linux/drivers/net/ethernet/intel/i40e/i40e_txrx.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
   3
   4#include <linux/prefetch.h>
   5#include <linux/bpf_trace.h>
   6#include <net/xdp.h>
   7#include "i40e.h"
   8#include "i40e_trace.h"
   9#include "i40e_prototype.h"
  10#include "i40e_txrx_common.h"
  11#include "i40e_xsk.h"
  12
  13#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
  14/**
  15 * i40e_fdir - Generate a Flow Director descriptor based on fdata
  16 * @tx_ring: Tx ring to send buffer on
  17 * @fdata: Flow director filter data
  18 * @add: Indicate if we are adding a rule or deleting one
  19 *
  20 **/
  21static void i40e_fdir(struct i40e_ring *tx_ring,
  22                      struct i40e_fdir_filter *fdata, bool add)
  23{
  24        struct i40e_filter_program_desc *fdir_desc;
  25        struct i40e_pf *pf = tx_ring->vsi->back;
  26        u32 flex_ptype, dtype_cmd;
  27        u16 i;
  28
  29        /* grab the next descriptor */
  30        i = tx_ring->next_to_use;
  31        fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
  32
  33        i++;
  34        tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  35
  36        flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
  37                     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
  38
  39        flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
  40                      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
  41
  42        flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
  43                      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
  44
  45        flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
  46                      (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
  47
  48        /* Use LAN VSI Id if not programmed by user */
  49        flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
  50                      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
  51                       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
  52
  53        dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
  54
  55        dtype_cmd |= add ?
  56                     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
  57                     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
  58                     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
  59                     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
  60
  61        dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
  62                     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
  63
  64        dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
  65                     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
  66
  67        if (fdata->cnt_index) {
  68                dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
  69                dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
  70                             ((u32)fdata->cnt_index <<
  71                              I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
  72        }
  73
  74        fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
  75        fdir_desc->rsvd = cpu_to_le32(0);
  76        fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
  77        fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
  78}
  79
  80#define I40E_FD_CLEAN_DELAY 10
  81/**
  82 * i40e_program_fdir_filter - Program a Flow Director filter
  83 * @fdir_data: Packet data that will be filter parameters
  84 * @raw_packet: the pre-allocated packet buffer for FDir
  85 * @pf: The PF pointer
  86 * @add: True for add/update, False for remove
  87 **/
  88static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
  89                                    u8 *raw_packet, struct i40e_pf *pf,
  90                                    bool add)
  91{
  92        struct i40e_tx_buffer *tx_buf, *first;
  93        struct i40e_tx_desc *tx_desc;
  94        struct i40e_ring *tx_ring;
  95        struct i40e_vsi *vsi;
  96        struct device *dev;
  97        dma_addr_t dma;
  98        u32 td_cmd = 0;
  99        u16 i;
 100
 101        /* find existing FDIR VSI */
 102        vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
 103        if (!vsi)
 104                return -ENOENT;
 105
 106        tx_ring = vsi->tx_rings[0];
 107        dev = tx_ring->dev;
 108
 109        /* we need two descriptors to add/del a filter and we can wait */
 110        for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
 111                if (!i)
 112                        return -EAGAIN;
 113                msleep_interruptible(1);
 114        }
 115
 116        dma = dma_map_single(dev, raw_packet,
 117                             I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
 118        if (dma_mapping_error(dev, dma))
 119                goto dma_fail;
 120
 121        /* grab the next descriptor */
 122        i = tx_ring->next_to_use;
 123        first = &tx_ring->tx_bi[i];
 124        i40e_fdir(tx_ring, fdir_data, add);
 125
 126        /* Now program a dummy descriptor */
 127        i = tx_ring->next_to_use;
 128        tx_desc = I40E_TX_DESC(tx_ring, i);
 129        tx_buf = &tx_ring->tx_bi[i];
 130
 131        tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
 132
 133        memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
 134
 135        /* record length, and DMA address */
 136        dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
 137        dma_unmap_addr_set(tx_buf, dma, dma);
 138
 139        tx_desc->buffer_addr = cpu_to_le64(dma);
 140        td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
 141
 142        tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
 143        tx_buf->raw_buf = (void *)raw_packet;
 144
 145        tx_desc->cmd_type_offset_bsz =
 146                build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
 147
 148        /* Force memory writes to complete before letting h/w
 149         * know there are new descriptors to fetch.
 150         */
 151        wmb();
 152
 153        /* Mark the data descriptor to be watched */
 154        first->next_to_watch = tx_desc;
 155
 156        writel(tx_ring->next_to_use, tx_ring->tail);
 157        return 0;
 158
 159dma_fail:
 160        return -1;
 161}
 162
 163#define IP_HEADER_OFFSET 14
 164#define I40E_UDPIP_DUMMY_PACKET_LEN 42
 165/**
 166 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
 167 * @vsi: pointer to the targeted VSI
 168 * @fd_data: the flow director data required for the FDir descriptor
 169 * @add: true adds a filter, false removes it
 170 *
 171 * Returns 0 if the filters were successfully added or removed
 172 **/
 173static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
 174                                   struct i40e_fdir_filter *fd_data,
 175                                   bool add)
 176{
 177        struct i40e_pf *pf = vsi->back;
 178        struct udphdr *udp;
 179        struct iphdr *ip;
 180        u8 *raw_packet;
 181        int ret;
 182        static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 183                0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
 184                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
 185
 186        raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 187        if (!raw_packet)
 188                return -ENOMEM;
 189        memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
 190
 191        ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 192        udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
 193              + sizeof(struct iphdr));
 194
 195        ip->daddr = fd_data->dst_ip;
 196        udp->dest = fd_data->dst_port;
 197        ip->saddr = fd_data->src_ip;
 198        udp->source = fd_data->src_port;
 199
 200        if (fd_data->flex_filter) {
 201                u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN;
 202                __be16 pattern = fd_data->flex_word;
 203                u16 off = fd_data->flex_offset;
 204
 205                *((__force __be16 *)(payload + off)) = pattern;
 206        }
 207
 208        fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
 209        ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 210        if (ret) {
 211                dev_info(&pf->pdev->dev,
 212                         "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 213                         fd_data->pctype, fd_data->fd_id, ret);
 214                /* Free the packet buffer since it wasn't added to the ring */
 215                kfree(raw_packet);
 216                return -EOPNOTSUPP;
 217        } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 218                if (add)
 219                        dev_info(&pf->pdev->dev,
 220                                 "Filter OK for PCTYPE %d loc = %d\n",
 221                                 fd_data->pctype, fd_data->fd_id);
 222                else
 223                        dev_info(&pf->pdev->dev,
 224                                 "Filter deleted for PCTYPE %d loc = %d\n",
 225                                 fd_data->pctype, fd_data->fd_id);
 226        }
 227
 228        if (add)
 229                pf->fd_udp4_filter_cnt++;
 230        else
 231                pf->fd_udp4_filter_cnt--;
 232
 233        return 0;
 234}
 235
 236#define I40E_TCPIP_DUMMY_PACKET_LEN 54
 237/**
 238 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
 239 * @vsi: pointer to the targeted VSI
 240 * @fd_data: the flow director data required for the FDir descriptor
 241 * @add: true adds a filter, false removes it
 242 *
 243 * Returns 0 if the filters were successfully added or removed
 244 **/
 245static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
 246                                   struct i40e_fdir_filter *fd_data,
 247                                   bool add)
 248{
 249        struct i40e_pf *pf = vsi->back;
 250        struct tcphdr *tcp;
 251        struct iphdr *ip;
 252        u8 *raw_packet;
 253        int ret;
 254        /* Dummy packet */
 255        static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 256                0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
 257                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
 258                0x0, 0x72, 0, 0, 0, 0};
 259
 260        raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 261        if (!raw_packet)
 262                return -ENOMEM;
 263        memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
 264
 265        ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 266        tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
 267              + sizeof(struct iphdr));
 268
 269        ip->daddr = fd_data->dst_ip;
 270        tcp->dest = fd_data->dst_port;
 271        ip->saddr = fd_data->src_ip;
 272        tcp->source = fd_data->src_port;
 273
 274        if (fd_data->flex_filter) {
 275                u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN;
 276                __be16 pattern = fd_data->flex_word;
 277                u16 off = fd_data->flex_offset;
 278
 279                *((__force __be16 *)(payload + off)) = pattern;
 280        }
 281
 282        fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
 283        ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 284        if (ret) {
 285                dev_info(&pf->pdev->dev,
 286                         "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 287                         fd_data->pctype, fd_data->fd_id, ret);
 288                /* Free the packet buffer since it wasn't added to the ring */
 289                kfree(raw_packet);
 290                return -EOPNOTSUPP;
 291        } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 292                if (add)
 293                        dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
 294                                 fd_data->pctype, fd_data->fd_id);
 295                else
 296                        dev_info(&pf->pdev->dev,
 297                                 "Filter deleted for PCTYPE %d loc = %d\n",
 298                                 fd_data->pctype, fd_data->fd_id);
 299        }
 300
 301        if (add) {
 302                pf->fd_tcp4_filter_cnt++;
 303                if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
 304                    I40E_DEBUG_FD & pf->hw.debug_mask)
 305                        dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
 306                set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
 307        } else {
 308                pf->fd_tcp4_filter_cnt--;
 309        }
 310
 311        return 0;
 312}
 313
 314#define I40E_SCTPIP_DUMMY_PACKET_LEN 46
 315/**
 316 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
 317 * a specific flow spec
 318 * @vsi: pointer to the targeted VSI
 319 * @fd_data: the flow director data required for the FDir descriptor
 320 * @add: true adds a filter, false removes it
 321 *
 322 * Returns 0 if the filters were successfully added or removed
 323 **/
 324static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
 325                                    struct i40e_fdir_filter *fd_data,
 326                                    bool add)
 327{
 328        struct i40e_pf *pf = vsi->back;
 329        struct sctphdr *sctp;
 330        struct iphdr *ip;
 331        u8 *raw_packet;
 332        int ret;
 333        /* Dummy packet */
 334        static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 335                0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0,
 336                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
 337
 338        raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 339        if (!raw_packet)
 340                return -ENOMEM;
 341        memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN);
 342
 343        ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 344        sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
 345              + sizeof(struct iphdr));
 346
 347        ip->daddr = fd_data->dst_ip;
 348        sctp->dest = fd_data->dst_port;
 349        ip->saddr = fd_data->src_ip;
 350        sctp->source = fd_data->src_port;
 351
 352        if (fd_data->flex_filter) {
 353                u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN;
 354                __be16 pattern = fd_data->flex_word;
 355                u16 off = fd_data->flex_offset;
 356
 357                *((__force __be16 *)(payload + off)) = pattern;
 358        }
 359
 360        fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
 361        ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 362        if (ret) {
 363                dev_info(&pf->pdev->dev,
 364                         "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 365                         fd_data->pctype, fd_data->fd_id, ret);
 366                /* Free the packet buffer since it wasn't added to the ring */
 367                kfree(raw_packet);
 368                return -EOPNOTSUPP;
 369        } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 370                if (add)
 371                        dev_info(&pf->pdev->dev,
 372                                 "Filter OK for PCTYPE %d loc = %d\n",
 373                                 fd_data->pctype, fd_data->fd_id);
 374                else
 375                        dev_info(&pf->pdev->dev,
 376                                 "Filter deleted for PCTYPE %d loc = %d\n",
 377                                 fd_data->pctype, fd_data->fd_id);
 378        }
 379
 380        if (add)
 381                pf->fd_sctp4_filter_cnt++;
 382        else
 383                pf->fd_sctp4_filter_cnt--;
 384
 385        return 0;
 386}
 387
 388#define I40E_IP_DUMMY_PACKET_LEN 34
 389/**
 390 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
 391 * a specific flow spec
 392 * @vsi: pointer to the targeted VSI
 393 * @fd_data: the flow director data required for the FDir descriptor
 394 * @add: true adds a filter, false removes it
 395 *
 396 * Returns 0 if the filters were successfully added or removed
 397 **/
 398static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
 399                                  struct i40e_fdir_filter *fd_data,
 400                                  bool add)
 401{
 402        struct i40e_pf *pf = vsi->back;
 403        struct iphdr *ip;
 404        u8 *raw_packet;
 405        int ret;
 406        int i;
 407        static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 408                0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
 409                0, 0, 0, 0};
 410
 411        for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
 412             i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
 413                raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 414                if (!raw_packet)
 415                        return -ENOMEM;
 416                memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
 417                ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 418
 419                ip->saddr = fd_data->src_ip;
 420                ip->daddr = fd_data->dst_ip;
 421                ip->protocol = 0;
 422
 423                if (fd_data->flex_filter) {
 424                        u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN;
 425                        __be16 pattern = fd_data->flex_word;
 426                        u16 off = fd_data->flex_offset;
 427
 428                        *((__force __be16 *)(payload + off)) = pattern;
 429                }
 430
 431                fd_data->pctype = i;
 432                ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 433                if (ret) {
 434                        dev_info(&pf->pdev->dev,
 435                                 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 436                                 fd_data->pctype, fd_data->fd_id, ret);
 437                        /* The packet buffer wasn't added to the ring so we
 438                         * need to free it now.
 439                         */
 440                        kfree(raw_packet);
 441                        return -EOPNOTSUPP;
 442                } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 443                        if (add)
 444                                dev_info(&pf->pdev->dev,
 445                                         "Filter OK for PCTYPE %d loc = %d\n",
 446                                         fd_data->pctype, fd_data->fd_id);
 447                        else
 448                                dev_info(&pf->pdev->dev,
 449                                         "Filter deleted for PCTYPE %d loc = %d\n",
 450                                         fd_data->pctype, fd_data->fd_id);
 451                }
 452        }
 453
 454        if (add)
 455                pf->fd_ip4_filter_cnt++;
 456        else
 457                pf->fd_ip4_filter_cnt--;
 458
 459        return 0;
 460}
 461
 462/**
 463 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 464 * @vsi: pointer to the targeted VSI
 465 * @input: filter to add or delete
 466 * @add: true adds a filter, false removes it
 467 *
 468 **/
 469int i40e_add_del_fdir(struct i40e_vsi *vsi,
 470                      struct i40e_fdir_filter *input, bool add)
 471{
 472        struct i40e_pf *pf = vsi->back;
 473        int ret;
 474
 475        switch (input->flow_type & ~FLOW_EXT) {
 476        case TCP_V4_FLOW:
 477                ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
 478                break;
 479        case UDP_V4_FLOW:
 480                ret = i40e_add_del_fdir_udpv4(vsi, input, add);
 481                break;
 482        case SCTP_V4_FLOW:
 483                ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
 484                break;
 485        case IP_USER_FLOW:
 486                switch (input->ip4_proto) {
 487                case IPPROTO_TCP:
 488                        ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
 489                        break;
 490                case IPPROTO_UDP:
 491                        ret = i40e_add_del_fdir_udpv4(vsi, input, add);
 492                        break;
 493                case IPPROTO_SCTP:
 494                        ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
 495                        break;
 496                case IPPROTO_IP:
 497                        ret = i40e_add_del_fdir_ipv4(vsi, input, add);
 498                        break;
 499                default:
 500                        /* We cannot support masking based on protocol */
 501                        dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
 502                                 input->ip4_proto);
 503                        return -EINVAL;
 504                }
 505                break;
 506        default:
 507                dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
 508                         input->flow_type);
 509                return -EINVAL;
 510        }
 511
 512        /* The buffer allocated here will be normally be freed by
 513         * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
 514         * completion. In the event of an error adding the buffer to the FDIR
 515         * ring, it will immediately be freed. It may also be freed by
 516         * i40e_clean_tx_ring() when closing the VSI.
 517         */
 518        return ret;
 519}
 520
 521/**
 522 * i40e_fd_handle_status - check the Programming Status for FD
 523 * @rx_ring: the Rx ring for this descriptor
 524 * @qword0_raw: qword0
 525 * @qword1: qword1 after le_to_cpu
 526 * @prog_id: the id originally used for programming
 527 *
 528 * This is used to verify if the FD programming or invalidation
 529 * requested by SW to the HW is successful or not and take actions accordingly.
 530 **/
 531static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
 532                                  u64 qword1, u8 prog_id)
 533{
 534        struct i40e_pf *pf = rx_ring->vsi->back;
 535        struct pci_dev *pdev = pf->pdev;
 536        struct i40e_32b_rx_wb_qw0 *qw0;
 537        u32 fcnt_prog, fcnt_avail;
 538        u32 error;
 539
 540        qw0 = (struct i40e_32b_rx_wb_qw0 *)&qword0_raw;
 541        error = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
 542                I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
 543
 544        if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
 545                pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
 546                if (qw0->hi_dword.fd_id != 0 ||
 547                    (I40E_DEBUG_FD & pf->hw.debug_mask))
 548                        dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
 549                                 pf->fd_inv);
 550
 551                /* Check if the programming error is for ATR.
 552                 * If so, auto disable ATR and set a state for
 553                 * flush in progress. Next time we come here if flush is in
 554                 * progress do nothing, once flush is complete the state will
 555                 * be cleared.
 556                 */
 557                if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
 558                        return;
 559
 560                pf->fd_add_err++;
 561                /* store the current atr filter count */
 562                pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
 563
 564                if (qw0->hi_dword.fd_id == 0 &&
 565                    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
 566                        /* These set_bit() calls aren't atomic with the
 567                         * test_bit() here, but worse case we potentially
 568                         * disable ATR and queue a flush right after SB
 569                         * support is re-enabled. That shouldn't cause an
 570                         * issue in practice
 571                         */
 572                        set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
 573                        set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
 574                }
 575
 576                /* filter programming failed most likely due to table full */
 577                fcnt_prog = i40e_get_global_fd_count(pf);
 578                fcnt_avail = pf->fdir_pf_filter_count;
 579                /* If ATR is running fcnt_prog can quickly change,
 580                 * if we are very close to full, it makes sense to disable
 581                 * FD ATR/SB and then re-enable it when there is room.
 582                 */
 583                if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
 584                        if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
 585                            !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
 586                                              pf->state))
 587                                if (I40E_DEBUG_FD & pf->hw.debug_mask)
 588                                        dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
 589                }
 590        } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
 591                if (I40E_DEBUG_FD & pf->hw.debug_mask)
 592                        dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
 593                                 qw0->hi_dword.fd_id);
 594        }
 595}
 596
 597/**
 598 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
 599 * @ring:      the ring that owns the buffer
 600 * @tx_buffer: the buffer to free
 601 **/
 602static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
 603                                            struct i40e_tx_buffer *tx_buffer)
 604{
 605        if (tx_buffer->skb) {
 606                if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
 607                        kfree(tx_buffer->raw_buf);
 608                else if (ring_is_xdp(ring))
 609                        xdp_return_frame(tx_buffer->xdpf);
 610                else
 611                        dev_kfree_skb_any(tx_buffer->skb);
 612                if (dma_unmap_len(tx_buffer, len))
 613                        dma_unmap_single(ring->dev,
 614                                         dma_unmap_addr(tx_buffer, dma),
 615                                         dma_unmap_len(tx_buffer, len),
 616                                         DMA_TO_DEVICE);
 617        } else if (dma_unmap_len(tx_buffer, len)) {
 618                dma_unmap_page(ring->dev,
 619                               dma_unmap_addr(tx_buffer, dma),
 620                               dma_unmap_len(tx_buffer, len),
 621                               DMA_TO_DEVICE);
 622        }
 623
 624        tx_buffer->next_to_watch = NULL;
 625        tx_buffer->skb = NULL;
 626        dma_unmap_len_set(tx_buffer, len, 0);
 627        /* tx_buffer must be completely set up in the transmit path */
 628}
 629
 630/**
 631 * i40e_clean_tx_ring - Free any empty Tx buffers
 632 * @tx_ring: ring to be cleaned
 633 **/
 634void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
 635{
 636        unsigned long bi_size;
 637        u16 i;
 638
 639        if (ring_is_xdp(tx_ring) && tx_ring->xsk_umem) {
 640                i40e_xsk_clean_tx_ring(tx_ring);
 641        } else {
 642                /* ring already cleared, nothing to do */
 643                if (!tx_ring->tx_bi)
 644                        return;
 645
 646                /* Free all the Tx ring sk_buffs */
 647                for (i = 0; i < tx_ring->count; i++)
 648                        i40e_unmap_and_free_tx_resource(tx_ring,
 649                                                        &tx_ring->tx_bi[i]);
 650        }
 651
 652        bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
 653        memset(tx_ring->tx_bi, 0, bi_size);
 654
 655        /* Zero out the descriptor ring */
 656        memset(tx_ring->desc, 0, tx_ring->size);
 657
 658        tx_ring->next_to_use = 0;
 659        tx_ring->next_to_clean = 0;
 660
 661        if (!tx_ring->netdev)
 662                return;
 663
 664        /* cleanup Tx queue statistics */
 665        netdev_tx_reset_queue(txring_txq(tx_ring));
 666}
 667
 668/**
 669 * i40e_free_tx_resources - Free Tx resources per queue
 670 * @tx_ring: Tx descriptor ring for a specific queue
 671 *
 672 * Free all transmit software resources
 673 **/
 674void i40e_free_tx_resources(struct i40e_ring *tx_ring)
 675{
 676        i40e_clean_tx_ring(tx_ring);
 677        kfree(tx_ring->tx_bi);
 678        tx_ring->tx_bi = NULL;
 679
 680        if (tx_ring->desc) {
 681                dma_free_coherent(tx_ring->dev, tx_ring->size,
 682                                  tx_ring->desc, tx_ring->dma);
 683                tx_ring->desc = NULL;
 684        }
 685}
 686
 687/**
 688 * i40e_get_tx_pending - how many tx descriptors not processed
 689 * @ring: the ring of descriptors
 690 * @in_sw: use SW variables
 691 *
 692 * Since there is no access to the ring head register
 693 * in XL710, we need to use our local copies
 694 **/
 695u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
 696{
 697        u32 head, tail;
 698
 699        if (!in_sw) {
 700                head = i40e_get_head(ring);
 701                tail = readl(ring->tail);
 702        } else {
 703                head = ring->next_to_clean;
 704                tail = ring->next_to_use;
 705        }
 706
 707        if (head != tail)
 708                return (head < tail) ?
 709                        tail - head : (tail + ring->count - head);
 710
 711        return 0;
 712}
 713
 714/**
 715 * i40e_detect_recover_hung - Function to detect and recover hung_queues
 716 * @vsi:  pointer to vsi struct with tx queues
 717 *
 718 * VSI has netdev and netdev has TX queues. This function is to check each of
 719 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
 720 **/
 721void i40e_detect_recover_hung(struct i40e_vsi *vsi)
 722{
 723        struct i40e_ring *tx_ring = NULL;
 724        struct net_device *netdev;
 725        unsigned int i;
 726        int packets;
 727
 728        if (!vsi)
 729                return;
 730
 731        if (test_bit(__I40E_VSI_DOWN, vsi->state))
 732                return;
 733
 734        netdev = vsi->netdev;
 735        if (!netdev)
 736                return;
 737
 738        if (!netif_carrier_ok(netdev))
 739                return;
 740
 741        for (i = 0; i < vsi->num_queue_pairs; i++) {
 742                tx_ring = vsi->tx_rings[i];
 743                if (tx_ring && tx_ring->desc) {
 744                        /* If packet counter has not changed the queue is
 745                         * likely stalled, so force an interrupt for this
 746                         * queue.
 747                         *
 748                         * prev_pkt_ctr would be negative if there was no
 749                         * pending work.
 750                         */
 751                        packets = tx_ring->stats.packets & INT_MAX;
 752                        if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
 753                                i40e_force_wb(vsi, tx_ring->q_vector);
 754                                continue;
 755                        }
 756
 757                        /* Memory barrier between read of packet count and call
 758                         * to i40e_get_tx_pending()
 759                         */
 760                        smp_rmb();
 761                        tx_ring->tx_stats.prev_pkt_ctr =
 762                            i40e_get_tx_pending(tx_ring, true) ? packets : -1;
 763                }
 764        }
 765}
 766
 767/**
 768 * i40e_clean_tx_irq - Reclaim resources after transmit completes
 769 * @vsi: the VSI we care about
 770 * @tx_ring: Tx ring to clean
 771 * @napi_budget: Used to determine if we are in netpoll
 772 *
 773 * Returns true if there's any budget left (e.g. the clean is finished)
 774 **/
 775static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
 776                              struct i40e_ring *tx_ring, int napi_budget)
 777{
 778        int i = tx_ring->next_to_clean;
 779        struct i40e_tx_buffer *tx_buf;
 780        struct i40e_tx_desc *tx_head;
 781        struct i40e_tx_desc *tx_desc;
 782        unsigned int total_bytes = 0, total_packets = 0;
 783        unsigned int budget = vsi->work_limit;
 784
 785        tx_buf = &tx_ring->tx_bi[i];
 786        tx_desc = I40E_TX_DESC(tx_ring, i);
 787        i -= tx_ring->count;
 788
 789        tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
 790
 791        do {
 792                struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
 793
 794                /* if next_to_watch is not set then there is no work pending */
 795                if (!eop_desc)
 796                        break;
 797
 798                /* prevent any other reads prior to eop_desc */
 799                smp_rmb();
 800
 801                i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
 802                /* we have caught up to head, no work left to do */
 803                if (tx_head == tx_desc)
 804                        break;
 805
 806                /* clear next_to_watch to prevent false hangs */
 807                tx_buf->next_to_watch = NULL;
 808
 809                /* update the statistics for this packet */
 810                total_bytes += tx_buf->bytecount;
 811                total_packets += tx_buf->gso_segs;
 812
 813                /* free the skb/XDP data */
 814                if (ring_is_xdp(tx_ring))
 815                        xdp_return_frame(tx_buf->xdpf);
 816                else
 817                        napi_consume_skb(tx_buf->skb, napi_budget);
 818
 819                /* unmap skb header data */
 820                dma_unmap_single(tx_ring->dev,
 821                                 dma_unmap_addr(tx_buf, dma),
 822                                 dma_unmap_len(tx_buf, len),
 823                                 DMA_TO_DEVICE);
 824
 825                /* clear tx_buffer data */
 826                tx_buf->skb = NULL;
 827                dma_unmap_len_set(tx_buf, len, 0);
 828
 829                /* unmap remaining buffers */
 830                while (tx_desc != eop_desc) {
 831                        i40e_trace(clean_tx_irq_unmap,
 832                                   tx_ring, tx_desc, tx_buf);
 833
 834                        tx_buf++;
 835                        tx_desc++;
 836                        i++;
 837                        if (unlikely(!i)) {
 838                                i -= tx_ring->count;
 839                                tx_buf = tx_ring->tx_bi;
 840                                tx_desc = I40E_TX_DESC(tx_ring, 0);
 841                        }
 842
 843                        /* unmap any remaining paged data */
 844                        if (dma_unmap_len(tx_buf, len)) {
 845                                dma_unmap_page(tx_ring->dev,
 846                                               dma_unmap_addr(tx_buf, dma),
 847                                               dma_unmap_len(tx_buf, len),
 848                                               DMA_TO_DEVICE);
 849                                dma_unmap_len_set(tx_buf, len, 0);
 850                        }
 851                }
 852
 853                /* move us one more past the eop_desc for start of next pkt */
 854                tx_buf++;
 855                tx_desc++;
 856                i++;
 857                if (unlikely(!i)) {
 858                        i -= tx_ring->count;
 859                        tx_buf = tx_ring->tx_bi;
 860                        tx_desc = I40E_TX_DESC(tx_ring, 0);
 861                }
 862
 863                prefetch(tx_desc);
 864
 865                /* update budget accounting */
 866                budget--;
 867        } while (likely(budget));
 868
 869        i += tx_ring->count;
 870        tx_ring->next_to_clean = i;
 871        i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
 872        i40e_arm_wb(tx_ring, vsi, budget);
 873
 874        if (ring_is_xdp(tx_ring))
 875                return !!budget;
 876
 877        /* notify netdev of completed buffers */
 878        netdev_tx_completed_queue(txring_txq(tx_ring),
 879                                  total_packets, total_bytes);
 880
 881#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
 882        if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
 883                     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
 884                /* Make sure that anybody stopping the queue after this
 885                 * sees the new next_to_clean.
 886                 */
 887                smp_mb();
 888                if (__netif_subqueue_stopped(tx_ring->netdev,
 889                                             tx_ring->queue_index) &&
 890                   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
 891                        netif_wake_subqueue(tx_ring->netdev,
 892                                            tx_ring->queue_index);
 893                        ++tx_ring->tx_stats.restart_queue;
 894                }
 895        }
 896
 897        return !!budget;
 898}
 899
 900/**
 901 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
 902 * @vsi: the VSI we care about
 903 * @q_vector: the vector on which to enable writeback
 904 *
 905 **/
 906static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
 907                                  struct i40e_q_vector *q_vector)
 908{
 909        u16 flags = q_vector->tx.ring[0].flags;
 910        u32 val;
 911
 912        if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
 913                return;
 914
 915        if (q_vector->arm_wb_state)
 916                return;
 917
 918        if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
 919                val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
 920                      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
 921
 922                wr32(&vsi->back->hw,
 923                     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
 924                     val);
 925        } else {
 926                val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
 927                      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
 928
 929                wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
 930        }
 931        q_vector->arm_wb_state = true;
 932}
 933
 934/**
 935 * i40e_force_wb - Issue SW Interrupt so HW does a wb
 936 * @vsi: the VSI we care about
 937 * @q_vector: the vector  on which to force writeback
 938 *
 939 **/
 940void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
 941{
 942        if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
 943                u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
 944                          I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
 945                          I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
 946                          I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
 947                          /* allow 00 to be written to the index */
 948
 949                wr32(&vsi->back->hw,
 950                     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
 951        } else {
 952                u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
 953                          I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
 954                          I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
 955                          I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
 956                        /* allow 00 to be written to the index */
 957
 958                wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
 959        }
 960}
 961
 962static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
 963                                        struct i40e_ring_container *rc)
 964{
 965        return &q_vector->rx == rc;
 966}
 967
 968static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
 969{
 970        unsigned int divisor;
 971
 972        switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
 973        case I40E_LINK_SPEED_40GB:
 974                divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
 975                break;
 976        case I40E_LINK_SPEED_25GB:
 977        case I40E_LINK_SPEED_20GB:
 978                divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
 979                break;
 980        default:
 981        case I40E_LINK_SPEED_10GB:
 982                divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
 983                break;
 984        case I40E_LINK_SPEED_1GB:
 985        case I40E_LINK_SPEED_100MB:
 986                divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
 987                break;
 988        }
 989
 990        return divisor;
 991}
 992
 993/**
 994 * i40e_update_itr - update the dynamic ITR value based on statistics
 995 * @q_vector: structure containing interrupt and ring information
 996 * @rc: structure containing ring performance data
 997 *
 998 * Stores a new ITR value based on packets and byte
 999 * counts during the last interrupt.  The advantage of per interrupt
1000 * computation is faster updates and more accurate ITR for the current
1001 * traffic pattern.  Constants in this function were computed
1002 * based on theoretical maximum wire speed and thresholds were set based
1003 * on testing data as well as attempting to minimize response time
1004 * while increasing bulk throughput.
1005 **/
1006static void i40e_update_itr(struct i40e_q_vector *q_vector,
1007                            struct i40e_ring_container *rc)
1008{
1009        unsigned int avg_wire_size, packets, bytes, itr;
1010        unsigned long next_update = jiffies;
1011
1012        /* If we don't have any rings just leave ourselves set for maximum
1013         * possible latency so we take ourselves out of the equation.
1014         */
1015        if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1016                return;
1017
1018        /* For Rx we want to push the delay up and default to low latency.
1019         * for Tx we want to pull the delay down and default to high latency.
1020         */
1021        itr = i40e_container_is_rx(q_vector, rc) ?
1022              I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1023              I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1024
1025        /* If we didn't update within up to 1 - 2 jiffies we can assume
1026         * that either packets are coming in so slow there hasn't been
1027         * any work, or that there is so much work that NAPI is dealing
1028         * with interrupt moderation and we don't need to do anything.
1029         */
1030        if (time_after(next_update, rc->next_update))
1031                goto clear_counts;
1032
1033        /* If itr_countdown is set it means we programmed an ITR within
1034         * the last 4 interrupt cycles. This has a side effect of us
1035         * potentially firing an early interrupt. In order to work around
1036         * this we need to throw out any data received for a few
1037         * interrupts following the update.
1038         */
1039        if (q_vector->itr_countdown) {
1040                itr = rc->target_itr;
1041                goto clear_counts;
1042        }
1043
1044        packets = rc->total_packets;
1045        bytes = rc->total_bytes;
1046
1047        if (i40e_container_is_rx(q_vector, rc)) {
1048                /* If Rx there are 1 to 4 packets and bytes are less than
1049                 * 9000 assume insufficient data to use bulk rate limiting
1050                 * approach unless Tx is already in bulk rate limiting. We
1051                 * are likely latency driven.
1052                 */
1053                if (packets && packets < 4 && bytes < 9000 &&
1054                    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1055                        itr = I40E_ITR_ADAPTIVE_LATENCY;
1056                        goto adjust_by_size;
1057                }
1058        } else if (packets < 4) {
1059                /* If we have Tx and Rx ITR maxed and Tx ITR is running in
1060                 * bulk mode and we are receiving 4 or fewer packets just
1061                 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1062                 * that the Rx can relax.
1063                 */
1064                if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1065                    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1066                     I40E_ITR_ADAPTIVE_MAX_USECS)
1067                        goto clear_counts;
1068        } else if (packets > 32) {
1069                /* If we have processed over 32 packets in a single interrupt
1070                 * for Tx assume we need to switch over to "bulk" mode.
1071                 */
1072                rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1073        }
1074
1075        /* We have no packets to actually measure against. This means
1076         * either one of the other queues on this vector is active or
1077         * we are a Tx queue doing TSO with too high of an interrupt rate.
1078         *
1079         * Between 4 and 56 we can assume that our current interrupt delay
1080         * is only slightly too low. As such we should increase it by a small
1081         * fixed amount.
1082         */
1083        if (packets < 56) {
1084                itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1085                if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1086                        itr &= I40E_ITR_ADAPTIVE_LATENCY;
1087                        itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1088                }
1089                goto clear_counts;
1090        }
1091
1092        if (packets <= 256) {
1093                itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1094                itr &= I40E_ITR_MASK;
1095
1096                /* Between 56 and 112 is our "goldilocks" zone where we are
1097                 * working out "just right". Just report that our current
1098                 * ITR is good for us.
1099                 */
1100                if (packets <= 112)
1101                        goto clear_counts;
1102
1103                /* If packet count is 128 or greater we are likely looking
1104                 * at a slight overrun of the delay we want. Try halving
1105                 * our delay to see if that will cut the number of packets
1106                 * in half per interrupt.
1107                 */
1108                itr /= 2;
1109                itr &= I40E_ITR_MASK;
1110                if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1111                        itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1112
1113                goto clear_counts;
1114        }
1115
1116        /* The paths below assume we are dealing with a bulk ITR since
1117         * number of packets is greater than 256. We are just going to have
1118         * to compute a value and try to bring the count under control,
1119         * though for smaller packet sizes there isn't much we can do as
1120         * NAPI polling will likely be kicking in sooner rather than later.
1121         */
1122        itr = I40E_ITR_ADAPTIVE_BULK;
1123
1124adjust_by_size:
1125        /* If packet counts are 256 or greater we can assume we have a gross
1126         * overestimation of what the rate should be. Instead of trying to fine
1127         * tune it just use the formula below to try and dial in an exact value
1128         * give the current packet size of the frame.
1129         */
1130        avg_wire_size = bytes / packets;
1131
1132        /* The following is a crude approximation of:
1133         *  wmem_default / (size + overhead) = desired_pkts_per_int
1134         *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1135         *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1136         *
1137         * Assuming wmem_default is 212992 and overhead is 640 bytes per
1138         * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1139         * formula down to
1140         *
1141         *  (170 * (size + 24)) / (size + 640) = ITR
1142         *
1143         * We first do some math on the packet size and then finally bitshift
1144         * by 8 after rounding up. We also have to account for PCIe link speed
1145         * difference as ITR scales based on this.
1146         */
1147        if (avg_wire_size <= 60) {
1148                /* Start at 250k ints/sec */
1149                avg_wire_size = 4096;
1150        } else if (avg_wire_size <= 380) {
1151                /* 250K ints/sec to 60K ints/sec */
1152                avg_wire_size *= 40;
1153                avg_wire_size += 1696;
1154        } else if (avg_wire_size <= 1084) {
1155                /* 60K ints/sec to 36K ints/sec */
1156                avg_wire_size *= 15;
1157                avg_wire_size += 11452;
1158        } else if (avg_wire_size <= 1980) {
1159                /* 36K ints/sec to 30K ints/sec */
1160                avg_wire_size *= 5;
1161                avg_wire_size += 22420;
1162        } else {
1163                /* plateau at a limit of 30K ints/sec */
1164                avg_wire_size = 32256;
1165        }
1166
1167        /* If we are in low latency mode halve our delay which doubles the
1168         * rate to somewhere between 100K to 16K ints/sec
1169         */
1170        if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1171                avg_wire_size /= 2;
1172
1173        /* Resultant value is 256 times larger than it needs to be. This
1174         * gives us room to adjust the value as needed to either increase
1175         * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1176         *
1177         * Use addition as we have already recorded the new latency flag
1178         * for the ITR value.
1179         */
1180        itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1181               I40E_ITR_ADAPTIVE_MIN_INC;
1182
1183        if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1184                itr &= I40E_ITR_ADAPTIVE_LATENCY;
1185                itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1186        }
1187
1188clear_counts:
1189        /* write back value */
1190        rc->target_itr = itr;
1191
1192        /* next update should occur within next jiffy */
1193        rc->next_update = next_update + 1;
1194
1195        rc->total_bytes = 0;
1196        rc->total_packets = 0;
1197}
1198
1199static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1200{
1201        return &rx_ring->rx_bi[idx];
1202}
1203
1204/**
1205 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1206 * @rx_ring: rx descriptor ring to store buffers on
1207 * @old_buff: donor buffer to have page reused
1208 *
1209 * Synchronizes page for reuse by the adapter
1210 **/
1211static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1212                               struct i40e_rx_buffer *old_buff)
1213{
1214        struct i40e_rx_buffer *new_buff;
1215        u16 nta = rx_ring->next_to_alloc;
1216
1217        new_buff = i40e_rx_bi(rx_ring, nta);
1218
1219        /* update, and store next to alloc */
1220        nta++;
1221        rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1222
1223        /* transfer page from old buffer to new buffer */
1224        new_buff->dma           = old_buff->dma;
1225        new_buff->page          = old_buff->page;
1226        new_buff->page_offset   = old_buff->page_offset;
1227        new_buff->pagecnt_bias  = old_buff->pagecnt_bias;
1228
1229        rx_ring->rx_stats.page_reuse_count++;
1230
1231        /* clear contents of buffer_info */
1232        old_buff->page = NULL;
1233}
1234
1235/**
1236 * i40e_clean_programming_status - clean the programming status descriptor
1237 * @rx_ring: the rx ring that has this descriptor
1238 * @qword0_raw: qword0
1239 * @qword1: qword1 representing status_error_len in CPU ordering
1240 *
1241 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1242 * status being successful or not and take actions accordingly. FCoE should
1243 * handle its context/filter programming/invalidation status and take actions.
1244 *
1245 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1246 **/
1247void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1248                                   u64 qword1)
1249{
1250        u8 id;
1251
1252        id = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1253                  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1254
1255        if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1256                i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1257}
1258
1259/**
1260 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1261 * @tx_ring: the tx ring to set up
1262 *
1263 * Return 0 on success, negative on error
1264 **/
1265int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1266{
1267        struct device *dev = tx_ring->dev;
1268        int bi_size;
1269
1270        if (!dev)
1271                return -ENOMEM;
1272
1273        /* warn if we are about to overwrite the pointer */
1274        WARN_ON(tx_ring->tx_bi);
1275        bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1276        tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1277        if (!tx_ring->tx_bi)
1278                goto err;
1279
1280        u64_stats_init(&tx_ring->syncp);
1281
1282        /* round up to nearest 4K */
1283        tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1284        /* add u32 for head writeback, align after this takes care of
1285         * guaranteeing this is at least one cache line in size
1286         */
1287        tx_ring->size += sizeof(u32);
1288        tx_ring->size = ALIGN(tx_ring->size, 4096);
1289        tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1290                                           &tx_ring->dma, GFP_KERNEL);
1291        if (!tx_ring->desc) {
1292                dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1293                         tx_ring->size);
1294                goto err;
1295        }
1296
1297        tx_ring->next_to_use = 0;
1298        tx_ring->next_to_clean = 0;
1299        tx_ring->tx_stats.prev_pkt_ctr = -1;
1300        return 0;
1301
1302err:
1303        kfree(tx_ring->tx_bi);
1304        tx_ring->tx_bi = NULL;
1305        return -ENOMEM;
1306}
1307
1308int i40e_alloc_rx_bi(struct i40e_ring *rx_ring)
1309{
1310        unsigned long sz = sizeof(*rx_ring->rx_bi) * rx_ring->count;
1311
1312        rx_ring->rx_bi = kzalloc(sz, GFP_KERNEL);
1313        return rx_ring->rx_bi ? 0 : -ENOMEM;
1314}
1315
1316static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1317{
1318        memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1319}
1320
1321/**
1322 * i40e_clean_rx_ring - Free Rx buffers
1323 * @rx_ring: ring to be cleaned
1324 **/
1325void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1326{
1327        u16 i;
1328
1329        /* ring already cleared, nothing to do */
1330        if (!rx_ring->rx_bi)
1331                return;
1332
1333        if (rx_ring->skb) {
1334                dev_kfree_skb(rx_ring->skb);
1335                rx_ring->skb = NULL;
1336        }
1337
1338        if (rx_ring->xsk_umem) {
1339                i40e_xsk_clean_rx_ring(rx_ring);
1340                goto skip_free;
1341        }
1342
1343        /* Free all the Rx ring sk_buffs */
1344        for (i = 0; i < rx_ring->count; i++) {
1345                struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1346
1347                if (!rx_bi->page)
1348                        continue;
1349
1350                /* Invalidate cache lines that may have been written to by
1351                 * device so that we avoid corrupting memory.
1352                 */
1353                dma_sync_single_range_for_cpu(rx_ring->dev,
1354                                              rx_bi->dma,
1355                                              rx_bi->page_offset,
1356                                              rx_ring->rx_buf_len,
1357                                              DMA_FROM_DEVICE);
1358
1359                /* free resources associated with mapping */
1360                dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1361                                     i40e_rx_pg_size(rx_ring),
1362                                     DMA_FROM_DEVICE,
1363                                     I40E_RX_DMA_ATTR);
1364
1365                __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1366
1367                rx_bi->page = NULL;
1368                rx_bi->page_offset = 0;
1369        }
1370
1371skip_free:
1372        if (rx_ring->xsk_umem)
1373                i40e_clear_rx_bi_zc(rx_ring);
1374        else
1375                i40e_clear_rx_bi(rx_ring);
1376
1377        /* Zero out the descriptor ring */
1378        memset(rx_ring->desc, 0, rx_ring->size);
1379
1380        rx_ring->next_to_alloc = 0;
1381        rx_ring->next_to_clean = 0;
1382        rx_ring->next_to_use = 0;
1383}
1384
1385/**
1386 * i40e_free_rx_resources - Free Rx resources
1387 * @rx_ring: ring to clean the resources from
1388 *
1389 * Free all receive software resources
1390 **/
1391void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1392{
1393        i40e_clean_rx_ring(rx_ring);
1394        if (rx_ring->vsi->type == I40E_VSI_MAIN)
1395                xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1396        rx_ring->xdp_prog = NULL;
1397        kfree(rx_ring->rx_bi);
1398        rx_ring->rx_bi = NULL;
1399
1400        if (rx_ring->desc) {
1401                dma_free_coherent(rx_ring->dev, rx_ring->size,
1402                                  rx_ring->desc, rx_ring->dma);
1403                rx_ring->desc = NULL;
1404        }
1405}
1406
1407/**
1408 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1409 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1410 *
1411 * Returns 0 on success, negative on failure
1412 **/
1413int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1414{
1415        struct device *dev = rx_ring->dev;
1416        int err;
1417
1418        u64_stats_init(&rx_ring->syncp);
1419
1420        /* Round up to nearest 4K */
1421        rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1422        rx_ring->size = ALIGN(rx_ring->size, 4096);
1423        rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1424                                           &rx_ring->dma, GFP_KERNEL);
1425
1426        if (!rx_ring->desc) {
1427                dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1428                         rx_ring->size);
1429                return -ENOMEM;
1430        }
1431
1432        rx_ring->next_to_alloc = 0;
1433        rx_ring->next_to_clean = 0;
1434        rx_ring->next_to_use = 0;
1435
1436        /* XDP RX-queue info only needed for RX rings exposed to XDP */
1437        if (rx_ring->vsi->type == I40E_VSI_MAIN) {
1438                err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
1439                                       rx_ring->queue_index);
1440                if (err < 0)
1441                        return err;
1442        }
1443
1444        rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1445
1446        return 0;
1447}
1448
1449/**
1450 * i40e_release_rx_desc - Store the new tail and head values
1451 * @rx_ring: ring to bump
1452 * @val: new head index
1453 **/
1454void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1455{
1456        rx_ring->next_to_use = val;
1457
1458        /* update next to alloc since we have filled the ring */
1459        rx_ring->next_to_alloc = val;
1460
1461        /* Force memory writes to complete before letting h/w
1462         * know there are new descriptors to fetch.  (Only
1463         * applicable for weak-ordered memory model archs,
1464         * such as IA-64).
1465         */
1466        wmb();
1467        writel(val, rx_ring->tail);
1468}
1469
1470/**
1471 * i40e_rx_offset - Return expected offset into page to access data
1472 * @rx_ring: Ring we are requesting offset of
1473 *
1474 * Returns the offset value for ring into the data buffer.
1475 */
1476static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
1477{
1478        return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
1479}
1480
1481static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1482                                           unsigned int size)
1483{
1484        unsigned int truesize;
1485
1486#if (PAGE_SIZE < 8192)
1487        truesize = i40e_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
1488#else
1489        truesize = i40e_rx_offset(rx_ring) ?
1490                SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring)) +
1491                SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1492                SKB_DATA_ALIGN(size);
1493#endif
1494        return truesize;
1495}
1496
1497/**
1498 * i40e_alloc_mapped_page - recycle or make a new page
1499 * @rx_ring: ring to use
1500 * @bi: rx_buffer struct to modify
1501 *
1502 * Returns true if the page was successfully allocated or
1503 * reused.
1504 **/
1505static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1506                                   struct i40e_rx_buffer *bi)
1507{
1508        struct page *page = bi->page;
1509        dma_addr_t dma;
1510
1511        /* since we are recycling buffers we should seldom need to alloc */
1512        if (likely(page)) {
1513                rx_ring->rx_stats.page_reuse_count++;
1514                return true;
1515        }
1516
1517        /* alloc new page for storage */
1518        page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1519        if (unlikely(!page)) {
1520                rx_ring->rx_stats.alloc_page_failed++;
1521                return false;
1522        }
1523
1524        /* map page for use */
1525        dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1526                                 i40e_rx_pg_size(rx_ring),
1527                                 DMA_FROM_DEVICE,
1528                                 I40E_RX_DMA_ATTR);
1529
1530        /* if mapping failed free memory back to system since
1531         * there isn't much point in holding memory we can't use
1532         */
1533        if (dma_mapping_error(rx_ring->dev, dma)) {
1534                __free_pages(page, i40e_rx_pg_order(rx_ring));
1535                rx_ring->rx_stats.alloc_page_failed++;
1536                return false;
1537        }
1538
1539        bi->dma = dma;
1540        bi->page = page;
1541        bi->page_offset = i40e_rx_offset(rx_ring);
1542        page_ref_add(page, USHRT_MAX - 1);
1543        bi->pagecnt_bias = USHRT_MAX;
1544
1545        return true;
1546}
1547
1548/**
1549 * i40e_alloc_rx_buffers - Replace used receive buffers
1550 * @rx_ring: ring to place buffers on
1551 * @cleaned_count: number of buffers to replace
1552 *
1553 * Returns false if all allocations were successful, true if any fail
1554 **/
1555bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1556{
1557        u16 ntu = rx_ring->next_to_use;
1558        union i40e_rx_desc *rx_desc;
1559        struct i40e_rx_buffer *bi;
1560
1561        /* do nothing if no valid netdev defined */
1562        if (!rx_ring->netdev || !cleaned_count)
1563                return false;
1564
1565        rx_desc = I40E_RX_DESC(rx_ring, ntu);
1566        bi = i40e_rx_bi(rx_ring, ntu);
1567
1568        do {
1569                if (!i40e_alloc_mapped_page(rx_ring, bi))
1570                        goto no_buffers;
1571
1572                /* sync the buffer for use by the device */
1573                dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1574                                                 bi->page_offset,
1575                                                 rx_ring->rx_buf_len,
1576                                                 DMA_FROM_DEVICE);
1577
1578                /* Refresh the desc even if buffer_addrs didn't change
1579                 * because each write-back erases this info.
1580                 */
1581                rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1582
1583                rx_desc++;
1584                bi++;
1585                ntu++;
1586                if (unlikely(ntu == rx_ring->count)) {
1587                        rx_desc = I40E_RX_DESC(rx_ring, 0);
1588                        bi = i40e_rx_bi(rx_ring, 0);
1589                        ntu = 0;
1590                }
1591
1592                /* clear the status bits for the next_to_use descriptor */
1593                rx_desc->wb.qword1.status_error_len = 0;
1594
1595                cleaned_count--;
1596        } while (cleaned_count);
1597
1598        if (rx_ring->next_to_use != ntu)
1599                i40e_release_rx_desc(rx_ring, ntu);
1600
1601        return false;
1602
1603no_buffers:
1604        if (rx_ring->next_to_use != ntu)
1605                i40e_release_rx_desc(rx_ring, ntu);
1606
1607        /* make sure to come back via polling to try again after
1608         * allocation failure
1609         */
1610        return true;
1611}
1612
1613/**
1614 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1615 * @vsi: the VSI we care about
1616 * @skb: skb currently being received and modified
1617 * @rx_desc: the receive descriptor
1618 **/
1619static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1620                                    struct sk_buff *skb,
1621                                    union i40e_rx_desc *rx_desc)
1622{
1623        struct i40e_rx_ptype_decoded decoded;
1624        u32 rx_error, rx_status;
1625        bool ipv4, ipv6;
1626        u8 ptype;
1627        u64 qword;
1628
1629        qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1630        ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1631        rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1632                   I40E_RXD_QW1_ERROR_SHIFT;
1633        rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1634                    I40E_RXD_QW1_STATUS_SHIFT;
1635        decoded = decode_rx_desc_ptype(ptype);
1636
1637        skb->ip_summed = CHECKSUM_NONE;
1638
1639        skb_checksum_none_assert(skb);
1640
1641        /* Rx csum enabled and ip headers found? */
1642        if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1643                return;
1644
1645        /* did the hardware decode the packet and checksum? */
1646        if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1647                return;
1648
1649        /* both known and outer_ip must be set for the below code to work */
1650        if (!(decoded.known && decoded.outer_ip))
1651                return;
1652
1653        ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1654               (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1655        ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1656               (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1657
1658        if (ipv4 &&
1659            (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1660                         BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1661                goto checksum_fail;
1662
1663        /* likely incorrect csum if alternate IP extension headers found */
1664        if (ipv6 &&
1665            rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1666                /* don't increment checksum err here, non-fatal err */
1667                return;
1668
1669        /* there was some L4 error, count error and punt packet to the stack */
1670        if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1671                goto checksum_fail;
1672
1673        /* handle packets that were not able to be checksummed due
1674         * to arrival speed, in this case the stack can compute
1675         * the csum.
1676         */
1677        if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1678                return;
1679
1680        /* If there is an outer header present that might contain a checksum
1681         * we need to bump the checksum level by 1 to reflect the fact that
1682         * we are indicating we validated the inner checksum.
1683         */
1684        if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1685                skb->csum_level = 1;
1686
1687        /* Only report checksum unnecessary for TCP, UDP, or SCTP */
1688        switch (decoded.inner_prot) {
1689        case I40E_RX_PTYPE_INNER_PROT_TCP:
1690        case I40E_RX_PTYPE_INNER_PROT_UDP:
1691        case I40E_RX_PTYPE_INNER_PROT_SCTP:
1692                skb->ip_summed = CHECKSUM_UNNECESSARY;
1693                fallthrough;
1694        default:
1695                break;
1696        }
1697
1698        return;
1699
1700checksum_fail:
1701        vsi->back->hw_csum_rx_error++;
1702}
1703
1704/**
1705 * i40e_ptype_to_htype - get a hash type
1706 * @ptype: the ptype value from the descriptor
1707 *
1708 * Returns a hash type to be used by skb_set_hash
1709 **/
1710static inline int i40e_ptype_to_htype(u8 ptype)
1711{
1712        struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1713
1714        if (!decoded.known)
1715                return PKT_HASH_TYPE_NONE;
1716
1717        if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1718            decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1719                return PKT_HASH_TYPE_L4;
1720        else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1721                 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1722                return PKT_HASH_TYPE_L3;
1723        else
1724                return PKT_HASH_TYPE_L2;
1725}
1726
1727/**
1728 * i40e_rx_hash - set the hash value in the skb
1729 * @ring: descriptor ring
1730 * @rx_desc: specific descriptor
1731 * @skb: skb currently being received and modified
1732 * @rx_ptype: Rx packet type
1733 **/
1734static inline void i40e_rx_hash(struct i40e_ring *ring,
1735                                union i40e_rx_desc *rx_desc,
1736                                struct sk_buff *skb,
1737                                u8 rx_ptype)
1738{
1739        u32 hash;
1740        const __le64 rss_mask =
1741                cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1742                            I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1743
1744        if (!(ring->netdev->features & NETIF_F_RXHASH))
1745                return;
1746
1747        if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1748                hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1749                skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1750        }
1751}
1752
1753/**
1754 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1755 * @rx_ring: rx descriptor ring packet is being transacted on
1756 * @rx_desc: pointer to the EOP Rx descriptor
1757 * @skb: pointer to current skb being populated
1758 * @rx_ptype: the packet type decoded by hardware
1759 *
1760 * This function checks the ring, descriptor, and packet information in
1761 * order to populate the hash, checksum, VLAN, protocol, and
1762 * other fields within the skb.
1763 **/
1764void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1765                             union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1766{
1767        u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1768        u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1769                        I40E_RXD_QW1_STATUS_SHIFT;
1770        u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1771        u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1772                   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1773        u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1774                      I40E_RXD_QW1_PTYPE_SHIFT;
1775
1776        if (unlikely(tsynvalid))
1777                i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1778
1779        i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1780
1781        i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1782
1783        skb_record_rx_queue(skb, rx_ring->queue_index);
1784
1785        if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1786                u16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1787
1788                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1789                                       le16_to_cpu(vlan_tag));
1790        }
1791
1792        /* modifies the skb - consumes the enet header */
1793        skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1794}
1795
1796/**
1797 * i40e_cleanup_headers - Correct empty headers
1798 * @rx_ring: rx descriptor ring packet is being transacted on
1799 * @skb: pointer to current skb being fixed
1800 * @rx_desc: pointer to the EOP Rx descriptor
1801 *
1802 * Also address the case where we are pulling data in on pages only
1803 * and as such no data is present in the skb header.
1804 *
1805 * In addition if skb is not at least 60 bytes we need to pad it so that
1806 * it is large enough to qualify as a valid Ethernet frame.
1807 *
1808 * Returns true if an error was encountered and skb was freed.
1809 **/
1810static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1811                                 union i40e_rx_desc *rx_desc)
1812
1813{
1814        /* XDP packets use error pointer so abort at this point */
1815        if (IS_ERR(skb))
1816                return true;
1817
1818        /* ERR_MASK will only have valid bits if EOP set, and
1819         * what we are doing here is actually checking
1820         * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1821         * the error field
1822         */
1823        if (unlikely(i40e_test_staterr(rx_desc,
1824                                       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1825                dev_kfree_skb_any(skb);
1826                return true;
1827        }
1828
1829        /* if eth_skb_pad returns an error the skb was freed */
1830        if (eth_skb_pad(skb))
1831                return true;
1832
1833        return false;
1834}
1835
1836/**
1837 * i40e_page_is_reusable - check if any reuse is possible
1838 * @page: page struct to check
1839 *
1840 * A page is not reusable if it was allocated under low memory
1841 * conditions, or it's not in the same NUMA node as this CPU.
1842 */
1843static inline bool i40e_page_is_reusable(struct page *page)
1844{
1845        return (page_to_nid(page) == numa_mem_id()) &&
1846                !page_is_pfmemalloc(page);
1847}
1848
1849/**
1850 * i40e_can_reuse_rx_page - Determine if this page can be reused by
1851 * the adapter for another receive
1852 *
1853 * @rx_buffer: buffer containing the page
1854 *
1855 * If page is reusable, rx_buffer->page_offset is adjusted to point to
1856 * an unused region in the page.
1857 *
1858 * For small pages, @truesize will be a constant value, half the size
1859 * of the memory at page.  We'll attempt to alternate between high and
1860 * low halves of the page, with one half ready for use by the hardware
1861 * and the other half being consumed by the stack.  We use the page
1862 * ref count to determine whether the stack has finished consuming the
1863 * portion of this page that was passed up with a previous packet.  If
1864 * the page ref count is >1, we'll assume the "other" half page is
1865 * still busy, and this page cannot be reused.
1866 *
1867 * For larger pages, @truesize will be the actual space used by the
1868 * received packet (adjusted upward to an even multiple of the cache
1869 * line size).  This will advance through the page by the amount
1870 * actually consumed by the received packets while there is still
1871 * space for a buffer.  Each region of larger pages will be used at
1872 * most once, after which the page will not be reused.
1873 *
1874 * In either case, if the page is reusable its refcount is increased.
1875 **/
1876static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
1877{
1878        unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1879        struct page *page = rx_buffer->page;
1880
1881        /* Is any reuse possible? */
1882        if (unlikely(!i40e_page_is_reusable(page)))
1883                return false;
1884
1885#if (PAGE_SIZE < 8192)
1886        /* if we are only owner of page we can reuse it */
1887        if (unlikely((page_count(page) - pagecnt_bias) > 1))
1888                return false;
1889#else
1890#define I40E_LAST_OFFSET \
1891        (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1892        if (rx_buffer->page_offset > I40E_LAST_OFFSET)
1893                return false;
1894#endif
1895
1896        /* If we have drained the page fragment pool we need to update
1897         * the pagecnt_bias and page count so that we fully restock the
1898         * number of references the driver holds.
1899         */
1900        if (unlikely(pagecnt_bias == 1)) {
1901                page_ref_add(page, USHRT_MAX - 1);
1902                rx_buffer->pagecnt_bias = USHRT_MAX;
1903        }
1904
1905        return true;
1906}
1907
1908/**
1909 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1910 * @rx_ring: rx descriptor ring to transact packets on
1911 * @rx_buffer: buffer containing page to add
1912 * @skb: sk_buff to place the data into
1913 * @size: packet length from rx_desc
1914 *
1915 * This function will add the data contained in rx_buffer->page to the skb.
1916 * It will just attach the page as a frag to the skb.
1917 *
1918 * The function will then update the page offset.
1919 **/
1920static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1921                             struct i40e_rx_buffer *rx_buffer,
1922                             struct sk_buff *skb,
1923                             unsigned int size)
1924{
1925#if (PAGE_SIZE < 8192)
1926        unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1927#else
1928        unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1929#endif
1930
1931        skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1932                        rx_buffer->page_offset, size, truesize);
1933
1934        /* page is being used so we must update the page offset */
1935#if (PAGE_SIZE < 8192)
1936        rx_buffer->page_offset ^= truesize;
1937#else
1938        rx_buffer->page_offset += truesize;
1939#endif
1940}
1941
1942/**
1943 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1944 * @rx_ring: rx descriptor ring to transact packets on
1945 * @size: size of buffer to add to skb
1946 *
1947 * This function will pull an Rx buffer from the ring and synchronize it
1948 * for use by the CPU.
1949 */
1950static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1951                                                 const unsigned int size)
1952{
1953        struct i40e_rx_buffer *rx_buffer;
1954
1955        rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
1956        prefetchw(rx_buffer->page);
1957
1958        /* we are reusing so sync this buffer for CPU use */
1959        dma_sync_single_range_for_cpu(rx_ring->dev,
1960                                      rx_buffer->dma,
1961                                      rx_buffer->page_offset,
1962                                      size,
1963                                      DMA_FROM_DEVICE);
1964
1965        /* We have pulled a buffer for use, so decrement pagecnt_bias */
1966        rx_buffer->pagecnt_bias--;
1967
1968        return rx_buffer;
1969}
1970
1971/**
1972 * i40e_construct_skb - Allocate skb and populate it
1973 * @rx_ring: rx descriptor ring to transact packets on
1974 * @rx_buffer: rx buffer to pull data from
1975 * @xdp: xdp_buff pointing to the data
1976 *
1977 * This function allocates an skb.  It then populates it with the page
1978 * data from the current receive descriptor, taking care to set up the
1979 * skb correctly.
1980 */
1981static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
1982                                          struct i40e_rx_buffer *rx_buffer,
1983                                          struct xdp_buff *xdp)
1984{
1985        unsigned int size = xdp->data_end - xdp->data;
1986#if (PAGE_SIZE < 8192)
1987        unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1988#else
1989        unsigned int truesize = SKB_DATA_ALIGN(size);
1990#endif
1991        unsigned int headlen;
1992        struct sk_buff *skb;
1993
1994        /* prefetch first cache line of first page */
1995        prefetch(xdp->data);
1996#if L1_CACHE_BYTES < 128
1997        prefetch(xdp->data + L1_CACHE_BYTES);
1998#endif
1999        /* Note, we get here by enabling legacy-rx via:
2000         *
2001         *    ethtool --set-priv-flags <dev> legacy-rx on
2002         *
2003         * In this mode, we currently get 0 extra XDP headroom as
2004         * opposed to having legacy-rx off, where we process XDP
2005         * packets going to stack via i40e_build_skb(). The latter
2006         * provides us currently with 192 bytes of headroom.
2007         *
2008         * For i40e_construct_skb() mode it means that the
2009         * xdp->data_meta will always point to xdp->data, since
2010         * the helper cannot expand the head. Should this ever
2011         * change in future for legacy-rx mode on, then lets also
2012         * add xdp->data_meta handling here.
2013         */
2014
2015        /* allocate a skb to store the frags */
2016        skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2017                               I40E_RX_HDR_SIZE,
2018                               GFP_ATOMIC | __GFP_NOWARN);
2019        if (unlikely(!skb))
2020                return NULL;
2021
2022        /* Determine available headroom for copy */
2023        headlen = size;
2024        if (headlen > I40E_RX_HDR_SIZE)
2025                headlen = eth_get_headlen(skb->dev, xdp->data,
2026                                          I40E_RX_HDR_SIZE);
2027
2028        /* align pull length to size of long to optimize memcpy performance */
2029        memcpy(__skb_put(skb, headlen), xdp->data,
2030               ALIGN(headlen, sizeof(long)));
2031
2032        /* update all of the pointers */
2033        size -= headlen;
2034        if (size) {
2035                skb_add_rx_frag(skb, 0, rx_buffer->page,
2036                                rx_buffer->page_offset + headlen,
2037                                size, truesize);
2038
2039                /* buffer is used by skb, update page_offset */
2040#if (PAGE_SIZE < 8192)
2041                rx_buffer->page_offset ^= truesize;
2042#else
2043                rx_buffer->page_offset += truesize;
2044#endif
2045        } else {
2046                /* buffer is unused, reset bias back to rx_buffer */
2047                rx_buffer->pagecnt_bias++;
2048        }
2049
2050        return skb;
2051}
2052
2053/**
2054 * i40e_build_skb - Build skb around an existing buffer
2055 * @rx_ring: Rx descriptor ring to transact packets on
2056 * @rx_buffer: Rx buffer to pull data from
2057 * @xdp: xdp_buff pointing to the data
2058 *
2059 * This function builds an skb around an existing Rx buffer, taking care
2060 * to set up the skb correctly and avoid any memcpy overhead.
2061 */
2062static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2063                                      struct i40e_rx_buffer *rx_buffer,
2064                                      struct xdp_buff *xdp)
2065{
2066        unsigned int metasize = xdp->data - xdp->data_meta;
2067#if (PAGE_SIZE < 8192)
2068        unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2069#else
2070        unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
2071                                SKB_DATA_ALIGN(xdp->data_end -
2072                                               xdp->data_hard_start);
2073#endif
2074        struct sk_buff *skb;
2075
2076        /* Prefetch first cache line of first page. If xdp->data_meta
2077         * is unused, this points exactly as xdp->data, otherwise we
2078         * likely have a consumer accessing first few bytes of meta
2079         * data, and then actual data.
2080         */
2081        prefetch(xdp->data_meta);
2082#if L1_CACHE_BYTES < 128
2083        prefetch(xdp->data_meta + L1_CACHE_BYTES);
2084#endif
2085        /* build an skb around the page buffer */
2086        skb = build_skb(xdp->data_hard_start, truesize);
2087        if (unlikely(!skb))
2088                return NULL;
2089
2090        /* update pointers within the skb to store the data */
2091        skb_reserve(skb, xdp->data - xdp->data_hard_start);
2092        __skb_put(skb, xdp->data_end - xdp->data);
2093        if (metasize)
2094                skb_metadata_set(skb, metasize);
2095
2096        /* buffer is used by skb, update page_offset */
2097#if (PAGE_SIZE < 8192)
2098        rx_buffer->page_offset ^= truesize;
2099#else
2100        rx_buffer->page_offset += truesize;
2101#endif
2102
2103        return skb;
2104}
2105
2106/**
2107 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2108 * @rx_ring: rx descriptor ring to transact packets on
2109 * @rx_buffer: rx buffer to pull data from
2110 *
2111 * This function will clean up the contents of the rx_buffer.  It will
2112 * either recycle the buffer or unmap it and free the associated resources.
2113 */
2114static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2115                               struct i40e_rx_buffer *rx_buffer)
2116{
2117        if (i40e_can_reuse_rx_page(rx_buffer)) {
2118                /* hand second half of page back to the ring */
2119                i40e_reuse_rx_page(rx_ring, rx_buffer);
2120        } else {
2121                /* we are not reusing the buffer so unmap it */
2122                dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2123                                     i40e_rx_pg_size(rx_ring),
2124                                     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2125                __page_frag_cache_drain(rx_buffer->page,
2126                                        rx_buffer->pagecnt_bias);
2127                /* clear contents of buffer_info */
2128                rx_buffer->page = NULL;
2129        }
2130}
2131
2132/**
2133 * i40e_is_non_eop - process handling of non-EOP buffers
2134 * @rx_ring: Rx ring being processed
2135 * @rx_desc: Rx descriptor for current buffer
2136 * @skb: Current socket buffer containing buffer in progress
2137 *
2138 * This function updates next to clean.  If the buffer is an EOP buffer
2139 * this function exits returning false, otherwise it will place the
2140 * sk_buff in the next buffer to be chained and return true indicating
2141 * that this is in fact a non-EOP buffer.
2142 **/
2143static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2144                            union i40e_rx_desc *rx_desc,
2145                            struct sk_buff *skb)
2146{
2147        u32 ntc = rx_ring->next_to_clean + 1;
2148
2149        /* fetch, update, and store next to clean */
2150        ntc = (ntc < rx_ring->count) ? ntc : 0;
2151        rx_ring->next_to_clean = ntc;
2152
2153        prefetch(I40E_RX_DESC(rx_ring, ntc));
2154
2155        /* if we are the last buffer then there is nothing else to do */
2156#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2157        if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2158                return false;
2159
2160        rx_ring->rx_stats.non_eop_descs++;
2161
2162        return true;
2163}
2164
2165static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2166                              struct i40e_ring *xdp_ring);
2167
2168int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2169{
2170        struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2171
2172        if (unlikely(!xdpf))
2173                return I40E_XDP_CONSUMED;
2174
2175        return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2176}
2177
2178/**
2179 * i40e_run_xdp - run an XDP program
2180 * @rx_ring: Rx ring being processed
2181 * @xdp: XDP buffer containing the frame
2182 **/
2183static struct sk_buff *i40e_run_xdp(struct i40e_ring *rx_ring,
2184                                    struct xdp_buff *xdp)
2185{
2186        int err, result = I40E_XDP_PASS;
2187        struct i40e_ring *xdp_ring;
2188        struct bpf_prog *xdp_prog;
2189        u32 act;
2190
2191        rcu_read_lock();
2192        xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2193
2194        if (!xdp_prog)
2195                goto xdp_out;
2196
2197        prefetchw(xdp->data_hard_start); /* xdp_frame write */
2198
2199        act = bpf_prog_run_xdp(xdp_prog, xdp);
2200        switch (act) {
2201        case XDP_PASS:
2202                break;
2203        case XDP_TX:
2204                xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2205                result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2206                break;
2207        case XDP_REDIRECT:
2208                err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2209                result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED;
2210                break;
2211        default:
2212                bpf_warn_invalid_xdp_action(act);
2213                fallthrough;
2214        case XDP_ABORTED:
2215                trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2216                fallthrough; /* handle aborts by dropping packet */
2217        case XDP_DROP:
2218                result = I40E_XDP_CONSUMED;
2219                break;
2220        }
2221xdp_out:
2222        rcu_read_unlock();
2223        return ERR_PTR(-result);
2224}
2225
2226/**
2227 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2228 * @rx_ring: Rx ring
2229 * @rx_buffer: Rx buffer to adjust
2230 * @size: Size of adjustment
2231 **/
2232static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
2233                                struct i40e_rx_buffer *rx_buffer,
2234                                unsigned int size)
2235{
2236        unsigned int truesize = i40e_rx_frame_truesize(rx_ring, size);
2237
2238#if (PAGE_SIZE < 8192)
2239        rx_buffer->page_offset ^= truesize;
2240#else
2241        rx_buffer->page_offset += truesize;
2242#endif
2243}
2244
2245/**
2246 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2247 * @xdp_ring: XDP Tx ring
2248 *
2249 * This function updates the XDP Tx ring tail register.
2250 **/
2251void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2252{
2253        /* Force memory writes to complete before letting h/w
2254         * know there are new descriptors to fetch.
2255         */
2256        wmb();
2257        writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2258}
2259
2260/**
2261 * i40e_update_rx_stats - Update Rx ring statistics
2262 * @rx_ring: rx descriptor ring
2263 * @total_rx_bytes: number of bytes received
2264 * @total_rx_packets: number of packets received
2265 *
2266 * This function updates the Rx ring statistics.
2267 **/
2268void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2269                          unsigned int total_rx_bytes,
2270                          unsigned int total_rx_packets)
2271{
2272        u64_stats_update_begin(&rx_ring->syncp);
2273        rx_ring->stats.packets += total_rx_packets;
2274        rx_ring->stats.bytes += total_rx_bytes;
2275        u64_stats_update_end(&rx_ring->syncp);
2276        rx_ring->q_vector->rx.total_packets += total_rx_packets;
2277        rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2278}
2279
2280/**
2281 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2282 * @rx_ring: Rx ring
2283 * @xdp_res: Result of the receive batch
2284 *
2285 * This function bumps XDP Tx tail and/or flush redirect map, and
2286 * should be called when a batch of packets has been processed in the
2287 * napi loop.
2288 **/
2289void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2290{
2291        if (xdp_res & I40E_XDP_REDIR)
2292                xdp_do_flush_map();
2293
2294        if (xdp_res & I40E_XDP_TX) {
2295                struct i40e_ring *xdp_ring =
2296                        rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2297
2298                i40e_xdp_ring_update_tail(xdp_ring);
2299        }
2300}
2301
2302/**
2303 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2304 * @rx_ring: rx descriptor ring to transact packets on
2305 * @budget: Total limit on number of packets to process
2306 *
2307 * This function provides a "bounce buffer" approach to Rx interrupt
2308 * processing.  The advantage to this is that on systems that have
2309 * expensive overhead for IOMMU access this provides a means of avoiding
2310 * it by maintaining the mapping of the page to the system.
2311 *
2312 * Returns amount of work completed
2313 **/
2314static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
2315{
2316        unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2317        struct sk_buff *skb = rx_ring->skb;
2318        u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2319        unsigned int xdp_xmit = 0;
2320        bool failure = false;
2321        struct xdp_buff xdp;
2322
2323#if (PAGE_SIZE < 8192)
2324        xdp.frame_sz = i40e_rx_frame_truesize(rx_ring, 0);
2325#endif
2326        xdp.rxq = &rx_ring->xdp_rxq;
2327
2328        while (likely(total_rx_packets < (unsigned int)budget)) {
2329                struct i40e_rx_buffer *rx_buffer;
2330                union i40e_rx_desc *rx_desc;
2331                unsigned int size;
2332                u64 qword;
2333
2334                /* return some buffers to hardware, one at a time is too slow */
2335                if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2336                        failure = failure ||
2337                                  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2338                        cleaned_count = 0;
2339                }
2340
2341                rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
2342
2343                /* status_error_len will always be zero for unused descriptors
2344                 * because it's cleared in cleanup, and overlaps with hdr_addr
2345                 * which is always zero because packet split isn't used, if the
2346                 * hardware wrote DD then the length will be non-zero
2347                 */
2348                qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2349
2350                /* This memory barrier is needed to keep us from reading
2351                 * any other fields out of the rx_desc until we have
2352                 * verified the descriptor has been written back.
2353                 */
2354                dma_rmb();
2355
2356                if (i40e_rx_is_programming_status(qword)) {
2357                        i40e_clean_programming_status(rx_ring,
2358                                                      rx_desc->raw.qword[0],
2359                                                      qword);
2360                        rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2361                        i40e_inc_ntc(rx_ring);
2362                        i40e_reuse_rx_page(rx_ring, rx_buffer);
2363                        cleaned_count++;
2364                        continue;
2365                }
2366
2367                size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2368                       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2369                if (!size)
2370                        break;
2371
2372                i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
2373                rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2374
2375                /* retrieve a buffer from the ring */
2376                if (!skb) {
2377                        xdp.data = page_address(rx_buffer->page) +
2378                                   rx_buffer->page_offset;
2379                        xdp.data_meta = xdp.data;
2380                        xdp.data_hard_start = xdp.data -
2381                                              i40e_rx_offset(rx_ring);
2382                        xdp.data_end = xdp.data + size;
2383#if (PAGE_SIZE > 4096)
2384                        /* At larger PAGE_SIZE, frame_sz depend on len size */
2385                        xdp.frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2386#endif
2387                        skb = i40e_run_xdp(rx_ring, &xdp);
2388                }
2389
2390                if (IS_ERR(skb)) {
2391                        unsigned int xdp_res = -PTR_ERR(skb);
2392
2393                        if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2394                                xdp_xmit |= xdp_res;
2395                                i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
2396                        } else {
2397                                rx_buffer->pagecnt_bias++;
2398                        }
2399                        total_rx_bytes += size;
2400                        total_rx_packets++;
2401                } else if (skb) {
2402                        i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2403                } else if (ring_uses_build_skb(rx_ring)) {
2404                        skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
2405                } else {
2406                        skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
2407                }
2408
2409                /* exit if we failed to retrieve a buffer */
2410                if (!skb) {
2411                        rx_ring->rx_stats.alloc_buff_failed++;
2412                        rx_buffer->pagecnt_bias++;
2413                        break;
2414                }
2415
2416                i40e_put_rx_buffer(rx_ring, rx_buffer);
2417                cleaned_count++;
2418
2419                if (i40e_is_non_eop(rx_ring, rx_desc, skb))
2420                        continue;
2421
2422                if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2423                        skb = NULL;
2424                        continue;
2425                }
2426
2427                /* probably a little skewed due to removing CRC */
2428                total_rx_bytes += skb->len;
2429
2430                /* populate checksum, VLAN, and protocol */
2431                i40e_process_skb_fields(rx_ring, rx_desc, skb);
2432
2433                i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2434                napi_gro_receive(&rx_ring->q_vector->napi, skb);
2435                skb = NULL;
2436
2437                /* update budget accounting */
2438                total_rx_packets++;
2439        }
2440
2441        i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2442        rx_ring->skb = skb;
2443
2444        i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2445
2446        /* guarantee a trip back through this routine if there was a failure */
2447        return failure ? budget : (int)total_rx_packets;
2448}
2449
2450static inline u32 i40e_buildreg_itr(const int type, u16 itr)
2451{
2452        u32 val;
2453
2454        /* We don't bother with setting the CLEARPBA bit as the data sheet
2455         * points out doing so is "meaningless since it was already
2456         * auto-cleared". The auto-clearing happens when the interrupt is
2457         * asserted.
2458         *
2459         * Hardware errata 28 for also indicates that writing to a
2460         * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2461         * an event in the PBA anyway so we need to rely on the automask
2462         * to hold pending events for us until the interrupt is re-enabled
2463         *
2464         * The itr value is reported in microseconds, and the register
2465         * value is recorded in 2 microsecond units. For this reason we
2466         * only need to shift by the interval shift - 1 instead of the
2467         * full value.
2468         */
2469        itr &= I40E_ITR_MASK;
2470
2471        val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2472              (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2473              (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
2474
2475        return val;
2476}
2477
2478/* a small macro to shorten up some long lines */
2479#define INTREG I40E_PFINT_DYN_CTLN
2480
2481/* The act of updating the ITR will cause it to immediately trigger. In order
2482 * to prevent this from throwing off adaptive update statistics we defer the
2483 * update so that it can only happen so often. So after either Tx or Rx are
2484 * updated we make the adaptive scheme wait until either the ITR completely
2485 * expires via the next_update expiration or we have been through at least
2486 * 3 interrupts.
2487 */
2488#define ITR_COUNTDOWN_START 3
2489
2490/**
2491 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2492 * @vsi: the VSI we care about
2493 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2494 *
2495 **/
2496static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2497                                          struct i40e_q_vector *q_vector)
2498{
2499        struct i40e_hw *hw = &vsi->back->hw;
2500        u32 intval;
2501
2502        /* If we don't have MSIX, then we only need to re-enable icr0 */
2503        if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2504                i40e_irq_dynamic_enable_icr0(vsi->back);
2505                return;
2506        }
2507
2508        /* These will do nothing if dynamic updates are not enabled */
2509        i40e_update_itr(q_vector, &q_vector->tx);
2510        i40e_update_itr(q_vector, &q_vector->rx);
2511
2512        /* This block of logic allows us to get away with only updating
2513         * one ITR value with each interrupt. The idea is to perform a
2514         * pseudo-lazy update with the following criteria.
2515         *
2516         * 1. Rx is given higher priority than Tx if both are in same state
2517         * 2. If we must reduce an ITR that is given highest priority.
2518         * 3. We then give priority to increasing ITR based on amount.
2519         */
2520        if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2521                /* Rx ITR needs to be reduced, this is highest priority */
2522                intval = i40e_buildreg_itr(I40E_RX_ITR,
2523                                           q_vector->rx.target_itr);
2524                q_vector->rx.current_itr = q_vector->rx.target_itr;
2525                q_vector->itr_countdown = ITR_COUNTDOWN_START;
2526        } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2527                   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2528                    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2529                /* Tx ITR needs to be reduced, this is second priority
2530                 * Tx ITR needs to be increased more than Rx, fourth priority
2531                 */
2532                intval = i40e_buildreg_itr(I40E_TX_ITR,
2533                                           q_vector->tx.target_itr);
2534                q_vector->tx.current_itr = q_vector->tx.target_itr;
2535                q_vector->itr_countdown = ITR_COUNTDOWN_START;
2536        } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2537                /* Rx ITR needs to be increased, third priority */
2538                intval = i40e_buildreg_itr(I40E_RX_ITR,
2539                                           q_vector->rx.target_itr);
2540                q_vector->rx.current_itr = q_vector->rx.target_itr;
2541                q_vector->itr_countdown = ITR_COUNTDOWN_START;
2542        } else {
2543                /* No ITR update, lowest priority */
2544                intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2545                if (q_vector->itr_countdown)
2546                        q_vector->itr_countdown--;
2547        }
2548
2549        if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2550                wr32(hw, INTREG(q_vector->reg_idx), intval);
2551}
2552
2553/**
2554 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2555 * @napi: napi struct with our devices info in it
2556 * @budget: amount of work driver is allowed to do this pass, in packets
2557 *
2558 * This function will clean all queues associated with a q_vector.
2559 *
2560 * Returns the amount of work done
2561 **/
2562int i40e_napi_poll(struct napi_struct *napi, int budget)
2563{
2564        struct i40e_q_vector *q_vector =
2565                               container_of(napi, struct i40e_q_vector, napi);
2566        struct i40e_vsi *vsi = q_vector->vsi;
2567        struct i40e_ring *ring;
2568        bool clean_complete = true;
2569        bool arm_wb = false;
2570        int budget_per_ring;
2571        int work_done = 0;
2572
2573        if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2574                napi_complete(napi);
2575                return 0;
2576        }
2577
2578        /* Since the actual Tx work is minimal, we can give the Tx a larger
2579         * budget and be more aggressive about cleaning up the Tx descriptors.
2580         */
2581        i40e_for_each_ring(ring, q_vector->tx) {
2582                bool wd = ring->xsk_umem ?
2583                          i40e_clean_xdp_tx_irq(vsi, ring) :
2584                          i40e_clean_tx_irq(vsi, ring, budget);
2585
2586                if (!wd) {
2587                        clean_complete = false;
2588                        continue;
2589                }
2590                arm_wb |= ring->arm_wb;
2591                ring->arm_wb = false;
2592        }
2593
2594        /* Handle case where we are called by netpoll with a budget of 0 */
2595        if (budget <= 0)
2596                goto tx_only;
2597
2598        /* normally we have 1 Rx ring per q_vector */
2599        if (unlikely(q_vector->num_ringpairs > 1))
2600                /* We attempt to distribute budget to each Rx queue fairly, but
2601                 * don't allow the budget to go below 1 because that would exit
2602                 * polling early.
2603                 */
2604                budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2605        else
2606                /* Max of 1 Rx ring in this q_vector so give it the budget */
2607                budget_per_ring = budget;
2608
2609        i40e_for_each_ring(ring, q_vector->rx) {
2610                int cleaned = ring->xsk_umem ?
2611                              i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2612                              i40e_clean_rx_irq(ring, budget_per_ring);
2613
2614                work_done += cleaned;
2615                /* if we clean as many as budgeted, we must not be done */
2616                if (cleaned >= budget_per_ring)
2617                        clean_complete = false;
2618        }
2619
2620        /* If work not completed, return budget and polling will return */
2621        if (!clean_complete) {
2622                int cpu_id = smp_processor_id();
2623
2624                /* It is possible that the interrupt affinity has changed but,
2625                 * if the cpu is pegged at 100%, polling will never exit while
2626                 * traffic continues and the interrupt will be stuck on this
2627                 * cpu.  We check to make sure affinity is correct before we
2628                 * continue to poll, otherwise we must stop polling so the
2629                 * interrupt can move to the correct cpu.
2630                 */
2631                if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2632                        /* Tell napi that we are done polling */
2633                        napi_complete_done(napi, work_done);
2634
2635                        /* Force an interrupt */
2636                        i40e_force_wb(vsi, q_vector);
2637
2638                        /* Return budget-1 so that polling stops */
2639                        return budget - 1;
2640                }
2641tx_only:
2642                if (arm_wb) {
2643                        q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2644                        i40e_enable_wb_on_itr(vsi, q_vector);
2645                }
2646                return budget;
2647        }
2648
2649        if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2650                q_vector->arm_wb_state = false;
2651
2652        /* Exit the polling mode, but don't re-enable interrupts if stack might
2653         * poll us due to busy-polling
2654         */
2655        if (likely(napi_complete_done(napi, work_done)))
2656                i40e_update_enable_itr(vsi, q_vector);
2657
2658        return min(work_done, budget - 1);
2659}
2660
2661/**
2662 * i40e_atr - Add a Flow Director ATR filter
2663 * @tx_ring:  ring to add programming descriptor to
2664 * @skb:      send buffer
2665 * @tx_flags: send tx flags
2666 **/
2667static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2668                     u32 tx_flags)
2669{
2670        struct i40e_filter_program_desc *fdir_desc;
2671        struct i40e_pf *pf = tx_ring->vsi->back;
2672        union {
2673                unsigned char *network;
2674                struct iphdr *ipv4;
2675                struct ipv6hdr *ipv6;
2676        } hdr;
2677        struct tcphdr *th;
2678        unsigned int hlen;
2679        u32 flex_ptype, dtype_cmd;
2680        int l4_proto;
2681        u16 i;
2682
2683        /* make sure ATR is enabled */
2684        if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2685                return;
2686
2687        if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2688                return;
2689
2690        /* if sampling is disabled do nothing */
2691        if (!tx_ring->atr_sample_rate)
2692                return;
2693
2694        /* Currently only IPv4/IPv6 with TCP is supported */
2695        if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2696                return;
2697
2698        /* snag network header to get L4 type and address */
2699        hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2700                      skb_inner_network_header(skb) : skb_network_header(skb);
2701
2702        /* Note: tx_flags gets modified to reflect inner protocols in
2703         * tx_enable_csum function if encap is enabled.
2704         */
2705        if (tx_flags & I40E_TX_FLAGS_IPV4) {
2706                /* access ihl as u8 to avoid unaligned access on ia64 */
2707                hlen = (hdr.network[0] & 0x0F) << 2;
2708                l4_proto = hdr.ipv4->protocol;
2709        } else {
2710                /* find the start of the innermost ipv6 header */
2711                unsigned int inner_hlen = hdr.network - skb->data;
2712                unsigned int h_offset = inner_hlen;
2713
2714                /* this function updates h_offset to the end of the header */
2715                l4_proto =
2716                  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2717                /* hlen will contain our best estimate of the tcp header */
2718                hlen = h_offset - inner_hlen;
2719        }
2720
2721        if (l4_proto != IPPROTO_TCP)
2722                return;
2723
2724        th = (struct tcphdr *)(hdr.network + hlen);
2725
2726        /* Due to lack of space, no more new filters can be programmed */
2727        if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2728                return;
2729        if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2730                /* HW ATR eviction will take care of removing filters on FIN
2731                 * and RST packets.
2732                 */
2733                if (th->fin || th->rst)
2734                        return;
2735        }
2736
2737        tx_ring->atr_count++;
2738
2739        /* sample on all syn/fin/rst packets or once every atr sample rate */
2740        if (!th->fin &&
2741            !th->syn &&
2742            !th->rst &&
2743            (tx_ring->atr_count < tx_ring->atr_sample_rate))
2744                return;
2745
2746        tx_ring->atr_count = 0;
2747
2748        /* grab the next descriptor */
2749        i = tx_ring->next_to_use;
2750        fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2751
2752        i++;
2753        tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2754
2755        flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2756                      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2757        flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2758                      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2759                       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2760                      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2761                       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2762
2763        flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2764
2765        dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2766
2767        dtype_cmd |= (th->fin || th->rst) ?
2768                     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2769                      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2770                     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2771                      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2772
2773        dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2774                     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2775
2776        dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2777                     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2778
2779        dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2780        if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2781                dtype_cmd |=
2782                        ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2783                        I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2784                        I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2785        else
2786                dtype_cmd |=
2787                        ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2788                        I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2789                        I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2790
2791        if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2792                dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2793
2794        fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2795        fdir_desc->rsvd = cpu_to_le32(0);
2796        fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2797        fdir_desc->fd_id = cpu_to_le32(0);
2798}
2799
2800/**
2801 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2802 * @skb:     send buffer
2803 * @tx_ring: ring to send buffer on
2804 * @flags:   the tx flags to be set
2805 *
2806 * Checks the skb and set up correspondingly several generic transmit flags
2807 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2808 *
2809 * Returns error code indicate the frame should be dropped upon error and the
2810 * otherwise  returns 0 to indicate the flags has been set properly.
2811 **/
2812static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2813                                             struct i40e_ring *tx_ring,
2814                                             u32 *flags)
2815{
2816        __be16 protocol = skb->protocol;
2817        u32  tx_flags = 0;
2818
2819        if (protocol == htons(ETH_P_8021Q) &&
2820            !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2821                /* When HW VLAN acceleration is turned off by the user the
2822                 * stack sets the protocol to 8021q so that the driver
2823                 * can take any steps required to support the SW only
2824                 * VLAN handling.  In our case the driver doesn't need
2825                 * to take any further steps so just set the protocol
2826                 * to the encapsulated ethertype.
2827                 */
2828                skb->protocol = vlan_get_protocol(skb);
2829                goto out;
2830        }
2831
2832        /* if we have a HW VLAN tag being added, default to the HW one */
2833        if (skb_vlan_tag_present(skb)) {
2834                tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2835                tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2836        /* else if it is a SW VLAN, check the next protocol and store the tag */
2837        } else if (protocol == htons(ETH_P_8021Q)) {
2838                struct vlan_hdr *vhdr, _vhdr;
2839
2840                vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2841                if (!vhdr)
2842                        return -EINVAL;
2843
2844                protocol = vhdr->h_vlan_encapsulated_proto;
2845                tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2846                tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2847        }
2848
2849        if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2850                goto out;
2851
2852        /* Insert 802.1p priority into VLAN header */
2853        if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2854            (skb->priority != TC_PRIO_CONTROL)) {
2855                tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2856                tx_flags |= (skb->priority & 0x7) <<
2857                                I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2858                if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2859                        struct vlan_ethhdr *vhdr;
2860                        int rc;
2861
2862                        rc = skb_cow_head(skb, 0);
2863                        if (rc < 0)
2864                                return rc;
2865                        vhdr = (struct vlan_ethhdr *)skb->data;
2866                        vhdr->h_vlan_TCI = htons(tx_flags >>
2867                                                 I40E_TX_FLAGS_VLAN_SHIFT);
2868                } else {
2869                        tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2870                }
2871        }
2872
2873out:
2874        *flags = tx_flags;
2875        return 0;
2876}
2877
2878/**
2879 * i40e_tso - set up the tso context descriptor
2880 * @first:    pointer to first Tx buffer for xmit
2881 * @hdr_len:  ptr to the size of the packet header
2882 * @cd_type_cmd_tso_mss: Quad Word 1
2883 *
2884 * Returns 0 if no TSO can happen, 1 if tso is going, or error
2885 **/
2886static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
2887                    u64 *cd_type_cmd_tso_mss)
2888{
2889        struct sk_buff *skb = first->skb;
2890        u64 cd_cmd, cd_tso_len, cd_mss;
2891        union {
2892                struct iphdr *v4;
2893                struct ipv6hdr *v6;
2894                unsigned char *hdr;
2895        } ip;
2896        union {
2897                struct tcphdr *tcp;
2898                struct udphdr *udp;
2899                unsigned char *hdr;
2900        } l4;
2901        u32 paylen, l4_offset;
2902        u16 gso_segs, gso_size;
2903        int err;
2904
2905        if (skb->ip_summed != CHECKSUM_PARTIAL)
2906                return 0;
2907
2908        if (!skb_is_gso(skb))
2909                return 0;
2910
2911        err = skb_cow_head(skb, 0);
2912        if (err < 0)
2913                return err;
2914
2915        ip.hdr = skb_network_header(skb);
2916        l4.hdr = skb_transport_header(skb);
2917
2918        /* initialize outer IP header fields */
2919        if (ip.v4->version == 4) {
2920                ip.v4->tot_len = 0;
2921                ip.v4->check = 0;
2922        } else {
2923                ip.v6->payload_len = 0;
2924        }
2925
2926        if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2927                                         SKB_GSO_GRE_CSUM |
2928                                         SKB_GSO_IPXIP4 |
2929                                         SKB_GSO_IPXIP6 |
2930                                         SKB_GSO_UDP_TUNNEL |
2931                                         SKB_GSO_UDP_TUNNEL_CSUM)) {
2932                if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2933                    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2934                        l4.udp->len = 0;
2935
2936                        /* determine offset of outer transport header */
2937                        l4_offset = l4.hdr - skb->data;
2938
2939                        /* remove payload length from outer checksum */
2940                        paylen = skb->len - l4_offset;
2941                        csum_replace_by_diff(&l4.udp->check,
2942                                             (__force __wsum)htonl(paylen));
2943                }
2944
2945                /* reset pointers to inner headers */
2946                ip.hdr = skb_inner_network_header(skb);
2947                l4.hdr = skb_inner_transport_header(skb);
2948
2949                /* initialize inner IP header fields */
2950                if (ip.v4->version == 4) {
2951                        ip.v4->tot_len = 0;
2952                        ip.v4->check = 0;
2953                } else {
2954                        ip.v6->payload_len = 0;
2955                }
2956        }
2957
2958        /* determine offset of inner transport header */
2959        l4_offset = l4.hdr - skb->data;
2960
2961        /* remove payload length from inner checksum */
2962        paylen = skb->len - l4_offset;
2963
2964        if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
2965                csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
2966                /* compute length of segmentation header */
2967                *hdr_len = sizeof(*l4.udp) + l4_offset;
2968        } else {
2969                csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2970                /* compute length of segmentation header */
2971                *hdr_len = (l4.tcp->doff * 4) + l4_offset;
2972        }
2973
2974        /* pull values out of skb_shinfo */
2975        gso_size = skb_shinfo(skb)->gso_size;
2976        gso_segs = skb_shinfo(skb)->gso_segs;
2977
2978        /* update GSO size and bytecount with header size */
2979        first->gso_segs = gso_segs;
2980        first->bytecount += (first->gso_segs - 1) * *hdr_len;
2981
2982        /* find the field values */
2983        cd_cmd = I40E_TX_CTX_DESC_TSO;
2984        cd_tso_len = skb->len - *hdr_len;
2985        cd_mss = gso_size;
2986        *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2987                                (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2988                                (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2989        return 1;
2990}
2991
2992/**
2993 * i40e_tsyn - set up the tsyn context descriptor
2994 * @tx_ring:  ptr to the ring to send
2995 * @skb:      ptr to the skb we're sending
2996 * @tx_flags: the collected send information
2997 * @cd_type_cmd_tso_mss: Quad Word 1
2998 *
2999 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3000 **/
3001static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3002                     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3003{
3004        struct i40e_pf *pf;
3005
3006        if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3007                return 0;
3008
3009        /* Tx timestamps cannot be sampled when doing TSO */
3010        if (tx_flags & I40E_TX_FLAGS_TSO)
3011                return 0;
3012
3013        /* only timestamp the outbound packet if the user has requested it and
3014         * we are not already transmitting a packet to be timestamped
3015         */
3016        pf = i40e_netdev_to_pf(tx_ring->netdev);
3017        if (!(pf->flags & I40E_FLAG_PTP))
3018                return 0;
3019
3020        if (pf->ptp_tx &&
3021            !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3022                skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3023                pf->ptp_tx_start = jiffies;
3024                pf->ptp_tx_skb = skb_get(skb);
3025        } else {
3026                pf->tx_hwtstamp_skipped++;
3027                return 0;
3028        }
3029
3030        *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3031                                I40E_TXD_CTX_QW1_CMD_SHIFT;
3032
3033        return 1;
3034}
3035
3036/**
3037 * i40e_tx_enable_csum - Enable Tx checksum offloads
3038 * @skb: send buffer
3039 * @tx_flags: pointer to Tx flags currently set
3040 * @td_cmd: Tx descriptor command bits to set
3041 * @td_offset: Tx descriptor header offsets to set
3042 * @tx_ring: Tx descriptor ring
3043 * @cd_tunneling: ptr to context desc bits
3044 **/
3045static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3046                               u32 *td_cmd, u32 *td_offset,
3047                               struct i40e_ring *tx_ring,
3048                               u32 *cd_tunneling)
3049{
3050        union {
3051                struct iphdr *v4;
3052                struct ipv6hdr *v6;
3053                unsigned char *hdr;
3054        } ip;
3055        union {
3056                struct tcphdr *tcp;
3057                struct udphdr *udp;
3058                unsigned char *hdr;
3059        } l4;
3060        unsigned char *exthdr;
3061        u32 offset, cmd = 0;
3062        __be16 frag_off;
3063        u8 l4_proto = 0;
3064
3065        if (skb->ip_summed != CHECKSUM_PARTIAL)
3066                return 0;
3067
3068        ip.hdr = skb_network_header(skb);
3069        l4.hdr = skb_transport_header(skb);
3070
3071        /* compute outer L2 header size */
3072        offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3073
3074        if (skb->encapsulation) {
3075                u32 tunnel = 0;
3076                /* define outer network header type */
3077                if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3078                        tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3079                                  I40E_TX_CTX_EXT_IP_IPV4 :
3080                                  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3081
3082                        l4_proto = ip.v4->protocol;
3083                } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3084                        tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3085
3086                        exthdr = ip.hdr + sizeof(*ip.v6);
3087                        l4_proto = ip.v6->nexthdr;
3088                        if (l4.hdr != exthdr)
3089                                ipv6_skip_exthdr(skb, exthdr - skb->data,
3090                                                 &l4_proto, &frag_off);
3091                }
3092
3093                /* define outer transport */
3094                switch (l4_proto) {
3095                case IPPROTO_UDP:
3096                        tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3097                        *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3098                        break;
3099                case IPPROTO_GRE:
3100                        tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3101                        *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3102                        break;
3103                case IPPROTO_IPIP:
3104                case IPPROTO_IPV6:
3105                        *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3106                        l4.hdr = skb_inner_network_header(skb);
3107                        break;
3108                default:
3109                        if (*tx_flags & I40E_TX_FLAGS_TSO)
3110                                return -1;
3111
3112                        skb_checksum_help(skb);
3113                        return 0;
3114                }
3115
3116                /* compute outer L3 header size */
3117                tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3118                          I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3119
3120                /* switch IP header pointer from outer to inner header */
3121                ip.hdr = skb_inner_network_header(skb);
3122
3123                /* compute tunnel header size */
3124                tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3125                          I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3126
3127                /* indicate if we need to offload outer UDP header */
3128                if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3129                    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3130                    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3131                        tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3132
3133                /* record tunnel offload values */
3134                *cd_tunneling |= tunnel;
3135
3136                /* switch L4 header pointer from outer to inner */
3137                l4.hdr = skb_inner_transport_header(skb);
3138                l4_proto = 0;
3139
3140                /* reset type as we transition from outer to inner headers */
3141                *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3142                if (ip.v4->version == 4)
3143                        *tx_flags |= I40E_TX_FLAGS_IPV4;
3144                if (ip.v6->version == 6)
3145                        *tx_flags |= I40E_TX_FLAGS_IPV6;
3146        }
3147
3148        /* Enable IP checksum offloads */
3149        if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3150                l4_proto = ip.v4->protocol;
3151                /* the stack computes the IP header already, the only time we
3152                 * need the hardware to recompute it is in the case of TSO.
3153                 */
3154                cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3155                       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3156                       I40E_TX_DESC_CMD_IIPT_IPV4;
3157        } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3158                cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3159
3160                exthdr = ip.hdr + sizeof(*ip.v6);
3161                l4_proto = ip.v6->nexthdr;
3162                if (l4.hdr != exthdr)
3163                        ipv6_skip_exthdr(skb, exthdr - skb->data,
3164                                         &l4_proto, &frag_off);
3165        }
3166
3167        /* compute inner L3 header size */
3168        offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3169
3170        /* Enable L4 checksum offloads */
3171        switch (l4_proto) {
3172        case IPPROTO_TCP:
3173                /* enable checksum offloads */
3174                cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3175                offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3176                break;
3177        case IPPROTO_SCTP:
3178                /* enable SCTP checksum offload */
3179                cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3180                offset |= (sizeof(struct sctphdr) >> 2) <<
3181                          I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3182                break;
3183        case IPPROTO_UDP:
3184                /* enable UDP checksum offload */
3185                cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3186                offset |= (sizeof(struct udphdr) >> 2) <<
3187                          I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3188                break;
3189        default:
3190                if (*tx_flags & I40E_TX_FLAGS_TSO)
3191                        return -1;
3192                skb_checksum_help(skb);
3193                return 0;
3194        }
3195
3196        *td_cmd |= cmd;
3197        *td_offset |= offset;
3198
3199        return 1;
3200}
3201
3202/**
3203 * i40e_create_tx_ctx Build the Tx context descriptor
3204 * @tx_ring:  ring to create the descriptor on
3205 * @cd_type_cmd_tso_mss: Quad Word 1
3206 * @cd_tunneling: Quad Word 0 - bits 0-31
3207 * @cd_l2tag2: Quad Word 0 - bits 32-63
3208 **/
3209static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3210                               const u64 cd_type_cmd_tso_mss,
3211                               const u32 cd_tunneling, const u32 cd_l2tag2)
3212{
3213        struct i40e_tx_context_desc *context_desc;
3214        int i = tx_ring->next_to_use;
3215
3216        if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3217            !cd_tunneling && !cd_l2tag2)
3218                return;
3219
3220        /* grab the next descriptor */
3221        context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3222
3223        i++;
3224        tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3225
3226        /* cpu_to_le32 and assign to struct fields */
3227        context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3228        context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3229        context_desc->rsvd = cpu_to_le16(0);
3230        context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3231}
3232
3233/**
3234 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3235 * @tx_ring: the ring to be checked
3236 * @size:    the size buffer we want to assure is available
3237 *
3238 * Returns -EBUSY if a stop is needed, else 0
3239 **/
3240int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3241{
3242        netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3243        /* Memory barrier before checking head and tail */
3244        smp_mb();
3245
3246        /* Check again in a case another CPU has just made room available. */
3247        if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3248                return -EBUSY;
3249
3250        /* A reprieve! - use start_queue because it doesn't call schedule */
3251        netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3252        ++tx_ring->tx_stats.restart_queue;
3253        return 0;
3254}
3255
3256/**
3257 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3258 * @skb:      send buffer
3259 *
3260 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3261 * and so we need to figure out the cases where we need to linearize the skb.
3262 *
3263 * For TSO we need to count the TSO header and segment payload separately.
3264 * As such we need to check cases where we have 7 fragments or more as we
3265 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3266 * the segment payload in the first descriptor, and another 7 for the
3267 * fragments.
3268 **/
3269bool __i40e_chk_linearize(struct sk_buff *skb)
3270{
3271        const skb_frag_t *frag, *stale;
3272        int nr_frags, sum;
3273
3274        /* no need to check if number of frags is less than 7 */
3275        nr_frags = skb_shinfo(skb)->nr_frags;
3276        if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3277                return false;
3278
3279        /* We need to walk through the list and validate that each group
3280         * of 6 fragments totals at least gso_size.
3281         */
3282        nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3283        frag = &skb_shinfo(skb)->frags[0];
3284
3285        /* Initialize size to the negative value of gso_size minus 1.  We
3286         * use this as the worst case scenerio in which the frag ahead
3287         * of us only provides one byte which is why we are limited to 6
3288         * descriptors for a single transmit as the header and previous
3289         * fragment are already consuming 2 descriptors.
3290         */
3291        sum = 1 - skb_shinfo(skb)->gso_size;
3292
3293        /* Add size of frags 0 through 4 to create our initial sum */
3294        sum += skb_frag_size(frag++);
3295        sum += skb_frag_size(frag++);
3296        sum += skb_frag_size(frag++);
3297        sum += skb_frag_size(frag++);
3298        sum += skb_frag_size(frag++);
3299
3300        /* Walk through fragments adding latest fragment, testing it, and
3301         * then removing stale fragments from the sum.
3302         */
3303        for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3304                int stale_size = skb_frag_size(stale);
3305
3306                sum += skb_frag_size(frag++);
3307
3308                /* The stale fragment may present us with a smaller
3309                 * descriptor than the actual fragment size. To account
3310                 * for that we need to remove all the data on the front and
3311                 * figure out what the remainder would be in the last
3312                 * descriptor associated with the fragment.
3313                 */
3314                if (stale_size > I40E_MAX_DATA_PER_TXD) {
3315                        int align_pad = -(skb_frag_off(stale)) &
3316                                        (I40E_MAX_READ_REQ_SIZE - 1);
3317
3318                        sum -= align_pad;
3319                        stale_size -= align_pad;
3320
3321                        do {
3322                                sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3323                                stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3324                        } while (stale_size > I40E_MAX_DATA_PER_TXD);
3325                }
3326
3327                /* if sum is negative we failed to make sufficient progress */
3328                if (sum < 0)
3329                        return true;
3330
3331                if (!nr_frags--)
3332                        break;
3333
3334                sum -= stale_size;
3335        }
3336
3337        return false;
3338}
3339
3340/**
3341 * i40e_tx_map - Build the Tx descriptor
3342 * @tx_ring:  ring to send buffer on
3343 * @skb:      send buffer
3344 * @first:    first buffer info buffer to use
3345 * @tx_flags: collected send information
3346 * @hdr_len:  size of the packet header
3347 * @td_cmd:   the command field in the descriptor
3348 * @td_offset: offset for checksum or crc
3349 *
3350 * Returns 0 on success, -1 on failure to DMA
3351 **/
3352static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3353                              struct i40e_tx_buffer *first, u32 tx_flags,
3354                              const u8 hdr_len, u32 td_cmd, u32 td_offset)
3355{
3356        unsigned int data_len = skb->data_len;
3357        unsigned int size = skb_headlen(skb);
3358        skb_frag_t *frag;
3359        struct i40e_tx_buffer *tx_bi;
3360        struct i40e_tx_desc *tx_desc;
3361        u16 i = tx_ring->next_to_use;
3362        u32 td_tag = 0;
3363        dma_addr_t dma;
3364        u16 desc_count = 1;
3365
3366        if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3367                td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3368                td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3369                         I40E_TX_FLAGS_VLAN_SHIFT;
3370        }
3371
3372        first->tx_flags = tx_flags;
3373
3374        dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3375
3376        tx_desc = I40E_TX_DESC(tx_ring, i);
3377        tx_bi = first;
3378
3379        for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3380                unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3381
3382                if (dma_mapping_error(tx_ring->dev, dma))
3383                        goto dma_error;
3384
3385                /* record length, and DMA address */
3386                dma_unmap_len_set(tx_bi, len, size);
3387                dma_unmap_addr_set(tx_bi, dma, dma);
3388
3389                /* align size to end of page */
3390                max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3391                tx_desc->buffer_addr = cpu_to_le64(dma);
3392
3393                while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3394                        tx_desc->cmd_type_offset_bsz =
3395                                build_ctob(td_cmd, td_offset,
3396                                           max_data, td_tag);
3397
3398                        tx_desc++;
3399                        i++;
3400                        desc_count++;
3401
3402                        if (i == tx_ring->count) {
3403                                tx_desc = I40E_TX_DESC(tx_ring, 0);
3404                                i = 0;
3405                        }
3406
3407                        dma += max_data;
3408                        size -= max_data;
3409
3410                        max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3411                        tx_desc->buffer_addr = cpu_to_le64(dma);
3412                }
3413
3414                if (likely(!data_len))
3415                        break;
3416
3417                tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3418                                                          size, td_tag);
3419
3420                tx_desc++;
3421                i++;
3422                desc_count++;
3423
3424                if (i == tx_ring->count) {
3425                        tx_desc = I40E_TX_DESC(tx_ring, 0);
3426                        i = 0;
3427                }
3428
3429                size = skb_frag_size(frag);
3430                data_len -= size;
3431
3432                dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3433                                       DMA_TO_DEVICE);
3434
3435                tx_bi = &tx_ring->tx_bi[i];
3436        }
3437
3438        netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3439
3440        i++;
3441        if (i == tx_ring->count)
3442                i = 0;
3443
3444        tx_ring->next_to_use = i;
3445
3446        i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3447
3448        /* write last descriptor with EOP bit */
3449        td_cmd |= I40E_TX_DESC_CMD_EOP;
3450
3451        /* We OR these values together to check both against 4 (WB_STRIDE)
3452         * below. This is safe since we don't re-use desc_count afterwards.
3453         */
3454        desc_count |= ++tx_ring->packet_stride;
3455
3456        if (desc_count >= WB_STRIDE) {
3457                /* write last descriptor with RS bit set */
3458                td_cmd |= I40E_TX_DESC_CMD_RS;
3459                tx_ring->packet_stride = 0;
3460        }
3461
3462        tx_desc->cmd_type_offset_bsz =
3463                        build_ctob(td_cmd, td_offset, size, td_tag);
3464
3465        skb_tx_timestamp(skb);
3466
3467        /* Force memory writes to complete before letting h/w know there
3468         * are new descriptors to fetch.
3469         *
3470         * We also use this memory barrier to make certain all of the
3471         * status bits have been updated before next_to_watch is written.
3472         */
3473        wmb();
3474
3475        /* set next_to_watch value indicating a packet is present */
3476        first->next_to_watch = tx_desc;
3477
3478        /* notify HW of packet */
3479        if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3480                writel(i, tx_ring->tail);
3481        }
3482
3483        return 0;
3484
3485dma_error:
3486        dev_info(tx_ring->dev, "TX DMA map failed\n");
3487
3488        /* clear dma mappings for failed tx_bi map */
3489        for (;;) {
3490                tx_bi = &tx_ring->tx_bi[i];
3491                i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3492                if (tx_bi == first)
3493                        break;
3494                if (i == 0)
3495                        i = tx_ring->count;
3496                i--;
3497        }
3498
3499        tx_ring->next_to_use = i;
3500
3501        return -1;
3502}
3503
3504/**
3505 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3506 * @xdp: data to transmit
3507 * @xdp_ring: XDP Tx ring
3508 **/
3509static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3510                              struct i40e_ring *xdp_ring)
3511{
3512        u16 i = xdp_ring->next_to_use;
3513        struct i40e_tx_buffer *tx_bi;
3514        struct i40e_tx_desc *tx_desc;
3515        void *data = xdpf->data;
3516        u32 size = xdpf->len;
3517        dma_addr_t dma;
3518
3519        if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
3520                xdp_ring->tx_stats.tx_busy++;
3521                return I40E_XDP_CONSUMED;
3522        }
3523        dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3524        if (dma_mapping_error(xdp_ring->dev, dma))
3525                return I40E_XDP_CONSUMED;
3526
3527        tx_bi = &xdp_ring->tx_bi[i];
3528        tx_bi->bytecount = size;
3529        tx_bi->gso_segs = 1;
3530        tx_bi->xdpf = xdpf;
3531
3532        /* record length, and DMA address */
3533        dma_unmap_len_set(tx_bi, len, size);
3534        dma_unmap_addr_set(tx_bi, dma, dma);
3535
3536        tx_desc = I40E_TX_DESC(xdp_ring, i);
3537        tx_desc->buffer_addr = cpu_to_le64(dma);
3538        tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC
3539                                                  | I40E_TXD_CMD,
3540                                                  0, size, 0);
3541
3542        /* Make certain all of the status bits have been updated
3543         * before next_to_watch is written.
3544         */
3545        smp_wmb();
3546
3547        xdp_ring->xdp_tx_active++;
3548        i++;
3549        if (i == xdp_ring->count)
3550                i = 0;
3551
3552        tx_bi->next_to_watch = tx_desc;
3553        xdp_ring->next_to_use = i;
3554
3555        return I40E_XDP_TX;
3556}
3557
3558/**
3559 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3560 * @skb:     send buffer
3561 * @tx_ring: ring to send buffer on
3562 *
3563 * Returns NETDEV_TX_OK if sent, else an error code
3564 **/
3565static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3566                                        struct i40e_ring *tx_ring)
3567{
3568        u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3569        u32 cd_tunneling = 0, cd_l2tag2 = 0;
3570        struct i40e_tx_buffer *first;
3571        u32 td_offset = 0;
3572        u32 tx_flags = 0;
3573        __be16 protocol;
3574        u32 td_cmd = 0;
3575        u8 hdr_len = 0;
3576        int tso, count;
3577        int tsyn;
3578
3579        /* prefetch the data, we'll need it later */
3580        prefetch(skb->data);
3581
3582        i40e_trace(xmit_frame_ring, skb, tx_ring);
3583
3584        count = i40e_xmit_descriptor_count(skb);
3585        if (i40e_chk_linearize(skb, count)) {
3586                if (__skb_linearize(skb)) {
3587                        dev_kfree_skb_any(skb);
3588                        return NETDEV_TX_OK;
3589                }
3590                count = i40e_txd_use_count(skb->len);
3591                tx_ring->tx_stats.tx_linearize++;
3592        }
3593
3594        /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3595         *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3596         *       + 4 desc gap to avoid the cache line where head is,
3597         *       + 1 desc for context descriptor,
3598         * otherwise try next time
3599         */
3600        if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3601                tx_ring->tx_stats.tx_busy++;
3602                return NETDEV_TX_BUSY;
3603        }
3604
3605        /* record the location of the first descriptor for this packet */
3606        first = &tx_ring->tx_bi[tx_ring->next_to_use];
3607        first->skb = skb;
3608        first->bytecount = skb->len;
3609        first->gso_segs = 1;
3610
3611        /* prepare the xmit flags */
3612        if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3613                goto out_drop;
3614
3615        /* obtain protocol of skb */
3616        protocol = vlan_get_protocol(skb);
3617
3618        /* setup IPv4/IPv6 offloads */
3619        if (protocol == htons(ETH_P_IP))
3620                tx_flags |= I40E_TX_FLAGS_IPV4;
3621        else if (protocol == htons(ETH_P_IPV6))
3622                tx_flags |= I40E_TX_FLAGS_IPV6;
3623
3624        tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3625
3626        if (tso < 0)
3627                goto out_drop;
3628        else if (tso)
3629                tx_flags |= I40E_TX_FLAGS_TSO;
3630
3631        /* Always offload the checksum, since it's in the data descriptor */
3632        tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3633                                  tx_ring, &cd_tunneling);
3634        if (tso < 0)
3635                goto out_drop;
3636
3637        tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3638
3639        if (tsyn)
3640                tx_flags |= I40E_TX_FLAGS_TSYN;
3641
3642        /* always enable CRC insertion offload */
3643        td_cmd |= I40E_TX_DESC_CMD_ICRC;
3644
3645        i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3646                           cd_tunneling, cd_l2tag2);
3647
3648        /* Add Flow Director ATR if it's enabled.
3649         *
3650         * NOTE: this must always be directly before the data descriptor.
3651         */
3652        i40e_atr(tx_ring, skb, tx_flags);
3653
3654        if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3655                        td_cmd, td_offset))
3656                goto cleanup_tx_tstamp;
3657
3658        return NETDEV_TX_OK;
3659
3660out_drop:
3661        i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3662        dev_kfree_skb_any(first->skb);
3663        first->skb = NULL;
3664cleanup_tx_tstamp:
3665        if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3666                struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3667
3668                dev_kfree_skb_any(pf->ptp_tx_skb);
3669                pf->ptp_tx_skb = NULL;
3670                clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3671        }
3672
3673        return NETDEV_TX_OK;
3674}
3675
3676/**
3677 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3678 * @skb:    send buffer
3679 * @netdev: network interface device structure
3680 *
3681 * Returns NETDEV_TX_OK if sent, else an error code
3682 **/
3683netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3684{
3685        struct i40e_netdev_priv *np = netdev_priv(netdev);
3686        struct i40e_vsi *vsi = np->vsi;
3687        struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3688
3689        /* hardware can't handle really short frames, hardware padding works
3690         * beyond this point
3691         */
3692        if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3693                return NETDEV_TX_OK;
3694
3695        return i40e_xmit_frame_ring(skb, tx_ring);
3696}
3697
3698/**
3699 * i40e_xdp_xmit - Implements ndo_xdp_xmit
3700 * @dev: netdev
3701 * @xdp: XDP buffer
3702 *
3703 * Returns number of frames successfully sent. Frames that fail are
3704 * free'ed via XDP return API.
3705 *
3706 * For error cases, a negative errno code is returned and no-frames
3707 * are transmitted (caller must handle freeing frames).
3708 **/
3709int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
3710                  u32 flags)
3711{
3712        struct i40e_netdev_priv *np = netdev_priv(dev);
3713        unsigned int queue_index = smp_processor_id();
3714        struct i40e_vsi *vsi = np->vsi;
3715        struct i40e_pf *pf = vsi->back;
3716        struct i40e_ring *xdp_ring;
3717        int drops = 0;
3718        int i;
3719
3720        if (test_bit(__I40E_VSI_DOWN, vsi->state))
3721                return -ENETDOWN;
3722
3723        if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
3724            test_bit(__I40E_CONFIG_BUSY, pf->state))
3725                return -ENXIO;
3726
3727        if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3728                return -EINVAL;
3729
3730        xdp_ring = vsi->xdp_rings[queue_index];
3731
3732        for (i = 0; i < n; i++) {
3733                struct xdp_frame *xdpf = frames[i];
3734                int err;
3735
3736                err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
3737                if (err != I40E_XDP_TX) {
3738                        xdp_return_frame_rx_napi(xdpf);
3739                        drops++;
3740                }
3741        }
3742
3743        if (unlikely(flags & XDP_XMIT_FLUSH))
3744                i40e_xdp_ring_update_tail(xdp_ring);
3745
3746        return n - drops;
3747}
3748