linux/drivers/net/ethernet/intel/ice/ice_sched.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4#include "ice_sched.h"
   5
   6/**
   7 * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB
   8 * @pi: port information structure
   9 * @info: Scheduler element information from firmware
  10 *
  11 * This function inserts the root node of the scheduling tree topology
  12 * to the SW DB.
  13 */
  14static enum ice_status
  15ice_sched_add_root_node(struct ice_port_info *pi,
  16                        struct ice_aqc_txsched_elem_data *info)
  17{
  18        struct ice_sched_node *root;
  19        struct ice_hw *hw;
  20
  21        if (!pi)
  22                return ICE_ERR_PARAM;
  23
  24        hw = pi->hw;
  25
  26        root = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*root), GFP_KERNEL);
  27        if (!root)
  28                return ICE_ERR_NO_MEMORY;
  29
  30        /* coverity[suspicious_sizeof] */
  31        root->children = devm_kcalloc(ice_hw_to_dev(hw), hw->max_children[0],
  32                                      sizeof(*root), GFP_KERNEL);
  33        if (!root->children) {
  34                devm_kfree(ice_hw_to_dev(hw), root);
  35                return ICE_ERR_NO_MEMORY;
  36        }
  37
  38        memcpy(&root->info, info, sizeof(*info));
  39        pi->root = root;
  40        return 0;
  41}
  42
  43/**
  44 * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB
  45 * @start_node: pointer to the starting ice_sched_node struct in a sub-tree
  46 * @teid: node TEID to search
  47 *
  48 * This function searches for a node matching the TEID in the scheduling tree
  49 * from the SW DB. The search is recursive and is restricted by the number of
  50 * layers it has searched through; stopping at the max supported layer.
  51 *
  52 * This function needs to be called when holding the port_info->sched_lock
  53 */
  54struct ice_sched_node *
  55ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid)
  56{
  57        u16 i;
  58
  59        /* The TEID is same as that of the start_node */
  60        if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid)
  61                return start_node;
  62
  63        /* The node has no children or is at the max layer */
  64        if (!start_node->num_children ||
  65            start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM ||
  66            start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF)
  67                return NULL;
  68
  69        /* Check if TEID matches to any of the children nodes */
  70        for (i = 0; i < start_node->num_children; i++)
  71                if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid)
  72                        return start_node->children[i];
  73
  74        /* Search within each child's sub-tree */
  75        for (i = 0; i < start_node->num_children; i++) {
  76                struct ice_sched_node *tmp;
  77
  78                tmp = ice_sched_find_node_by_teid(start_node->children[i],
  79                                                  teid);
  80                if (tmp)
  81                        return tmp;
  82        }
  83
  84        return NULL;
  85}
  86
  87/**
  88 * ice_aqc_send_sched_elem_cmd - send scheduling elements cmd
  89 * @hw: pointer to the HW struct
  90 * @cmd_opc: cmd opcode
  91 * @elems_req: number of elements to request
  92 * @buf: pointer to buffer
  93 * @buf_size: buffer size in bytes
  94 * @elems_resp: returns total number of elements response
  95 * @cd: pointer to command details structure or NULL
  96 *
  97 * This function sends a scheduling elements cmd (cmd_opc)
  98 */
  99static enum ice_status
 100ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc,
 101                            u16 elems_req, void *buf, u16 buf_size,
 102                            u16 *elems_resp, struct ice_sq_cd *cd)
 103{
 104        struct ice_aqc_sched_elem_cmd *cmd;
 105        struct ice_aq_desc desc;
 106        enum ice_status status;
 107
 108        cmd = &desc.params.sched_elem_cmd;
 109        ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc);
 110        cmd->num_elem_req = cpu_to_le16(elems_req);
 111        desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
 112        status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
 113        if (!status && elems_resp)
 114                *elems_resp = le16_to_cpu(cmd->num_elem_resp);
 115
 116        return status;
 117}
 118
 119/**
 120 * ice_aq_query_sched_elems - query scheduler elements
 121 * @hw: pointer to the HW struct
 122 * @elems_req: number of elements to query
 123 * @buf: pointer to buffer
 124 * @buf_size: buffer size in bytes
 125 * @elems_ret: returns total number of elements returned
 126 * @cd: pointer to command details structure or NULL
 127 *
 128 * Query scheduling elements (0x0404)
 129 */
 130enum ice_status
 131ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req,
 132                         struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
 133                         u16 *elems_ret, struct ice_sq_cd *cd)
 134{
 135        return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems,
 136                                           elems_req, (void *)buf, buf_size,
 137                                           elems_ret, cd);
 138}
 139
 140/**
 141 * ice_sched_add_node - Insert the Tx scheduler node in SW DB
 142 * @pi: port information structure
 143 * @layer: Scheduler layer of the node
 144 * @info: Scheduler element information from firmware
 145 *
 146 * This function inserts a scheduler node to the SW DB.
 147 */
 148enum ice_status
 149ice_sched_add_node(struct ice_port_info *pi, u8 layer,
 150                   struct ice_aqc_txsched_elem_data *info)
 151{
 152        struct ice_aqc_txsched_elem_data elem;
 153        struct ice_sched_node *parent;
 154        struct ice_sched_node *node;
 155        enum ice_status status;
 156        struct ice_hw *hw;
 157
 158        if (!pi)
 159                return ICE_ERR_PARAM;
 160
 161        hw = pi->hw;
 162
 163        /* A valid parent node should be there */
 164        parent = ice_sched_find_node_by_teid(pi->root,
 165                                             le32_to_cpu(info->parent_teid));
 166        if (!parent) {
 167                ice_debug(hw, ICE_DBG_SCHED,
 168                          "Parent Node not found for parent_teid=0x%x\n",
 169                          le32_to_cpu(info->parent_teid));
 170                return ICE_ERR_PARAM;
 171        }
 172
 173        /* query the current node information from FW before adding it
 174         * to the SW DB
 175         */
 176        status = ice_sched_query_elem(hw, le32_to_cpu(info->node_teid), &elem);
 177        if (status)
 178                return status;
 179
 180        node = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*node), GFP_KERNEL);
 181        if (!node)
 182                return ICE_ERR_NO_MEMORY;
 183        if (hw->max_children[layer]) {
 184                /* coverity[suspicious_sizeof] */
 185                node->children = devm_kcalloc(ice_hw_to_dev(hw),
 186                                              hw->max_children[layer],
 187                                              sizeof(*node), GFP_KERNEL);
 188                if (!node->children) {
 189                        devm_kfree(ice_hw_to_dev(hw), node);
 190                        return ICE_ERR_NO_MEMORY;
 191                }
 192        }
 193
 194        node->in_use = true;
 195        node->parent = parent;
 196        node->tx_sched_layer = layer;
 197        parent->children[parent->num_children++] = node;
 198        node->info = elem;
 199        return 0;
 200}
 201
 202/**
 203 * ice_aq_delete_sched_elems - delete scheduler elements
 204 * @hw: pointer to the HW struct
 205 * @grps_req: number of groups to delete
 206 * @buf: pointer to buffer
 207 * @buf_size: buffer size in bytes
 208 * @grps_del: returns total number of elements deleted
 209 * @cd: pointer to command details structure or NULL
 210 *
 211 * Delete scheduling elements (0x040F)
 212 */
 213static enum ice_status
 214ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req,
 215                          struct ice_aqc_delete_elem *buf, u16 buf_size,
 216                          u16 *grps_del, struct ice_sq_cd *cd)
 217{
 218        return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems,
 219                                           grps_req, (void *)buf, buf_size,
 220                                           grps_del, cd);
 221}
 222
 223/**
 224 * ice_sched_remove_elems - remove nodes from HW
 225 * @hw: pointer to the HW struct
 226 * @parent: pointer to the parent node
 227 * @num_nodes: number of nodes
 228 * @node_teids: array of node teids to be deleted
 229 *
 230 * This function remove nodes from HW
 231 */
 232static enum ice_status
 233ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent,
 234                       u16 num_nodes, u32 *node_teids)
 235{
 236        struct ice_aqc_delete_elem *buf;
 237        u16 i, num_groups_removed = 0;
 238        enum ice_status status;
 239        u16 buf_size;
 240
 241        buf_size = struct_size(buf, teid, num_nodes);
 242        buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
 243        if (!buf)
 244                return ICE_ERR_NO_MEMORY;
 245
 246        buf->hdr.parent_teid = parent->info.node_teid;
 247        buf->hdr.num_elems = cpu_to_le16(num_nodes);
 248        for (i = 0; i < num_nodes; i++)
 249                buf->teid[i] = cpu_to_le32(node_teids[i]);
 250
 251        status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size,
 252                                           &num_groups_removed, NULL);
 253        if (status || num_groups_removed != 1)
 254                ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n",
 255                          hw->adminq.sq_last_status);
 256
 257        devm_kfree(ice_hw_to_dev(hw), buf);
 258        return status;
 259}
 260
 261/**
 262 * ice_sched_get_first_node - get the first node of the given layer
 263 * @pi: port information structure
 264 * @parent: pointer the base node of the subtree
 265 * @layer: layer number
 266 *
 267 * This function retrieves the first node of the given layer from the subtree
 268 */
 269static struct ice_sched_node *
 270ice_sched_get_first_node(struct ice_port_info *pi,
 271                         struct ice_sched_node *parent, u8 layer)
 272{
 273        return pi->sib_head[parent->tc_num][layer];
 274}
 275
 276/**
 277 * ice_sched_get_tc_node - get pointer to TC node
 278 * @pi: port information structure
 279 * @tc: TC number
 280 *
 281 * This function returns the TC node pointer
 282 */
 283struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc)
 284{
 285        u8 i;
 286
 287        if (!pi || !pi->root)
 288                return NULL;
 289        for (i = 0; i < pi->root->num_children; i++)
 290                if (pi->root->children[i]->tc_num == tc)
 291                        return pi->root->children[i];
 292        return NULL;
 293}
 294
 295/**
 296 * ice_free_sched_node - Free a Tx scheduler node from SW DB
 297 * @pi: port information structure
 298 * @node: pointer to the ice_sched_node struct
 299 *
 300 * This function frees up a node from SW DB as well as from HW
 301 *
 302 * This function needs to be called with the port_info->sched_lock held
 303 */
 304void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node)
 305{
 306        struct ice_sched_node *parent;
 307        struct ice_hw *hw = pi->hw;
 308        u8 i, j;
 309
 310        /* Free the children before freeing up the parent node
 311         * The parent array is updated below and that shifts the nodes
 312         * in the array. So always pick the first child if num children > 0
 313         */
 314        while (node->num_children)
 315                ice_free_sched_node(pi, node->children[0]);
 316
 317        /* Leaf, TC and root nodes can't be deleted by SW */
 318        if (node->tx_sched_layer >= hw->sw_entry_point_layer &&
 319            node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
 320            node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT &&
 321            node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) {
 322                u32 teid = le32_to_cpu(node->info.node_teid);
 323
 324                ice_sched_remove_elems(hw, node->parent, 1, &teid);
 325        }
 326        parent = node->parent;
 327        /* root has no parent */
 328        if (parent) {
 329                struct ice_sched_node *p;
 330
 331                /* update the parent */
 332                for (i = 0; i < parent->num_children; i++)
 333                        if (parent->children[i] == node) {
 334                                for (j = i + 1; j < parent->num_children; j++)
 335                                        parent->children[j - 1] =
 336                                                parent->children[j];
 337                                parent->num_children--;
 338                                break;
 339                        }
 340
 341                p = ice_sched_get_first_node(pi, node, node->tx_sched_layer);
 342                while (p) {
 343                        if (p->sibling == node) {
 344                                p->sibling = node->sibling;
 345                                break;
 346                        }
 347                        p = p->sibling;
 348                }
 349
 350                /* update the sibling head if head is getting removed */
 351                if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node)
 352                        pi->sib_head[node->tc_num][node->tx_sched_layer] =
 353                                node->sibling;
 354        }
 355
 356        /* leaf nodes have no children */
 357        if (node->children)
 358                devm_kfree(ice_hw_to_dev(hw), node->children);
 359        devm_kfree(ice_hw_to_dev(hw), node);
 360}
 361
 362/**
 363 * ice_aq_get_dflt_topo - gets default scheduler topology
 364 * @hw: pointer to the HW struct
 365 * @lport: logical port number
 366 * @buf: pointer to buffer
 367 * @buf_size: buffer size in bytes
 368 * @num_branches: returns total number of queue to port branches
 369 * @cd: pointer to command details structure or NULL
 370 *
 371 * Get default scheduler topology (0x400)
 372 */
 373static enum ice_status
 374ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport,
 375                     struct ice_aqc_get_topo_elem *buf, u16 buf_size,
 376                     u8 *num_branches, struct ice_sq_cd *cd)
 377{
 378        struct ice_aqc_get_topo *cmd;
 379        struct ice_aq_desc desc;
 380        enum ice_status status;
 381
 382        cmd = &desc.params.get_topo;
 383        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo);
 384        cmd->port_num = lport;
 385        status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
 386        if (!status && num_branches)
 387                *num_branches = cmd->num_branches;
 388
 389        return status;
 390}
 391
 392/**
 393 * ice_aq_add_sched_elems - adds scheduling element
 394 * @hw: pointer to the HW struct
 395 * @grps_req: the number of groups that are requested to be added
 396 * @buf: pointer to buffer
 397 * @buf_size: buffer size in bytes
 398 * @grps_added: returns total number of groups added
 399 * @cd: pointer to command details structure or NULL
 400 *
 401 * Add scheduling elements (0x0401)
 402 */
 403static enum ice_status
 404ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req,
 405                       struct ice_aqc_add_elem *buf, u16 buf_size,
 406                       u16 *grps_added, struct ice_sq_cd *cd)
 407{
 408        return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems,
 409                                           grps_req, (void *)buf, buf_size,
 410                                           grps_added, cd);
 411}
 412
 413/**
 414 * ice_aq_cfg_sched_elems - configures scheduler elements
 415 * @hw: pointer to the HW struct
 416 * @elems_req: number of elements to configure
 417 * @buf: pointer to buffer
 418 * @buf_size: buffer size in bytes
 419 * @elems_cfgd: returns total number of elements configured
 420 * @cd: pointer to command details structure or NULL
 421 *
 422 * Configure scheduling elements (0x0403)
 423 */
 424static enum ice_status
 425ice_aq_cfg_sched_elems(struct ice_hw *hw, u16 elems_req,
 426                       struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
 427                       u16 *elems_cfgd, struct ice_sq_cd *cd)
 428{
 429        return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_cfg_sched_elems,
 430                                           elems_req, (void *)buf, buf_size,
 431                                           elems_cfgd, cd);
 432}
 433
 434/**
 435 * ice_aq_suspend_sched_elems - suspend scheduler elements
 436 * @hw: pointer to the HW struct
 437 * @elems_req: number of elements to suspend
 438 * @buf: pointer to buffer
 439 * @buf_size: buffer size in bytes
 440 * @elems_ret: returns total number of elements suspended
 441 * @cd: pointer to command details structure or NULL
 442 *
 443 * Suspend scheduling elements (0x0409)
 444 */
 445static enum ice_status
 446ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
 447                           u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
 448{
 449        return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems,
 450                                           elems_req, (void *)buf, buf_size,
 451                                           elems_ret, cd);
 452}
 453
 454/**
 455 * ice_aq_resume_sched_elems - resume scheduler elements
 456 * @hw: pointer to the HW struct
 457 * @elems_req: number of elements to resume
 458 * @buf: pointer to buffer
 459 * @buf_size: buffer size in bytes
 460 * @elems_ret: returns total number of elements resumed
 461 * @cd: pointer to command details structure or NULL
 462 *
 463 * resume scheduling elements (0x040A)
 464 */
 465static enum ice_status
 466ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
 467                          u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
 468{
 469        return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems,
 470                                           elems_req, (void *)buf, buf_size,
 471                                           elems_ret, cd);
 472}
 473
 474/**
 475 * ice_aq_query_sched_res - query scheduler resource
 476 * @hw: pointer to the HW struct
 477 * @buf_size: buffer size in bytes
 478 * @buf: pointer to buffer
 479 * @cd: pointer to command details structure or NULL
 480 *
 481 * Query scheduler resource allocation (0x0412)
 482 */
 483static enum ice_status
 484ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size,
 485                       struct ice_aqc_query_txsched_res_resp *buf,
 486                       struct ice_sq_cd *cd)
 487{
 488        struct ice_aq_desc desc;
 489
 490        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res);
 491        return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
 492}
 493
 494/**
 495 * ice_sched_suspend_resume_elems - suspend or resume HW nodes
 496 * @hw: pointer to the HW struct
 497 * @num_nodes: number of nodes
 498 * @node_teids: array of node teids to be suspended or resumed
 499 * @suspend: true means suspend / false means resume
 500 *
 501 * This function suspends or resumes HW nodes
 502 */
 503static enum ice_status
 504ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids,
 505                               bool suspend)
 506{
 507        u16 i, buf_size, num_elem_ret = 0;
 508        enum ice_status status;
 509        __le32 *buf;
 510
 511        buf_size = sizeof(*buf) * num_nodes;
 512        buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
 513        if (!buf)
 514                return ICE_ERR_NO_MEMORY;
 515
 516        for (i = 0; i < num_nodes; i++)
 517                buf[i] = cpu_to_le32(node_teids[i]);
 518
 519        if (suspend)
 520                status = ice_aq_suspend_sched_elems(hw, num_nodes, buf,
 521                                                    buf_size, &num_elem_ret,
 522                                                    NULL);
 523        else
 524                status = ice_aq_resume_sched_elems(hw, num_nodes, buf,
 525                                                   buf_size, &num_elem_ret,
 526                                                   NULL);
 527        if (status || num_elem_ret != num_nodes)
 528                ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n");
 529
 530        devm_kfree(ice_hw_to_dev(hw), buf);
 531        return status;
 532}
 533
 534/**
 535 * ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC
 536 * @hw: pointer to the HW struct
 537 * @vsi_handle: VSI handle
 538 * @tc: TC number
 539 * @new_numqs: number of queues
 540 */
 541static enum ice_status
 542ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
 543{
 544        struct ice_vsi_ctx *vsi_ctx;
 545        struct ice_q_ctx *q_ctx;
 546
 547        vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
 548        if (!vsi_ctx)
 549                return ICE_ERR_PARAM;
 550        /* allocate LAN queue contexts */
 551        if (!vsi_ctx->lan_q_ctx[tc]) {
 552                vsi_ctx->lan_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw),
 553                                                      new_numqs,
 554                                                      sizeof(*q_ctx),
 555                                                      GFP_KERNEL);
 556                if (!vsi_ctx->lan_q_ctx[tc])
 557                        return ICE_ERR_NO_MEMORY;
 558                vsi_ctx->num_lan_q_entries[tc] = new_numqs;
 559                return 0;
 560        }
 561        /* num queues are increased, update the queue contexts */
 562        if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) {
 563                u16 prev_num = vsi_ctx->num_lan_q_entries[tc];
 564
 565                q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
 566                                     sizeof(*q_ctx), GFP_KERNEL);
 567                if (!q_ctx)
 568                        return ICE_ERR_NO_MEMORY;
 569                memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc],
 570                       prev_num * sizeof(*q_ctx));
 571                devm_kfree(ice_hw_to_dev(hw), vsi_ctx->lan_q_ctx[tc]);
 572                vsi_ctx->lan_q_ctx[tc] = q_ctx;
 573                vsi_ctx->num_lan_q_entries[tc] = new_numqs;
 574        }
 575        return 0;
 576}
 577
 578/**
 579 * ice_aq_rl_profile - performs a rate limiting task
 580 * @hw: pointer to the HW struct
 581 * @opcode: opcode for add, query, or remove profile(s)
 582 * @num_profiles: the number of profiles
 583 * @buf: pointer to buffer
 584 * @buf_size: buffer size in bytes
 585 * @num_processed: number of processed add or remove profile(s) to return
 586 * @cd: pointer to command details structure
 587 *
 588 * RL profile function to add, query, or remove profile(s)
 589 */
 590static enum ice_status
 591ice_aq_rl_profile(struct ice_hw *hw, enum ice_adminq_opc opcode,
 592                  u16 num_profiles, struct ice_aqc_rl_profile_elem *buf,
 593                  u16 buf_size, u16 *num_processed, struct ice_sq_cd *cd)
 594{
 595        struct ice_aqc_rl_profile *cmd;
 596        struct ice_aq_desc desc;
 597        enum ice_status status;
 598
 599        cmd = &desc.params.rl_profile;
 600
 601        ice_fill_dflt_direct_cmd_desc(&desc, opcode);
 602        desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
 603        cmd->num_profiles = cpu_to_le16(num_profiles);
 604        status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
 605        if (!status && num_processed)
 606                *num_processed = le16_to_cpu(cmd->num_processed);
 607        return status;
 608}
 609
 610/**
 611 * ice_aq_add_rl_profile - adds rate limiting profile(s)
 612 * @hw: pointer to the HW struct
 613 * @num_profiles: the number of profile(s) to be add
 614 * @buf: pointer to buffer
 615 * @buf_size: buffer size in bytes
 616 * @num_profiles_added: total number of profiles added to return
 617 * @cd: pointer to command details structure
 618 *
 619 * Add RL profile (0x0410)
 620 */
 621static enum ice_status
 622ice_aq_add_rl_profile(struct ice_hw *hw, u16 num_profiles,
 623                      struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
 624                      u16 *num_profiles_added, struct ice_sq_cd *cd)
 625{
 626        return ice_aq_rl_profile(hw, ice_aqc_opc_add_rl_profiles, num_profiles,
 627                                 buf, buf_size, num_profiles_added, cd);
 628}
 629
 630/**
 631 * ice_aq_remove_rl_profile - removes RL profile(s)
 632 * @hw: pointer to the HW struct
 633 * @num_profiles: the number of profile(s) to remove
 634 * @buf: pointer to buffer
 635 * @buf_size: buffer size in bytes
 636 * @num_profiles_removed: total number of profiles removed to return
 637 * @cd: pointer to command details structure or NULL
 638 *
 639 * Remove RL profile (0x0415)
 640 */
 641static enum ice_status
 642ice_aq_remove_rl_profile(struct ice_hw *hw, u16 num_profiles,
 643                         struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
 644                         u16 *num_profiles_removed, struct ice_sq_cd *cd)
 645{
 646        return ice_aq_rl_profile(hw, ice_aqc_opc_remove_rl_profiles,
 647                                 num_profiles, buf, buf_size,
 648                                 num_profiles_removed, cd);
 649}
 650
 651/**
 652 * ice_sched_del_rl_profile - remove RL profile
 653 * @hw: pointer to the HW struct
 654 * @rl_info: rate limit profile information
 655 *
 656 * If the profile ID is not referenced anymore, it removes profile ID with
 657 * its associated parameters from HW DB,and locally. The caller needs to
 658 * hold scheduler lock.
 659 */
 660static enum ice_status
 661ice_sched_del_rl_profile(struct ice_hw *hw,
 662                         struct ice_aqc_rl_profile_info *rl_info)
 663{
 664        struct ice_aqc_rl_profile_elem *buf;
 665        u16 num_profiles_removed;
 666        enum ice_status status;
 667        u16 num_profiles = 1;
 668
 669        if (rl_info->prof_id_ref != 0)
 670                return ICE_ERR_IN_USE;
 671
 672        /* Safe to remove profile ID */
 673        buf = &rl_info->profile;
 674        status = ice_aq_remove_rl_profile(hw, num_profiles, buf, sizeof(*buf),
 675                                          &num_profiles_removed, NULL);
 676        if (status || num_profiles_removed != num_profiles)
 677                return ICE_ERR_CFG;
 678
 679        /* Delete stale entry now */
 680        list_del(&rl_info->list_entry);
 681        devm_kfree(ice_hw_to_dev(hw), rl_info);
 682        return status;
 683}
 684
 685/**
 686 * ice_sched_clear_rl_prof - clears RL prof entries
 687 * @pi: port information structure
 688 *
 689 * This function removes all RL profile from HW as well as from SW DB.
 690 */
 691static void ice_sched_clear_rl_prof(struct ice_port_info *pi)
 692{
 693        u16 ln;
 694
 695        for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
 696                struct ice_aqc_rl_profile_info *rl_prof_elem;
 697                struct ice_aqc_rl_profile_info *rl_prof_tmp;
 698
 699                list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp,
 700                                         &pi->rl_prof_list[ln], list_entry) {
 701                        struct ice_hw *hw = pi->hw;
 702                        enum ice_status status;
 703
 704                        rl_prof_elem->prof_id_ref = 0;
 705                        status = ice_sched_del_rl_profile(hw, rl_prof_elem);
 706                        if (status) {
 707                                ice_debug(hw, ICE_DBG_SCHED,
 708                                          "Remove rl profile failed\n");
 709                                /* On error, free mem required */
 710                                list_del(&rl_prof_elem->list_entry);
 711                                devm_kfree(ice_hw_to_dev(hw), rl_prof_elem);
 712                        }
 713                }
 714        }
 715}
 716
 717/**
 718 * ice_sched_clear_agg - clears the aggregator related information
 719 * @hw: pointer to the hardware structure
 720 *
 721 * This function removes aggregator list and free up aggregator related memory
 722 * previously allocated.
 723 */
 724void ice_sched_clear_agg(struct ice_hw *hw)
 725{
 726        struct ice_sched_agg_info *agg_info;
 727        struct ice_sched_agg_info *atmp;
 728
 729        list_for_each_entry_safe(agg_info, atmp, &hw->agg_list, list_entry) {
 730                struct ice_sched_agg_vsi_info *agg_vsi_info;
 731                struct ice_sched_agg_vsi_info *vtmp;
 732
 733                list_for_each_entry_safe(agg_vsi_info, vtmp,
 734                                         &agg_info->agg_vsi_list, list_entry) {
 735                        list_del(&agg_vsi_info->list_entry);
 736                        devm_kfree(ice_hw_to_dev(hw), agg_vsi_info);
 737                }
 738                list_del(&agg_info->list_entry);
 739                devm_kfree(ice_hw_to_dev(hw), agg_info);
 740        }
 741}
 742
 743/**
 744 * ice_sched_clear_tx_topo - clears the scheduler tree nodes
 745 * @pi: port information structure
 746 *
 747 * This function removes all the nodes from HW as well as from SW DB.
 748 */
 749static void ice_sched_clear_tx_topo(struct ice_port_info *pi)
 750{
 751        if (!pi)
 752                return;
 753        /* remove RL profiles related lists */
 754        ice_sched_clear_rl_prof(pi);
 755        if (pi->root) {
 756                ice_free_sched_node(pi, pi->root);
 757                pi->root = NULL;
 758        }
 759}
 760
 761/**
 762 * ice_sched_clear_port - clear the scheduler elements from SW DB for a port
 763 * @pi: port information structure
 764 *
 765 * Cleanup scheduling elements from SW DB
 766 */
 767void ice_sched_clear_port(struct ice_port_info *pi)
 768{
 769        if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
 770                return;
 771
 772        pi->port_state = ICE_SCHED_PORT_STATE_INIT;
 773        mutex_lock(&pi->sched_lock);
 774        ice_sched_clear_tx_topo(pi);
 775        mutex_unlock(&pi->sched_lock);
 776        mutex_destroy(&pi->sched_lock);
 777}
 778
 779/**
 780 * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports
 781 * @hw: pointer to the HW struct
 782 *
 783 * Cleanup scheduling elements from SW DB for all the ports
 784 */
 785void ice_sched_cleanup_all(struct ice_hw *hw)
 786{
 787        if (!hw)
 788                return;
 789
 790        if (hw->layer_info) {
 791                devm_kfree(ice_hw_to_dev(hw), hw->layer_info);
 792                hw->layer_info = NULL;
 793        }
 794
 795        ice_sched_clear_port(hw->port_info);
 796
 797        hw->num_tx_sched_layers = 0;
 798        hw->num_tx_sched_phys_layers = 0;
 799        hw->flattened_layers = 0;
 800        hw->max_cgds = 0;
 801}
 802
 803/**
 804 * ice_sched_add_elems - add nodes to HW and SW DB
 805 * @pi: port information structure
 806 * @tc_node: pointer to the branch node
 807 * @parent: pointer to the parent node
 808 * @layer: layer number to add nodes
 809 * @num_nodes: number of nodes
 810 * @num_nodes_added: pointer to num nodes added
 811 * @first_node_teid: if new nodes are added then return the TEID of first node
 812 *
 813 * This function add nodes to HW as well as to SW DB for a given layer
 814 */
 815static enum ice_status
 816ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node,
 817                    struct ice_sched_node *parent, u8 layer, u16 num_nodes,
 818                    u16 *num_nodes_added, u32 *first_node_teid)
 819{
 820        struct ice_sched_node *prev, *new_node;
 821        struct ice_aqc_add_elem *buf;
 822        u16 i, num_groups_added = 0;
 823        enum ice_status status = 0;
 824        struct ice_hw *hw = pi->hw;
 825        size_t buf_size;
 826        u32 teid;
 827
 828        buf_size = struct_size(buf, generic, num_nodes);
 829        buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
 830        if (!buf)
 831                return ICE_ERR_NO_MEMORY;
 832
 833        buf->hdr.parent_teid = parent->info.node_teid;
 834        buf->hdr.num_elems = cpu_to_le16(num_nodes);
 835        for (i = 0; i < num_nodes; i++) {
 836                buf->generic[i].parent_teid = parent->info.node_teid;
 837                buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC;
 838                buf->generic[i].data.valid_sections =
 839                        ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
 840                        ICE_AQC_ELEM_VALID_EIR;
 841                buf->generic[i].data.generic = 0;
 842                buf->generic[i].data.cir_bw.bw_profile_idx =
 843                        cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
 844                buf->generic[i].data.cir_bw.bw_alloc =
 845                        cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
 846                buf->generic[i].data.eir_bw.bw_profile_idx =
 847                        cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
 848                buf->generic[i].data.eir_bw.bw_alloc =
 849                        cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
 850        }
 851
 852        status = ice_aq_add_sched_elems(hw, 1, buf, buf_size,
 853                                        &num_groups_added, NULL);
 854        if (status || num_groups_added != 1) {
 855                ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n",
 856                          hw->adminq.sq_last_status);
 857                devm_kfree(ice_hw_to_dev(hw), buf);
 858                return ICE_ERR_CFG;
 859        }
 860
 861        *num_nodes_added = num_nodes;
 862        /* add nodes to the SW DB */
 863        for (i = 0; i < num_nodes; i++) {
 864                status = ice_sched_add_node(pi, layer, &buf->generic[i]);
 865                if (status) {
 866                        ice_debug(hw, ICE_DBG_SCHED,
 867                                  "add nodes in SW DB failed status =%d\n",
 868                                  status);
 869                        break;
 870                }
 871
 872                teid = le32_to_cpu(buf->generic[i].node_teid);
 873                new_node = ice_sched_find_node_by_teid(parent, teid);
 874                if (!new_node) {
 875                        ice_debug(hw, ICE_DBG_SCHED,
 876                                  "Node is missing for teid =%d\n", teid);
 877                        break;
 878                }
 879
 880                new_node->sibling = NULL;
 881                new_node->tc_num = tc_node->tc_num;
 882
 883                /* add it to previous node sibling pointer */
 884                /* Note: siblings are not linked across branches */
 885                prev = ice_sched_get_first_node(pi, tc_node, layer);
 886                if (prev && prev != new_node) {
 887                        while (prev->sibling)
 888                                prev = prev->sibling;
 889                        prev->sibling = new_node;
 890                }
 891
 892                /* initialize the sibling head */
 893                if (!pi->sib_head[tc_node->tc_num][layer])
 894                        pi->sib_head[tc_node->tc_num][layer] = new_node;
 895
 896                if (i == 0)
 897                        *first_node_teid = teid;
 898        }
 899
 900        devm_kfree(ice_hw_to_dev(hw), buf);
 901        return status;
 902}
 903
 904/**
 905 * ice_sched_add_nodes_to_layer - Add nodes to a given layer
 906 * @pi: port information structure
 907 * @tc_node: pointer to TC node
 908 * @parent: pointer to parent node
 909 * @layer: layer number to add nodes
 910 * @num_nodes: number of nodes to be added
 911 * @first_node_teid: pointer to the first node TEID
 912 * @num_nodes_added: pointer to number of nodes added
 913 *
 914 * This function add nodes to a given layer.
 915 */
 916static enum ice_status
 917ice_sched_add_nodes_to_layer(struct ice_port_info *pi,
 918                             struct ice_sched_node *tc_node,
 919                             struct ice_sched_node *parent, u8 layer,
 920                             u16 num_nodes, u32 *first_node_teid,
 921                             u16 *num_nodes_added)
 922{
 923        u32 *first_teid_ptr = first_node_teid;
 924        u16 new_num_nodes, max_child_nodes;
 925        enum ice_status status = 0;
 926        struct ice_hw *hw = pi->hw;
 927        u16 num_added = 0;
 928        u32 temp;
 929
 930        *num_nodes_added = 0;
 931
 932        if (!num_nodes)
 933                return status;
 934
 935        if (!parent || layer < hw->sw_entry_point_layer)
 936                return ICE_ERR_PARAM;
 937
 938        /* max children per node per layer */
 939        max_child_nodes = hw->max_children[parent->tx_sched_layer];
 940
 941        /* current number of children + required nodes exceed max children ? */
 942        if ((parent->num_children + num_nodes) > max_child_nodes) {
 943                /* Fail if the parent is a TC node */
 944                if (parent == tc_node)
 945                        return ICE_ERR_CFG;
 946
 947                /* utilize all the spaces if the parent is not full */
 948                if (parent->num_children < max_child_nodes) {
 949                        new_num_nodes = max_child_nodes - parent->num_children;
 950                        /* this recursion is intentional, and wouldn't
 951                         * go more than 2 calls
 952                         */
 953                        status = ice_sched_add_nodes_to_layer(pi, tc_node,
 954                                                              parent, layer,
 955                                                              new_num_nodes,
 956                                                              first_node_teid,
 957                                                              &num_added);
 958                        if (status)
 959                                return status;
 960
 961                        *num_nodes_added += num_added;
 962                }
 963                /* Don't modify the first node TEID memory if the first node was
 964                 * added already in the above call. Instead send some temp
 965                 * memory for all other recursive calls.
 966                 */
 967                if (num_added)
 968                        first_teid_ptr = &temp;
 969
 970                new_num_nodes = num_nodes - num_added;
 971
 972                /* This parent is full, try the next sibling */
 973                parent = parent->sibling;
 974
 975                /* this recursion is intentional, for 1024 queues
 976                 * per VSI, it goes max of 16 iterations.
 977                 * 1024 / 8 = 128 layer 8 nodes
 978                 * 128 /8 = 16 (add 8 nodes per iteration)
 979                 */
 980                status = ice_sched_add_nodes_to_layer(pi, tc_node, parent,
 981                                                      layer, new_num_nodes,
 982                                                      first_teid_ptr,
 983                                                      &num_added);
 984                *num_nodes_added += num_added;
 985                return status;
 986        }
 987
 988        status = ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes,
 989                                     num_nodes_added, first_node_teid);
 990        return status;
 991}
 992
 993/**
 994 * ice_sched_get_qgrp_layer - get the current queue group layer number
 995 * @hw: pointer to the HW struct
 996 *
 997 * This function returns the current queue group layer number
 998 */
 999static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw)
1000{
1001        /* It's always total layers - 1, the array is 0 relative so -2 */
1002        return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET;
1003}
1004
1005/**
1006 * ice_sched_get_vsi_layer - get the current VSI layer number
1007 * @hw: pointer to the HW struct
1008 *
1009 * This function returns the current VSI layer number
1010 */
1011static u8 ice_sched_get_vsi_layer(struct ice_hw *hw)
1012{
1013        /* Num Layers       VSI layer
1014         *     9               6
1015         *     7               4
1016         *     5 or less       sw_entry_point_layer
1017         */
1018        /* calculate the VSI layer based on number of layers. */
1019        if (hw->num_tx_sched_layers > ICE_VSI_LAYER_OFFSET + 1) {
1020                u8 layer = hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET;
1021
1022                if (layer > hw->sw_entry_point_layer)
1023                        return layer;
1024        }
1025        return hw->sw_entry_point_layer;
1026}
1027
1028/**
1029 * ice_rm_dflt_leaf_node - remove the default leaf node in the tree
1030 * @pi: port information structure
1031 *
1032 * This function removes the leaf node that was created by the FW
1033 * during initialization
1034 */
1035static void ice_rm_dflt_leaf_node(struct ice_port_info *pi)
1036{
1037        struct ice_sched_node *node;
1038
1039        node = pi->root;
1040        while (node) {
1041                if (!node->num_children)
1042                        break;
1043                node = node->children[0];
1044        }
1045        if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) {
1046                u32 teid = le32_to_cpu(node->info.node_teid);
1047                enum ice_status status;
1048
1049                /* remove the default leaf node */
1050                status = ice_sched_remove_elems(pi->hw, node->parent, 1, &teid);
1051                if (!status)
1052                        ice_free_sched_node(pi, node);
1053        }
1054}
1055
1056/**
1057 * ice_sched_rm_dflt_nodes - free the default nodes in the tree
1058 * @pi: port information structure
1059 *
1060 * This function frees all the nodes except root and TC that were created by
1061 * the FW during initialization
1062 */
1063static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi)
1064{
1065        struct ice_sched_node *node;
1066
1067        ice_rm_dflt_leaf_node(pi);
1068
1069        /* remove the default nodes except TC and root nodes */
1070        node = pi->root;
1071        while (node) {
1072                if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer &&
1073                    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
1074                    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) {
1075                        ice_free_sched_node(pi, node);
1076                        break;
1077                }
1078
1079                if (!node->num_children)
1080                        break;
1081                node = node->children[0];
1082        }
1083}
1084
1085/**
1086 * ice_sched_init_port - Initialize scheduler by querying information from FW
1087 * @pi: port info structure for the tree to cleanup
1088 *
1089 * This function is the initial call to find the total number of Tx scheduler
1090 * resources, default topology created by firmware and storing the information
1091 * in SW DB.
1092 */
1093enum ice_status ice_sched_init_port(struct ice_port_info *pi)
1094{
1095        struct ice_aqc_get_topo_elem *buf;
1096        enum ice_status status;
1097        struct ice_hw *hw;
1098        u8 num_branches;
1099        u16 num_elems;
1100        u8 i, j;
1101
1102        if (!pi)
1103                return ICE_ERR_PARAM;
1104        hw = pi->hw;
1105
1106        /* Query the Default Topology from FW */
1107        buf = devm_kzalloc(ice_hw_to_dev(hw), ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
1108        if (!buf)
1109                return ICE_ERR_NO_MEMORY;
1110
1111        /* Query default scheduling tree topology */
1112        status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN,
1113                                      &num_branches, NULL);
1114        if (status)
1115                goto err_init_port;
1116
1117        /* num_branches should be between 1-8 */
1118        if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) {
1119                ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n",
1120                          num_branches);
1121                status = ICE_ERR_PARAM;
1122                goto err_init_port;
1123        }
1124
1125        /* get the number of elements on the default/first branch */
1126        num_elems = le16_to_cpu(buf[0].hdr.num_elems);
1127
1128        /* num_elems should always be between 1-9 */
1129        if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) {
1130                ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n",
1131                          num_elems);
1132                status = ICE_ERR_PARAM;
1133                goto err_init_port;
1134        }
1135
1136        /* If the last node is a leaf node then the index of the queue group
1137         * layer is two less than the number of elements.
1138         */
1139        if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type ==
1140            ICE_AQC_ELEM_TYPE_LEAF)
1141                pi->last_node_teid =
1142                        le32_to_cpu(buf[0].generic[num_elems - 2].node_teid);
1143        else
1144                pi->last_node_teid =
1145                        le32_to_cpu(buf[0].generic[num_elems - 1].node_teid);
1146
1147        /* Insert the Tx Sched root node */
1148        status = ice_sched_add_root_node(pi, &buf[0].generic[0]);
1149        if (status)
1150                goto err_init_port;
1151
1152        /* Parse the default tree and cache the information */
1153        for (i = 0; i < num_branches; i++) {
1154                num_elems = le16_to_cpu(buf[i].hdr.num_elems);
1155
1156                /* Skip root element as already inserted */
1157                for (j = 1; j < num_elems; j++) {
1158                        /* update the sw entry point */
1159                        if (buf[0].generic[j].data.elem_type ==
1160                            ICE_AQC_ELEM_TYPE_ENTRY_POINT)
1161                                hw->sw_entry_point_layer = j;
1162
1163                        status = ice_sched_add_node(pi, j, &buf[i].generic[j]);
1164                        if (status)
1165                                goto err_init_port;
1166                }
1167        }
1168
1169        /* Remove the default nodes. */
1170        if (pi->root)
1171                ice_sched_rm_dflt_nodes(pi);
1172
1173        /* initialize the port for handling the scheduler tree */
1174        pi->port_state = ICE_SCHED_PORT_STATE_READY;
1175        mutex_init(&pi->sched_lock);
1176        for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++)
1177                INIT_LIST_HEAD(&pi->rl_prof_list[i]);
1178
1179err_init_port:
1180        if (status && pi->root) {
1181                ice_free_sched_node(pi, pi->root);
1182                pi->root = NULL;
1183        }
1184
1185        devm_kfree(ice_hw_to_dev(hw), buf);
1186        return status;
1187}
1188
1189/**
1190 * ice_sched_query_res_alloc - query the FW for num of logical sched layers
1191 * @hw: pointer to the HW struct
1192 *
1193 * query FW for allocated scheduler resources and store in HW struct
1194 */
1195enum ice_status ice_sched_query_res_alloc(struct ice_hw *hw)
1196{
1197        struct ice_aqc_query_txsched_res_resp *buf;
1198        enum ice_status status = 0;
1199        __le16 max_sibl;
1200        u16 i;
1201
1202        if (hw->layer_info)
1203                return status;
1204
1205        buf = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*buf), GFP_KERNEL);
1206        if (!buf)
1207                return ICE_ERR_NO_MEMORY;
1208
1209        status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL);
1210        if (status)
1211                goto sched_query_out;
1212
1213        hw->num_tx_sched_layers = le16_to_cpu(buf->sched_props.logical_levels);
1214        hw->num_tx_sched_phys_layers =
1215                le16_to_cpu(buf->sched_props.phys_levels);
1216        hw->flattened_layers = buf->sched_props.flattening_bitmap;
1217        hw->max_cgds = buf->sched_props.max_pf_cgds;
1218
1219        /* max sibling group size of current layer refers to the max children
1220         * of the below layer node.
1221         * layer 1 node max children will be layer 2 max sibling group size
1222         * layer 2 node max children will be layer 3 max sibling group size
1223         * and so on. This array will be populated from root (index 0) to
1224         * qgroup layer 7. Leaf node has no children.
1225         */
1226        for (i = 0; i < hw->num_tx_sched_layers - 1; i++) {
1227                max_sibl = buf->layer_props[i + 1].max_sibl_grp_sz;
1228                hw->max_children[i] = le16_to_cpu(max_sibl);
1229        }
1230
1231        hw->layer_info = devm_kmemdup(ice_hw_to_dev(hw), buf->layer_props,
1232                                      (hw->num_tx_sched_layers *
1233                                       sizeof(*hw->layer_info)),
1234                                      GFP_KERNEL);
1235        if (!hw->layer_info) {
1236                status = ICE_ERR_NO_MEMORY;
1237                goto sched_query_out;
1238        }
1239
1240sched_query_out:
1241        devm_kfree(ice_hw_to_dev(hw), buf);
1242        return status;
1243}
1244
1245/**
1246 * ice_sched_find_node_in_subtree - Find node in part of base node subtree
1247 * @hw: pointer to the HW struct
1248 * @base: pointer to the base node
1249 * @node: pointer to the node to search
1250 *
1251 * This function checks whether a given node is part of the base node
1252 * subtree or not
1253 */
1254static bool
1255ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base,
1256                               struct ice_sched_node *node)
1257{
1258        u8 i;
1259
1260        for (i = 0; i < base->num_children; i++) {
1261                struct ice_sched_node *child = base->children[i];
1262
1263                if (node == child)
1264                        return true;
1265
1266                if (child->tx_sched_layer > node->tx_sched_layer)
1267                        return false;
1268
1269                /* this recursion is intentional, and wouldn't
1270                 * go more than 8 calls
1271                 */
1272                if (ice_sched_find_node_in_subtree(hw, child, node))
1273                        return true;
1274        }
1275        return false;
1276}
1277
1278/**
1279 * ice_sched_get_free_qgrp - Scan all queue group siblings and find a free node
1280 * @pi: port information structure
1281 * @vsi_node: software VSI handle
1282 * @qgrp_node: first queue group node identified for scanning
1283 * @owner: LAN or RDMA
1284 *
1285 * This function retrieves a free LAN or RDMA queue group node by scanning
1286 * qgrp_node and its siblings for the queue group with the fewest number
1287 * of queues currently assigned.
1288 */
1289static struct ice_sched_node *
1290ice_sched_get_free_qgrp(struct ice_port_info *pi,
1291                        struct ice_sched_node *vsi_node,
1292                        struct ice_sched_node *qgrp_node, u8 owner)
1293{
1294        struct ice_sched_node *min_qgrp;
1295        u8 min_children;
1296
1297        if (!qgrp_node)
1298                return qgrp_node;
1299        min_children = qgrp_node->num_children;
1300        if (!min_children)
1301                return qgrp_node;
1302        min_qgrp = qgrp_node;
1303        /* scan all queue groups until find a node which has less than the
1304         * minimum number of children. This way all queue group nodes get
1305         * equal number of shares and active. The bandwidth will be equally
1306         * distributed across all queues.
1307         */
1308        while (qgrp_node) {
1309                /* make sure the qgroup node is part of the VSI subtree */
1310                if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1311                        if (qgrp_node->num_children < min_children &&
1312                            qgrp_node->owner == owner) {
1313                                /* replace the new min queue group node */
1314                                min_qgrp = qgrp_node;
1315                                min_children = min_qgrp->num_children;
1316                                /* break if it has no children, */
1317                                if (!min_children)
1318                                        break;
1319                        }
1320                qgrp_node = qgrp_node->sibling;
1321        }
1322        return min_qgrp;
1323}
1324
1325/**
1326 * ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node
1327 * @pi: port information structure
1328 * @vsi_handle: software VSI handle
1329 * @tc: branch number
1330 * @owner: LAN or RDMA
1331 *
1332 * This function retrieves a free LAN or RDMA queue group node
1333 */
1334struct ice_sched_node *
1335ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
1336                           u8 owner)
1337{
1338        struct ice_sched_node *vsi_node, *qgrp_node;
1339        struct ice_vsi_ctx *vsi_ctx;
1340        u16 max_children;
1341        u8 qgrp_layer;
1342
1343        qgrp_layer = ice_sched_get_qgrp_layer(pi->hw);
1344        max_children = pi->hw->max_children[qgrp_layer];
1345
1346        vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
1347        if (!vsi_ctx)
1348                return NULL;
1349        vsi_node = vsi_ctx->sched.vsi_node[tc];
1350        /* validate invalid VSI ID */
1351        if (!vsi_node)
1352                return NULL;
1353
1354        /* get the first queue group node from VSI sub-tree */
1355        qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer);
1356        while (qgrp_node) {
1357                /* make sure the qgroup node is part of the VSI subtree */
1358                if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1359                        if (qgrp_node->num_children < max_children &&
1360                            qgrp_node->owner == owner)
1361                                break;
1362                qgrp_node = qgrp_node->sibling;
1363        }
1364
1365        /* Select the best queue group */
1366        return ice_sched_get_free_qgrp(pi, vsi_node, qgrp_node, owner);
1367}
1368
1369/**
1370 * ice_sched_get_vsi_node - Get a VSI node based on VSI ID
1371 * @hw: pointer to the HW struct
1372 * @tc_node: pointer to the TC node
1373 * @vsi_handle: software VSI handle
1374 *
1375 * This function retrieves a VSI node for a given VSI ID from a given
1376 * TC branch
1377 */
1378static struct ice_sched_node *
1379ice_sched_get_vsi_node(struct ice_hw *hw, struct ice_sched_node *tc_node,
1380                       u16 vsi_handle)
1381{
1382        struct ice_sched_node *node;
1383        u8 vsi_layer;
1384
1385        vsi_layer = ice_sched_get_vsi_layer(hw);
1386        node = ice_sched_get_first_node(hw->port_info, tc_node, vsi_layer);
1387
1388        /* Check whether it already exists */
1389        while (node) {
1390                if (node->vsi_handle == vsi_handle)
1391                        return node;
1392                node = node->sibling;
1393        }
1394
1395        return node;
1396}
1397
1398/**
1399 * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes
1400 * @hw: pointer to the HW struct
1401 * @num_qs: number of queues
1402 * @num_nodes: num nodes array
1403 *
1404 * This function calculates the number of VSI child nodes based on the
1405 * number of queues.
1406 */
1407static void
1408ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes)
1409{
1410        u16 num = num_qs;
1411        u8 i, qgl, vsil;
1412
1413        qgl = ice_sched_get_qgrp_layer(hw);
1414        vsil = ice_sched_get_vsi_layer(hw);
1415
1416        /* calculate num nodes from queue group to VSI layer */
1417        for (i = qgl; i > vsil; i--) {
1418                /* round to the next integer if there is a remainder */
1419                num = DIV_ROUND_UP(num, hw->max_children[i]);
1420
1421                /* need at least one node */
1422                num_nodes[i] = num ? num : 1;
1423        }
1424}
1425
1426/**
1427 * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree
1428 * @pi: port information structure
1429 * @vsi_handle: software VSI handle
1430 * @tc_node: pointer to the TC node
1431 * @num_nodes: pointer to the num nodes that needs to be added per layer
1432 * @owner: node owner (LAN or RDMA)
1433 *
1434 * This function adds the VSI child nodes to tree. It gets called for
1435 * LAN and RDMA separately.
1436 */
1437static enum ice_status
1438ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1439                              struct ice_sched_node *tc_node, u16 *num_nodes,
1440                              u8 owner)
1441{
1442        struct ice_sched_node *parent, *node;
1443        struct ice_hw *hw = pi->hw;
1444        enum ice_status status;
1445        u32 first_node_teid;
1446        u16 num_added = 0;
1447        u8 i, qgl, vsil;
1448
1449        qgl = ice_sched_get_qgrp_layer(hw);
1450        vsil = ice_sched_get_vsi_layer(hw);
1451        parent = ice_sched_get_vsi_node(hw, tc_node, vsi_handle);
1452        for (i = vsil + 1; i <= qgl; i++) {
1453                if (!parent)
1454                        return ICE_ERR_CFG;
1455
1456                status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
1457                                                      num_nodes[i],
1458                                                      &first_node_teid,
1459                                                      &num_added);
1460                if (status || num_nodes[i] != num_added)
1461                        return ICE_ERR_CFG;
1462
1463                /* The newly added node can be a new parent for the next
1464                 * layer nodes
1465                 */
1466                if (num_added) {
1467                        parent = ice_sched_find_node_by_teid(tc_node,
1468                                                             first_node_teid);
1469                        node = parent;
1470                        while (node) {
1471                                node->owner = owner;
1472                                node = node->sibling;
1473                        }
1474                } else {
1475                        parent = parent->children[0];
1476                }
1477        }
1478
1479        return 0;
1480}
1481
1482/**
1483 * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes
1484 * @hw: pointer to the HW struct
1485 * @tc_node: pointer to TC node
1486 * @num_nodes: pointer to num nodes array
1487 *
1488 * This function calculates the number of supported nodes needed to add this
1489 * VSI into Tx tree including the VSI, parent and intermediate nodes in below
1490 * layers
1491 */
1492static void
1493ice_sched_calc_vsi_support_nodes(struct ice_hw *hw,
1494                                 struct ice_sched_node *tc_node, u16 *num_nodes)
1495{
1496        struct ice_sched_node *node;
1497        u8 vsil;
1498        int i;
1499
1500        vsil = ice_sched_get_vsi_layer(hw);
1501        for (i = vsil; i >= hw->sw_entry_point_layer; i--)
1502                /* Add intermediate nodes if TC has no children and
1503                 * need at least one node for VSI
1504                 */
1505                if (!tc_node->num_children || i == vsil) {
1506                        num_nodes[i]++;
1507                } else {
1508                        /* If intermediate nodes are reached max children
1509                         * then add a new one.
1510                         */
1511                        node = ice_sched_get_first_node(hw->port_info, tc_node,
1512                                                        (u8)i);
1513                        /* scan all the siblings */
1514                        while (node) {
1515                                if (node->num_children < hw->max_children[i])
1516                                        break;
1517                                node = node->sibling;
1518                        }
1519
1520                        /* tree has one intermediate node to add this new VSI.
1521                         * So no need to calculate supported nodes for below
1522                         * layers.
1523                         */
1524                        if (node)
1525                                break;
1526                        /* all the nodes are full, allocate a new one */
1527                        num_nodes[i]++;
1528                }
1529}
1530
1531/**
1532 * ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree
1533 * @pi: port information structure
1534 * @vsi_handle: software VSI handle
1535 * @tc_node: pointer to TC node
1536 * @num_nodes: pointer to num nodes array
1537 *
1538 * This function adds the VSI supported nodes into Tx tree including the
1539 * VSI, its parent and intermediate nodes in below layers
1540 */
1541static enum ice_status
1542ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle,
1543                                struct ice_sched_node *tc_node, u16 *num_nodes)
1544{
1545        struct ice_sched_node *parent = tc_node;
1546        enum ice_status status;
1547        u32 first_node_teid;
1548        u16 num_added = 0;
1549        u8 i, vsil;
1550
1551        if (!pi)
1552                return ICE_ERR_PARAM;
1553
1554        vsil = ice_sched_get_vsi_layer(pi->hw);
1555        for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) {
1556                status = ice_sched_add_nodes_to_layer(pi, tc_node, parent,
1557                                                      i, num_nodes[i],
1558                                                      &first_node_teid,
1559                                                      &num_added);
1560                if (status || num_nodes[i] != num_added)
1561                        return ICE_ERR_CFG;
1562
1563                /* The newly added node can be a new parent for the next
1564                 * layer nodes
1565                 */
1566                if (num_added)
1567                        parent = ice_sched_find_node_by_teid(tc_node,
1568                                                             first_node_teid);
1569                else
1570                        parent = parent->children[0];
1571
1572                if (!parent)
1573                        return ICE_ERR_CFG;
1574
1575                if (i == vsil)
1576                        parent->vsi_handle = vsi_handle;
1577        }
1578
1579        return 0;
1580}
1581
1582/**
1583 * ice_sched_add_vsi_to_topo - add a new VSI into tree
1584 * @pi: port information structure
1585 * @vsi_handle: software VSI handle
1586 * @tc: TC number
1587 *
1588 * This function adds a new VSI into scheduler tree
1589 */
1590static enum ice_status
1591ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc)
1592{
1593        u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1594        struct ice_sched_node *tc_node;
1595        struct ice_hw *hw = pi->hw;
1596
1597        tc_node = ice_sched_get_tc_node(pi, tc);
1598        if (!tc_node)
1599                return ICE_ERR_PARAM;
1600
1601        /* calculate number of supported nodes needed for this VSI */
1602        ice_sched_calc_vsi_support_nodes(hw, tc_node, num_nodes);
1603
1604        /* add VSI supported nodes to TC subtree */
1605        return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node,
1606                                               num_nodes);
1607}
1608
1609/**
1610 * ice_sched_update_vsi_child_nodes - update VSI child nodes
1611 * @pi: port information structure
1612 * @vsi_handle: software VSI handle
1613 * @tc: TC number
1614 * @new_numqs: new number of max queues
1615 * @owner: owner of this subtree
1616 *
1617 * This function updates the VSI child nodes based on the number of queues
1618 */
1619static enum ice_status
1620ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1621                                 u8 tc, u16 new_numqs, u8 owner)
1622{
1623        u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1624        struct ice_sched_node *vsi_node;
1625        struct ice_sched_node *tc_node;
1626        struct ice_vsi_ctx *vsi_ctx;
1627        enum ice_status status = 0;
1628        struct ice_hw *hw = pi->hw;
1629        u16 prev_numqs;
1630
1631        tc_node = ice_sched_get_tc_node(pi, tc);
1632        if (!tc_node)
1633                return ICE_ERR_CFG;
1634
1635        vsi_node = ice_sched_get_vsi_node(hw, tc_node, vsi_handle);
1636        if (!vsi_node)
1637                return ICE_ERR_CFG;
1638
1639        vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1640        if (!vsi_ctx)
1641                return ICE_ERR_PARAM;
1642
1643        prev_numqs = vsi_ctx->sched.max_lanq[tc];
1644        /* num queues are not changed or less than the previous number */
1645        if (new_numqs <= prev_numqs)
1646                return status;
1647        status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs);
1648        if (status)
1649                return status;
1650
1651        if (new_numqs)
1652                ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes);
1653        /* Keep the max number of queue configuration all the time. Update the
1654         * tree only if number of queues > previous number of queues. This may
1655         * leave some extra nodes in the tree if number of queues < previous
1656         * number but that wouldn't harm anything. Removing those extra nodes
1657         * may complicate the code if those nodes are part of SRL or
1658         * individually rate limited.
1659         */
1660        status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node,
1661                                               new_num_nodes, owner);
1662        if (status)
1663                return status;
1664        vsi_ctx->sched.max_lanq[tc] = new_numqs;
1665
1666        return 0;
1667}
1668
1669/**
1670 * ice_sched_cfg_vsi - configure the new/existing VSI
1671 * @pi: port information structure
1672 * @vsi_handle: software VSI handle
1673 * @tc: TC number
1674 * @maxqs: max number of queues
1675 * @owner: LAN or RDMA
1676 * @enable: TC enabled or disabled
1677 *
1678 * This function adds/updates VSI nodes based on the number of queues. If TC is
1679 * enabled and VSI is in suspended state then resume the VSI back. If TC is
1680 * disabled then suspend the VSI if it is not already.
1681 */
1682enum ice_status
1683ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs,
1684                  u8 owner, bool enable)
1685{
1686        struct ice_sched_node *vsi_node, *tc_node;
1687        struct ice_vsi_ctx *vsi_ctx;
1688        enum ice_status status = 0;
1689        struct ice_hw *hw = pi->hw;
1690
1691        ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle);
1692        tc_node = ice_sched_get_tc_node(pi, tc);
1693        if (!tc_node)
1694                return ICE_ERR_PARAM;
1695        vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1696        if (!vsi_ctx)
1697                return ICE_ERR_PARAM;
1698        vsi_node = ice_sched_get_vsi_node(hw, tc_node, vsi_handle);
1699
1700        /* suspend the VSI if TC is not enabled */
1701        if (!enable) {
1702                if (vsi_node && vsi_node->in_use) {
1703                        u32 teid = le32_to_cpu(vsi_node->info.node_teid);
1704
1705                        status = ice_sched_suspend_resume_elems(hw, 1, &teid,
1706                                                                true);
1707                        if (!status)
1708                                vsi_node->in_use = false;
1709                }
1710                return status;
1711        }
1712
1713        /* TC is enabled, if it is a new VSI then add it to the tree */
1714        if (!vsi_node) {
1715                status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc);
1716                if (status)
1717                        return status;
1718
1719                vsi_node = ice_sched_get_vsi_node(hw, tc_node, vsi_handle);
1720                if (!vsi_node)
1721                        return ICE_ERR_CFG;
1722
1723                vsi_ctx->sched.vsi_node[tc] = vsi_node;
1724                vsi_node->in_use = true;
1725                /* invalidate the max queues whenever VSI gets added first time
1726                 * into the scheduler tree (boot or after reset). We need to
1727                 * recreate the child nodes all the time in these cases.
1728                 */
1729                vsi_ctx->sched.max_lanq[tc] = 0;
1730        }
1731
1732        /* update the VSI child nodes */
1733        status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs,
1734                                                  owner);
1735        if (status)
1736                return status;
1737
1738        /* TC is enabled, resume the VSI if it is in the suspend state */
1739        if (!vsi_node->in_use) {
1740                u32 teid = le32_to_cpu(vsi_node->info.node_teid);
1741
1742                status = ice_sched_suspend_resume_elems(hw, 1, &teid, false);
1743                if (!status)
1744                        vsi_node->in_use = true;
1745        }
1746
1747        return status;
1748}
1749
1750/**
1751 * ice_sched_rm_agg_vsi_entry - remove aggregator related VSI info entry
1752 * @pi: port information structure
1753 * @vsi_handle: software VSI handle
1754 *
1755 * This function removes single aggregator VSI info entry from
1756 * aggregator list.
1757 */
1758static void ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle)
1759{
1760        struct ice_sched_agg_info *agg_info;
1761        struct ice_sched_agg_info *atmp;
1762
1763        list_for_each_entry_safe(agg_info, atmp, &pi->hw->agg_list,
1764                                 list_entry) {
1765                struct ice_sched_agg_vsi_info *agg_vsi_info;
1766                struct ice_sched_agg_vsi_info *vtmp;
1767
1768                list_for_each_entry_safe(agg_vsi_info, vtmp,
1769                                         &agg_info->agg_vsi_list, list_entry)
1770                        if (agg_vsi_info->vsi_handle == vsi_handle) {
1771                                list_del(&agg_vsi_info->list_entry);
1772                                devm_kfree(ice_hw_to_dev(pi->hw),
1773                                           agg_vsi_info);
1774                                return;
1775                        }
1776        }
1777}
1778
1779/**
1780 * ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree
1781 * @node: pointer to the sub-tree node
1782 *
1783 * This function checks for a leaf node presence in a given sub-tree node.
1784 */
1785static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node)
1786{
1787        u8 i;
1788
1789        for (i = 0; i < node->num_children; i++)
1790                if (ice_sched_is_leaf_node_present(node->children[i]))
1791                        return true;
1792        /* check for a leaf node */
1793        return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF);
1794}
1795
1796/**
1797 * ice_sched_rm_vsi_cfg - remove the VSI and its children nodes
1798 * @pi: port information structure
1799 * @vsi_handle: software VSI handle
1800 * @owner: LAN or RDMA
1801 *
1802 * This function removes the VSI and its LAN or RDMA children nodes from the
1803 * scheduler tree.
1804 */
1805static enum ice_status
1806ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner)
1807{
1808        enum ice_status status = ICE_ERR_PARAM;
1809        struct ice_vsi_ctx *vsi_ctx;
1810        u8 i;
1811
1812        ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle);
1813        if (!ice_is_vsi_valid(pi->hw, vsi_handle))
1814                return status;
1815        mutex_lock(&pi->sched_lock);
1816        vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
1817        if (!vsi_ctx)
1818                goto exit_sched_rm_vsi_cfg;
1819
1820        ice_for_each_traffic_class(i) {
1821                struct ice_sched_node *vsi_node, *tc_node;
1822                u8 j = 0;
1823
1824                tc_node = ice_sched_get_tc_node(pi, i);
1825                if (!tc_node)
1826                        continue;
1827
1828                vsi_node = ice_sched_get_vsi_node(pi->hw, tc_node, vsi_handle);
1829                if (!vsi_node)
1830                        continue;
1831
1832                if (ice_sched_is_leaf_node_present(vsi_node)) {
1833                        ice_debug(pi->hw, ICE_DBG_SCHED,
1834                                  "VSI has leaf nodes in TC %d\n", i);
1835                        status = ICE_ERR_IN_USE;
1836                        goto exit_sched_rm_vsi_cfg;
1837                }
1838                while (j < vsi_node->num_children) {
1839                        if (vsi_node->children[j]->owner == owner) {
1840                                ice_free_sched_node(pi, vsi_node->children[j]);
1841
1842                                /* reset the counter again since the num
1843                                 * children will be updated after node removal
1844                                 */
1845                                j = 0;
1846                        } else {
1847                                j++;
1848                        }
1849                }
1850                /* remove the VSI if it has no children */
1851                if (!vsi_node->num_children) {
1852                        ice_free_sched_node(pi, vsi_node);
1853                        vsi_ctx->sched.vsi_node[i] = NULL;
1854
1855                        /* clean up aggregator related VSI info if any */
1856                        ice_sched_rm_agg_vsi_info(pi, vsi_handle);
1857                }
1858                if (owner == ICE_SCHED_NODE_OWNER_LAN)
1859                        vsi_ctx->sched.max_lanq[i] = 0;
1860        }
1861        status = 0;
1862
1863exit_sched_rm_vsi_cfg:
1864        mutex_unlock(&pi->sched_lock);
1865        return status;
1866}
1867
1868/**
1869 * ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes
1870 * @pi: port information structure
1871 * @vsi_handle: software VSI handle
1872 *
1873 * This function clears the VSI and its LAN children nodes from scheduler tree
1874 * for all TCs.
1875 */
1876enum ice_status ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle)
1877{
1878        return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN);
1879}
1880
1881/**
1882 * ice_sched_rm_unused_rl_prof - remove unused RL profile
1883 * @pi: port information structure
1884 *
1885 * This function removes unused rate limit profiles from the HW and
1886 * SW DB. The caller needs to hold scheduler lock.
1887 */
1888static void ice_sched_rm_unused_rl_prof(struct ice_port_info *pi)
1889{
1890        u16 ln;
1891
1892        for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
1893                struct ice_aqc_rl_profile_info *rl_prof_elem;
1894                struct ice_aqc_rl_profile_info *rl_prof_tmp;
1895
1896                list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp,
1897                                         &pi->rl_prof_list[ln], list_entry) {
1898                        if (!ice_sched_del_rl_profile(pi->hw, rl_prof_elem))
1899                                ice_debug(pi->hw, ICE_DBG_SCHED,
1900                                          "Removed rl profile\n");
1901                }
1902        }
1903}
1904
1905/**
1906 * ice_sched_update_elem - update element
1907 * @hw: pointer to the HW struct
1908 * @node: pointer to node
1909 * @info: node info to update
1910 *
1911 * Update the HW DB, and local SW DB of node. Update the scheduling
1912 * parameters of node from argument info data buffer (Info->data buf) and
1913 * returns success or error on config sched element failure. The caller
1914 * needs to hold scheduler lock.
1915 */
1916static enum ice_status
1917ice_sched_update_elem(struct ice_hw *hw, struct ice_sched_node *node,
1918                      struct ice_aqc_txsched_elem_data *info)
1919{
1920        struct ice_aqc_txsched_elem_data buf;
1921        enum ice_status status;
1922        u16 elem_cfgd = 0;
1923        u16 num_elems = 1;
1924
1925        buf = *info;
1926        /* Parent TEID is reserved field in this aq call */
1927        buf.parent_teid = 0;
1928        /* Element type is reserved field in this aq call */
1929        buf.data.elem_type = 0;
1930        /* Flags is reserved field in this aq call */
1931        buf.data.flags = 0;
1932
1933        /* Update HW DB */
1934        /* Configure element node */
1935        status = ice_aq_cfg_sched_elems(hw, num_elems, &buf, sizeof(buf),
1936                                        &elem_cfgd, NULL);
1937        if (status || elem_cfgd != num_elems) {
1938                ice_debug(hw, ICE_DBG_SCHED, "Config sched elem error\n");
1939                return ICE_ERR_CFG;
1940        }
1941
1942        /* Config success case */
1943        /* Now update local SW DB */
1944        /* Only copy the data portion of info buffer */
1945        node->info.data = info->data;
1946        return status;
1947}
1948
1949/**
1950 * ice_sched_cfg_node_bw_alloc - configure node BW weight/alloc params
1951 * @hw: pointer to the HW struct
1952 * @node: sched node to configure
1953 * @rl_type: rate limit type CIR, EIR, or shared
1954 * @bw_alloc: BW weight/allocation
1955 *
1956 * This function configures node element's BW allocation.
1957 */
1958static enum ice_status
1959ice_sched_cfg_node_bw_alloc(struct ice_hw *hw, struct ice_sched_node *node,
1960                            enum ice_rl_type rl_type, u16 bw_alloc)
1961{
1962        struct ice_aqc_txsched_elem_data buf;
1963        struct ice_aqc_txsched_elem *data;
1964        enum ice_status status;
1965
1966        buf = node->info;
1967        data = &buf.data;
1968        if (rl_type == ICE_MIN_BW) {
1969                data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
1970                data->cir_bw.bw_alloc = cpu_to_le16(bw_alloc);
1971        } else if (rl_type == ICE_MAX_BW) {
1972                data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
1973                data->eir_bw.bw_alloc = cpu_to_le16(bw_alloc);
1974        } else {
1975                return ICE_ERR_PARAM;
1976        }
1977
1978        /* Configure element */
1979        status = ice_sched_update_elem(hw, node, &buf);
1980        return status;
1981}
1982
1983/**
1984 * ice_set_clear_cir_bw - set or clear CIR BW
1985 * @bw_t_info: bandwidth type information structure
1986 * @bw: bandwidth in Kbps - Kilo bits per sec
1987 *
1988 * Save or clear CIR bandwidth (BW) in the passed param bw_t_info.
1989 */
1990static void ice_set_clear_cir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
1991{
1992        if (bw == ICE_SCHED_DFLT_BW) {
1993                clear_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
1994                bw_t_info->cir_bw.bw = 0;
1995        } else {
1996                /* Save type of BW information */
1997                set_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
1998                bw_t_info->cir_bw.bw = bw;
1999        }
2000}
2001
2002/**
2003 * ice_set_clear_eir_bw - set or clear EIR BW
2004 * @bw_t_info: bandwidth type information structure
2005 * @bw: bandwidth in Kbps - Kilo bits per sec
2006 *
2007 * Save or clear EIR bandwidth (BW) in the passed param bw_t_info.
2008 */
2009static void ice_set_clear_eir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
2010{
2011        if (bw == ICE_SCHED_DFLT_BW) {
2012                clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
2013                bw_t_info->eir_bw.bw = 0;
2014        } else {
2015                /* EIR BW and Shared BW profiles are mutually exclusive and
2016                 * hence only one of them may be set for any given element.
2017                 * First clear earlier saved shared BW information.
2018                 */
2019                clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
2020                bw_t_info->shared_bw = 0;
2021                /* save EIR BW information */
2022                set_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
2023                bw_t_info->eir_bw.bw = bw;
2024        }
2025}
2026
2027/**
2028 * ice_set_clear_shared_bw - set or clear shared BW
2029 * @bw_t_info: bandwidth type information structure
2030 * @bw: bandwidth in Kbps - Kilo bits per sec
2031 *
2032 * Save or clear shared bandwidth (BW) in the passed param bw_t_info.
2033 */
2034static void ice_set_clear_shared_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
2035{
2036        if (bw == ICE_SCHED_DFLT_BW) {
2037                clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
2038                bw_t_info->shared_bw = 0;
2039        } else {
2040                /* EIR BW and Shared BW profiles are mutually exclusive and
2041                 * hence only one of them may be set for any given element.
2042                 * First clear earlier saved EIR BW information.
2043                 */
2044                clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
2045                bw_t_info->eir_bw.bw = 0;
2046                /* save shared BW information */
2047                set_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
2048                bw_t_info->shared_bw = bw;
2049        }
2050}
2051
2052/**
2053 * ice_sched_calc_wakeup - calculate RL profile wakeup parameter
2054 * @bw: bandwidth in Kbps
2055 *
2056 * This function calculates the wakeup parameter of RL profile.
2057 */
2058static u16 ice_sched_calc_wakeup(s32 bw)
2059{
2060        s64 bytes_per_sec, wakeup_int, wakeup_a, wakeup_b, wakeup_f;
2061        s32 wakeup_f_int;
2062        u16 wakeup = 0;
2063
2064        /* Get the wakeup integer value */
2065        bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE);
2066        wakeup_int = div64_long(ICE_RL_PROF_FREQUENCY, bytes_per_sec);
2067        if (wakeup_int > 63) {
2068                wakeup = (u16)((1 << 15) | wakeup_int);
2069        } else {
2070                /* Calculate fraction value up to 4 decimals
2071                 * Convert Integer value to a constant multiplier
2072                 */
2073                wakeup_b = (s64)ICE_RL_PROF_MULTIPLIER * wakeup_int;
2074                wakeup_a = div64_long((s64)ICE_RL_PROF_MULTIPLIER *
2075                                           ICE_RL_PROF_FREQUENCY,
2076                                      bytes_per_sec);
2077
2078                /* Get Fraction value */
2079                wakeup_f = wakeup_a - wakeup_b;
2080
2081                /* Round up the Fractional value via Ceil(Fractional value) */
2082                if (wakeup_f > div64_long(ICE_RL_PROF_MULTIPLIER, 2))
2083                        wakeup_f += 1;
2084
2085                wakeup_f_int = (s32)div64_long(wakeup_f * ICE_RL_PROF_FRACTION,
2086                                               ICE_RL_PROF_MULTIPLIER);
2087                wakeup |= (u16)(wakeup_int << 9);
2088                wakeup |= (u16)(0x1ff & wakeup_f_int);
2089        }
2090
2091        return wakeup;
2092}
2093
2094/**
2095 * ice_sched_bw_to_rl_profile - convert BW to profile parameters
2096 * @bw: bandwidth in Kbps
2097 * @profile: profile parameters to return
2098 *
2099 * This function converts the BW to profile structure format.
2100 */
2101static enum ice_status
2102ice_sched_bw_to_rl_profile(u32 bw, struct ice_aqc_rl_profile_elem *profile)
2103{
2104        enum ice_status status = ICE_ERR_PARAM;
2105        s64 bytes_per_sec, ts_rate, mv_tmp;
2106        bool found = false;
2107        s32 encode = 0;
2108        s64 mv = 0;
2109        s32 i;
2110
2111        /* Bw settings range is from 0.5Mb/sec to 100Gb/sec */
2112        if (bw < ICE_SCHED_MIN_BW || bw > ICE_SCHED_MAX_BW)
2113                return status;
2114
2115        /* Bytes per second from Kbps */
2116        bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE);
2117
2118        /* encode is 6 bits but really useful are 5 bits */
2119        for (i = 0; i < 64; i++) {
2120                u64 pow_result = BIT_ULL(i);
2121
2122                ts_rate = div64_long((s64)ICE_RL_PROF_FREQUENCY,
2123                                     pow_result * ICE_RL_PROF_TS_MULTIPLIER);
2124                if (ts_rate <= 0)
2125                        continue;
2126
2127                /* Multiplier value */
2128                mv_tmp = div64_long(bytes_per_sec * ICE_RL_PROF_MULTIPLIER,
2129                                    ts_rate);
2130
2131                /* Round to the nearest ICE_RL_PROF_MULTIPLIER */
2132                mv = round_up_64bit(mv_tmp, ICE_RL_PROF_MULTIPLIER);
2133
2134                /* First multiplier value greater than the given
2135                 * accuracy bytes
2136                 */
2137                if (mv > ICE_RL_PROF_ACCURACY_BYTES) {
2138                        encode = i;
2139                        found = true;
2140                        break;
2141                }
2142        }
2143        if (found) {
2144                u16 wm;
2145
2146                wm = ice_sched_calc_wakeup(bw);
2147                profile->rl_multiply = cpu_to_le16(mv);
2148                profile->wake_up_calc = cpu_to_le16(wm);
2149                profile->rl_encode = cpu_to_le16(encode);
2150                status = 0;
2151        } else {
2152                status = ICE_ERR_DOES_NOT_EXIST;
2153        }
2154
2155        return status;
2156}
2157
2158/**
2159 * ice_sched_add_rl_profile - add RL profile
2160 * @pi: port information structure
2161 * @rl_type: type of rate limit BW - min, max, or shared
2162 * @bw: bandwidth in Kbps - Kilo bits per sec
2163 * @layer_num: specifies in which layer to create profile
2164 *
2165 * This function first checks the existing list for corresponding BW
2166 * parameter. If it exists, it returns the associated profile otherwise
2167 * it creates a new rate limit profile for requested BW, and adds it to
2168 * the HW DB and local list. It returns the new profile or null on error.
2169 * The caller needs to hold the scheduler lock.
2170 */
2171static struct ice_aqc_rl_profile_info *
2172ice_sched_add_rl_profile(struct ice_port_info *pi,
2173                         enum ice_rl_type rl_type, u32 bw, u8 layer_num)
2174{
2175        struct ice_aqc_rl_profile_info *rl_prof_elem;
2176        u16 profiles_added = 0, num_profiles = 1;
2177        struct ice_aqc_rl_profile_elem *buf;
2178        enum ice_status status;
2179        struct ice_hw *hw;
2180        u8 profile_type;
2181
2182        if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
2183                return NULL;
2184        switch (rl_type) {
2185        case ICE_MIN_BW:
2186                profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
2187                break;
2188        case ICE_MAX_BW:
2189                profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
2190                break;
2191        case ICE_SHARED_BW:
2192                profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
2193                break;
2194        default:
2195                return NULL;
2196        }
2197
2198        if (!pi)
2199                return NULL;
2200        hw = pi->hw;
2201        list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num],
2202                            list_entry)
2203                if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
2204                    profile_type && rl_prof_elem->bw == bw)
2205                        /* Return existing profile ID info */
2206                        return rl_prof_elem;
2207
2208        /* Create new profile ID */
2209        rl_prof_elem = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rl_prof_elem),
2210                                    GFP_KERNEL);
2211
2212        if (!rl_prof_elem)
2213                return NULL;
2214
2215        status = ice_sched_bw_to_rl_profile(bw, &rl_prof_elem->profile);
2216        if (status)
2217                goto exit_add_rl_prof;
2218
2219        rl_prof_elem->bw = bw;
2220        /* layer_num is zero relative, and fw expects level from 1 to 9 */
2221        rl_prof_elem->profile.level = layer_num + 1;
2222        rl_prof_elem->profile.flags = profile_type;
2223        rl_prof_elem->profile.max_burst_size = cpu_to_le16(hw->max_burst_size);
2224
2225        /* Create new entry in HW DB */
2226        buf = &rl_prof_elem->profile;
2227        status = ice_aq_add_rl_profile(hw, num_profiles, buf, sizeof(*buf),
2228                                       &profiles_added, NULL);
2229        if (status || profiles_added != num_profiles)
2230                goto exit_add_rl_prof;
2231
2232        /* Good entry - add in the list */
2233        rl_prof_elem->prof_id_ref = 0;
2234        list_add(&rl_prof_elem->list_entry, &pi->rl_prof_list[layer_num]);
2235        return rl_prof_elem;
2236
2237exit_add_rl_prof:
2238        devm_kfree(ice_hw_to_dev(hw), rl_prof_elem);
2239        return NULL;
2240}
2241
2242/**
2243 * ice_sched_cfg_node_bw_lmt - configure node sched params
2244 * @hw: pointer to the HW struct
2245 * @node: sched node to configure
2246 * @rl_type: rate limit type CIR, EIR, or shared
2247 * @rl_prof_id: rate limit profile ID
2248 *
2249 * This function configures node element's BW limit.
2250 */
2251static enum ice_status
2252ice_sched_cfg_node_bw_lmt(struct ice_hw *hw, struct ice_sched_node *node,
2253                          enum ice_rl_type rl_type, u16 rl_prof_id)
2254{
2255        struct ice_aqc_txsched_elem_data buf;
2256        struct ice_aqc_txsched_elem *data;
2257
2258        buf = node->info;
2259        data = &buf.data;
2260        switch (rl_type) {
2261        case ICE_MIN_BW:
2262                data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
2263                data->cir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id);
2264                break;
2265        case ICE_MAX_BW:
2266                /* EIR BW and Shared BW profiles are mutually exclusive and
2267                 * hence only one of them may be set for any given element
2268                 */
2269                if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
2270                        return ICE_ERR_CFG;
2271                data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
2272                data->eir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id);
2273                break;
2274        case ICE_SHARED_BW:
2275                /* Check for removing shared BW */
2276                if (rl_prof_id == ICE_SCHED_NO_SHARED_RL_PROF_ID) {
2277                        /* remove shared profile */
2278                        data->valid_sections &= ~ICE_AQC_ELEM_VALID_SHARED;
2279                        data->srl_id = 0; /* clear SRL field */
2280
2281                        /* enable back EIR to default profile */
2282                        data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
2283                        data->eir_bw.bw_profile_idx =
2284                                cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
2285                        break;
2286                }
2287                /* EIR BW and Shared BW profiles are mutually exclusive and
2288                 * hence only one of them may be set for any given element
2289                 */
2290                if ((data->valid_sections & ICE_AQC_ELEM_VALID_EIR) &&
2291                    (le16_to_cpu(data->eir_bw.bw_profile_idx) !=
2292                            ICE_SCHED_DFLT_RL_PROF_ID))
2293                        return ICE_ERR_CFG;
2294                /* EIR BW is set to default, disable it */
2295                data->valid_sections &= ~ICE_AQC_ELEM_VALID_EIR;
2296                /* Okay to enable shared BW now */
2297                data->valid_sections |= ICE_AQC_ELEM_VALID_SHARED;
2298                data->srl_id = cpu_to_le16(rl_prof_id);
2299                break;
2300        default:
2301                /* Unknown rate limit type */
2302                return ICE_ERR_PARAM;
2303        }
2304
2305        /* Configure element */
2306        return ice_sched_update_elem(hw, node, &buf);
2307}
2308
2309/**
2310 * ice_sched_get_node_rl_prof_id - get node's rate limit profile ID
2311 * @node: sched node
2312 * @rl_type: rate limit type
2313 *
2314 * If existing profile matches, it returns the corresponding rate
2315 * limit profile ID, otherwise it returns an invalid ID as error.
2316 */
2317static u16
2318ice_sched_get_node_rl_prof_id(struct ice_sched_node *node,
2319                              enum ice_rl_type rl_type)
2320{
2321        u16 rl_prof_id = ICE_SCHED_INVAL_PROF_ID;
2322        struct ice_aqc_txsched_elem *data;
2323
2324        data = &node->info.data;
2325        switch (rl_type) {
2326        case ICE_MIN_BW:
2327                if (data->valid_sections & ICE_AQC_ELEM_VALID_CIR)
2328                        rl_prof_id = le16_to_cpu(data->cir_bw.bw_profile_idx);
2329                break;
2330        case ICE_MAX_BW:
2331                if (data->valid_sections & ICE_AQC_ELEM_VALID_EIR)
2332                        rl_prof_id = le16_to_cpu(data->eir_bw.bw_profile_idx);
2333                break;
2334        case ICE_SHARED_BW:
2335                if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
2336                        rl_prof_id = le16_to_cpu(data->srl_id);
2337                break;
2338        default:
2339                break;
2340        }
2341
2342        return rl_prof_id;
2343}
2344
2345/**
2346 * ice_sched_get_rl_prof_layer - selects rate limit profile creation layer
2347 * @pi: port information structure
2348 * @rl_type: type of rate limit BW - min, max, or shared
2349 * @layer_index: layer index
2350 *
2351 * This function returns requested profile creation layer.
2352 */
2353static u8
2354ice_sched_get_rl_prof_layer(struct ice_port_info *pi, enum ice_rl_type rl_type,
2355                            u8 layer_index)
2356{
2357        struct ice_hw *hw = pi->hw;
2358
2359        if (layer_index >= hw->num_tx_sched_layers)
2360                return ICE_SCHED_INVAL_LAYER_NUM;
2361        switch (rl_type) {
2362        case ICE_MIN_BW:
2363                if (hw->layer_info[layer_index].max_cir_rl_profiles)
2364                        return layer_index;
2365                break;
2366        case ICE_MAX_BW:
2367                if (hw->layer_info[layer_index].max_eir_rl_profiles)
2368                        return layer_index;
2369                break;
2370        case ICE_SHARED_BW:
2371                /* if current layer doesn't support SRL profile creation
2372                 * then try a layer up or down.
2373                 */
2374                if (hw->layer_info[layer_index].max_srl_profiles)
2375                        return layer_index;
2376                else if (layer_index < hw->num_tx_sched_layers - 1 &&
2377                         hw->layer_info[layer_index + 1].max_srl_profiles)
2378                        return layer_index + 1;
2379                else if (layer_index > 0 &&
2380                         hw->layer_info[layer_index - 1].max_srl_profiles)
2381                        return layer_index - 1;
2382                break;
2383        default:
2384                break;
2385        }
2386        return ICE_SCHED_INVAL_LAYER_NUM;
2387}
2388
2389/**
2390 * ice_sched_get_srl_node - get shared rate limit node
2391 * @node: tree node
2392 * @srl_layer: shared rate limit layer
2393 *
2394 * This function returns SRL node to be used for shared rate limit purpose.
2395 * The caller needs to hold scheduler lock.
2396 */
2397static struct ice_sched_node *
2398ice_sched_get_srl_node(struct ice_sched_node *node, u8 srl_layer)
2399{
2400        if (srl_layer > node->tx_sched_layer)
2401                return node->children[0];
2402        else if (srl_layer < node->tx_sched_layer)
2403                /* Node can't be created without a parent. It will always
2404                 * have a valid parent except root node.
2405                 */
2406                return node->parent;
2407        else
2408                return node;
2409}
2410
2411/**
2412 * ice_sched_rm_rl_profile - remove RL profile ID
2413 * @pi: port information structure
2414 * @layer_num: layer number where profiles are saved
2415 * @profile_type: profile type like EIR, CIR, or SRL
2416 * @profile_id: profile ID to remove
2417 *
2418 * This function removes rate limit profile from layer 'layer_num' of type
2419 * 'profile_type' and profile ID as 'profile_id'. The caller needs to hold
2420 * scheduler lock.
2421 */
2422static enum ice_status
2423ice_sched_rm_rl_profile(struct ice_port_info *pi, u8 layer_num, u8 profile_type,
2424                        u16 profile_id)
2425{
2426        struct ice_aqc_rl_profile_info *rl_prof_elem;
2427        enum ice_status status = 0;
2428
2429        if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
2430                return ICE_ERR_PARAM;
2431        /* Check the existing list for RL profile */
2432        list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num],
2433                            list_entry)
2434                if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
2435                    profile_type &&
2436                    le16_to_cpu(rl_prof_elem->profile.profile_id) ==
2437                    profile_id) {
2438                        if (rl_prof_elem->prof_id_ref)
2439                                rl_prof_elem->prof_id_ref--;
2440
2441                        /* Remove old profile ID from database */
2442                        status = ice_sched_del_rl_profile(pi->hw, rl_prof_elem);
2443                        if (status && status != ICE_ERR_IN_USE)
2444                                ice_debug(pi->hw, ICE_DBG_SCHED,
2445                                          "Remove rl profile failed\n");
2446                        break;
2447                }
2448        if (status == ICE_ERR_IN_USE)
2449                status = 0;
2450        return status;
2451}
2452
2453/**
2454 * ice_sched_set_node_bw_dflt - set node's bandwidth limit to default
2455 * @pi: port information structure
2456 * @node: pointer to node structure
2457 * @rl_type: rate limit type min, max, or shared
2458 * @layer_num: layer number where RL profiles are saved
2459 *
2460 * This function configures node element's BW rate limit profile ID of
2461 * type CIR, EIR, or SRL to default. This function needs to be called
2462 * with the scheduler lock held.
2463 */
2464static enum ice_status
2465ice_sched_set_node_bw_dflt(struct ice_port_info *pi,
2466                           struct ice_sched_node *node,
2467                           enum ice_rl_type rl_type, u8 layer_num)
2468{
2469        enum ice_status status;
2470        struct ice_hw *hw;
2471        u8 profile_type;
2472        u16 rl_prof_id;
2473        u16 old_id;
2474
2475        hw = pi->hw;
2476        switch (rl_type) {
2477        case ICE_MIN_BW:
2478                profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
2479                rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
2480                break;
2481        case ICE_MAX_BW:
2482                profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
2483                rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
2484                break;
2485        case ICE_SHARED_BW:
2486                profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
2487                /* No SRL is configured for default case */
2488                rl_prof_id = ICE_SCHED_NO_SHARED_RL_PROF_ID;
2489                break;
2490        default:
2491                return ICE_ERR_PARAM;
2492        }
2493        /* Save existing RL prof ID for later clean up */
2494        old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
2495        /* Configure BW scheduling parameters */
2496        status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
2497        if (status)
2498                return status;
2499
2500        /* Remove stale RL profile ID */
2501        if (old_id == ICE_SCHED_DFLT_RL_PROF_ID ||
2502            old_id == ICE_SCHED_INVAL_PROF_ID)
2503                return 0;
2504
2505        return ice_sched_rm_rl_profile(pi, layer_num, profile_type, old_id);
2506}
2507
2508/**
2509 * ice_sched_set_eir_srl_excl - set EIR/SRL exclusiveness
2510 * @pi: port information structure
2511 * @node: pointer to node structure
2512 * @layer_num: layer number where rate limit profiles are saved
2513 * @rl_type: rate limit type min, max, or shared
2514 * @bw: bandwidth value
2515 *
2516 * This function prepares node element's bandwidth to SRL or EIR exclusively.
2517 * EIR BW and Shared BW profiles are mutually exclusive and hence only one of
2518 * them may be set for any given element. This function needs to be called
2519 * with the scheduler lock held.
2520 */
2521static enum ice_status
2522ice_sched_set_eir_srl_excl(struct ice_port_info *pi,
2523                           struct ice_sched_node *node,
2524                           u8 layer_num, enum ice_rl_type rl_type, u32 bw)
2525{
2526        if (rl_type == ICE_SHARED_BW) {
2527                /* SRL node passed in this case, it may be different node */
2528                if (bw == ICE_SCHED_DFLT_BW)
2529                        /* SRL being removed, ice_sched_cfg_node_bw_lmt()
2530                         * enables EIR to default. EIR is not set in this
2531                         * case, so no additional action is required.
2532                         */
2533                        return 0;
2534
2535                /* SRL being configured, set EIR to default here.
2536                 * ice_sched_cfg_node_bw_lmt() disables EIR when it
2537                 * configures SRL
2538                 */
2539                return ice_sched_set_node_bw_dflt(pi, node, ICE_MAX_BW,
2540                                                  layer_num);
2541        } else if (rl_type == ICE_MAX_BW &&
2542                   node->info.data.valid_sections & ICE_AQC_ELEM_VALID_SHARED) {
2543                /* Remove Shared profile. Set default shared BW call
2544                 * removes shared profile for a node.
2545                 */
2546                return ice_sched_set_node_bw_dflt(pi, node,
2547                                                  ICE_SHARED_BW,
2548                                                  layer_num);
2549        }
2550        return 0;
2551}
2552
2553/**
2554 * ice_sched_set_node_bw - set node's bandwidth
2555 * @pi: port information structure
2556 * @node: tree node
2557 * @rl_type: rate limit type min, max, or shared
2558 * @bw: bandwidth in Kbps - Kilo bits per sec
2559 * @layer_num: layer number
2560 *
2561 * This function adds new profile corresponding to requested BW, configures
2562 * node's RL profile ID of type CIR, EIR, or SRL, and removes old profile
2563 * ID from local database. The caller needs to hold scheduler lock.
2564 */
2565static enum ice_status
2566ice_sched_set_node_bw(struct ice_port_info *pi, struct ice_sched_node *node,
2567                      enum ice_rl_type rl_type, u32 bw, u8 layer_num)
2568{
2569        struct ice_aqc_rl_profile_info *rl_prof_info;
2570        enum ice_status status = ICE_ERR_PARAM;
2571        struct ice_hw *hw = pi->hw;
2572        u16 old_id, rl_prof_id;
2573
2574        rl_prof_info = ice_sched_add_rl_profile(pi, rl_type, bw, layer_num);
2575        if (!rl_prof_info)
2576                return status;
2577
2578        rl_prof_id = le16_to_cpu(rl_prof_info->profile.profile_id);
2579
2580        /* Save existing RL prof ID for later clean up */
2581        old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
2582        /* Configure BW scheduling parameters */
2583        status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
2584        if (status)
2585                return status;
2586
2587        /* New changes has been applied */
2588        /* Increment the profile ID reference count */
2589        rl_prof_info->prof_id_ref++;
2590
2591        /* Check for old ID removal */
2592        if ((old_id == ICE_SCHED_DFLT_RL_PROF_ID && rl_type != ICE_SHARED_BW) ||
2593            old_id == ICE_SCHED_INVAL_PROF_ID || old_id == rl_prof_id)
2594                return 0;
2595
2596        return ice_sched_rm_rl_profile(pi, layer_num,
2597                                       rl_prof_info->profile.flags &
2598                                       ICE_AQC_RL_PROFILE_TYPE_M, old_id);
2599}
2600
2601/**
2602 * ice_sched_set_node_bw_lmt - set node's BW limit
2603 * @pi: port information structure
2604 * @node: tree node
2605 * @rl_type: rate limit type min, max, or shared
2606 * @bw: bandwidth in Kbps - Kilo bits per sec
2607 *
2608 * It updates node's BW limit parameters like BW RL profile ID of type CIR,
2609 * EIR, or SRL. The caller needs to hold scheduler lock.
2610 */
2611static enum ice_status
2612ice_sched_set_node_bw_lmt(struct ice_port_info *pi, struct ice_sched_node *node,
2613                          enum ice_rl_type rl_type, u32 bw)
2614{
2615        struct ice_sched_node *cfg_node = node;
2616        enum ice_status status;
2617
2618        struct ice_hw *hw;
2619        u8 layer_num;
2620
2621        if (!pi)
2622                return ICE_ERR_PARAM;
2623        hw = pi->hw;
2624        /* Remove unused RL profile IDs from HW and SW DB */
2625        ice_sched_rm_unused_rl_prof(pi);
2626        layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
2627                                                node->tx_sched_layer);
2628        if (layer_num >= hw->num_tx_sched_layers)
2629                return ICE_ERR_PARAM;
2630
2631        if (rl_type == ICE_SHARED_BW) {
2632                /* SRL node may be different */
2633                cfg_node = ice_sched_get_srl_node(node, layer_num);
2634                if (!cfg_node)
2635                        return ICE_ERR_CFG;
2636        }
2637        /* EIR BW and Shared BW profiles are mutually exclusive and
2638         * hence only one of them may be set for any given element
2639         */
2640        status = ice_sched_set_eir_srl_excl(pi, cfg_node, layer_num, rl_type,
2641                                            bw);
2642        if (status)
2643                return status;
2644        if (bw == ICE_SCHED_DFLT_BW)
2645                return ice_sched_set_node_bw_dflt(pi, cfg_node, rl_type,
2646                                                  layer_num);
2647        return ice_sched_set_node_bw(pi, cfg_node, rl_type, bw, layer_num);
2648}
2649
2650/**
2651 * ice_sched_set_node_bw_dflt_lmt - set node's BW limit to default
2652 * @pi: port information structure
2653 * @node: pointer to node structure
2654 * @rl_type: rate limit type min, max, or shared
2655 *
2656 * This function configures node element's BW rate limit profile ID of
2657 * type CIR, EIR, or SRL to default. This function needs to be called
2658 * with the scheduler lock held.
2659 */
2660static enum ice_status
2661ice_sched_set_node_bw_dflt_lmt(struct ice_port_info *pi,
2662                               struct ice_sched_node *node,
2663                               enum ice_rl_type rl_type)
2664{
2665        return ice_sched_set_node_bw_lmt(pi, node, rl_type,
2666                                         ICE_SCHED_DFLT_BW);
2667}
2668
2669/**
2670 * ice_sched_validate_srl_node - Check node for SRL applicability
2671 * @node: sched node to configure
2672 * @sel_layer: selected SRL layer
2673 *
2674 * This function checks if the SRL can be applied to a selected layer node on
2675 * behalf of the requested node (first argument). This function needs to be
2676 * called with scheduler lock held.
2677 */
2678static enum ice_status
2679ice_sched_validate_srl_node(struct ice_sched_node *node, u8 sel_layer)
2680{
2681        /* SRL profiles are not available on all layers. Check if the
2682         * SRL profile can be applied to a node above or below the
2683         * requested node. SRL configuration is possible only if the
2684         * selected layer's node has single child.
2685         */
2686        if (sel_layer == node->tx_sched_layer ||
2687            ((sel_layer == node->tx_sched_layer + 1) &&
2688            node->num_children == 1) ||
2689            ((sel_layer == node->tx_sched_layer - 1) &&
2690            (node->parent && node->parent->num_children == 1)))
2691                return 0;
2692
2693        return ICE_ERR_CFG;
2694}
2695
2696/**
2697 * ice_sched_save_q_bw - save queue node's BW information
2698 * @q_ctx: queue context structure
2699 * @rl_type: rate limit type min, max, or shared
2700 * @bw: bandwidth in Kbps - Kilo bits per sec
2701 *
2702 * Save BW information of queue type node for post replay use.
2703 */
2704static enum ice_status
2705ice_sched_save_q_bw(struct ice_q_ctx *q_ctx, enum ice_rl_type rl_type, u32 bw)
2706{
2707        switch (rl_type) {
2708        case ICE_MIN_BW:
2709                ice_set_clear_cir_bw(&q_ctx->bw_t_info, bw);
2710                break;
2711        case ICE_MAX_BW:
2712                ice_set_clear_eir_bw(&q_ctx->bw_t_info, bw);
2713                break;
2714        case ICE_SHARED_BW:
2715                ice_set_clear_shared_bw(&q_ctx->bw_t_info, bw);
2716                break;
2717        default:
2718                return ICE_ERR_PARAM;
2719        }
2720        return 0;
2721}
2722
2723/**
2724 * ice_sched_set_q_bw_lmt - sets queue BW limit
2725 * @pi: port information structure
2726 * @vsi_handle: sw VSI handle
2727 * @tc: traffic class
2728 * @q_handle: software queue handle
2729 * @rl_type: min, max, or shared
2730 * @bw: bandwidth in Kbps
2731 *
2732 * This function sets BW limit of queue scheduling node.
2733 */
2734static enum ice_status
2735ice_sched_set_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
2736                       u16 q_handle, enum ice_rl_type rl_type, u32 bw)
2737{
2738        enum ice_status status = ICE_ERR_PARAM;
2739        struct ice_sched_node *node;
2740        struct ice_q_ctx *q_ctx;
2741
2742        if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2743                return ICE_ERR_PARAM;
2744        mutex_lock(&pi->sched_lock);
2745        q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handle);
2746        if (!q_ctx)
2747                goto exit_q_bw_lmt;
2748        node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
2749        if (!node) {
2750                ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong q_teid\n");
2751                goto exit_q_bw_lmt;
2752        }
2753
2754        /* Return error if it is not a leaf node */
2755        if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF)
2756                goto exit_q_bw_lmt;
2757
2758        /* SRL bandwidth layer selection */
2759        if (rl_type == ICE_SHARED_BW) {
2760                u8 sel_layer; /* selected layer */
2761
2762                sel_layer = ice_sched_get_rl_prof_layer(pi, rl_type,
2763                                                        node->tx_sched_layer);
2764                if (sel_layer >= pi->hw->num_tx_sched_layers) {
2765                        status = ICE_ERR_PARAM;
2766                        goto exit_q_bw_lmt;
2767                }
2768                status = ice_sched_validate_srl_node(node, sel_layer);
2769                if (status)
2770                        goto exit_q_bw_lmt;
2771        }
2772
2773        if (bw == ICE_SCHED_DFLT_BW)
2774                status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
2775        else
2776                status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
2777
2778        if (!status)
2779                status = ice_sched_save_q_bw(q_ctx, rl_type, bw);
2780
2781exit_q_bw_lmt:
2782        mutex_unlock(&pi->sched_lock);
2783        return status;
2784}
2785
2786/**
2787 * ice_cfg_q_bw_lmt - configure queue BW limit
2788 * @pi: port information structure
2789 * @vsi_handle: sw VSI handle
2790 * @tc: traffic class
2791 * @q_handle: software queue handle
2792 * @rl_type: min, max, or shared
2793 * @bw: bandwidth in Kbps
2794 *
2795 * This function configures BW limit of queue scheduling node.
2796 */
2797enum ice_status
2798ice_cfg_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
2799                 u16 q_handle, enum ice_rl_type rl_type, u32 bw)
2800{
2801        return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
2802                                      bw);
2803}
2804
2805/**
2806 * ice_cfg_q_bw_dflt_lmt - configure queue BW default limit
2807 * @pi: port information structure
2808 * @vsi_handle: sw VSI handle
2809 * @tc: traffic class
2810 * @q_handle: software queue handle
2811 * @rl_type: min, max, or shared
2812 *
2813 * This function configures BW default limit of queue scheduling node.
2814 */
2815enum ice_status
2816ice_cfg_q_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
2817                      u16 q_handle, enum ice_rl_type rl_type)
2818{
2819        return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
2820                                      ICE_SCHED_DFLT_BW);
2821}
2822
2823/**
2824 * ice_cfg_rl_burst_size - Set burst size value
2825 * @hw: pointer to the HW struct
2826 * @bytes: burst size in bytes
2827 *
2828 * This function configures/set the burst size to requested new value. The new
2829 * burst size value is used for future rate limit calls. It doesn't change the
2830 * existing or previously created RL profiles.
2831 */
2832enum ice_status ice_cfg_rl_burst_size(struct ice_hw *hw, u32 bytes)
2833{
2834        u16 burst_size_to_prog;
2835
2836        if (bytes < ICE_MIN_BURST_SIZE_ALLOWED ||
2837            bytes > ICE_MAX_BURST_SIZE_ALLOWED)
2838                return ICE_ERR_PARAM;
2839        if (ice_round_to_num(bytes, 64) <=
2840            ICE_MAX_BURST_SIZE_64_BYTE_GRANULARITY) {
2841                /* 64 byte granularity case */
2842                /* Disable MSB granularity bit */
2843                burst_size_to_prog = ICE_64_BYTE_GRANULARITY;
2844                /* round number to nearest 64 byte granularity */
2845                bytes = ice_round_to_num(bytes, 64);
2846                /* The value is in 64 byte chunks */
2847                burst_size_to_prog |= (u16)(bytes / 64);
2848        } else {
2849                /* k bytes granularity case */
2850                /* Enable MSB granularity bit */
2851                burst_size_to_prog = ICE_KBYTE_GRANULARITY;
2852                /* round number to nearest 1024 granularity */
2853                bytes = ice_round_to_num(bytes, 1024);
2854                /* check rounding doesn't go beyond allowed */
2855                if (bytes > ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY)
2856                        bytes = ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY;
2857                /* The value is in k bytes */
2858                burst_size_to_prog |= (u16)(bytes / 1024);
2859        }
2860        hw->max_burst_size = burst_size_to_prog;
2861        return 0;
2862}
2863
2864/**
2865 * ice_sched_replay_node_prio - re-configure node priority
2866 * @hw: pointer to the HW struct
2867 * @node: sched node to configure
2868 * @priority: priority value
2869 *
2870 * This function configures node element's priority value. It
2871 * needs to be called with scheduler lock held.
2872 */
2873static enum ice_status
2874ice_sched_replay_node_prio(struct ice_hw *hw, struct ice_sched_node *node,
2875                           u8 priority)
2876{
2877        struct ice_aqc_txsched_elem_data buf;
2878        struct ice_aqc_txsched_elem *data;
2879        enum ice_status status;
2880
2881        buf = node->info;
2882        data = &buf.data;
2883        data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
2884        data->generic = priority;
2885
2886        /* Configure element */
2887        status = ice_sched_update_elem(hw, node, &buf);
2888        return status;
2889}
2890
2891/**
2892 * ice_sched_replay_node_bw - replay node(s) BW
2893 * @hw: pointer to the HW struct
2894 * @node: sched node to configure
2895 * @bw_t_info: BW type information
2896 *
2897 * This function restores node's BW from bw_t_info. The caller needs
2898 * to hold the scheduler lock.
2899 */
2900static enum ice_status
2901ice_sched_replay_node_bw(struct ice_hw *hw, struct ice_sched_node *node,
2902                         struct ice_bw_type_info *bw_t_info)
2903{
2904        struct ice_port_info *pi = hw->port_info;
2905        enum ice_status status = ICE_ERR_PARAM;
2906        u16 bw_alloc;
2907
2908        if (!node)
2909                return status;
2910        if (bitmap_empty(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CNT))
2911                return 0;
2912        if (test_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap)) {
2913                status = ice_sched_replay_node_prio(hw, node,
2914                                                    bw_t_info->generic);
2915                if (status)
2916                        return status;
2917        }
2918        if (test_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap)) {
2919                status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW,
2920                                                   bw_t_info->cir_bw.bw);
2921                if (status)
2922                        return status;
2923        }
2924        if (test_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap)) {
2925                bw_alloc = bw_t_info->cir_bw.bw_alloc;
2926                status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MIN_BW,
2927                                                     bw_alloc);
2928                if (status)
2929                        return status;
2930        }
2931        if (test_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap)) {
2932                status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW,
2933                                                   bw_t_info->eir_bw.bw);
2934                if (status)
2935                        return status;
2936        }
2937        if (test_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap)) {
2938                bw_alloc = bw_t_info->eir_bw.bw_alloc;
2939                status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MAX_BW,
2940                                                     bw_alloc);
2941                if (status)
2942                        return status;
2943        }
2944        if (test_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap))
2945                status = ice_sched_set_node_bw_lmt(pi, node, ICE_SHARED_BW,
2946                                                   bw_t_info->shared_bw);
2947        return status;
2948}
2949
2950/**
2951 * ice_sched_replay_q_bw - replay queue type node BW
2952 * @pi: port information structure
2953 * @q_ctx: queue context structure
2954 *
2955 * This function replays queue type node bandwidth. This function needs to be
2956 * called with scheduler lock held.
2957 */
2958enum ice_status
2959ice_sched_replay_q_bw(struct ice_port_info *pi, struct ice_q_ctx *q_ctx)
2960{
2961        struct ice_sched_node *q_node;
2962
2963        /* Following also checks the presence of node in tree */
2964        q_node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
2965        if (!q_node)
2966                return ICE_ERR_PARAM;
2967        return ice_sched_replay_node_bw(pi->hw, q_node, &q_ctx->bw_t_info);
2968}
2969