linux/drivers/net/ethernet/freescale/gianfar.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* drivers/net/ethernet/freescale/gianfar.c
   3 *
   4 * Gianfar Ethernet Driver
   5 * This driver is designed for the non-CPM ethernet controllers
   6 * on the 85xx and 83xx family of integrated processors
   7 * Based on 8260_io/fcc_enet.c
   8 *
   9 * Author: Andy Fleming
  10 * Maintainer: Kumar Gala
  11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
  12 *
  13 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
  14 * Copyright 2007 MontaVista Software, Inc.
  15 *
  16 *  Gianfar:  AKA Lambda Draconis, "Dragon"
  17 *  RA 11 31 24.2
  18 *  Dec +69 19 52
  19 *  V 3.84
  20 *  B-V +1.62
  21 *
  22 *  Theory of operation
  23 *
  24 *  The driver is initialized through of_device. Configuration information
  25 *  is therefore conveyed through an OF-style device tree.
  26 *
  27 *  The Gianfar Ethernet Controller uses a ring of buffer
  28 *  descriptors.  The beginning is indicated by a register
  29 *  pointing to the physical address of the start of the ring.
  30 *  The end is determined by a "wrap" bit being set in the
  31 *  last descriptor of the ring.
  32 *
  33 *  When a packet is received, the RXF bit in the
  34 *  IEVENT register is set, triggering an interrupt when the
  35 *  corresponding bit in the IMASK register is also set (if
  36 *  interrupt coalescing is active, then the interrupt may not
  37 *  happen immediately, but will wait until either a set number
  38 *  of frames or amount of time have passed).  In NAPI, the
  39 *  interrupt handler will signal there is work to be done, and
  40 *  exit. This method will start at the last known empty
  41 *  descriptor, and process every subsequent descriptor until there
  42 *  are none left with data (NAPI will stop after a set number of
  43 *  packets to give time to other tasks, but will eventually
  44 *  process all the packets).  The data arrives inside a
  45 *  pre-allocated skb, and so after the skb is passed up to the
  46 *  stack, a new skb must be allocated, and the address field in
  47 *  the buffer descriptor must be updated to indicate this new
  48 *  skb.
  49 *
  50 *  When the kernel requests that a packet be transmitted, the
  51 *  driver starts where it left off last time, and points the
  52 *  descriptor at the buffer which was passed in.  The driver
  53 *  then informs the DMA engine that there are packets ready to
  54 *  be transmitted.  Once the controller is finished transmitting
  55 *  the packet, an interrupt may be triggered (under the same
  56 *  conditions as for reception, but depending on the TXF bit).
  57 *  The driver then cleans up the buffer.
  58 */
  59
  60#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  61#define DEBUG
  62
  63#include <linux/kernel.h>
  64#include <linux/string.h>
  65#include <linux/errno.h>
  66#include <linux/unistd.h>
  67#include <linux/slab.h>
  68#include <linux/interrupt.h>
  69#include <linux/delay.h>
  70#include <linux/netdevice.h>
  71#include <linux/etherdevice.h>
  72#include <linux/skbuff.h>
  73#include <linux/if_vlan.h>
  74#include <linux/spinlock.h>
  75#include <linux/mm.h>
  76#include <linux/of_address.h>
  77#include <linux/of_irq.h>
  78#include <linux/of_mdio.h>
  79#include <linux/of_platform.h>
  80#include <linux/ip.h>
  81#include <linux/tcp.h>
  82#include <linux/udp.h>
  83#include <linux/in.h>
  84#include <linux/net_tstamp.h>
  85
  86#include <asm/io.h>
  87#ifdef CONFIG_PPC
  88#include <asm/reg.h>
  89#include <asm/mpc85xx.h>
  90#endif
  91#include <asm/irq.h>
  92#include <linux/uaccess.h>
  93#include <linux/module.h>
  94#include <linux/dma-mapping.h>
  95#include <linux/crc32.h>
  96#include <linux/mii.h>
  97#include <linux/phy.h>
  98#include <linux/phy_fixed.h>
  99#include <linux/of.h>
 100#include <linux/of_net.h>
 101
 102#include "gianfar.h"
 103
 104#define TX_TIMEOUT      (5*HZ)
 105
 106MODULE_AUTHOR("Freescale Semiconductor, Inc");
 107MODULE_DESCRIPTION("Gianfar Ethernet Driver");
 108MODULE_LICENSE("GPL");
 109
 110static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
 111                            dma_addr_t buf)
 112{
 113        u32 lstatus;
 114
 115        bdp->bufPtr = cpu_to_be32(buf);
 116
 117        lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
 118        if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
 119                lstatus |= BD_LFLAG(RXBD_WRAP);
 120
 121        gfar_wmb();
 122
 123        bdp->lstatus = cpu_to_be32(lstatus);
 124}
 125
 126static void gfar_init_tx_rx_base(struct gfar_private *priv)
 127{
 128        struct gfar __iomem *regs = priv->gfargrp[0].regs;
 129        u32 __iomem *baddr;
 130        int i;
 131
 132        baddr = &regs->tbase0;
 133        for (i = 0; i < priv->num_tx_queues; i++) {
 134                gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
 135                baddr += 2;
 136        }
 137
 138        baddr = &regs->rbase0;
 139        for (i = 0; i < priv->num_rx_queues; i++) {
 140                gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
 141                baddr += 2;
 142        }
 143}
 144
 145static void gfar_init_rqprm(struct gfar_private *priv)
 146{
 147        struct gfar __iomem *regs = priv->gfargrp[0].regs;
 148        u32 __iomem *baddr;
 149        int i;
 150
 151        baddr = &regs->rqprm0;
 152        for (i = 0; i < priv->num_rx_queues; i++) {
 153                gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
 154                           (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
 155                baddr++;
 156        }
 157}
 158
 159static void gfar_rx_offload_en(struct gfar_private *priv)
 160{
 161        /* set this when rx hw offload (TOE) functions are being used */
 162        priv->uses_rxfcb = 0;
 163
 164        if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
 165                priv->uses_rxfcb = 1;
 166
 167        if (priv->hwts_rx_en || priv->rx_filer_enable)
 168                priv->uses_rxfcb = 1;
 169}
 170
 171static void gfar_mac_rx_config(struct gfar_private *priv)
 172{
 173        struct gfar __iomem *regs = priv->gfargrp[0].regs;
 174        u32 rctrl = 0;
 175
 176        if (priv->rx_filer_enable) {
 177                rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
 178                /* Program the RIR0 reg with the required distribution */
 179                if (priv->poll_mode == GFAR_SQ_POLLING)
 180                        gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
 181                else /* GFAR_MQ_POLLING */
 182                        gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
 183        }
 184
 185        /* Restore PROMISC mode */
 186        if (priv->ndev->flags & IFF_PROMISC)
 187                rctrl |= RCTRL_PROM;
 188
 189        if (priv->ndev->features & NETIF_F_RXCSUM)
 190                rctrl |= RCTRL_CHECKSUMMING;
 191
 192        if (priv->extended_hash)
 193                rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
 194
 195        if (priv->padding) {
 196                rctrl &= ~RCTRL_PAL_MASK;
 197                rctrl |= RCTRL_PADDING(priv->padding);
 198        }
 199
 200        /* Enable HW time stamping if requested from user space */
 201        if (priv->hwts_rx_en)
 202                rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
 203
 204        if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
 205                rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
 206
 207        /* Clear the LFC bit */
 208        gfar_write(&regs->rctrl, rctrl);
 209        /* Init flow control threshold values */
 210        gfar_init_rqprm(priv);
 211        gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
 212        rctrl |= RCTRL_LFC;
 213
 214        /* Init rctrl based on our settings */
 215        gfar_write(&regs->rctrl, rctrl);
 216}
 217
 218static void gfar_mac_tx_config(struct gfar_private *priv)
 219{
 220        struct gfar __iomem *regs = priv->gfargrp[0].regs;
 221        u32 tctrl = 0;
 222
 223        if (priv->ndev->features & NETIF_F_IP_CSUM)
 224                tctrl |= TCTRL_INIT_CSUM;
 225
 226        if (priv->prio_sched_en)
 227                tctrl |= TCTRL_TXSCHED_PRIO;
 228        else {
 229                tctrl |= TCTRL_TXSCHED_WRRS;
 230                gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
 231                gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
 232        }
 233
 234        if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
 235                tctrl |= TCTRL_VLINS;
 236
 237        gfar_write(&regs->tctrl, tctrl);
 238}
 239
 240static void gfar_configure_coalescing(struct gfar_private *priv,
 241                               unsigned long tx_mask, unsigned long rx_mask)
 242{
 243        struct gfar __iomem *regs = priv->gfargrp[0].regs;
 244        u32 __iomem *baddr;
 245
 246        if (priv->mode == MQ_MG_MODE) {
 247                int i = 0;
 248
 249                baddr = &regs->txic0;
 250                for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
 251                        gfar_write(baddr + i, 0);
 252                        if (likely(priv->tx_queue[i]->txcoalescing))
 253                                gfar_write(baddr + i, priv->tx_queue[i]->txic);
 254                }
 255
 256                baddr = &regs->rxic0;
 257                for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
 258                        gfar_write(baddr + i, 0);
 259                        if (likely(priv->rx_queue[i]->rxcoalescing))
 260                                gfar_write(baddr + i, priv->rx_queue[i]->rxic);
 261                }
 262        } else {
 263                /* Backward compatible case -- even if we enable
 264                 * multiple queues, there's only single reg to program
 265                 */
 266                gfar_write(&regs->txic, 0);
 267                if (likely(priv->tx_queue[0]->txcoalescing))
 268                        gfar_write(&regs->txic, priv->tx_queue[0]->txic);
 269
 270                gfar_write(&regs->rxic, 0);
 271                if (unlikely(priv->rx_queue[0]->rxcoalescing))
 272                        gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
 273        }
 274}
 275
 276static void gfar_configure_coalescing_all(struct gfar_private *priv)
 277{
 278        gfar_configure_coalescing(priv, 0xFF, 0xFF);
 279}
 280
 281static struct net_device_stats *gfar_get_stats(struct net_device *dev)
 282{
 283        struct gfar_private *priv = netdev_priv(dev);
 284        unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
 285        unsigned long tx_packets = 0, tx_bytes = 0;
 286        int i;
 287
 288        for (i = 0; i < priv->num_rx_queues; i++) {
 289                rx_packets += priv->rx_queue[i]->stats.rx_packets;
 290                rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
 291                rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
 292        }
 293
 294        dev->stats.rx_packets = rx_packets;
 295        dev->stats.rx_bytes   = rx_bytes;
 296        dev->stats.rx_dropped = rx_dropped;
 297
 298        for (i = 0; i < priv->num_tx_queues; i++) {
 299                tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
 300                tx_packets += priv->tx_queue[i]->stats.tx_packets;
 301        }
 302
 303        dev->stats.tx_bytes   = tx_bytes;
 304        dev->stats.tx_packets = tx_packets;
 305
 306        return &dev->stats;
 307}
 308
 309/* Set the appropriate hash bit for the given addr */
 310/* The algorithm works like so:
 311 * 1) Take the Destination Address (ie the multicast address), and
 312 * do a CRC on it (little endian), and reverse the bits of the
 313 * result.
 314 * 2) Use the 8 most significant bits as a hash into a 256-entry
 315 * table.  The table is controlled through 8 32-bit registers:
 316 * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
 317 * gaddr7.  This means that the 3 most significant bits in the
 318 * hash index which gaddr register to use, and the 5 other bits
 319 * indicate which bit (assuming an IBM numbering scheme, which
 320 * for PowerPC (tm) is usually the case) in the register holds
 321 * the entry.
 322 */
 323static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
 324{
 325        u32 tempval;
 326        struct gfar_private *priv = netdev_priv(dev);
 327        u32 result = ether_crc(ETH_ALEN, addr);
 328        int width = priv->hash_width;
 329        u8 whichbit = (result >> (32 - width)) & 0x1f;
 330        u8 whichreg = result >> (32 - width + 5);
 331        u32 value = (1 << (31-whichbit));
 332
 333        tempval = gfar_read(priv->hash_regs[whichreg]);
 334        tempval |= value;
 335        gfar_write(priv->hash_regs[whichreg], tempval);
 336}
 337
 338/* There are multiple MAC Address register pairs on some controllers
 339 * This function sets the numth pair to a given address
 340 */
 341static void gfar_set_mac_for_addr(struct net_device *dev, int num,
 342                                  const u8 *addr)
 343{
 344        struct gfar_private *priv = netdev_priv(dev);
 345        struct gfar __iomem *regs = priv->gfargrp[0].regs;
 346        u32 tempval;
 347        u32 __iomem *macptr = &regs->macstnaddr1;
 348
 349        macptr += num*2;
 350
 351        /* For a station address of 0x12345678ABCD in transmission
 352         * order (BE), MACnADDR1 is set to 0xCDAB7856 and
 353         * MACnADDR2 is set to 0x34120000.
 354         */
 355        tempval = (addr[5] << 24) | (addr[4] << 16) |
 356                  (addr[3] << 8)  |  addr[2];
 357
 358        gfar_write(macptr, tempval);
 359
 360        tempval = (addr[1] << 24) | (addr[0] << 16);
 361
 362        gfar_write(macptr+1, tempval);
 363}
 364
 365static int gfar_set_mac_addr(struct net_device *dev, void *p)
 366{
 367        eth_mac_addr(dev, p);
 368
 369        gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
 370
 371        return 0;
 372}
 373
 374static void gfar_ints_disable(struct gfar_private *priv)
 375{
 376        int i;
 377        for (i = 0; i < priv->num_grps; i++) {
 378                struct gfar __iomem *regs = priv->gfargrp[i].regs;
 379                /* Clear IEVENT */
 380                gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
 381
 382                /* Initialize IMASK */
 383                gfar_write(&regs->imask, IMASK_INIT_CLEAR);
 384        }
 385}
 386
 387static void gfar_ints_enable(struct gfar_private *priv)
 388{
 389        int i;
 390        for (i = 0; i < priv->num_grps; i++) {
 391                struct gfar __iomem *regs = priv->gfargrp[i].regs;
 392                /* Unmask the interrupts we look for */
 393                gfar_write(&regs->imask, IMASK_DEFAULT);
 394        }
 395}
 396
 397static int gfar_alloc_tx_queues(struct gfar_private *priv)
 398{
 399        int i;
 400
 401        for (i = 0; i < priv->num_tx_queues; i++) {
 402                priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
 403                                            GFP_KERNEL);
 404                if (!priv->tx_queue[i])
 405                        return -ENOMEM;
 406
 407                priv->tx_queue[i]->tx_skbuff = NULL;
 408                priv->tx_queue[i]->qindex = i;
 409                priv->tx_queue[i]->dev = priv->ndev;
 410                spin_lock_init(&(priv->tx_queue[i]->txlock));
 411        }
 412        return 0;
 413}
 414
 415static int gfar_alloc_rx_queues(struct gfar_private *priv)
 416{
 417        int i;
 418
 419        for (i = 0; i < priv->num_rx_queues; i++) {
 420                priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
 421                                            GFP_KERNEL);
 422                if (!priv->rx_queue[i])
 423                        return -ENOMEM;
 424
 425                priv->rx_queue[i]->qindex = i;
 426                priv->rx_queue[i]->ndev = priv->ndev;
 427        }
 428        return 0;
 429}
 430
 431static void gfar_free_tx_queues(struct gfar_private *priv)
 432{
 433        int i;
 434
 435        for (i = 0; i < priv->num_tx_queues; i++)
 436                kfree(priv->tx_queue[i]);
 437}
 438
 439static void gfar_free_rx_queues(struct gfar_private *priv)
 440{
 441        int i;
 442
 443        for (i = 0; i < priv->num_rx_queues; i++)
 444                kfree(priv->rx_queue[i]);
 445}
 446
 447static void unmap_group_regs(struct gfar_private *priv)
 448{
 449        int i;
 450
 451        for (i = 0; i < MAXGROUPS; i++)
 452                if (priv->gfargrp[i].regs)
 453                        iounmap(priv->gfargrp[i].regs);
 454}
 455
 456static void free_gfar_dev(struct gfar_private *priv)
 457{
 458        int i, j;
 459
 460        for (i = 0; i < priv->num_grps; i++)
 461                for (j = 0; j < GFAR_NUM_IRQS; j++) {
 462                        kfree(priv->gfargrp[i].irqinfo[j]);
 463                        priv->gfargrp[i].irqinfo[j] = NULL;
 464                }
 465
 466        free_netdev(priv->ndev);
 467}
 468
 469static void disable_napi(struct gfar_private *priv)
 470{
 471        int i;
 472
 473        for (i = 0; i < priv->num_grps; i++) {
 474                napi_disable(&priv->gfargrp[i].napi_rx);
 475                napi_disable(&priv->gfargrp[i].napi_tx);
 476        }
 477}
 478
 479static void enable_napi(struct gfar_private *priv)
 480{
 481        int i;
 482
 483        for (i = 0; i < priv->num_grps; i++) {
 484                napi_enable(&priv->gfargrp[i].napi_rx);
 485                napi_enable(&priv->gfargrp[i].napi_tx);
 486        }
 487}
 488
 489static int gfar_parse_group(struct device_node *np,
 490                            struct gfar_private *priv, const char *model)
 491{
 492        struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
 493        int i;
 494
 495        for (i = 0; i < GFAR_NUM_IRQS; i++) {
 496                grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
 497                                          GFP_KERNEL);
 498                if (!grp->irqinfo[i])
 499                        return -ENOMEM;
 500        }
 501
 502        grp->regs = of_iomap(np, 0);
 503        if (!grp->regs)
 504                return -ENOMEM;
 505
 506        gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
 507
 508        /* If we aren't the FEC we have multiple interrupts */
 509        if (model && strcasecmp(model, "FEC")) {
 510                gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
 511                gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
 512                if (!gfar_irq(grp, TX)->irq ||
 513                    !gfar_irq(grp, RX)->irq ||
 514                    !gfar_irq(grp, ER)->irq)
 515                        return -EINVAL;
 516        }
 517
 518        grp->priv = priv;
 519        spin_lock_init(&grp->grplock);
 520        if (priv->mode == MQ_MG_MODE) {
 521                u32 rxq_mask, txq_mask;
 522                int ret;
 523
 524                grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 525                grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 526
 527                ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
 528                if (!ret) {
 529                        grp->rx_bit_map = rxq_mask ?
 530                        rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
 531                }
 532
 533                ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
 534                if (!ret) {
 535                        grp->tx_bit_map = txq_mask ?
 536                        txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
 537                }
 538
 539                if (priv->poll_mode == GFAR_SQ_POLLING) {
 540                        /* One Q per interrupt group: Q0 to G0, Q1 to G1 */
 541                        grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 542                        grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 543                }
 544        } else {
 545                grp->rx_bit_map = 0xFF;
 546                grp->tx_bit_map = 0xFF;
 547        }
 548
 549        /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
 550         * right to left, so we need to revert the 8 bits to get the q index
 551         */
 552        grp->rx_bit_map = bitrev8(grp->rx_bit_map);
 553        grp->tx_bit_map = bitrev8(grp->tx_bit_map);
 554
 555        /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
 556         * also assign queues to groups
 557         */
 558        for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
 559                if (!grp->rx_queue)
 560                        grp->rx_queue = priv->rx_queue[i];
 561                grp->num_rx_queues++;
 562                grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
 563                priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
 564                priv->rx_queue[i]->grp = grp;
 565        }
 566
 567        for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
 568                if (!grp->tx_queue)
 569                        grp->tx_queue = priv->tx_queue[i];
 570                grp->num_tx_queues++;
 571                grp->tstat |= (TSTAT_CLEAR_THALT >> i);
 572                priv->tqueue |= (TQUEUE_EN0 >> i);
 573                priv->tx_queue[i]->grp = grp;
 574        }
 575
 576        priv->num_grps++;
 577
 578        return 0;
 579}
 580
 581static int gfar_of_group_count(struct device_node *np)
 582{
 583        struct device_node *child;
 584        int num = 0;
 585
 586        for_each_available_child_of_node(np, child)
 587                if (of_node_name_eq(child, "queue-group"))
 588                        num++;
 589
 590        return num;
 591}
 592
 593/* Reads the controller's registers to determine what interface
 594 * connects it to the PHY.
 595 */
 596static phy_interface_t gfar_get_interface(struct net_device *dev)
 597{
 598        struct gfar_private *priv = netdev_priv(dev);
 599        struct gfar __iomem *regs = priv->gfargrp[0].regs;
 600        u32 ecntrl;
 601
 602        ecntrl = gfar_read(&regs->ecntrl);
 603
 604        if (ecntrl & ECNTRL_SGMII_MODE)
 605                return PHY_INTERFACE_MODE_SGMII;
 606
 607        if (ecntrl & ECNTRL_TBI_MODE) {
 608                if (ecntrl & ECNTRL_REDUCED_MODE)
 609                        return PHY_INTERFACE_MODE_RTBI;
 610                else
 611                        return PHY_INTERFACE_MODE_TBI;
 612        }
 613
 614        if (ecntrl & ECNTRL_REDUCED_MODE) {
 615                if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
 616                        return PHY_INTERFACE_MODE_RMII;
 617                }
 618                else {
 619                        phy_interface_t interface = priv->interface;
 620
 621                        /* This isn't autodetected right now, so it must
 622                         * be set by the device tree or platform code.
 623                         */
 624                        if (interface == PHY_INTERFACE_MODE_RGMII_ID)
 625                                return PHY_INTERFACE_MODE_RGMII_ID;
 626
 627                        return PHY_INTERFACE_MODE_RGMII;
 628                }
 629        }
 630
 631        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
 632                return PHY_INTERFACE_MODE_GMII;
 633
 634        return PHY_INTERFACE_MODE_MII;
 635}
 636
 637static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
 638{
 639        const char *model;
 640        const void *mac_addr;
 641        int err = 0, i;
 642        phy_interface_t interface;
 643        struct net_device *dev = NULL;
 644        struct gfar_private *priv = NULL;
 645        struct device_node *np = ofdev->dev.of_node;
 646        struct device_node *child = NULL;
 647        u32 stash_len = 0;
 648        u32 stash_idx = 0;
 649        unsigned int num_tx_qs, num_rx_qs;
 650        unsigned short mode, poll_mode;
 651
 652        if (!np)
 653                return -ENODEV;
 654
 655        if (of_device_is_compatible(np, "fsl,etsec2")) {
 656                mode = MQ_MG_MODE;
 657                poll_mode = GFAR_SQ_POLLING;
 658        } else {
 659                mode = SQ_SG_MODE;
 660                poll_mode = GFAR_SQ_POLLING;
 661        }
 662
 663        if (mode == SQ_SG_MODE) {
 664                num_tx_qs = 1;
 665                num_rx_qs = 1;
 666        } else { /* MQ_MG_MODE */
 667                /* get the actual number of supported groups */
 668                unsigned int num_grps = gfar_of_group_count(np);
 669
 670                if (num_grps == 0 || num_grps > MAXGROUPS) {
 671                        dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
 672                                num_grps);
 673                        pr_err("Cannot do alloc_etherdev, aborting\n");
 674                        return -EINVAL;
 675                }
 676
 677                if (poll_mode == GFAR_SQ_POLLING) {
 678                        num_tx_qs = num_grps; /* one txq per int group */
 679                        num_rx_qs = num_grps; /* one rxq per int group */
 680                } else { /* GFAR_MQ_POLLING */
 681                        u32 tx_queues, rx_queues;
 682                        int ret;
 683
 684                        /* parse the num of HW tx and rx queues */
 685                        ret = of_property_read_u32(np, "fsl,num_tx_queues",
 686                                                   &tx_queues);
 687                        num_tx_qs = ret ? 1 : tx_queues;
 688
 689                        ret = of_property_read_u32(np, "fsl,num_rx_queues",
 690                                                   &rx_queues);
 691                        num_rx_qs = ret ? 1 : rx_queues;
 692                }
 693        }
 694
 695        if (num_tx_qs > MAX_TX_QS) {
 696                pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
 697                       num_tx_qs, MAX_TX_QS);
 698                pr_err("Cannot do alloc_etherdev, aborting\n");
 699                return -EINVAL;
 700        }
 701
 702        if (num_rx_qs > MAX_RX_QS) {
 703                pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
 704                       num_rx_qs, MAX_RX_QS);
 705                pr_err("Cannot do alloc_etherdev, aborting\n");
 706                return -EINVAL;
 707        }
 708
 709        *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
 710        dev = *pdev;
 711        if (NULL == dev)
 712                return -ENOMEM;
 713
 714        priv = netdev_priv(dev);
 715        priv->ndev = dev;
 716
 717        priv->mode = mode;
 718        priv->poll_mode = poll_mode;
 719
 720        priv->num_tx_queues = num_tx_qs;
 721        netif_set_real_num_rx_queues(dev, num_rx_qs);
 722        priv->num_rx_queues = num_rx_qs;
 723
 724        err = gfar_alloc_tx_queues(priv);
 725        if (err)
 726                goto tx_alloc_failed;
 727
 728        err = gfar_alloc_rx_queues(priv);
 729        if (err)
 730                goto rx_alloc_failed;
 731
 732        err = of_property_read_string(np, "model", &model);
 733        if (err) {
 734                pr_err("Device model property missing, aborting\n");
 735                goto rx_alloc_failed;
 736        }
 737
 738        /* Init Rx queue filer rule set linked list */
 739        INIT_LIST_HEAD(&priv->rx_list.list);
 740        priv->rx_list.count = 0;
 741        mutex_init(&priv->rx_queue_access);
 742
 743        for (i = 0; i < MAXGROUPS; i++)
 744                priv->gfargrp[i].regs = NULL;
 745
 746        /* Parse and initialize group specific information */
 747        if (priv->mode == MQ_MG_MODE) {
 748                for_each_available_child_of_node(np, child) {
 749                        if (!of_node_name_eq(child, "queue-group"))
 750                                continue;
 751
 752                        err = gfar_parse_group(child, priv, model);
 753                        if (err) {
 754                                of_node_put(child);
 755                                goto err_grp_init;
 756                        }
 757                }
 758        } else { /* SQ_SG_MODE */
 759                err = gfar_parse_group(np, priv, model);
 760                if (err)
 761                        goto err_grp_init;
 762        }
 763
 764        if (of_property_read_bool(np, "bd-stash")) {
 765                priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
 766                priv->bd_stash_en = 1;
 767        }
 768
 769        err = of_property_read_u32(np, "rx-stash-len", &stash_len);
 770
 771        if (err == 0)
 772                priv->rx_stash_size = stash_len;
 773
 774        err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
 775
 776        if (err == 0)
 777                priv->rx_stash_index = stash_idx;
 778
 779        if (stash_len || stash_idx)
 780                priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
 781
 782        mac_addr = of_get_mac_address(np);
 783
 784        if (!IS_ERR(mac_addr)) {
 785                ether_addr_copy(dev->dev_addr, mac_addr);
 786        } else {
 787                eth_hw_addr_random(dev);
 788                dev_info(&ofdev->dev, "Using random MAC address: %pM\n", dev->dev_addr);
 789        }
 790
 791        if (model && !strcasecmp(model, "TSEC"))
 792                priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
 793                                     FSL_GIANFAR_DEV_HAS_COALESCE |
 794                                     FSL_GIANFAR_DEV_HAS_RMON |
 795                                     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
 796
 797        if (model && !strcasecmp(model, "eTSEC"))
 798                priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
 799                                     FSL_GIANFAR_DEV_HAS_COALESCE |
 800                                     FSL_GIANFAR_DEV_HAS_RMON |
 801                                     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
 802                                     FSL_GIANFAR_DEV_HAS_CSUM |
 803                                     FSL_GIANFAR_DEV_HAS_VLAN |
 804                                     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
 805                                     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
 806                                     FSL_GIANFAR_DEV_HAS_TIMER |
 807                                     FSL_GIANFAR_DEV_HAS_RX_FILER;
 808
 809        /* Use PHY connection type from the DT node if one is specified there.
 810         * rgmii-id really needs to be specified. Other types can be
 811         * detected by hardware
 812         */
 813        err = of_get_phy_mode(np, &interface);
 814        if (!err)
 815                priv->interface = interface;
 816        else
 817                priv->interface = gfar_get_interface(dev);
 818
 819        if (of_find_property(np, "fsl,magic-packet", NULL))
 820                priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
 821
 822        if (of_get_property(np, "fsl,wake-on-filer", NULL))
 823                priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
 824
 825        priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
 826
 827        /* In the case of a fixed PHY, the DT node associated
 828         * to the PHY is the Ethernet MAC DT node.
 829         */
 830        if (!priv->phy_node && of_phy_is_fixed_link(np)) {
 831                err = of_phy_register_fixed_link(np);
 832                if (err)
 833                        goto err_grp_init;
 834
 835                priv->phy_node = of_node_get(np);
 836        }
 837
 838        /* Find the TBI PHY.  If it's not there, we don't support SGMII */
 839        priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
 840
 841        return 0;
 842
 843err_grp_init:
 844        unmap_group_regs(priv);
 845rx_alloc_failed:
 846        gfar_free_rx_queues(priv);
 847tx_alloc_failed:
 848        gfar_free_tx_queues(priv);
 849        free_gfar_dev(priv);
 850        return err;
 851}
 852
 853static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
 854                                   u32 class)
 855{
 856        u32 rqfpr = FPR_FILER_MASK;
 857        u32 rqfcr = 0x0;
 858
 859        rqfar--;
 860        rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
 861        priv->ftp_rqfpr[rqfar] = rqfpr;
 862        priv->ftp_rqfcr[rqfar] = rqfcr;
 863        gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 864
 865        rqfar--;
 866        rqfcr = RQFCR_CMP_NOMATCH;
 867        priv->ftp_rqfpr[rqfar] = rqfpr;
 868        priv->ftp_rqfcr[rqfar] = rqfcr;
 869        gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 870
 871        rqfar--;
 872        rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
 873        rqfpr = class;
 874        priv->ftp_rqfcr[rqfar] = rqfcr;
 875        priv->ftp_rqfpr[rqfar] = rqfpr;
 876        gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 877
 878        rqfar--;
 879        rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
 880        rqfpr = class;
 881        priv->ftp_rqfcr[rqfar] = rqfcr;
 882        priv->ftp_rqfpr[rqfar] = rqfpr;
 883        gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 884
 885        return rqfar;
 886}
 887
 888static void gfar_init_filer_table(struct gfar_private *priv)
 889{
 890        int i = 0x0;
 891        u32 rqfar = MAX_FILER_IDX;
 892        u32 rqfcr = 0x0;
 893        u32 rqfpr = FPR_FILER_MASK;
 894
 895        /* Default rule */
 896        rqfcr = RQFCR_CMP_MATCH;
 897        priv->ftp_rqfcr[rqfar] = rqfcr;
 898        priv->ftp_rqfpr[rqfar] = rqfpr;
 899        gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 900
 901        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
 902        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
 903        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
 904        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
 905        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
 906        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
 907
 908        /* cur_filer_idx indicated the first non-masked rule */
 909        priv->cur_filer_idx = rqfar;
 910
 911        /* Rest are masked rules */
 912        rqfcr = RQFCR_CMP_NOMATCH;
 913        for (i = 0; i < rqfar; i++) {
 914                priv->ftp_rqfcr[i] = rqfcr;
 915                priv->ftp_rqfpr[i] = rqfpr;
 916                gfar_write_filer(priv, i, rqfcr, rqfpr);
 917        }
 918}
 919
 920#ifdef CONFIG_PPC
 921static void __gfar_detect_errata_83xx(struct gfar_private *priv)
 922{
 923        unsigned int pvr = mfspr(SPRN_PVR);
 924        unsigned int svr = mfspr(SPRN_SVR);
 925        unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
 926        unsigned int rev = svr & 0xffff;
 927
 928        /* MPC8313 Rev 2.0 and higher; All MPC837x */
 929        if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
 930            (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
 931                priv->errata |= GFAR_ERRATA_74;
 932
 933        /* MPC8313 and MPC837x all rev */
 934        if ((pvr == 0x80850010 && mod == 0x80b0) ||
 935            (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
 936                priv->errata |= GFAR_ERRATA_76;
 937
 938        /* MPC8313 Rev < 2.0 */
 939        if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
 940                priv->errata |= GFAR_ERRATA_12;
 941}
 942
 943static void __gfar_detect_errata_85xx(struct gfar_private *priv)
 944{
 945        unsigned int svr = mfspr(SPRN_SVR);
 946
 947        if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
 948                priv->errata |= GFAR_ERRATA_12;
 949        /* P2020/P1010 Rev 1; MPC8548 Rev 2 */
 950        if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
 951            ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
 952            ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
 953                priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
 954}
 955#endif
 956
 957static void gfar_detect_errata(struct gfar_private *priv)
 958{
 959        struct device *dev = &priv->ofdev->dev;
 960
 961        /* no plans to fix */
 962        priv->errata |= GFAR_ERRATA_A002;
 963
 964#ifdef CONFIG_PPC
 965        if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
 966                __gfar_detect_errata_85xx(priv);
 967        else /* non-mpc85xx parts, i.e. e300 core based */
 968                __gfar_detect_errata_83xx(priv);
 969#endif
 970
 971        if (priv->errata)
 972                dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
 973                         priv->errata);
 974}
 975
 976static void gfar_init_addr_hash_table(struct gfar_private *priv)
 977{
 978        struct gfar __iomem *regs = priv->gfargrp[0].regs;
 979
 980        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
 981                priv->extended_hash = 1;
 982                priv->hash_width = 9;
 983
 984                priv->hash_regs[0] = &regs->igaddr0;
 985                priv->hash_regs[1] = &regs->igaddr1;
 986                priv->hash_regs[2] = &regs->igaddr2;
 987                priv->hash_regs[3] = &regs->igaddr3;
 988                priv->hash_regs[4] = &regs->igaddr4;
 989                priv->hash_regs[5] = &regs->igaddr5;
 990                priv->hash_regs[6] = &regs->igaddr6;
 991                priv->hash_regs[7] = &regs->igaddr7;
 992                priv->hash_regs[8] = &regs->gaddr0;
 993                priv->hash_regs[9] = &regs->gaddr1;
 994                priv->hash_regs[10] = &regs->gaddr2;
 995                priv->hash_regs[11] = &regs->gaddr3;
 996                priv->hash_regs[12] = &regs->gaddr4;
 997                priv->hash_regs[13] = &regs->gaddr5;
 998                priv->hash_regs[14] = &regs->gaddr6;
 999                priv->hash_regs[15] = &regs->gaddr7;
1000
1001        } else {
1002                priv->extended_hash = 0;
1003                priv->hash_width = 8;
1004
1005                priv->hash_regs[0] = &regs->gaddr0;
1006                priv->hash_regs[1] = &regs->gaddr1;
1007                priv->hash_regs[2] = &regs->gaddr2;
1008                priv->hash_regs[3] = &regs->gaddr3;
1009                priv->hash_regs[4] = &regs->gaddr4;
1010                priv->hash_regs[5] = &regs->gaddr5;
1011                priv->hash_regs[6] = &regs->gaddr6;
1012                priv->hash_regs[7] = &regs->gaddr7;
1013        }
1014}
1015
1016static int __gfar_is_rx_idle(struct gfar_private *priv)
1017{
1018        u32 res;
1019
1020        /* Normaly TSEC should not hang on GRS commands, so we should
1021         * actually wait for IEVENT_GRSC flag.
1022         */
1023        if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1024                return 0;
1025
1026        /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1027         * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1028         * and the Rx can be safely reset.
1029         */
1030        res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1031        res &= 0x7f807f80;
1032        if ((res & 0xffff) == (res >> 16))
1033                return 1;
1034
1035        return 0;
1036}
1037
1038/* Halt the receive and transmit queues */
1039static void gfar_halt_nodisable(struct gfar_private *priv)
1040{
1041        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1042        u32 tempval;
1043        unsigned int timeout;
1044        int stopped;
1045
1046        gfar_ints_disable(priv);
1047
1048        if (gfar_is_dma_stopped(priv))
1049                return;
1050
1051        /* Stop the DMA, and wait for it to stop */
1052        tempval = gfar_read(&regs->dmactrl);
1053        tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1054        gfar_write(&regs->dmactrl, tempval);
1055
1056retry:
1057        timeout = 1000;
1058        while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1059                cpu_relax();
1060                timeout--;
1061        }
1062
1063        if (!timeout)
1064                stopped = gfar_is_dma_stopped(priv);
1065
1066        if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1067            !__gfar_is_rx_idle(priv))
1068                goto retry;
1069}
1070
1071/* Halt the receive and transmit queues */
1072static void gfar_halt(struct gfar_private *priv)
1073{
1074        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1075        u32 tempval;
1076
1077        /* Dissable the Rx/Tx hw queues */
1078        gfar_write(&regs->rqueue, 0);
1079        gfar_write(&regs->tqueue, 0);
1080
1081        mdelay(10);
1082
1083        gfar_halt_nodisable(priv);
1084
1085        /* Disable Rx/Tx DMA */
1086        tempval = gfar_read(&regs->maccfg1);
1087        tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1088        gfar_write(&regs->maccfg1, tempval);
1089}
1090
1091static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1092{
1093        struct txbd8 *txbdp;
1094        struct gfar_private *priv = netdev_priv(tx_queue->dev);
1095        int i, j;
1096
1097        txbdp = tx_queue->tx_bd_base;
1098
1099        for (i = 0; i < tx_queue->tx_ring_size; i++) {
1100                if (!tx_queue->tx_skbuff[i])
1101                        continue;
1102
1103                dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1104                                 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1105                txbdp->lstatus = 0;
1106                for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1107                     j++) {
1108                        txbdp++;
1109                        dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1110                                       be16_to_cpu(txbdp->length),
1111                                       DMA_TO_DEVICE);
1112                }
1113                txbdp++;
1114                dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1115                tx_queue->tx_skbuff[i] = NULL;
1116        }
1117        kfree(tx_queue->tx_skbuff);
1118        tx_queue->tx_skbuff = NULL;
1119}
1120
1121static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1122{
1123        int i;
1124
1125        struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1126
1127        dev_kfree_skb(rx_queue->skb);
1128
1129        for (i = 0; i < rx_queue->rx_ring_size; i++) {
1130                struct  gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1131
1132                rxbdp->lstatus = 0;
1133                rxbdp->bufPtr = 0;
1134                rxbdp++;
1135
1136                if (!rxb->page)
1137                        continue;
1138
1139                dma_unmap_page(rx_queue->dev, rxb->dma,
1140                               PAGE_SIZE, DMA_FROM_DEVICE);
1141                __free_page(rxb->page);
1142
1143                rxb->page = NULL;
1144        }
1145
1146        kfree(rx_queue->rx_buff);
1147        rx_queue->rx_buff = NULL;
1148}
1149
1150/* If there are any tx skbs or rx skbs still around, free them.
1151 * Then free tx_skbuff and rx_skbuff
1152 */
1153static void free_skb_resources(struct gfar_private *priv)
1154{
1155        struct gfar_priv_tx_q *tx_queue = NULL;
1156        struct gfar_priv_rx_q *rx_queue = NULL;
1157        int i;
1158
1159        /* Go through all the buffer descriptors and free their data buffers */
1160        for (i = 0; i < priv->num_tx_queues; i++) {
1161                struct netdev_queue *txq;
1162
1163                tx_queue = priv->tx_queue[i];
1164                txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1165                if (tx_queue->tx_skbuff)
1166                        free_skb_tx_queue(tx_queue);
1167                netdev_tx_reset_queue(txq);
1168        }
1169
1170        for (i = 0; i < priv->num_rx_queues; i++) {
1171                rx_queue = priv->rx_queue[i];
1172                if (rx_queue->rx_buff)
1173                        free_skb_rx_queue(rx_queue);
1174        }
1175
1176        dma_free_coherent(priv->dev,
1177                          sizeof(struct txbd8) * priv->total_tx_ring_size +
1178                          sizeof(struct rxbd8) * priv->total_rx_ring_size,
1179                          priv->tx_queue[0]->tx_bd_base,
1180                          priv->tx_queue[0]->tx_bd_dma_base);
1181}
1182
1183void stop_gfar(struct net_device *dev)
1184{
1185        struct gfar_private *priv = netdev_priv(dev);
1186
1187        netif_tx_stop_all_queues(dev);
1188
1189        smp_mb__before_atomic();
1190        set_bit(GFAR_DOWN, &priv->state);
1191        smp_mb__after_atomic();
1192
1193        disable_napi(priv);
1194
1195        /* disable ints and gracefully shut down Rx/Tx DMA */
1196        gfar_halt(priv);
1197
1198        phy_stop(dev->phydev);
1199
1200        free_skb_resources(priv);
1201}
1202
1203static void gfar_start(struct gfar_private *priv)
1204{
1205        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1206        u32 tempval;
1207        int i = 0;
1208
1209        /* Enable Rx/Tx hw queues */
1210        gfar_write(&regs->rqueue, priv->rqueue);
1211        gfar_write(&regs->tqueue, priv->tqueue);
1212
1213        /* Initialize DMACTRL to have WWR and WOP */
1214        tempval = gfar_read(&regs->dmactrl);
1215        tempval |= DMACTRL_INIT_SETTINGS;
1216        gfar_write(&regs->dmactrl, tempval);
1217
1218        /* Make sure we aren't stopped */
1219        tempval = gfar_read(&regs->dmactrl);
1220        tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1221        gfar_write(&regs->dmactrl, tempval);
1222
1223        for (i = 0; i < priv->num_grps; i++) {
1224                regs = priv->gfargrp[i].regs;
1225                /* Clear THLT/RHLT, so that the DMA starts polling now */
1226                gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1227                gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1228        }
1229
1230        /* Enable Rx/Tx DMA */
1231        tempval = gfar_read(&regs->maccfg1);
1232        tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1233        gfar_write(&regs->maccfg1, tempval);
1234
1235        gfar_ints_enable(priv);
1236
1237        netif_trans_update(priv->ndev); /* prevent tx timeout */
1238}
1239
1240static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
1241{
1242        struct page *page;
1243        dma_addr_t addr;
1244
1245        page = dev_alloc_page();
1246        if (unlikely(!page))
1247                return false;
1248
1249        addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
1250        if (unlikely(dma_mapping_error(rxq->dev, addr))) {
1251                __free_page(page);
1252
1253                return false;
1254        }
1255
1256        rxb->dma = addr;
1257        rxb->page = page;
1258        rxb->page_offset = 0;
1259
1260        return true;
1261}
1262
1263static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
1264{
1265        struct gfar_private *priv = netdev_priv(rx_queue->ndev);
1266        struct gfar_extra_stats *estats = &priv->extra_stats;
1267
1268        netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
1269        atomic64_inc(&estats->rx_alloc_err);
1270}
1271
1272static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
1273                                int alloc_cnt)
1274{
1275        struct rxbd8 *bdp;
1276        struct gfar_rx_buff *rxb;
1277        int i;
1278
1279        i = rx_queue->next_to_use;
1280        bdp = &rx_queue->rx_bd_base[i];
1281        rxb = &rx_queue->rx_buff[i];
1282
1283        while (alloc_cnt--) {
1284                /* try reuse page */
1285                if (unlikely(!rxb->page)) {
1286                        if (unlikely(!gfar_new_page(rx_queue, rxb))) {
1287                                gfar_rx_alloc_err(rx_queue);
1288                                break;
1289                        }
1290                }
1291
1292                /* Setup the new RxBD */
1293                gfar_init_rxbdp(rx_queue, bdp,
1294                                rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
1295
1296                /* Update to the next pointer */
1297                bdp++;
1298                rxb++;
1299
1300                if (unlikely(++i == rx_queue->rx_ring_size)) {
1301                        i = 0;
1302                        bdp = rx_queue->rx_bd_base;
1303                        rxb = rx_queue->rx_buff;
1304                }
1305        }
1306
1307        rx_queue->next_to_use = i;
1308        rx_queue->next_to_alloc = i;
1309}
1310
1311static void gfar_init_bds(struct net_device *ndev)
1312{
1313        struct gfar_private *priv = netdev_priv(ndev);
1314        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1315        struct gfar_priv_tx_q *tx_queue = NULL;
1316        struct gfar_priv_rx_q *rx_queue = NULL;
1317        struct txbd8 *txbdp;
1318        u32 __iomem *rfbptr;
1319        int i, j;
1320
1321        for (i = 0; i < priv->num_tx_queues; i++) {
1322                tx_queue = priv->tx_queue[i];
1323                /* Initialize some variables in our dev structure */
1324                tx_queue->num_txbdfree = tx_queue->tx_ring_size;
1325                tx_queue->dirty_tx = tx_queue->tx_bd_base;
1326                tx_queue->cur_tx = tx_queue->tx_bd_base;
1327                tx_queue->skb_curtx = 0;
1328                tx_queue->skb_dirtytx = 0;
1329
1330                /* Initialize Transmit Descriptor Ring */
1331                txbdp = tx_queue->tx_bd_base;
1332                for (j = 0; j < tx_queue->tx_ring_size; j++) {
1333                        txbdp->lstatus = 0;
1334                        txbdp->bufPtr = 0;
1335                        txbdp++;
1336                }
1337
1338                /* Set the last descriptor in the ring to indicate wrap */
1339                txbdp--;
1340                txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
1341                                            TXBD_WRAP);
1342        }
1343
1344        rfbptr = &regs->rfbptr0;
1345        for (i = 0; i < priv->num_rx_queues; i++) {
1346                rx_queue = priv->rx_queue[i];
1347
1348                rx_queue->next_to_clean = 0;
1349                rx_queue->next_to_use = 0;
1350                rx_queue->next_to_alloc = 0;
1351
1352                /* make sure next_to_clean != next_to_use after this
1353                 * by leaving at least 1 unused descriptor
1354                 */
1355                gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
1356
1357                rx_queue->rfbptr = rfbptr;
1358                rfbptr += 2;
1359        }
1360}
1361
1362static int gfar_alloc_skb_resources(struct net_device *ndev)
1363{
1364        void *vaddr;
1365        dma_addr_t addr;
1366        int i, j;
1367        struct gfar_private *priv = netdev_priv(ndev);
1368        struct device *dev = priv->dev;
1369        struct gfar_priv_tx_q *tx_queue = NULL;
1370        struct gfar_priv_rx_q *rx_queue = NULL;
1371
1372        priv->total_tx_ring_size = 0;
1373        for (i = 0; i < priv->num_tx_queues; i++)
1374                priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
1375
1376        priv->total_rx_ring_size = 0;
1377        for (i = 0; i < priv->num_rx_queues; i++)
1378                priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
1379
1380        /* Allocate memory for the buffer descriptors */
1381        vaddr = dma_alloc_coherent(dev,
1382                                   (priv->total_tx_ring_size *
1383                                    sizeof(struct txbd8)) +
1384                                   (priv->total_rx_ring_size *
1385                                    sizeof(struct rxbd8)),
1386                                   &addr, GFP_KERNEL);
1387        if (!vaddr)
1388                return -ENOMEM;
1389
1390        for (i = 0; i < priv->num_tx_queues; i++) {
1391                tx_queue = priv->tx_queue[i];
1392                tx_queue->tx_bd_base = vaddr;
1393                tx_queue->tx_bd_dma_base = addr;
1394                tx_queue->dev = ndev;
1395                /* enet DMA only understands physical addresses */
1396                addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1397                vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1398        }
1399
1400        /* Start the rx descriptor ring where the tx ring leaves off */
1401        for (i = 0; i < priv->num_rx_queues; i++) {
1402                rx_queue = priv->rx_queue[i];
1403                rx_queue->rx_bd_base = vaddr;
1404                rx_queue->rx_bd_dma_base = addr;
1405                rx_queue->ndev = ndev;
1406                rx_queue->dev = dev;
1407                addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1408                vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1409        }
1410
1411        /* Setup the skbuff rings */
1412        for (i = 0; i < priv->num_tx_queues; i++) {
1413                tx_queue = priv->tx_queue[i];
1414                tx_queue->tx_skbuff =
1415                        kmalloc_array(tx_queue->tx_ring_size,
1416                                      sizeof(*tx_queue->tx_skbuff),
1417                                      GFP_KERNEL);
1418                if (!tx_queue->tx_skbuff)
1419                        goto cleanup;
1420
1421                for (j = 0; j < tx_queue->tx_ring_size; j++)
1422                        tx_queue->tx_skbuff[j] = NULL;
1423        }
1424
1425        for (i = 0; i < priv->num_rx_queues; i++) {
1426                rx_queue = priv->rx_queue[i];
1427                rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
1428                                            sizeof(*rx_queue->rx_buff),
1429                                            GFP_KERNEL);
1430                if (!rx_queue->rx_buff)
1431                        goto cleanup;
1432        }
1433
1434        gfar_init_bds(ndev);
1435
1436        return 0;
1437
1438cleanup:
1439        free_skb_resources(priv);
1440        return -ENOMEM;
1441}
1442
1443/* Bring the controller up and running */
1444int startup_gfar(struct net_device *ndev)
1445{
1446        struct gfar_private *priv = netdev_priv(ndev);
1447        int err;
1448
1449        gfar_mac_reset(priv);
1450
1451        err = gfar_alloc_skb_resources(ndev);
1452        if (err)
1453                return err;
1454
1455        gfar_init_tx_rx_base(priv);
1456
1457        smp_mb__before_atomic();
1458        clear_bit(GFAR_DOWN, &priv->state);
1459        smp_mb__after_atomic();
1460
1461        /* Start Rx/Tx DMA and enable the interrupts */
1462        gfar_start(priv);
1463
1464        /* force link state update after mac reset */
1465        priv->oldlink = 0;
1466        priv->oldspeed = 0;
1467        priv->oldduplex = -1;
1468
1469        phy_start(ndev->phydev);
1470
1471        enable_napi(priv);
1472
1473        netif_tx_wake_all_queues(ndev);
1474
1475        return 0;
1476}
1477
1478static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
1479{
1480        struct net_device *ndev = priv->ndev;
1481        struct phy_device *phydev = ndev->phydev;
1482        u32 val = 0;
1483
1484        if (!phydev->duplex)
1485                return val;
1486
1487        if (!priv->pause_aneg_en) {
1488                if (priv->tx_pause_en)
1489                        val |= MACCFG1_TX_FLOW;
1490                if (priv->rx_pause_en)
1491                        val |= MACCFG1_RX_FLOW;
1492        } else {
1493                u16 lcl_adv, rmt_adv;
1494                u8 flowctrl;
1495                /* get link partner capabilities */
1496                rmt_adv = 0;
1497                if (phydev->pause)
1498                        rmt_adv = LPA_PAUSE_CAP;
1499                if (phydev->asym_pause)
1500                        rmt_adv |= LPA_PAUSE_ASYM;
1501
1502                lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising);
1503                flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
1504                if (flowctrl & FLOW_CTRL_TX)
1505                        val |= MACCFG1_TX_FLOW;
1506                if (flowctrl & FLOW_CTRL_RX)
1507                        val |= MACCFG1_RX_FLOW;
1508        }
1509
1510        return val;
1511}
1512
1513static noinline void gfar_update_link_state(struct gfar_private *priv)
1514{
1515        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1516        struct net_device *ndev = priv->ndev;
1517        struct phy_device *phydev = ndev->phydev;
1518        struct gfar_priv_rx_q *rx_queue = NULL;
1519        int i;
1520
1521        if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
1522                return;
1523
1524        if (phydev->link) {
1525                u32 tempval1 = gfar_read(&regs->maccfg1);
1526                u32 tempval = gfar_read(&regs->maccfg2);
1527                u32 ecntrl = gfar_read(&regs->ecntrl);
1528                u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW);
1529
1530                if (phydev->duplex != priv->oldduplex) {
1531                        if (!(phydev->duplex))
1532                                tempval &= ~(MACCFG2_FULL_DUPLEX);
1533                        else
1534                                tempval |= MACCFG2_FULL_DUPLEX;
1535
1536                        priv->oldduplex = phydev->duplex;
1537                }
1538
1539                if (phydev->speed != priv->oldspeed) {
1540                        switch (phydev->speed) {
1541                        case 1000:
1542                                tempval =
1543                                    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1544
1545                                ecntrl &= ~(ECNTRL_R100);
1546                                break;
1547                        case 100:
1548                        case 10:
1549                                tempval =
1550                                    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1551
1552                                /* Reduced mode distinguishes
1553                                 * between 10 and 100
1554                                 */
1555                                if (phydev->speed == SPEED_100)
1556                                        ecntrl |= ECNTRL_R100;
1557                                else
1558                                        ecntrl &= ~(ECNTRL_R100);
1559                                break;
1560                        default:
1561                                netif_warn(priv, link, priv->ndev,
1562                                           "Ack!  Speed (%d) is not 10/100/1000!\n",
1563                                           phydev->speed);
1564                                break;
1565                        }
1566
1567                        priv->oldspeed = phydev->speed;
1568                }
1569
1570                tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1571                tempval1 |= gfar_get_flowctrl_cfg(priv);
1572
1573                /* Turn last free buffer recording on */
1574                if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
1575                        for (i = 0; i < priv->num_rx_queues; i++) {
1576                                u32 bdp_dma;
1577
1578                                rx_queue = priv->rx_queue[i];
1579                                bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
1580                                gfar_write(rx_queue->rfbptr, bdp_dma);
1581                        }
1582
1583                        priv->tx_actual_en = 1;
1584                }
1585
1586                if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
1587                        priv->tx_actual_en = 0;
1588
1589                gfar_write(&regs->maccfg1, tempval1);
1590                gfar_write(&regs->maccfg2, tempval);
1591                gfar_write(&regs->ecntrl, ecntrl);
1592
1593                if (!priv->oldlink)
1594                        priv->oldlink = 1;
1595
1596        } else if (priv->oldlink) {
1597                priv->oldlink = 0;
1598                priv->oldspeed = 0;
1599                priv->oldduplex = -1;
1600        }
1601
1602        if (netif_msg_link(priv))
1603                phy_print_status(phydev);
1604}
1605
1606/* Called every time the controller might need to be made
1607 * aware of new link state.  The PHY code conveys this
1608 * information through variables in the phydev structure, and this
1609 * function converts those variables into the appropriate
1610 * register values, and can bring down the device if needed.
1611 */
1612static void adjust_link(struct net_device *dev)
1613{
1614        struct gfar_private *priv = netdev_priv(dev);
1615        struct phy_device *phydev = dev->phydev;
1616
1617        if (unlikely(phydev->link != priv->oldlink ||
1618                     (phydev->link && (phydev->duplex != priv->oldduplex ||
1619                                       phydev->speed != priv->oldspeed))))
1620                gfar_update_link_state(priv);
1621}
1622
1623/* Initialize TBI PHY interface for communicating with the
1624 * SERDES lynx PHY on the chip.  We communicate with this PHY
1625 * through the MDIO bus on each controller, treating it as a
1626 * "normal" PHY at the address found in the TBIPA register.  We assume
1627 * that the TBIPA register is valid.  Either the MDIO bus code will set
1628 * it to a value that doesn't conflict with other PHYs on the bus, or the
1629 * value doesn't matter, as there are no other PHYs on the bus.
1630 */
1631static void gfar_configure_serdes(struct net_device *dev)
1632{
1633        struct gfar_private *priv = netdev_priv(dev);
1634        struct phy_device *tbiphy;
1635
1636        if (!priv->tbi_node) {
1637                dev_warn(&dev->dev, "error: SGMII mode requires that the "
1638                                    "device tree specify a tbi-handle\n");
1639                return;
1640        }
1641
1642        tbiphy = of_phy_find_device(priv->tbi_node);
1643        if (!tbiphy) {
1644                dev_err(&dev->dev, "error: Could not get TBI device\n");
1645                return;
1646        }
1647
1648        /* If the link is already up, we must already be ok, and don't need to
1649         * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1650         * everything for us?  Resetting it takes the link down and requires
1651         * several seconds for it to come back.
1652         */
1653        if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1654                put_device(&tbiphy->mdio.dev);
1655                return;
1656        }
1657
1658        /* Single clk mode, mii mode off(for serdes communication) */
1659        phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1660
1661        phy_write(tbiphy, MII_ADVERTISE,
1662                  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1663                  ADVERTISE_1000XPSE_ASYM);
1664
1665        phy_write(tbiphy, MII_BMCR,
1666                  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1667                  BMCR_SPEED1000);
1668
1669        put_device(&tbiphy->mdio.dev);
1670}
1671
1672/* Initializes driver's PHY state, and attaches to the PHY.
1673 * Returns 0 on success.
1674 */
1675static int init_phy(struct net_device *dev)
1676{
1677        __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1678        struct gfar_private *priv = netdev_priv(dev);
1679        phy_interface_t interface = priv->interface;
1680        struct phy_device *phydev;
1681        struct ethtool_eee edata;
1682
1683        linkmode_set_bit_array(phy_10_100_features_array,
1684                               ARRAY_SIZE(phy_10_100_features_array),
1685                               mask);
1686        linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask);
1687        linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask);
1688        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1689                linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask);
1690
1691        priv->oldlink = 0;
1692        priv->oldspeed = 0;
1693        priv->oldduplex = -1;
1694
1695        phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1696                                interface);
1697        if (!phydev) {
1698                dev_err(&dev->dev, "could not attach to PHY\n");
1699                return -ENODEV;
1700        }
1701
1702        if (interface == PHY_INTERFACE_MODE_SGMII)
1703                gfar_configure_serdes(dev);
1704
1705        /* Remove any features not supported by the controller */
1706        linkmode_and(phydev->supported, phydev->supported, mask);
1707        linkmode_copy(phydev->advertising, phydev->supported);
1708
1709        /* Add support for flow control */
1710        phy_support_asym_pause(phydev);
1711
1712        /* disable EEE autoneg, EEE not supported by eTSEC */
1713        memset(&edata, 0, sizeof(struct ethtool_eee));
1714        phy_ethtool_set_eee(phydev, &edata);
1715
1716        return 0;
1717}
1718
1719static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1720{
1721        struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN);
1722
1723        memset(fcb, 0, GMAC_FCB_LEN);
1724
1725        return fcb;
1726}
1727
1728static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
1729                                    int fcb_length)
1730{
1731        /* If we're here, it's a IP packet with a TCP or UDP
1732         * payload.  We set it to checksum, using a pseudo-header
1733         * we provide
1734         */
1735        u8 flags = TXFCB_DEFAULT;
1736
1737        /* Tell the controller what the protocol is
1738         * And provide the already calculated phcs
1739         */
1740        if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1741                flags |= TXFCB_UDP;
1742                fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
1743        } else
1744                fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
1745
1746        /* l3os is the distance between the start of the
1747         * frame (skb->data) and the start of the IP hdr.
1748         * l4os is the distance between the start of the
1749         * l3 hdr and the l4 hdr
1750         */
1751        fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
1752        fcb->l4os = skb_network_header_len(skb);
1753
1754        fcb->flags = flags;
1755}
1756
1757static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1758{
1759        fcb->flags |= TXFCB_VLN;
1760        fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
1761}
1762
1763static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1764                                      struct txbd8 *base, int ring_size)
1765{
1766        struct txbd8 *new_bd = bdp + stride;
1767
1768        return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1769}
1770
1771static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1772                                      int ring_size)
1773{
1774        return skip_txbd(bdp, 1, base, ring_size);
1775}
1776
1777/* eTSEC12: csum generation not supported for some fcb offsets */
1778static inline bool gfar_csum_errata_12(struct gfar_private *priv,
1779                                       unsigned long fcb_addr)
1780{
1781        return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
1782               (fcb_addr % 0x20) > 0x18);
1783}
1784
1785/* eTSEC76: csum generation for frames larger than 2500 may
1786 * cause excess delays before start of transmission
1787 */
1788static inline bool gfar_csum_errata_76(struct gfar_private *priv,
1789                                       unsigned int len)
1790{
1791        return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
1792               (len > 2500));
1793}
1794
1795/* This is called by the kernel when a frame is ready for transmission.
1796 * It is pointed to by the dev->hard_start_xmit function pointer
1797 */
1798static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1799{
1800        struct gfar_private *priv = netdev_priv(dev);
1801        struct gfar_priv_tx_q *tx_queue = NULL;
1802        struct netdev_queue *txq;
1803        struct gfar __iomem *regs = NULL;
1804        struct txfcb *fcb = NULL;
1805        struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
1806        u32 lstatus;
1807        skb_frag_t *frag;
1808        int i, rq = 0;
1809        int do_tstamp, do_csum, do_vlan;
1810        u32 bufaddr;
1811        unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
1812
1813        rq = skb->queue_mapping;
1814        tx_queue = priv->tx_queue[rq];
1815        txq = netdev_get_tx_queue(dev, rq);
1816        base = tx_queue->tx_bd_base;
1817        regs = tx_queue->grp->regs;
1818
1819        do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
1820        do_vlan = skb_vlan_tag_present(skb);
1821        do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1822                    priv->hwts_tx_en;
1823
1824        if (do_csum || do_vlan)
1825                fcb_len = GMAC_FCB_LEN;
1826
1827        /* check if time stamp should be generated */
1828        if (unlikely(do_tstamp))
1829                fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
1830
1831        /* make space for additional header when fcb is needed */
1832        if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
1833                struct sk_buff *skb_new;
1834
1835                skb_new = skb_realloc_headroom(skb, fcb_len);
1836                if (!skb_new) {
1837                        dev->stats.tx_errors++;
1838                        dev_kfree_skb_any(skb);
1839                        return NETDEV_TX_OK;
1840                }
1841
1842                if (skb->sk)
1843                        skb_set_owner_w(skb_new, skb->sk);
1844                dev_consume_skb_any(skb);
1845                skb = skb_new;
1846        }
1847
1848        /* total number of fragments in the SKB */
1849        nr_frags = skb_shinfo(skb)->nr_frags;
1850
1851        /* calculate the required number of TxBDs for this skb */
1852        if (unlikely(do_tstamp))
1853                nr_txbds = nr_frags + 2;
1854        else
1855                nr_txbds = nr_frags + 1;
1856
1857        /* check if there is space to queue this packet */
1858        if (nr_txbds > tx_queue->num_txbdfree) {
1859                /* no space, stop the queue */
1860                netif_tx_stop_queue(txq);
1861                dev->stats.tx_fifo_errors++;
1862                return NETDEV_TX_BUSY;
1863        }
1864
1865        /* Update transmit stats */
1866        bytes_sent = skb->len;
1867        tx_queue->stats.tx_bytes += bytes_sent;
1868        /* keep Tx bytes on wire for BQL accounting */
1869        GFAR_CB(skb)->bytes_sent = bytes_sent;
1870        tx_queue->stats.tx_packets++;
1871
1872        txbdp = txbdp_start = tx_queue->cur_tx;
1873        lstatus = be32_to_cpu(txbdp->lstatus);
1874
1875        /* Add TxPAL between FCB and frame if required */
1876        if (unlikely(do_tstamp)) {
1877                skb_push(skb, GMAC_TXPAL_LEN);
1878                memset(skb->data, 0, GMAC_TXPAL_LEN);
1879        }
1880
1881        /* Add TxFCB if required */
1882        if (fcb_len) {
1883                fcb = gfar_add_fcb(skb);
1884                lstatus |= BD_LFLAG(TXBD_TOE);
1885        }
1886
1887        /* Set up checksumming */
1888        if (do_csum) {
1889                gfar_tx_checksum(skb, fcb, fcb_len);
1890
1891                if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
1892                    unlikely(gfar_csum_errata_76(priv, skb->len))) {
1893                        __skb_pull(skb, GMAC_FCB_LEN);
1894                        skb_checksum_help(skb);
1895                        if (do_vlan || do_tstamp) {
1896                                /* put back a new fcb for vlan/tstamp TOE */
1897                                fcb = gfar_add_fcb(skb);
1898                        } else {
1899                                /* Tx TOE not used */
1900                                lstatus &= ~(BD_LFLAG(TXBD_TOE));
1901                                fcb = NULL;
1902                        }
1903                }
1904        }
1905
1906        if (do_vlan)
1907                gfar_tx_vlan(skb, fcb);
1908
1909        bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
1910                                 DMA_TO_DEVICE);
1911        if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1912                goto dma_map_err;
1913
1914        txbdp_start->bufPtr = cpu_to_be32(bufaddr);
1915
1916        /* Time stamp insertion requires one additional TxBD */
1917        if (unlikely(do_tstamp))
1918                txbdp_tstamp = txbdp = next_txbd(txbdp, base,
1919                                                 tx_queue->tx_ring_size);
1920
1921        if (likely(!nr_frags)) {
1922                if (likely(!do_tstamp))
1923                        lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1924        } else {
1925                u32 lstatus_start = lstatus;
1926
1927                /* Place the fragment addresses and lengths into the TxBDs */
1928                frag = &skb_shinfo(skb)->frags[0];
1929                for (i = 0; i < nr_frags; i++, frag++) {
1930                        unsigned int size;
1931
1932                        /* Point at the next BD, wrapping as needed */
1933                        txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1934
1935                        size = skb_frag_size(frag);
1936
1937                        lstatus = be32_to_cpu(txbdp->lstatus) | size |
1938                                  BD_LFLAG(TXBD_READY);
1939
1940                        /* Handle the last BD specially */
1941                        if (i == nr_frags - 1)
1942                                lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1943
1944                        bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
1945                                                   size, DMA_TO_DEVICE);
1946                        if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1947                                goto dma_map_err;
1948
1949                        /* set the TxBD length and buffer pointer */
1950                        txbdp->bufPtr = cpu_to_be32(bufaddr);
1951                        txbdp->lstatus = cpu_to_be32(lstatus);
1952                }
1953
1954                lstatus = lstatus_start;
1955        }
1956
1957        /* If time stamping is requested one additional TxBD must be set up. The
1958         * first TxBD points to the FCB and must have a data length of
1959         * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
1960         * the full frame length.
1961         */
1962        if (unlikely(do_tstamp)) {
1963                u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
1964
1965                bufaddr = be32_to_cpu(txbdp_start->bufPtr);
1966                bufaddr += fcb_len;
1967
1968                lstatus_ts |= BD_LFLAG(TXBD_READY) |
1969                              (skb_headlen(skb) - fcb_len);
1970                if (!nr_frags)
1971                        lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1972
1973                txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
1974                txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
1975                lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
1976
1977                /* Setup tx hardware time stamping */
1978                skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1979                fcb->ptp = 1;
1980        } else {
1981                lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1982        }
1983
1984        netdev_tx_sent_queue(txq, bytes_sent);
1985
1986        gfar_wmb();
1987
1988        txbdp_start->lstatus = cpu_to_be32(lstatus);
1989
1990        gfar_wmb(); /* force lstatus write before tx_skbuff */
1991
1992        tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
1993
1994        /* Update the current skb pointer to the next entry we will use
1995         * (wrapping if necessary)
1996         */
1997        tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
1998                              TX_RING_MOD_MASK(tx_queue->tx_ring_size);
1999
2000        tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2001
2002        /* We can work in parallel with gfar_clean_tx_ring(), except
2003         * when modifying num_txbdfree. Note that we didn't grab the lock
2004         * when we were reading the num_txbdfree and checking for available
2005         * space, that's because outside of this function it can only grow.
2006         */
2007        spin_lock_bh(&tx_queue->txlock);
2008        /* reduce TxBD free count */
2009        tx_queue->num_txbdfree -= (nr_txbds);
2010        spin_unlock_bh(&tx_queue->txlock);
2011
2012        /* If the next BD still needs to be cleaned up, then the bds
2013         * are full.  We need to tell the kernel to stop sending us stuff.
2014         */
2015        if (!tx_queue->num_txbdfree) {
2016                netif_tx_stop_queue(txq);
2017
2018                dev->stats.tx_fifo_errors++;
2019        }
2020
2021        /* Tell the DMA to go go go */
2022        gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2023
2024        return NETDEV_TX_OK;
2025
2026dma_map_err:
2027        txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2028        if (do_tstamp)
2029                txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2030        for (i = 0; i < nr_frags; i++) {
2031                lstatus = be32_to_cpu(txbdp->lstatus);
2032                if (!(lstatus & BD_LFLAG(TXBD_READY)))
2033                        break;
2034
2035                lstatus &= ~BD_LFLAG(TXBD_READY);
2036                txbdp->lstatus = cpu_to_be32(lstatus);
2037                bufaddr = be32_to_cpu(txbdp->bufPtr);
2038                dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2039                               DMA_TO_DEVICE);
2040                txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2041        }
2042        gfar_wmb();
2043        dev_kfree_skb_any(skb);
2044        return NETDEV_TX_OK;
2045}
2046
2047/* Changes the mac address if the controller is not running. */
2048static int gfar_set_mac_address(struct net_device *dev)
2049{
2050        gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2051
2052        return 0;
2053}
2054
2055static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2056{
2057        struct gfar_private *priv = netdev_priv(dev);
2058
2059        while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2060                cpu_relax();
2061
2062        if (dev->flags & IFF_UP)
2063                stop_gfar(dev);
2064
2065        dev->mtu = new_mtu;
2066
2067        if (dev->flags & IFF_UP)
2068                startup_gfar(dev);
2069
2070        clear_bit_unlock(GFAR_RESETTING, &priv->state);
2071
2072        return 0;
2073}
2074
2075static void reset_gfar(struct net_device *ndev)
2076{
2077        struct gfar_private *priv = netdev_priv(ndev);
2078
2079        while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2080                cpu_relax();
2081
2082        stop_gfar(ndev);
2083        startup_gfar(ndev);
2084
2085        clear_bit_unlock(GFAR_RESETTING, &priv->state);
2086}
2087
2088/* gfar_reset_task gets scheduled when a packet has not been
2089 * transmitted after a set amount of time.
2090 * For now, assume that clearing out all the structures, and
2091 * starting over will fix the problem.
2092 */
2093static void gfar_reset_task(struct work_struct *work)
2094{
2095        struct gfar_private *priv = container_of(work, struct gfar_private,
2096                                                 reset_task);
2097        reset_gfar(priv->ndev);
2098}
2099
2100static void gfar_timeout(struct net_device *dev, unsigned int txqueue)
2101{
2102        struct gfar_private *priv = netdev_priv(dev);
2103
2104        dev->stats.tx_errors++;
2105        schedule_work(&priv->reset_task);
2106}
2107
2108static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
2109{
2110        struct hwtstamp_config config;
2111        struct gfar_private *priv = netdev_priv(netdev);
2112
2113        if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2114                return -EFAULT;
2115
2116        /* reserved for future extensions */
2117        if (config.flags)
2118                return -EINVAL;
2119
2120        switch (config.tx_type) {
2121        case HWTSTAMP_TX_OFF:
2122                priv->hwts_tx_en = 0;
2123                break;
2124        case HWTSTAMP_TX_ON:
2125                if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2126                        return -ERANGE;
2127                priv->hwts_tx_en = 1;
2128                break;
2129        default:
2130                return -ERANGE;
2131        }
2132
2133        switch (config.rx_filter) {
2134        case HWTSTAMP_FILTER_NONE:
2135                if (priv->hwts_rx_en) {
2136                        priv->hwts_rx_en = 0;
2137                        reset_gfar(netdev);
2138                }
2139                break;
2140        default:
2141                if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2142                        return -ERANGE;
2143                if (!priv->hwts_rx_en) {
2144                        priv->hwts_rx_en = 1;
2145                        reset_gfar(netdev);
2146                }
2147                config.rx_filter = HWTSTAMP_FILTER_ALL;
2148                break;
2149        }
2150
2151        return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2152                -EFAULT : 0;
2153}
2154
2155static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
2156{
2157        struct hwtstamp_config config;
2158        struct gfar_private *priv = netdev_priv(netdev);
2159
2160        config.flags = 0;
2161        config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
2162        config.rx_filter = (priv->hwts_rx_en ?
2163                            HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
2164
2165        return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2166                -EFAULT : 0;
2167}
2168
2169static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2170{
2171        struct phy_device *phydev = dev->phydev;
2172
2173        if (!netif_running(dev))
2174                return -EINVAL;
2175
2176        if (cmd == SIOCSHWTSTAMP)
2177                return gfar_hwtstamp_set(dev, rq);
2178        if (cmd == SIOCGHWTSTAMP)
2179                return gfar_hwtstamp_get(dev, rq);
2180
2181        if (!phydev)
2182                return -ENODEV;
2183
2184        return phy_mii_ioctl(phydev, rq, cmd);
2185}
2186
2187/* Interrupt Handler for Transmit complete */
2188static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2189{
2190        struct net_device *dev = tx_queue->dev;
2191        struct netdev_queue *txq;
2192        struct gfar_private *priv = netdev_priv(dev);
2193        struct txbd8 *bdp, *next = NULL;
2194        struct txbd8 *lbdp = NULL;
2195        struct txbd8 *base = tx_queue->tx_bd_base;
2196        struct sk_buff *skb;
2197        int skb_dirtytx;
2198        int tx_ring_size = tx_queue->tx_ring_size;
2199        int frags = 0, nr_txbds = 0;
2200        int i;
2201        int howmany = 0;
2202        int tqi = tx_queue->qindex;
2203        unsigned int bytes_sent = 0;
2204        u32 lstatus;
2205        size_t buflen;
2206
2207        txq = netdev_get_tx_queue(dev, tqi);
2208        bdp = tx_queue->dirty_tx;
2209        skb_dirtytx = tx_queue->skb_dirtytx;
2210
2211        while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2212                bool do_tstamp;
2213
2214                do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2215                            priv->hwts_tx_en;
2216
2217                frags = skb_shinfo(skb)->nr_frags;
2218
2219                /* When time stamping, one additional TxBD must be freed.
2220                 * Also, we need to dma_unmap_single() the TxPAL.
2221                 */
2222                if (unlikely(do_tstamp))
2223                        nr_txbds = frags + 2;
2224                else
2225                        nr_txbds = frags + 1;
2226
2227                lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2228
2229                lstatus = be32_to_cpu(lbdp->lstatus);
2230
2231                /* Only clean completed frames */
2232                if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2233                    (lstatus & BD_LENGTH_MASK))
2234                        break;
2235
2236                if (unlikely(do_tstamp)) {
2237                        next = next_txbd(bdp, base, tx_ring_size);
2238                        buflen = be16_to_cpu(next->length) +
2239                                 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2240                } else
2241                        buflen = be16_to_cpu(bdp->length);
2242
2243                dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2244                                 buflen, DMA_TO_DEVICE);
2245
2246                if (unlikely(do_tstamp)) {
2247                        struct skb_shared_hwtstamps shhwtstamps;
2248                        u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2249                                          ~0x7UL);
2250
2251                        memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2252                        shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2253                        skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2254                        skb_tstamp_tx(skb, &shhwtstamps);
2255                        gfar_clear_txbd_status(bdp);
2256                        bdp = next;
2257                }
2258
2259                gfar_clear_txbd_status(bdp);
2260                bdp = next_txbd(bdp, base, tx_ring_size);
2261
2262                for (i = 0; i < frags; i++) {
2263                        dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2264                                       be16_to_cpu(bdp->length),
2265                                       DMA_TO_DEVICE);
2266                        gfar_clear_txbd_status(bdp);
2267                        bdp = next_txbd(bdp, base, tx_ring_size);
2268                }
2269
2270                bytes_sent += GFAR_CB(skb)->bytes_sent;
2271
2272                dev_kfree_skb_any(skb);
2273
2274                tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2275
2276                skb_dirtytx = (skb_dirtytx + 1) &
2277                              TX_RING_MOD_MASK(tx_ring_size);
2278
2279                howmany++;
2280                spin_lock(&tx_queue->txlock);
2281                tx_queue->num_txbdfree += nr_txbds;
2282                spin_unlock(&tx_queue->txlock);
2283        }
2284
2285        /* If we freed a buffer, we can restart transmission, if necessary */
2286        if (tx_queue->num_txbdfree &&
2287            netif_tx_queue_stopped(txq) &&
2288            !(test_bit(GFAR_DOWN, &priv->state)))
2289                netif_wake_subqueue(priv->ndev, tqi);
2290
2291        /* Update dirty indicators */
2292        tx_queue->skb_dirtytx = skb_dirtytx;
2293        tx_queue->dirty_tx = bdp;
2294
2295        netdev_tx_completed_queue(txq, howmany, bytes_sent);
2296}
2297
2298static void count_errors(u32 lstatus, struct net_device *ndev)
2299{
2300        struct gfar_private *priv = netdev_priv(ndev);
2301        struct net_device_stats *stats = &ndev->stats;
2302        struct gfar_extra_stats *estats = &priv->extra_stats;
2303
2304        /* If the packet was truncated, none of the other errors matter */
2305        if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2306                stats->rx_length_errors++;
2307
2308                atomic64_inc(&estats->rx_trunc);
2309
2310                return;
2311        }
2312        /* Count the errors, if there were any */
2313        if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2314                stats->rx_length_errors++;
2315
2316                if (lstatus & BD_LFLAG(RXBD_LARGE))
2317                        atomic64_inc(&estats->rx_large);
2318                else
2319                        atomic64_inc(&estats->rx_short);
2320        }
2321        if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2322                stats->rx_frame_errors++;
2323                atomic64_inc(&estats->rx_nonoctet);
2324        }
2325        if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2326                atomic64_inc(&estats->rx_crcerr);
2327                stats->rx_crc_errors++;
2328        }
2329        if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2330                atomic64_inc(&estats->rx_overrun);
2331                stats->rx_over_errors++;
2332        }
2333}
2334
2335static irqreturn_t gfar_receive(int irq, void *grp_id)
2336{
2337        struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2338        unsigned long flags;
2339        u32 imask, ievent;
2340
2341        ievent = gfar_read(&grp->regs->ievent);
2342
2343        if (unlikely(ievent & IEVENT_FGPI)) {
2344                gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2345                return IRQ_HANDLED;
2346        }
2347
2348        if (likely(napi_schedule_prep(&grp->napi_rx))) {
2349                spin_lock_irqsave(&grp->grplock, flags);
2350                imask = gfar_read(&grp->regs->imask);
2351                imask &= IMASK_RX_DISABLED;
2352                gfar_write(&grp->regs->imask, imask);
2353                spin_unlock_irqrestore(&grp->grplock, flags);
2354                __napi_schedule(&grp->napi_rx);
2355        } else {
2356                /* Clear IEVENT, so interrupts aren't called again
2357                 * because of the packets that have already arrived.
2358                 */
2359                gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2360        }
2361
2362        return IRQ_HANDLED;
2363}
2364
2365/* Interrupt Handler for Transmit complete */
2366static irqreturn_t gfar_transmit(int irq, void *grp_id)
2367{
2368        struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2369        unsigned long flags;
2370        u32 imask;
2371
2372        if (likely(napi_schedule_prep(&grp->napi_tx))) {
2373                spin_lock_irqsave(&grp->grplock, flags);
2374                imask = gfar_read(&grp->regs->imask);
2375                imask &= IMASK_TX_DISABLED;
2376                gfar_write(&grp->regs->imask, imask);
2377                spin_unlock_irqrestore(&grp->grplock, flags);
2378                __napi_schedule(&grp->napi_tx);
2379        } else {
2380                /* Clear IEVENT, so interrupts aren't called again
2381                 * because of the packets that have already arrived.
2382                 */
2383                gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2384        }
2385
2386        return IRQ_HANDLED;
2387}
2388
2389static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2390                             struct sk_buff *skb, bool first)
2391{
2392        int size = lstatus & BD_LENGTH_MASK;
2393        struct page *page = rxb->page;
2394
2395        if (likely(first)) {
2396                skb_put(skb, size);
2397        } else {
2398                /* the last fragments' length contains the full frame length */
2399                if (lstatus & BD_LFLAG(RXBD_LAST))
2400                        size -= skb->len;
2401
2402                skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2403                                rxb->page_offset + RXBUF_ALIGNMENT,
2404                                size, GFAR_RXB_TRUESIZE);
2405        }
2406
2407        /* try reuse page */
2408        if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2409                return false;
2410
2411        /* change offset to the other half */
2412        rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2413
2414        page_ref_inc(page);
2415
2416        return true;
2417}
2418
2419static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2420                               struct gfar_rx_buff *old_rxb)
2421{
2422        struct gfar_rx_buff *new_rxb;
2423        u16 nta = rxq->next_to_alloc;
2424
2425        new_rxb = &rxq->rx_buff[nta];
2426
2427        /* find next buf that can reuse a page */
2428        nta++;
2429        rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2430
2431        /* copy page reference */
2432        *new_rxb = *old_rxb;
2433
2434        /* sync for use by the device */
2435        dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2436                                         old_rxb->page_offset,
2437                                         GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2438}
2439
2440static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2441                                            u32 lstatus, struct sk_buff *skb)
2442{
2443        struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2444        struct page *page = rxb->page;
2445        bool first = false;
2446
2447        if (likely(!skb)) {
2448                void *buff_addr = page_address(page) + rxb->page_offset;
2449
2450                skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2451                if (unlikely(!skb)) {
2452                        gfar_rx_alloc_err(rx_queue);
2453                        return NULL;
2454                }
2455                skb_reserve(skb, RXBUF_ALIGNMENT);
2456                first = true;
2457        }
2458
2459        dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2460                                      GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2461
2462        if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2463                /* reuse the free half of the page */
2464                gfar_reuse_rx_page(rx_queue, rxb);
2465        } else {
2466                /* page cannot be reused, unmap it */
2467                dma_unmap_page(rx_queue->dev, rxb->dma,
2468                               PAGE_SIZE, DMA_FROM_DEVICE);
2469        }
2470
2471        /* clear rxb content */
2472        rxb->page = NULL;
2473
2474        return skb;
2475}
2476
2477static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2478{
2479        /* If valid headers were found, and valid sums
2480         * were verified, then we tell the kernel that no
2481         * checksumming is necessary.  Otherwise, it is [FIXME]
2482         */
2483        if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
2484            (RXFCB_CIP | RXFCB_CTU))
2485                skb->ip_summed = CHECKSUM_UNNECESSARY;
2486        else
2487                skb_checksum_none_assert(skb);
2488}
2489
2490/* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2491static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
2492{
2493        struct gfar_private *priv = netdev_priv(ndev);
2494        struct rxfcb *fcb = NULL;
2495
2496        /* fcb is at the beginning if exists */
2497        fcb = (struct rxfcb *)skb->data;
2498
2499        /* Remove the FCB from the skb
2500         * Remove the padded bytes, if there are any
2501         */
2502        if (priv->uses_rxfcb)
2503                skb_pull(skb, GMAC_FCB_LEN);
2504
2505        /* Get receive timestamp from the skb */
2506        if (priv->hwts_rx_en) {
2507                struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2508                u64 *ns = (u64 *) skb->data;
2509
2510                memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2511                shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2512        }
2513
2514        if (priv->padding)
2515                skb_pull(skb, priv->padding);
2516
2517        /* Trim off the FCS */
2518        pskb_trim(skb, skb->len - ETH_FCS_LEN);
2519
2520        if (ndev->features & NETIF_F_RXCSUM)
2521                gfar_rx_checksum(skb, fcb);
2522
2523        /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2524         * Even if vlan rx accel is disabled, on some chips
2525         * RXFCB_VLN is pseudo randomly set.
2526         */
2527        if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2528            be16_to_cpu(fcb->flags) & RXFCB_VLN)
2529                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2530                                       be16_to_cpu(fcb->vlctl));
2531}
2532
2533/* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2534 * until the budget/quota has been reached. Returns the number
2535 * of frames handled
2536 */
2537static int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue,
2538                              int rx_work_limit)
2539{
2540        struct net_device *ndev = rx_queue->ndev;
2541        struct gfar_private *priv = netdev_priv(ndev);
2542        struct rxbd8 *bdp;
2543        int i, howmany = 0;
2544        struct sk_buff *skb = rx_queue->skb;
2545        int cleaned_cnt = gfar_rxbd_unused(rx_queue);
2546        unsigned int total_bytes = 0, total_pkts = 0;
2547
2548        /* Get the first full descriptor */
2549        i = rx_queue->next_to_clean;
2550
2551        while (rx_work_limit--) {
2552                u32 lstatus;
2553
2554                if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
2555                        gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2556                        cleaned_cnt = 0;
2557                }
2558
2559                bdp = &rx_queue->rx_bd_base[i];
2560                lstatus = be32_to_cpu(bdp->lstatus);
2561                if (lstatus & BD_LFLAG(RXBD_EMPTY))
2562                        break;
2563
2564                /* order rx buffer descriptor reads */
2565                rmb();
2566
2567                /* fetch next to clean buffer from the ring */
2568                skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
2569                if (unlikely(!skb))
2570                        break;
2571
2572                cleaned_cnt++;
2573                howmany++;
2574
2575                if (unlikely(++i == rx_queue->rx_ring_size))
2576                        i = 0;
2577
2578                rx_queue->next_to_clean = i;
2579
2580                /* fetch next buffer if not the last in frame */
2581                if (!(lstatus & BD_LFLAG(RXBD_LAST)))
2582                        continue;
2583
2584                if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
2585                        count_errors(lstatus, ndev);
2586
2587                        /* discard faulty buffer */
2588                        dev_kfree_skb(skb);
2589                        skb = NULL;
2590                        rx_queue->stats.rx_dropped++;
2591                        continue;
2592                }
2593
2594                gfar_process_frame(ndev, skb);
2595
2596                /* Increment the number of packets */
2597                total_pkts++;
2598                total_bytes += skb->len;
2599
2600                skb_record_rx_queue(skb, rx_queue->qindex);
2601
2602                skb->protocol = eth_type_trans(skb, ndev);
2603
2604                /* Send the packet up the stack */
2605                napi_gro_receive(&rx_queue->grp->napi_rx, skb);
2606
2607                skb = NULL;
2608        }
2609
2610        /* Store incomplete frames for completion */
2611        rx_queue->skb = skb;
2612
2613        rx_queue->stats.rx_packets += total_pkts;
2614        rx_queue->stats.rx_bytes += total_bytes;
2615
2616        if (cleaned_cnt)
2617                gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2618
2619        /* Update Last Free RxBD pointer for LFC */
2620        if (unlikely(priv->tx_actual_en)) {
2621                u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
2622
2623                gfar_write(rx_queue->rfbptr, bdp_dma);
2624        }
2625
2626        return howmany;
2627}
2628
2629static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2630{
2631        struct gfar_priv_grp *gfargrp =
2632                container_of(napi, struct gfar_priv_grp, napi_rx);
2633        struct gfar __iomem *regs = gfargrp->regs;
2634        struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2635        int work_done = 0;
2636
2637        /* Clear IEVENT, so interrupts aren't called again
2638         * because of the packets that have already arrived
2639         */
2640        gfar_write(&regs->ievent, IEVENT_RX_MASK);
2641
2642        work_done = gfar_clean_rx_ring(rx_queue, budget);
2643
2644        if (work_done < budget) {
2645                u32 imask;
2646                napi_complete_done(napi, work_done);
2647                /* Clear the halt bit in RSTAT */
2648                gfar_write(&regs->rstat, gfargrp->rstat);
2649
2650                spin_lock_irq(&gfargrp->grplock);
2651                imask = gfar_read(&regs->imask);
2652                imask |= IMASK_RX_DEFAULT;
2653                gfar_write(&regs->imask, imask);
2654                spin_unlock_irq(&gfargrp->grplock);
2655        }
2656
2657        return work_done;
2658}
2659
2660static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
2661{
2662        struct gfar_priv_grp *gfargrp =
2663                container_of(napi, struct gfar_priv_grp, napi_tx);
2664        struct gfar __iomem *regs = gfargrp->regs;
2665        struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
2666        u32 imask;
2667
2668        /* Clear IEVENT, so interrupts aren't called again
2669         * because of the packets that have already arrived
2670         */
2671        gfar_write(&regs->ievent, IEVENT_TX_MASK);
2672
2673        /* run Tx cleanup to completion */
2674        if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2675                gfar_clean_tx_ring(tx_queue);
2676
2677        napi_complete(napi);
2678
2679        spin_lock_irq(&gfargrp->grplock);
2680        imask = gfar_read(&regs->imask);
2681        imask |= IMASK_TX_DEFAULT;
2682        gfar_write(&regs->imask, imask);
2683        spin_unlock_irq(&gfargrp->grplock);
2684
2685        return 0;
2686}
2687
2688static int gfar_poll_rx(struct napi_struct *napi, int budget)
2689{
2690        struct gfar_priv_grp *gfargrp =
2691                container_of(napi, struct gfar_priv_grp, napi_rx);
2692        struct gfar_private *priv = gfargrp->priv;
2693        struct gfar __iomem *regs = gfargrp->regs;
2694        struct gfar_priv_rx_q *rx_queue = NULL;
2695        int work_done = 0, work_done_per_q = 0;
2696        int i, budget_per_q = 0;
2697        unsigned long rstat_rxf;
2698        int num_act_queues;
2699
2700        /* Clear IEVENT, so interrupts aren't called again
2701         * because of the packets that have already arrived
2702         */
2703        gfar_write(&regs->ievent, IEVENT_RX_MASK);
2704
2705        rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
2706
2707        num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
2708        if (num_act_queues)
2709                budget_per_q = budget/num_act_queues;
2710
2711        for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2712                /* skip queue if not active */
2713                if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
2714                        continue;
2715
2716                rx_queue = priv->rx_queue[i];
2717                work_done_per_q =
2718                        gfar_clean_rx_ring(rx_queue, budget_per_q);
2719                work_done += work_done_per_q;
2720
2721                /* finished processing this queue */
2722                if (work_done_per_q < budget_per_q) {
2723                        /* clear active queue hw indication */
2724                        gfar_write(&regs->rstat,
2725                                   RSTAT_CLEAR_RXF0 >> i);
2726                        num_act_queues--;
2727
2728                        if (!num_act_queues)
2729                                break;
2730                }
2731        }
2732
2733        if (!num_act_queues) {
2734                u32 imask;
2735                napi_complete_done(napi, work_done);
2736
2737                /* Clear the halt bit in RSTAT */
2738                gfar_write(&regs->rstat, gfargrp->rstat);
2739
2740                spin_lock_irq(&gfargrp->grplock);
2741                imask = gfar_read(&regs->imask);
2742                imask |= IMASK_RX_DEFAULT;
2743                gfar_write(&regs->imask, imask);
2744                spin_unlock_irq(&gfargrp->grplock);
2745        }
2746
2747        return work_done;
2748}
2749
2750static int gfar_poll_tx(struct napi_struct *napi, int budget)
2751{
2752        struct gfar_priv_grp *gfargrp =
2753                container_of(napi, struct gfar_priv_grp, napi_tx);
2754        struct gfar_private *priv = gfargrp->priv;
2755        struct gfar __iomem *regs = gfargrp->regs;
2756        struct gfar_priv_tx_q *tx_queue = NULL;
2757        int has_tx_work = 0;
2758        int i;
2759
2760        /* Clear IEVENT, so interrupts aren't called again
2761         * because of the packets that have already arrived
2762         */
2763        gfar_write(&regs->ievent, IEVENT_TX_MASK);
2764
2765        for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
2766                tx_queue = priv->tx_queue[i];
2767                /* run Tx cleanup to completion */
2768                if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
2769                        gfar_clean_tx_ring(tx_queue);
2770                        has_tx_work = 1;
2771                }
2772        }
2773
2774        if (!has_tx_work) {
2775                u32 imask;
2776                napi_complete(napi);
2777
2778                spin_lock_irq(&gfargrp->grplock);
2779                imask = gfar_read(&regs->imask);
2780                imask |= IMASK_TX_DEFAULT;
2781                gfar_write(&regs->imask, imask);
2782                spin_unlock_irq(&gfargrp->grplock);
2783        }
2784
2785        return 0;
2786}
2787
2788/* GFAR error interrupt handler */
2789static irqreturn_t gfar_error(int irq, void *grp_id)
2790{
2791        struct gfar_priv_grp *gfargrp = grp_id;
2792        struct gfar __iomem *regs = gfargrp->regs;
2793        struct gfar_private *priv= gfargrp->priv;
2794        struct net_device *dev = priv->ndev;
2795
2796        /* Save ievent for future reference */
2797        u32 events = gfar_read(&regs->ievent);
2798
2799        /* Clear IEVENT */
2800        gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
2801
2802        /* Magic Packet is not an error. */
2803        if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2804            (events & IEVENT_MAG))
2805                events &= ~IEVENT_MAG;
2806
2807        /* Hmm... */
2808        if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2809                netdev_dbg(dev,
2810                           "error interrupt (ievent=0x%08x imask=0x%08x)\n",
2811                           events, gfar_read(&regs->imask));
2812
2813        /* Update the error counters */
2814        if (events & IEVENT_TXE) {
2815                dev->stats.tx_errors++;
2816
2817                if (events & IEVENT_LC)
2818                        dev->stats.tx_window_errors++;
2819                if (events & IEVENT_CRL)
2820                        dev->stats.tx_aborted_errors++;
2821                if (events & IEVENT_XFUN) {
2822                        netif_dbg(priv, tx_err, dev,
2823                                  "TX FIFO underrun, packet dropped\n");
2824                        dev->stats.tx_dropped++;
2825                        atomic64_inc(&priv->extra_stats.tx_underrun);
2826
2827                        schedule_work(&priv->reset_task);
2828                }
2829                netif_dbg(priv, tx_err, dev, "Transmit Error\n");
2830        }
2831        if (events & IEVENT_BSY) {
2832                dev->stats.rx_over_errors++;
2833                atomic64_inc(&priv->extra_stats.rx_bsy);
2834
2835                netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
2836                          gfar_read(&regs->rstat));
2837        }
2838        if (events & IEVENT_BABR) {
2839                dev->stats.rx_errors++;
2840                atomic64_inc(&priv->extra_stats.rx_babr);
2841
2842                netif_dbg(priv, rx_err, dev, "babbling RX error\n");
2843        }
2844        if (events & IEVENT_EBERR) {
2845                atomic64_inc(&priv->extra_stats.eberr);
2846                netif_dbg(priv, rx_err, dev, "bus error\n");
2847        }
2848        if (events & IEVENT_RXC)
2849                netif_dbg(priv, rx_status, dev, "control frame\n");
2850
2851        if (events & IEVENT_BABT) {
2852                atomic64_inc(&priv->extra_stats.tx_babt);
2853                netif_dbg(priv, tx_err, dev, "babbling TX error\n");
2854        }
2855        return IRQ_HANDLED;
2856}
2857
2858/* The interrupt handler for devices with one interrupt */
2859static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2860{
2861        struct gfar_priv_grp *gfargrp = grp_id;
2862
2863        /* Save ievent for future reference */
2864        u32 events = gfar_read(&gfargrp->regs->ievent);
2865
2866        /* Check for reception */
2867        if (events & IEVENT_RX_MASK)
2868                gfar_receive(irq, grp_id);
2869
2870        /* Check for transmit completion */
2871        if (events & IEVENT_TX_MASK)
2872                gfar_transmit(irq, grp_id);
2873
2874        /* Check for errors */
2875        if (events & IEVENT_ERR_MASK)
2876                gfar_error(irq, grp_id);
2877
2878        return IRQ_HANDLED;
2879}
2880
2881#ifdef CONFIG_NET_POLL_CONTROLLER
2882/* Polling 'interrupt' - used by things like netconsole to send skbs
2883 * without having to re-enable interrupts. It's not called while
2884 * the interrupt routine is executing.
2885 */
2886static void gfar_netpoll(struct net_device *dev)
2887{
2888        struct gfar_private *priv = netdev_priv(dev);
2889        int i;
2890
2891        /* If the device has multiple interrupts, run tx/rx */
2892        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2893                for (i = 0; i < priv->num_grps; i++) {
2894                        struct gfar_priv_grp *grp = &priv->gfargrp[i];
2895
2896                        disable_irq(gfar_irq(grp, TX)->irq);
2897                        disable_irq(gfar_irq(grp, RX)->irq);
2898                        disable_irq(gfar_irq(grp, ER)->irq);
2899                        gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2900                        enable_irq(gfar_irq(grp, ER)->irq);
2901                        enable_irq(gfar_irq(grp, RX)->irq);
2902                        enable_irq(gfar_irq(grp, TX)->irq);
2903                }
2904        } else {
2905                for (i = 0; i < priv->num_grps; i++) {
2906                        struct gfar_priv_grp *grp = &priv->gfargrp[i];
2907
2908                        disable_irq(gfar_irq(grp, TX)->irq);
2909                        gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2910                        enable_irq(gfar_irq(grp, TX)->irq);
2911                }
2912        }
2913}
2914#endif
2915
2916static void free_grp_irqs(struct gfar_priv_grp *grp)
2917{
2918        free_irq(gfar_irq(grp, TX)->irq, grp);
2919        free_irq(gfar_irq(grp, RX)->irq, grp);
2920        free_irq(gfar_irq(grp, ER)->irq, grp);
2921}
2922
2923static int register_grp_irqs(struct gfar_priv_grp *grp)
2924{
2925        struct gfar_private *priv = grp->priv;
2926        struct net_device *dev = priv->ndev;
2927        int err;
2928
2929        /* If the device has multiple interrupts, register for
2930         * them.  Otherwise, only register for the one
2931         */
2932        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2933                /* Install our interrupt handlers for Error,
2934                 * Transmit, and Receive
2935                 */
2936                err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2937                                  gfar_irq(grp, ER)->name, grp);
2938                if (err < 0) {
2939                        netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2940                                  gfar_irq(grp, ER)->irq);
2941
2942                        goto err_irq_fail;
2943                }
2944                enable_irq_wake(gfar_irq(grp, ER)->irq);
2945
2946                err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2947                                  gfar_irq(grp, TX)->name, grp);
2948                if (err < 0) {
2949                        netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2950                                  gfar_irq(grp, TX)->irq);
2951                        goto tx_irq_fail;
2952                }
2953                err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2954                                  gfar_irq(grp, RX)->name, grp);
2955                if (err < 0) {
2956                        netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2957                                  gfar_irq(grp, RX)->irq);
2958                        goto rx_irq_fail;
2959                }
2960                enable_irq_wake(gfar_irq(grp, RX)->irq);
2961
2962        } else {
2963                err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2964                                  gfar_irq(grp, TX)->name, grp);
2965                if (err < 0) {
2966                        netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2967                                  gfar_irq(grp, TX)->irq);
2968                        goto err_irq_fail;
2969                }
2970                enable_irq_wake(gfar_irq(grp, TX)->irq);
2971        }
2972
2973        return 0;
2974
2975rx_irq_fail:
2976        free_irq(gfar_irq(grp, TX)->irq, grp);
2977tx_irq_fail:
2978        free_irq(gfar_irq(grp, ER)->irq, grp);
2979err_irq_fail:
2980        return err;
2981
2982}
2983
2984static void gfar_free_irq(struct gfar_private *priv)
2985{
2986        int i;
2987
2988        /* Free the IRQs */
2989        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2990                for (i = 0; i < priv->num_grps; i++)
2991                        free_grp_irqs(&priv->gfargrp[i]);
2992        } else {
2993                for (i = 0; i < priv->num_grps; i++)
2994                        free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2995                                 &priv->gfargrp[i]);
2996        }
2997}
2998
2999static int gfar_request_irq(struct gfar_private *priv)
3000{
3001        int err, i, j;
3002
3003        for (i = 0; i < priv->num_grps; i++) {
3004                err = register_grp_irqs(&priv->gfargrp[i]);
3005                if (err) {
3006                        for (j = 0; j < i; j++)
3007                                free_grp_irqs(&priv->gfargrp[j]);
3008                        return err;
3009                }
3010        }
3011
3012        return 0;
3013}
3014
3015/* Called when something needs to use the ethernet device
3016 * Returns 0 for success.
3017 */
3018static int gfar_enet_open(struct net_device *dev)
3019{
3020        struct gfar_private *priv = netdev_priv(dev);
3021        int err;
3022
3023        err = init_phy(dev);
3024        if (err)
3025                return err;
3026
3027        err = gfar_request_irq(priv);
3028        if (err)
3029                return err;
3030
3031        err = startup_gfar(dev);
3032        if (err)
3033                return err;
3034
3035        return err;
3036}
3037
3038/* Stops the kernel queue, and halts the controller */
3039static int gfar_close(struct net_device *dev)
3040{
3041        struct gfar_private *priv = netdev_priv(dev);
3042
3043        cancel_work_sync(&priv->reset_task);
3044        stop_gfar(dev);
3045
3046        /* Disconnect from the PHY */
3047        phy_disconnect(dev->phydev);
3048
3049        gfar_free_irq(priv);
3050
3051        return 0;
3052}
3053
3054/* Clears each of the exact match registers to zero, so they
3055 * don't interfere with normal reception
3056 */
3057static void gfar_clear_exact_match(struct net_device *dev)
3058{
3059        int idx;
3060        static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3061
3062        for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3063                gfar_set_mac_for_addr(dev, idx, zero_arr);
3064}
3065
3066/* Update the hash table based on the current list of multicast
3067 * addresses we subscribe to.  Also, change the promiscuity of
3068 * the device based on the flags (this function is called
3069 * whenever dev->flags is changed
3070 */
3071static void gfar_set_multi(struct net_device *dev)
3072{
3073        struct netdev_hw_addr *ha;
3074        struct gfar_private *priv = netdev_priv(dev);
3075        struct gfar __iomem *regs = priv->gfargrp[0].regs;
3076        u32 tempval;
3077
3078        if (dev->flags & IFF_PROMISC) {
3079                /* Set RCTRL to PROM */
3080                tempval = gfar_read(&regs->rctrl);
3081                tempval |= RCTRL_PROM;
3082                gfar_write(&regs->rctrl, tempval);
3083        } else {
3084                /* Set RCTRL to not PROM */
3085                tempval = gfar_read(&regs->rctrl);
3086                tempval &= ~(RCTRL_PROM);
3087                gfar_write(&regs->rctrl, tempval);
3088        }
3089
3090        if (dev->flags & IFF_ALLMULTI) {
3091                /* Set the hash to rx all multicast frames */
3092                gfar_write(&regs->igaddr0, 0xffffffff);
3093                gfar_write(&regs->igaddr1, 0xffffffff);
3094                gfar_write(&regs->igaddr2, 0xffffffff);
3095                gfar_write(&regs->igaddr3, 0xffffffff);
3096                gfar_write(&regs->igaddr4, 0xffffffff);
3097                gfar_write(&regs->igaddr5, 0xffffffff);
3098                gfar_write(&regs->igaddr6, 0xffffffff);
3099                gfar_write(&regs->igaddr7, 0xffffffff);
3100                gfar_write(&regs->gaddr0, 0xffffffff);
3101                gfar_write(&regs->gaddr1, 0xffffffff);
3102                gfar_write(&regs->gaddr2, 0xffffffff);
3103                gfar_write(&regs->gaddr3, 0xffffffff);
3104                gfar_write(&regs->gaddr4, 0xffffffff);
3105                gfar_write(&regs->gaddr5, 0xffffffff);
3106                gfar_write(&regs->gaddr6, 0xffffffff);
3107                gfar_write(&regs->gaddr7, 0xffffffff);
3108        } else {
3109                int em_num;
3110                int idx;
3111
3112                /* zero out the hash */
3113                gfar_write(&regs->igaddr0, 0x0);
3114                gfar_write(&regs->igaddr1, 0x0);
3115                gfar_write(&regs->igaddr2, 0x0);
3116                gfar_write(&regs->igaddr3, 0x0);
3117                gfar_write(&regs->igaddr4, 0x0);
3118                gfar_write(&regs->igaddr5, 0x0);
3119                gfar_write(&regs->igaddr6, 0x0);
3120                gfar_write(&regs->igaddr7, 0x0);
3121                gfar_write(&regs->gaddr0, 0x0);
3122                gfar_write(&regs->gaddr1, 0x0);
3123                gfar_write(&regs->gaddr2, 0x0);
3124                gfar_write(&regs->gaddr3, 0x0);
3125                gfar_write(&regs->gaddr4, 0x0);
3126                gfar_write(&regs->gaddr5, 0x0);
3127                gfar_write(&regs->gaddr6, 0x0);
3128                gfar_write(&regs->gaddr7, 0x0);
3129
3130                /* If we have extended hash tables, we need to
3131                 * clear the exact match registers to prepare for
3132                 * setting them
3133                 */
3134                if (priv->extended_hash) {
3135                        em_num = GFAR_EM_NUM + 1;
3136                        gfar_clear_exact_match(dev);
3137                        idx = 1;
3138                } else {
3139                        idx = 0;
3140                        em_num = 0;
3141                }
3142
3143                if (netdev_mc_empty(dev))
3144                        return;
3145
3146                /* Parse the list, and set the appropriate bits */
3147                netdev_for_each_mc_addr(ha, dev) {
3148                        if (idx < em_num) {
3149                                gfar_set_mac_for_addr(dev, idx, ha->addr);
3150                                idx++;
3151                        } else
3152                                gfar_set_hash_for_addr(dev, ha->addr);
3153                }
3154        }
3155}
3156
3157void gfar_mac_reset(struct gfar_private *priv)
3158{
3159        struct gfar __iomem *regs = priv->gfargrp[0].regs;
3160        u32 tempval;
3161
3162        /* Reset MAC layer */
3163        gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
3164
3165        /* We need to delay at least 3 TX clocks */
3166        udelay(3);
3167
3168        /* the soft reset bit is not self-resetting, so we need to
3169         * clear it before resuming normal operation
3170         */
3171        gfar_write(&regs->maccfg1, 0);
3172
3173        udelay(3);
3174
3175        gfar_rx_offload_en(priv);
3176
3177        /* Initialize the max receive frame/buffer lengths */
3178        gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
3179        gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
3180
3181        /* Initialize the Minimum Frame Length Register */
3182        gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
3183
3184        /* Initialize MACCFG2. */
3185        tempval = MACCFG2_INIT_SETTINGS;
3186
3187        /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
3188         * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
3189         * and by checking RxBD[LG] and discarding larger than MAXFRM.
3190         */
3191        if (gfar_has_errata(priv, GFAR_ERRATA_74))
3192                tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
3193
3194        gfar_write(&regs->maccfg2, tempval);
3195
3196        /* Clear mac addr hash registers */
3197        gfar_write(&regs->igaddr0, 0);
3198        gfar_write(&regs->igaddr1, 0);
3199        gfar_write(&regs->igaddr2, 0);
3200        gfar_write(&regs->igaddr3, 0);
3201        gfar_write(&regs->igaddr4, 0);
3202        gfar_write(&regs->igaddr5, 0);
3203        gfar_write(&regs->igaddr6, 0);
3204        gfar_write(&regs->igaddr7, 0);
3205
3206        gfar_write(&regs->gaddr0, 0);
3207        gfar_write(&regs->gaddr1, 0);
3208        gfar_write(&regs->gaddr2, 0);
3209        gfar_write(&regs->gaddr3, 0);
3210        gfar_write(&regs->gaddr4, 0);
3211        gfar_write(&regs->gaddr5, 0);
3212        gfar_write(&regs->gaddr6, 0);
3213        gfar_write(&regs->gaddr7, 0);
3214
3215        if (priv->extended_hash)
3216                gfar_clear_exact_match(priv->ndev);
3217
3218        gfar_mac_rx_config(priv);
3219
3220        gfar_mac_tx_config(priv);
3221
3222        gfar_set_mac_address(priv->ndev);
3223
3224        gfar_set_multi(priv->ndev);
3225
3226        /* clear ievent and imask before configuring coalescing */
3227        gfar_ints_disable(priv);
3228
3229        /* Configure the coalescing support */
3230        gfar_configure_coalescing_all(priv);
3231}
3232
3233static void gfar_hw_init(struct gfar_private *priv)
3234{
3235        struct gfar __iomem *regs = priv->gfargrp[0].regs;
3236        u32 attrs;
3237
3238        /* Stop the DMA engine now, in case it was running before
3239         * (The firmware could have used it, and left it running).
3240         */
3241        gfar_halt(priv);
3242
3243        gfar_mac_reset(priv);
3244
3245        /* Zero out the rmon mib registers if it has them */
3246        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
3247                memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
3248
3249                /* Mask off the CAM interrupts */
3250                gfar_write(&regs->rmon.cam1, 0xffffffff);
3251                gfar_write(&regs->rmon.cam2, 0xffffffff);
3252        }
3253
3254        /* Initialize ECNTRL */
3255        gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
3256
3257        /* Set the extraction length and index */
3258        attrs = ATTRELI_EL(priv->rx_stash_size) |
3259                ATTRELI_EI(priv->rx_stash_index);
3260
3261        gfar_write(&regs->attreli, attrs);
3262
3263        /* Start with defaults, and add stashing
3264         * depending on driver parameters
3265         */
3266        attrs = ATTR_INIT_SETTINGS;
3267
3268        if (priv->bd_stash_en)
3269                attrs |= ATTR_BDSTASH;
3270
3271        if (priv->rx_stash_size != 0)
3272                attrs |= ATTR_BUFSTASH;
3273
3274        gfar_write(&regs->attr, attrs);
3275
3276        /* FIFO configs */
3277        gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
3278        gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
3279        gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
3280
3281        /* Program the interrupt steering regs, only for MG devices */
3282        if (priv->num_grps > 1)
3283                gfar_write_isrg(priv);
3284}
3285
3286static const struct net_device_ops gfar_netdev_ops = {
3287        .ndo_open = gfar_enet_open,
3288        .ndo_start_xmit = gfar_start_xmit,
3289        .ndo_stop = gfar_close,
3290        .ndo_change_mtu = gfar_change_mtu,
3291        .ndo_set_features = gfar_set_features,
3292        .ndo_set_rx_mode = gfar_set_multi,
3293        .ndo_tx_timeout = gfar_timeout,
3294        .ndo_do_ioctl = gfar_ioctl,
3295        .ndo_get_stats = gfar_get_stats,
3296        .ndo_change_carrier = fixed_phy_change_carrier,
3297        .ndo_set_mac_address = gfar_set_mac_addr,
3298        .ndo_validate_addr = eth_validate_addr,
3299#ifdef CONFIG_NET_POLL_CONTROLLER
3300        .ndo_poll_controller = gfar_netpoll,
3301#endif
3302};
3303
3304/* Set up the ethernet device structure, private data,
3305 * and anything else we need before we start
3306 */
3307static int gfar_probe(struct platform_device *ofdev)
3308{
3309        struct device_node *np = ofdev->dev.of_node;
3310        struct net_device *dev = NULL;
3311        struct gfar_private *priv = NULL;
3312        int err = 0, i;
3313
3314        err = gfar_of_init(ofdev, &dev);
3315
3316        if (err)
3317                return err;
3318
3319        priv = netdev_priv(dev);
3320        priv->ndev = dev;
3321        priv->ofdev = ofdev;
3322        priv->dev = &ofdev->dev;
3323        SET_NETDEV_DEV(dev, &ofdev->dev);
3324
3325        INIT_WORK(&priv->reset_task, gfar_reset_task);
3326
3327        platform_set_drvdata(ofdev, priv);
3328
3329        gfar_detect_errata(priv);
3330
3331        /* Set the dev->base_addr to the gfar reg region */
3332        dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
3333
3334        /* Fill in the dev structure */
3335        dev->watchdog_timeo = TX_TIMEOUT;
3336        /* MTU range: 50 - 9586 */
3337        dev->mtu = 1500;
3338        dev->min_mtu = 50;
3339        dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
3340        dev->netdev_ops = &gfar_netdev_ops;
3341        dev->ethtool_ops = &gfar_ethtool_ops;
3342
3343        /* Register for napi ...We are registering NAPI for each grp */
3344        for (i = 0; i < priv->num_grps; i++) {
3345                if (priv->poll_mode == GFAR_SQ_POLLING) {
3346                        netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3347                                       gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
3348                        netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
3349                                       gfar_poll_tx_sq, 2);
3350                } else {
3351                        netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3352                                       gfar_poll_rx, GFAR_DEV_WEIGHT);
3353                        netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
3354                                       gfar_poll_tx, 2);
3355                }
3356        }
3357
3358        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
3359                dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3360                                   NETIF_F_RXCSUM;
3361                dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
3362                                 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
3363        }
3364
3365        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
3366                dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
3367                                    NETIF_F_HW_VLAN_CTAG_RX;
3368                dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3369        }
3370
3371        dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3372
3373        gfar_init_addr_hash_table(priv);
3374
3375        /* Insert receive time stamps into padding alignment bytes, and
3376         * plus 2 bytes padding to ensure the cpu alignment.
3377         */
3378        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3379                priv->padding = 8 + DEFAULT_PADDING;
3380
3381        if (dev->features & NETIF_F_IP_CSUM ||
3382            priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3383                dev->needed_headroom = GMAC_FCB_LEN;
3384
3385        /* Initializing some of the rx/tx queue level parameters */
3386        for (i = 0; i < priv->num_tx_queues; i++) {
3387                priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
3388                priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
3389                priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
3390                priv->tx_queue[i]->txic = DEFAULT_TXIC;
3391        }
3392
3393        for (i = 0; i < priv->num_rx_queues; i++) {
3394                priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
3395                priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
3396                priv->rx_queue[i]->rxic = DEFAULT_RXIC;
3397        }
3398
3399        /* Always enable rx filer if available */
3400        priv->rx_filer_enable =
3401            (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
3402        /* Enable most messages by default */
3403        priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
3404        /* use pritority h/w tx queue scheduling for single queue devices */
3405        if (priv->num_tx_queues == 1)
3406                priv->prio_sched_en = 1;
3407
3408        set_bit(GFAR_DOWN, &priv->state);
3409
3410        gfar_hw_init(priv);
3411
3412        /* Carrier starts down, phylib will bring it up */
3413        netif_carrier_off(dev);
3414
3415        err = register_netdev(dev);
3416
3417        if (err) {
3418                pr_err("%s: Cannot register net device, aborting\n", dev->name);
3419                goto register_fail;
3420        }
3421
3422        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
3423                priv->wol_supported |= GFAR_WOL_MAGIC;
3424
3425        if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
3426            priv->rx_filer_enable)
3427                priv->wol_supported |= GFAR_WOL_FILER_UCAST;
3428
3429        device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
3430
3431        /* fill out IRQ number and name fields */
3432        for (i = 0; i < priv->num_grps; i++) {
3433                struct gfar_priv_grp *grp = &priv->gfargrp[i];
3434                if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3435                        sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
3436                                dev->name, "_g", '0' + i, "_tx");
3437                        sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
3438                                dev->name, "_g", '0' + i, "_rx");
3439                        sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
3440                                dev->name, "_g", '0' + i, "_er");
3441                } else
3442                        strcpy(gfar_irq(grp, TX)->name, dev->name);
3443        }
3444
3445        /* Initialize the filer table */
3446        gfar_init_filer_table(priv);
3447
3448        /* Print out the device info */
3449        netdev_info(dev, "mac: %pM\n", dev->dev_addr);
3450
3451        /* Even more device info helps when determining which kernel
3452         * provided which set of benchmarks.
3453         */
3454        netdev_info(dev, "Running with NAPI enabled\n");
3455        for (i = 0; i < priv->num_rx_queues; i++)
3456                netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
3457                            i, priv->rx_queue[i]->rx_ring_size);
3458        for (i = 0; i < priv->num_tx_queues; i++)
3459                netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
3460                            i, priv->tx_queue[i]->tx_ring_size);
3461
3462        return 0;
3463
3464register_fail:
3465        if (of_phy_is_fixed_link(np))
3466                of_phy_deregister_fixed_link(np);
3467        unmap_group_regs(priv);
3468        gfar_free_rx_queues(priv);
3469        gfar_free_tx_queues(priv);
3470        of_node_put(priv->phy_node);
3471        of_node_put(priv->tbi_node);
3472        free_gfar_dev(priv);
3473        return err;
3474}
3475
3476static int gfar_remove(struct platform_device *ofdev)
3477{
3478        struct gfar_private *priv = platform_get_drvdata(ofdev);
3479        struct device_node *np = ofdev->dev.of_node;
3480
3481        of_node_put(priv->phy_node);
3482        of_node_put(priv->tbi_node);
3483
3484        unregister_netdev(priv->ndev);
3485
3486        if (of_phy_is_fixed_link(np))
3487                of_phy_deregister_fixed_link(np);
3488
3489        unmap_group_regs(priv);
3490        gfar_free_rx_queues(priv);
3491        gfar_free_tx_queues(priv);
3492        free_gfar_dev(priv);
3493
3494        return 0;
3495}
3496
3497#ifdef CONFIG_PM
3498
3499static void __gfar_filer_disable(struct gfar_private *priv)
3500{
3501        struct gfar __iomem *regs = priv->gfargrp[0].regs;
3502        u32 temp;
3503
3504        temp = gfar_read(&regs->rctrl);
3505        temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
3506        gfar_write(&regs->rctrl, temp);
3507}
3508
3509static void __gfar_filer_enable(struct gfar_private *priv)
3510{
3511        struct gfar __iomem *regs = priv->gfargrp[0].regs;
3512        u32 temp;
3513
3514        temp = gfar_read(&regs->rctrl);
3515        temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
3516        gfar_write(&regs->rctrl, temp);
3517}
3518
3519/* Filer rules implementing wol capabilities */
3520static void gfar_filer_config_wol(struct gfar_private *priv)
3521{
3522        unsigned int i;
3523        u32 rqfcr;
3524
3525        __gfar_filer_disable(priv);
3526
3527        /* clear the filer table, reject any packet by default */
3528        rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
3529        for (i = 0; i <= MAX_FILER_IDX; i++)
3530                gfar_write_filer(priv, i, rqfcr, 0);
3531
3532        i = 0;
3533        if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
3534                /* unicast packet, accept it */
3535                struct net_device *ndev = priv->ndev;
3536                /* get the default rx queue index */
3537                u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
3538                u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
3539                                    (ndev->dev_addr[1] << 8) |
3540                                     ndev->dev_addr[2];
3541
3542                rqfcr = (qindex << 10) | RQFCR_AND |
3543                        RQFCR_CMP_EXACT | RQFCR_PID_DAH;
3544
3545                gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3546
3547                dest_mac_addr = (ndev->dev_addr[3] << 16) |
3548                                (ndev->dev_addr[4] << 8) |
3549                                 ndev->dev_addr[5];
3550                rqfcr = (qindex << 10) | RQFCR_GPI |
3551                        RQFCR_CMP_EXACT | RQFCR_PID_DAL;
3552                gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3553        }
3554
3555        __gfar_filer_enable(priv);
3556}
3557
3558static void gfar_filer_restore_table(struct gfar_private *priv)
3559{
3560        u32 rqfcr, rqfpr;
3561        unsigned int i;
3562
3563        __gfar_filer_disable(priv);
3564
3565        for (i = 0; i <= MAX_FILER_IDX; i++) {
3566                rqfcr = priv->ftp_rqfcr[i];
3567                rqfpr = priv->ftp_rqfpr[i];
3568                gfar_write_filer(priv, i, rqfcr, rqfpr);
3569        }
3570
3571        __gfar_filer_enable(priv);
3572}
3573
3574/* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
3575static void gfar_start_wol_filer(struct gfar_private *priv)
3576{
3577        struct gfar __iomem *regs = priv->gfargrp[0].regs;
3578        u32 tempval;
3579        int i = 0;
3580
3581        /* Enable Rx hw queues */
3582        gfar_write(&regs->rqueue, priv->rqueue);
3583
3584        /* Initialize DMACTRL to have WWR and WOP */
3585        tempval = gfar_read(&regs->dmactrl);
3586        tempval |= DMACTRL_INIT_SETTINGS;
3587        gfar_write(&regs->dmactrl, tempval);
3588
3589        /* Make sure we aren't stopped */
3590        tempval = gfar_read(&regs->dmactrl);
3591        tempval &= ~DMACTRL_GRS;
3592        gfar_write(&regs->dmactrl, tempval);
3593
3594        for (i = 0; i < priv->num_grps; i++) {
3595                regs = priv->gfargrp[i].regs;
3596                /* Clear RHLT, so that the DMA starts polling now */
3597                gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
3598                /* enable the Filer General Purpose Interrupt */
3599                gfar_write(&regs->imask, IMASK_FGPI);
3600        }
3601
3602        /* Enable Rx DMA */
3603        tempval = gfar_read(&regs->maccfg1);
3604        tempval |= MACCFG1_RX_EN;
3605        gfar_write(&regs->maccfg1, tempval);
3606}
3607
3608static int gfar_suspend(struct device *dev)
3609{
3610        struct gfar_private *priv = dev_get_drvdata(dev);
3611        struct net_device *ndev = priv->ndev;
3612        struct gfar __iomem *regs = priv->gfargrp[0].regs;
3613        u32 tempval;
3614        u16 wol = priv->wol_opts;
3615
3616        if (!netif_running(ndev))
3617                return 0;
3618
3619        disable_napi(priv);
3620        netif_tx_lock(ndev);
3621        netif_device_detach(ndev);
3622        netif_tx_unlock(ndev);
3623
3624        gfar_halt(priv);
3625
3626        if (wol & GFAR_WOL_MAGIC) {
3627                /* Enable interrupt on Magic Packet */
3628                gfar_write(&regs->imask, IMASK_MAG);
3629
3630                /* Enable Magic Packet mode */
3631                tempval = gfar_read(&regs->maccfg2);
3632                tempval |= MACCFG2_MPEN;
3633                gfar_write(&regs->maccfg2, tempval);
3634
3635                /* re-enable the Rx block */
3636                tempval = gfar_read(&regs->maccfg1);
3637                tempval |= MACCFG1_RX_EN;
3638                gfar_write(&regs->maccfg1, tempval);
3639
3640        } else if (wol & GFAR_WOL_FILER_UCAST) {
3641                gfar_filer_config_wol(priv);
3642                gfar_start_wol_filer(priv);
3643
3644        } else {
3645                phy_stop(ndev->phydev);
3646        }
3647
3648        return 0;
3649}
3650
3651static int gfar_resume(struct device *dev)
3652{
3653        struct gfar_private *priv = dev_get_drvdata(dev);
3654        struct net_device *ndev = priv->ndev;
3655        struct gfar __iomem *regs = priv->gfargrp[0].regs;
3656        u32 tempval;
3657        u16 wol = priv->wol_opts;
3658
3659        if (!netif_running(ndev))
3660                return 0;
3661
3662        if (wol & GFAR_WOL_MAGIC) {
3663                /* Disable Magic Packet mode */
3664                tempval = gfar_read(&regs->maccfg2);
3665                tempval &= ~MACCFG2_MPEN;
3666                gfar_write(&regs->maccfg2, tempval);
3667
3668        } else if (wol & GFAR_WOL_FILER_UCAST) {
3669                /* need to stop rx only, tx is already down */
3670                gfar_halt(priv);
3671                gfar_filer_restore_table(priv);
3672
3673        } else {
3674                phy_start(ndev->phydev);
3675        }
3676
3677        gfar_start(priv);
3678
3679        netif_device_attach(ndev);
3680        enable_napi(priv);
3681
3682        return 0;
3683}
3684
3685static int gfar_restore(struct device *dev)
3686{
3687        struct gfar_private *priv = dev_get_drvdata(dev);
3688        struct net_device *ndev = priv->ndev;
3689
3690        if (!netif_running(ndev)) {
3691                netif_device_attach(ndev);
3692
3693                return 0;
3694        }
3695
3696        gfar_init_bds(ndev);
3697
3698        gfar_mac_reset(priv);
3699
3700        gfar_init_tx_rx_base(priv);
3701
3702        gfar_start(priv);
3703
3704        priv->oldlink = 0;
3705        priv->oldspeed = 0;
3706        priv->oldduplex = -1;
3707
3708        if (ndev->phydev)
3709                phy_start(ndev->phydev);
3710
3711        netif_device_attach(ndev);
3712        enable_napi(priv);
3713
3714        return 0;
3715}
3716
3717static const struct dev_pm_ops gfar_pm_ops = {
3718        .suspend = gfar_suspend,
3719        .resume = gfar_resume,
3720        .freeze = gfar_suspend,
3721        .thaw = gfar_resume,
3722        .restore = gfar_restore,
3723};
3724
3725#define GFAR_PM_OPS (&gfar_pm_ops)
3726
3727#else
3728
3729#define GFAR_PM_OPS NULL
3730
3731#endif
3732
3733static const struct of_device_id gfar_match[] =
3734{
3735        {
3736                .type = "network",
3737                .compatible = "gianfar",
3738        },
3739        {
3740                .compatible = "fsl,etsec2",
3741        },
3742        {},
3743};
3744MODULE_DEVICE_TABLE(of, gfar_match);
3745
3746/* Structure for a device driver */
3747static struct platform_driver gfar_driver = {
3748        .driver = {
3749                .name = "fsl-gianfar",
3750                .pm = GFAR_PM_OPS,
3751                .of_match_table = gfar_match,
3752        },
3753        .probe = gfar_probe,
3754        .remove = gfar_remove,
3755};
3756
3757module_platform_driver(gfar_driver);
3758