* 16MB */
9034                        size = 1 << 24;
9035                        break;
9036                case 0x19: /* 32MB */
9037                        size = 1 << 25;
9038                        break;
9039                case 0x20: /* 64MB */
9040                        size = 1 << 26;
9041                        break;
9042                case 0x21: /* 128MB */
9043                        size = 1 << 27;
9044                        break;
9045                case 0x22: /* 256MB */
9046                        size = 1 << 28;
9047                        break;
9048                }
9049                break;
9050        }
9051        case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
9052                /* This Density -> Size decoding table is taken from ISSI
9053                 * Data Sheets.
9054                 */
9055                density = (flashid >> 16) & 0xff;
9056                switch (density) {
9057                case 0x16: /* 32 MB */
9058                        size = 1 << 25;
9059                        break;
9060                case 0x17: /* 64MB */
9061                        size = 1 << 26;
9062                        break;
9063                }
9064                break;
9065        }
9066        case 0xc2: { /* Macronix */
9067                /* This Density -> Size decoding table is taken from Macronix
9068                 * Data Sheets.
9069                 */
9070                density = (flashid >> 16) & 0xff;
9071                switch (density) {
9072                case 0x17: /* 8MB */
9073                        size = 1 << 23;
9074                        break;
9075                case 0x18: /* 16MB */
9076                        size = 1 << 24;
9077                        break;
9078                }
9079                break;
9080        }
9081        case 0xef: { /* Winbond */
9082                /* This Density -> Size decoding table is taken from Winbond
9083                 * Data Sheets.
9084                 */
9085                density = (flashid >> 16) & 0xff;
9086                switch (density) {
9087                case 0x17: /* 8MB */
9088                        size = 1 << 23;
9089                        break;
9090                case 0x18: /* 16MB */
9091                        size = 1 << 24;
9092                        break;
9093                }
9094                break;
9095        }
9096        }
9097
9098        /* If we didn't recognize the FLASH part, that's no real issue: the
9099         * Hardware/Software contract says that Hardware will _*ALWAYS*_
9100         * use a FLASH part which is at least 4MB in size and has 64KB
9101         * sectors.  The unrecognized FLASH part is likely to be much larger
9102         * than 4MB, but that's all we really need.
9103         */
9104        if (size == 0) {
9105                dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n",
9106                         flashid);
9107                size = 1 << 22;
9108        }
9109
9110        /* Store decoded Flash size and fall through into vetting code. */
9111        adap->params.sf_size = size;
9112        adap->params.sf_nsec = size / SF_SEC_SIZE;
9113
9114found:
9115        if (adap->params.sf_size < FLASH_MIN_SIZE)
9116                dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
9117                         flashid, adap->params.sf_size, FLASH_MIN_SIZE);
9118        return 0;
9119}
9120
9121/**
9122 *      t4_prep_adapter - prepare SW and HW for operation
9123 *      @adapter: the adapter
9124 *
9125 *      Initialize adapter SW state for the various HW modules, set initial
9126 *      values for some adapter tunables, take PHYs out of reset, and
9127 *      initialize the MDIO interface.
9128 */
9129int t4_prep_adapter(struct adapter *adapter)
9130{
9131        int ret, ver;
9132        uint16_t device_id;
9133        u32 pl_rev;
9134
9135        get_pci_mode(adapter, &adapter->params.pci);
9136        pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
9137
9138        ret = t4_get_flash_params(adapter);
9139        if (ret < 0) {
9140                dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
9141                return ret;
9142        }
9143
9144        /* Retrieve adapter's device ID
9145         */
9146        pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
9147        ver = device_id >> 12;
9148        adapter->params.chip = 0;
9149        switch (ver) {
9150        case CHELSIO_T4:
9151                adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
9152                adapter->params.arch.sge_fl_db = DBPRIO_F;
9153                adapter->params.arch.mps_tcam_size =
9154                                 NUM_MPS_CLS_SRAM_L_INSTANCES;
9155                adapter->params.arch.mps_rplc_size = 128;
9156                adapter->params.arch.nchan = NCHAN;
9157                adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9158                adapter->params.arch.vfcount = 128;
9159                /* Congestion map is for 4 channels so that
9160                 * MPS can have 4 priority per port.
9161                 */
9162                adapter->params.arch.cng_ch_bits_log = 2;
9163                break;
9164        case CHELSIO_T5:
9165                adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
9166                adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
9167                adapter->params.arch.mps_tcam_size =
9168                                 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9169                adapter->params.arch.mps_rplc_size = 128;
9170                adapter->params.arch.nchan = NCHAN;
9171                adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9172                adapter->params.arch.vfcount = 128;
9173                adapter->params.arch.cng_ch_bits_log = 2;
9174                break;
9175        case CHELSIO_T6:
9176                adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
9177                adapter->params.arch.sge_fl_db = 0;
9178                adapter->params.arch.mps_tcam_size =
9179                                 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9180                adapter->params.arch.mps_rplc_size = 256;
9181                adapter->params.arch.nchan = 2;
9182                adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
9183                adapter->params.arch.vfcount = 256;
9184                /* Congestion map will be for 2 channels so that
9185                 * MPS can have 8 priority per port.
9186                 */
9187                adapter->params.arch.cng_ch_bits_log = 3;
9188                break;
9189        default:
9190                dev_err(adapter->pdev_dev, "Device %d is not supported\n",
9191                        device_id);
9192                return -EINVAL;
9193        }
9194
9195        adapter->params.cim_la_size = CIMLA_SIZE;
9196        init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
9197
9198        /*
9199         * Default port for debugging in case we can't reach FW.
9200         */
9201        adapter->params.nports = 1;
9202        adapter->params.portvec = 1;
9203        adapter->params.vpd.cclk = 50000;
9204
9205        /* Set PCIe completion timeout to 4 seconds. */
9206        pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2,
9207                                           PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
9208        return 0;
9209}
9210
9211/**
9212 *      t4_shutdown_adapter - shut down adapter, host & wire
9213 *      @adapter: the adapter
9214 *
9215 *      Perform an emergency shutdown of the adapter and stop it from
9216 *      continuing any further communication on the ports or DMA to the
9217 *      host.  This is typically used when the adapter and/or firmware
9218 *      have crashed and we want to prevent any further accidental
9219 *      communication with the rest of the world.  This will also force
9220 *      the port Link Status to go down -- if register writes work --
9221 *      which should help our peers figure out that we're down.
9222 */
9223int t4_shutdown_adapter(struct adapter *adapter)
9224{
9225        int port;
9226
9227        t4_intr_disable(adapter);
9228        t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
9229        for_each_port(adapter, port) {
9230                u32 a_port_cfg = is_t4(adapter->params.chip) ?
9231                                       PORT_REG(port, XGMAC_PORT_CFG_A) :
9232                                       T5_PORT_REG(port, MAC_PORT_CFG_A);
9233
9234                t4_write_reg(adapter, a_port_cfg,
9235                             t4_read_reg(adapter, a_port_cfg)
9236                             & ~SIGNAL_DET_V(1));
9237        }
9238        t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
9239
9240        return 0;
9241}
9242
9243/**
9244 *      t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9245 *      @adapter: the adapter
9246 *      @qid: the Queue ID
9247 *      @qtype: the Ingress or Egress type for @qid
9248 *      @user: true if this request is for a user mode queue
9249 *      @pbar2_qoffset: BAR2 Queue Offset
9250 *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9251 *
9252 *      Returns the BAR2 SGE Queue Registers information associated with the
9253 *      indicated Absolute Queue ID.  These are passed back in return value
9254 *      pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9255 *      and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9256 *
9257 *      This may return an error which indicates that BAR2 SGE Queue
9258 *      registers aren't available.  If an error is not returned, then the
9259 *      following values are returned:
9260 *
9261 *        *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9262 *        *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9263 *
9264 *      If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9265 *      require the "Inferred Queue ID" ability may be used.  E.g. the
9266 *      Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9267 *      then these "Inferred Queue ID" register may not be used.
9268 */
9269int t4_bar2_sge_qregs(struct adapter *adapter,
9270                      unsigned int qid,
9271                      enum t4_bar2_qtype qtype,
9272                      int user,
9273                      u64 *pbar2_qoffset,
9274                      unsigned int *pbar2_qid)
9275{
9276        unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9277        u64 bar2_page_offset, bar2_qoffset;
9278        unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9279
9280        /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
9281        if (!user && is_t4(adapter->params.chip))
9282                return -EINVAL;
9283
9284        /* Get our SGE Page Size parameters.
9285         */
9286        page_shift = adapter->params.sge.hps + 10;
9287        page_size = 1 << page_shift;
9288
9289        /* Get the right Queues per Page parameters for our Queue.
9290         */
9291        qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9292                     ? adapter->params.sge.eq_qpp
9293                     : adapter->params.sge.iq_qpp);
9294        qpp_mask = (1 << qpp_shift) - 1;
9295
9296        /*  Calculate the basics of the BAR2 SGE Queue register area:
9297         *  o The BAR2 page the Queue registers will be in.
9298         *  o The BAR2 Queue ID.
9299         *  o The BAR2 Queue ID Offset into the BAR2 page.
9300         */
9301        bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9302        bar2_qid = qid & qpp_mask;
9303        bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9304
9305        /* If the BAR2 Queue ID Offset is less than the Page Size, then the
9306         * hardware will infer the Absolute Queue ID simply from the writes to
9307         * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9308         * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9309         * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9310         * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9311         * from the BAR2 Page and BAR2 Queue ID.
9312         *
9313         * One important censequence of this is that some BAR2 SGE registers
9314         * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9315         * there.  But other registers synthesize the SGE Queue ID purely
9316         * from the writes to the registers -- the Write Combined Doorbell
9317         * Buffer is a good example.  These BAR2 SGE Registers are only
9318         * available for those BAR2 SGE Register areas where the SGE Absolute
9319         * Queue ID can be inferred from simple writes.
9320         */
9321        bar2_qoffset = bar2_page_offset;
9322        bar2_qinferred = (bar2_qid_offset < page_size);
9323        if (bar2_qinferred) {
9324                bar2_qoffset += bar2_qid_offset;
9325                bar2_qid = 0;
9326        }
9327
9328        *pbar2_qoffset = bar2_qoffset;
9329        *pbar2_qid = bar2_qid;
9330        return 0;
9331}
9332
9333/**
9334 *      t4_init_devlog_params - initialize adapter->params.devlog
9335 *      @adap: the adapter
9336 *
9337 *      Initialize various fields of the adapter's Firmware Device Log
9338 *      Parameters structure.
9339 */
9340int t4_init_devlog_params(struct adapter *adap)
9341{
9342        struct devlog_params *dparams = &adap->params.devlog;
9343        u32 pf_dparams;
9344        unsigned int devlog_meminfo;
9345        struct fw_devlog_cmd devlog_cmd;
9346        int ret;
9347
9348        /* If we're dealing with newer firmware, the Device Log Parameters
9349         * are stored in a designated register which allows us to access the
9350         * Device Log even if we can't talk to the firmware.
9351         */
9352        pf_dparams =
9353                t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
9354        if (pf_dparams) {
9355                unsigned int nentries, nentries128;
9356
9357                dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
9358                dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
9359
9360                nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
9361                nentries = (nentries128 + 1) * 128;
9362                dparams->size = nentries * sizeof(struct fw_devlog_e);
9363
9364                return 0;
9365        }
9366
9367        /* Otherwise, ask the firmware for it's Device Log Parameters.
9368         */
9369        memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9370        devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
9371                                             FW_CMD_REQUEST_F | FW_CMD_READ_F);
9372        devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9373        ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9374                         &devlog_cmd);
9375        if (ret)
9376                return ret;
9377
9378        devlog_meminfo =
9379                be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9380        dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
9381        dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
9382        dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9383
9384        return 0;
9385}
9386
9387/**
9388 *      t4_init_sge_params - initialize adap->params.sge
9389 *      @adapter: the adapter
9390 *
9391 *      Initialize various fields of the adapter's SGE Parameters structure.
9392 */
9393int t4_init_sge_params(struct adapter *adapter)
9394{
9395        struct sge_params *sge_params = &adapter->params.sge;
9396        u32 hps, qpp;
9397        unsigned int s_hps, s_qpp;
9398
9399        /* Extract the SGE Page Size for our PF.
9400         */
9401        hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
9402        s_hps = (HOSTPAGESIZEPF0_S +
9403                 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
9404        sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
9405
9406        /* Extract the SGE Egress and Ingess Queues Per Page for our PF.
9407         */
9408        s_qpp = (QUEUESPERPAGEPF0_S +
9409                (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
9410        qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
9411        sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9412        qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
9413        sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9414
9415        return 0;
9416}
9417
9418/**
9419 *      t4_init_tp_params - initialize adap->params.tp
9420 *      @adap: the adapter
9421 *      @sleep_ok: if true we may sleep while awaiting command completion
9422 *
9423 *      Initialize various fields of the adapter's TP Parameters structure.
9424 */
9425int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
9426{
9427        u32 param, val, v;
9428        int chan, ret;
9429
9430
9431        v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
9432        adap->params.tp.tre = TIMERRESOLUTION_G(v);
9433        adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
9434
9435        /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9436        for (chan = 0; chan < NCHAN; chan++)
9437                adap->params.tp.tx_modq[chan] = chan;
9438
9439        /* Cache the adapter's Compressed Filter Mode/Mask and global Ingress
9440         * Configuration.
9441         */
9442        param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
9443                 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FILTER) |
9444                 FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_FILTER_MODE_MASK));
9445
9446        /* Read current value */
9447        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
9448                              &param, &val);
9449        if (ret == 0) {
9450                dev_info(adap->pdev_dev,
9451                         "Current filter mode/mask 0x%x:0x%x\n",
9452                         FW_PARAMS_PARAM_FILTER_MODE_G(val),
9453                         FW_PARAMS_PARAM_FILTER_MASK_G(val));
9454                adap->params.tp.vlan_pri_map =
9455                        FW_PARAMS_PARAM_FILTER_MODE_G(val);
9456                adap->params.tp.filter_mask =
9457                        FW_PARAMS_PARAM_FILTER_MASK_G(val);
9458        } else {
9459                dev_info(adap->pdev_dev,
9460                         "Failed to read filter mode/mask via fw api, using indirect-reg-read\n");
9461
9462                /* Incase of older-fw (which doesn't expose the api
9463                 * FW_PARAM_DEV_FILTER_MODE_MASK) and newer-driver (which uses
9464                 * the fw api) combination, fall-back to older method of reading
9465                 * the filter mode from indirect-register
9466                 */
9467                t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1,
9468                               TP_VLAN_PRI_MAP_A, sleep_ok);
9469
9470                /* With the older-fw and newer-driver combination we might run
9471                 * into an issue when user wants to use hash filter region but
9472                 * the filter_mask is zero, in this case filter_mask validation
9473                 * is tough. To avoid that we set the filter_mask same as filter
9474                 * mode, which will behave exactly as the older way of ignoring
9475                 * the filter mask validation.
9476                 */
9477                adap->params.tp.filter_mask = adap->params.tp.vlan_pri_map;
9478        }
9479
9480        t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1,
9481                       TP_INGRESS_CONFIG_A, sleep_ok);
9482
9483        /* For T6, cache the adapter's compressed error vector
9484         * and passing outer header info for encapsulated packets.
9485         */
9486        if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
9487                v = t4_read_reg(adap, TP_OUT_CONFIG_A);
9488                adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
9489        }
9490
9491        /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9492         * shift positions of several elements of the Compressed Filter Tuple
9493         * for this adapter which we need frequently ...
9494         */
9495        adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F);
9496        adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
9497        adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
9498        adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
9499        adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F);
9500        adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
9501                                                               PROTOCOL_F);
9502        adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
9503                                                                ETHERTYPE_F);
9504        adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
9505                                                               MACMATCH_F);
9506        adap->params.tp.matchtype_shift = t4_filter_field_shift(adap,
9507                                                                MPSHITTYPE_F);
9508        adap->params.tp.frag_shift = t4_filter_field_shift(adap,
9509                                                           FRAGMENTATION_F);
9510
9511        /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
9512         * represents the presence of an Outer VLAN instead of a VNIC ID.
9513         */
9514        if ((adap->params.tp.ingress_config & VNIC_F) == 0)
9515                adap->params.tp.vnic_shift = -1;
9516
9517        v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
9518        adap->params.tp.hash_filter_mask = v;
9519        v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
9520        adap->params.tp.hash_filter_mask |= ((u64)v << 32);
9521        return 0;
9522}
9523
9524/**
9525 *      t4_filter_field_shift - calculate filter field shift
9526 *      @adap: the adapter
9527 *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9528 *
9529 *      Return the shift position of a filter field within the Compressed
9530 *      Filter Tuple.  The filter field is specified via its selection bit
9531 *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9532 */
9533int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9534{
9535        unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9536        unsigned int sel;
9537        int field_shift;
9538
9539        if ((filter_mode & filter_sel) == 0)
9540                return -1;
9541
9542        for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9543                switch (filter_mode & sel) {
9544                case FCOE_F:
9545                        field_shift += FT_FCOE_W;
9546                        break;
9547                case PORT_F:
9548                        field_shift += FT_PORT_W;
9549                        break;
9550                case VNIC_ID_F:
9551                        field_shift += FT_VNIC_ID_W;
9552                        break;
9553                case VLAN_F:
9554                        field_shift += FT_VLAN_W;
9555                        break;
9556                case TOS_F:
9557                        field_shift += FT_TOS_W;
9558                        break;
9559                case PROTOCOL_F:
9560                        field_shift += FT_PROTOCOL_W;
9561                        break;
9562                case ETHERTYPE_F:
9563                        field_shift += FT_ETHERTYPE_W;
9564                        break;
9565                case MACMATCH_F:
9566                        field_shift += FT_MACMATCH_W;
9567                        break;
9568                case MPSHITTYPE_F:
9569                        field_shift += FT_MPSHITTYPE_W;
9570                        break;
9571                case FRAGMENTATION_F:
9572                        field_shift += FT_FRAGMENTATION_W;
9573                        break;
9574                }
9575        }
9576        return field_shift;
9577}
9578
9579int t4_init_rss_mode(struct adapter *adap, int mbox)
9580{
9581        int i, ret;
9582        struct fw_rss_vi_config_cmd rvc;
9583
9584        memset(&rvc, 0, sizeof(rvc));
9585
9586        for_each_port(adap, i) {
9587                struct port_info *p = adap2pinfo(adap, i);
9588
9589                rvc.op_to_viid =
9590                        cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
9591                                    FW_CMD_REQUEST_F | FW_CMD_READ_F |
9592                                    FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
9593                rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
9594                ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
9595                if (ret)
9596                        return ret;
9597                p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
9598        }
9599        return 0;
9600}
9601
9602/**
9603 *      t4_init_portinfo - allocate a virtual interface and initialize port_info
9604 *      @pi: the port_info
9605 *      @mbox: mailbox to use for the FW command
9606 *      @port: physical port associated with the VI
9607 *      @pf: the PF owning the VI
9608 *      @vf: the VF owning the VI
9609 *      @mac: the MAC address of the VI
9610 *
9611 *      Allocates a virtual interface for the given physical port.  If @mac is
9612 *      not %NULL it contains the MAC address of the VI as assigned by FW.
9613 *      @mac should be large enough to hold an Ethernet address.
9614 *      Returns < 0 on error.
9615 */
9616int t4_init_portinfo(struct port_info *pi, int mbox,
9617                     int port, int pf, int vf, u8 mac[])
9618{
9619        struct adapter *adapter = pi->adapter;
9620        unsigned int fw_caps = adapter->params.fw_caps_support;
9621        struct fw_port_cmd cmd;
9622        unsigned int rss_size;
9623        enum fw_port_type port_type;
9624        int mdio_addr;
9625        fw_port_cap32_t pcaps, acaps;
9626        u8 vivld = 0, vin = 0;
9627        int ret;
9628
9629        /* If we haven't yet determined whether we're talking to Firmware
9630         * which knows the new 32-bit Port Capabilities, it's time to find
9631         * out now.  This will also tell new Firmware to send us Port Status
9632         * Updates using the new 32-bit Port Capabilities version of the
9633         * Port Information message.
9634         */
9635        if (fw_caps == FW_CAPS_UNKNOWN) {
9636                u32 param, val;
9637
9638                param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
9639                         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
9640                val = 1;
9641                ret = t4_set_params(adapter, mbox, pf, vf, 1, &param, &val);
9642                fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
9643                adapter->params.fw_caps_support = fw_caps;
9644        }
9645
9646        memset(&cmd, 0, sizeof(cmd));
9647        cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
9648                                       FW_CMD_REQUEST_F | FW_CMD_READ_F |
9649                                       FW_PORT_CMD_PORTID_V(port));
9650        cmd.action_to_len16 = cpu_to_be32(
9651                FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
9652                                     ? FW_PORT_ACTION_GET_PORT_INFO
9653                                     : FW_PORT_ACTION_GET_PORT_INFO32) |
9654                FW_LEN16(cmd));
9655        ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
9656        if (ret)
9657                return ret;
9658
9659        /* Extract the various fields from the Port Information message.
9660         */
9661        if (fw_caps == FW_CAPS16) {
9662                u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype);
9663
9664                port_type = FW_PORT_CMD_PTYPE_G(lstatus);
9665                mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
9666                             ? FW_PORT_CMD_MDIOADDR_G(lstatus)
9667                             : -1);
9668                pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap));
9669                acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap));
9670        } else {
9671                u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
9672
9673                port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
9674                mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
9675                             ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
9676                             : -1);
9677                pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
9678                acaps = be32_to_cpu(cmd.u.info32.acaps32);
9679        }
9680
9681        ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size,
9682                          &vivld, &vin);
9683        if (ret < 0)
9684                return ret;
9685
9686        pi->viid = ret;
9687        pi->tx_chan = port;
9688        pi->lport = port;
9689        pi->rss_size = rss_size;
9690        pi->rx_cchan = t4_get_tp_e2c_map(pi->adapter, port);
9691
9692        /* If fw supports returning the VIN as part of FW_VI_CMD,
9693         * save the returned values.
9694         */
9695        if (adapter->params.viid_smt_extn_support) {
9696                pi->vivld = vivld;
9697                pi->vin = vin;
9698        } else {
9699                /* Retrieve the values from VIID */
9700                pi->vivld = FW_VIID_VIVLD_G(pi->viid);
9701                pi->vin =  FW_VIID_VIN_G(pi->viid);
9702        }
9703
9704        pi->port_type = port_type;
9705        pi->mdio_addr = mdio_addr;
9706        pi->mod_type = FW_PORT_MOD_TYPE_NA;
9707
9708        init_link_config(&pi->link_cfg, pcaps, acaps);
9709        return 0;
9710}
9711
9712int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
9713{
9714        u8 addr[6];
9715        int ret, i, j = 0;
9716
9717        for_each_port(adap, i) {
9718                struct port_info *pi = adap2pinfo(adap, i);
9719
9720                while ((adap->params.portvec & (1 << j)) == 0)
9721                        j++;
9722
9723                ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
9724                if (ret)
9725                        return ret;
9726
9727                memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
9728                j++;
9729        }
9730        return 0;
9731}
9732
9733int t4_init_port_mirror(struct port_info *pi, u8 mbox, u8 port, u8 pf, u8 vf,
9734                        u16 *mirror_viid)
9735{
9736        int ret;
9737
9738        ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, NULL, NULL,
9739                          NULL, NULL);
9740        if (ret < 0)
9741                return ret;
9742
9743        if (mirror_viid)
9744                *mirror_viid = ret;
9745
9746        return 0;
9747}
9748
9749/**
9750 *      t4_read_cimq_cfg - read CIM queue configuration
9751 *      @adap: the adapter
9752 *      @base: holds the queue base addresses in bytes
9753 *      @size: holds the queue sizes in bytes
9754 *      @thres: holds the queue full thresholds in bytes
9755 *
9756 *      Returns the current configuration of the CIM queues, starting with
9757 *      the IBQs, then the OBQs.
9758 */
9759void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9760{
9761        unsigned int i, v;
9762        int cim_num_obq = is_t4(adap->params.chip) ?
9763                                CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9764
9765        for (i = 0; i < CIM_NUM_IBQ; i++) {
9766                t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
9767                             QUENUMSELECT_V(i));
9768                v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9769                /* value is in 256-byte units */
9770                *base++ = CIMQBASE_G(v) * 256;
9771                *size++ = CIMQSIZE_G(v) * 256;
9772                *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
9773        }
9774        for (i = 0; i < cim_num_obq; i++) {
9775                t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9776                             QUENUMSELECT_V(i));
9777                v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9778                /* value is in 256-byte units */
9779                *base++ = CIMQBASE_G(v) * 256;
9780                *size++ = CIMQSIZE_G(v) * 256;
9781        }
9782}
9783
9784/**
9785 *      t4_read_cim_ibq - read the contents of a CIM inbound queue
9786 *      @adap: the adapter
9787 *      @qid: the queue index
9788 *      @data: where to store the queue contents
9789 *      @n: capacity of @data in 32-bit words
9790 *
9791 *      Reads the contents of the selected CIM queue starting at address 0 up
9792 *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9793 *      error and the number of 32-bit words actually read on success.
9794 */
9795int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9796{
9797        int i, err, attempts;
9798        unsigned int addr;
9799        const unsigned int nwords = CIM_IBQ_SIZE * 4;
9800
9801        if (qid > 5 || (n & 3))
9802                return -EINVAL;
9803
9804        addr = qid * nwords;
9805        if (n > nwords)
9806                n = nwords;
9807
9808        /* It might take 3-10ms before the IBQ debug read access is allowed.
9809         * Wait for 1 Sec with a delay of 1 usec.
9810         */
9811        attempts = 1000000;
9812
9813        for (i = 0; i < n; i++, addr++) {
9814                t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
9815                             IBQDBGEN_F);
9816                err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
9817                                      attempts, 1);
9818                if (err)
9819                        return err;
9820                *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
9821        }
9822        t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
9823        return i;
9824}
9825
9826/**
9827 *      t4_read_cim_obq - read the contents of a CIM outbound queue
9828 *      @adap: the adapter
9829 *      @qid: the queue index
9830 *      @data: where to store the queue contents
9831 *      @n: capacity of @data in 32-bit words
9832 *
9833 *      Reads the contents of the selected CIM queue starting at address 0 up
9834 *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9835 *      error and the number of 32-bit words actually read on success.
9836 */
9837int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9838{
9839        int i, err;
9840        unsigned int addr, v, nwords;
9841        int cim_num_obq = is_t4(adap->params.chip) ?
9842                                CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9843
9844        if ((qid > (cim_num_obq - 1)) || (n & 3))
9845                return -EINVAL;
9846
9847        t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9848                     QUENUMSELECT_V(qid));
9849        v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9850
9851        addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
9852        nwords = CIMQSIZE_G(v) * 64;  /* same */
9853        if (n > nwords)
9854                n = nwords;
9855
9856        for (i = 0; i < n; i++, addr++) {
9857                t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
9858                             OBQDBGEN_F);
9859                err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
9860                                      2, 1);
9861                if (err)
9862                        return err;
9863                *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
9864        }
9865        t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
9866        return i;
9867}
9868
9869/**
9870 *      t4_cim_read - read a block from CIM internal address space
9871 *      @adap: the adapter
9872 *      @addr: the start address within the CIM address space
9873 *      @n: number of words to read
9874 *      @valp: where to store the result
9875 *
9876 *      Reads a block of 4-byte words from the CIM intenal address space.
9877 */
9878int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9879                unsigned int *valp)
9880{
9881        int ret = 0;
9882
9883        if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9884                return -EBUSY;
9885
9886        for ( ; !ret && n--; addr += 4) {
9887                t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
9888                ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9889                                      0, 5, 2);
9890                if (!ret)
9891                        *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
9892        }
9893        return ret;
9894}
9895
9896/**
9897 *      t4_cim_write - write a block into CIM internal address space
9898 *      @adap: the adapter
9899 *      @addr: the start address within the CIM address space
9900 *      @n: number of words to write
9901 *      @valp: set of values to write
9902 *
9903 *      Writes a block of 4-byte words into the CIM intenal address space.
9904 */
9905int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9906                 const unsigned int *valp)
9907{
9908        int ret = 0;
9909
9910        if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9911                return -EBUSY;
9912
9913        for ( ; !ret && n--; addr += 4) {
9914                t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
9915                t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
9916                ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9917                                      0, 5, 2);
9918        }
9919        return ret;
9920}
9921
9922static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9923                         unsigned int val)
9924{
9925        return t4_cim_write(adap, addr, 1, &val);
9926}
9927
9928/**
9929 *      t4_cim_read_la - read CIM LA capture buffer
9930 *      @adap: the adapter
9931 *      @la_buf: where to store the LA data
9932 *      @wrptr: the HW write pointer within the capture buffer
9933 *
9934 *      Reads the contents of the CIM LA buffer with the most recent entry at
9935 *      the end of the returned data and with the entry at @wrptr first.
9936 *      We try to leave the LA in the running state we find it in.
9937 */
9938int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9939{
9940        int i, ret;
9941        unsigned int cfg, val, idx;
9942
9943        ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
9944        if (ret)
9945                return ret;
9946
9947        if (cfg & UPDBGLAEN_F) {        /* LA is running, freeze it */
9948                ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
9949                if (ret)
9950                        return ret;
9951        }
9952
9953        ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9954        if (ret)
9955                goto restart;
9956
9957        idx = UPDBGLAWRPTR_G(val);
9958        if (wrptr)
9959                *wrptr = idx;
9960
9961        for (i = 0; i < adap->params.cim_la_size; i++) {
9962                ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9963                                    UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
9964                if (ret)
9965                        break;
9966                ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9967                if (ret)
9968                        break;
9969                if (val & UPDBGLARDEN_F) {
9970                        ret = -ETIMEDOUT;
9971                        break;
9972                }
9973                ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
9974                if (ret)
9975                        break;
9976
9977                /* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9978                 * identify the 32-bit portion of the full 312-bit data
9979                 */
9980                if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
9981                        idx = (idx & 0xff0) + 0x10;
9982                else
9983                        idx++;
9984                /* address can't exceed 0xfff */
9985                idx &= UPDBGLARDPTR_M;
9986        }
9987restart:
9988        if (cfg & UPDBGLAEN_F) {
9989                int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9990                                      cfg & ~UPDBGLARDEN_F);
9991                if (!ret)
9992                        ret = r;
9993        }
9994        return ret;
9995}
9996
9997/**
9998 *      t4_tp_read_la - read TP LA capture buffer
9999 *      @adap: the adapter
10000 *      @la_buf: where to store the LA data
10001 *      @wrptr: the HW write pointer within the capture buffer
10002 *
10003 *      Reads the contents of the TP LA buffer with the most recent entry at
10004 *      the end of the returned data and with the entry at @wrptr first.
10005 *      We leave the LA in the running state we find it in.
10006 */
10007void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
10008{
10009        bool last_incomplete;
10010        unsigned int i, cfg, val, idx;
10011
10012        cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
10013        if (cfg & DBGLAENABLE_F)                        /* freeze LA */
10014                t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
10015                             adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
10016
10017        val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
10018        idx = DBGLAWPTR_G(val);
10019        last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
10020        if (last_incomplete)
10021                idx = (idx + 1) & DBGLARPTR_M;
10022        if (wrptr)
10023                *wrptr = idx;
10024
10025        val &= 0xffff;
10026        val &= ~DBGLARPTR_V(DBGLARPTR_M);
10027        val |= adap->params.tp.la_mask;
10028
10029        for (i = 0; i < TPLA_SIZE; i++) {
10030                t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
10031                la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
10032                idx = (idx + 1) & DBGLARPTR_M;
10033        }
10034
10035        /* Wipe out last entry if it isn't valid */
10036        if (last_incomplete)
10037                la_buf[TPLA_SIZE - 1] = ~0ULL;
10038
10039        if (cfg & DBGLAENABLE_F)                    /* restore running state */
10040                t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
10041                             cfg | adap->params.tp.la_mask);
10042}
10043
10044/* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
10045 * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
10046 * state for more than the Warning Threshold then we'll issue a warning about
10047 * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
10048 * appears to be hung every Warning Repeat second till the situation clears.
10049 * If the situation clears, we'll note that as well.
10050 */
10051#define SGE_IDMA_WARN_THRESH 1
10052#define SGE_IDMA_WARN_REPEAT 300
10053
10054/**
10055 *      t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
10056 *      @adapter: the adapter
10057 *      @idma: the adapter IDMA Monitor state
10058 *
10059 *      Initialize the state of an SGE Ingress DMA Monitor.
10060 */
10061void t4_idma_monitor_init(struct adapter *adapter,
10062                          struct sge_idma_monitor_state *idma)
10063{
10064        /* Initialize the state variables for detecting an SGE Ingress DMA
10065         * hang.  The SGE has internal counters which count up on each clock
10066         * tick whenever the SGE finds its Ingress DMA State Engines in the
10067         * same state they were on the previous clock tick.  The clock used is
10068         * the Core Clock so we have a limit on the maximum "time" they can
10069         * record; typically a very small number of seconds.  For instance,
10070         * with a 600MHz Core Clock, we can only count up to a bit more than
10071         * 7s.  So we'll synthesize a larger counter in order to not run the
10072         * risk of having the "timers" overflow and give us the flexibility to
10073         * maintain a Hung SGE State Machine of our own which operates across
10074         * a longer time frame.
10075         */
10076        idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
10077        idma->idma_stalled[0] = 0;
10078        idma->idma_stalled[1] = 0;
10079}
10080
10081/**
10082 *      t4_idma_monitor - monitor SGE Ingress DMA state
10083 *      @adapter: the adapter
10084 *      @idma: the adapter IDMA Monitor state
10085 *      @hz: number of ticks/second
10086 *      @ticks: number of ticks since the last IDMA Monitor call
10087 */
10088void t4_idma_monitor(struct adapter *adapter,
10089                     struct sge_idma_monitor_state *idma,
10090                     int hz, int ticks)
10091{
10092        int i, idma_same_state_cnt[2];
10093
10094         /* Read the SGE Debug Ingress DMA Same State Count registers.  These
10095          * are counters inside the SGE which count up on each clock when the
10096          * SGE finds its Ingress DMA State Engines in the same states they
10097          * were in the previous clock.  The counters will peg out at
10098          * 0xffffffff without wrapping around so once they pass the 1s
10099          * threshold they'll stay above that till the IDMA state changes.
10100          */
10101        t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
10102        idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
10103        idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10104
10105        for (i = 0; i < 2; i++) {
10106                u32 debug0, debug11;
10107
10108                /* If the Ingress DMA Same State Counter ("timer") is less
10109                 * than 1s, then we can reset our synthesized Stall Timer and
10110                 * continue.  If we have previously emitted warnings about a
10111                 * potential stalled Ingress Queue, issue a note indicating
10112                 * that the Ingress Queue has resumed forward progress.
10113                 */
10114                if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
10115                        if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
10116                                dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
10117                                         "resumed after %d seconds\n",
10118                                         i, idma->idma_qid[i],
10119                                         idma->idma_stalled[i] / hz);
10120                        idma->idma_stalled[i] = 0;
10121                        continue;
10122                }
10123
10124                /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
10125                 * domain.  The first time we get here it'll be because we
10126                 * passed the 1s Threshold; each additional time it'll be
10127                 * because the RX Timer Callback is being fired on its regular
10128                 * schedule.
10129                 *
10130                 * If the stall is below our Potential Hung Ingress Queue
10131                 * Warning Threshold, continue.
10132                 */
10133                if (idma->idma_stalled[i] == 0) {
10134                        idma->idma_stalled[i] = hz;
10135                        idma->idma_warn[i] = 0;
10136                } else {
10137                        idma->idma_stalled[i] += ticks;
10138                        idma->idma_warn[i] -= ticks;
10139                }
10140
10141                if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
10142                        continue;
10143
10144                /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
10145                 */
10146                if (idma->idma_warn[i] > 0)
10147                        continue;
10148                idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
10149
10150                /* Read and save the SGE IDMA State and Queue ID information.
10151                 * We do this every time in case it changes across time ...
10152                 * can't be too careful ...
10153                 */
10154                t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
10155                debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10156                idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
10157
10158                t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
10159                debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10160                idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
10161
10162                dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
10163                         "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
10164                         i, idma->idma_qid[i], idma->idma_state[i],
10165                         idma->idma_stalled[i] / hz,
10166                         debug0, debug11);
10167                t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
10168        }
10169}
10170
10171/**
10172 *      t4_load_cfg - download config file
10173 *      @adap: the adapter
10174 *      @cfg_data: the cfg text file to write
10175 *      @size: text file size
10176 *
10177 *      Write the supplied config text file to the card's serial flash.
10178 */
10179int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10180{
10181        int ret, i, n, cfg_addr;
10182        unsigned int addr;
10183        unsigned int flash_cfg_start_sec;
10184        unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10185
10186        cfg_addr = t4_flash_cfg_addr(adap);
10187        if (cfg_addr < 0)
10188                return cfg_addr;
10189
10190        addr = cfg_addr;
10191        flash_cfg_start_sec = addr / SF_SEC_SIZE;
10192
10193        if (size > FLASH_CFG_MAX_SIZE) {
10194                dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
10195                        FLASH_CFG_MAX_SIZE);
10196                return -EFBIG;
10197        }
10198
10199        i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,    /* # of sectors spanned */
10200                         sf_sec_size);
10201        ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10202                                     flash_cfg_start_sec + i - 1);
10203        /* If size == 0 then we're simply erasing the FLASH sectors associated
10204         * with the on-adapter Firmware Configuration File.
10205         */
10206        if (ret || size == 0)
10207                goto out;
10208
10209        /* this will write to the flash up to SF_PAGE_SIZE at a time */
10210        for (i = 0; i < size; i += SF_PAGE_SIZE) {
10211                if ((size - i) <  SF_PAGE_SIZE)
10212                        n = size - i;
10213                else
10214                        n = SF_PAGE_SIZE;
10215                ret = t4_write_flash(adap, addr, n, cfg_data);
10216                if (ret)
10217                        goto out;
10218
10219                addr += SF_PAGE_SIZE;
10220                cfg_data += SF_PAGE_SIZE;
10221        }
10222
10223out:
10224        if (ret)
10225                dev_err(adap->pdev_dev, "config file %s failed %d\n",
10226                        (size == 0 ? "clear" : "download"), ret);
10227        return ret;
10228}
10229
10230/**
10231 *      t4_set_vf_mac - Set MAC address for the specified VF
10232 *      @adapter: The adapter
10233 *      @vf: one of the VFs instantiated by the specified PF
10234 *      @naddr: the number of MAC addresses
10235 *      @addr: the MAC address(es) to be set to the specified VF
10236 */
10237int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
10238                      unsigned int naddr, u8 *addr)
10239{
10240        struct fw_acl_mac_cmd cmd;
10241
10242        memset(&cmd, 0, sizeof(cmd));
10243        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
10244                                    FW_CMD_REQUEST_F |
10245                                    FW_CMD_WRITE_F |
10246                                    FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
10247                                    FW_ACL_MAC_CMD_VFN_V(vf));
10248
10249        /* Note: Do not enable the ACL */
10250        cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
10251        cmd.nmac = naddr;
10252
10253        switch (adapter->pf) {
10254        case 3:
10255                memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
10256                break;
10257        case 2:
10258                memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
10259                break;
10260        case 1:
10261                memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
10262                break;
10263        case 0:
10264                memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
10265                break;
10266        }
10267
10268        return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
10269}
10270
10271/**
10272 * t4_read_pace_tbl - read the pace table
10273 * @adap: the adapter
10274 * @pace_vals: holds the returned values
10275 *
10276 * Returns the values of TP's pace table in microseconds.
10277 */
10278void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
10279{
10280        unsigned int i, v;
10281
10282        for (i = 0; i < NTX_SCHED; i++) {
10283                t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i);
10284                v = t4_read_reg(adap, TP_PACE_TABLE_A);
10285                pace_vals[i] = dack_ticks_to_usec(adap, v);
10286        }
10287}
10288
10289/**
10290 * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
10291 * @adap: the adapter
10292 * @sched: the scheduler index
10293 * @kbps: the byte rate in Kbps
10294 * @ipg: the interpacket delay in tenths of nanoseconds
10295 * @sleep_ok: if true we may sleep while awaiting command completion
10296 *
10297 * Return the current configuration of a HW Tx scheduler.
10298 */
10299void t4_get_tx_sched(struct adapter *adap, unsigned int sched,
10300                     unsigned int *kbps, unsigned int *ipg, bool sleep_ok)
10301{
10302        unsigned int v, addr, bpt, cpt;
10303
10304        if (kbps) {
10305                addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2;
10306                t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10307                if (sched & 1)
10308                        v >>= 16;
10309                bpt = (v >> 8) & 0xff;
10310                cpt = v & 0xff;
10311                if (!cpt) {
10312                        *kbps = 0;      /* scheduler disabled */
10313                } else {
10314                        v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
10315                        *kbps = (v * bpt) / 125;
10316                }
10317        }
10318        if (ipg) {
10319                addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2;
10320                t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10321                if (sched & 1)
10322                        v >>= 16;
10323                v &= 0xffff;
10324                *ipg = (10000 * v) / core_ticks_per_usec(adap);
10325        }
10326}
10327
10328/* t4_sge_ctxt_rd - read an SGE context through FW
10329 * @adap: the adapter
10330 * @mbox: mailbox to use for the FW command
10331 * @cid: the context id
10332 * @ctype: the context type
10333 * @data: where to store the context data
10334 *
10335 * Issues a FW command through the given mailbox to read an SGE context.
10336 */
10337int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
10338                   enum ctxt_type ctype, u32 *data)
10339{
10340        struct fw_ldst_cmd c;
10341        int ret;
10342
10343        if (ctype == CTXT_FLM)
10344                ret = FW_LDST_ADDRSPC_SGE_FLMC;
10345        else
10346                ret = FW_LDST_ADDRSPC_SGE_CONMC;
10347
10348        memset(&c, 0, sizeof(c));
10349        c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10350                                        FW_CMD_REQUEST_F | FW_CMD_READ_F |
10351                                        FW_LDST_CMD_ADDRSPACE_V(ret));
10352        c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
10353        c.u.idctxt.physid = cpu_to_be32(cid);
10354
10355        ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
10356        if (ret == 0) {
10357                data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
10358                data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
10359                data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
10360                data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
10361                data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
10362                data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
10363        }
10364        return ret;
10365}
10366
10367/**
10368 * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
10369 * @adap: the adapter
10370 * @cid: the context id
10371 * @ctype: the context type
10372 * @data: where to store the context data
10373 *
10374 * Reads an SGE context directly, bypassing FW.  This is only for
10375 * debugging when FW is unavailable.
10376 */
10377int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid,
10378                      enum ctxt_type ctype, u32 *data)
10379{
10380        int i, ret;
10381
10382        t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype));
10383        ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1);
10384        if (!ret)
10385                for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4)
10386                        *data++ = t4_read_reg(adap, i);
10387        return ret;
10388}
10389
10390int t4_sched_params(struct adapter *adapter, u8 type, u8 level, u8 mode,
10391                    u8 rateunit, u8 ratemode, u8 channel, u8 class,
10392                    u32 minrate, u32 maxrate, u16 weight, u16 pktsize,
10393                    u16 burstsize)
10394{
10395        struct fw_sched_cmd cmd;
10396
10397        memset(&cmd, 0, sizeof(cmd));
10398        cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
10399                                      FW_CMD_REQUEST_F |
10400                                      FW_CMD_WRITE_F);
10401        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10402
10403        cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10404        cmd.u.params.type = type;
10405        cmd.u.params.level = level;
10406        cmd.u.params.mode = mode;
10407        cmd.u.params.ch = channel;
10408        cmd.u.params.cl = class;
10409        cmd.u.params.unit = rateunit;
10410        cmd.u.params.rate = ratemode;
10411        cmd.u.params.min = cpu_to_be32(minrate);
10412        cmd.u.params.max = cpu_to_be32(maxrate);
10413        cmd.u.params.weight = cpu_to_be16(weight);
10414        cmd.u.params.pktsize = cpu_to_be16(pktsize);
10415        cmd.u.params.burstsize = cpu_to_be16(burstsize);
10416
10417        return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
10418                               NULL, 1);
10419}
10420
10421/**
10422 *      t4_i2c_rd - read I2C data from adapter
10423 *      @adap: the adapter
10424 *      @mbox: mailbox to use for the FW command
10425 *      @port: Port number if per-port device; <0 if not
10426 *      @devid: per-port device ID or absolute device ID
10427 *      @offset: byte offset into device I2C space
10428 *      @len: byte length of I2C space data
10429 *      @buf: buffer in which to return I2C data
10430 *
10431 *      Reads the I2C data from the indicated device and location.
10432 */
10433int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port,
10434              unsigned int devid, unsigned int offset,
10435              unsigned int len, u8 *buf)
10436{
10437        struct fw_ldst_cmd ldst_cmd, ldst_rpl;
10438        unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
10439        int ret = 0;
10440
10441        if (len > I2C_PAGE_SIZE)
10442                return -EINVAL;
10443
10444        /* Dont allow reads that spans multiple pages */
10445        if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
10446                return -EINVAL;
10447
10448        memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10449        ldst_cmd.op_to_addrspace =
10450                cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10451                            FW_CMD_REQUEST_F |
10452                            FW_CMD_READ_F |
10453                            FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C));
10454        ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
10455        ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
10456        ldst_cmd.u.i2c.did = devid;
10457
10458        while (len > 0) {
10459                unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
10460
10461                ldst_cmd.u.i2c.boffset = offset;
10462                ldst_cmd.u.i2c.blen = i2c_len;
10463
10464                ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
10465                                 &ldst_rpl);
10466                if (ret)
10467                        break;
10468
10469                memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
10470                offset += i2c_len;
10471                buf += i2c_len;
10472                len -= i2c_len;
10473        }
10474
10475        return ret;
10476}
10477
10478/**
10479 *      t4_set_vlan_acl - Set a VLAN id for the specified VF
10480 *      @adap: the adapter
10481 *      @mbox: mailbox to use for the FW command
10482 *      @vf: one of the VFs instantiated by the specified PF
10483 *      @vlan: The vlanid to be set
10484 */
10485int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
10486                    u16 vlan)
10487{
10488        struct fw_acl_vlan_cmd vlan_cmd;
10489        unsigned int enable;
10490
10491        enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0);
10492        memset(&vlan_cmd, 0, sizeof(vlan_cmd));
10493        vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
10494                                         FW_CMD_REQUEST_F |
10495                                         FW_CMD_WRITE_F |
10496                                         FW_CMD_EXEC_F |
10497                                         FW_ACL_VLAN_CMD_PFN_V(adap->pf) |
10498                                         FW_ACL_VLAN_CMD_VFN_V(vf));
10499        vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
10500        /* Drop all packets that donot match vlan id */
10501        vlan_cmd.dropnovlan_fm = (enable
10502                                  ? (FW_ACL_VLAN_CMD_DROPNOVLAN_F |
10503                                     FW_ACL_VLAN_CMD_FM_F) : 0);
10504        if (enable != 0) {
10505                vlan_cmd.nvlan = 1;
10506                vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
10507        }
10508
10509        return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
10510}
10511
10512/**
10513 *      modify_device_id - Modifies the device ID of the Boot BIOS image
10514 *      @device_id: the device ID to write.
10515 *      @boot_data: the boot image to modify.
10516 *
10517 *      Write the supplied device ID to the boot BIOS image.
10518 */
10519static void modify_device_id(int device_id, u8 *boot_data)
10520{
10521        struct cxgb4_pcir_data *pcir_header;
10522        struct legacy_pci_rom_hdr *header;
10523        u8 *cur_header = boot_data;
10524        u16 pcir_offset;
10525
10526         /* Loop through all chained images and change the device ID's */
10527        do {
10528                header = (struct legacy_pci_rom_hdr *)cur_header;
10529                pcir_offset = le16_to_cpu(header->pcir_offset);
10530                pcir_header = (struct cxgb4_pcir_data *)(cur_header +
10531                              pcir_offset);
10532
10533                /**
10534                 * Only modify the Device ID if code type is Legacy or HP.
10535                 * 0x00: Okay to modify
10536                 * 0x01: FCODE. Do not modify
10537                 * 0x03: Okay to modify
10538                 * 0x04-0xFF: Do not modify
10539                 */
10540                if (pcir_header->code_type == CXGB4_HDR_CODE1) {
10541                        u8 csum = 0;
10542                        int i;
10543
10544                        /**
10545                         * Modify Device ID to match current adatper
10546                         */
10547                        pcir_header->device_id = cpu_to_le16(device_id);
10548
10549                        /**
10550                         * Set checksum temporarily to 0.
10551                         * We will recalculate it later.
10552                         */
10553                        header->cksum = 0x0;
10554
10555                        /**
10556                         * Calculate and update checksum
10557                         */
10558                        for (i = 0; i < (header->size512 * 512); i++)
10559                                csum += cur_header[i];
10560
10561                        /**
10562                         * Invert summed value to create the checksum
10563                         * Writing new checksum value directly to the boot data
10564                         */
10565                        cur_header[7] = -csum;
10566
10567                } else if (pcir_header->code_type == CXGB4_HDR_CODE2) {
10568                        /**
10569                         * Modify Device ID to match current adatper
10570                         */
10571                        pcir_header->device_id = cpu_to_le16(device_id);
10572                }
10573
10574                /**
10575                 * Move header pointer up to the next image in the ROM.
10576                 */
10577                cur_header += header->size512 * 512;
10578        } while (!(pcir_header->indicator & CXGB4_HDR_INDI));
10579}
10580
10581/**
10582 *      t4_load_boot - download boot flash
10583 *      @adap: the adapter
10584 *      @boot_data: the boot image to write
10585 *      @boot_addr: offset in flash to write boot_data
10586 *      @size: image size
10587 *
10588 *      Write the supplied boot image to the card's serial flash.
10589 *      The boot image has the following sections: a 28-byte header and the
10590 *      boot image.
10591 */
10592int t4_load_boot(struct adapter *adap, u8 *boot_data,
10593                 unsigned int boot_addr, unsigned int size)
10594{
10595        unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10596        unsigned int boot_sector = (boot_addr * 1024);
10597        struct cxgb4_pci_exp_rom_header *header;
10598        struct cxgb4_pcir_data *pcir_header;
10599        int pcir_offset;
10600        unsigned int i;
10601        u16 device_id;
10602        int ret, addr;
10603
10604        /**
10605         * Make sure the boot image does not encroach on the firmware region
10606         */
10607        if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
10608                dev_err(adap->pdev_dev, "boot image encroaching on firmware region\n");
10609                return -EFBIG;
10610        }
10611
10612        /* Get boot header */
10613        header = (struct cxgb4_pci_exp_rom_header *)boot_data;
10614        pcir_offset = le16_to_cpu(header->pcir_offset);
10615        /* PCIR Data Structure */
10616        pcir_header = (struct cxgb4_pcir_data *)&boot_data[pcir_offset];
10617
10618        /**
10619         * Perform some primitive sanity testing to avoid accidentally
10620         * writing garbage over the boot sectors.  We ought to check for
10621         * more but it's not worth it for now ...
10622         */
10623        if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
10624                dev_err(adap->pdev_dev, "boot image too small/large\n");
10625                return -EFBIG;
10626        }
10627
10628        if (le16_to_cpu(header->signature) != BOOT_SIGNATURE) {
10629                dev_err(adap->pdev_dev, "Boot image missing signature\n");
10630                return -EINVAL;
10631        }
10632
10633        /* Check PCI header signature */
10634        if (le32_to_cpu(pcir_header->signature) != PCIR_SIGNATURE) {
10635                dev_err(adap->pdev_dev, "PCI header missing signature\n");
10636                return -EINVAL;
10637        }
10638
10639        /* Check Vendor ID matches Chelsio ID*/
10640        if (le16_to_cpu(pcir_header->vendor_id) != PCI_VENDOR_ID_CHELSIO) {
10641                dev_err(adap->pdev_dev, "Vendor ID missing signature\n");
10642                return -EINVAL;
10643        }
10644
10645        /**
10646         * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
10647         * and Boot configuration data sections. These 3 boot sections span
10648         * sectors 0 to 7 in flash and live right before the FW image location.
10649         */
10650        i = DIV_ROUND_UP(size ? size : FLASH_FW_START,  sf_sec_size);
10651        ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
10652                                     (boot_sector >> 16) + i - 1);
10653
10654        /**
10655         * If size == 0 then we're simply erasing the FLASH sectors associated
10656         * with the on-adapter option ROM file
10657         */
10658        if (ret || size == 0)
10659                goto out;
10660        /* Retrieve adapter's device ID */
10661        pci_read_config_word(adap->pdev, PCI_DEVICE_ID, &device_id);
10662       /* Want to deal with PF 0 so I strip off PF 4 indicator */
10663        device_id = device_id & 0xf0ff;
10664
10665         /* Check PCIE Device ID */
10666        if (le16_to_cpu(pcir_header->device_id) != device_id) {
10667                /**
10668                 * Change the device ID in the Boot BIOS image to match
10669                 * the Device ID of the current adapter.
10670                 */
10671                modify_device_id(device_id, boot_data);
10672        }
10673
10674        /**
10675         * Skip over the first SF_PAGE_SIZE worth of data and write it after
10676         * we finish copying the rest of the boot image. This will ensure
10677         * that the BIOS boot header will only be written if the boot image
10678         * was written in full.
10679         */
10680        addr = boot_sector;
10681        for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
10682                addr += SF_PAGE_SIZE;
10683                boot_data += SF_PAGE_SIZE;
10684                ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data);
10685                if (ret)
10686                        goto out;
10687        }
10688
10689        ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
10690                             (const u8 *)header);
10691
10692out:
10693        if (ret)
10694                dev_err(adap->pdev_dev, "boot image load failed, error %d\n",
10695                        ret);
10696        return ret;
10697}
10698
10699/**
10700 *      t4_flash_bootcfg_addr - return the address of the flash
10701 *      optionrom configuration
10702 *      @adapter: the adapter
10703 *
10704 *      Return the address within the flash where the OptionROM Configuration
10705 *      is stored, or an error if the device FLASH is too small to contain
10706 *      a OptionROM Configuration.
10707 */
10708static int t4_flash_bootcfg_addr(struct adapter *adapter)
10709{
10710        /**
10711         * If the device FLASH isn't large enough to hold a Firmware
10712         * Configuration File, return an error.
10713         */
10714        if (adapter->params.sf_size <
10715            FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
10716                return -ENOSPC;
10717
10718        return FLASH_BOOTCFG_START;
10719}
10720
10721int t4_load_bootcfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10722{
10723        unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10724        struct cxgb4_bootcfg_data *header;
10725        unsigned int flash_cfg_start_sec;
10726        unsigned int addr, npad;
10727        int ret, i, n, cfg_addr;
10728
10729        cfg_addr = t4_flash_bootcfg_addr(adap);
10730        if (cfg_addr < 0)
10731                return cfg_addr;
10732
10733        addr = cfg_addr;
10734        flash_cfg_start_sec = addr / SF_SEC_SIZE;
10735
10736        if (size > FLASH_BOOTCFG_MAX_SIZE) {
10737                dev_err(adap->pdev_dev, "bootcfg file too large, max is %u bytes\n",
10738                        FLASH_BOOTCFG_MAX_SIZE);
10739                return -EFBIG;
10740        }
10741
10742        header = (struct cxgb4_bootcfg_data *)cfg_data;
10743        if (le16_to_cpu(header->signature) != BOOT_CFG_SIG) {
10744                dev_err(adap->pdev_dev, "Wrong bootcfg signature\n");
10745                ret = -EINVAL;
10746                goto out;
10747        }
10748
10749        i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,
10750                         sf_sec_size);
10751        ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10752                                     flash_cfg_start_sec + i - 1);
10753
10754        /**
10755         * If size == 0 then we're simply erasing the FLASH sectors associated
10756         * with the on-adapter OptionROM Configuration File.
10757         */
10758        if (ret || size == 0)
10759                goto out;
10760
10761        /* this will write to the flash up to SF_PAGE_SIZE at a time */
10762        for (i = 0; i < size; i += SF_PAGE_SIZE) {
10763                n = min_t(u32, size - i, SF_PAGE_SIZE);
10764
10765                ret = t4_write_flash(adap, addr, n, cfg_data);
10766                if (ret)
10767                        goto out;
10768
10769                addr += SF_PAGE_SIZE;
10770                cfg_data += SF_PAGE_SIZE;
10771        }
10772
10773        npad = ((size + 4 - 1) & ~3) - size;
10774        for (i = 0; i < npad; i++) {
10775                u8 data = 0;
10776
10777                ret = t4_write_flash(adap, cfg_addr + size + i, 1, &data);
10778                if (ret)
10779                        goto out;
10780        }
10781
10782out:
10783        if (ret)
10784                dev_err(adap->pdev_dev, "boot config data %s failed %d\n",
10785                        (size == 0 ? "clear" : "download"), ret);
10786        return ret;
10787}
10788