linux/drivers/net/ethernet/intel/igb/igb_main.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2007 - 2018 Intel Corporation. */
   3
   4#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   5
   6#include <linux/module.h>
   7#include <linux/types.h>
   8#include <linux/init.h>
   9#include <linux/bitops.h>
  10#include <linux/vmalloc.h>
  11#include <linux/pagemap.h>
  12#include <linux/netdevice.h>
  13#include <linux/ipv6.h>
  14#include <linux/slab.h>
  15#include <net/checksum.h>
  16#include <net/ip6_checksum.h>
  17#include <net/pkt_sched.h>
  18#include <net/pkt_cls.h>
  19#include <linux/net_tstamp.h>
  20#include <linux/mii.h>
  21#include <linux/ethtool.h>
  22#include <linux/if.h>
  23#include <linux/if_vlan.h>
  24#include <linux/pci.h>
  25#include <linux/delay.h>
  26#include <linux/interrupt.h>
  27#include <linux/ip.h>
  28#include <linux/tcp.h>
  29#include <linux/sctp.h>
  30#include <linux/if_ether.h>
  31#include <linux/aer.h>
  32#include <linux/prefetch.h>
  33#include <linux/pm_runtime.h>
  34#include <linux/etherdevice.h>
  35#ifdef CONFIG_IGB_DCA
  36#include <linux/dca.h>
  37#endif
  38#include <linux/i2c.h>
  39#include "igb.h"
  40
  41enum queue_mode {
  42        QUEUE_MODE_STRICT_PRIORITY,
  43        QUEUE_MODE_STREAM_RESERVATION,
  44};
  45
  46enum tx_queue_prio {
  47        TX_QUEUE_PRIO_HIGH,
  48        TX_QUEUE_PRIO_LOW,
  49};
  50
  51char igb_driver_name[] = "igb";
  52static const char igb_driver_string[] =
  53                                "Intel(R) Gigabit Ethernet Network Driver";
  54static const char igb_copyright[] =
  55                                "Copyright (c) 2007-2014 Intel Corporation.";
  56
  57static const struct e1000_info *igb_info_tbl[] = {
  58        [board_82575] = &e1000_82575_info,
  59};
  60
  61static const struct pci_device_id igb_pci_tbl[] = {
  62        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
  63        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
  64        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
  65        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
  66        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
  67        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
  68        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
  69        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
  70        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
  71        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
  72        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
  73        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
  74        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
  75        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
  76        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
  77        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
  78        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
  79        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
  80        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
  81        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
  82        { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
  83        { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
  84        { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
  85        { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
  86        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
  87        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
  88        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
  89        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
  90        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
  91        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
  92        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
  93        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
  94        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
  95        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
  96        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
  97        /* required last entry */
  98        {0, }
  99};
 100
 101MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
 102
 103static int igb_setup_all_tx_resources(struct igb_adapter *);
 104static int igb_setup_all_rx_resources(struct igb_adapter *);
 105static void igb_free_all_tx_resources(struct igb_adapter *);
 106static void igb_free_all_rx_resources(struct igb_adapter *);
 107static void igb_setup_mrqc(struct igb_adapter *);
 108static int igb_probe(struct pci_dev *, const struct pci_device_id *);
 109static void igb_remove(struct pci_dev *pdev);
 110static int igb_sw_init(struct igb_adapter *);
 111int igb_open(struct net_device *);
 112int igb_close(struct net_device *);
 113static void igb_configure(struct igb_adapter *);
 114static void igb_configure_tx(struct igb_adapter *);
 115static void igb_configure_rx(struct igb_adapter *);
 116static void igb_clean_all_tx_rings(struct igb_adapter *);
 117static void igb_clean_all_rx_rings(struct igb_adapter *);
 118static void igb_clean_tx_ring(struct igb_ring *);
 119static void igb_clean_rx_ring(struct igb_ring *);
 120static void igb_set_rx_mode(struct net_device *);
 121static void igb_update_phy_info(struct timer_list *);
 122static void igb_watchdog(struct timer_list *);
 123static void igb_watchdog_task(struct work_struct *);
 124static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
 125static void igb_get_stats64(struct net_device *dev,
 126                            struct rtnl_link_stats64 *stats);
 127static int igb_change_mtu(struct net_device *, int);
 128static int igb_set_mac(struct net_device *, void *);
 129static void igb_set_uta(struct igb_adapter *adapter, bool set);
 130static irqreturn_t igb_intr(int irq, void *);
 131static irqreturn_t igb_intr_msi(int irq, void *);
 132static irqreturn_t igb_msix_other(int irq, void *);
 133static irqreturn_t igb_msix_ring(int irq, void *);
 134#ifdef CONFIG_IGB_DCA
 135static void igb_update_dca(struct igb_q_vector *);
 136static void igb_setup_dca(struct igb_adapter *);
 137#endif /* CONFIG_IGB_DCA */
 138static int igb_poll(struct napi_struct *, int);
 139static bool igb_clean_tx_irq(struct igb_q_vector *, int);
 140static int igb_clean_rx_irq(struct igb_q_vector *, int);
 141static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
 142static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
 143static void igb_reset_task(struct work_struct *);
 144static void igb_vlan_mode(struct net_device *netdev,
 145                          netdev_features_t features);
 146static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
 147static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
 148static void igb_restore_vlan(struct igb_adapter *);
 149static void igb_rar_set_index(struct igb_adapter *, u32);
 150static void igb_ping_all_vfs(struct igb_adapter *);
 151static void igb_msg_task(struct igb_adapter *);
 152static void igb_vmm_control(struct igb_adapter *);
 153static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
 154static void igb_flush_mac_table(struct igb_adapter *);
 155static int igb_available_rars(struct igb_adapter *, u8);
 156static void igb_set_default_mac_filter(struct igb_adapter *);
 157static int igb_uc_sync(struct net_device *, const unsigned char *);
 158static int igb_uc_unsync(struct net_device *, const unsigned char *);
 159static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
 160static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
 161static int igb_ndo_set_vf_vlan(struct net_device *netdev,
 162                               int vf, u16 vlan, u8 qos, __be16 vlan_proto);
 163static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
 164static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
 165                                   bool setting);
 166static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
 167                                bool setting);
 168static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
 169                                 struct ifla_vf_info *ivi);
 170static void igb_check_vf_rate_limit(struct igb_adapter *);
 171static void igb_nfc_filter_exit(struct igb_adapter *adapter);
 172static void igb_nfc_filter_restore(struct igb_adapter *adapter);
 173
 174#ifdef CONFIG_PCI_IOV
 175static int igb_vf_configure(struct igb_adapter *adapter, int vf);
 176static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
 177static int igb_disable_sriov(struct pci_dev *dev);
 178static int igb_pci_disable_sriov(struct pci_dev *dev);
 179#endif
 180
 181static int igb_suspend(struct device *);
 182static int igb_resume(struct device *);
 183static int igb_runtime_suspend(struct device *dev);
 184static int igb_runtime_resume(struct device *dev);
 185static int igb_runtime_idle(struct device *dev);
 186static const struct dev_pm_ops igb_pm_ops = {
 187        SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
 188        SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
 189                        igb_runtime_idle)
 190};
 191static void igb_shutdown(struct pci_dev *);
 192static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
 193#ifdef CONFIG_IGB_DCA
 194static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
 195static struct notifier_block dca_notifier = {
 196        .notifier_call  = igb_notify_dca,
 197        .next           = NULL,
 198        .priority       = 0
 199};
 200#endif
 201#ifdef CONFIG_PCI_IOV
 202static unsigned int max_vfs;
 203module_param(max_vfs, uint, 0);
 204MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
 205#endif /* CONFIG_PCI_IOV */
 206
 207static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
 208                     pci_channel_state_t);
 209static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
 210static void igb_io_resume(struct pci_dev *);
 211
 212static const struct pci_error_handlers igb_err_handler = {
 213        .error_detected = igb_io_error_detected,
 214        .slot_reset = igb_io_slot_reset,
 215        .resume = igb_io_resume,
 216};
 217
 218static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
 219
 220static struct pci_driver igb_driver = {
 221        .name     = igb_driver_name,
 222        .id_table = igb_pci_tbl,
 223        .probe    = igb_probe,
 224        .remove   = igb_remove,
 225#ifdef CONFIG_PM
 226        .driver.pm = &igb_pm_ops,
 227#endif
 228        .shutdown = igb_shutdown,
 229        .sriov_configure = igb_pci_sriov_configure,
 230        .err_handler = &igb_err_handler
 231};
 232
 233MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
 234MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
 235MODULE_LICENSE("GPL v2");
 236
 237#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
 238static int debug = -1;
 239module_param(debug, int, 0);
 240MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 241
 242struct igb_reg_info {
 243        u32 ofs;
 244        char *name;
 245};
 246
 247static const struct igb_reg_info igb_reg_info_tbl[] = {
 248
 249        /* General Registers */
 250        {E1000_CTRL, "CTRL"},
 251        {E1000_STATUS, "STATUS"},
 252        {E1000_CTRL_EXT, "CTRL_EXT"},
 253
 254        /* Interrupt Registers */
 255        {E1000_ICR, "ICR"},
 256
 257        /* RX Registers */
 258        {E1000_RCTL, "RCTL"},
 259        {E1000_RDLEN(0), "RDLEN"},
 260        {E1000_RDH(0), "RDH"},
 261        {E1000_RDT(0), "RDT"},
 262        {E1000_RXDCTL(0), "RXDCTL"},
 263        {E1000_RDBAL(0), "RDBAL"},
 264        {E1000_RDBAH(0), "RDBAH"},
 265
 266        /* TX Registers */
 267        {E1000_TCTL, "TCTL"},
 268        {E1000_TDBAL(0), "TDBAL"},
 269        {E1000_TDBAH(0), "TDBAH"},
 270        {E1000_TDLEN(0), "TDLEN"},
 271        {E1000_TDH(0), "TDH"},
 272        {E1000_TDT(0), "TDT"},
 273        {E1000_TXDCTL(0), "TXDCTL"},
 274        {E1000_TDFH, "TDFH"},
 275        {E1000_TDFT, "TDFT"},
 276        {E1000_TDFHS, "TDFHS"},
 277        {E1000_TDFPC, "TDFPC"},
 278
 279        /* List Terminator */
 280        {}
 281};
 282
 283/* igb_regdump - register printout routine */
 284static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
 285{
 286        int n = 0;
 287        char rname[16];
 288        u32 regs[8];
 289
 290        switch (reginfo->ofs) {
 291        case E1000_RDLEN(0):
 292                for (n = 0; n < 4; n++)
 293                        regs[n] = rd32(E1000_RDLEN(n));
 294                break;
 295        case E1000_RDH(0):
 296                for (n = 0; n < 4; n++)
 297                        regs[n] = rd32(E1000_RDH(n));
 298                break;
 299        case E1000_RDT(0):
 300                for (n = 0; n < 4; n++)
 301                        regs[n] = rd32(E1000_RDT(n));
 302                break;
 303        case E1000_RXDCTL(0):
 304                for (n = 0; n < 4; n++)
 305                        regs[n] = rd32(E1000_RXDCTL(n));
 306                break;
 307        case E1000_RDBAL(0):
 308                for (n = 0; n < 4; n++)
 309                        regs[n] = rd32(E1000_RDBAL(n));
 310                break;
 311        case E1000_RDBAH(0):
 312                for (n = 0; n < 4; n++)
 313                        regs[n] = rd32(E1000_RDBAH(n));
 314                break;
 315        case E1000_TDBAL(0):
 316                for (n = 0; n < 4; n++)
 317                        regs[n] = rd32(E1000_RDBAL(n));
 318                break;
 319        case E1000_TDBAH(0):
 320                for (n = 0; n < 4; n++)
 321                        regs[n] = rd32(E1000_TDBAH(n));
 322                break;
 323        case E1000_TDLEN(0):
 324                for (n = 0; n < 4; n++)
 325                        regs[n] = rd32(E1000_TDLEN(n));
 326                break;
 327        case E1000_TDH(0):
 328                for (n = 0; n < 4; n++)
 329                        regs[n] = rd32(E1000_TDH(n));
 330                break;
 331        case E1000_TDT(0):
 332                for (n = 0; n < 4; n++)
 333                        regs[n] = rd32(E1000_TDT(n));
 334                break;
 335        case E1000_TXDCTL(0):
 336                for (n = 0; n < 4; n++)
 337                        regs[n] = rd32(E1000_TXDCTL(n));
 338                break;
 339        default:
 340                pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
 341                return;
 342        }
 343
 344        snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
 345        pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
 346                regs[2], regs[3]);
 347}
 348
 349/* igb_dump - Print registers, Tx-rings and Rx-rings */
 350static void igb_dump(struct igb_adapter *adapter)
 351{
 352        struct net_device *netdev = adapter->netdev;
 353        struct e1000_hw *hw = &adapter->hw;
 354        struct igb_reg_info *reginfo;
 355        struct igb_ring *tx_ring;
 356        union e1000_adv_tx_desc *tx_desc;
 357        struct my_u0 { u64 a; u64 b; } *u0;
 358        struct igb_ring *rx_ring;
 359        union e1000_adv_rx_desc *rx_desc;
 360        u32 staterr;
 361        u16 i, n;
 362
 363        if (!netif_msg_hw(adapter))
 364                return;
 365
 366        /* Print netdevice Info */
 367        if (netdev) {
 368                dev_info(&adapter->pdev->dev, "Net device Info\n");
 369                pr_info("Device Name     state            trans_start\n");
 370                pr_info("%-15s %016lX %016lX\n", netdev->name,
 371                        netdev->state, dev_trans_start(netdev));
 372        }
 373
 374        /* Print Registers */
 375        dev_info(&adapter->pdev->dev, "Register Dump\n");
 376        pr_info(" Register Name   Value\n");
 377        for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
 378             reginfo->name; reginfo++) {
 379                igb_regdump(hw, reginfo);
 380        }
 381
 382        /* Print TX Ring Summary */
 383        if (!netdev || !netif_running(netdev))
 384                goto exit;
 385
 386        dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
 387        pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
 388        for (n = 0; n < adapter->num_tx_queues; n++) {
 389                struct igb_tx_buffer *buffer_info;
 390                tx_ring = adapter->tx_ring[n];
 391                buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
 392                pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
 393                        n, tx_ring->next_to_use, tx_ring->next_to_clean,
 394                        (u64)dma_unmap_addr(buffer_info, dma),
 395                        dma_unmap_len(buffer_info, len),
 396                        buffer_info->next_to_watch,
 397                        (u64)buffer_info->time_stamp);
 398        }
 399
 400        /* Print TX Rings */
 401        if (!netif_msg_tx_done(adapter))
 402                goto rx_ring_summary;
 403
 404        dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
 405
 406        /* Transmit Descriptor Formats
 407         *
 408         * Advanced Transmit Descriptor
 409         *   +--------------------------------------------------------------+
 410         * 0 |         Buffer Address [63:0]                                |
 411         *   +--------------------------------------------------------------+
 412         * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
 413         *   +--------------------------------------------------------------+
 414         *   63      46 45    40 39 38 36 35 32 31   24             15       0
 415         */
 416
 417        for (n = 0; n < adapter->num_tx_queues; n++) {
 418                tx_ring = adapter->tx_ring[n];
 419                pr_info("------------------------------------\n");
 420                pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
 421                pr_info("------------------------------------\n");
 422                pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
 423
 424                for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
 425                        const char *next_desc;
 426                        struct igb_tx_buffer *buffer_info;
 427                        tx_desc = IGB_TX_DESC(tx_ring, i);
 428                        buffer_info = &tx_ring->tx_buffer_info[i];
 429                        u0 = (struct my_u0 *)tx_desc;
 430                        if (i == tx_ring->next_to_use &&
 431                            i == tx_ring->next_to_clean)
 432                                next_desc = " NTC/U";
 433                        else if (i == tx_ring->next_to_use)
 434                                next_desc = " NTU";
 435                        else if (i == tx_ring->next_to_clean)
 436                                next_desc = " NTC";
 437                        else
 438                                next_desc = "";
 439
 440                        pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
 441                                i, le64_to_cpu(u0->a),
 442                                le64_to_cpu(u0->b),
 443                                (u64)dma_unmap_addr(buffer_info, dma),
 444                                dma_unmap_len(buffer_info, len),
 445                                buffer_info->next_to_watch,
 446                                (u64)buffer_info->time_stamp,
 447                                buffer_info->skb, next_desc);
 448
 449                        if (netif_msg_pktdata(adapter) && buffer_info->skb)
 450                                print_hex_dump(KERN_INFO, "",
 451                                        DUMP_PREFIX_ADDRESS,
 452                                        16, 1, buffer_info->skb->data,
 453                                        dma_unmap_len(buffer_info, len),
 454                                        true);
 455                }
 456        }
 457
 458        /* Print RX Rings Summary */
 459rx_ring_summary:
 460        dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
 461        pr_info("Queue [NTU] [NTC]\n");
 462        for (n = 0; n < adapter->num_rx_queues; n++) {
 463                rx_ring = adapter->rx_ring[n];
 464                pr_info(" %5d %5X %5X\n",
 465                        n, rx_ring->next_to_use, rx_ring->next_to_clean);
 466        }
 467
 468        /* Print RX Rings */
 469        if (!netif_msg_rx_status(adapter))
 470                goto exit;
 471
 472        dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
 473
 474        /* Advanced Receive Descriptor (Read) Format
 475         *    63                                           1        0
 476         *    +-----------------------------------------------------+
 477         *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
 478         *    +----------------------------------------------+------+
 479         *  8 |       Header Buffer Address [63:1]           |  DD  |
 480         *    +-----------------------------------------------------+
 481         *
 482         *
 483         * Advanced Receive Descriptor (Write-Back) Format
 484         *
 485         *   63       48 47    32 31  30      21 20 17 16   4 3     0
 486         *   +------------------------------------------------------+
 487         * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
 488         *   | Checksum   Ident  |   |           |    | Type | Type |
 489         *   +------------------------------------------------------+
 490         * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 491         *   +------------------------------------------------------+
 492         *   63       48 47    32 31            20 19               0
 493         */
 494
 495        for (n = 0; n < adapter->num_rx_queues; n++) {
 496                rx_ring = adapter->rx_ring[n];
 497                pr_info("------------------------------------\n");
 498                pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
 499                pr_info("------------------------------------\n");
 500                pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
 501                pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
 502
 503                for (i = 0; i < rx_ring->count; i++) {
 504                        const char *next_desc;
 505                        struct igb_rx_buffer *buffer_info;
 506                        buffer_info = &rx_ring->rx_buffer_info[i];
 507                        rx_desc = IGB_RX_DESC(rx_ring, i);
 508                        u0 = (struct my_u0 *)rx_desc;
 509                        staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 510
 511                        if (i == rx_ring->next_to_use)
 512                                next_desc = " NTU";
 513                        else if (i == rx_ring->next_to_clean)
 514                                next_desc = " NTC";
 515                        else
 516                                next_desc = "";
 517
 518                        if (staterr & E1000_RXD_STAT_DD) {
 519                                /* Descriptor Done */
 520                                pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
 521                                        "RWB", i,
 522                                        le64_to_cpu(u0->a),
 523                                        le64_to_cpu(u0->b),
 524                                        next_desc);
 525                        } else {
 526                                pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
 527                                        "R  ", i,
 528                                        le64_to_cpu(u0->a),
 529                                        le64_to_cpu(u0->b),
 530                                        (u64)buffer_info->dma,
 531                                        next_desc);
 532
 533                                if (netif_msg_pktdata(adapter) &&
 534                                    buffer_info->dma && buffer_info->page) {
 535                                        print_hex_dump(KERN_INFO, "",
 536                                          DUMP_PREFIX_ADDRESS,
 537                                          16, 1,
 538                                          page_address(buffer_info->page) +
 539                                                      buffer_info->page_offset,
 540                                          igb_rx_bufsz(rx_ring), true);
 541                                }
 542                        }
 543                }
 544        }
 545
 546exit:
 547        return;
 548}
 549
 550/**
 551 *  igb_get_i2c_data - Reads the I2C SDA data bit
 552 *  @hw: pointer to hardware structure
 553 *  @i2cctl: Current value of I2CCTL register
 554 *
 555 *  Returns the I2C data bit value
 556 **/
 557static int igb_get_i2c_data(void *data)
 558{
 559        struct igb_adapter *adapter = (struct igb_adapter *)data;
 560        struct e1000_hw *hw = &adapter->hw;
 561        s32 i2cctl = rd32(E1000_I2CPARAMS);
 562
 563        return !!(i2cctl & E1000_I2C_DATA_IN);
 564}
 565
 566/**
 567 *  igb_set_i2c_data - Sets the I2C data bit
 568 *  @data: pointer to hardware structure
 569 *  @state: I2C data value (0 or 1) to set
 570 *
 571 *  Sets the I2C data bit
 572 **/
 573static void igb_set_i2c_data(void *data, int state)
 574{
 575        struct igb_adapter *adapter = (struct igb_adapter *)data;
 576        struct e1000_hw *hw = &adapter->hw;
 577        s32 i2cctl = rd32(E1000_I2CPARAMS);
 578
 579        if (state)
 580                i2cctl |= E1000_I2C_DATA_OUT;
 581        else
 582                i2cctl &= ~E1000_I2C_DATA_OUT;
 583
 584        i2cctl &= ~E1000_I2C_DATA_OE_N;
 585        i2cctl |= E1000_I2C_CLK_OE_N;
 586        wr32(E1000_I2CPARAMS, i2cctl);
 587        wrfl();
 588
 589}
 590
 591/**
 592 *  igb_set_i2c_clk - Sets the I2C SCL clock
 593 *  @data: pointer to hardware structure
 594 *  @state: state to set clock
 595 *
 596 *  Sets the I2C clock line to state
 597 **/
 598static void igb_set_i2c_clk(void *data, int state)
 599{
 600        struct igb_adapter *adapter = (struct igb_adapter *)data;
 601        struct e1000_hw *hw = &adapter->hw;
 602        s32 i2cctl = rd32(E1000_I2CPARAMS);
 603
 604        if (state) {
 605                i2cctl |= E1000_I2C_CLK_OUT;
 606                i2cctl &= ~E1000_I2C_CLK_OE_N;
 607        } else {
 608                i2cctl &= ~E1000_I2C_CLK_OUT;
 609                i2cctl &= ~E1000_I2C_CLK_OE_N;
 610        }
 611        wr32(E1000_I2CPARAMS, i2cctl);
 612        wrfl();
 613}
 614
 615/**
 616 *  igb_get_i2c_clk - Gets the I2C SCL clock state
 617 *  @data: pointer to hardware structure
 618 *
 619 *  Gets the I2C clock state
 620 **/
 621static int igb_get_i2c_clk(void *data)
 622{
 623        struct igb_adapter *adapter = (struct igb_adapter *)data;
 624        struct e1000_hw *hw = &adapter->hw;
 625        s32 i2cctl = rd32(E1000_I2CPARAMS);
 626
 627        return !!(i2cctl & E1000_I2C_CLK_IN);
 628}
 629
 630static const struct i2c_algo_bit_data igb_i2c_algo = {
 631        .setsda         = igb_set_i2c_data,
 632        .setscl         = igb_set_i2c_clk,
 633        .getsda         = igb_get_i2c_data,
 634        .getscl         = igb_get_i2c_clk,
 635        .udelay         = 5,
 636        .timeout        = 20,
 637};
 638
 639/**
 640 *  igb_get_hw_dev - return device
 641 *  @hw: pointer to hardware structure
 642 *
 643 *  used by hardware layer to print debugging information
 644 **/
 645struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
 646{
 647        struct igb_adapter *adapter = hw->back;
 648        return adapter->netdev;
 649}
 650
 651/**
 652 *  igb_init_module - Driver Registration Routine
 653 *
 654 *  igb_init_module is the first routine called when the driver is
 655 *  loaded. All it does is register with the PCI subsystem.
 656 **/
 657static int __init igb_init_module(void)
 658{
 659        int ret;
 660
 661        pr_info("%s\n", igb_driver_string);
 662        pr_info("%s\n", igb_copyright);
 663
 664#ifdef CONFIG_IGB_DCA
 665        dca_register_notify(&dca_notifier);
 666#endif
 667        ret = pci_register_driver(&igb_driver);
 668        return ret;
 669}
 670
 671module_init(igb_init_module);
 672
 673/**
 674 *  igb_exit_module - Driver Exit Cleanup Routine
 675 *
 676 *  igb_exit_module is called just before the driver is removed
 677 *  from memory.
 678 **/
 679static void __exit igb_exit_module(void)
 680{
 681#ifdef CONFIG_IGB_DCA
 682        dca_unregister_notify(&dca_notifier);
 683#endif
 684        pci_unregister_driver(&igb_driver);
 685}
 686
 687module_exit(igb_exit_module);
 688
 689#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
 690/**
 691 *  igb_cache_ring_register - Descriptor ring to register mapping
 692 *  @adapter: board private structure to initialize
 693 *
 694 *  Once we know the feature-set enabled for the device, we'll cache
 695 *  the register offset the descriptor ring is assigned to.
 696 **/
 697static void igb_cache_ring_register(struct igb_adapter *adapter)
 698{
 699        int i = 0, j = 0;
 700        u32 rbase_offset = adapter->vfs_allocated_count;
 701
 702        switch (adapter->hw.mac.type) {
 703        case e1000_82576:
 704                /* The queues are allocated for virtualization such that VF 0
 705                 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
 706                 * In order to avoid collision we start at the first free queue
 707                 * and continue consuming queues in the same sequence
 708                 */
 709                if (adapter->vfs_allocated_count) {
 710                        for (; i < adapter->rss_queues; i++)
 711                                adapter->rx_ring[i]->reg_idx = rbase_offset +
 712                                                               Q_IDX_82576(i);
 713                }
 714                fallthrough;
 715        case e1000_82575:
 716        case e1000_82580:
 717        case e1000_i350:
 718        case e1000_i354:
 719        case e1000_i210:
 720        case e1000_i211:
 721        default:
 722                for (; i < adapter->num_rx_queues; i++)
 723                        adapter->rx_ring[i]->reg_idx = rbase_offset + i;
 724                for (; j < adapter->num_tx_queues; j++)
 725                        adapter->tx_ring[j]->reg_idx = rbase_offset + j;
 726                break;
 727        }
 728}
 729
 730u32 igb_rd32(struct e1000_hw *hw, u32 reg)
 731{
 732        struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
 733        u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
 734        u32 value = 0;
 735
 736        if (E1000_REMOVED(hw_addr))
 737                return ~value;
 738
 739        value = readl(&hw_addr[reg]);
 740
 741        /* reads should not return all F's */
 742        if (!(~value) && (!reg || !(~readl(hw_addr)))) {
 743                struct net_device *netdev = igb->netdev;
 744                hw->hw_addr = NULL;
 745                netdev_err(netdev, "PCIe link lost\n");
 746                WARN(pci_device_is_present(igb->pdev),
 747                     "igb: Failed to read reg 0x%x!\n", reg);
 748        }
 749
 750        return value;
 751}
 752
 753/**
 754 *  igb_write_ivar - configure ivar for given MSI-X vector
 755 *  @hw: pointer to the HW structure
 756 *  @msix_vector: vector number we are allocating to a given ring
 757 *  @index: row index of IVAR register to write within IVAR table
 758 *  @offset: column offset of in IVAR, should be multiple of 8
 759 *
 760 *  This function is intended to handle the writing of the IVAR register
 761 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
 762 *  each containing an cause allocation for an Rx and Tx ring, and a
 763 *  variable number of rows depending on the number of queues supported.
 764 **/
 765static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
 766                           int index, int offset)
 767{
 768        u32 ivar = array_rd32(E1000_IVAR0, index);
 769
 770        /* clear any bits that are currently set */
 771        ivar &= ~((u32)0xFF << offset);
 772
 773        /* write vector and valid bit */
 774        ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
 775
 776        array_wr32(E1000_IVAR0, index, ivar);
 777}
 778
 779#define IGB_N0_QUEUE -1
 780static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
 781{
 782        struct igb_adapter *adapter = q_vector->adapter;
 783        struct e1000_hw *hw = &adapter->hw;
 784        int rx_queue = IGB_N0_QUEUE;
 785        int tx_queue = IGB_N0_QUEUE;
 786        u32 msixbm = 0;
 787
 788        if (q_vector->rx.ring)
 789                rx_queue = q_vector->rx.ring->reg_idx;
 790        if (q_vector->tx.ring)
 791                tx_queue = q_vector->tx.ring->reg_idx;
 792
 793        switch (hw->mac.type) {
 794        case e1000_82575:
 795                /* The 82575 assigns vectors using a bitmask, which matches the
 796                 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
 797                 * or more queues to a vector, we write the appropriate bits
 798                 * into the MSIXBM register for that vector.
 799                 */
 800                if (rx_queue > IGB_N0_QUEUE)
 801                        msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
 802                if (tx_queue > IGB_N0_QUEUE)
 803                        msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
 804                if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
 805                        msixbm |= E1000_EIMS_OTHER;
 806                array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
 807                q_vector->eims_value = msixbm;
 808                break;
 809        case e1000_82576:
 810                /* 82576 uses a table that essentially consists of 2 columns
 811                 * with 8 rows.  The ordering is column-major so we use the
 812                 * lower 3 bits as the row index, and the 4th bit as the
 813                 * column offset.
 814                 */
 815                if (rx_queue > IGB_N0_QUEUE)
 816                        igb_write_ivar(hw, msix_vector,
 817                                       rx_queue & 0x7,
 818                                       (rx_queue & 0x8) << 1);
 819                if (tx_queue > IGB_N0_QUEUE)
 820                        igb_write_ivar(hw, msix_vector,
 821                                       tx_queue & 0x7,
 822                                       ((tx_queue & 0x8) << 1) + 8);
 823                q_vector->eims_value = BIT(msix_vector);
 824                break;
 825        case e1000_82580:
 826        case e1000_i350:
 827        case e1000_i354:
 828        case e1000_i210:
 829        case e1000_i211:
 830                /* On 82580 and newer adapters the scheme is similar to 82576
 831                 * however instead of ordering column-major we have things
 832                 * ordered row-major.  So we traverse the table by using
 833                 * bit 0 as the column offset, and the remaining bits as the
 834                 * row index.
 835                 */
 836                if (rx_queue > IGB_N0_QUEUE)
 837                        igb_write_ivar(hw, msix_vector,
 838                                       rx_queue >> 1,
 839                                       (rx_queue & 0x1) << 4);
 840                if (tx_queue > IGB_N0_QUEUE)
 841                        igb_write_ivar(hw, msix_vector,
 842                                       tx_queue >> 1,
 843                                       ((tx_queue & 0x1) << 4) + 8);
 844                q_vector->eims_value = BIT(msix_vector);
 845                break;
 846        default:
 847                BUG();
 848                break;
 849        }
 850
 851        /* add q_vector eims value to global eims_enable_mask */
 852        adapter->eims_enable_mask |= q_vector->eims_value;
 853
 854        /* configure q_vector to set itr on first interrupt */
 855        q_vector->set_itr = 1;
 856}
 857
 858/**
 859 *  igb_configure_msix - Configure MSI-X hardware
 860 *  @adapter: board private structure to initialize
 861 *
 862 *  igb_configure_msix sets up the hardware to properly
 863 *  generate MSI-X interrupts.
 864 **/
 865static void igb_configure_msix(struct igb_adapter *adapter)
 866{
 867        u32 tmp;
 868        int i, vector = 0;
 869        struct e1000_hw *hw = &adapter->hw;
 870
 871        adapter->eims_enable_mask = 0;
 872
 873        /* set vector for other causes, i.e. link changes */
 874        switch (hw->mac.type) {
 875        case e1000_82575:
 876                tmp = rd32(E1000_CTRL_EXT);
 877                /* enable MSI-X PBA support*/
 878                tmp |= E1000_CTRL_EXT_PBA_CLR;
 879
 880                /* Auto-Mask interrupts upon ICR read. */
 881                tmp |= E1000_CTRL_EXT_EIAME;
 882                tmp |= E1000_CTRL_EXT_IRCA;
 883
 884                wr32(E1000_CTRL_EXT, tmp);
 885
 886                /* enable msix_other interrupt */
 887                array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
 888                adapter->eims_other = E1000_EIMS_OTHER;
 889
 890                break;
 891
 892        case e1000_82576:
 893        case e1000_82580:
 894        case e1000_i350:
 895        case e1000_i354:
 896        case e1000_i210:
 897        case e1000_i211:
 898                /* Turn on MSI-X capability first, or our settings
 899                 * won't stick.  And it will take days to debug.
 900                 */
 901                wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
 902                     E1000_GPIE_PBA | E1000_GPIE_EIAME |
 903                     E1000_GPIE_NSICR);
 904
 905                /* enable msix_other interrupt */
 906                adapter->eims_other = BIT(vector);
 907                tmp = (vector++ | E1000_IVAR_VALID) << 8;
 908
 909                wr32(E1000_IVAR_MISC, tmp);
 910                break;
 911        default:
 912                /* do nothing, since nothing else supports MSI-X */
 913                break;
 914        } /* switch (hw->mac.type) */
 915
 916        adapter->eims_enable_mask |= adapter->eims_other;
 917
 918        for (i = 0; i < adapter->num_q_vectors; i++)
 919                igb_assign_vector(adapter->q_vector[i], vector++);
 920
 921        wrfl();
 922}
 923
 924/**
 925 *  igb_request_msix - Initialize MSI-X interrupts
 926 *  @adapter: board private structure to initialize
 927 *
 928 *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
 929 *  kernel.
 930 **/
 931static int igb_request_msix(struct igb_adapter *adapter)
 932{
 933        struct net_device *netdev = adapter->netdev;
 934        int i, err = 0, vector = 0, free_vector = 0;
 935
 936        err = request_irq(adapter->msix_entries[vector].vector,
 937                          igb_msix_other, 0, netdev->name, adapter);
 938        if (err)
 939                goto err_out;
 940
 941        for (i = 0; i < adapter->num_q_vectors; i++) {
 942                struct igb_q_vector *q_vector = adapter->q_vector[i];
 943
 944                vector++;
 945
 946                q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
 947
 948                if (q_vector->rx.ring && q_vector->tx.ring)
 949                        sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
 950                                q_vector->rx.ring->queue_index);
 951                else if (q_vector->tx.ring)
 952                        sprintf(q_vector->name, "%s-tx-%u", netdev->name,
 953                                q_vector->tx.ring->queue_index);
 954                else if (q_vector->rx.ring)
 955                        sprintf(q_vector->name, "%s-rx-%u", netdev->name,
 956                                q_vector->rx.ring->queue_index);
 957                else
 958                        sprintf(q_vector->name, "%s-unused", netdev->name);
 959
 960                err = request_irq(adapter->msix_entries[vector].vector,
 961                                  igb_msix_ring, 0, q_vector->name,
 962                                  q_vector);
 963                if (err)
 964                        goto err_free;
 965        }
 966
 967        igb_configure_msix(adapter);
 968        return 0;
 969
 970err_free:
 971        /* free already assigned IRQs */
 972        free_irq(adapter->msix_entries[free_vector++].vector, adapter);
 973
 974        vector--;
 975        for (i = 0; i < vector; i++) {
 976                free_irq(adapter->msix_entries[free_vector++].vector,
 977                         adapter->q_vector[i]);
 978        }
 979err_out:
 980        return err;
 981}
 982
 983/**
 984 *  igb_free_q_vector - Free memory allocated for specific interrupt vector
 985 *  @adapter: board private structure to initialize
 986 *  @v_idx: Index of vector to be freed
 987 *
 988 *  This function frees the memory allocated to the q_vector.
 989 **/
 990static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
 991{
 992        struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
 993
 994        adapter->q_vector[v_idx] = NULL;
 995
 996        /* igb_get_stats64() might access the rings on this vector,
 997         * we must wait a grace period before freeing it.
 998         */
 999        if (q_vector)
1000                kfree_rcu(q_vector, rcu);
1001}
1002
1003/**
1004 *  igb_reset_q_vector - Reset config for interrupt vector
1005 *  @adapter: board private structure to initialize
1006 *  @v_idx: Index of vector to be reset
1007 *
1008 *  If NAPI is enabled it will delete any references to the
1009 *  NAPI struct. This is preparation for igb_free_q_vector.
1010 **/
1011static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1012{
1013        struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1014
1015        /* Coming from igb_set_interrupt_capability, the vectors are not yet
1016         * allocated. So, q_vector is NULL so we should stop here.
1017         */
1018        if (!q_vector)
1019                return;
1020
1021        if (q_vector->tx.ring)
1022                adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1023
1024        if (q_vector->rx.ring)
1025                adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1026
1027        netif_napi_del(&q_vector->napi);
1028
1029}
1030
1031static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1032{
1033        int v_idx = adapter->num_q_vectors;
1034
1035        if (adapter->flags & IGB_FLAG_HAS_MSIX)
1036                pci_disable_msix(adapter->pdev);
1037        else if (adapter->flags & IGB_FLAG_HAS_MSI)
1038                pci_disable_msi(adapter->pdev);
1039
1040        while (v_idx--)
1041                igb_reset_q_vector(adapter, v_idx);
1042}
1043
1044/**
1045 *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1046 *  @adapter: board private structure to initialize
1047 *
1048 *  This function frees the memory allocated to the q_vectors.  In addition if
1049 *  NAPI is enabled it will delete any references to the NAPI struct prior
1050 *  to freeing the q_vector.
1051 **/
1052static void igb_free_q_vectors(struct igb_adapter *adapter)
1053{
1054        int v_idx = adapter->num_q_vectors;
1055
1056        adapter->num_tx_queues = 0;
1057        adapter->num_rx_queues = 0;
1058        adapter->num_q_vectors = 0;
1059
1060        while (v_idx--) {
1061                igb_reset_q_vector(adapter, v_idx);
1062                igb_free_q_vector(adapter, v_idx);
1063        }
1064}
1065
1066/**
1067 *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1068 *  @adapter: board private structure to initialize
1069 *
1070 *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1071 *  MSI-X interrupts allocated.
1072 */
1073static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1074{
1075        igb_free_q_vectors(adapter);
1076        igb_reset_interrupt_capability(adapter);
1077}
1078
1079/**
1080 *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1081 *  @adapter: board private structure to initialize
1082 *  @msix: boolean value of MSIX capability
1083 *
1084 *  Attempt to configure interrupts using the best available
1085 *  capabilities of the hardware and kernel.
1086 **/
1087static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1088{
1089        int err;
1090        int numvecs, i;
1091
1092        if (!msix)
1093                goto msi_only;
1094        adapter->flags |= IGB_FLAG_HAS_MSIX;
1095
1096        /* Number of supported queues. */
1097        adapter->num_rx_queues = adapter->rss_queues;
1098        if (adapter->vfs_allocated_count)
1099                adapter->num_tx_queues = 1;
1100        else
1101                adapter->num_tx_queues = adapter->rss_queues;
1102
1103        /* start with one vector for every Rx queue */
1104        numvecs = adapter->num_rx_queues;
1105
1106        /* if Tx handler is separate add 1 for every Tx queue */
1107        if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1108                numvecs += adapter->num_tx_queues;
1109
1110        /* store the number of vectors reserved for queues */
1111        adapter->num_q_vectors = numvecs;
1112
1113        /* add 1 vector for link status interrupts */
1114        numvecs++;
1115        for (i = 0; i < numvecs; i++)
1116                adapter->msix_entries[i].entry = i;
1117
1118        err = pci_enable_msix_range(adapter->pdev,
1119                                    adapter->msix_entries,
1120                                    numvecs,
1121                                    numvecs);
1122        if (err > 0)
1123                return;
1124
1125        igb_reset_interrupt_capability(adapter);
1126
1127        /* If we can't do MSI-X, try MSI */
1128msi_only:
1129        adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1130#ifdef CONFIG_PCI_IOV
1131        /* disable SR-IOV for non MSI-X configurations */
1132        if (adapter->vf_data) {
1133                struct e1000_hw *hw = &adapter->hw;
1134                /* disable iov and allow time for transactions to clear */
1135                pci_disable_sriov(adapter->pdev);
1136                msleep(500);
1137
1138                kfree(adapter->vf_mac_list);
1139                adapter->vf_mac_list = NULL;
1140                kfree(adapter->vf_data);
1141                adapter->vf_data = NULL;
1142                wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1143                wrfl();
1144                msleep(100);
1145                dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1146        }
1147#endif
1148        adapter->vfs_allocated_count = 0;
1149        adapter->rss_queues = 1;
1150        adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1151        adapter->num_rx_queues = 1;
1152        adapter->num_tx_queues = 1;
1153        adapter->num_q_vectors = 1;
1154        if (!pci_enable_msi(adapter->pdev))
1155                adapter->flags |= IGB_FLAG_HAS_MSI;
1156}
1157
1158static void igb_add_ring(struct igb_ring *ring,
1159                         struct igb_ring_container *head)
1160{
1161        head->ring = ring;
1162        head->count++;
1163}
1164
1165/**
1166 *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1167 *  @adapter: board private structure to initialize
1168 *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1169 *  @v_idx: index of vector in adapter struct
1170 *  @txr_count: total number of Tx rings to allocate
1171 *  @txr_idx: index of first Tx ring to allocate
1172 *  @rxr_count: total number of Rx rings to allocate
1173 *  @rxr_idx: index of first Rx ring to allocate
1174 *
1175 *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1176 **/
1177static int igb_alloc_q_vector(struct igb_adapter *adapter,
1178                              int v_count, int v_idx,
1179                              int txr_count, int txr_idx,
1180                              int rxr_count, int rxr_idx)
1181{
1182        struct igb_q_vector *q_vector;
1183        struct igb_ring *ring;
1184        int ring_count;
1185        size_t size;
1186
1187        /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1188        if (txr_count > 1 || rxr_count > 1)
1189                return -ENOMEM;
1190
1191        ring_count = txr_count + rxr_count;
1192        size = struct_size(q_vector, ring, ring_count);
1193
1194        /* allocate q_vector and rings */
1195        q_vector = adapter->q_vector[v_idx];
1196        if (!q_vector) {
1197                q_vector = kzalloc(size, GFP_KERNEL);
1198        } else if (size > ksize(q_vector)) {
1199                kfree_rcu(q_vector, rcu);
1200                q_vector = kzalloc(size, GFP_KERNEL);
1201        } else {
1202                memset(q_vector, 0, size);
1203        }
1204        if (!q_vector)
1205                return -ENOMEM;
1206
1207        /* initialize NAPI */
1208        netif_napi_add(adapter->netdev, &q_vector->napi,
1209                       igb_poll, 64);
1210
1211        /* tie q_vector and adapter together */
1212        adapter->q_vector[v_idx] = q_vector;
1213        q_vector->adapter = adapter;
1214
1215        /* initialize work limits */
1216        q_vector->tx.work_limit = adapter->tx_work_limit;
1217
1218        /* initialize ITR configuration */
1219        q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1220        q_vector->itr_val = IGB_START_ITR;
1221
1222        /* initialize pointer to rings */
1223        ring = q_vector->ring;
1224
1225        /* intialize ITR */
1226        if (rxr_count) {
1227                /* rx or rx/tx vector */
1228                if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1229                        q_vector->itr_val = adapter->rx_itr_setting;
1230        } else {
1231                /* tx only vector */
1232                if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1233                        q_vector->itr_val = adapter->tx_itr_setting;
1234        }
1235
1236        if (txr_count) {
1237                /* assign generic ring traits */
1238                ring->dev = &adapter->pdev->dev;
1239                ring->netdev = adapter->netdev;
1240
1241                /* configure backlink on ring */
1242                ring->q_vector = q_vector;
1243
1244                /* update q_vector Tx values */
1245                igb_add_ring(ring, &q_vector->tx);
1246
1247                /* For 82575, context index must be unique per ring. */
1248                if (adapter->hw.mac.type == e1000_82575)
1249                        set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1250
1251                /* apply Tx specific ring traits */
1252                ring->count = adapter->tx_ring_count;
1253                ring->queue_index = txr_idx;
1254
1255                ring->cbs_enable = false;
1256                ring->idleslope = 0;
1257                ring->sendslope = 0;
1258                ring->hicredit = 0;
1259                ring->locredit = 0;
1260
1261                u64_stats_init(&ring->tx_syncp);
1262                u64_stats_init(&ring->tx_syncp2);
1263
1264                /* assign ring to adapter */
1265                adapter->tx_ring[txr_idx] = ring;
1266
1267                /* push pointer to next ring */
1268                ring++;
1269        }
1270
1271        if (rxr_count) {
1272                /* assign generic ring traits */
1273                ring->dev = &adapter->pdev->dev;
1274                ring->netdev = adapter->netdev;
1275
1276                /* configure backlink on ring */
1277                ring->q_vector = q_vector;
1278
1279                /* update q_vector Rx values */
1280                igb_add_ring(ring, &q_vector->rx);
1281
1282                /* set flag indicating ring supports SCTP checksum offload */
1283                if (adapter->hw.mac.type >= e1000_82576)
1284                        set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1285
1286                /* On i350, i354, i210, and i211, loopback VLAN packets
1287                 * have the tag byte-swapped.
1288                 */
1289                if (adapter->hw.mac.type >= e1000_i350)
1290                        set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1291
1292                /* apply Rx specific ring traits */
1293                ring->count = adapter->rx_ring_count;
1294                ring->queue_index = rxr_idx;
1295
1296                u64_stats_init(&ring->rx_syncp);
1297
1298                /* assign ring to adapter */
1299                adapter->rx_ring[rxr_idx] = ring;
1300        }
1301
1302        return 0;
1303}
1304
1305
1306/**
1307 *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1308 *  @adapter: board private structure to initialize
1309 *
1310 *  We allocate one q_vector per queue interrupt.  If allocation fails we
1311 *  return -ENOMEM.
1312 **/
1313static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1314{
1315        int q_vectors = adapter->num_q_vectors;
1316        int rxr_remaining = adapter->num_rx_queues;
1317        int txr_remaining = adapter->num_tx_queues;
1318        int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1319        int err;
1320
1321        if (q_vectors >= (rxr_remaining + txr_remaining)) {
1322                for (; rxr_remaining; v_idx++) {
1323                        err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1324                                                 0, 0, 1, rxr_idx);
1325
1326                        if (err)
1327                                goto err_out;
1328
1329                        /* update counts and index */
1330                        rxr_remaining--;
1331                        rxr_idx++;
1332                }
1333        }
1334
1335        for (; v_idx < q_vectors; v_idx++) {
1336                int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1337                int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1338
1339                err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1340                                         tqpv, txr_idx, rqpv, rxr_idx);
1341
1342                if (err)
1343                        goto err_out;
1344
1345                /* update counts and index */
1346                rxr_remaining -= rqpv;
1347                txr_remaining -= tqpv;
1348                rxr_idx++;
1349                txr_idx++;
1350        }
1351
1352        return 0;
1353
1354err_out:
1355        adapter->num_tx_queues = 0;
1356        adapter->num_rx_queues = 0;
1357        adapter->num_q_vectors = 0;
1358
1359        while (v_idx--)
1360                igb_free_q_vector(adapter, v_idx);
1361
1362        return -ENOMEM;
1363}
1364
1365/**
1366 *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1367 *  @adapter: board private structure to initialize
1368 *  @msix: boolean value of MSIX capability
1369 *
1370 *  This function initializes the interrupts and allocates all of the queues.
1371 **/
1372static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1373{
1374        struct pci_dev *pdev = adapter->pdev;
1375        int err;
1376
1377        igb_set_interrupt_capability(adapter, msix);
1378
1379        err = igb_alloc_q_vectors(adapter);
1380        if (err) {
1381                dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1382                goto err_alloc_q_vectors;
1383        }
1384
1385        igb_cache_ring_register(adapter);
1386
1387        return 0;
1388
1389err_alloc_q_vectors:
1390        igb_reset_interrupt_capability(adapter);
1391        return err;
1392}
1393
1394/**
1395 *  igb_request_irq - initialize interrupts
1396 *  @adapter: board private structure to initialize
1397 *
1398 *  Attempts to configure interrupts using the best available
1399 *  capabilities of the hardware and kernel.
1400 **/
1401static int igb_request_irq(struct igb_adapter *adapter)
1402{
1403        struct net_device *netdev = adapter->netdev;
1404        struct pci_dev *pdev = adapter->pdev;
1405        int err = 0;
1406
1407        if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1408                err = igb_request_msix(adapter);
1409                if (!err)
1410                        goto request_done;
1411                /* fall back to MSI */
1412                igb_free_all_tx_resources(adapter);
1413                igb_free_all_rx_resources(adapter);
1414
1415                igb_clear_interrupt_scheme(adapter);
1416                err = igb_init_interrupt_scheme(adapter, false);
1417                if (err)
1418                        goto request_done;
1419
1420                igb_setup_all_tx_resources(adapter);
1421                igb_setup_all_rx_resources(adapter);
1422                igb_configure(adapter);
1423        }
1424
1425        igb_assign_vector(adapter->q_vector[0], 0);
1426
1427        if (adapter->flags & IGB_FLAG_HAS_MSI) {
1428                err = request_irq(pdev->irq, igb_intr_msi, 0,
1429                                  netdev->name, adapter);
1430                if (!err)
1431                        goto request_done;
1432
1433                /* fall back to legacy interrupts */
1434                igb_reset_interrupt_capability(adapter);
1435                adapter->flags &= ~IGB_FLAG_HAS_MSI;
1436        }
1437
1438        err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1439                          netdev->name, adapter);
1440
1441        if (err)
1442                dev_err(&pdev->dev, "Error %d getting interrupt\n",
1443                        err);
1444
1445request_done:
1446        return err;
1447}
1448
1449static void igb_free_irq(struct igb_adapter *adapter)
1450{
1451        if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1452                int vector = 0, i;
1453
1454                free_irq(adapter->msix_entries[vector++].vector, adapter);
1455
1456                for (i = 0; i < adapter->num_q_vectors; i++)
1457                        free_irq(adapter->msix_entries[vector++].vector,
1458                                 adapter->q_vector[i]);
1459        } else {
1460                free_irq(adapter->pdev->irq, adapter);
1461        }
1462}
1463
1464/**
1465 *  igb_irq_disable - Mask off interrupt generation on the NIC
1466 *  @adapter: board private structure
1467 **/
1468static void igb_irq_disable(struct igb_adapter *adapter)
1469{
1470        struct e1000_hw *hw = &adapter->hw;
1471
1472        /* we need to be careful when disabling interrupts.  The VFs are also
1473         * mapped into these registers and so clearing the bits can cause
1474         * issues on the VF drivers so we only need to clear what we set
1475         */
1476        if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1477                u32 regval = rd32(E1000_EIAM);
1478
1479                wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1480                wr32(E1000_EIMC, adapter->eims_enable_mask);
1481                regval = rd32(E1000_EIAC);
1482                wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1483        }
1484
1485        wr32(E1000_IAM, 0);
1486        wr32(E1000_IMC, ~0);
1487        wrfl();
1488        if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1489                int i;
1490
1491                for (i = 0; i < adapter->num_q_vectors; i++)
1492                        synchronize_irq(adapter->msix_entries[i].vector);
1493        } else {
1494                synchronize_irq(adapter->pdev->irq);
1495        }
1496}
1497
1498/**
1499 *  igb_irq_enable - Enable default interrupt generation settings
1500 *  @adapter: board private structure
1501 **/
1502static void igb_irq_enable(struct igb_adapter *adapter)
1503{
1504        struct e1000_hw *hw = &adapter->hw;
1505
1506        if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1507                u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1508                u32 regval = rd32(E1000_EIAC);
1509
1510                wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1511                regval = rd32(E1000_EIAM);
1512                wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1513                wr32(E1000_EIMS, adapter->eims_enable_mask);
1514                if (adapter->vfs_allocated_count) {
1515                        wr32(E1000_MBVFIMR, 0xFF);
1516                        ims |= E1000_IMS_VMMB;
1517                }
1518                wr32(E1000_IMS, ims);
1519        } else {
1520                wr32(E1000_IMS, IMS_ENABLE_MASK |
1521                                E1000_IMS_DRSTA);
1522                wr32(E1000_IAM, IMS_ENABLE_MASK |
1523                                E1000_IMS_DRSTA);
1524        }
1525}
1526
1527static void igb_update_mng_vlan(struct igb_adapter *adapter)
1528{
1529        struct e1000_hw *hw = &adapter->hw;
1530        u16 pf_id = adapter->vfs_allocated_count;
1531        u16 vid = adapter->hw.mng_cookie.vlan_id;
1532        u16 old_vid = adapter->mng_vlan_id;
1533
1534        if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1535                /* add VID to filter table */
1536                igb_vfta_set(hw, vid, pf_id, true, true);
1537                adapter->mng_vlan_id = vid;
1538        } else {
1539                adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1540        }
1541
1542        if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1543            (vid != old_vid) &&
1544            !test_bit(old_vid, adapter->active_vlans)) {
1545                /* remove VID from filter table */
1546                igb_vfta_set(hw, vid, pf_id, false, true);
1547        }
1548}
1549
1550/**
1551 *  igb_release_hw_control - release control of the h/w to f/w
1552 *  @adapter: address of board private structure
1553 *
1554 *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1555 *  For ASF and Pass Through versions of f/w this means that the
1556 *  driver is no longer loaded.
1557 **/
1558static void igb_release_hw_control(struct igb_adapter *adapter)
1559{
1560        struct e1000_hw *hw = &adapter->hw;
1561        u32 ctrl_ext;
1562
1563        /* Let firmware take over control of h/w */
1564        ctrl_ext = rd32(E1000_CTRL_EXT);
1565        wr32(E1000_CTRL_EXT,
1566                        ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1567}
1568
1569/**
1570 *  igb_get_hw_control - get control of the h/w from f/w
1571 *  @adapter: address of board private structure
1572 *
1573 *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1574 *  For ASF and Pass Through versions of f/w this means that
1575 *  the driver is loaded.
1576 **/
1577static void igb_get_hw_control(struct igb_adapter *adapter)
1578{
1579        struct e1000_hw *hw = &adapter->hw;
1580        u32 ctrl_ext;
1581
1582        /* Let firmware know the driver has taken over */
1583        ctrl_ext = rd32(E1000_CTRL_EXT);
1584        wr32(E1000_CTRL_EXT,
1585                        ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1586}
1587
1588static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1589{
1590        struct net_device *netdev = adapter->netdev;
1591        struct e1000_hw *hw = &adapter->hw;
1592
1593        WARN_ON(hw->mac.type != e1000_i210);
1594
1595        if (enable)
1596                adapter->flags |= IGB_FLAG_FQTSS;
1597        else
1598                adapter->flags &= ~IGB_FLAG_FQTSS;
1599
1600        if (netif_running(netdev))
1601                schedule_work(&adapter->reset_task);
1602}
1603
1604static bool is_fqtss_enabled(struct igb_adapter *adapter)
1605{
1606        return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1607}
1608
1609static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1610                                   enum tx_queue_prio prio)
1611{
1612        u32 val;
1613
1614        WARN_ON(hw->mac.type != e1000_i210);
1615        WARN_ON(queue < 0 || queue > 4);
1616
1617        val = rd32(E1000_I210_TXDCTL(queue));
1618
1619        if (prio == TX_QUEUE_PRIO_HIGH)
1620                val |= E1000_TXDCTL_PRIORITY;
1621        else
1622                val &= ~E1000_TXDCTL_PRIORITY;
1623
1624        wr32(E1000_I210_TXDCTL(queue), val);
1625}
1626
1627static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1628{
1629        u32 val;
1630
1631        WARN_ON(hw->mac.type != e1000_i210);
1632        WARN_ON(queue < 0 || queue > 1);
1633
1634        val = rd32(E1000_I210_TQAVCC(queue));
1635
1636        if (mode == QUEUE_MODE_STREAM_RESERVATION)
1637                val |= E1000_TQAVCC_QUEUEMODE;
1638        else
1639                val &= ~E1000_TQAVCC_QUEUEMODE;
1640
1641        wr32(E1000_I210_TQAVCC(queue), val);
1642}
1643
1644static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1645{
1646        int i;
1647
1648        for (i = 0; i < adapter->num_tx_queues; i++) {
1649                if (adapter->tx_ring[i]->cbs_enable)
1650                        return true;
1651        }
1652
1653        return false;
1654}
1655
1656static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1657{
1658        int i;
1659
1660        for (i = 0; i < adapter->num_tx_queues; i++) {
1661                if (adapter->tx_ring[i]->launchtime_enable)
1662                        return true;
1663        }
1664
1665        return false;
1666}
1667
1668/**
1669 *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1670 *  @adapter: pointer to adapter struct
1671 *  @queue: queue number
1672 *
1673 *  Configure CBS and Launchtime for a given hardware queue.
1674 *  Parameters are retrieved from the correct Tx ring, so
1675 *  igb_save_cbs_params() and igb_save_txtime_params() should be used
1676 *  for setting those correctly prior to this function being called.
1677 **/
1678static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1679{
1680        struct igb_ring *ring = adapter->tx_ring[queue];
1681        struct net_device *netdev = adapter->netdev;
1682        struct e1000_hw *hw = &adapter->hw;
1683        u32 tqavcc, tqavctrl;
1684        u16 value;
1685
1686        WARN_ON(hw->mac.type != e1000_i210);
1687        WARN_ON(queue < 0 || queue > 1);
1688
1689        /* If any of the Qav features is enabled, configure queues as SR and
1690         * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1691         * as SP.
1692         */
1693        if (ring->cbs_enable || ring->launchtime_enable) {
1694                set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1695                set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1696        } else {
1697                set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1698                set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1699        }
1700
1701        /* If CBS is enabled, set DataTranARB and config its parameters. */
1702        if (ring->cbs_enable || queue == 0) {
1703                /* i210 does not allow the queue 0 to be in the Strict
1704                 * Priority mode while the Qav mode is enabled, so,
1705                 * instead of disabling strict priority mode, we give
1706                 * queue 0 the maximum of credits possible.
1707                 *
1708                 * See section 8.12.19 of the i210 datasheet, "Note:
1709                 * Queue0 QueueMode must be set to 1b when
1710                 * TransmitMode is set to Qav."
1711                 */
1712                if (queue == 0 && !ring->cbs_enable) {
1713                        /* max "linkspeed" idleslope in kbps */
1714                        ring->idleslope = 1000000;
1715                        ring->hicredit = ETH_FRAME_LEN;
1716                }
1717
1718                /* Always set data transfer arbitration to credit-based
1719                 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1720                 * the queues.
1721                 */
1722                tqavctrl = rd32(E1000_I210_TQAVCTRL);
1723                tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1724                wr32(E1000_I210_TQAVCTRL, tqavctrl);
1725
1726                /* According to i210 datasheet section 7.2.7.7, we should set
1727                 * the 'idleSlope' field from TQAVCC register following the
1728                 * equation:
1729                 *
1730                 * For 100 Mbps link speed:
1731                 *
1732                 *     value = BW * 0x7735 * 0.2                          (E1)
1733                 *
1734                 * For 1000Mbps link speed:
1735                 *
1736                 *     value = BW * 0x7735 * 2                            (E2)
1737                 *
1738                 * E1 and E2 can be merged into one equation as shown below.
1739                 * Note that 'link-speed' is in Mbps.
1740                 *
1741                 *     value = BW * 0x7735 * 2 * link-speed
1742                 *                           --------------               (E3)
1743                 *                                1000
1744                 *
1745                 * 'BW' is the percentage bandwidth out of full link speed
1746                 * which can be found with the following equation. Note that
1747                 * idleSlope here is the parameter from this function which
1748                 * is in kbps.
1749                 *
1750                 *     BW =     idleSlope
1751                 *          -----------------                             (E4)
1752                 *          link-speed * 1000
1753                 *
1754                 * That said, we can come up with a generic equation to
1755                 * calculate the value we should set it TQAVCC register by
1756                 * replacing 'BW' in E3 by E4. The resulting equation is:
1757                 *
1758                 * value =     idleSlope     * 0x7735 * 2 * link-speed
1759                 *         -----------------            --------------    (E5)
1760                 *         link-speed * 1000                 1000
1761                 *
1762                 * 'link-speed' is present in both sides of the fraction so
1763                 * it is canceled out. The final equation is the following:
1764                 *
1765                 *     value = idleSlope * 61034
1766                 *             -----------------                          (E6)
1767                 *                  1000000
1768                 *
1769                 * NOTE: For i210, given the above, we can see that idleslope
1770                 *       is represented in 16.38431 kbps units by the value at
1771                 *       the TQAVCC register (1Gbps / 61034), which reduces
1772                 *       the granularity for idleslope increments.
1773                 *       For instance, if you want to configure a 2576kbps
1774                 *       idleslope, the value to be written on the register
1775                 *       would have to be 157.23. If rounded down, you end
1776                 *       up with less bandwidth available than originally
1777                 *       required (~2572 kbps). If rounded up, you end up
1778                 *       with a higher bandwidth (~2589 kbps). Below the
1779                 *       approach we take is to always round up the
1780                 *       calculated value, so the resulting bandwidth might
1781                 *       be slightly higher for some configurations.
1782                 */
1783                value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1784
1785                tqavcc = rd32(E1000_I210_TQAVCC(queue));
1786                tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1787                tqavcc |= value;
1788                wr32(E1000_I210_TQAVCC(queue), tqavcc);
1789
1790                wr32(E1000_I210_TQAVHC(queue),
1791                     0x80000000 + ring->hicredit * 0x7735);
1792        } else {
1793
1794                /* Set idleSlope to zero. */
1795                tqavcc = rd32(E1000_I210_TQAVCC(queue));
1796                tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1797                wr32(E1000_I210_TQAVCC(queue), tqavcc);
1798
1799                /* Set hiCredit to zero. */
1800                wr32(E1000_I210_TQAVHC(queue), 0);
1801
1802                /* If CBS is not enabled for any queues anymore, then return to
1803                 * the default state of Data Transmission Arbitration on
1804                 * TQAVCTRL.
1805                 */
1806                if (!is_any_cbs_enabled(adapter)) {
1807                        tqavctrl = rd32(E1000_I210_TQAVCTRL);
1808                        tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1809                        wr32(E1000_I210_TQAVCTRL, tqavctrl);
1810                }
1811        }
1812
1813        /* If LaunchTime is enabled, set DataTranTIM. */
1814        if (ring->launchtime_enable) {
1815                /* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1816                 * for any of the SR queues, and configure fetchtime delta.
1817                 * XXX NOTE:
1818                 *     - LaunchTime will be enabled for all SR queues.
1819                 *     - A fixed offset can be added relative to the launch
1820                 *       time of all packets if configured at reg LAUNCH_OS0.
1821                 *       We are keeping it as 0 for now (default value).
1822                 */
1823                tqavctrl = rd32(E1000_I210_TQAVCTRL);
1824                tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1825                       E1000_TQAVCTRL_FETCHTIME_DELTA;
1826                wr32(E1000_I210_TQAVCTRL, tqavctrl);
1827        } else {
1828                /* If Launchtime is not enabled for any SR queues anymore,
1829                 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1830                 * effectively disabling Launchtime.
1831                 */
1832                if (!is_any_txtime_enabled(adapter)) {
1833                        tqavctrl = rd32(E1000_I210_TQAVCTRL);
1834                        tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1835                        tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1836                        wr32(E1000_I210_TQAVCTRL, tqavctrl);
1837                }
1838        }
1839
1840        /* XXX: In i210 controller the sendSlope and loCredit parameters from
1841         * CBS are not configurable by software so we don't do any 'controller
1842         * configuration' in respect to these parameters.
1843         */
1844
1845        netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1846                   ring->cbs_enable ? "enabled" : "disabled",
1847                   ring->launchtime_enable ? "enabled" : "disabled",
1848                   queue,
1849                   ring->idleslope, ring->sendslope,
1850                   ring->hicredit, ring->locredit);
1851}
1852
1853static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1854                                  bool enable)
1855{
1856        struct igb_ring *ring;
1857
1858        if (queue < 0 || queue > adapter->num_tx_queues)
1859                return -EINVAL;
1860
1861        ring = adapter->tx_ring[queue];
1862        ring->launchtime_enable = enable;
1863
1864        return 0;
1865}
1866
1867static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1868                               bool enable, int idleslope, int sendslope,
1869                               int hicredit, int locredit)
1870{
1871        struct igb_ring *ring;
1872
1873        if (queue < 0 || queue > adapter->num_tx_queues)
1874                return -EINVAL;
1875
1876        ring = adapter->tx_ring[queue];
1877
1878        ring->cbs_enable = enable;
1879        ring->idleslope = idleslope;
1880        ring->sendslope = sendslope;
1881        ring->hicredit = hicredit;
1882        ring->locredit = locredit;
1883
1884        return 0;
1885}
1886
1887/**
1888 *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1889 *  @adapter: pointer to adapter struct
1890 *
1891 *  Configure TQAVCTRL register switching the controller's Tx mode
1892 *  if FQTSS mode is enabled or disabled. Additionally, will issue
1893 *  a call to igb_config_tx_modes() per queue so any previously saved
1894 *  Tx parameters are applied.
1895 **/
1896static void igb_setup_tx_mode(struct igb_adapter *adapter)
1897{
1898        struct net_device *netdev = adapter->netdev;
1899        struct e1000_hw *hw = &adapter->hw;
1900        u32 val;
1901
1902        /* Only i210 controller supports changing the transmission mode. */
1903        if (hw->mac.type != e1000_i210)
1904                return;
1905
1906        if (is_fqtss_enabled(adapter)) {
1907                int i, max_queue;
1908
1909                /* Configure TQAVCTRL register: set transmit mode to 'Qav',
1910                 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1911                 * so SP queues wait for SR ones.
1912                 */
1913                val = rd32(E1000_I210_TQAVCTRL);
1914                val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1915                val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1916                wr32(E1000_I210_TQAVCTRL, val);
1917
1918                /* Configure Tx and Rx packet buffers sizes as described in
1919                 * i210 datasheet section 7.2.7.7.
1920                 */
1921                val = rd32(E1000_TXPBS);
1922                val &= ~I210_TXPBSIZE_MASK;
1923                val |= I210_TXPBSIZE_PB0_8KB | I210_TXPBSIZE_PB1_8KB |
1924                        I210_TXPBSIZE_PB2_4KB | I210_TXPBSIZE_PB3_4KB;
1925                wr32(E1000_TXPBS, val);
1926
1927                val = rd32(E1000_RXPBS);
1928                val &= ~I210_RXPBSIZE_MASK;
1929                val |= I210_RXPBSIZE_PB_30KB;
1930                wr32(E1000_RXPBS, val);
1931
1932                /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1933                 * register should not exceed the buffer size programmed in
1934                 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1935                 * so according to the datasheet we should set MAX_TPKT_SIZE to
1936                 * 4kB / 64.
1937                 *
1938                 * However, when we do so, no frame from queue 2 and 3 are
1939                 * transmitted.  It seems the MAX_TPKT_SIZE should not be great
1940                 * or _equal_ to the buffer size programmed in TXPBS. For this
1941                 * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1942                 */
1943                val = (4096 - 1) / 64;
1944                wr32(E1000_I210_DTXMXPKTSZ, val);
1945
1946                /* Since FQTSS mode is enabled, apply any CBS configuration
1947                 * previously set. If no previous CBS configuration has been
1948                 * done, then the initial configuration is applied, which means
1949                 * CBS is disabled.
1950                 */
1951                max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1952                            adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1953
1954                for (i = 0; i < max_queue; i++) {
1955                        igb_config_tx_modes(adapter, i);
1956                }
1957        } else {
1958                wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1959                wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1960                wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1961
1962                val = rd32(E1000_I210_TQAVCTRL);
1963                /* According to Section 8.12.21, the other flags we've set when
1964                 * enabling FQTSS are not relevant when disabling FQTSS so we
1965                 * don't set they here.
1966                 */
1967                val &= ~E1000_TQAVCTRL_XMIT_MODE;
1968                wr32(E1000_I210_TQAVCTRL, val);
1969        }
1970
1971        netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1972                   "enabled" : "disabled");
1973}
1974
1975/**
1976 *  igb_configure - configure the hardware for RX and TX
1977 *  @adapter: private board structure
1978 **/
1979static void igb_configure(struct igb_adapter *adapter)
1980{
1981        struct net_device *netdev = adapter->netdev;
1982        int i;
1983
1984        igb_get_hw_control(adapter);
1985        igb_set_rx_mode(netdev);
1986        igb_setup_tx_mode(adapter);
1987
1988        igb_restore_vlan(adapter);
1989
1990        igb_setup_tctl(adapter);
1991        igb_setup_mrqc(adapter);
1992        igb_setup_rctl(adapter);
1993
1994        igb_nfc_filter_restore(adapter);
1995        igb_configure_tx(adapter);
1996        igb_configure_rx(adapter);
1997
1998        igb_rx_fifo_flush_82575(&adapter->hw);
1999
2000        /* call igb_desc_unused which always leaves
2001         * at least 1 descriptor unused to make sure
2002         * next_to_use != next_to_clean
2003         */
2004        for (i = 0; i < adapter->num_rx_queues; i++) {
2005                struct igb_ring *ring = adapter->rx_ring[i];
2006                igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2007        }
2008}
2009
2010/**
2011 *  igb_power_up_link - Power up the phy/serdes link
2012 *  @adapter: address of board private structure
2013 **/
2014void igb_power_up_link(struct igb_adapter *adapter)
2015{
2016        igb_reset_phy(&adapter->hw);
2017
2018        if (adapter->hw.phy.media_type == e1000_media_type_copper)
2019                igb_power_up_phy_copper(&adapter->hw);
2020        else
2021                igb_power_up_serdes_link_82575(&adapter->hw);
2022
2023        igb_setup_link(&adapter->hw);
2024}
2025
2026/**
2027 *  igb_power_down_link - Power down the phy/serdes link
2028 *  @adapter: address of board private structure
2029 */
2030static void igb_power_down_link(struct igb_adapter *adapter)
2031{
2032        if (adapter->hw.phy.media_type == e1000_media_type_copper)
2033                igb_power_down_phy_copper_82575(&adapter->hw);
2034        else
2035                igb_shutdown_serdes_link_82575(&adapter->hw);
2036}
2037
2038/**
2039 * Detect and switch function for Media Auto Sense
2040 * @adapter: address of the board private structure
2041 **/
2042static void igb_check_swap_media(struct igb_adapter *adapter)
2043{
2044        struct e1000_hw *hw = &adapter->hw;
2045        u32 ctrl_ext, connsw;
2046        bool swap_now = false;
2047
2048        ctrl_ext = rd32(E1000_CTRL_EXT);
2049        connsw = rd32(E1000_CONNSW);
2050
2051        /* need to live swap if current media is copper and we have fiber/serdes
2052         * to go to.
2053         */
2054
2055        if ((hw->phy.media_type == e1000_media_type_copper) &&
2056            (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2057                swap_now = true;
2058        } else if ((hw->phy.media_type != e1000_media_type_copper) &&
2059                   !(connsw & E1000_CONNSW_SERDESD)) {
2060                /* copper signal takes time to appear */
2061                if (adapter->copper_tries < 4) {
2062                        adapter->copper_tries++;
2063                        connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2064                        wr32(E1000_CONNSW, connsw);
2065                        return;
2066                } else {
2067                        adapter->copper_tries = 0;
2068                        if ((connsw & E1000_CONNSW_PHYSD) &&
2069                            (!(connsw & E1000_CONNSW_PHY_PDN))) {
2070                                swap_now = true;
2071                                connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2072                                wr32(E1000_CONNSW, connsw);
2073                        }
2074                }
2075        }
2076
2077        if (!swap_now)
2078                return;
2079
2080        switch (hw->phy.media_type) {
2081        case e1000_media_type_copper:
2082                netdev_info(adapter->netdev,
2083                        "MAS: changing media to fiber/serdes\n");
2084                ctrl_ext |=
2085                        E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2086                adapter->flags |= IGB_FLAG_MEDIA_RESET;
2087                adapter->copper_tries = 0;
2088                break;
2089        case e1000_media_type_internal_serdes:
2090        case e1000_media_type_fiber:
2091                netdev_info(adapter->netdev,
2092                        "MAS: changing media to copper\n");
2093                ctrl_ext &=
2094                        ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2095                adapter->flags |= IGB_FLAG_MEDIA_RESET;
2096                break;
2097        default:
2098                /* shouldn't get here during regular operation */
2099                netdev_err(adapter->netdev,
2100                        "AMS: Invalid media type found, returning\n");
2101                break;
2102        }
2103        wr32(E1000_CTRL_EXT, ctrl_ext);
2104}
2105
2106/**
2107 *  igb_up - Open the interface and prepare it to handle traffic
2108 *  @adapter: board private structure
2109 **/
2110int igb_up(struct igb_adapter *adapter)
2111{
2112        struct e1000_hw *hw = &adapter->hw;
2113        int i;
2114
2115        /* hardware has been reset, we need to reload some things */
2116        igb_configure(adapter);
2117
2118        clear_bit(__IGB_DOWN, &adapter->state);
2119
2120        for (i = 0; i < adapter->num_q_vectors; i++)
2121                napi_enable(&(adapter->q_vector[i]->napi));
2122
2123        if (adapter->flags & IGB_FLAG_HAS_MSIX)
2124                igb_configure_msix(adapter);
2125        else
2126                igb_assign_vector(adapter->q_vector[0], 0);
2127
2128        /* Clear any pending interrupts. */
2129        rd32(E1000_TSICR);
2130        rd32(E1000_ICR);
2131        igb_irq_enable(adapter);
2132
2133        /* notify VFs that reset has been completed */
2134        if (adapter->vfs_allocated_count) {
2135                u32 reg_data = rd32(E1000_CTRL_EXT);
2136
2137                reg_data |= E1000_CTRL_EXT_PFRSTD;
2138                wr32(E1000_CTRL_EXT, reg_data);
2139        }
2140
2141        netif_tx_start_all_queues(adapter->netdev);
2142
2143        /* start the watchdog. */
2144        hw->mac.get_link_status = 1;
2145        schedule_work(&adapter->watchdog_task);
2146
2147        if ((adapter->flags & IGB_FLAG_EEE) &&
2148            (!hw->dev_spec._82575.eee_disable))
2149                adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2150
2151        return 0;
2152}
2153
2154void igb_down(struct igb_adapter *adapter)
2155{
2156        struct net_device *netdev = adapter->netdev;
2157        struct e1000_hw *hw = &adapter->hw;
2158        u32 tctl, rctl;
2159        int i;
2160
2161        /* signal that we're down so the interrupt handler does not
2162         * reschedule our watchdog timer
2163         */
2164        set_bit(__IGB_DOWN, &adapter->state);
2165
2166        /* disable receives in the hardware */
2167        rctl = rd32(E1000_RCTL);
2168        wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2169        /* flush and sleep below */
2170
2171        igb_nfc_filter_exit(adapter);
2172
2173        netif_carrier_off(netdev);
2174        netif_tx_stop_all_queues(netdev);
2175
2176        /* disable transmits in the hardware */
2177        tctl = rd32(E1000_TCTL);
2178        tctl &= ~E1000_TCTL_EN;
2179        wr32(E1000_TCTL, tctl);
2180        /* flush both disables and wait for them to finish */
2181        wrfl();
2182        usleep_range(10000, 11000);
2183
2184        igb_irq_disable(adapter);
2185
2186        adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2187
2188        for (i = 0; i < adapter->num_q_vectors; i++) {
2189                if (adapter->q_vector[i]) {
2190                        napi_synchronize(&adapter->q_vector[i]->napi);
2191                        napi_disable(&adapter->q_vector[i]->napi);
2192                }
2193        }
2194
2195        del_timer_sync(&adapter->watchdog_timer);
2196        del_timer_sync(&adapter->phy_info_timer);
2197
2198        /* record the stats before reset*/
2199        spin_lock(&adapter->stats64_lock);
2200        igb_update_stats(adapter);
2201        spin_unlock(&adapter->stats64_lock);
2202
2203        adapter->link_speed = 0;
2204        adapter->link_duplex = 0;
2205
2206        if (!pci_channel_offline(adapter->pdev))
2207                igb_reset(adapter);
2208
2209        /* clear VLAN promisc flag so VFTA will be updated if necessary */
2210        adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2211
2212        igb_clean_all_tx_rings(adapter);
2213        igb_clean_all_rx_rings(adapter);
2214#ifdef CONFIG_IGB_DCA
2215
2216        /* since we reset the hardware DCA settings were cleared */
2217        igb_setup_dca(adapter);
2218#endif
2219}
2220
2221void igb_reinit_locked(struct igb_adapter *adapter)
2222{
2223        WARN_ON(in_interrupt());
2224        while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2225                usleep_range(1000, 2000);
2226        igb_down(adapter);
2227        igb_up(adapter);
2228        clear_bit(__IGB_RESETTING, &adapter->state);
2229}
2230
2231/** igb_enable_mas - Media Autosense re-enable after swap
2232 *
2233 * @adapter: adapter struct
2234 **/
2235static void igb_enable_mas(struct igb_adapter *adapter)
2236{
2237        struct e1000_hw *hw = &adapter->hw;
2238        u32 connsw = rd32(E1000_CONNSW);
2239
2240        /* configure for SerDes media detect */
2241        if ((hw->phy.media_type == e1000_media_type_copper) &&
2242            (!(connsw & E1000_CONNSW_SERDESD))) {
2243                connsw |= E1000_CONNSW_ENRGSRC;
2244                connsw |= E1000_CONNSW_AUTOSENSE_EN;
2245                wr32(E1000_CONNSW, connsw);
2246                wrfl();
2247        }
2248}
2249
2250void igb_reset(struct igb_adapter *adapter)
2251{
2252        struct pci_dev *pdev = adapter->pdev;
2253        struct e1000_hw *hw = &adapter->hw;
2254        struct e1000_mac_info *mac = &hw->mac;
2255        struct e1000_fc_info *fc = &hw->fc;
2256        u32 pba, hwm;
2257
2258        /* Repartition Pba for greater than 9k mtu
2259         * To take effect CTRL.RST is required.
2260         */
2261        switch (mac->type) {
2262        case e1000_i350:
2263        case e1000_i354:
2264        case e1000_82580:
2265                pba = rd32(E1000_RXPBS);
2266                pba = igb_rxpbs_adjust_82580(pba);
2267                break;
2268        case e1000_82576:
2269                pba = rd32(E1000_RXPBS);
2270                pba &= E1000_RXPBS_SIZE_MASK_82576;
2271                break;
2272        case e1000_82575:
2273        case e1000_i210:
2274        case e1000_i211:
2275        default:
2276                pba = E1000_PBA_34K;
2277                break;
2278        }
2279
2280        if (mac->type == e1000_82575) {
2281                u32 min_rx_space, min_tx_space, needed_tx_space;
2282
2283                /* write Rx PBA so that hardware can report correct Tx PBA */
2284                wr32(E1000_PBA, pba);
2285
2286                /* To maintain wire speed transmits, the Tx FIFO should be
2287                 * large enough to accommodate two full transmit packets,
2288                 * rounded up to the next 1KB and expressed in KB.  Likewise,
2289                 * the Rx FIFO should be large enough to accommodate at least
2290                 * one full receive packet and is similarly rounded up and
2291                 * expressed in KB.
2292                 */
2293                min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2294
2295                /* The Tx FIFO also stores 16 bytes of information about the Tx
2296                 * but don't include Ethernet FCS because hardware appends it.
2297                 * We only need to round down to the nearest 512 byte block
2298                 * count since the value we care about is 2 frames, not 1.
2299                 */
2300                min_tx_space = adapter->max_frame_size;
2301                min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2302                min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2303
2304                /* upper 16 bits has Tx packet buffer allocation size in KB */
2305                needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2306
2307                /* If current Tx allocation is less than the min Tx FIFO size,
2308                 * and the min Tx FIFO size is less than the current Rx FIFO
2309                 * allocation, take space away from current Rx allocation.
2310                 */
2311                if (needed_tx_space < pba) {
2312                        pba -= needed_tx_space;
2313
2314                        /* if short on Rx space, Rx wins and must trump Tx
2315                         * adjustment
2316                         */
2317                        if (pba < min_rx_space)
2318                                pba = min_rx_space;
2319                }
2320
2321                /* adjust PBA for jumbo frames */
2322                wr32(E1000_PBA, pba);
2323        }
2324
2325        /* flow control settings
2326         * The high water mark must be low enough to fit one full frame
2327         * after transmitting the pause frame.  As such we must have enough
2328         * space to allow for us to complete our current transmit and then
2329         * receive the frame that is in progress from the link partner.
2330         * Set it to:
2331         * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2332         */
2333        hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2334
2335        fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
2336        fc->low_water = fc->high_water - 16;
2337        fc->pause_time = 0xFFFF;
2338        fc->send_xon = 1;
2339        fc->current_mode = fc->requested_mode;
2340
2341        /* disable receive for all VFs and wait one second */
2342        if (adapter->vfs_allocated_count) {
2343                int i;
2344
2345                for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2346                        adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2347
2348                /* ping all the active vfs to let them know we are going down */
2349                igb_ping_all_vfs(adapter);
2350
2351                /* disable transmits and receives */
2352                wr32(E1000_VFRE, 0);
2353                wr32(E1000_VFTE, 0);
2354        }
2355
2356        /* Allow time for pending master requests to run */
2357        hw->mac.ops.reset_hw(hw);
2358        wr32(E1000_WUC, 0);
2359
2360        if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2361                /* need to resetup here after media swap */
2362                adapter->ei.get_invariants(hw);
2363                adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2364        }
2365        if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2366            (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2367                igb_enable_mas(adapter);
2368        }
2369        if (hw->mac.ops.init_hw(hw))
2370                dev_err(&pdev->dev, "Hardware Error\n");
2371
2372        /* RAR registers were cleared during init_hw, clear mac table */
2373        igb_flush_mac_table(adapter);
2374        __dev_uc_unsync(adapter->netdev, NULL);
2375
2376        /* Recover default RAR entry */
2377        igb_set_default_mac_filter(adapter);
2378
2379        /* Flow control settings reset on hardware reset, so guarantee flow
2380         * control is off when forcing speed.
2381         */
2382        if (!hw->mac.autoneg)
2383                igb_force_mac_fc(hw);
2384
2385        igb_init_dmac(adapter, pba);
2386#ifdef CONFIG_IGB_HWMON
2387        /* Re-initialize the thermal sensor on i350 devices. */
2388        if (!test_bit(__IGB_DOWN, &adapter->state)) {
2389                if (mac->type == e1000_i350 && hw->bus.func == 0) {
2390                        /* If present, re-initialize the external thermal sensor
2391                         * interface.
2392                         */
2393                        if (adapter->ets)
2394                                mac->ops.init_thermal_sensor_thresh(hw);
2395                }
2396        }
2397#endif
2398        /* Re-establish EEE setting */
2399        if (hw->phy.media_type == e1000_media_type_copper) {
2400                switch (mac->type) {
2401                case e1000_i350:
2402                case e1000_i210:
2403                case e1000_i211:
2404                        igb_set_eee_i350(hw, true, true);
2405                        break;
2406                case e1000_i354:
2407                        igb_set_eee_i354(hw, true, true);
2408                        break;
2409                default:
2410                        break;
2411                }
2412        }
2413        if (!netif_running(adapter->netdev))
2414                igb_power_down_link(adapter);
2415
2416        igb_update_mng_vlan(adapter);
2417
2418        /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2419        wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2420
2421        /* Re-enable PTP, where applicable. */
2422        if (adapter->ptp_flags & IGB_PTP_ENABLED)
2423                igb_ptp_reset(adapter);
2424
2425        igb_get_phy_info(hw);
2426}
2427
2428static netdev_features_t igb_fix_features(struct net_device *netdev,
2429        netdev_features_t features)
2430{
2431        /* Since there is no support for separate Rx/Tx vlan accel
2432         * enable/disable make sure Tx flag is always in same state as Rx.
2433         */
2434        if (features & NETIF_F_HW_VLAN_CTAG_RX)
2435                features |= NETIF_F_HW_VLAN_CTAG_TX;
2436        else
2437                features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2438
2439        return features;
2440}
2441
2442static int igb_set_features(struct net_device *netdev,
2443        netdev_features_t features)
2444{
2445        netdev_features_t changed = netdev->features ^ features;
2446        struct igb_adapter *adapter = netdev_priv(netdev);
2447
2448        if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2449                igb_vlan_mode(netdev, features);
2450
2451        if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2452                return 0;
2453
2454        if (!(features & NETIF_F_NTUPLE)) {
2455                struct hlist_node *node2;
2456                struct igb_nfc_filter *rule;
2457
2458                spin_lock(&adapter->nfc_lock);
2459                hlist_for_each_entry_safe(rule, node2,
2460                                          &adapter->nfc_filter_list, nfc_node) {
2461                        igb_erase_filter(adapter, rule);
2462                        hlist_del(&rule->nfc_node);
2463                        kfree(rule);
2464                }
2465                spin_unlock(&adapter->nfc_lock);
2466                adapter->nfc_filter_count = 0;
2467        }
2468
2469        netdev->features = features;
2470
2471        if (netif_running(netdev))
2472                igb_reinit_locked(adapter);
2473        else
2474                igb_reset(adapter);
2475
2476        return 1;
2477}
2478
2479static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2480                           struct net_device *dev,
2481                           const unsigned char *addr, u16 vid,
2482                           u16 flags,
2483                           struct netlink_ext_ack *extack)
2484{
2485        /* guarantee we can provide a unique filter for the unicast address */
2486        if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2487                struct igb_adapter *adapter = netdev_priv(dev);
2488                int vfn = adapter->vfs_allocated_count;
2489
2490                if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2491                        return -ENOMEM;
2492        }
2493
2494        return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2495}
2496
2497#define IGB_MAX_MAC_HDR_LEN     127
2498#define IGB_MAX_NETWORK_HDR_LEN 511
2499
2500static netdev_features_t
2501igb_features_check(struct sk_buff *skb, struct net_device *dev,
2502                   netdev_features_t features)
2503{
2504        unsigned int network_hdr_len, mac_hdr_len;
2505
2506        /* Make certain the headers can be described by a context descriptor */
2507        mac_hdr_len = skb_network_header(skb) - skb->data;
2508        if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2509                return features & ~(NETIF_F_HW_CSUM |
2510                                    NETIF_F_SCTP_CRC |
2511                                    NETIF_F_GSO_UDP_L4 |
2512                                    NETIF_F_HW_VLAN_CTAG_TX |
2513                                    NETIF_F_TSO |
2514                                    NETIF_F_TSO6);
2515
2516        network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2517        if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2518                return features & ~(NETIF_F_HW_CSUM |
2519                                    NETIF_F_SCTP_CRC |
2520                                    NETIF_F_GSO_UDP_L4 |
2521                                    NETIF_F_TSO |
2522                                    NETIF_F_TSO6);
2523
2524        /* We can only support IPV4 TSO in tunnels if we can mangle the
2525         * inner IP ID field, so strip TSO if MANGLEID is not supported.
2526         */
2527        if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2528                features &= ~NETIF_F_TSO;
2529
2530        return features;
2531}
2532
2533static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2534{
2535        if (!is_fqtss_enabled(adapter)) {
2536                enable_fqtss(adapter, true);
2537                return;
2538        }
2539
2540        igb_config_tx_modes(adapter, queue);
2541
2542        if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2543                enable_fqtss(adapter, false);
2544}
2545
2546static int igb_offload_cbs(struct igb_adapter *adapter,
2547                           struct tc_cbs_qopt_offload *qopt)
2548{
2549        struct e1000_hw *hw = &adapter->hw;
2550        int err;
2551
2552        /* CBS offloading is only supported by i210 controller. */
2553        if (hw->mac.type != e1000_i210)
2554                return -EOPNOTSUPP;
2555
2556        /* CBS offloading is only supported by queue 0 and queue 1. */
2557        if (qopt->queue < 0 || qopt->queue > 1)
2558                return -EINVAL;
2559
2560        err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2561                                  qopt->idleslope, qopt->sendslope,
2562                                  qopt->hicredit, qopt->locredit);
2563        if (err)
2564                return err;
2565
2566        igb_offload_apply(adapter, qopt->queue);
2567
2568        return 0;
2569}
2570
2571#define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2572#define VLAN_PRIO_FULL_MASK (0x07)
2573
2574static int igb_parse_cls_flower(struct igb_adapter *adapter,
2575                                struct flow_cls_offload *f,
2576                                int traffic_class,
2577                                struct igb_nfc_filter *input)
2578{
2579        struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2580        struct flow_dissector *dissector = rule->match.dissector;
2581        struct netlink_ext_ack *extack = f->common.extack;
2582
2583        if (dissector->used_keys &
2584            ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2585              BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2586              BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2587              BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2588                NL_SET_ERR_MSG_MOD(extack,
2589                                   "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2590                return -EOPNOTSUPP;
2591        }
2592
2593        if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2594                struct flow_match_eth_addrs match;
2595
2596                flow_rule_match_eth_addrs(rule, &match);
2597                if (!is_zero_ether_addr(match.mask->dst)) {
2598                        if (!is_broadcast_ether_addr(match.mask->dst)) {
2599                                NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2600                                return -EINVAL;
2601                        }
2602
2603                        input->filter.match_flags |=
2604                                IGB_FILTER_FLAG_DST_MAC_ADDR;
2605                        ether_addr_copy(input->filter.dst_addr, match.key->dst);
2606                }
2607
2608                if (!is_zero_ether_addr(match.mask->src)) {
2609                        if (!is_broadcast_ether_addr(match.mask->src)) {
2610                                NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2611                                return -EINVAL;
2612                        }
2613
2614                        input->filter.match_flags |=
2615                                IGB_FILTER_FLAG_SRC_MAC_ADDR;
2616                        ether_addr_copy(input->filter.src_addr, match.key->src);
2617                }
2618        }
2619
2620        if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2621                struct flow_match_basic match;
2622
2623                flow_rule_match_basic(rule, &match);
2624                if (match.mask->n_proto) {
2625                        if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2626                                NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2627                                return -EINVAL;
2628                        }
2629
2630                        input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2631                        input->filter.etype = match.key->n_proto;
2632                }
2633        }
2634
2635        if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2636                struct flow_match_vlan match;
2637
2638                flow_rule_match_vlan(rule, &match);
2639                if (match.mask->vlan_priority) {
2640                        if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2641                                NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2642                                return -EINVAL;
2643                        }
2644
2645                        input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2646                        input->filter.vlan_tci = match.key->vlan_priority;
2647                }
2648        }
2649
2650        input->action = traffic_class;
2651        input->cookie = f->cookie;
2652
2653        return 0;
2654}
2655
2656static int igb_configure_clsflower(struct igb_adapter *adapter,
2657                                   struct flow_cls_offload *cls_flower)
2658{
2659        struct netlink_ext_ack *extack = cls_flower->common.extack;
2660        struct igb_nfc_filter *filter, *f;
2661        int err, tc;
2662
2663        tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2664        if (tc < 0) {
2665                NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2666                return -EINVAL;
2667        }
2668
2669        filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2670        if (!filter)
2671                return -ENOMEM;
2672
2673        err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2674        if (err < 0)
2675                goto err_parse;
2676
2677        spin_lock(&adapter->nfc_lock);
2678
2679        hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2680                if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2681                        err = -EEXIST;
2682                        NL_SET_ERR_MSG_MOD(extack,
2683                                           "This filter is already set in ethtool");
2684                        goto err_locked;
2685                }
2686        }
2687
2688        hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2689                if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2690                        err = -EEXIST;
2691                        NL_SET_ERR_MSG_MOD(extack,
2692                                           "This filter is already set in cls_flower");
2693                        goto err_locked;
2694                }
2695        }
2696
2697        err = igb_add_filter(adapter, filter);
2698        if (err < 0) {
2699                NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2700                goto err_locked;
2701        }
2702
2703        hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2704
2705        spin_unlock(&adapter->nfc_lock);
2706
2707        return 0;
2708
2709err_locked:
2710        spin_unlock(&adapter->nfc_lock);
2711
2712err_parse:
2713        kfree(filter);
2714
2715        return err;
2716}
2717
2718static int igb_delete_clsflower(struct igb_adapter *adapter,
2719                                struct flow_cls_offload *cls_flower)
2720{
2721        struct igb_nfc_filter *filter;
2722        int err;
2723
2724        spin_lock(&adapter->nfc_lock);
2725
2726        hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2727                if (filter->cookie == cls_flower->cookie)
2728                        break;
2729
2730        if (!filter) {
2731                err = -ENOENT;
2732                goto out;
2733        }
2734
2735        err = igb_erase_filter(adapter, filter);
2736        if (err < 0)
2737                goto out;
2738
2739        hlist_del(&filter->nfc_node);
2740        kfree(filter);
2741
2742out:
2743        spin_unlock(&adapter->nfc_lock);
2744
2745        return err;
2746}
2747
2748static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2749                                   struct flow_cls_offload *cls_flower)
2750{
2751        switch (cls_flower->command) {
2752        case FLOW_CLS_REPLACE:
2753                return igb_configure_clsflower(adapter, cls_flower);
2754        case FLOW_CLS_DESTROY:
2755                return igb_delete_clsflower(adapter, cls_flower);
2756        case FLOW_CLS_STATS:
2757                return -EOPNOTSUPP;
2758        default:
2759                return -EOPNOTSUPP;
2760        }
2761}
2762
2763static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2764                                 void *cb_priv)
2765{
2766        struct igb_adapter *adapter = cb_priv;
2767
2768        if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2769                return -EOPNOTSUPP;
2770
2771        switch (type) {
2772        case TC_SETUP_CLSFLOWER:
2773                return igb_setup_tc_cls_flower(adapter, type_data);
2774
2775        default:
2776                return -EOPNOTSUPP;
2777        }
2778}
2779
2780static int igb_offload_txtime(struct igb_adapter *adapter,
2781                              struct tc_etf_qopt_offload *qopt)
2782{
2783        struct e1000_hw *hw = &adapter->hw;
2784        int err;
2785
2786        /* Launchtime offloading is only supported by i210 controller. */
2787        if (hw->mac.type != e1000_i210)
2788                return -EOPNOTSUPP;
2789
2790        /* Launchtime offloading is only supported by queues 0 and 1. */
2791        if (qopt->queue < 0 || qopt->queue > 1)
2792                return -EINVAL;
2793
2794        err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2795        if (err)
2796                return err;
2797
2798        igb_offload_apply(adapter, qopt->queue);
2799
2800        return 0;
2801}
2802
2803static LIST_HEAD(igb_block_cb_list);
2804
2805static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2806                        void *type_data)
2807{
2808        struct igb_adapter *adapter = netdev_priv(dev);
2809
2810        switch (type) {
2811        case TC_SETUP_QDISC_CBS:
2812                return igb_offload_cbs(adapter, type_data);
2813        case TC_SETUP_BLOCK:
2814                return flow_block_cb_setup_simple(type_data,
2815                                                  &igb_block_cb_list,
2816                                                  igb_setup_tc_block_cb,
2817                                                  adapter, adapter, true);
2818
2819        case TC_SETUP_QDISC_ETF:
2820                return igb_offload_txtime(adapter, type_data);
2821
2822        default:
2823                return -EOPNOTSUPP;
2824        }
2825}
2826
2827static const struct net_device_ops igb_netdev_ops = {
2828        .ndo_open               = igb_open,
2829        .ndo_stop               = igb_close,
2830        .ndo_start_xmit         = igb_xmit_frame,
2831        .ndo_get_stats64        = igb_get_stats64,
2832        .ndo_set_rx_mode        = igb_set_rx_mode,
2833        .ndo_set_mac_address    = igb_set_mac,
2834        .ndo_change_mtu         = igb_change_mtu,
2835        .ndo_do_ioctl           = igb_ioctl,
2836        .ndo_tx_timeout         = igb_tx_timeout,
2837        .ndo_validate_addr      = eth_validate_addr,
2838        .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
2839        .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
2840        .ndo_set_vf_mac         = igb_ndo_set_vf_mac,
2841        .ndo_set_vf_vlan        = igb_ndo_set_vf_vlan,
2842        .ndo_set_vf_rate        = igb_ndo_set_vf_bw,
2843        .ndo_set_vf_spoofchk    = igb_ndo_set_vf_spoofchk,
2844        .ndo_set_vf_trust       = igb_ndo_set_vf_trust,
2845        .ndo_get_vf_config      = igb_ndo_get_vf_config,
2846        .ndo_fix_features       = igb_fix_features,
2847        .ndo_set_features       = igb_set_features,
2848        .ndo_fdb_add            = igb_ndo_fdb_add,
2849        .ndo_features_check     = igb_features_check,
2850        .ndo_setup_tc           = igb_setup_tc,
2851};
2852
2853/**
2854 * igb_set_fw_version - Configure version string for ethtool
2855 * @adapter: adapter struct
2856 **/
2857void igb_set_fw_version(struct igb_adapter *adapter)
2858{
2859        struct e1000_hw *hw = &adapter->hw;
2860        struct e1000_fw_version fw;
2861
2862        igb_get_fw_version(hw, &fw);
2863
2864        switch (hw->mac.type) {
2865        case e1000_i210:
2866        case e1000_i211:
2867                if (!(igb_get_flash_presence_i210(hw))) {
2868                        snprintf(adapter->fw_version,
2869                                 sizeof(adapter->fw_version),
2870                                 "%2d.%2d-%d",
2871                                 fw.invm_major, fw.invm_minor,
2872                                 fw.invm_img_type);
2873                        break;
2874                }
2875                fallthrough;
2876        default:
2877                /* if option is rom valid, display its version too */
2878                if (fw.or_valid) {
2879                        snprintf(adapter->fw_version,
2880                                 sizeof(adapter->fw_version),
2881                                 "%d.%d, 0x%08x, %d.%d.%d",
2882                                 fw.eep_major, fw.eep_minor, fw.etrack_id,
2883                                 fw.or_major, fw.or_build, fw.or_patch);
2884                /* no option rom */
2885                } else if (fw.etrack_id != 0X0000) {
2886                        snprintf(adapter->fw_version,
2887                            sizeof(adapter->fw_version),
2888                            "%d.%d, 0x%08x",
2889                            fw.eep_major, fw.eep_minor, fw.etrack_id);
2890                } else {
2891                snprintf(adapter->fw_version,
2892                    sizeof(adapter->fw_version),
2893                    "%d.%d.%d",
2894                    fw.eep_major, fw.eep_minor, fw.eep_build);
2895                }
2896                break;
2897        }
2898}
2899
2900/**
2901 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2902 *
2903 * @adapter: adapter struct
2904 **/
2905static void igb_init_mas(struct igb_adapter *adapter)
2906{
2907        struct e1000_hw *hw = &adapter->hw;
2908        u16 eeprom_data;
2909
2910        hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2911        switch (hw->bus.func) {
2912        case E1000_FUNC_0:
2913                if (eeprom_data & IGB_MAS_ENABLE_0) {
2914                        adapter->flags |= IGB_FLAG_MAS_ENABLE;
2915                        netdev_info(adapter->netdev,
2916                                "MAS: Enabling Media Autosense for port %d\n",
2917                                hw->bus.func);
2918                }
2919                break;
2920        case E1000_FUNC_1:
2921                if (eeprom_data & IGB_MAS_ENABLE_1) {
2922                        adapter->flags |= IGB_FLAG_MAS_ENABLE;
2923                        netdev_info(adapter->netdev,
2924                                "MAS: Enabling Media Autosense for port %d\n",
2925                                hw->bus.func);
2926                }
2927                break;
2928        case E1000_FUNC_2:
2929                if (eeprom_data & IGB_MAS_ENABLE_2) {
2930                        adapter->flags |= IGB_FLAG_MAS_ENABLE;
2931                        netdev_info(adapter->netdev,
2932                                "MAS: Enabling Media Autosense for port %d\n",
2933                                hw->bus.func);
2934                }
2935                break;
2936        case E1000_FUNC_3:
2937                if (eeprom_data & IGB_MAS_ENABLE_3) {
2938                        adapter->flags |= IGB_FLAG_MAS_ENABLE;
2939                        netdev_info(adapter->netdev,
2940                                "MAS: Enabling Media Autosense for port %d\n",
2941                                hw->bus.func);
2942                }
2943                break;
2944        default:
2945                /* Shouldn't get here */
2946                netdev_err(adapter->netdev,
2947                        "MAS: Invalid port configuration, returning\n");
2948                break;
2949        }
2950}
2951
2952/**
2953 *  igb_init_i2c - Init I2C interface
2954 *  @adapter: pointer to adapter structure
2955 **/
2956static s32 igb_init_i2c(struct igb_adapter *adapter)
2957{
2958        s32 status = 0;
2959
2960        /* I2C interface supported on i350 devices */
2961        if (adapter->hw.mac.type != e1000_i350)
2962                return 0;
2963
2964        /* Initialize the i2c bus which is controlled by the registers.
2965         * This bus will use the i2c_algo_bit structue that implements
2966         * the protocol through toggling of the 4 bits in the register.
2967         */
2968        adapter->i2c_adap.owner = THIS_MODULE;
2969        adapter->i2c_algo = igb_i2c_algo;
2970        adapter->i2c_algo.data = adapter;
2971        adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2972        adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2973        strlcpy(adapter->i2c_adap.name, "igb BB",
2974                sizeof(adapter->i2c_adap.name));
2975        status = i2c_bit_add_bus(&adapter->i2c_adap);
2976        return status;
2977}
2978
2979/**
2980 *  igb_probe - Device Initialization Routine
2981 *  @pdev: PCI device information struct
2982 *  @ent: entry in igb_pci_tbl
2983 *
2984 *  Returns 0 on success, negative on failure
2985 *
2986 *  igb_probe initializes an adapter identified by a pci_dev structure.
2987 *  The OS initialization, configuring of the adapter private structure,
2988 *  and a hardware reset occur.
2989 **/
2990static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2991{
2992        struct net_device *netdev;
2993        struct igb_adapter *adapter;
2994        struct e1000_hw *hw;
2995        u16 eeprom_data = 0;
2996        s32 ret_val;
2997        static int global_quad_port_a; /* global quad port a indication */
2998        const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2999        int err, pci_using_dac;
3000        u8 part_str[E1000_PBANUM_LENGTH];
3001
3002        /* Catch broken hardware that put the wrong VF device ID in
3003         * the PCIe SR-IOV capability.
3004         */
3005        if (pdev->is_virtfn) {
3006                WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
3007                        pci_name(pdev), pdev->vendor, pdev->device);
3008                return -EINVAL;
3009        }
3010
3011        err = pci_enable_device_mem(pdev);
3012        if (err)
3013                return err;
3014
3015        pci_using_dac = 0;
3016        err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3017        if (!err) {
3018                pci_using_dac = 1;
3019        } else {
3020                err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3021                if (err) {
3022                        dev_err(&pdev->dev,
3023                                "No usable DMA configuration, aborting\n");
3024                        goto err_dma;
3025                }
3026        }
3027
3028        err = pci_request_mem_regions(pdev, igb_driver_name);
3029        if (err)
3030                goto err_pci_reg;
3031
3032        pci_enable_pcie_error_reporting(pdev);
3033
3034        pci_set_master(pdev);
3035        pci_save_state(pdev);
3036
3037        err = -ENOMEM;
3038        netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3039                                   IGB_MAX_TX_QUEUES);
3040        if (!netdev)
3041                goto err_alloc_etherdev;
3042
3043        SET_NETDEV_DEV(netdev, &pdev->dev);
3044
3045        pci_set_drvdata(pdev, netdev);
3046        adapter = netdev_priv(netdev);
3047        adapter->netdev = netdev;
3048        adapter->pdev = pdev;
3049        hw = &adapter->hw;
3050        hw->back = adapter;
3051        adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3052
3053        err = -EIO;
3054        adapter->io_addr = pci_iomap(pdev, 0, 0);
3055        if (!adapter->io_addr)
3056                goto err_ioremap;
3057        /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3058        hw->hw_addr = adapter->io_addr;
3059
3060        netdev->netdev_ops = &igb_netdev_ops;
3061        igb_set_ethtool_ops(netdev);
3062        netdev->watchdog_timeo = 5 * HZ;
3063
3064        strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3065
3066        netdev->mem_start = pci_resource_start(pdev, 0);
3067        netdev->mem_end = pci_resource_end(pdev, 0);
3068
3069        /* PCI config space info */
3070        hw->vendor_id = pdev->vendor;
3071        hw->device_id = pdev->device;
3072        hw->revision_id = pdev->revision;
3073        hw->subsystem_vendor_id = pdev->subsystem_vendor;
3074        hw->subsystem_device_id = pdev->subsystem_device;
3075
3076        /* Copy the default MAC, PHY and NVM function pointers */
3077        memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3078        memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3079        memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3080        /* Initialize skew-specific constants */
3081        err = ei->get_invariants(hw);
3082        if (err)
3083                goto err_sw_init;
3084
3085        /* setup the private structure */
3086        err = igb_sw_init(adapter);
3087        if (err)
3088                goto err_sw_init;
3089
3090        igb_get_bus_info_pcie(hw);
3091
3092        hw->phy.autoneg_wait_to_complete = false;
3093
3094        /* Copper options */
3095        if (hw->phy.media_type == e1000_media_type_copper) {
3096                hw->phy.mdix = AUTO_ALL_MODES;
3097                hw->phy.disable_polarity_correction = false;
3098                hw->phy.ms_type = e1000_ms_hw_default;
3099        }
3100
3101        if (igb_check_reset_block(hw))
3102                dev_info(&pdev->dev,
3103                        "PHY reset is blocked due to SOL/IDER session.\n");
3104
3105        /* features is initialized to 0 in allocation, it might have bits
3106         * set by igb_sw_init so we should use an or instead of an
3107         * assignment.
3108         */
3109        netdev->features |= NETIF_F_SG |
3110                            NETIF_F_TSO |
3111                            NETIF_F_TSO6 |
3112                            NETIF_F_RXHASH |
3113                            NETIF_F_RXCSUM |
3114                            NETIF_F_HW_CSUM;
3115
3116        if (hw->mac.type >= e1000_82576)
3117                netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3118
3119        if (hw->mac.type >= e1000_i350)
3120                netdev->features |= NETIF_F_HW_TC;
3121
3122#define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3123                                  NETIF_F_GSO_GRE_CSUM | \
3124                                  NETIF_F_GSO_IPXIP4 | \
3125                                  NETIF_F_GSO_IPXIP6 | \
3126                                  NETIF_F_GSO_UDP_TUNNEL | \
3127                                  NETIF_F_GSO_UDP_TUNNEL_CSUM)
3128
3129        netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3130        netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3131
3132        /* copy netdev features into list of user selectable features */
3133        netdev->hw_features |= netdev->features |
3134                               NETIF_F_HW_VLAN_CTAG_RX |
3135                               NETIF_F_HW_VLAN_CTAG_TX |
3136                               NETIF_F_RXALL;
3137
3138        if (hw->mac.type >= e1000_i350)
3139                netdev->hw_features |= NETIF_F_NTUPLE;
3140
3141        if (pci_using_dac)
3142                netdev->features |= NETIF_F_HIGHDMA;
3143
3144        netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3145        netdev->mpls_features |= NETIF_F_HW_CSUM;
3146        netdev->hw_enc_features |= netdev->vlan_features;
3147
3148        /* set this bit last since it cannot be part of vlan_features */
3149        netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3150                            NETIF_F_HW_VLAN_CTAG_RX |
3151                            NETIF_F_HW_VLAN_CTAG_TX;
3152
3153        netdev->priv_flags |= IFF_SUPP_NOFCS;
3154
3155        netdev->priv_flags |= IFF_UNICAST_FLT;
3156
3157        /* MTU range: 68 - 9216 */
3158        netdev->min_mtu = ETH_MIN_MTU;
3159        netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3160
3161        adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3162
3163        /* before reading the NVM, reset the controller to put the device in a
3164         * known good starting state
3165         */
3166        hw->mac.ops.reset_hw(hw);
3167
3168        /* make sure the NVM is good , i211/i210 parts can have special NVM
3169         * that doesn't contain a checksum
3170         */
3171        switch (hw->mac.type) {
3172        case e1000_i210:
3173        case e1000_i211:
3174                if (igb_get_flash_presence_i210(hw)) {
3175                        if (hw->nvm.ops.validate(hw) < 0) {
3176                                dev_err(&pdev->dev,
3177                                        "The NVM Checksum Is Not Valid\n");
3178                                err = -EIO;
3179                                goto err_eeprom;
3180                        }
3181                }
3182                break;
3183        default:
3184                if (hw->nvm.ops.validate(hw) < 0) {
3185                        dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3186                        err = -EIO;
3187                        goto err_eeprom;
3188                }
3189                break;
3190        }
3191
3192        if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3193                /* copy the MAC address out of the NVM */
3194                if (hw->mac.ops.read_mac_addr(hw))
3195                        dev_err(&pdev->dev, "NVM Read Error\n");
3196        }
3197
3198        memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
3199
3200        if (!is_valid_ether_addr(netdev->dev_addr)) {
3201                dev_err(&pdev->dev, "Invalid MAC Address\n");
3202                err = -EIO;
3203                goto err_eeprom;
3204        }
3205
3206        igb_set_default_mac_filter(adapter);
3207
3208        /* get firmware version for ethtool -i */
3209        igb_set_fw_version(adapter);
3210
3211        /* configure RXPBSIZE and TXPBSIZE */
3212        if (hw->mac.type == e1000_i210) {
3213                wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3214                wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3215        }
3216
3217        timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3218        timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3219
3220        INIT_WORK(&adapter->reset_task, igb_reset_task);
3221        INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3222
3223        /* Initialize link properties that are user-changeable */
3224        adapter->fc_autoneg = true;
3225        hw->mac.autoneg = true;
3226        hw->phy.autoneg_advertised = 0x2f;
3227
3228        hw->fc.requested_mode = e1000_fc_default;
3229        hw->fc.current_mode = e1000_fc_default;
3230
3231        igb_validate_mdi_setting(hw);
3232
3233        /* By default, support wake on port A */
3234        if (hw->bus.func == 0)
3235                adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3236
3237        /* Check the NVM for wake support on non-port A ports */
3238        if (hw->mac.type >= e1000_82580)
3239                hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3240                                 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3241                                 &eeprom_data);
3242        else if (hw->bus.func == 1)
3243                hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3244
3245        if (eeprom_data & IGB_EEPROM_APME)
3246                adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3247
3248        /* now that we have the eeprom settings, apply the special cases where
3249         * the eeprom may be wrong or the board simply won't support wake on
3250         * lan on a particular port
3251         */
3252        switch (pdev->device) {
3253        case E1000_DEV_ID_82575GB_QUAD_COPPER:
3254                adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3255                break;
3256        case E1000_DEV_ID_82575EB_FIBER_SERDES:
3257        case E1000_DEV_ID_82576_FIBER:
3258        case E1000_DEV_ID_82576_SERDES:
3259                /* Wake events only supported on port A for dual fiber
3260                 * regardless of eeprom setting
3261                 */
3262                if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3263                        adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3264                break;
3265        case E1000_DEV_ID_82576_QUAD_COPPER:
3266        case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3267                /* if quad port adapter, disable WoL on all but port A */
3268                if (global_quad_port_a != 0)
3269                        adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3270                else
3271                        adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3272                /* Reset for multiple quad port adapters */
3273                if (++global_quad_port_a == 4)
3274                        global_quad_port_a = 0;
3275                break;
3276        default:
3277                /* If the device can't wake, don't set software support */
3278                if (!device_can_wakeup(&adapter->pdev->dev))
3279                        adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3280        }
3281
3282        /* initialize the wol settings based on the eeprom settings */
3283        if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3284                adapter->wol |= E1000_WUFC_MAG;
3285
3286        /* Some vendors want WoL disabled by default, but still supported */
3287        if ((hw->mac.type == e1000_i350) &&
3288            (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3289                adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3290                adapter->wol = 0;
3291        }
3292
3293        /* Some vendors want the ability to Use the EEPROM setting as
3294         * enable/disable only, and not for capability
3295         */
3296        if (((hw->mac.type == e1000_i350) ||
3297             (hw->mac.type == e1000_i354)) &&
3298            (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3299                adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3300                adapter->wol = 0;
3301        }
3302        if (hw->mac.type == e1000_i350) {
3303                if (((pdev->subsystem_device == 0x5001) ||
3304                     (pdev->subsystem_device == 0x5002)) &&
3305                                (hw->bus.func == 0)) {
3306                        adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3307                        adapter->wol = 0;
3308                }
3309                if (pdev->subsystem_device == 0x1F52)
3310                        adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3311        }
3312
3313        device_set_wakeup_enable(&adapter->pdev->dev,
3314                                 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3315
3316        /* reset the hardware with the new settings */
3317        igb_reset(adapter);
3318
3319        /* Init the I2C interface */
3320        err = igb_init_i2c(adapter);
3321        if (err) {
3322                dev_err(&pdev->dev, "failed to init i2c interface\n");
3323                goto err_eeprom;
3324        }
3325
3326        /* let the f/w know that the h/w is now under the control of the
3327         * driver.
3328         */
3329        igb_get_hw_control(adapter);
3330
3331        strcpy(netdev->name, "eth%d");
3332        err = register_netdev(netdev);
3333        if (err)
3334                goto err_register;
3335
3336        /* carrier off reporting is important to ethtool even BEFORE open */
3337        netif_carrier_off(netdev);
3338
3339#ifdef CONFIG_IGB_DCA
3340        if (dca_add_requester(&pdev->dev) == 0) {
3341                adapter->flags |= IGB_FLAG_DCA_ENABLED;
3342                dev_info(&pdev->dev, "DCA enabled\n");
3343                igb_setup_dca(adapter);
3344        }
3345
3346#endif
3347#ifdef CONFIG_IGB_HWMON
3348        /* Initialize the thermal sensor on i350 devices. */
3349        if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3350                u16 ets_word;
3351
3352                /* Read the NVM to determine if this i350 device supports an
3353                 * external thermal sensor.
3354                 */
3355                hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3356                if (ets_word != 0x0000 && ets_word != 0xFFFF)
3357                        adapter->ets = true;
3358                else
3359                        adapter->ets = false;
3360                if (igb_sysfs_init(adapter))
3361                        dev_err(&pdev->dev,
3362                                "failed to allocate sysfs resources\n");
3363        } else {
3364                adapter->ets = false;
3365        }
3366#endif
3367        /* Check if Media Autosense is enabled */
3368        adapter->ei = *ei;
3369        if (hw->dev_spec._82575.mas_capable)
3370                igb_init_mas(adapter);
3371
3372        /* do hw tstamp init after resetting */
3373        igb_ptp_init(adapter);
3374
3375        dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3376        /* print bus type/speed/width info, not applicable to i354 */
3377        if (hw->mac.type != e1000_i354) {
3378                dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3379                         netdev->name,
3380                         ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3381                          (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3382                           "unknown"),
3383                         ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3384                          "Width x4" :
3385                          (hw->bus.width == e1000_bus_width_pcie_x2) ?
3386                          "Width x2" :
3387                          (hw->bus.width == e1000_bus_width_pcie_x1) ?
3388                          "Width x1" : "unknown"), netdev->dev_addr);
3389        }
3390
3391        if ((hw->mac.type >= e1000_i210 ||
3392             igb_get_flash_presence_i210(hw))) {
3393                ret_val = igb_read_part_string(hw, part_str,
3394                                               E1000_PBANUM_LENGTH);
3395        } else {
3396                ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3397        }
3398
3399        if (ret_val)
3400                strcpy(part_str, "Unknown");
3401        dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3402        dev_info(&pdev->dev,
3403                "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3404                (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3405                (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3406                adapter->num_rx_queues, adapter->num_tx_queues);
3407        if (hw->phy.media_type == e1000_media_type_copper) {
3408                switch (hw->mac.type) {
3409                case e1000_i350:
3410                case e1000_i210:
3411                case e1000_i211:
3412                        /* Enable EEE for internal copper PHY devices */
3413                        err = igb_set_eee_i350(hw, true, true);
3414                        if ((!err) &&
3415                            (!hw->dev_spec._82575.eee_disable)) {
3416                                adapter->eee_advert =
3417                                        MDIO_EEE_100TX | MDIO_EEE_1000T;
3418                                adapter->flags |= IGB_FLAG_EEE;
3419                        }
3420                        break;
3421                case e1000_i354:
3422                        if ((rd32(E1000_CTRL_EXT) &
3423                            E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3424                                err = igb_set_eee_i354(hw, true, true);
3425                                if ((!err) &&
3426                                        (!hw->dev_spec._82575.eee_disable)) {
3427                                        adapter->eee_advert =
3428                                           MDIO_EEE_100TX | MDIO_EEE_1000T;
3429                                        adapter->flags |= IGB_FLAG_EEE;
3430                                }
3431                        }
3432                        break;
3433                default:
3434                        break;
3435                }
3436        }
3437
3438        dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3439
3440        pm_runtime_put_noidle(&pdev->dev);
3441        return 0;
3442
3443err_register:
3444        igb_release_hw_control(adapter);
3445        memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3446err_eeprom:
3447        if (!igb_check_reset_block(hw))
3448                igb_reset_phy(hw);
3449
3450        if (hw->flash_address)
3451                iounmap(hw->flash_address);
3452err_sw_init:
3453        kfree(adapter->mac_table);
3454        kfree(adapter->shadow_vfta);
3455        igb_clear_interrupt_scheme(adapter);
3456#ifdef CONFIG_PCI_IOV
3457        igb_disable_sriov(pdev);
3458#endif
3459        pci_iounmap(pdev, adapter->io_addr);
3460err_ioremap:
3461        free_netdev(netdev);
3462err_alloc_etherdev:
3463        pci_release_mem_regions(pdev);
3464err_pci_reg:
3465err_dma:
3466        pci_disable_device(pdev);
3467        return err;
3468}
3469
3470#ifdef CONFIG_PCI_IOV
3471static int igb_disable_sriov(struct pci_dev *pdev)
3472{
3473        struct net_device *netdev = pci_get_drvdata(pdev);
3474        struct igb_adapter *adapter = netdev_priv(netdev);
3475        struct e1000_hw *hw = &adapter->hw;
3476
3477        /* reclaim resources allocated to VFs */
3478        if (adapter->vf_data) {
3479                /* disable iov and allow time for transactions to clear */
3480                if (pci_vfs_assigned(pdev)) {
3481                        dev_warn(&pdev->dev,
3482                                 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3483                        return -EPERM;
3484                } else {
3485                        pci_disable_sriov(pdev);
3486                        msleep(500);
3487                }
3488
3489                kfree(adapter->vf_mac_list);
3490                adapter->vf_mac_list = NULL;
3491                kfree(adapter->vf_data);
3492                adapter->vf_data = NULL;
3493                adapter->vfs_allocated_count = 0;
3494                wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3495                wrfl();
3496                msleep(100);
3497                dev_info(&pdev->dev, "IOV Disabled\n");
3498
3499                /* Re-enable DMA Coalescing flag since IOV is turned off */
3500                adapter->flags |= IGB_FLAG_DMAC;
3501        }
3502
3503        return 0;
3504}
3505
3506static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3507{
3508        struct net_device *netdev = pci_get_drvdata(pdev);
3509        struct igb_adapter *adapter = netdev_priv(netdev);
3510        int old_vfs = pci_num_vf(pdev);
3511        struct vf_mac_filter *mac_list;
3512        int err = 0;
3513        int num_vf_mac_filters, i;
3514
3515        if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3516                err = -EPERM;
3517                goto out;
3518        }
3519        if (!num_vfs)
3520                goto out;
3521
3522        if (old_vfs) {
3523                dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3524                         old_vfs, max_vfs);
3525                adapter->vfs_allocated_count = old_vfs;
3526        } else
3527                adapter->vfs_allocated_count = num_vfs;
3528
3529        adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3530                                sizeof(struct vf_data_storage), GFP_KERNEL);
3531
3532        /* if allocation failed then we do not support SR-IOV */
3533        if (!adapter->vf_data) {
3534                adapter->vfs_allocated_count = 0;
3535                err = -ENOMEM;
3536                goto out;
3537        }
3538
3539        /* Due to the limited number of RAR entries calculate potential
3540         * number of MAC filters available for the VFs. Reserve entries
3541         * for PF default MAC, PF MAC filters and at least one RAR entry
3542         * for each VF for VF MAC.
3543         */
3544        num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3545                             (1 + IGB_PF_MAC_FILTERS_RESERVED +
3546                              adapter->vfs_allocated_count);
3547
3548        adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3549                                       sizeof(struct vf_mac_filter),
3550                                       GFP_KERNEL);
3551
3552        mac_list = adapter->vf_mac_list;
3553        INIT_LIST_HEAD(&adapter->vf_macs.l);
3554
3555        if (adapter->vf_mac_list) {
3556                /* Initialize list of VF MAC filters */
3557                for (i = 0; i < num_vf_mac_filters; i++) {
3558                        mac_list->vf = -1;
3559                        mac_list->free = true;
3560                        list_add(&mac_list->l, &adapter->vf_macs.l);
3561                        mac_list++;
3562                }
3563        } else {
3564                /* If we could not allocate memory for the VF MAC filters
3565                 * we can continue without this feature but warn user.
3566                 */
3567                dev_err(&pdev->dev,
3568                        "Unable to allocate memory for VF MAC filter list\n");
3569        }
3570
3571        /* only call pci_enable_sriov() if no VFs are allocated already */
3572        if (!old_vfs) {
3573                err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3574                if (err)
3575                        goto err_out;
3576        }
3577        dev_info(&pdev->dev, "%d VFs allocated\n",
3578                 adapter->vfs_allocated_count);
3579        for (i = 0; i < adapter->vfs_allocated_count; i++)
3580                igb_vf_configure(adapter, i);
3581
3582        /* DMA Coalescing is not supported in IOV mode. */
3583        adapter->flags &= ~IGB_FLAG_DMAC;
3584        goto out;
3585
3586err_out:
3587        kfree(adapter->vf_mac_list);
3588        adapter->vf_mac_list = NULL;
3589        kfree(adapter->vf_data);
3590        adapter->vf_data = NULL;
3591        adapter->vfs_allocated_count = 0;
3592out:
3593        return err;
3594}
3595
3596#endif
3597/**
3598 *  igb_remove_i2c - Cleanup  I2C interface
3599 *  @adapter: pointer to adapter structure
3600 **/
3601static void igb_remove_i2c(struct igb_adapter *adapter)
3602{
3603        /* free the adapter bus structure */
3604        i2c_del_adapter(&adapter->i2c_adap);
3605}
3606
3607/**
3608 *  igb_remove - Device Removal Routine
3609 *  @pdev: PCI device information struct
3610 *
3611 *  igb_remove is called by the PCI subsystem to alert the driver
3612 *  that it should release a PCI device.  The could be caused by a
3613 *  Hot-Plug event, or because the driver is going to be removed from
3614 *  memory.
3615 **/
3616static void igb_remove(struct pci_dev *pdev)
3617{
3618        struct net_device *netdev = pci_get_drvdata(pdev);
3619        struct igb_adapter *adapter = netdev_priv(netdev);
3620        struct e1000_hw *hw = &adapter->hw;
3621
3622        pm_runtime_get_noresume(&pdev->dev);
3623#ifdef CONFIG_IGB_HWMON
3624        igb_sysfs_exit(adapter);
3625#endif
3626        igb_remove_i2c(adapter);
3627        igb_ptp_stop(adapter);
3628        /* The watchdog timer may be rescheduled, so explicitly
3629         * disable watchdog from being rescheduled.
3630         */
3631        set_bit(__IGB_DOWN, &adapter->state);
3632        del_timer_sync(&adapter->watchdog_timer);
3633        del_timer_sync(&adapter->phy_info_timer);
3634
3635        cancel_work_sync(&adapter->reset_task);
3636        cancel_work_sync(&adapter->watchdog_task);
3637
3638#ifdef CONFIG_IGB_DCA
3639        if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3640                dev_info(&pdev->dev, "DCA disabled\n");
3641                dca_remove_requester(&pdev->dev);
3642                adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3643                wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3644        }
3645#endif
3646
3647        /* Release control of h/w to f/w.  If f/w is AMT enabled, this
3648         * would have already happened in close and is redundant.
3649         */
3650        igb_release_hw_control(adapter);
3651
3652#ifdef CONFIG_PCI_IOV
3653        igb_disable_sriov(pdev);
3654#endif
3655
3656        unregister_netdev(netdev);
3657
3658        igb_clear_interrupt_scheme(adapter);
3659
3660        pci_iounmap(pdev, adapter->io_addr);
3661        if (hw->flash_address)
3662                iounmap(hw->flash_address);
3663        pci_release_mem_regions(pdev);
3664
3665        kfree(adapter->mac_table);
3666        kfree(adapter->shadow_vfta);
3667        free_netdev(netdev);
3668
3669        pci_disable_pcie_error_reporting(pdev);
3670
3671        pci_disable_device(pdev);
3672}
3673
3674/**
3675 *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3676 *  @adapter: board private structure to initialize
3677 *
3678 *  This function initializes the vf specific data storage and then attempts to
3679 *  allocate the VFs.  The reason for ordering it this way is because it is much
3680 *  mor expensive time wise to disable SR-IOV than it is to allocate and free
3681 *  the memory for the VFs.
3682 **/
3683static void igb_probe_vfs(struct igb_adapter *adapter)
3684{
3685#ifdef CONFIG_PCI_IOV
3686        struct pci_dev *pdev = adapter->pdev;
3687        struct e1000_hw *hw = &adapter->hw;
3688
3689        /* Virtualization features not supported on i210 family. */
3690        if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3691                return;
3692
3693        /* Of the below we really only want the effect of getting
3694         * IGB_FLAG_HAS_MSIX set (if available), without which
3695         * igb_enable_sriov() has no effect.
3696         */
3697        igb_set_interrupt_capability(adapter, true);
3698        igb_reset_interrupt_capability(adapter);
3699
3700        pci_sriov_set_totalvfs(pdev, 7);
3701        igb_enable_sriov(pdev, max_vfs);
3702
3703#endif /* CONFIG_PCI_IOV */
3704}
3705
3706unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3707{
3708        struct e1000_hw *hw = &adapter->hw;
3709        unsigned int max_rss_queues;
3710
3711        /* Determine the maximum number of RSS queues supported. */
3712        switch (hw->mac.type) {
3713        case e1000_i211:
3714                max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3715                break;
3716        case e1000_82575:
3717        case e1000_i210:
3718                max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3719                break;
3720        case e1000_i350:
3721                /* I350 cannot do RSS and SR-IOV at the same time */
3722                if (!!adapter->vfs_allocated_count) {
3723                        max_rss_queues = 1;
3724                        break;
3725                }
3726                fallthrough;
3727        case e1000_82576:
3728                if (!!adapter->vfs_allocated_count) {
3729                        max_rss_queues = 2;
3730                        break;
3731                }
3732                fallthrough;
3733        case e1000_82580:
3734        case e1000_i354:
3735        default:
3736                max_rss_queues = IGB_MAX_RX_QUEUES;
3737                break;
3738        }
3739
3740        return max_rss_queues;
3741}
3742
3743static void igb_init_queue_configuration(struct igb_adapter *adapter)
3744{
3745        u32 max_rss_queues;
3746
3747        max_rss_queues = igb_get_max_rss_queues(adapter);
3748        adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3749
3750        igb_set_flag_queue_pairs(adapter, max_rss_queues);
3751}
3752
3753void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3754                              const u32 max_rss_queues)
3755{
3756        struct e1000_hw *hw = &adapter->hw;
3757
3758        /* Determine if we need to pair queues. */
3759        switch (hw->mac.type) {
3760        case e1000_82575:
3761        case e1000_i211:
3762                /* Device supports enough interrupts without queue pairing. */
3763                break;
3764        case e1000_82576:
3765        case e1000_82580:
3766        case e1000_i350:
3767        case e1000_i354:
3768        case e1000_i210:
3769        default:
3770                /* If rss_queues > half of max_rss_queues, pair the queues in
3771                 * order to conserve interrupts due to limited supply.
3772                 */
3773                if (adapter->rss_queues > (max_rss_queues / 2))
3774                        adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3775                else
3776                        adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3777                break;
3778        }
3779}
3780
3781/**
3782 *  igb_sw_init - Initialize general software structures (struct igb_adapter)
3783 *  @adapter: board private structure to initialize
3784 *
3785 *  igb_sw_init initializes the Adapter private data structure.
3786 *  Fields are initialized based on PCI device information and
3787 *  OS network device settings (MTU size).
3788 **/
3789static int igb_sw_init(struct igb_adapter *adapter)
3790{
3791        struct e1000_hw *hw = &adapter->hw;
3792        struct net_device *netdev = adapter->netdev;
3793        struct pci_dev *pdev = adapter->pdev;
3794
3795        pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3796
3797        /* set default ring sizes */
3798        adapter->tx_ring_count = IGB_DEFAULT_TXD;
3799        adapter->rx_ring_count = IGB_DEFAULT_RXD;
3800
3801        /* set default ITR values */
3802        adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3803        adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3804
3805        /* set default work limits */
3806        adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3807
3808        adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3809                                  VLAN_HLEN;
3810        adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3811
3812        spin_lock_init(&adapter->nfc_lock);
3813        spin_lock_init(&adapter->stats64_lock);
3814#ifdef CONFIG_PCI_IOV
3815        switch (hw->mac.type) {
3816        case e1000_82576:
3817        case e1000_i350:
3818                if (max_vfs > 7) {
3819                        dev_warn(&pdev->dev,
3820                                 "Maximum of 7 VFs per PF, using max\n");
3821                        max_vfs = adapter->vfs_allocated_count = 7;
3822                } else
3823                        adapter->vfs_allocated_count = max_vfs;
3824                if (adapter->vfs_allocated_count)
3825                        dev_warn(&pdev->dev,
3826                                 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3827                break;
3828        default:
3829                break;
3830        }
3831#endif /* CONFIG_PCI_IOV */
3832
3833        /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3834        adapter->flags |= IGB_FLAG_HAS_MSIX;
3835
3836        adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
3837                                     sizeof(struct igb_mac_addr),
3838                                     GFP_KERNEL);
3839        if (!adapter->mac_table)
3840                return -ENOMEM;
3841
3842        igb_probe_vfs(adapter);
3843
3844        igb_init_queue_configuration(adapter);
3845
3846        /* Setup and initialize a copy of the hw vlan table array */
3847        adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3848                                       GFP_KERNEL);
3849        if (!adapter->shadow_vfta)
3850                return -ENOMEM;
3851
3852        /* This call may decrease the number of queues */
3853        if (igb_init_interrupt_scheme(adapter, true)) {
3854                dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3855                return -ENOMEM;
3856        }
3857
3858        /* Explicitly disable IRQ since the NIC can be in any state. */
3859        igb_irq_disable(adapter);
3860
3861        if (hw->mac.type >= e1000_i350)
3862                adapter->flags &= ~IGB_FLAG_DMAC;
3863
3864        set_bit(__IGB_DOWN, &adapter->state);
3865        return 0;
3866}
3867
3868/**
3869 *  igb_open - Called when a network interface is made active
3870 *  @netdev: network interface device structure
3871 *
3872 *  Returns 0 on success, negative value on failure
3873 *
3874 *  The open entry point is called when a network interface is made
3875 *  active by the system (IFF_UP).  At this point all resources needed
3876 *  for transmit and receive operations are allocated, the interrupt
3877 *  handler is registered with the OS, the watchdog timer is started,
3878 *  and the stack is notified that the interface is ready.
3879 **/
3880static int __igb_open(struct net_device *netdev, bool resuming)
3881{
3882        struct igb_adapter *adapter = netdev_priv(netdev);
3883        struct e1000_hw *hw = &adapter->hw;
3884        struct pci_dev *pdev = adapter->pdev;
3885        int err;
3886        int i;
3887
3888        /* disallow open during test */
3889        if (test_bit(__IGB_TESTING, &adapter->state)) {
3890                WARN_ON(resuming);
3891                return -EBUSY;
3892        }
3893
3894        if (!resuming)
3895                pm_runtime_get_sync(&pdev->dev);
3896
3897        netif_carrier_off(netdev);
3898
3899        /* allocate transmit descriptors */
3900        err = igb_setup_all_tx_resources(adapter);
3901        if (err)
3902                goto err_setup_tx;
3903
3904        /* allocate receive descriptors */
3905        err = igb_setup_all_rx_resources(adapter);
3906        if (err)
3907                goto err_setup_rx;
3908
3909        igb_power_up_link(adapter);
3910
3911        /* before we allocate an interrupt, we must be ready to handle it.
3912         * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3913         * as soon as we call pci_request_irq, so we have to setup our
3914         * clean_rx handler before we do so.
3915         */
3916        igb_configure(adapter);
3917
3918        err = igb_request_irq(adapter);
3919        if (err)
3920                goto err_req_irq;
3921
3922        /* Notify the stack of the actual queue counts. */
3923        err = netif_set_real_num_tx_queues(adapter->netdev,
3924                                           adapter->num_tx_queues);
3925        if (err)
3926                goto err_set_queues;
3927
3928        err = netif_set_real_num_rx_queues(adapter->netdev,
3929                                           adapter->num_rx_queues);
3930        if (err)
3931                goto err_set_queues;
3932
3933        /* From here on the code is the same as igb_up() */
3934        clear_bit(__IGB_DOWN, &adapter->state);
3935
3936        for (i = 0; i < adapter->num_q_vectors; i++)
3937                napi_enable(&(adapter->q_vector[i]->napi));
3938
3939        /* Clear any pending interrupts. */
3940        rd32(E1000_TSICR);
3941        rd32(E1000_ICR);
3942
3943        igb_irq_enable(adapter);
3944
3945        /* notify VFs that reset has been completed */
3946        if (adapter->vfs_allocated_count) {
3947                u32 reg_data = rd32(E1000_CTRL_EXT);
3948
3949                reg_data |= E1000_CTRL_EXT_PFRSTD;
3950                wr32(E1000_CTRL_EXT, reg_data);
3951        }
3952
3953        netif_tx_start_all_queues(netdev);
3954
3955        if (!resuming)
3956                pm_runtime_put(&pdev->dev);
3957
3958        /* start the watchdog. */
3959        hw->mac.get_link_status = 1;
3960        schedule_work(&adapter->watchdog_task);
3961
3962        return 0;
3963
3964err_set_queues:
3965        igb_free_irq(adapter);
3966err_req_irq:
3967        igb_release_hw_control(adapter);
3968        igb_power_down_link(adapter);
3969        igb_free_all_rx_resources(adapter);
3970err_setup_rx:
3971        igb_free_all_tx_resources(adapter);
3972err_setup_tx:
3973        igb_reset(adapter);
3974        if (!resuming)
3975                pm_runtime_put(&pdev->dev);
3976
3977        return err;
3978}
3979
3980int igb_open(struct net_device *netdev)
3981{
3982        return __igb_open(netdev, false);
3983}
3984
3985/**
3986 *  igb_close - Disables a network interface
3987 *  @netdev: network interface device structure
3988 *
3989 *  Returns 0, this is not allowed to fail
3990 *
3991 *  The close entry point is called when an interface is de-activated
3992 *  by the OS.  The hardware is still under the driver's control, but
3993 *  needs to be disabled.  A global MAC reset is issued to stop the
3994 *  hardware, and all transmit and receive resources are freed.
3995 **/
3996static int __igb_close(struct net_device *netdev, bool suspending)
3997{
3998        struct igb_adapter *adapter = netdev_priv(netdev);
3999        struct pci_dev *pdev = adapter->pdev;
4000
4001        WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4002
4003        if (!suspending)
4004                pm_runtime_get_sync(&pdev->dev);
4005
4006        igb_down(adapter);
4007        igb_free_irq(adapter);
4008
4009        igb_free_all_tx_resources(adapter);
4010        igb_free_all_rx_resources(adapter);
4011
4012        if (!suspending)
4013                pm_runtime_put_sync(&pdev->dev);
4014        return 0;
4015}
4016
4017int igb_close(struct net_device *netdev)
4018{
4019        if (netif_device_present(netdev) || netdev->dismantle)
4020                return __igb_close(netdev, false);
4021        return 0;
4022}
4023
4024/**
4025 *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
4026 *  @tx_ring: tx descriptor ring (for a specific queue) to setup
4027 *
4028 *  Return 0 on success, negative on failure
4029 **/
4030int igb_setup_tx_resources(struct igb_ring *tx_ring)
4031{
4032        struct device *dev = tx_ring->dev;
4033        int size;
4034
4035        size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4036
4037        tx_ring->tx_buffer_info = vmalloc(size);
4038        if (!tx_ring->tx_buffer_info)
4039                goto err;
4040
4041        /* round up to nearest 4K */
4042        tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4043        tx_ring->size = ALIGN(tx_ring->size, 4096);
4044
4045        tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4046                                           &tx_ring->dma, GFP_KERNEL);
4047        if (!tx_ring->desc)
4048                goto err;
4049
4050        tx_ring->next_to_use = 0;
4051        tx_ring->next_to_clean = 0;
4052
4053        return 0;
4054
4055err:
4056        vfree(tx_ring->tx_buffer_info);
4057        tx_ring->tx_buffer_info = NULL;
4058        dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4059        return -ENOMEM;
4060}
4061
4062/**
4063 *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
4064 *                               (Descriptors) for all queues
4065 *  @adapter: board private structure
4066 *
4067 *  Return 0 on success, negative on failure
4068 **/
4069static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4070{
4071        struct pci_dev *pdev = adapter->pdev;
4072        int i, err = 0;
4073
4074        for (i = 0; i < adapter->num_tx_queues; i++) {
4075                err = igb_setup_tx_resources(adapter->tx_ring[i]);
4076                if (err) {
4077                        dev_err(&pdev->dev,
4078                                "Allocation for Tx Queue %u failed\n", i);
4079                        for (i--; i >= 0; i--)
4080                                igb_free_tx_resources(adapter->tx_ring[i]);
4081                        break;
4082                }
4083        }
4084
4085        return err;
4086}
4087
4088/**
4089 *  igb_setup_tctl - configure the transmit control registers
4090 *  @adapter: Board private structure
4091 **/
4092void igb_setup_tctl(struct igb_adapter *adapter)
4093{
4094        struct e1000_hw *hw = &adapter->hw;
4095        u32 tctl;
4096
4097        /* disable queue 0 which is enabled by default on 82575 and 82576 */
4098        wr32(E1000_TXDCTL(0), 0);
4099
4100        /* Program the Transmit Control Register */
4101        tctl = rd32(E1000_TCTL);
4102        tctl &= ~E1000_TCTL_CT;
4103        tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4104                (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4105
4106        igb_config_collision_dist(hw);
4107
4108        /* Enable transmits */
4109        tctl |= E1000_TCTL_EN;
4110
4111        wr32(E1000_TCTL, tctl);
4112}
4113
4114/**
4115 *  igb_configure_tx_ring - Configure transmit ring after Reset
4116 *  @adapter: board private structure
4117 *  @ring: tx ring to configure
4118 *
4119 *  Configure a transmit ring after a reset.
4120 **/
4121void igb_configure_tx_ring(struct igb_adapter *adapter,
4122                           struct igb_ring *ring)
4123{
4124        struct e1000_hw *hw = &adapter->hw;
4125        u32 txdctl = 0;
4126        u64 tdba = ring->dma;
4127        int reg_idx = ring->reg_idx;
4128
4129        wr32(E1000_TDLEN(reg_idx),
4130             ring->count * sizeof(union e1000_adv_tx_desc));
4131        wr32(E1000_TDBAL(reg_idx),
4132             tdba & 0x00000000ffffffffULL);
4133        wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4134
4135        ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4136        wr32(E1000_TDH(reg_idx), 0);
4137        writel(0, ring->tail);
4138
4139        txdctl |= IGB_TX_PTHRESH;
4140        txdctl |= IGB_TX_HTHRESH << 8;
4141        txdctl |= IGB_TX_WTHRESH << 16;
4142
4143        /* reinitialize tx_buffer_info */
4144        memset(ring->tx_buffer_info, 0,
4145               sizeof(struct igb_tx_buffer) * ring->count);
4146
4147        txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4148        wr32(E1000_TXDCTL(reg_idx), txdctl);
4149}
4150
4151/**
4152 *  igb_configure_tx - Configure transmit Unit after Reset
4153 *  @adapter: board private structure
4154 *
4155 *  Configure the Tx unit of the MAC after a reset.
4156 **/
4157static void igb_configure_tx(struct igb_adapter *adapter)
4158{
4159        struct e1000_hw *hw = &adapter->hw;
4160        int i;
4161
4162        /* disable the queues */
4163        for (i = 0; i < adapter->num_tx_queues; i++)
4164                wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4165
4166        wrfl();
4167        usleep_range(10000, 20000);
4168
4169        for (i = 0; i < adapter->num_tx_queues; i++)
4170                igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4171}
4172
4173/**
4174 *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
4175 *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
4176 *
4177 *  Returns 0 on success, negative on failure
4178 **/
4179int igb_setup_rx_resources(struct igb_ring *rx_ring)
4180{
4181        struct device *dev = rx_ring->dev;
4182        int size;
4183
4184        size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4185
4186        rx_ring->rx_buffer_info = vmalloc(size);
4187        if (!rx_ring->rx_buffer_info)
4188                goto err;
4189
4190        /* Round up to nearest 4K */
4191        rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4192        rx_ring->size = ALIGN(rx_ring->size, 4096);
4193
4194        rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4195                                           &rx_ring->dma, GFP_KERNEL);
4196        if (!rx_ring->desc)
4197                goto err;
4198
4199        rx_ring->next_to_alloc = 0;
4200        rx_ring->next_to_clean = 0;
4201        rx_ring->next_to_use = 0;
4202
4203        return 0;
4204
4205err:
4206        vfree(rx_ring->rx_buffer_info);
4207        rx_ring->rx_buffer_info = NULL;
4208        dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4209        return -ENOMEM;
4210}
4211
4212/**
4213 *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
4214 *                               (Descriptors) for all queues
4215 *  @adapter: board private structure
4216 *
4217 *  Return 0 on success, negative on failure
4218 **/
4219static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4220{
4221        struct pci_dev *pdev = adapter->pdev;
4222        int i, err = 0;
4223
4224        for (i = 0; i < adapter->num_rx_queues; i++) {
4225                err = igb_setup_rx_resources(adapter->rx_ring[i]);
4226                if (err) {
4227                        dev_err(&pdev->dev,
4228                                "Allocation for Rx Queue %u failed\n", i);
4229                        for (i--; i >= 0; i--)
4230                                igb_free_rx_resources(adapter->rx_ring[i]);
4231                        break;
4232                }
4233        }
4234
4235        return err;
4236}
4237
4238/**
4239 *  igb_setup_mrqc - configure the multiple receive queue control registers
4240 *  @adapter: Board private structure
4241 **/
4242static void igb_setup_mrqc(struct igb_adapter *adapter)
4243{
4244        struct e1000_hw *hw = &adapter->hw;
4245        u32 mrqc, rxcsum;
4246        u32 j, num_rx_queues;
4247        u32 rss_key[10];
4248
4249        netdev_rss_key_fill(rss_key, sizeof(rss_key));
4250        for (j = 0; j < 10; j++)
4251                wr32(E1000_RSSRK(j), rss_key[j]);
4252
4253        num_rx_queues = adapter->rss_queues;
4254
4255        switch (hw->mac.type) {
4256        case e1000_82576:
4257                /* 82576 supports 2 RSS queues for SR-IOV */
4258                if (adapter->vfs_allocated_count)
4259                        num_rx_queues = 2;
4260                break;
4261        default:
4262                break;
4263        }
4264
4265        if (adapter->rss_indir_tbl_init != num_rx_queues) {
4266                for (j = 0; j < IGB_RETA_SIZE; j++)
4267                        adapter->rss_indir_tbl[j] =
4268                        (j * num_rx_queues) / IGB_RETA_SIZE;
4269                adapter->rss_indir_tbl_init = num_rx_queues;
4270        }
4271        igb_write_rss_indir_tbl(adapter);
4272
4273        /* Disable raw packet checksumming so that RSS hash is placed in
4274         * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
4275         * offloads as they are enabled by default
4276         */
4277        rxcsum = rd32(E1000_RXCSUM);
4278        rxcsum |= E1000_RXCSUM_PCSD;
4279
4280        if (adapter->hw.mac.type >= e1000_82576)
4281                /* Enable Receive Checksum Offload for SCTP */
4282                rxcsum |= E1000_RXCSUM_CRCOFL;
4283
4284        /* Don't need to set TUOFL or IPOFL, they default to 1 */
4285        wr32(E1000_RXCSUM, rxcsum);
4286
4287        /* Generate RSS hash based on packet types, TCP/UDP
4288         * port numbers and/or IPv4/v6 src and dst addresses
4289         */
4290        mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4291               E1000_MRQC_RSS_FIELD_IPV4_TCP |
4292               E1000_MRQC_RSS_FIELD_IPV6 |
4293               E1000_MRQC_RSS_FIELD_IPV6_TCP |
4294               E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4295
4296        if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4297                mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4298        if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4299                mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4300
4301        /* If VMDq is enabled then we set the appropriate mode for that, else
4302         * we default to RSS so that an RSS hash is calculated per packet even
4303         * if we are only using one queue
4304         */
4305        if (adapter->vfs_allocated_count) {
4306                if (hw->mac.type > e1000_82575) {
4307                        /* Set the default pool for the PF's first queue */
4308                        u32 vtctl = rd32(E1000_VT_CTL);
4309
4310                        vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4311                                   E1000_VT_CTL_DISABLE_DEF_POOL);
4312                        vtctl |= adapter->vfs_allocated_count <<
4313                                E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4314                        wr32(E1000_VT_CTL, vtctl);
4315                }
4316                if (adapter->rss_queues > 1)
4317                        mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4318                else
4319                        mrqc |= E1000_MRQC_ENABLE_VMDQ;
4320        } else {
4321                if (hw->mac.type != e1000_i211)
4322                        mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4323        }
4324        igb_vmm_control(adapter);
4325
4326        wr32(E1000_MRQC, mrqc);
4327}
4328
4329/**
4330 *  igb_setup_rctl - configure the receive control registers
4331 *  @adapter: Board private structure
4332 **/
4333void igb_setup_rctl(struct igb_adapter *adapter)
4334{
4335        struct e1000_hw *hw = &adapter->hw;
4336        u32 rctl;
4337
4338        rctl = rd32(E1000_RCTL);
4339
4340        rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4341        rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4342
4343        rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4344                (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4345
4346        /* enable stripping of CRC. It's unlikely this will break BMC
4347         * redirection as it did with e1000. Newer features require
4348         * that the HW strips the CRC.
4349         */
4350        rctl |= E1000_RCTL_SECRC;
4351
4352        /* disable store bad packets and clear size bits. */
4353        rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4354
4355        /* enable LPE to allow for reception of jumbo frames */
4356        rctl |= E1000_RCTL_LPE;
4357
4358        /* disable queue 0 to prevent tail write w/o re-config */
4359        wr32(E1000_RXDCTL(0), 0);
4360
4361        /* Attention!!!  For SR-IOV PF driver operations you must enable
4362         * queue drop for all VF and PF queues to prevent head of line blocking
4363         * if an un-trusted VF does not provide descriptors to hardware.
4364         */
4365        if (adapter->vfs_allocated_count) {
4366                /* set all queue drop enable bits */
4367                wr32(E1000_QDE, ALL_QUEUES);
4368        }
4369
4370        /* This is useful for sniffing bad packets. */
4371        if (adapter->netdev->features & NETIF_F_RXALL) {
4372                /* UPE and MPE will be handled by normal PROMISC logic
4373                 * in e1000e_set_rx_mode
4374                 */
4375                rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4376                         E1000_RCTL_BAM | /* RX All Bcast Pkts */
4377                         E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4378
4379                rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4380                          E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4381                /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4382                 * and that breaks VLANs.
4383                 */
4384        }
4385
4386        wr32(E1000_RCTL, rctl);
4387}
4388
4389static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4390                                   int vfn)
4391{
4392        struct e1000_hw *hw = &adapter->hw;
4393        u32 vmolr;
4394
4395        if (size > MAX_JUMBO_FRAME_SIZE)
4396                size = MAX_JUMBO_FRAME_SIZE;
4397
4398        vmolr = rd32(E1000_VMOLR(vfn));
4399        vmolr &= ~E1000_VMOLR_RLPML_MASK;
4400        vmolr |= size | E1000_VMOLR_LPE;
4401        wr32(E1000_VMOLR(vfn), vmolr);
4402
4403        return 0;
4404}
4405
4406static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4407                                         int vfn, bool enable)
4408{
4409        struct e1000_hw *hw = &adapter->hw;
4410        u32 val, reg;
4411
4412        if (hw->mac.type < e1000_82576)
4413                return;
4414
4415        if (hw->mac.type == e1000_i350)
4416                reg = E1000_DVMOLR(vfn);
4417        else
4418                reg = E1000_VMOLR(vfn);
4419
4420        val = rd32(reg);
4421        if (enable)
4422                val |= E1000_VMOLR_STRVLAN;
4423        else
4424                val &= ~(E1000_VMOLR_STRVLAN);
4425        wr32(reg, val);
4426}
4427
4428static inline void igb_set_vmolr(struct igb_adapter *adapter,
4429                                 int vfn, bool aupe)
4430{
4431        struct e1000_hw *hw = &adapter->hw;
4432        u32 vmolr;
4433
4434        /* This register exists only on 82576 and newer so if we are older then
4435         * we should exit and do nothing
4436         */
4437        if (hw->mac.type < e1000_82576)
4438                return;
4439
4440        vmolr = rd32(E1000_VMOLR(vfn));
4441        if (aupe)
4442                vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4443        else
4444                vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4445
4446        /* clear all bits that might not be set */
4447        vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4448
4449        if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4450                vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4451        /* for VMDq only allow the VFs and pool 0 to accept broadcast and
4452         * multicast packets
4453         */
4454        if (vfn <= adapter->vfs_allocated_count)
4455                vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4456
4457        wr32(E1000_VMOLR(vfn), vmolr);
4458}
4459
4460/**
4461 *  igb_setup_srrctl - configure the split and replication receive control
4462 *                     registers
4463 *  @adapter: Board private structure
4464 *  @ring: receive ring to be configured
4465 **/
4466void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4467{
4468        struct e1000_hw *hw = &adapter->hw;
4469        int reg_idx = ring->reg_idx;
4470        u32 srrctl = 0;
4471
4472        srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4473        if (ring_uses_large_buffer(ring))
4474                srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4475        else
4476                srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4477        srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4478        if (hw->mac.type >= e1000_82580)
4479                srrctl |= E1000_SRRCTL_TIMESTAMP;
4480        /* Only set Drop Enable if VFs allocated, or we are supporting multiple
4481         * queues and rx flow control is disabled
4482         */
4483        if (adapter->vfs_allocated_count ||
4484            (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4485             adapter->num_rx_queues > 1))
4486                srrctl |= E1000_SRRCTL_DROP_EN;
4487
4488        wr32(E1000_SRRCTL(reg_idx), srrctl);
4489}
4490
4491/**
4492 *  igb_configure_rx_ring - Configure a receive ring after Reset
4493 *  @adapter: board private structure
4494 *  @ring: receive ring to be configured
4495 *
4496 *  Configure the Rx unit of the MAC after a reset.
4497 **/
4498void igb_configure_rx_ring(struct igb_adapter *adapter,
4499                           struct igb_ring *ring)
4500{
4501        struct e1000_hw *hw = &adapter->hw;
4502        union e1000_adv_rx_desc *rx_desc;
4503        u64 rdba = ring->dma;
4504        int reg_idx = ring->reg_idx;
4505        u32 rxdctl = 0;
4506
4507        /* disable the queue */
4508        wr32(E1000_RXDCTL(reg_idx), 0);
4509
4510        /* Set DMA base address registers */
4511        wr32(E1000_RDBAL(reg_idx),
4512             rdba & 0x00000000ffffffffULL);
4513        wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4514        wr32(E1000_RDLEN(reg_idx),
4515             ring->count * sizeof(union e1000_adv_rx_desc));
4516
4517        /* initialize head and tail */
4518        ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4519        wr32(E1000_RDH(reg_idx), 0);
4520        writel(0, ring->tail);
4521
4522        /* set descriptor configuration */
4523        igb_setup_srrctl(adapter, ring);
4524
4525        /* set filtering for VMDQ pools */
4526        igb_set_vmolr(adapter, reg_idx & 0x7, true);
4527
4528        rxdctl |= IGB_RX_PTHRESH;
4529        rxdctl |= IGB_RX_HTHRESH << 8;
4530        rxdctl |= IGB_RX_WTHRESH << 16;
4531
4532        /* initialize rx_buffer_info */
4533        memset(ring->rx_buffer_info, 0,
4534               sizeof(struct igb_rx_buffer) * ring->count);
4535
4536        /* initialize Rx descriptor 0 */
4537        rx_desc = IGB_RX_DESC(ring, 0);
4538        rx_desc->wb.upper.length = 0;
4539
4540        /* enable receive descriptor fetching */
4541        rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4542        wr32(E1000_RXDCTL(reg_idx), rxdctl);
4543}
4544
4545static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4546                                  struct igb_ring *rx_ring)
4547{
4548        /* set build_skb and buffer size flags */
4549        clear_ring_build_skb_enabled(rx_ring);
4550        clear_ring_uses_large_buffer(rx_ring);
4551
4552        if (adapter->flags & IGB_FLAG_RX_LEGACY)
4553                return;
4554
4555        set_ring_build_skb_enabled(rx_ring);
4556
4557#if (PAGE_SIZE < 8192)
4558        if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4559                return;
4560
4561        set_ring_uses_large_buffer(rx_ring);
4562#endif
4563}
4564
4565/**
4566 *  igb_configure_rx - Configure receive Unit after Reset
4567 *  @adapter: board private structure
4568 *
4569 *  Configure the Rx unit of the MAC after a reset.
4570 **/
4571static void igb_configure_rx(struct igb_adapter *adapter)
4572{
4573        int i;
4574
4575        /* set the correct pool for the PF default MAC address in entry 0 */
4576        igb_set_default_mac_filter(adapter);
4577
4578        /* Setup the HW Rx Head and Tail Descriptor Pointers and
4579         * the Base and Length of the Rx Descriptor Ring
4580         */
4581        for (i = 0; i < adapter->num_rx_queues; i++) {
4582                struct igb_ring *rx_ring = adapter->rx_ring[i];
4583
4584                igb_set_rx_buffer_len(adapter, rx_ring);
4585                igb_configure_rx_ring(adapter, rx_ring);
4586        }
4587}
4588
4589/**
4590 *  igb_free_tx_resources - Free Tx Resources per Queue
4591 *  @tx_ring: Tx descriptor ring for a specific queue
4592 *
4593 *  Free all transmit software resources
4594 **/
4595void igb_free_tx_resources(struct igb_ring *tx_ring)
4596{
4597        igb_clean_tx_ring(tx_ring);
4598
4599        vfree(tx_ring->tx_buffer_info);
4600        tx_ring->tx_buffer_info = NULL;
4601
4602        /* if not set, then don't free */
4603        if (!tx_ring->desc)
4604                return;
4605
4606        dma_free_coherent(tx_ring->dev, tx_ring->size,
4607                          tx_ring->desc, tx_ring->dma);
4608
4609        tx_ring->desc = NULL;
4610}
4611
4612/**
4613 *  igb_free_all_tx_resources - Free Tx Resources for All Queues
4614 *  @adapter: board private structure
4615 *
4616 *  Free all transmit software resources
4617 **/
4618static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4619{
4620        int i;
4621
4622        for (i = 0; i < adapter->num_tx_queues; i++)
4623                if (adapter->tx_ring[i])
4624                        igb_free_tx_resources(adapter->tx_ring[i]);
4625}
4626
4627/**
4628 *  igb_clean_tx_ring - Free Tx Buffers
4629 *  @tx_ring: ring to be cleaned
4630 **/
4631static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4632{
4633        u16 i = tx_ring->next_to_clean;
4634        struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4635
4636        while (i != tx_ring->next_to_use) {
4637                union e1000_adv_tx_desc *eop_desc, *tx_desc;
4638
4639                /* Free all the Tx ring sk_buffs */
4640                dev_kfree_skb_any(tx_buffer->skb);
4641
4642                /* unmap skb header data */
4643                dma_unmap_single(tx_ring->dev,
4644                                 dma_unmap_addr(tx_buffer, dma),
4645                                 dma_unmap_len(tx_buffer, len),
4646                                 DMA_TO_DEVICE);
4647
4648                /* check for eop_desc to determine the end of the packet */
4649                eop_desc = tx_buffer->next_to_watch;
4650                tx_desc = IGB_TX_DESC(tx_ring, i);
4651
4652                /* unmap remaining buffers */
4653                while (tx_desc != eop_desc) {
4654                        tx_buffer++;
4655                        tx_desc++;
4656                        i++;
4657                        if (unlikely(i == tx_ring->count)) {
4658                                i = 0;
4659                                tx_buffer = tx_ring->tx_buffer_info;
4660                                tx_desc = IGB_TX_DESC(tx_ring, 0);
4661                        }
4662
4663                        /* unmap any remaining paged data */
4664                        if (dma_unmap_len(tx_buffer, len))
4665                                dma_unmap_page(tx_ring->dev,
4666                                               dma_unmap_addr(tx_buffer, dma),
4667                                               dma_unmap_len(tx_buffer, len),
4668                                               DMA_TO_DEVICE);
4669                }
4670
4671                /* move us one more past the eop_desc for start of next pkt */
4672                tx_buffer++;
4673                i++;
4674                if (unlikely(i == tx_ring->count)) {
4675                        i = 0;
4676                        tx_buffer = tx_ring->tx_buffer_info;
4677                }
4678        }
4679
4680        /* reset BQL for queue */
4681        netdev_tx_reset_queue(txring_txq(tx_ring));
4682
4683        /* reset next_to_use and next_to_clean */
4684        tx_ring->next_to_use = 0;
4685        tx_ring->next_to_clean = 0;
4686}
4687
4688/**
4689 *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
4690 *  @adapter: board private structure
4691 **/
4692static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4693{
4694        int i;
4695
4696        for (i = 0; i < adapter->num_tx_queues; i++)
4697                if (adapter->tx_ring[i])
4698                        igb_clean_tx_ring(adapter->tx_ring[i]);
4699}
4700
4701/**
4702 *  igb_free_rx_resources - Free Rx Resources
4703 *  @rx_ring: ring to clean the resources from
4704 *
4705 *  Free all receive software resources
4706 **/
4707void igb_free_rx_resources(struct igb_ring *rx_ring)
4708{
4709        igb_clean_rx_ring(rx_ring);
4710
4711        vfree(rx_ring->rx_buffer_info);
4712        rx_ring->rx_buffer_info = NULL;
4713
4714        /* if not set, then don't free */
4715        if (!rx_ring->desc)
4716                return;
4717
4718        dma_free_coherent(rx_ring->dev, rx_ring->size,
4719                          rx_ring->desc, rx_ring->dma);
4720
4721        rx_ring->desc = NULL;
4722}
4723
4724/**
4725 *  igb_free_all_rx_resources - Free Rx Resources for All Queues
4726 *  @adapter: board private structure
4727 *
4728 *  Free all receive software resources
4729 **/
4730static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4731{
4732        int i;
4733
4734        for (i = 0; i < adapter->num_rx_queues; i++)
4735                if (adapter->rx_ring[i])
4736                        igb_free_rx_resources(adapter->rx_ring[i]);
4737}
4738
4739/**
4740 *  igb_clean_rx_ring - Free Rx Buffers per Queue
4741 *  @rx_ring: ring to free buffers from
4742 **/
4743static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4744{
4745        u16 i = rx_ring->next_to_clean;
4746
4747        dev_kfree_skb(rx_ring->skb);
4748        rx_ring->skb = NULL;
4749
4750        /* Free all the Rx ring sk_buffs */
4751        while (i != rx_ring->next_to_alloc) {
4752                struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4753
4754                /* Invalidate cache lines that may have been written to by
4755                 * device so that we avoid corrupting memory.
4756                 */
4757                dma_sync_single_range_for_cpu(rx_ring->dev,
4758                                              buffer_info->dma,
4759                                              buffer_info->page_offset,
4760                                              igb_rx_bufsz(rx_ring),
4761                                              DMA_FROM_DEVICE);
4762
4763                /* free resources associated with mapping */
4764                dma_unmap_page_attrs(rx_ring->dev,
4765                                     buffer_info->dma,
4766                                     igb_rx_pg_size(rx_ring),
4767                                     DMA_FROM_DEVICE,
4768                                     IGB_RX_DMA_ATTR);
4769                __page_frag_cache_drain(buffer_info->page,
4770                                        buffer_info->pagecnt_bias);
4771
4772                i++;
4773                if (i == rx_ring->count)
4774                        i = 0;
4775        }
4776
4777        rx_ring->next_to_alloc = 0;
4778        rx_ring->next_to_clean = 0;
4779        rx_ring->next_to_use = 0;
4780}
4781
4782/**
4783 *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
4784 *  @adapter: board private structure
4785 **/
4786static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4787{
4788        int i;
4789
4790        for (i = 0; i < adapter->num_rx_queues; i++)
4791                if (adapter->rx_ring[i])
4792                        igb_clean_rx_ring(adapter->rx_ring[i]);
4793}
4794
4795/**
4796 *  igb_set_mac - Change the Ethernet Address of the NIC
4797 *  @netdev: network interface device structure
4798 *  @p: pointer to an address structure
4799 *
4800 *  Returns 0 on success, negative on failure
4801 **/
4802static int igb_set_mac(struct net_device *netdev, void *p)
4803{
4804        struct igb_adapter *adapter = netdev_priv(netdev);
4805        struct e1000_hw *hw = &adapter->hw;
4806        struct sockaddr *addr = p;
4807
4808        if (!is_valid_ether_addr(addr->sa_data))
4809                return -EADDRNOTAVAIL;
4810
4811        memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4812        memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
4813
4814        /* set the correct pool for the new PF MAC address in entry 0 */
4815        igb_set_default_mac_filter(adapter);
4816
4817        return 0;
4818}
4819
4820/**
4821 *  igb_write_mc_addr_list - write multicast addresses to MTA
4822 *  @netdev: network interface device structure
4823 *
4824 *  Writes multicast address list to the MTA hash table.
4825 *  Returns: -ENOMEM on failure
4826 *           0 on no addresses written
4827 *           X on writing X addresses to MTA
4828 **/
4829static int igb_write_mc_addr_list(struct net_device *netdev)
4830{
4831        struct igb_adapter *adapter = netdev_priv(netdev);
4832        struct e1000_hw *hw = &adapter->hw;
4833        struct netdev_hw_addr *ha;
4834        u8  *mta_list;
4835        int i;
4836
4837        if (netdev_mc_empty(netdev)) {
4838                /* nothing to program, so clear mc list */
4839                igb_update_mc_addr_list(hw, NULL, 0);
4840                igb_restore_vf_multicasts(adapter);
4841                return 0;
4842        }
4843
4844        mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
4845        if (!mta_list)
4846                return -ENOMEM;
4847
4848        /* The shared function expects a packed array of only addresses. */
4849        i = 0;
4850        netdev_for_each_mc_addr(ha, netdev)
4851                memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4852
4853        igb_update_mc_addr_list(hw, mta_list, i);
4854        kfree(mta_list);
4855
4856        return netdev_mc_count(netdev);
4857}
4858
4859static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4860{
4861        struct e1000_hw *hw = &adapter->hw;
4862        u32 i, pf_id;
4863
4864        switch (hw->mac.type) {
4865        case e1000_i210:
4866        case e1000_i211:
4867        case e1000_i350:
4868                /* VLAN filtering needed for VLAN prio filter */
4869                if (adapter->netdev->features & NETIF_F_NTUPLE)
4870                        break;
4871                fallthrough;
4872        case e1000_82576:
4873        case e1000_82580:
4874        case e1000_i354:
4875                /* VLAN filtering needed for pool filtering */
4876                if (adapter->vfs_allocated_count)
4877                        break;
4878                fallthrough;
4879        default:
4880                return 1;
4881        }
4882
4883        /* We are already in VLAN promisc, nothing to do */
4884        if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4885                return 0;
4886
4887        if (!adapter->vfs_allocated_count)
4888                goto set_vfta;
4889
4890        /* Add PF to all active pools */
4891        pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4892
4893        for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4894                u32 vlvf = rd32(E1000_VLVF(i));
4895
4896                vlvf |= BIT(pf_id);
4897                wr32(E1000_VLVF(i), vlvf);
4898        }
4899
4900set_vfta:
4901        /* Set all bits in the VLAN filter table array */
4902        for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4903                hw->mac.ops.write_vfta(hw, i, ~0U);
4904
4905        /* Set flag so we don't redo unnecessary work */
4906        adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4907
4908        return 0;
4909}
4910
4911#define VFTA_BLOCK_SIZE 8
4912static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4913{
4914        struct e1000_hw *hw = &adapter->hw;
4915        u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4916        u32 vid_start = vfta_offset * 32;
4917        u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4918        u32 i, vid, word, bits, pf_id;
4919
4920        /* guarantee that we don't scrub out management VLAN */
4921        vid = adapter->mng_vlan_id;
4922        if (vid >= vid_start && vid < vid_end)
4923                vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4924
4925        if (!adapter->vfs_allocated_count)
4926                goto set_vfta;
4927
4928        pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4929
4930        for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4931                u32 vlvf = rd32(E1000_VLVF(i));
4932
4933                /* pull VLAN ID from VLVF */
4934                vid = vlvf & VLAN_VID_MASK;
4935
4936                /* only concern ourselves with a certain range */
4937                if (vid < vid_start || vid >= vid_end)
4938                        continue;
4939
4940                if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4941                        /* record VLAN ID in VFTA */
4942                        vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4943
4944                        /* if PF is part of this then continue */
4945                        if (test_bit(vid, adapter->active_vlans))
4946                                continue;
4947                }
4948
4949                /* remove PF from the pool */
4950                bits = ~BIT(pf_id);
4951                bits &= rd32(E1000_VLVF(i));
4952                wr32(E1000_VLVF(i), bits);
4953        }
4954
4955set_vfta:
4956        /* extract values from active_vlans and write back to VFTA */
4957        for (i = VFTA_BLOCK_SIZE; i--;) {
4958                vid = (vfta_offset + i) * 32;
4959                word = vid / BITS_PER_LONG;
4960                bits = vid % BITS_PER_LONG;
4961
4962                vfta[i] |= adapter->active_vlans[word] >> bits;
4963
4964                hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4965        }
4966}
4967
4968static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4969{
4970        u32 i;
4971
4972        /* We are not in VLAN promisc, nothing to do */
4973        if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4974                return;
4975
4976        /* Set flag so we don't redo unnecessary work */
4977        adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4978
4979        for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4980                igb_scrub_vfta(adapter, i);
4981}
4982
4983/**
4984 *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4985 *  @netdev: network interface device structure
4986 *
4987 *  The set_rx_mode entry point is called whenever the unicast or multicast
4988 *  address lists or the network interface flags are updated.  This routine is
4989 *  responsible for configuring the hardware for proper unicast, multicast,
4990 *  promiscuous mode, and all-multi behavior.
4991 **/
4992static void igb_set_rx_mode(struct net_device *netdev)
4993{
4994        struct igb_adapter *adapter = netdev_priv(netdev);
4995        struct e1000_hw *hw = &adapter->hw;
4996        unsigned int vfn = adapter->vfs_allocated_count;
4997        u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
4998        int count;
4999
5000        /* Check for Promiscuous and All Multicast modes */
5001        if (netdev->flags & IFF_PROMISC) {
5002                rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5003                vmolr |= E1000_VMOLR_MPME;
5004
5005                /* enable use of UTA filter to force packets to default pool */
5006                if (hw->mac.type == e1000_82576)
5007                        vmolr |= E1000_VMOLR_ROPE;
5008        } else {
5009                if (netdev->flags & IFF_ALLMULTI) {
5010                        rctl |= E1000_RCTL_MPE;
5011                        vmolr |= E1000_VMOLR_MPME;
5012                } else {
5013                        /* Write addresses to the MTA, if the attempt fails
5014                         * then we should just turn on promiscuous mode so
5015                         * that we can at least receive multicast traffic
5016                         */
5017                        count = igb_write_mc_addr_list(netdev);
5018                        if (count < 0) {
5019                                rctl |= E1000_RCTL_MPE;
5020                                vmolr |= E1000_VMOLR_MPME;
5021                        } else if (count) {
5022                                vmolr |= E1000_VMOLR_ROMPE;
5023                        }
5024                }
5025        }
5026
5027        /* Write addresses to available RAR registers, if there is not
5028         * sufficient space to store all the addresses then enable
5029         * unicast promiscuous mode
5030         */
5031        if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5032                rctl |= E1000_RCTL_UPE;
5033                vmolr |= E1000_VMOLR_ROPE;
5034        }
5035
5036        /* enable VLAN filtering by default */
5037        rctl |= E1000_RCTL_VFE;
5038
5039        /* disable VLAN filtering for modes that require it */
5040        if ((netdev->flags & IFF_PROMISC) ||
5041            (netdev->features & NETIF_F_RXALL)) {
5042                /* if we fail to set all rules then just clear VFE */
5043                if (igb_vlan_promisc_enable(adapter))
5044                        rctl &= ~E1000_RCTL_VFE;
5045        } else {
5046                igb_vlan_promisc_disable(adapter);
5047        }
5048
5049        /* update state of unicast, multicast, and VLAN filtering modes */
5050        rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5051                                     E1000_RCTL_VFE);
5052        wr32(E1000_RCTL, rctl);
5053
5054#if (PAGE_SIZE < 8192)
5055        if (!adapter->vfs_allocated_count) {
5056                if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5057                        rlpml = IGB_MAX_FRAME_BUILD_SKB;
5058        }
5059#endif
5060        wr32(E1000_RLPML, rlpml);
5061
5062        /* In order to support SR-IOV and eventually VMDq it is necessary to set
5063         * the VMOLR to enable the appropriate modes.  Without this workaround
5064         * we will have issues with VLAN tag stripping not being done for frames
5065         * that are only arriving because we are the default pool
5066         */
5067        if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5068                return;
5069
5070        /* set UTA to appropriate mode */
5071        igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5072
5073        vmolr |= rd32(E1000_VMOLR(vfn)) &
5074                 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5075
5076        /* enable Rx jumbo frames, restrict as needed to support build_skb */
5077        vmolr &= ~E1000_VMOLR_RLPML_MASK;
5078#if (PAGE_SIZE < 8192)
5079        if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5080                vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5081        else
5082#endif
5083                vmolr |= MAX_JUMBO_FRAME_SIZE;
5084        vmolr |= E1000_VMOLR_LPE;
5085
5086        wr32(E1000_VMOLR(vfn), vmolr);
5087
5088        igb_restore_vf_multicasts(adapter);
5089}
5090
5091static void igb_check_wvbr(struct igb_adapter *adapter)
5092{
5093        struct e1000_hw *hw = &adapter->hw;
5094        u32 wvbr = 0;
5095
5096        switch (hw->mac.type) {
5097        case e1000_82576:
5098        case e1000_i350:
5099                wvbr = rd32(E1000_WVBR);
5100                if (!wvbr)
5101                        return;
5102                break;
5103        default:
5104                break;
5105        }
5106
5107        adapter->wvbr |= wvbr;
5108}
5109
5110#define IGB_STAGGERED_QUEUE_OFFSET 8
5111
5112static void igb_spoof_check(struct igb_adapter *adapter)
5113{
5114        int j;
5115
5116        if (!adapter->wvbr)
5117                return;
5118
5119        for (j = 0; j < adapter->vfs_allocated_count; j++) {
5120                if (adapter->wvbr & BIT(j) ||
5121                    adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5122                        dev_warn(&adapter->pdev->dev,
5123                                "Spoof event(s) detected on VF %d\n", j);
5124                        adapter->wvbr &=
5125                                ~(BIT(j) |
5126                                  BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5127                }
5128        }
5129}
5130
5131/* Need to wait a few seconds after link up to get diagnostic information from
5132 * the phy
5133 */
5134static void igb_update_phy_info(struct timer_list *t)
5135{
5136        struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5137        igb_get_phy_info(&adapter->hw);
5138}
5139
5140/**
5141 *  igb_has_link - check shared code for link and determine up/down
5142 *  @adapter: pointer to driver private info
5143 **/
5144bool igb_has_link(struct igb_adapter *adapter)
5145{
5146        struct e1000_hw *hw = &adapter->hw;
5147        bool link_active = false;
5148
5149        /* get_link_status is set on LSC (link status) interrupt or
5150         * rx sequence error interrupt.  get_link_status will stay
5151         * false until the e1000_check_for_link establishes link
5152         * for copper adapters ONLY
5153         */
5154        switch (hw->phy.media_type) {
5155        case e1000_media_type_copper:
5156                if (!hw->mac.get_link_status)
5157                        return true;
5158                fallthrough;
5159        case e1000_media_type_internal_serdes:
5160                hw->mac.ops.check_for_link(hw);
5161                link_active = !hw->mac.get_link_status;
5162                break;
5163        default:
5164        case e1000_media_type_unknown:
5165                break;
5166        }
5167
5168        if (((hw->mac.type == e1000_i210) ||
5169             (hw->mac.type == e1000_i211)) &&
5170             (hw->phy.id == I210_I_PHY_ID)) {
5171                if (!netif_carrier_ok(adapter->netdev)) {
5172                        adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5173                } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5174                        adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5175                        adapter->link_check_timeout = jiffies;
5176                }
5177        }
5178
5179        return link_active;
5180}
5181
5182static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5183{
5184        bool ret = false;
5185        u32 ctrl_ext, thstat;
5186
5187        /* check for thermal sensor event on i350 copper only */
5188        if (hw->mac.type == e1000_i350) {
5189                thstat = rd32(E1000_THSTAT);
5190                ctrl_ext = rd32(E1000_CTRL_EXT);
5191
5192                if ((hw->phy.media_type == e1000_media_type_copper) &&
5193                    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5194                        ret = !!(thstat & event);
5195        }
5196
5197        return ret;
5198}
5199
5200/**
5201 *  igb_check_lvmmc - check for malformed packets received
5202 *  and indicated in LVMMC register
5203 *  @adapter: pointer to adapter
5204 **/
5205static void igb_check_lvmmc(struct igb_adapter *adapter)
5206{
5207        struct e1000_hw *hw = &adapter->hw;
5208        u32 lvmmc;
5209
5210        lvmmc = rd32(E1000_LVMMC);
5211        if (lvmmc) {
5212                if (unlikely(net_ratelimit())) {
5213                        netdev_warn(adapter->netdev,
5214                                    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5215                                    lvmmc);
5216                }
5217        }
5218}
5219
5220/**
5221 *  igb_watchdog - Timer Call-back
5222 *  @data: pointer to adapter cast into an unsigned long
5223 **/
5224static void igb_watchdog(struct timer_list *t)
5225{
5226        struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5227        /* Do the rest outside of interrupt context */
5228        schedule_work(&adapter->watchdog_task);
5229}
5230
5231static void igb_watchdog_task(struct work_struct *work)
5232{
5233        struct igb_adapter *adapter = container_of(work,
5234                                                   struct igb_adapter,
5235                                                   watchdog_task);
5236        struct e1000_hw *hw = &adapter->hw;
5237        struct e1000_phy_info *phy = &hw->phy;
5238        struct net_device *netdev = adapter->netdev;
5239        u32 link;
5240        int i;
5241        u32 connsw;
5242        u16 phy_data, retry_count = 20;
5243
5244        link = igb_has_link(adapter);
5245
5246        if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5247                if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5248                        adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5249                else
5250                        link = false;
5251        }
5252
5253        /* Force link down if we have fiber to swap to */
5254        if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5255                if (hw->phy.media_type == e1000_media_type_copper) {
5256                        connsw = rd32(E1000_CONNSW);
5257                        if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5258                                link = 0;
5259                }
5260        }
5261        if (link) {
5262                /* Perform a reset if the media type changed. */
5263                if (hw->dev_spec._82575.media_changed) {
5264                        hw->dev_spec._82575.media_changed = false;
5265                        adapter->flags |= IGB_FLAG_MEDIA_RESET;
5266                        igb_reset(adapter);
5267                }
5268                /* Cancel scheduled suspend requests. */
5269                pm_runtime_resume(netdev->dev.parent);
5270
5271                if (!netif_carrier_ok(netdev)) {
5272                        u32 ctrl;
5273
5274                        hw->mac.ops.get_speed_and_duplex(hw,
5275                                                         &adapter->link_speed,
5276                                                         &adapter->link_duplex);
5277
5278                        ctrl = rd32(E1000_CTRL);
5279                        /* Links status message must follow this format */
5280                        netdev_info(netdev,
5281                               "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5282                               netdev->name,
5283                               adapter->link_speed,
5284                               adapter->link_duplex == FULL_DUPLEX ?
5285                               "Full" : "Half",
5286                               (ctrl & E1000_CTRL_TFCE) &&
5287                               (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5288                               (ctrl & E1000_CTRL_RFCE) ?  "RX" :
5289                               (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
5290
5291                        /* disable EEE if enabled */
5292                        if ((adapter->flags & IGB_FLAG_EEE) &&
5293                                (adapter->link_duplex == HALF_DUPLEX)) {
5294                                dev_info(&adapter->pdev->dev,
5295                                "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5296                                adapter->hw.dev_spec._82575.eee_disable = true;
5297                                adapter->flags &= ~IGB_FLAG_EEE;
5298                        }
5299
5300                        /* check if SmartSpeed worked */
5301                        igb_check_downshift(hw);
5302                        if (phy->speed_downgraded)
5303                                netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5304
5305                        /* check for thermal sensor event */
5306                        if (igb_thermal_sensor_event(hw,
5307                            E1000_THSTAT_LINK_THROTTLE))
5308                                netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5309
5310                        /* adjust timeout factor according to speed/duplex */
5311                        adapter->tx_timeout_factor = 1;
5312                        switch (adapter->link_speed) {
5313                        case SPEED_10:
5314                                adapter->tx_timeout_factor = 14;
5315                                break;
5316                        case SPEED_100:
5317                                /* maybe add some timeout factor ? */
5318                                break;
5319                        }
5320
5321                        if (adapter->link_speed != SPEED_1000)
5322                                goto no_wait;
5323
5324                        /* wait for Remote receiver status OK */
5325retry_read_status:
5326                        if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5327                                              &phy_data)) {
5328                                if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5329                                    retry_count) {
5330                                        msleep(100);
5331                                        retry_count--;
5332                                        goto retry_read_status;
5333                                } else if (!retry_count) {
5334                                        dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5335                                }
5336                        } else {
5337                                dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5338                        }
5339no_wait:
5340                        netif_carrier_on(netdev);
5341
5342                        igb_ping_all_vfs(adapter);
5343                        igb_check_vf_rate_limit(adapter);
5344
5345                        /* link state has changed, schedule phy info update */
5346                        if (!test_bit(__IGB_DOWN, &adapter->state))
5347                                mod_timer(&adapter->phy_info_timer,
5348                                          round_jiffies(jiffies + 2 * HZ));
5349                }
5350        } else {
5351                if (netif_carrier_ok(netdev)) {
5352                        adapter->link_speed = 0;
5353                        adapter->link_duplex = 0;
5354
5355                        /* check for thermal sensor event */
5356                        if (igb_thermal_sensor_event(hw,
5357                            E1000_THSTAT_PWR_DOWN)) {
5358                                netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5359                        }
5360
5361                        /* Links status message must follow this format */
5362                        netdev_info(netdev, "igb: %s NIC Link is Down\n",
5363                               netdev->name);
5364                        netif_carrier_off(netdev);
5365
5366                        igb_ping_all_vfs(adapter);
5367
5368                        /* link state has changed, schedule phy info update */
5369                        if (!test_bit(__IGB_DOWN, &adapter->state))
5370                                mod_timer(&adapter->phy_info_timer,
5371                                          round_jiffies(jiffies + 2 * HZ));
5372
5373                        /* link is down, time to check for alternate media */
5374                        if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5375                                igb_check_swap_media(adapter);
5376                                if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5377                                        schedule_work(&adapter->reset_task);
5378                                        /* return immediately */
5379                                        return;
5380                                }
5381                        }
5382                        pm_schedule_suspend(netdev->dev.parent,
5383                                            MSEC_PER_SEC * 5);
5384
5385                /* also check for alternate media here */
5386                } else if (!netif_carrier_ok(netdev) &&
5387                           (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5388                        igb_check_swap_media(adapter);
5389                        if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5390                                schedule_work(&adapter->reset_task);
5391                                /* return immediately */
5392                                return;
5393                        }
5394                }
5395        }
5396
5397        spin_lock(&adapter->stats64_lock);
5398        igb_update_stats(adapter);
5399        spin_unlock(&adapter->stats64_lock);
5400
5401        for (i = 0; i < adapter->num_tx_queues; i++) {
5402                struct igb_ring *tx_ring = adapter->tx_ring[i];
5403                if (!netif_carrier_ok(netdev)) {
5404                        /* We've lost link, so the controller stops DMA,
5405                         * but we've got queued Tx work that's never going
5406                         * to get done, so reset controller to flush Tx.
5407                         * (Do the reset outside of interrupt context).
5408                         */
5409                        if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5410                                adapter->tx_timeout_count++;
5411                                schedule_work(&adapter->reset_task);
5412                                /* return immediately since reset is imminent */
5413                                return;
5414                        }
5415                }
5416
5417                /* Force detection of hung controller every watchdog period */
5418                set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5419        }
5420
5421        /* Cause software interrupt to ensure Rx ring is cleaned */
5422        if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5423                u32 eics = 0;
5424
5425                for (i = 0; i < adapter->num_q_vectors; i++)
5426                        eics |= adapter->q_vector[i]->eims_value;
5427                wr32(E1000_EICS, eics);
5428        } else {
5429                wr32(E1000_ICS, E1000_ICS_RXDMT0);
5430        }
5431
5432        igb_spoof_check(adapter);
5433        igb_ptp_rx_hang(adapter);
5434        igb_ptp_tx_hang(adapter);
5435
5436        /* Check LVMMC register on i350/i354 only */
5437        if ((adapter->hw.mac.type == e1000_i350) ||
5438            (adapter->hw.mac.type == e1000_i354))
5439                igb_check_lvmmc(adapter);
5440
5441        /* Reset the timer */
5442        if (!test_bit(__IGB_DOWN, &adapter->state)) {
5443                if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5444                        mod_timer(&adapter->watchdog_timer,
5445                                  round_jiffies(jiffies +  HZ));
5446                else
5447                        mod_timer(&adapter->watchdog_timer,
5448                                  round_jiffies(jiffies + 2 * HZ));
5449        }
5450}
5451
5452enum latency_range {
5453        lowest_latency = 0,
5454        low_latency = 1,
5455        bulk_latency = 2,
5456        latency_invalid = 255
5457};
5458
5459/**
5460 *  igb_update_ring_itr - update the dynamic ITR value based on packet size
5461 *  @q_vector: pointer to q_vector
5462 *
5463 *  Stores a new ITR value based on strictly on packet size.  This
5464 *  algorithm is less sophisticated than that used in igb_update_itr,
5465 *  due to the difficulty of synchronizing statistics across multiple
5466 *  receive rings.  The divisors and thresholds used by this function
5467 *  were determined based on theoretical maximum wire speed and testing
5468 *  data, in order to minimize response time while increasing bulk
5469 *  throughput.
5470 *  This functionality is controlled by ethtool's coalescing settings.
5471 *  NOTE:  This function is called only when operating in a multiqueue
5472 *         receive environment.
5473 **/
5474static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5475{
5476        int new_val = q_vector->itr_val;
5477        int avg_wire_size = 0;
5478        struct igb_adapter *adapter = q_vector->adapter;
5479        unsigned int packets;
5480
5481        /* For non-gigabit speeds, just fix the interrupt rate at 4000
5482         * ints/sec - ITR timer value of 120 ticks.
5483         */
5484        if (adapter->link_speed != SPEED_1000) {
5485                new_val = IGB_4K_ITR;
5486                goto set_itr_val;
5487        }
5488
5489        packets = q_vector->rx.total_packets;
5490        if (packets)
5491                avg_wire_size = q_vector->rx.total_bytes / packets;
5492
5493        packets = q_vector->tx.total_packets;
5494        if (packets)
5495                avg_wire_size = max_t(u32, avg_wire_size,
5496                                      q_vector->tx.total_bytes / packets);
5497
5498        /* if avg_wire_size isn't set no work was done */
5499        if (!avg_wire_size)
5500                goto clear_counts;
5501
5502        /* Add 24 bytes to size to account for CRC, preamble, and gap */
5503        avg_wire_size += 24;
5504
5505        /* Don't starve jumbo frames */
5506        avg_wire_size = min(avg_wire_size, 3000);
5507
5508        /* Give a little boost to mid-size frames */
5509        if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5510                new_val = avg_wire_size / 3;
5511        else
5512                new_val = avg_wire_size / 2;
5513
5514        /* conservative mode (itr 3) eliminates the lowest_latency setting */
5515        if (new_val < IGB_20K_ITR &&
5516            ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5517             (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5518                new_val = IGB_20K_ITR;
5519
5520set_itr_val:
5521        if (new_val != q_vector->itr_val) {
5522                q_vector->itr_val = new_val;
5523                q_vector->set_itr = 1;
5524        }
5525clear_counts:
5526        q_vector->rx.total_bytes = 0;
5527        q_vector->rx.total_packets = 0;
5528        q_vector->tx.total_bytes = 0;
5529        q_vector->tx.total_packets = 0;
5530}
5531
5532/**
5533 *  igb_update_itr - update the dynamic ITR value based on statistics
5534 *  @q_vector: pointer to q_vector
5535 *  @ring_container: ring info to update the itr for
5536 *
5537 *  Stores a new ITR value based on packets and byte
5538 *  counts during the last interrupt.  The advantage of per interrupt
5539 *  computation is faster updates and more accurate ITR for the current
5540 *  traffic pattern.  Constants in this function were computed
5541 *  based on theoretical maximum wire speed and thresholds were set based
5542 *  on testing data as well as attempting to minimize response time
5543 *  while increasing bulk throughput.
5544 *  This functionality is controlled by ethtool's coalescing settings.
5545 *  NOTE:  These calculations are only valid when operating in a single-
5546 *         queue environment.
5547 **/
5548static void igb_update_itr(struct igb_q_vector *q_vector,
5549                           struct igb_ring_container *ring_container)
5550{
5551        unsigned int packets = ring_container->total_packets;
5552        unsigned int bytes = ring_container->total_bytes;
5553        u8 itrval = ring_container->itr;
5554
5555        /* no packets, exit with status unchanged */
5556        if (packets == 0)
5557                return;
5558
5559        switch (itrval) {
5560        case lowest_latency:
5561                /* handle TSO and jumbo frames */
5562                if (bytes/packets > 8000)
5563                        itrval = bulk_latency;
5564                else if ((packets < 5) && (bytes > 512))
5565                        itrval = low_latency;
5566                break;
5567        case low_latency:  /* 50 usec aka 20000 ints/s */
5568                if (bytes > 10000) {
5569                        /* this if handles the TSO accounting */
5570                        if (bytes/packets > 8000)
5571                                itrval = bulk_latency;
5572                        else if ((packets < 10) || ((bytes/packets) > 1200))
5573                                itrval = bulk_latency;
5574                        else if ((packets > 35))
5575                                itrval = lowest_latency;
5576                } else if (bytes/packets > 2000) {
5577                        itrval = bulk_latency;
5578                } else if (packets <= 2 && bytes < 512) {
5579                        itrval = lowest_latency;
5580                }
5581                break;
5582        case bulk_latency: /* 250 usec aka 4000 ints/s */
5583                if (bytes > 25000) {
5584                        if (packets > 35)
5585                                itrval = low_latency;
5586                } else if (bytes < 1500) {
5587                        itrval = low_latency;
5588                }
5589                break;
5590        }
5591
5592        /* clear work counters since we have the values we need */
5593        ring_container->total_bytes = 0;
5594        ring_container->total_packets = 0;
5595
5596        /* write updated itr to ring container */
5597        ring_container->itr = itrval;
5598}
5599
5600static void igb_set_itr(struct igb_q_vector *q_vector)
5601{
5602        struct igb_adapter *adapter = q_vector->adapter;
5603        u32 new_itr = q_vector->itr_val;
5604        u8 current_itr = 0;
5605
5606        /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5607        if (adapter->link_speed != SPEED_1000) {
5608                current_itr = 0;
5609                new_itr = IGB_4K_ITR;
5610                goto set_itr_now;
5611        }
5612
5613        igb_update_itr(q_vector, &q_vector->tx);
5614        igb_update_itr(q_vector, &q_vector->rx);
5615
5616        current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5617
5618        /* conservative mode (itr 3) eliminates the lowest_latency setting */
5619        if (current_itr == lowest_latency &&
5620            ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5621             (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5622                current_itr = low_latency;
5623
5624        switch (current_itr) {
5625        /* counts and packets in update_itr are dependent on these numbers */
5626        case lowest_latency:
5627                new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5628                break;
5629        case low_latency:
5630                new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5631                break;
5632        case bulk_latency:
5633                new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
5634                break;
5635        default:
5636                break;
5637        }
5638
5639set_itr_now:
5640        if (new_itr != q_vector->itr_val) {
5641                /* this attempts to bias the interrupt rate towards Bulk
5642                 * by adding intermediate steps when interrupt rate is
5643                 * increasing
5644                 */
5645                new_itr = new_itr > q_vector->itr_val ?
5646                          max((new_itr * q_vector->itr_val) /
5647                          (new_itr + (q_vector->itr_val >> 2)),
5648                          new_itr) : new_itr;
5649                /* Don't write the value here; it resets the adapter's
5650                 * internal timer, and causes us to delay far longer than
5651                 * we should between interrupts.  Instead, we write the ITR
5652                 * value at the beginning of the next interrupt so the timing
5653                 * ends up being correct.
5654                 */
5655                q_vector->itr_val = new_itr;
5656                q_vector->set_itr = 1;
5657        }
5658}
5659
5660static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5661                            struct igb_tx_buffer *first,
5662                            u32 vlan_macip_lens, u32 type_tucmd,
5663                            u32 mss_l4len_idx)
5664{
5665        struct e1000_adv_tx_context_desc *context_desc;
5666        u16 i = tx_ring->next_to_use;
5667        struct timespec64 ts;
5668
5669        context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5670
5671        i++;
5672        tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5673
5674        /* set bits to identify this as an advanced context descriptor */
5675        type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5676
5677        /* For 82575, context index must be unique per ring. */
5678        if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5679                mss_l4len_idx |= tx_ring->reg_idx << 4;
5680
5681        context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
5682        context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
5683        context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
5684
5685        /* We assume there is always a valid tx time available. Invalid times
5686         * should have been handled by the upper layers.
5687         */
5688        if (tx_ring->launchtime_enable) {
5689                ts = ktime_to_timespec64(first->skb->tstamp);
5690                first->skb->tstamp = ktime_set(0, 0);
5691                context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5692        } else {
5693                context_desc->seqnum_seed = 0;
5694        }
5695}
5696
5697static int igb_tso(struct igb_ring *tx_ring,
5698                   struct igb_tx_buffer *first,
5699                   u8 *hdr_len)
5700{
5701        u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5702        struct sk_buff *skb = first->skb;
5703        union {
5704                struct iphdr *v4;
5705                struct ipv6hdr *v6;
5706                unsigned char *hdr;
5707        } ip;
5708        union {
5709                struct tcphdr *tcp;
5710                struct udphdr *udp;
5711                unsigned char *hdr;
5712        } l4;
5713        u32 paylen, l4_offset;
5714        int err;
5715
5716        if (skb->ip_summed != CHECKSUM_PARTIAL)
5717                return 0;
5718
5719        if (!skb_is_gso(skb))
5720                return 0;
5721
5722        err = skb_cow_head(skb, 0);
5723        if (err < 0)
5724                return err;
5725
5726        ip.hdr = skb_network_header(skb);
5727        l4.hdr = skb_checksum_start(skb);
5728
5729        /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5730        type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
5731                      E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
5732
5733        /* initialize outer IP header fields */
5734        if (ip.v4->version == 4) {
5735                unsigned char *csum_start = skb_checksum_start(skb);
5736                unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5737
5738                /* IP header will have to cancel out any data that
5739                 * is not a part of the outer IP header
5740                 */
5741                ip.v4->check = csum_fold(csum_partial(trans_start,
5742                                                      csum_start - trans_start,
5743                                                      0));
5744                type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5745
5746                ip.v4->tot_len = 0;
5747                first->tx_flags |= IGB_TX_FLAGS_TSO |
5748                                   IGB_TX_FLAGS_CSUM |
5749                                   IGB_TX_FLAGS_IPV4;
5750        } else {
5751                ip.v6->payload_len = 0;
5752                first->tx_flags |= IGB_TX_FLAGS_TSO |
5753                                   IGB_TX_FLAGS_CSUM;
5754        }
5755
5756        /* determine offset of inner transport header */
5757        l4_offset = l4.hdr - skb->data;
5758
5759        /* remove payload length from inner checksum */
5760        paylen = skb->len - l4_offset;
5761        if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
5762                /* compute length of segmentation header */
5763                *hdr_len = (l4.tcp->doff * 4) + l4_offset;
5764                csum_replace_by_diff(&l4.tcp->check,
5765                        (__force __wsum)htonl(paylen));
5766        } else {
5767                /* compute length of segmentation header */
5768                *hdr_len = sizeof(*l4.udp) + l4_offset;
5769                csum_replace_by_diff(&l4.udp->check,
5770                                     (__force __wsum)htonl(paylen));
5771        }
5772
5773        /* update gso size and bytecount with header size */
5774        first->gso_segs = skb_shinfo(skb)->gso_segs;
5775        first->bytecount += (first->gso_segs - 1) * *hdr_len;
5776
5777        /* MSS L4LEN IDX */
5778        mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5779        mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5780
5781        /* VLAN MACLEN IPLEN */
5782        vlan_macip_lens = l4.hdr - ip.hdr;
5783        vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5784        vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5785
5786        igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
5787                        type_tucmd, mss_l4len_idx);
5788
5789        return 1;
5790}
5791
5792static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
5793{
5794        unsigned int offset = 0;
5795
5796        ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
5797
5798        return offset == skb_checksum_start_offset(skb);
5799}
5800
5801static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5802{
5803        struct sk_buff *skb = first->skb;
5804        u32 vlan_macip_lens = 0;
5805        u32 type_tucmd = 0;
5806
5807        if (skb->ip_summed != CHECKSUM_PARTIAL) {
5808csum_failed:
5809                if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
5810                    !tx_ring->launchtime_enable)
5811                        return;
5812                goto no_csum;
5813        }
5814
5815        switch (skb->csum_offset) {
5816        case offsetof(struct tcphdr, check):
5817                type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5818                fallthrough;
5819        case offsetof(struct udphdr, check):
5820                break;
5821        case offsetof(struct sctphdr, checksum):
5822                /* validate that this is actually an SCTP request */
5823                if (((first->protocol == htons(ETH_P_IP)) &&
5824                     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
5825                    ((first->protocol == htons(ETH_P_IPV6)) &&
5826                     igb_ipv6_csum_is_sctp(skb))) {
5827                        type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
5828                        break;
5829                }
5830                fallthrough;
5831        default:
5832                skb_checksum_help(skb);
5833                goto csum_failed;
5834        }
5835
5836        /* update TX checksum flag */
5837        first->tx_flags |= IGB_TX_FLAGS_CSUM;
5838        vlan_macip_lens = skb_checksum_start_offset(skb) -
5839                          skb_network_offset(skb);
5840no_csum:
5841        vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5842        vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5843
5844        igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
5845}
5846
5847#define IGB_SET_FLAG(_input, _flag, _result) \
5848        ((_flag <= _result) ? \
5849         ((u32)(_input & _flag) * (_result / _flag)) : \
5850         ((u32)(_input & _flag) / (_flag / _result)))
5851
5852static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5853{
5854        /* set type for advanced descriptor with frame checksum insertion */
5855        u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5856                       E1000_ADVTXD_DCMD_DEXT |
5857                       E1000_ADVTXD_DCMD_IFCS;
5858
5859        /* set HW vlan bit if vlan is present */
5860        cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5861                                 (E1000_ADVTXD_DCMD_VLE));
5862
5863        /* set segmentation bits for TSO */
5864        cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5865                                 (E1000_ADVTXD_DCMD_TSE));
5866
5867        /* set timestamp bit if present */
5868        cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5869                                 (E1000_ADVTXD_MAC_TSTAMP));
5870
5871        /* insert frame checksum */
5872        cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
5873
5874        return cmd_type;
5875}
5876
5877static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5878                                 union e1000_adv_tx_desc *tx_desc,
5879                                 u32 tx_flags, unsigned int paylen)
5880{
5881        u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5882
5883        /* 82575 requires a unique index per ring */
5884        if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5885                olinfo_status |= tx_ring->reg_idx << 4;
5886
5887        /* insert L4 checksum */
5888        olinfo_status |= IGB_SET_FLAG(tx_flags,
5889                                      IGB_TX_FLAGS_CSUM,
5890                                      (E1000_TXD_POPTS_TXSM << 8));
5891
5892        /* insert IPv4 checksum */
5893        olinfo_status |= IGB_SET_FLAG(tx_flags,
5894                                      IGB_TX_FLAGS_IPV4,
5895                                      (E1000_TXD_POPTS_IXSM << 8));
5896
5897        tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5898}
5899
5900static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5901{
5902        struct net_device *netdev = tx_ring->netdev;
5903
5904        netif_stop_subqueue(netdev, tx_ring->queue_index);
5905
5906        /* Herbert's original patch had:
5907         *  smp_mb__after_netif_stop_queue();
5908         * but since that doesn't exist yet, just open code it.
5909         */
5910        smp_mb();
5911
5912        /* We need to check again in a case another CPU has just
5913         * made room available.
5914         */
5915        if (igb_desc_unused(tx_ring) < size)
5916                return -EBUSY;
5917
5918        /* A reprieve! */
5919        netif_wake_subqueue(netdev, tx_ring->queue_index);
5920
5921        u64_stats_update_begin(&tx_ring->tx_syncp2);
5922        tx_ring->tx_stats.restart_queue2++;
5923        u64_stats_update_end(&tx_ring->tx_syncp2);
5924
5925        return 0;
5926}
5927
5928static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5929{
5930        if (igb_desc_unused(tx_ring) >= size)
5931                return 0;
5932        return __igb_maybe_stop_tx(tx_ring, size);
5933}
5934
5935static int igb_tx_map(struct igb_ring *tx_ring,
5936                      struct igb_tx_buffer *first,
5937                      const u8 hdr_len)
5938{
5939        struct sk_buff *skb = first->skb;
5940        struct igb_tx_buffer *tx_buffer;
5941        union e1000_adv_tx_desc *tx_desc;
5942        skb_frag_t *frag;
5943        dma_addr_t dma;
5944        unsigned int data_len, size;
5945        u32 tx_flags = first->tx_flags;
5946        u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5947        u16 i = tx_ring->next_to_use;
5948
5949        tx_desc = IGB_TX_DESC(tx_ring, i);
5950
5951        igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5952
5953        size = skb_headlen(skb);
5954        data_len = skb->data_len;
5955
5956        dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5957
5958        tx_buffer = first;
5959
5960        for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5961                if (dma_mapping_error(tx_ring->dev, dma))
5962                        goto dma_error;
5963
5964                /* record length, and DMA address */
5965                dma_unmap_len_set(tx_buffer, len, size);
5966                dma_unmap_addr_set(tx_buffer, dma, dma);
5967
5968                tx_desc->read.buffer_addr = cpu_to_le64(dma);
5969
5970                while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5971                        tx_desc->read.cmd_type_len =
5972                                cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5973
5974                        i++;
5975                        tx_desc++;
5976                        if (i == tx_ring->count) {
5977                                tx_desc = IGB_TX_DESC(tx_ring, 0);
5978                                i = 0;
5979                        }
5980                        tx_desc->read.olinfo_status = 0;
5981
5982                        dma += IGB_MAX_DATA_PER_TXD;
5983                        size -= IGB_MAX_DATA_PER_TXD;
5984
5985                        tx_desc->read.buffer_addr = cpu_to_le64(dma);
5986                }
5987
5988                if (likely(!data_len))
5989                        break;
5990
5991                tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5992
5993                i++;
5994                tx_desc++;
5995                if (i == tx_ring->count) {
5996                        tx_desc = IGB_TX_DESC(tx_ring, 0);
5997                        i = 0;
5998                }
5999                tx_desc->read.olinfo_status = 0;
6000
6001                size = skb_frag_size(frag);
6002                data_len -= size;
6003
6004                dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6005                                       size, DMA_TO_DEVICE);
6006
6007                tx_buffer = &tx_ring->tx_buffer_info[i];
6008        }
6009
6010        /* write last descriptor with RS and EOP bits */
6011        cmd_type |= size | IGB_TXD_DCMD;
6012        tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6013
6014        netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6015
6016        /* set the timestamp */
6017        first->time_stamp = jiffies;
6018
6019        skb_tx_timestamp(skb);
6020
6021        /* Force memory writes to complete before letting h/w know there
6022         * are new descriptors to fetch.  (Only applicable for weak-ordered
6023         * memory model archs, such as IA-64).
6024         *
6025         * We also need this memory barrier to make certain all of the
6026         * status bits have been updated before next_to_watch is written.
6027         */
6028        dma_wmb();
6029
6030        /* set next_to_watch value indicating a packet is present */
6031        first->next_to_watch = tx_desc;
6032
6033        i++;
6034        if (i == tx_ring->count)
6035                i = 0;
6036
6037        tx_ring->next_to_use = i;
6038
6039        /* Make sure there is space in the ring for the next send. */
6040        igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6041
6042        if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6043                writel(i, tx_ring->tail);
6044        }
6045        return 0;
6046
6047dma_error:
6048        dev_err(tx_ring->dev, "TX DMA map failed\n");
6049        tx_buffer = &tx_ring->tx_buffer_info[i];
6050
6051        /* clear dma mappings for failed tx_buffer_info map */
6052        while (tx_buffer != first) {
6053                if (dma_unmap_len(tx_buffer, len))
6054                        dma_unmap_page(tx_ring->dev,
6055                                       dma_unmap_addr(tx_buffer, dma),
6056                                       dma_unmap_len(tx_buffer, len),
6057                                       DMA_TO_DEVICE);
6058                dma_unmap_len_set(tx_buffer, len, 0);
6059
6060                if (i-- == 0)
6061                        i += tx_ring->count;
6062                tx_buffer = &tx_ring->tx_buffer_info[i];
6063        }
6064
6065        if (dma_unmap_len(tx_buffer, len))
6066                dma_unmap_single(tx_ring->dev,
6067                                 dma_unmap_addr(tx_buffer, dma),
6068                                 dma_unmap_len(tx_buffer, len),
6069                                 DMA_TO_DEVICE);
6070        dma_unmap_len_set(tx_buffer, len, 0);
6071
6072        dev_kfree_skb_any(tx_buffer->skb);
6073        tx_buffer->skb = NULL;
6074
6075        tx_ring->next_to_use = i;
6076
6077        return -1;
6078}
6079
6080netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6081                                struct igb_ring *tx_ring)
6082{
6083        struct igb_tx_buffer *first;
6084        int tso;
6085        u32 tx_flags = 0;
6086        unsigned short f;
6087        u16 count = TXD_USE_COUNT(skb_headlen(skb));
6088        __be16 protocol = vlan_get_protocol(skb);
6089        u8 hdr_len = 0;
6090
6091        /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6092         *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6093         *       + 2 desc gap to keep tail from touching head,
6094         *       + 1 desc for context descriptor,
6095         * otherwise try next time
6096         */
6097        for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6098                count += TXD_USE_COUNT(skb_frag_size(
6099                                                &skb_shinfo(skb)->frags[f]));
6100
6101        if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6102                /* this is a hard error */
6103                return NETDEV_TX_BUSY;
6104        }
6105
6106        /* record the location of the first descriptor for this packet */
6107        first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6108        first->skb = skb;
6109        first->bytecount = skb->len;
6110        first->gso_segs = 1;
6111
6112        if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6113                struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6114
6115                if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6116                    !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6117                                           &adapter->state)) {
6118                        skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6119                        tx_flags |= IGB_TX_FLAGS_TSTAMP;
6120
6121                        adapter->ptp_tx_skb = skb_get(skb);
6122                        adapter->ptp_tx_start = jiffies;
6123                        if (adapter->hw.mac.type == e1000_82576)
6124                                schedule_work(&adapter->ptp_tx_work);
6125                } else {
6126                        adapter->tx_hwtstamp_skipped++;
6127                }
6128        }
6129
6130        if (skb_vlan_tag_present(skb)) {
6131                tx_flags |= IGB_TX_FLAGS_VLAN;
6132                tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6133        }
6134
6135        /* record initial flags and protocol */
6136        first->tx_flags = tx_flags;
6137        first->protocol = protocol;
6138
6139        tso = igb_tso(tx_ring, first, &hdr_len);
6140        if (tso < 0)
6141                goto out_drop;
6142        else if (!tso)
6143                igb_tx_csum(tx_ring, first);
6144
6145        if (igb_tx_map(tx_ring, first, hdr_len))
6146                goto cleanup_tx_tstamp;
6147
6148        return NETDEV_TX_OK;
6149
6150out_drop:
6151        dev_kfree_skb_any(first->skb);
6152        first->skb = NULL;
6153cleanup_tx_tstamp:
6154        if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6155                struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6156
6157                dev_kfree_skb_any(adapter->ptp_tx_skb);
6158                adapter->ptp_tx_skb = NULL;
6159                if (adapter->hw.mac.type == e1000_82576)
6160                        cancel_work_sync(&adapter->ptp_tx_work);
6161                clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6162        }
6163
6164        return NETDEV_TX_OK;
6165}
6166
6167static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6168                                                    struct sk_buff *skb)
6169{
6170        unsigned int r_idx = skb->queue_mapping;
6171
6172        if (r_idx >= adapter->num_tx_queues)
6173                r_idx = r_idx % adapter->num_tx_queues;
6174
6175        return adapter->tx_ring[r_idx];
6176}
6177
6178static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6179                                  struct net_device *netdev)
6180{
6181        struct igb_adapter *adapter = netdev_priv(netdev);
6182
6183        /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6184         * in order to meet this minimum size requirement.
6185         */
6186        if (skb_put_padto(skb, 17))
6187                return NETDEV_TX_OK;
6188
6189        return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6190}
6191
6192/**
6193 *  igb_tx_timeout - Respond to a Tx Hang
6194 *  @netdev: network interface device structure
6195 **/
6196static void igb_tx_timeout(struct net_device *netdev, unsigned int txqueue)
6197{
6198        struct igb_adapter *adapter = netdev_priv(netdev);
6199        struct e1000_hw *hw = &adapter->hw;
6200
6201        /* Do the reset outside of interrupt context */
6202        adapter->tx_timeout_count++;
6203
6204        if (hw->mac.type >= e1000_82580)
6205                hw->dev_spec._82575.global_device_reset = true;
6206
6207        schedule_work(&adapter->reset_task);
6208        wr32(E1000_EICS,
6209             (adapter->eims_enable_mask & ~adapter->eims_other));
6210}
6211
6212static void igb_reset_task(struct work_struct *work)
6213{
6214        struct igb_adapter *adapter;
6215        adapter = container_of(work, struct igb_adapter, reset_task);
6216
6217        rtnl_lock();
6218        /* If we're already down or resetting, just bail */
6219        if (test_bit(__IGB_DOWN, &adapter->state) ||
6220            test_bit(__IGB_RESETTING, &adapter->state)) {
6221                rtnl_unlock();
6222                return;
6223        }
6224
6225        igb_dump(adapter);
6226        netdev_err(adapter->netdev, "Reset adapter\n");
6227        igb_reinit_locked(adapter);
6228        rtnl_unlock();
6229}
6230
6231/**
6232 *  igb_get_stats64 - Get System Network Statistics
6233 *  @netdev: network interface device structure
6234 *  @stats: rtnl_link_stats64 pointer
6235 **/
6236static void igb_get_stats64(struct net_device *netdev,
6237                            struct rtnl_link_stats64 *stats)
6238{
6239        struct igb_adapter *adapter = netdev_priv(netdev);
6240
6241        spin_lock(&adapter->stats64_lock);
6242        igb_update_stats(adapter);
6243        memcpy(stats, &adapter->stats64, sizeof(*stats));
6244        spin_unlock(&adapter->stats64_lock);
6245}
6246
6247/**
6248 *  igb_change_mtu - Change the Maximum Transfer Unit
6249 *  @netdev: network interface device structure
6250 *  @new_mtu: new value for maximum frame size
6251 *
6252 *  Returns 0 on success, negative on failure
6253 **/
6254static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6255{
6256        struct igb_adapter *adapter = netdev_priv(netdev);
6257        int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
6258
6259        /* adjust max frame to be at least the size of a standard frame */
6260        if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6261                max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6262
6263        while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6264                usleep_range(1000, 2000);
6265
6266        /* igb_down has a dependency on max_frame_size */
6267        adapter->max_frame_size = max_frame;
6268
6269        if (netif_running(netdev))
6270                igb_down(adapter);
6271
6272        netdev_dbg(netdev, "changing MTU from %d to %d\n",
6273                   netdev->mtu, new_mtu);
6274        netdev->mtu = new_mtu;
6275
6276        if (netif_running(netdev))
6277                igb_up(adapter);
6278        else
6279                igb_reset(adapter);
6280
6281        clear_bit(__IGB_RESETTING, &adapter->state);
6282
6283        return 0;
6284}
6285
6286/**
6287 *  igb_update_stats - Update the board statistics counters
6288 *  @adapter: board private structure
6289 **/
6290void igb_update_stats(struct igb_adapter *adapter)
6291{
6292        struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6293        struct e1000_hw *hw = &adapter->hw;
6294        struct pci_dev *pdev = adapter->pdev;
6295        u32 reg, mpc;
6296        int i;
6297        u64 bytes, packets;
6298        unsigned int start;
6299        u64 _bytes, _packets;
6300
6301        /* Prevent stats update while adapter is being reset, or if the pci
6302         * connection is down.
6303         */
6304        if (adapter->link_speed == 0)
6305                return;
6306        if (pci_channel_offline(pdev))
6307                return;
6308
6309        bytes = 0;
6310        packets = 0;
6311
6312        rcu_read_lock();
6313        for (i = 0; i < adapter->num_rx_queues; i++) {
6314                struct igb_ring *ring = adapter->rx_ring[i];
6315                u32 rqdpc = rd32(E1000_RQDPC(i));
6316                if (hw->mac.type >= e1000_i210)
6317                        wr32(E1000_RQDPC(i), 0);
6318
6319                if (rqdpc) {
6320                        ring->rx_stats.drops += rqdpc;
6321                        net_stats->rx_fifo_errors += rqdpc;
6322                }
6323
6324                do {
6325                        start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
6326                        _bytes = ring->rx_stats.bytes;
6327                        _packets = ring->rx_stats.packets;
6328                } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
6329                bytes += _bytes;
6330                packets += _packets;
6331        }
6332
6333        net_stats->rx_bytes = bytes;
6334        net_stats->rx_packets = packets;
6335
6336        bytes = 0;
6337        packets = 0;
6338        for (i = 0; i < adapter->num_tx_queues; i++) {
6339                struct igb_ring *ring = adapter->tx_ring[i];
6340                do {
6341                        start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
6342                        _bytes = ring->tx_stats.bytes;
6343                        _packets = ring->tx_stats.packets;
6344                } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
6345                bytes += _bytes;
6346                packets += _packets;
6347        }
6348        net_stats->tx_bytes = bytes;
6349        net_stats->tx_packets = packets;
6350        rcu_read_unlock();
6351
6352        /* read stats registers */
6353        adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6354        adapter->stats.gprc += rd32(E1000_GPRC);
6355        adapter->stats.gorc += rd32(E1000_GORCL);
6356        rd32(E1000_GORCH); /* clear GORCL */
6357        adapter->stats.bprc += rd32(E1000_BPRC);
6358        adapter->stats.mprc += rd32(E1000_MPRC);
6359        adapter->stats.roc += rd32(E1000_ROC);
6360
6361        adapter->stats.prc64 += rd32(E1000_PRC64);
6362        adapter->stats.prc127 += rd32(E1000_PRC127);
6363        adapter->stats.prc255 += rd32(E1000_PRC255);
6364        adapter->stats.prc511 += rd32(E1000_PRC511);
6365        adapter->stats.prc1023 += rd32(E1000_PRC1023);
6366        adapter->stats.prc1522 += rd32(E1000_PRC1522);
6367        adapter->stats.symerrs += rd32(E1000_SYMERRS);
6368        adapter->stats.sec += rd32(E1000_SEC);
6369
6370        mpc = rd32(E1000_MPC);
6371        adapter->stats.mpc += mpc;
6372        net_stats->rx_fifo_errors += mpc;
6373        adapter->stats.scc += rd32(E1000_SCC);
6374        adapter->stats.ecol += rd32(E1000_ECOL);
6375        adapter->stats.mcc += rd32(E1000_MCC);
6376        adapter->stats.latecol += rd32(E1000_LATECOL);
6377        adapter->stats.dc += rd32(E1000_DC);
6378        adapter->stats.rlec += rd32(E1000_RLEC);
6379        adapter->stats.xonrxc += rd32(E1000_XONRXC);
6380        adapter->stats.xontxc += rd32(E1000_XONTXC);
6381        adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6382        adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6383        adapter->stats.fcruc += rd32(E1000_FCRUC);
6384        adapter->stats.gptc += rd32(E1000_GPTC);
6385        adapter->stats.gotc += rd32(E1000_GOTCL);
6386        rd32(E1000_GOTCH); /* clear GOTCL */
6387        adapter->stats.rnbc += rd32(E1000_RNBC);
6388        adapter->stats.ruc += rd32(E1000_RUC);
6389        adapter->stats.rfc += rd32(E1000_RFC);
6390        adapter->stats.rjc += rd32(E1000_RJC);
6391        adapter->stats.tor += rd32(E1000_TORH);
6392        adapter->stats.tot += rd32(E1000_TOTH);
6393        adapter->stats.tpr += rd32(E1000_TPR);
6394
6395        adapter->stats.ptc64 += rd32(E1000_PTC64);
6396        adapter->stats.ptc127 += rd32(E1000_PTC127);
6397        adapter->stats.ptc255 += rd32(E1000_PTC255);
6398        adapter->stats.ptc511 += rd32(E1000_PTC511);
6399        adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6400        adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6401
6402        adapter->stats.mptc += rd32(E1000_MPTC);
6403        adapter->stats.bptc += rd32(E1000_BPTC);
6404
6405        adapter->stats.tpt += rd32(E1000_TPT);
6406        adapter->stats.colc += rd32(E1000_COLC);
6407
6408        adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6409        /* read internal phy specific stats */
6410        reg = rd32(E1000_CTRL_EXT);
6411        if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6412                adapter->stats.rxerrc += rd32(E1000_RXERRC);
6413
6414                /* this stat has invalid values on i210/i211 */
6415                if ((hw->mac.type != e1000_i210) &&
6416                    (hw->mac.type != e1000_i211))
6417                        adapter->stats.tncrs += rd32(E1000_TNCRS);
6418        }
6419
6420        adapter->stats.tsctc += rd32(E1000_TSCTC);
6421        adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6422
6423        adapter->stats.iac += rd32(E1000_IAC);
6424        adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6425        adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6426        adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6427        adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6428        adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6429        adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6430        adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6431        adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6432
6433        /* Fill out the OS statistics structure */
6434        net_stats->multicast = adapter->stats.mprc;
6435        net_stats->collisions = adapter->stats.colc;
6436
6437        /* Rx Errors */
6438
6439        /* RLEC on some newer hardware can be incorrect so build
6440         * our own version based on RUC and ROC
6441         */
6442        net_stats->rx_errors = adapter->stats.rxerrc +
6443                adapter->stats.crcerrs + adapter->stats.algnerrc +
6444                adapter->stats.ruc + adapter->stats.roc +
6445                adapter->stats.cexterr;
6446        net_stats->rx_length_errors = adapter->stats.ruc +
6447                                      adapter->stats.roc;
6448        net_stats->rx_crc_errors = adapter->stats.crcerrs;
6449        net_stats->rx_frame_errors = adapter->stats.algnerrc;
6450        net_stats->rx_missed_errors = adapter->stats.mpc;
6451
6452        /* Tx Errors */
6453        net_stats->tx_errors = adapter->stats.ecol +
6454                               adapter->stats.latecol;
6455        net_stats->tx_aborted_errors = adapter->stats.ecol;
6456        net_stats->tx_window_errors = adapter->stats.latecol;
6457        net_stats->tx_carrier_errors = adapter->stats.tncrs;
6458
6459        /* Tx Dropped needs to be maintained elsewhere */
6460
6461        /* Management Stats */
6462        adapter->stats.mgptc += rd32(E1000_MGTPTC);
6463        adapter->stats.mgprc += rd32(E1000_MGTPRC);
6464        adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6465
6466        /* OS2BMC Stats */
6467        reg = rd32(E1000_MANC);
6468        if (reg & E1000_MANC_EN_BMC2OS) {
6469                adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6470                adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6471                adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6472                adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6473        }
6474}
6475
6476static void igb_tsync_interrupt(struct igb_adapter *adapter)
6477{
6478        struct e1000_hw *hw = &adapter->hw;
6479        struct ptp_clock_event event;
6480        struct timespec64 ts;
6481        u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
6482
6483        if (tsicr & TSINTR_SYS_WRAP) {
6484                event.type = PTP_CLOCK_PPS;
6485                if (adapter->ptp_caps.pps)
6486                        ptp_clock_event(adapter->ptp_clock, &event);
6487                ack |= TSINTR_SYS_WRAP;
6488        }
6489
6490        if (tsicr & E1000_TSICR_TXTS) {
6491                /* retrieve hardware timestamp */
6492                schedule_work(&adapter->ptp_tx_work);
6493                ack |= E1000_TSICR_TXTS;
6494        }
6495
6496        if (tsicr & TSINTR_TT0) {
6497                spin_lock(&adapter->tmreg_lock);
6498                ts = timespec64_add(adapter->perout[0].start,
6499                                    adapter->perout[0].period);
6500                /* u32 conversion of tv_sec is safe until y2106 */
6501                wr32(E1000_TRGTTIML0, ts.tv_nsec);
6502                wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
6503                tsauxc = rd32(E1000_TSAUXC);
6504                tsauxc |= TSAUXC_EN_TT0;
6505                wr32(E1000_TSAUXC, tsauxc);
6506                adapter->perout[0].start = ts;
6507                spin_unlock(&adapter->tmreg_lock);
6508                ack |= TSINTR_TT0;
6509        }
6510
6511        if (tsicr & TSINTR_TT1) {
6512                spin_lock(&adapter->tmreg_lock);
6513                ts = timespec64_add(adapter->perout[1].start,
6514                                    adapter->perout[1].period);
6515                wr32(E1000_TRGTTIML1, ts.tv_nsec);
6516                wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
6517                tsauxc = rd32(E1000_TSAUXC);
6518                tsauxc |= TSAUXC_EN_TT1;
6519                wr32(E1000_TSAUXC, tsauxc);
6520                adapter->perout[1].start = ts;
6521                spin_unlock(&adapter->tmreg_lock);
6522                ack |= TSINTR_TT1;
6523        }
6524
6525        if (tsicr & TSINTR_AUTT0) {
6526                nsec = rd32(E1000_AUXSTMPL0);
6527                sec  = rd32(E1000_AUXSTMPH0);
6528                event.type = PTP_CLOCK_EXTTS;
6529                event.index = 0;
6530                event.timestamp = sec * 1000000000ULL + nsec;
6531                ptp_clock_event(adapter->ptp_clock, &event);
6532                ack |= TSINTR_AUTT0;
6533        }
6534
6535        if (tsicr & TSINTR_AUTT1) {
6536                nsec = rd32(E1000_AUXSTMPL1);
6537                sec  = rd32(E1000_AUXSTMPH1);
6538                event.type = PTP_CLOCK_EXTTS;
6539                event.index = 1;
6540                event.timestamp = sec * 1000000000ULL + nsec;
6541                ptp_clock_event(adapter->ptp_clock, &event);
6542                ack |= TSINTR_AUTT1;
6543        }
6544
6545        /* acknowledge the interrupts */
6546        wr32(E1000_TSICR, ack);
6547}
6548
6549static irqreturn_t igb_msix_other(int irq, void *data)
6550{
6551        struct igb_adapter *adapter = data;
6552        struct e1000_hw *hw = &adapter->hw;
6553        u32 icr = rd32(E1000_ICR);
6554        /* reading ICR causes bit 31 of EICR to be cleared */
6555
6556        if (icr & E1000_ICR_DRSTA)
6557                schedule_work(&adapter->reset_task);
6558
6559        if (icr & E1000_ICR_DOUTSYNC) {
6560                /* HW is reporting DMA is out of sync */
6561                adapter->stats.doosync++;
6562                /* The DMA Out of Sync is also indication of a spoof event
6563                 * in IOV mode. Check the Wrong VM Behavior register to
6564                 * see if it is really a spoof event.
6565                 */
6566                igb_check_wvbr(adapter);
6567        }
6568
6569        /* Check for a mailbox event */
6570        if (icr & E1000_ICR_VMMB)
6571                igb_msg_task(adapter);
6572
6573        if (icr & E1000_ICR_LSC) {
6574                hw->mac.get_link_status = 1;
6575                /* guard against interrupt when we're going down */
6576                if (!test_bit(__IGB_DOWN, &adapter->state))
6577                        mod_timer(&adapter->watchdog_timer, jiffies + 1);
6578        }
6579
6580        if (icr & E1000_ICR_TS)
6581                igb_tsync_interrupt(adapter);
6582
6583        wr32(E1000_EIMS, adapter->eims_other);
6584
6585        return IRQ_HANDLED;
6586}
6587
6588static void igb_write_itr(struct igb_q_vector *q_vector)
6589{
6590        struct igb_adapter *adapter = q_vector->adapter;
6591        u32 itr_val = q_vector->itr_val & 0x7FFC;
6592
6593        if (!q_vector->set_itr)
6594                return;
6595
6596        if (!itr_val)
6597                itr_val = 0x4;
6598
6599        if (adapter->hw.mac.type == e1000_82575)
6600                itr_val |= itr_val << 16;
6601        else
6602                itr_val |= E1000_EITR_CNT_IGNR;
6603
6604        writel(itr_val, q_vector->itr_register);
6605        q_vector->set_itr = 0;
6606}
6607
6608static irqreturn_t igb_msix_ring(int irq, void *data)
6609{
6610        struct igb_q_vector *q_vector = data;
6611
6612        /* Write the ITR value calculated from the previous interrupt. */
6613        igb_write_itr(q_vector);
6614
6615        napi_schedule(&q_vector->napi);
6616
6617        return IRQ_HANDLED;
6618}
6619
6620#ifdef CONFIG_IGB_DCA
6621static void igb_update_tx_dca(struct igb_adapter *adapter,
6622                              struct igb_ring *tx_ring,
6623                              int cpu)
6624{
6625        struct e1000_hw *hw = &adapter->hw;
6626        u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
6627
6628        if (hw->mac.type != e1000_82575)
6629                txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
6630
6631        /* We can enable relaxed ordering for reads, but not writes when
6632         * DCA is enabled.  This is due to a known issue in some chipsets
6633         * which will cause the DCA tag to be cleared.
6634         */
6635        txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
6636                  E1000_DCA_TXCTRL_DATA_RRO_EN |
6637                  E1000_DCA_TXCTRL_DESC_DCA_EN;
6638
6639        wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6640}
6641
6642static void igb_update_rx_dca(struct igb_adapter *adapter,
6643                              struct igb_ring *rx_ring,
6644                              int cpu)
6645{
6646        struct e1000_hw *hw = &adapter->hw;
6647        u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
6648
6649        if (hw->mac.type != e1000_82575)
6650                rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
6651
6652        /* We can enable relaxed ordering for reads, but not writes when
6653         * DCA is enabled.  This is due to a known issue in some chipsets
6654         * which will cause the DCA tag to be cleared.
6655         */
6656        rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
6657                  E1000_DCA_RXCTRL_DESC_DCA_EN;
6658
6659        wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
6660}
6661
6662static void igb_update_dca(struct igb_q_vector *q_vector)
6663{
6664        struct igb_adapter *adapter = q_vector->adapter;
6665        int cpu = get_cpu();
6666
6667        if (q_vector->cpu == cpu)
6668                goto out_no_update;
6669
6670        if (q_vector->tx.ring)
6671                igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
6672
6673        if (q_vector->rx.ring)
6674                igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
6675
6676        q_vector->cpu = cpu;
6677out_no_update:
6678        put_cpu();
6679}
6680
6681static void igb_setup_dca(struct igb_adapter *adapter)
6682{
6683        struct e1000_hw *hw = &adapter->hw;
6684        int i;
6685
6686        if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
6687                return;
6688
6689        /* Always use CB2 mode, difference is masked in the CB driver. */
6690        wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
6691
6692        for (i = 0; i < adapter->num_q_vectors; i++) {
6693                adapter->q_vector[i]->cpu = -1;
6694                igb_update_dca(adapter->q_vector[i]);
6695        }
6696}
6697
6698static int __igb_notify_dca(struct device *dev, void *data)
6699{
6700        struct net_device *netdev = dev_get_drvdata(dev);
6701        struct igb_adapter *adapter = netdev_priv(netdev);
6702        struct pci_dev *pdev = adapter->pdev;
6703        struct e1000_hw *hw = &adapter->hw;
6704        unsigned long event = *(unsigned long *)data;
6705
6706        switch (event) {
6707        case DCA_PROVIDER_ADD:
6708                /* if already enabled, don't do it again */
6709                if (adapter->flags & IGB_FLAG_DCA_ENABLED)
6710                        break;
6711                if (dca_add_requester(dev) == 0) {
6712                        adapter->flags |= IGB_FLAG_DCA_ENABLED;
6713                        dev_info(&pdev->dev, "DCA enabled\n");
6714                        igb_setup_dca(adapter);
6715                        break;
6716                }
6717                fallthrough; /* since DCA is disabled. */
6718        case DCA_PROVIDER_REMOVE:
6719                if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
6720                        /* without this a class_device is left
6721                         * hanging around in the sysfs model
6722                         */
6723                        dca_remove_requester(dev);
6724                        dev_info(&pdev->dev, "DCA disabled\n");
6725                        adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
6726                        wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
6727                }
6728                break;
6729        }
6730
6731        return 0;
6732}
6733
6734static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
6735                          void *p)
6736{
6737        int ret_val;
6738
6739        ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
6740                                         __igb_notify_dca);
6741
6742        return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
6743}
6744#endif /* CONFIG_IGB_DCA */
6745
6746#ifdef CONFIG_PCI_IOV
6747static int igb_vf_configure(struct igb_adapter *adapter, int vf)
6748{
6749        unsigned char mac_addr[ETH_ALEN];
6750
6751        eth_zero_addr(mac_addr);
6752        igb_set_vf_mac(adapter, vf, mac_addr);
6753
6754        /* By default spoof check is enabled for all VFs */
6755        adapter->vf_data[vf].spoofchk_enabled = true;
6756
6757        /* By default VFs are not trusted */
6758        adapter->vf_data[vf].trusted = false;
6759
6760        return 0;
6761}
6762
6763#endif
6764static void igb_ping_all_vfs(struct igb_adapter *adapter)
6765{
6766        struct e1000_hw *hw = &adapter->hw;
6767        u32 ping;
6768        int i;
6769
6770        for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
6771                ping = E1000_PF_CONTROL_MSG;
6772                if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
6773                        ping |= E1000_VT_MSGTYPE_CTS;
6774                igb_write_mbx(hw, &ping, 1, i);
6775        }
6776}
6777
6778static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6779{
6780        struct e1000_hw *hw = &adapter->hw;
6781        u32 vmolr = rd32(E1000_VMOLR(vf));
6782        struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6783
6784        vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
6785                            IGB_VF_FLAG_MULTI_PROMISC);
6786        vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6787
6788        if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
6789                vmolr |= E1000_VMOLR_MPME;
6790                vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
6791                *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
6792        } else {
6793                /* if we have hashes and we are clearing a multicast promisc
6794                 * flag we need to write the hashes to the MTA as this step
6795                 * was previously skipped
6796                 */
6797                if (vf_data->num_vf_mc_hashes > 30) {
6798                        vmolr |= E1000_VMOLR_MPME;
6799                } else if (vf_data->num_vf_mc_hashes) {
6800                        int j;
6801
6802                        vmolr |= E1000_VMOLR_ROMPE;
6803                        for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6804                                igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6805                }
6806        }
6807
6808        wr32(E1000_VMOLR(vf), vmolr);
6809
6810        /* there are flags left unprocessed, likely not supported */
6811        if (*msgbuf & E1000_VT_MSGINFO_MASK)
6812                return -EINVAL;
6813
6814        return 0;
6815}
6816
6817static int igb_set_vf_multicasts(struct igb_adapter *adapter,
6818                                  u32 *msgbuf, u32 vf)
6819{
6820        int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6821        u16 *hash_list = (u16 *)&msgbuf[1];
6822        struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6823        int i;
6824
6825        /* salt away the number of multicast addresses assigned
6826         * to this VF for later use to restore when the PF multi cast
6827         * list changes
6828         */
6829        vf_data->num_vf_mc_hashes = n;
6830
6831        /* only up to 30 hash values supported */
6832        if (n > 30)
6833                n = 30;
6834
6835        /* store the hashes for later use */
6836        for (i = 0; i < n; i++)
6837                vf_data->vf_mc_hashes[i] = hash_list[i];
6838
6839        /* Flush and reset the mta with the new values */
6840        igb_set_rx_mode(adapter->netdev);
6841
6842        return 0;
6843}
6844
6845static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
6846{
6847        struct e1000_hw *hw = &adapter->hw;
6848        struct vf_data_storage *vf_data;
6849        int i, j;
6850
6851        for (i = 0; i < adapter->vfs_allocated_count; i++) {
6852                u32 vmolr = rd32(E1000_VMOLR(i));
6853
6854                vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6855
6856                vf_data = &adapter->vf_data[i];
6857
6858                if ((vf_data->num_vf_mc_hashes > 30) ||
6859                    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6860                        vmolr |= E1000_VMOLR_MPME;
6861                } else if (vf_data->num_vf_mc_hashes) {
6862                        vmolr |= E1000_VMOLR_ROMPE;
6863                        for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6864                                igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6865                }
6866                wr32(E1000_VMOLR(i), vmolr);
6867        }
6868}
6869
6870static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6871{
6872        struct e1000_hw *hw = &adapter->hw;
6873        u32 pool_mask, vlvf_mask, i;
6874
6875        /* create mask for VF and other pools */
6876        pool_mask = E1000_VLVF_POOLSEL_MASK;
6877        vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
6878
6879        /* drop PF from pool bits */
6880        pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6881                             adapter->vfs_allocated_count);
6882
6883        /* Find the vlan filter for this id */
6884        for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6885                u32 vlvf = rd32(E1000_VLVF(i));
6886                u32 vfta_mask, vid, vfta;
6887
6888                /* remove the vf from the pool */
6889                if (!(vlvf & vlvf_mask))
6890                        continue;
6891
6892                /* clear out bit from VLVF */
6893                vlvf ^= vlvf_mask;
6894
6895                /* if other pools are present, just remove ourselves */
6896                if (vlvf & pool_mask)
6897                        goto update_vlvfb;
6898
6899                /* if PF is present, leave VFTA */
6900                if (vlvf & E1000_VLVF_POOLSEL_MASK)
6901                        goto update_vlvf;
6902
6903                vid = vlvf & E1000_VLVF_VLANID_MASK;
6904                vfta_mask = BIT(vid % 32);
6905
6906                /* clear bit from VFTA */
6907                vfta = adapter->shadow_vfta[vid / 32];
6908                if (vfta & vfta_mask)
6909                        hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6910update_vlvf:
6911                /* clear pool selection enable */
6912                if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6913                        vlvf &= E1000_VLVF_POOLSEL_MASK;
6914                else
6915                        vlvf = 0;
6916update_vlvfb:
6917                /* clear pool bits */
6918                wr32(E1000_VLVF(i), vlvf);
6919        }
6920}
6921
6922static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6923{
6924        u32 vlvf;
6925        int idx;
6926
6927        /* short cut the special case */
6928        if (vlan == 0)
6929                return 0;
6930
6931        /* Search for the VLAN id in the VLVF entries */
6932        for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6933                vlvf = rd32(E1000_VLVF(idx));
6934                if ((vlvf & VLAN_VID_MASK) == vlan)
6935                        break;
6936        }
6937
6938        return idx;
6939}
6940
6941static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6942{
6943        struct e1000_hw *hw = &adapter->hw;
6944        u32 bits, pf_id;
6945        int idx;
6946
6947        idx = igb_find_vlvf_entry(hw, vid);
6948        if (!idx)
6949                return;
6950
6951        /* See if any other pools are set for this VLAN filter
6952         * entry other than the PF.
6953         */
6954        pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6955        bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6956        bits &= rd32(E1000_VLVF(idx));
6957
6958        /* Disable the filter so this falls into the default pool. */
6959        if (!bits) {
6960                if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6961                        wr32(E1000_VLVF(idx), BIT(pf_id));
6962                else
6963                        wr32(E1000_VLVF(idx), 0);
6964        }
6965}
6966
6967static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6968                           bool add, u32 vf)
6969{
6970        int pf_id = adapter->vfs_allocated_count;
6971        struct e1000_hw *hw = &adapter->hw;
6972        int err;
6973
6974        /* If VLAN overlaps with one the PF is currently monitoring make
6975         * sure that we are able to allocate a VLVF entry.  This may be
6976         * redundant but it guarantees PF will maintain visibility to
6977         * the VLAN.
6978         */
6979        if (add && test_bit(vid, adapter->active_vlans)) {
6980                err = igb_vfta_set(hw, vid, pf_id, true, false);
6981                if (err)
6982                        return err;
6983        }
6984
6985        err = igb_vfta_set(hw, vid, vf, add, false);
6986
6987        if (add && !err)
6988                return err;
6989
6990        /* If we failed to add the VF VLAN or we are removing the VF VLAN
6991         * we may need to drop the PF pool bit in order to allow us to free
6992         * up the VLVF resources.
6993         */
6994        if (test_bit(vid, adapter->active_vlans) ||
6995            (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6996                igb_update_pf_vlvf(adapter, vid);
6997
6998        return err;
6999}
7000
7001static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7002{
7003        struct e1000_hw *hw = &adapter->hw;
7004
7005        if (vid)
7006                wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7007        else
7008                wr32(E1000_VMVIR(vf), 0);
7009}
7010
7011static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7012                                u16 vlan, u8 qos)
7013{
7014        int err;
7015
7016        err = igb_set_vf_vlan(adapter, vlan, true, vf);
7017        if (err)
7018                return err;
7019
7020        igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7021        igb_set_vmolr(adapter, vf, !vlan);
7022
7023        /* revoke access to previous VLAN */
7024        if (vlan != adapter->vf_data[vf].pf_vlan)
7025                igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7026                                false, vf);
7027
7028        adapter->vf_data[vf].pf_vlan = vlan;
7029        adapter->vf_data[vf].pf_qos = qos;
7030        igb_set_vf_vlan_strip(adapter, vf, true);
7031        dev_info(&adapter->pdev->dev,
7032                 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7033        if (test_bit(__IGB_DOWN, &adapter->state)) {
7034                dev_warn(&adapter->pdev->dev,
7035                         "The VF VLAN has been set, but the PF device is not up.\n");
7036                dev_warn(&adapter->pdev->dev,
7037                         "Bring the PF device up before attempting to use the VF device.\n");
7038        }
7039
7040        return err;
7041}
7042
7043static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7044{
7045        /* Restore tagless access via VLAN 0 */
7046        igb_set_vf_vlan(adapter, 0, true, vf);
7047
7048        igb_set_vmvir(adapter, 0, vf);
7049        igb_set_vmolr(adapter, vf, true);
7050
7051        /* Remove any PF assigned VLAN */
7052        if (adapter->vf_data[vf].pf_vlan)
7053                igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7054                                false, vf);
7055
7056        adapter->vf_data[vf].pf_vlan = 0;
7057        adapter->vf_data[vf].pf_qos = 0;
7058        igb_set_vf_vlan_strip(adapter, vf, false);
7059
7060        return 0;
7061}
7062
7063static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7064                               u16 vlan, u8 qos, __be16 vlan_proto)
7065{
7066        struct igb_adapter *adapter = netdev_priv(netdev);
7067
7068        if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7069                return -EINVAL;
7070
7071        if (vlan_proto != htons(ETH_P_8021Q))
7072                return -EPROTONOSUPPORT;
7073
7074        return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7075                               igb_disable_port_vlan(adapter, vf);
7076}
7077
7078static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7079{
7080        int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7081        int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7082        int ret;
7083
7084        if (adapter->vf_data[vf].pf_vlan)
7085                return -1;
7086
7087        /* VLAN 0 is a special case, don't allow it to be removed */
7088        if (!vid && !add)
7089                return 0;
7090
7091        ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7092        if (!ret)
7093                igb_set_vf_vlan_strip(adapter, vf, !!vid);
7094        return ret;
7095}
7096
7097static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7098{
7099        struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7100
7101        /* clear flags - except flag that indicates PF has set the MAC */
7102        vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7103        vf_data->last_nack = jiffies;
7104
7105        /* reset vlans for device */
7106        igb_clear_vf_vfta(adapter, vf);
7107        igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7108        igb_set_vmvir(adapter, vf_data->pf_vlan |
7109                               (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7110        igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7111        igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7112
7113        /* reset multicast table array for vf */
7114        adapter->vf_data[vf].num_vf_mc_hashes = 0;
7115
7116        /* Flush and reset the mta with the new values */
7117        igb_set_rx_mode(adapter->netdev);
7118}
7119
7120static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7121{
7122        unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7123
7124        /* clear mac address as we were hotplug removed/added */
7125        if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7126                eth_zero_addr(vf_mac);
7127
7128        /* process remaining reset events */
7129        igb_vf_reset(adapter, vf);
7130}
7131
7132static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7133{
7134        struct e1000_hw *hw = &adapter->hw;
7135        unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7136        u32 reg, msgbuf[3];
7137        u8 *addr = (u8 *)(&msgbuf[1]);
7138
7139        /* process all the same items cleared in a function level reset */
7140        igb_vf_reset(adapter, vf);
7141
7142        /* set vf mac address */
7143        igb_set_vf_mac(adapter, vf, vf_mac);
7144
7145        /* enable transmit and receive for vf */
7146        reg = rd32(E1000_VFTE);
7147        wr32(E1000_VFTE, reg | BIT(vf));
7148        reg = rd32(E1000_VFRE);
7149        wr32(E1000_VFRE, reg | BIT(vf));
7150
7151        adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7152
7153        /* reply to reset with ack and vf mac address */
7154        if (!is_zero_ether_addr(vf_mac)) {
7155                msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7156                memcpy(addr, vf_mac, ETH_ALEN);
7157        } else {
7158                msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7159        }
7160        igb_write_mbx(hw, msgbuf, 3, vf);
7161}
7162
7163static void igb_flush_mac_table(struct igb_adapter *adapter)
7164{
7165        struct e1000_hw *hw = &adapter->hw;
7166        int i;
7167
7168        for (i = 0; i < hw->mac.rar_entry_count; i++) {
7169                adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7170                eth_zero_addr(adapter->mac_table[i].addr);
7171                adapter->mac_table[i].queue = 0;
7172                igb_rar_set_index(adapter, i);
7173        }
7174}
7175
7176static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7177{
7178        struct e1000_hw *hw = &adapter->hw;
7179        /* do not count rar entries reserved for VFs MAC addresses */
7180        int rar_entries = hw->mac.rar_entry_count -
7181                          adapter->vfs_allocated_count;
7182        int i, count = 0;
7183
7184        for (i = 0; i < rar_entries; i++) {
7185                /* do not count default entries */
7186                if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7187                        continue;
7188
7189                /* do not count "in use" entries for different queues */
7190                if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7191                    (adapter->mac_table[i].queue != queue))
7192                        continue;
7193
7194                count++;
7195        }
7196
7197        return count;
7198}
7199
7200/* Set default MAC address for the PF in the first RAR entry */
7201static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7202{
7203        struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7204
7205        ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7206        mac_table->queue = adapter->vfs_allocated_count;
7207        mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7208
7209        igb_rar_set_index(adapter, 0);
7210}
7211
7212/* If the filter to be added and an already existing filter express
7213 * the same address and address type, it should be possible to only
7214 * override the other configurations, for example the queue to steer
7215 * traffic.
7216 */
7217static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7218                                      const u8 *addr, const u8 flags)
7219{
7220        if (!(entry->state & IGB_MAC_STATE_IN_USE))
7221                return true;
7222
7223        if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7224            (flags & IGB_MAC_STATE_SRC_ADDR))
7225                return false;
7226
7227        if (!ether_addr_equal(addr, entry->addr))
7228                return false;
7229
7230        return true;
7231}
7232
7233/* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7234 * 'flags' is used to indicate what kind of match is made, match is by
7235 * default for the destination address, if matching by source address
7236 * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7237 */
7238static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7239                                    const u8 *addr, const u8 queue,
7240                                    const u8 flags)
7241{
7242        struct e1000_hw *hw = &adapter->hw;
7243        int rar_entries = hw->mac.rar_entry_count -
7244                          adapter->vfs_allocated_count;
7245        int i;
7246
7247        if (is_zero_ether_addr(addr))
7248                return -EINVAL;
7249
7250        /* Search for the first empty entry in the MAC table.
7251         * Do not touch entries at the end of the table reserved for the VF MAC
7252         * addresses.
7253         */
7254        for (i = 0; i < rar_entries; i++) {
7255                if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7256                                               addr, flags))
7257                        continue;
7258
7259                ether_addr_copy(adapter->mac_table[i].addr, addr);
7260                adapter->mac_table[i].queue = queue;
7261                adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7262
7263                igb_rar_set_index(adapter, i);
7264                return i;
7265        }
7266
7267        return -ENOSPC;
7268}
7269
7270static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7271                              const u8 queue)
7272{
7273        return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7274}
7275
7276/* Remove a MAC filter for 'addr' directing matching traffic to
7277 * 'queue', 'flags' is used to indicate what kind of match need to be
7278 * removed, match is by default for the destination address, if
7279 * matching by source address is to be removed the flag
7280 * IGB_MAC_STATE_SRC_ADDR can be used.
7281 */
7282static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7283                                    const u8 *addr, const u8 queue,
7284                                    const u8 flags)
7285{
7286        struct e1000_hw *hw = &adapter->hw;
7287        int rar_entries = hw->mac.rar_entry_count -
7288                          adapter->vfs_allocated_count;
7289        int i;
7290
7291        if (is_zero_ether_addr(addr))
7292                return -EINVAL;
7293
7294        /* Search for matching entry in the MAC table based on given address
7295         * and queue. Do not touch entries at the end of the table reserved
7296         * for the VF MAC addresses.
7297         */
7298        for (i = 0; i < rar_entries; i++) {
7299                if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7300                        continue;
7301                if ((adapter->mac_table[i].state & flags) != flags)
7302                        continue;
7303                if (adapter->mac_table[i].queue != queue)
7304                        continue;
7305                if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7306                        continue;
7307
7308                /* When a filter for the default address is "deleted",
7309                 * we return it to its initial configuration
7310                 */
7311                if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7312                        adapter->mac_table[i].state =
7313                                IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7314                        adapter->mac_table[i].queue =
7315                                adapter->vfs_allocated_count;
7316                } else {
7317                        adapter->mac_table[i].state = 0;
7318                        adapter->mac_table[i].queue = 0;
7319                        eth_zero_addr(adapter->mac_table[i].addr);
7320                }
7321
7322                igb_rar_set_index(adapter, i);
7323                return 0;
7324        }
7325
7326        return -ENOENT;
7327}
7328
7329static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7330                              const u8 queue)
7331{
7332        return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7333}
7334
7335int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7336                                const u8 *addr, u8 queue, u8 flags)
7337{
7338        struct e1000_hw *hw = &adapter->hw;
7339
7340        /* In theory, this should be supported on 82575 as well, but
7341         * that part wasn't easily accessible during development.
7342         */
7343        if (hw->mac.type != e1000_i210)
7344                return -EOPNOTSUPP;
7345
7346        return igb_add_mac_filter_flags(adapter, addr, queue,
7347                                        IGB_MAC_STATE_QUEUE_STEERING | flags);
7348}
7349
7350int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7351                                const u8 *addr, u8 queue, u8 flags)
7352{
7353        return igb_del_mac_filter_flags(adapter, addr, queue,
7354                                        IGB_MAC_STATE_QUEUE_STEERING | flags);
7355}
7356
7357static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7358{
7359        struct igb_adapter *adapter = netdev_priv(netdev);
7360        int ret;
7361
7362        ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7363
7364        return min_t(int, ret, 0);
7365}
7366
7367static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7368{
7369        struct igb_adapter *adapter = netdev_priv(netdev);
7370
7371        igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7372
7373        return 0;
7374}
7375
7376static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7377                                 const u32 info, const u8 *addr)
7378{
7379        struct pci_dev *pdev = adapter->pdev;
7380        struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7381        struct list_head *pos;
7382        struct vf_mac_filter *entry = NULL;
7383        int ret = 0;
7384
7385        switch (info) {
7386        case E1000_VF_MAC_FILTER_CLR:
7387                /* remove all unicast MAC filters related to the current VF */
7388                list_for_each(pos, &adapter->vf_macs.l) {
7389                        entry = list_entry(pos, struct vf_mac_filter, l);
7390                        if (entry->vf == vf) {
7391                                entry->vf = -1;
7392                                entry->free = true;
7393                                igb_del_mac_filter(adapter, entry->vf_mac, vf);
7394                        }
7395                }
7396                break;
7397        case E1000_VF_MAC_FILTER_ADD:
7398                if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7399                    !vf_data->trusted) {
7400                        dev_warn(&pdev->dev,
7401                                 "VF %d requested MAC filter but is administratively denied\n",
7402                                 vf);
7403                        return -EINVAL;
7404                }
7405                if (!is_valid_ether_addr(addr)) {
7406                        dev_warn(&pdev->dev,
7407                                 "VF %d attempted to set invalid MAC filter\n",
7408                                 vf);
7409                        return -EINVAL;
7410                }
7411
7412                /* try to find empty slot in the list */
7413                list_for_each(pos, &adapter->vf_macs.l) {
7414                        entry = list_entry(pos, struct vf_mac_filter, l);
7415                        if (entry->free)
7416                                break;
7417                }
7418
7419                if (entry && entry->free) {
7420                        entry->free = false;
7421                        entry->vf = vf;
7422                        ether_addr_copy(entry->vf_mac, addr);
7423
7424                        ret = igb_add_mac_filter(adapter, addr, vf);
7425                        ret = min_t(int, ret, 0);
7426                } else {
7427                        ret = -ENOSPC;
7428                }
7429
7430                if (ret == -ENOSPC)
7431                        dev_warn(&pdev->dev,
7432                                 "VF %d has requested MAC filter but there is no space for it\n",
7433                                 vf);
7434                break;
7435        default:
7436                ret = -EINVAL;
7437                break;
7438        }
7439
7440        return ret;
7441}
7442
7443static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7444{
7445        struct pci_dev *pdev = adapter->pdev;
7446        struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7447        u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7448
7449        /* The VF MAC Address is stored in a packed array of bytes
7450         * starting at the second 32 bit word of the msg array
7451         */
7452        unsigned char *addr = (unsigned char *)&msg[1];
7453        int ret = 0;
7454
7455        if (!info) {
7456                if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7457                    !vf_data->trusted) {
7458                        dev_warn(&pdev->dev,
7459                                 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7460                                 vf);
7461                        return -EINVAL;
7462                }
7463
7464                if (!is_valid_ether_addr(addr)) {
7465                        dev_warn(&pdev->dev,
7466                                 "VF %d attempted to set invalid MAC\n",
7467                                 vf);
7468                        return -EINVAL;
7469                }
7470
7471                ret = igb_set_vf_mac(adapter, vf, addr);
7472        } else {
7473                ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7474        }
7475
7476        return ret;
7477}
7478
7479static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7480{
7481        struct e1000_hw *hw = &adapter->hw;
7482        struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7483        u32 msg = E1000_VT_MSGTYPE_NACK;
7484
7485        /* if device isn't clear to send it shouldn't be reading either */
7486        if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7487            time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7488                igb_write_mbx(hw, &msg, 1, vf);
7489                vf_data->last_nack = jiffies;
7490        }
7491}
7492
7493static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7494{
7495        struct pci_dev *pdev = adapter->pdev;
7496        u32 msgbuf[E1000_VFMAILBOX_SIZE];
7497        struct e1000_hw *hw = &adapter->hw;
7498        struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7499        s32 retval;
7500
7501        retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7502
7503        if (retval) {
7504                /* if receive failed revoke VF CTS stats and restart init */
7505                dev_err(&pdev->dev, "Error receiving message from VF\n");
7506                vf_data->flags &= ~IGB_VF_FLAG_CTS;
7507                if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7508                        goto unlock;
7509                goto out;
7510        }
7511
7512        /* this is a message we already processed, do nothing */
7513        if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7514                goto unlock;
7515
7516        /* until the vf completes a reset it should not be
7517         * allowed to start any configuration.
7518         */
7519        if (msgbuf[0] == E1000_VF_RESET) {
7520                /* unlocks mailbox */
7521                igb_vf_reset_msg(adapter, vf);
7522                return;
7523        }
7524
7525        if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7526                if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7527                        goto unlock;
7528                retval = -1;
7529                goto out;
7530        }
7531
7532        switch ((msgbuf[0] & 0xFFFF)) {
7533        case E1000_VF_SET_MAC_ADDR:
7534                retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7535                break;
7536        case E1000_VF_SET_PROMISC:
7537                retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7538                break;
7539        case E1000_VF_SET_MULTICAST:
7540                retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7541                break;
7542        case E1000_VF_SET_LPE:
7543                retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7544                break;
7545        case E1000_VF_SET_VLAN:
7546                retval = -1;
7547                if (vf_data->pf_vlan)
7548                        dev_warn(&pdev->dev,
7549                                 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7550                                 vf);
7551                else
7552                        retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7553                break;
7554        default:
7555                dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7556                retval = -1;
7557                break;
7558        }
7559
7560        msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7561out:
7562        /* notify the VF of the results of what it sent us */
7563        if (retval)
7564                msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7565        else
7566                msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7567
7568        /* unlocks mailbox */
7569        igb_write_mbx(hw, msgbuf, 1, vf);
7570        return;
7571
7572unlock:
7573        igb_unlock_mbx(hw, vf);
7574}
7575
7576static void igb_msg_task(struct igb_adapter *adapter)
7577{
7578        struct e1000_hw *hw = &adapter->hw;
7579        u32 vf;
7580
7581        for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7582                /* process any reset requests */
7583                if (!igb_check_for_rst(hw, vf))
7584                        igb_vf_reset_event(adapter, vf);
7585
7586                /* process any messages pending */
7587                if (!igb_check_for_msg(hw, vf))
7588                        igb_rcv_msg_from_vf(adapter, vf);
7589
7590                /* process any acks */
7591                if (!igb_check_for_ack(hw, vf))
7592                        igb_rcv_ack_from_vf(adapter, vf);
7593        }
7594}
7595
7596/**
7597 *  igb_set_uta - Set unicast filter table address
7598 *  @adapter: board private structure
7599 *  @set: boolean indicating if we are setting or clearing bits
7600 *
7601 *  The unicast table address is a register array of 32-bit registers.
7602 *  The table is meant to be used in a way similar to how the MTA is used
7603 *  however due to certain limitations in the hardware it is necessary to
7604 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7605 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
7606 **/
7607static void igb_set_uta(struct igb_adapter *adapter, bool set)
7608{
7609        struct e1000_hw *hw = &adapter->hw;
7610        u32 uta = set ? ~0 : 0;
7611        int i;
7612
7613        /* we only need to do this if VMDq is enabled */
7614        if (!adapter->vfs_allocated_count)
7615                return;
7616
7617        for (i = hw->mac.uta_reg_count; i--;)
7618                array_wr32(E1000_UTA, i, uta);
7619}
7620
7621/**
7622 *  igb_intr_msi - Interrupt Handler
7623 *  @irq: interrupt number
7624 *  @data: pointer to a network interface device structure
7625 **/
7626static irqreturn_t igb_intr_msi(int irq, void *data)
7627{
7628        struct igb_adapter *adapter = data;
7629        struct igb_q_vector *q_vector = adapter->q_vector[0];
7630        struct e1000_hw *hw = &adapter->hw;
7631        /* read ICR disables interrupts using IAM */
7632        u32 icr = rd32(E1000_ICR);
7633
7634        igb_write_itr(q_vector);
7635
7636        if (icr & E1000_ICR_DRSTA)
7637                schedule_work(&adapter->reset_task);
7638
7639        if (icr & E1000_ICR_DOUTSYNC) {
7640                /* HW is reporting DMA is out of sync */
7641                adapter->stats.doosync++;
7642        }
7643
7644        if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7645                hw->mac.get_link_status = 1;
7646                if (!test_bit(__IGB_DOWN, &adapter->state))
7647                        mod_timer(&adapter->watchdog_timer, jiffies + 1);
7648        }
7649
7650        if (icr & E1000_ICR_TS)
7651                igb_tsync_interrupt(adapter);
7652
7653        napi_schedule(&q_vector->napi);
7654
7655        return IRQ_HANDLED;
7656}
7657
7658/**
7659 *  igb_intr - Legacy Interrupt Handler
7660 *  @irq: interrupt number
7661 *  @data: pointer to a network interface device structure
7662 **/
7663static irqreturn_t igb_intr(int irq, void *data)
7664{
7665        struct igb_adapter *adapter = data;
7666        struct igb_q_vector *q_vector = adapter->q_vector[0];
7667        struct e1000_hw *hw = &adapter->hw;
7668        /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
7669         * need for the IMC write
7670         */
7671        u32 icr = rd32(E1000_ICR);
7672
7673        /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
7674         * not set, then the adapter didn't send an interrupt
7675         */
7676        if (!(icr & E1000_ICR_INT_ASSERTED))
7677                return IRQ_NONE;
7678
7679        igb_write_itr(q_vector);
7680
7681        if (icr & E1000_ICR_DRSTA)
7682                schedule_work(&adapter->reset_task);
7683
7684        if (icr & E1000_ICR_DOUTSYNC) {
7685                /* HW is reporting DMA is out of sync */
7686                adapter->stats.doosync++;
7687        }
7688
7689        if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7690                hw->mac.get_link_status = 1;
7691                /* guard against interrupt when we're going down */
7692                if (!test_bit(__IGB_DOWN, &adapter->state))
7693                        mod_timer(&adapter->watchdog_timer, jiffies + 1);
7694        }
7695
7696        if (icr & E1000_ICR_TS)
7697                igb_tsync_interrupt(adapter);
7698
7699        napi_schedule(&q_vector->napi);
7700
7701        return IRQ_HANDLED;
7702}
7703
7704static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
7705{
7706        struct igb_adapter *adapter = q_vector->adapter;
7707        struct e1000_hw *hw = &adapter->hw;
7708
7709        if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
7710            (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
7711                if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
7712                        igb_set_itr(q_vector);
7713                else
7714                        igb_update_ring_itr(q_vector);
7715        }
7716
7717        if (!test_bit(__IGB_DOWN, &adapter->state)) {
7718                if (adapter->flags & IGB_FLAG_HAS_MSIX)
7719                        wr32(E1000_EIMS, q_vector->eims_value);
7720                else
7721                        igb_irq_enable(adapter);
7722        }
7723}
7724
7725/**
7726 *  igb_poll - NAPI Rx polling callback
7727 *  @napi: napi polling structure
7728 *  @budget: count of how many packets we should handle
7729 **/
7730static int igb_poll(struct napi_struct *napi, int budget)
7731{
7732        struct igb_q_vector *q_vector = container_of(napi,
7733                                                     struct igb_q_vector,
7734                                                     napi);
7735        bool clean_complete = true;
7736        int work_done = 0;
7737
7738#ifdef CONFIG_IGB_DCA
7739        if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
7740                igb_update_dca(q_vector);
7741#endif
7742        if (q_vector->tx.ring)
7743                clean_complete = igb_clean_tx_irq(q_vector, budget);
7744
7745        if (q_vector->rx.ring) {
7746                int cleaned = igb_clean_rx_irq(q_vector, budget);
7747
7748                work_done += cleaned;
7749                if (cleaned >= budget)
7750                        clean_complete = false;
7751        }
7752
7753        /* If all work not completed, return budget and keep polling */
7754        if (!clean_complete)
7755                return budget;
7756
7757        /* Exit the polling mode, but don't re-enable interrupts if stack might
7758         * poll us due to busy-polling
7759         */
7760        if (likely(napi_complete_done(napi, work_done)))
7761                igb_ring_irq_enable(q_vector);
7762
7763        return min(work_done, budget - 1);
7764}
7765
7766/**
7767 *  igb_clean_tx_irq - Reclaim resources after transmit completes
7768 *  @q_vector: pointer to q_vector containing needed info
7769 *  @napi_budget: Used to determine if we are in netpoll
7770 *
7771 *  returns true if ring is completely cleaned
7772 **/
7773static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
7774{
7775        struct igb_adapter *adapter = q_vector->adapter;
7776        struct igb_ring *tx_ring = q_vector->tx.ring;
7777        struct igb_tx_buffer *tx_buffer;
7778        union e1000_adv_tx_desc *tx_desc;
7779        unsigned int total_bytes = 0, total_packets = 0;
7780        unsigned int budget = q_vector->tx.work_limit;
7781        unsigned int i = tx_ring->next_to_clean;
7782
7783        if (test_bit(__IGB_DOWN, &adapter->state))
7784                return true;
7785
7786        tx_buffer = &tx_ring->tx_buffer_info[i];
7787        tx_desc = IGB_TX_DESC(tx_ring, i);
7788        i -= tx_ring->count;
7789
7790        do {
7791                union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
7792
7793                /* if next_to_watch is not set then there is no work pending */
7794                if (!eop_desc)
7795                        break;
7796
7797                /* prevent any other reads prior to eop_desc */
7798                smp_rmb();
7799
7800                /* if DD is not set pending work has not been completed */
7801                if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
7802                        break;
7803
7804                /* clear next_to_watch to prevent false hangs */
7805                tx_buffer->next_to_watch = NULL;
7806
7807                /* update the statistics for this packet */
7808                total_bytes += tx_buffer->bytecount;
7809                total_packets += tx_buffer->gso_segs;
7810
7811                /* free the skb */
7812                napi_consume_skb(tx_buffer->skb, napi_budget);
7813
7814                /* unmap skb header data */
7815                dma_unmap_single(tx_ring->dev,
7816                                 dma_unmap_addr(tx_buffer, dma),
7817                                 dma_unmap_len(tx_buffer, len),
7818                                 DMA_TO_DEVICE);
7819
7820                /* clear tx_buffer data */
7821                dma_unmap_len_set(tx_buffer, len, 0);
7822
7823                /* clear last DMA location and unmap remaining buffers */
7824                while (tx_desc != eop_desc) {
7825                        tx_buffer++;
7826                        tx_desc++;
7827                        i++;
7828                        if (unlikely(!i)) {
7829                                i -= tx_ring->count;
7830                                tx_buffer = tx_ring->tx_buffer_info;
7831                                tx_desc = IGB_TX_DESC(tx_ring, 0);
7832                        }
7833
7834                        /* unmap any remaining paged data */
7835                        if (dma_unmap_len(tx_buffer, len)) {
7836                                dma_unmap_page(tx_ring->dev,
7837                                               dma_unmap_addr(tx_buffer, dma),
7838                                               dma_unmap_len(tx_buffer, len),
7839                                               DMA_TO_DEVICE);
7840                                dma_unmap_len_set(tx_buffer, len, 0);
7841                        }
7842                }
7843
7844                /* move us one more past the eop_desc for start of next pkt */
7845                tx_buffer++;
7846                tx_desc++;
7847                i++;
7848                if (unlikely(!i)) {
7849                        i -= tx_ring->count;
7850                        tx_buffer = tx_ring->tx_buffer_info;
7851                        tx_desc = IGB_TX_DESC(tx_ring, 0);
7852                }
7853
7854                /* issue prefetch for next Tx descriptor */
7855                prefetch(tx_desc);
7856
7857                /* update budget accounting */
7858                budget--;
7859        } while (likely(budget));
7860
7861        netdev_tx_completed_queue(txring_txq(tx_ring),
7862                                  total_packets, total_bytes);
7863        i += tx_ring->count;
7864        tx_ring->next_to_clean = i;
7865        u64_stats_update_begin(&tx_ring->tx_syncp);
7866        tx_ring->tx_stats.bytes += total_bytes;
7867        tx_ring->tx_stats.packets += total_packets;
7868        u64_stats_update_end(&tx_ring->tx_syncp);
7869        q_vector->tx.total_bytes += total_bytes;
7870        q_vector->tx.total_packets += total_packets;
7871
7872        if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
7873                struct e1000_hw *hw = &adapter->hw;
7874
7875                /* Detect a transmit hang in hardware, this serializes the
7876                 * check with the clearing of time_stamp and movement of i
7877                 */
7878                clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
7879                if (tx_buffer->next_to_watch &&
7880                    time_after(jiffies, tx_buffer->time_stamp +
7881                               (adapter->tx_timeout_factor * HZ)) &&
7882                    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
7883
7884                        /* detected Tx unit hang */
7885                        dev_err(tx_ring->dev,
7886                                "Detected Tx Unit Hang\n"
7887                                "  Tx Queue             <%d>\n"
7888                                "  TDH                  <%x>\n"
7889                                "  TDT                  <%x>\n"
7890                                "  next_to_use          <%x>\n"
7891                                "  next_to_clean        <%x>\n"
7892                                "buffer_info[next_to_clean]\n"
7893                                "  time_stamp           <%lx>\n"
7894                                "  next_to_watch        <%p>\n"
7895                                "  jiffies              <%lx>\n"
7896                                "  desc.status          <%x>\n",
7897                                tx_ring->queue_index,
7898                                rd32(E1000_TDH(tx_ring->reg_idx)),
7899                                readl(tx_ring->tail),
7900                                tx_ring->next_to_use,
7901                                tx_ring->next_to_clean,
7902                                tx_buffer->time_stamp,
7903                                tx_buffer->next_to_watch,
7904                                jiffies,
7905                                tx_buffer->next_to_watch->wb.status);
7906                        netif_stop_subqueue(tx_ring->netdev,
7907                                            tx_ring->queue_index);
7908
7909                        /* we are about to reset, no point in enabling stuff */
7910                        return true;
7911                }
7912        }
7913
7914#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
7915        if (unlikely(total_packets &&
7916            netif_carrier_ok(tx_ring->netdev) &&
7917            igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
7918                /* Make sure that anybody stopping the queue after this
7919                 * sees the new next_to_clean.
7920                 */
7921                smp_mb();
7922                if (__netif_subqueue_stopped(tx_ring->netdev,
7923                                             tx_ring->queue_index) &&
7924                    !(test_bit(__IGB_DOWN, &adapter->state))) {
7925                        netif_wake_subqueue(tx_ring->netdev,
7926                                            tx_ring->queue_index);
7927
7928                        u64_stats_update_begin(&tx_ring->tx_syncp);
7929                        tx_ring->tx_stats.restart_queue++;
7930                        u64_stats_update_end(&tx_ring->tx_syncp);
7931                }
7932        }
7933
7934        return !!budget;
7935}
7936
7937/**
7938 *  igb_reuse_rx_page - page flip buffer and store it back on the ring
7939 *  @rx_ring: rx descriptor ring to store buffers on
7940 *  @old_buff: donor buffer to have page reused
7941 *
7942 *  Synchronizes page for reuse by the adapter
7943 **/
7944static void igb_reuse_rx_page(struct igb_ring *rx_ring,
7945                              struct igb_rx_buffer *old_buff)
7946{
7947        struct igb_rx_buffer *new_buff;
7948        u16 nta = rx_ring->next_to_alloc;
7949
7950        new_buff = &rx_ring->rx_buffer_info[nta];
7951
7952        /* update, and store next to alloc */
7953        nta++;
7954        rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
7955
7956        /* Transfer page from old buffer to new buffer.
7957         * Move each member individually to avoid possible store
7958         * forwarding stalls.
7959         */
7960        new_buff->dma           = old_buff->dma;
7961        new_buff->page          = old_buff->page;
7962        new_buff->page_offset   = old_buff->page_offset;
7963        new_buff->pagecnt_bias  = old_buff->pagecnt_bias;
7964}
7965
7966static inline bool igb_page_is_reserved(struct page *page)
7967{
7968        return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
7969}
7970
7971static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer)
7972{
7973        unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
7974        struct page *page = rx_buffer->page;
7975
7976        /* avoid re-using remote pages */
7977        if (unlikely(igb_page_is_reserved(page)))
7978                return false;
7979
7980#if (PAGE_SIZE < 8192)
7981        /* if we are only owner of page we can reuse it */
7982        if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
7983                return false;
7984#else
7985#define IGB_LAST_OFFSET \
7986        (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
7987
7988        if (rx_buffer->page_offset > IGB_LAST_OFFSET)
7989                return false;
7990#endif
7991
7992        /* If we have drained the page fragment pool we need to update
7993         * the pagecnt_bias and page count so that we fully restock the
7994         * number of references the driver holds.
7995         */
7996        if (unlikely(!pagecnt_bias)) {
7997                page_ref_add(page, USHRT_MAX);
7998                rx_buffer->pagecnt_bias = USHRT_MAX;
7999        }
8000
8001        return true;
8002}
8003
8004/**
8005 *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8006 *  @rx_ring: rx descriptor ring to transact packets on
8007 *  @rx_buffer: buffer containing page to add
8008 *  @skb: sk_buff to place the data into
8009 *  @size: size of buffer to be added
8010 *
8011 *  This function will add the data contained in rx_buffer->page to the skb.
8012 **/
8013static void igb_add_rx_frag(struct igb_ring *rx_ring,
8014                            struct igb_rx_buffer *rx_buffer,
8015                            struct sk_buff *skb,
8016                            unsigned int size)
8017{
8018#if (PAGE_SIZE < 8192)
8019        unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8020#else
8021        unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8022                                SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8023                                SKB_DATA_ALIGN(size);
8024#endif
8025        skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8026                        rx_buffer->page_offset, size, truesize);
8027#if (PAGE_SIZE < 8192)
8028        rx_buffer->page_offset ^= truesize;
8029#else
8030        rx_buffer->page_offset += truesize;
8031#endif
8032}
8033
8034static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8035                                         struct igb_rx_buffer *rx_buffer,
8036                                         union e1000_adv_rx_desc *rx_desc,
8037                                         unsigned int size)
8038{
8039        void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
8040#if (PAGE_SIZE < 8192)
8041        unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8042#else
8043        unsigned int truesize = SKB_DATA_ALIGN(size);
8044#endif
8045        unsigned int headlen;
8046        struct sk_buff *skb;
8047
8048        /* prefetch first cache line of first page */
8049        prefetch(va);
8050#if L1_CACHE_BYTES < 128
8051        prefetch(va + L1_CACHE_BYTES);
8052#endif
8053
8054        /* allocate a skb to store the frags */
8055        skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8056        if (unlikely(!skb))
8057                return NULL;
8058
8059        if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
8060                igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
8061                va += IGB_TS_HDR_LEN;
8062                size -= IGB_TS_HDR_LEN;
8063        }
8064
8065        /* Determine available headroom for copy */
8066        headlen = size;
8067        if (headlen > IGB_RX_HDR_LEN)
8068                headlen = eth_get_headlen(skb->dev, va, IGB_RX_HDR_LEN);
8069
8070        /* align pull length to size of long to optimize memcpy performance */
8071        memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
8072
8073        /* update all of the pointers */
8074        size -= headlen;
8075        if (size) {
8076                skb_add_rx_frag(skb, 0, rx_buffer->page,
8077                                (va + headlen) - page_address(rx_buffer->page),
8078                                size, truesize);
8079#if (PAGE_SIZE < 8192)
8080                rx_buffer->page_offset ^= truesize;
8081#else
8082                rx_buffer->page_offset += truesize;
8083#endif
8084        } else {
8085                rx_buffer->pagecnt_bias++;
8086        }
8087
8088        return skb;
8089}
8090
8091static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8092                                     struct igb_rx_buffer *rx_buffer,
8093                                     union e1000_adv_rx_desc *rx_desc,
8094                                     unsigned int size)
8095{
8096        void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
8097#if (PAGE_SIZE < 8192)
8098        unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8099#else
8100        unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8101                                SKB_DATA_ALIGN(IGB_SKB_PAD + size);
8102#endif
8103        struct sk_buff *skb;
8104
8105        /* prefetch first cache line of first page */
8106        prefetch(va);
8107#if L1_CACHE_BYTES < 128
8108        prefetch(va + L1_CACHE_BYTES);
8109#endif
8110
8111        /* build an skb around the page buffer */
8112        skb = build_skb(va - IGB_SKB_PAD, truesize);
8113        if (unlikely(!skb))
8114                return NULL;
8115
8116        /* update pointers within the skb to store the data */
8117        skb_reserve(skb, IGB_SKB_PAD);
8118        __skb_put(skb, size);
8119
8120        /* pull timestamp out of packet data */
8121        if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8122                igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
8123                __skb_pull(skb, IGB_TS_HDR_LEN);
8124        }
8125
8126        /* update buffer offset */
8127#if (PAGE_SIZE < 8192)
8128        rx_buffer->page_offset ^= truesize;
8129#else
8130        rx_buffer->page_offset += truesize;
8131#endif
8132
8133        return skb;
8134}
8135
8136static inline void igb_rx_checksum(struct igb_ring *ring,
8137                                   union e1000_adv_rx_desc *rx_desc,
8138                                   struct sk_buff *skb)
8139{
8140        skb_checksum_none_assert(skb);
8141
8142        /* Ignore Checksum bit is set */
8143        if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8144                return;
8145
8146        /* Rx checksum disabled via ethtool */
8147        if (!(ring->netdev->features & NETIF_F_RXCSUM))
8148                return;
8149
8150        /* TCP/UDP checksum error bit is set */
8151        if (igb_test_staterr(rx_desc,
8152                             E1000_RXDEXT_STATERR_TCPE |
8153                             E1000_RXDEXT_STATERR_IPE)) {
8154                /* work around errata with sctp packets where the TCPE aka
8155                 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8156                 * packets, (aka let the stack check the crc32c)
8157                 */
8158                if (!((skb->len == 60) &&
8159                      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8160                        u64_stats_update_begin(&ring->rx_syncp);
8161                        ring->rx_stats.csum_err++;
8162                        u64_stats_update_end(&ring->rx_syncp);
8163                }
8164                /* let the stack verify checksum errors */
8165                return;
8166        }
8167        /* It must be a TCP or UDP packet with a valid checksum */
8168        if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8169                                      E1000_RXD_STAT_UDPCS))
8170                skb->ip_summed = CHECKSUM_UNNECESSARY;
8171
8172        dev_dbg(ring->dev, "cksum success: bits %08X\n",
8173                le32_to_cpu(rx_desc->wb.upper.status_error));
8174}
8175
8176static inline void igb_rx_hash(struct igb_ring *ring,
8177                               union e1000_adv_rx_desc *rx_desc,
8178                               struct sk_buff *skb)
8179{
8180        if (ring->netdev->features & NETIF_F_RXHASH)
8181                skb_set_hash(skb,
8182                             le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8183                             PKT_HASH_TYPE_L3);
8184}
8185
8186/**
8187 *  igb_is_non_eop - process handling of non-EOP buffers
8188 *  @rx_ring: Rx ring being processed
8189 *  @rx_desc: Rx descriptor for current buffer
8190 *  @skb: current socket buffer containing buffer in progress
8191 *
8192 *  This function updates next to clean.  If the buffer is an EOP buffer
8193 *  this function exits returning false, otherwise it will place the
8194 *  sk_buff in the next buffer to be chained and return true indicating
8195 *  that this is in fact a non-EOP buffer.
8196 **/
8197static bool igb_is_non_eop(struct igb_ring *rx_ring,
8198                           union e1000_adv_rx_desc *rx_desc)
8199{
8200        u32 ntc = rx_ring->next_to_clean + 1;
8201
8202        /* fetch, update, and store next to clean */
8203        ntc = (ntc < rx_ring->count) ? ntc : 0;
8204        rx_ring->next_to_clean = ntc;
8205
8206        prefetch(IGB_RX_DESC(rx_ring, ntc));
8207
8208        if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8209                return false;
8210
8211        return true;
8212}
8213
8214/**
8215 *  igb_cleanup_headers - Correct corrupted or empty headers
8216 *  @rx_ring: rx descriptor ring packet is being transacted on
8217 *  @rx_desc: pointer to the EOP Rx descriptor
8218 *  @skb: pointer to current skb being fixed
8219 *
8220 *  Address the case where we are pulling data in on pages only
8221 *  and as such no data is present in the skb header.
8222 *
8223 *  In addition if skb is not at least 60 bytes we need to pad it so that
8224 *  it is large enough to qualify as a valid Ethernet frame.
8225 *
8226 *  Returns true if an error was encountered and skb was freed.
8227 **/
8228static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8229                                union e1000_adv_rx_desc *rx_desc,
8230                                struct sk_buff *skb)
8231{
8232        if (unlikely((igb_test_staterr(rx_desc,
8233                                       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8234                struct net_device *netdev = rx_ring->netdev;
8235                if (!(netdev->features & NETIF_F_RXALL)) {
8236                        dev_kfree_skb_any(skb);
8237                        return true;
8238                }
8239        }
8240
8241        /* if eth_skb_pad returns an error the skb was freed */
8242        if (eth_skb_pad(skb))
8243                return true;
8244
8245        return false;
8246}
8247
8248/**
8249 *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
8250 *  @rx_ring: rx descriptor ring packet is being transacted on
8251 *  @rx_desc: pointer to the EOP Rx descriptor
8252 *  @skb: pointer to current skb being populated
8253 *
8254 *  This function checks the ring, descriptor, and packet information in
8255 *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
8256 *  other fields within the skb.
8257 **/
8258static void igb_process_skb_fields(struct igb_ring *rx_ring,
8259                                   union e1000_adv_rx_desc *rx_desc,
8260                                   struct sk_buff *skb)
8261{
8262        struct net_device *dev = rx_ring->netdev;
8263
8264        igb_rx_hash(rx_ring, rx_desc, skb);
8265
8266        igb_rx_checksum(rx_ring, rx_desc, skb);
8267
8268        if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8269            !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8270                igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8271
8272        if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8273            igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8274                u16 vid;
8275
8276                if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8277                    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8278                        vid = be16_to_cpu(rx_desc->wb.upper.vlan);
8279                else
8280                        vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8281
8282                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8283        }
8284
8285        skb_record_rx_queue(skb, rx_ring->queue_index);
8286
8287        skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8288}
8289
8290static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8291                                               const unsigned int size)
8292{
8293        struct igb_rx_buffer *rx_buffer;
8294
8295        rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8296        prefetchw(rx_buffer->page);
8297
8298        /* we are reusing so sync this buffer for CPU use */
8299        dma_sync_single_range_for_cpu(rx_ring->dev,
8300                                      rx_buffer->dma,
8301                                      rx_buffer->page_offset,
8302                                      size,
8303                                      DMA_FROM_DEVICE);
8304
8305        rx_buffer->pagecnt_bias--;
8306
8307        return rx_buffer;
8308}
8309
8310static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8311                              struct igb_rx_buffer *rx_buffer)
8312{
8313        if (igb_can_reuse_rx_page(rx_buffer)) {
8314                /* hand second half of page back to the ring */
8315                igb_reuse_rx_page(rx_ring, rx_buffer);
8316        } else {
8317                /* We are not reusing the buffer so unmap it and free
8318                 * any references we are holding to it
8319                 */
8320                dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8321                                     igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8322                                     IGB_RX_DMA_ATTR);
8323                __page_frag_cache_drain(rx_buffer->page,
8324                                        rx_buffer->pagecnt_bias);
8325        }
8326
8327        /* clear contents of rx_buffer */
8328        rx_buffer->page = NULL;
8329}
8330
8331static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8332{
8333        struct igb_ring *rx_ring = q_vector->rx.ring;
8334        struct sk_buff *skb = rx_ring->skb;
8335        unsigned int total_bytes = 0, total_packets = 0;
8336        u16 cleaned_count = igb_desc_unused(rx_ring);
8337
8338        while (likely(total_packets < budget)) {
8339                union e1000_adv_rx_desc *rx_desc;
8340                struct igb_rx_buffer *rx_buffer;
8341                unsigned int size;
8342
8343                /* return some buffers to hardware, one at a time is too slow */
8344                if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8345                        igb_alloc_rx_buffers(rx_ring, cleaned_count);
8346                        cleaned_count = 0;
8347                }
8348
8349                rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8350                size = le16_to_cpu(rx_desc->wb.upper.length);
8351                if (!size)
8352                        break;
8353
8354                /* This memory barrier is needed to keep us from reading
8355                 * any other fields out of the rx_desc until we know the
8356                 * descriptor has been written back
8357                 */
8358                dma_rmb();
8359
8360                rx_buffer = igb_get_rx_buffer(rx_ring, size);
8361
8362                /* retrieve a buffer from the ring */
8363                if (skb)
8364                        igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8365                else if (ring_uses_build_skb(rx_ring))
8366                        skb = igb_build_skb(rx_ring, rx_buffer, rx_desc, size);
8367                else
8368                        skb = igb_construct_skb(rx_ring, rx_buffer,
8369                                                rx_desc, size);
8370
8371                /* exit if we failed to retrieve a buffer */
8372                if (!skb) {
8373                        rx_ring->rx_stats.alloc_failed++;
8374                        rx_buffer->pagecnt_bias++;
8375                        break;
8376                }
8377
8378                igb_put_rx_buffer(rx_ring, rx_buffer);
8379                cleaned_count++;
8380
8381                /* fetch next buffer in frame if non-eop */
8382                if (igb_is_non_eop(rx_ring, rx_desc))
8383                        continue;
8384
8385                /* verify the packet layout is correct */
8386                if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8387                        skb = NULL;
8388                        continue;
8389                }
8390
8391                /* probably a little skewed due to removing CRC */
8392                total_bytes += skb->len;
8393
8394                /* populate checksum, timestamp, VLAN, and protocol */
8395                igb_process_skb_fields(rx_ring, rx_desc, skb);
8396
8397                napi_gro_receive(&q_vector->napi, skb);
8398
8399                /* reset skb pointer */
8400                skb = NULL;
8401
8402                /* update budget accounting */
8403                total_packets++;
8404        }
8405
8406        /* place incomplete frames back on ring for completion */
8407        rx_ring->skb = skb;
8408
8409        u64_stats_update_begin(&rx_ring->rx_syncp);
8410        rx_ring->rx_stats.packets += total_packets;
8411        rx_ring->rx_stats.bytes += total_bytes;
8412        u64_stats_update_end(&rx_ring->rx_syncp);
8413        q_vector->rx.total_packets += total_packets;
8414        q_vector->rx.total_bytes += total_bytes;
8415
8416        if (cleaned_count)
8417                igb_alloc_rx_buffers(rx_ring, cleaned_count);
8418
8419        return total_packets;
8420}
8421
8422static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8423{
8424        return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8425}
8426
8427static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8428                                  struct igb_rx_buffer *bi)
8429{
8430        struct page *page = bi->page;
8431        dma_addr_t dma;
8432
8433        /* since we are recycling buffers we should seldom need to alloc */
8434        if (likely(page))
8435                return true;
8436
8437        /* alloc new page for storage */
8438        page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8439        if (unlikely(!page)) {
8440                rx_ring->rx_stats.alloc_failed++;
8441                return false;
8442        }
8443
8444        /* map page for use */
8445        dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8446                                 igb_rx_pg_size(rx_ring),
8447                                 DMA_FROM_DEVICE,
8448                                 IGB_RX_DMA_ATTR);
8449
8450        /* if mapping failed free memory back to system since
8451         * there isn't much point in holding memory we can't use
8452         */
8453        if (dma_mapping_error(rx_ring->dev, dma)) {
8454                __free_pages(page, igb_rx_pg_order(rx_ring));
8455
8456                rx_ring->rx_stats.alloc_failed++;
8457                return false;
8458        }
8459
8460        bi->dma = dma;
8461        bi->page = page;
8462        bi->page_offset = igb_rx_offset(rx_ring);
8463        bi->pagecnt_bias = 1;
8464
8465        return true;
8466}
8467
8468/**
8469 *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
8470 *  @adapter: address of board private structure
8471 **/
8472void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
8473{
8474        union e1000_adv_rx_desc *rx_desc;
8475        struct igb_rx_buffer *bi;
8476        u16 i = rx_ring->next_to_use;
8477        u16 bufsz;
8478
8479        /* nothing to do */
8480        if (!cleaned_count)
8481                return;
8482
8483        rx_desc = IGB_RX_DESC(rx_ring, i);
8484        bi = &rx_ring->rx_buffer_info[i];
8485        i -= rx_ring->count;
8486
8487        bufsz = igb_rx_bufsz(rx_ring);
8488
8489        do {
8490                if (!igb_alloc_mapped_page(rx_ring, bi))
8491                        break;
8492
8493                /* sync the buffer for use by the device */
8494                dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
8495                                                 bi->page_offset, bufsz,
8496                                                 DMA_FROM_DEVICE);
8497
8498                /* Refresh the desc even if buffer_addrs didn't change
8499                 * because each write-back erases this info.
8500                 */
8501                rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
8502
8503                rx_desc++;
8504                bi++;
8505                i++;
8506                if (unlikely(!i)) {
8507                        rx_desc = IGB_RX_DESC(rx_ring, 0);
8508                        bi = rx_ring->rx_buffer_info;
8509                        i -= rx_ring->count;
8510                }
8511
8512                /* clear the length for the next_to_use descriptor */
8513                rx_desc->wb.upper.length = 0;
8514
8515                cleaned_count--;
8516        } while (cleaned_count);
8517
8518        i += rx_ring->count;
8519
8520        if (rx_ring->next_to_use != i) {
8521                /* record the next descriptor to use */
8522                rx_ring->next_to_use = i;
8523
8524                /* update next to alloc since we have filled the ring */
8525                rx_ring->next_to_alloc = i;
8526
8527                /* Force memory writes to complete before letting h/w
8528                 * know there are new descriptors to fetch.  (Only
8529                 * applicable for weak-ordered memory model archs,
8530                 * such as IA-64).
8531                 */
8532                dma_wmb();
8533                writel(i, rx_ring->tail);
8534        }
8535}
8536
8537/**
8538 * igb_mii_ioctl -
8539 * @netdev:
8540 * @ifreq:
8541 * @cmd:
8542 **/
8543static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8544{
8545        struct igb_adapter *adapter = netdev_priv(netdev);
8546        struct mii_ioctl_data *data = if_mii(ifr);
8547
8548        if (adapter->hw.phy.media_type != e1000_media_type_copper)
8549                return -EOPNOTSUPP;
8550
8551        switch (cmd) {
8552        case SIOCGMIIPHY:
8553                data->phy_id = adapter->hw.phy.addr;
8554                break;
8555        case SIOCGMIIREG:
8556                if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
8557                                     &data->val_out))
8558                        return -EIO;
8559                break;
8560        case SIOCSMIIREG:
8561        default:
8562                return -EOPNOTSUPP;
8563        }
8564        return 0;
8565}
8566
8567/**
8568 * igb_ioctl -
8569 * @netdev:
8570 * @ifreq:
8571 * @cmd:
8572 **/
8573static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8574{
8575        switch (cmd) {
8576        case SIOCGMIIPHY:
8577        case SIOCGMIIREG:
8578        case SIOCSMIIREG:
8579                return igb_mii_ioctl(netdev, ifr, cmd);
8580        case SIOCGHWTSTAMP:
8581                return igb_ptp_get_ts_config(netdev, ifr);
8582        case SIOCSHWTSTAMP:
8583                return igb_ptp_set_ts_config(netdev, ifr);
8584        default:
8585                return -EOPNOTSUPP;
8586        }
8587}
8588
8589void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8590{
8591        struct igb_adapter *adapter = hw->back;
8592
8593        pci_read_config_word(adapter->pdev, reg, value);
8594}
8595
8596void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8597{
8598        struct igb_adapter *adapter = hw->back;
8599
8600        pci_write_config_word(adapter->pdev, reg, *value);
8601}
8602
8603s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8604{
8605        struct igb_adapter *adapter = hw->back;
8606
8607        if (pcie_capability_read_word(adapter->pdev, reg, value))
8608                return -E1000_ERR_CONFIG;
8609
8610        return 0;
8611}
8612
8613s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8614{
8615        struct igb_adapter *adapter = hw->back;
8616
8617        if (pcie_capability_write_word(adapter->pdev, reg, *value))
8618                return -E1000_ERR_CONFIG;
8619
8620        return 0;
8621}
8622
8623static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
8624{
8625        struct igb_adapter *adapter = netdev_priv(netdev);
8626        struct e1000_hw *hw = &adapter->hw;
8627        u32 ctrl, rctl;
8628        bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
8629
8630        if (enable) {
8631                /* enable VLAN tag insert/strip */
8632                ctrl = rd32(E1000_CTRL);
8633                ctrl |= E1000_CTRL_VME;
8634                wr32(E1000_CTRL, ctrl);
8635
8636                /* Disable CFI check */
8637                rctl = rd32(E1000_RCTL);
8638                rctl &= ~E1000_RCTL_CFIEN;
8639                wr32(E1000_RCTL, rctl);
8640        } else {
8641                /* disable VLAN tag insert/strip */
8642                ctrl = rd32(E1000_CTRL);
8643                ctrl &= ~E1000_CTRL_VME;
8644                wr32(E1000_CTRL, ctrl);
8645        }
8646
8647        igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
8648}
8649
8650static int igb_vlan_rx_add_vid(struct net_device *netdev,
8651                               __be16 proto, u16 vid)
8652{
8653        struct igb_adapter *adapter = netdev_priv(netdev);
8654        struct e1000_hw *hw = &adapter->hw;
8655        int pf_id = adapter->vfs_allocated_count;
8656
8657        /* add the filter since PF can receive vlans w/o entry in vlvf */
8658        if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8659                igb_vfta_set(hw, vid, pf_id, true, !!vid);
8660
8661        set_bit(vid, adapter->active_vlans);
8662
8663        return 0;
8664}
8665
8666static int igb_vlan_rx_kill_vid(struct net_device *netdev,
8667                                __be16 proto, u16 vid)
8668{
8669        struct igb_adapter *adapter = netdev_priv(netdev);
8670        int pf_id = adapter->vfs_allocated_count;
8671        struct e1000_hw *hw = &adapter->hw;
8672
8673        /* remove VID from filter table */
8674        if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8675                igb_vfta_set(hw, vid, pf_id, false, true);
8676
8677        clear_bit(vid, adapter->active_vlans);
8678
8679        return 0;
8680}
8681
8682static void igb_restore_vlan(struct igb_adapter *adapter)
8683{
8684        u16 vid = 1;
8685
8686        igb_vlan_mode(adapter->netdev, adapter->netdev->features);
8687        igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
8688
8689        for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
8690                igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
8691}
8692
8693int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
8694{
8695        struct pci_dev *pdev = adapter->pdev;
8696        struct e1000_mac_info *mac = &adapter->hw.mac;
8697
8698        mac->autoneg = 0;
8699
8700        /* Make sure dplx is at most 1 bit and lsb of speed is not set
8701         * for the switch() below to work
8702         */
8703        if ((spd & 1) || (dplx & ~1))
8704                goto err_inval;
8705
8706        /* Fiber NIC's only allow 1000 gbps Full duplex
8707         * and 100Mbps Full duplex for 100baseFx sfp
8708         */
8709        if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
8710                switch (spd + dplx) {
8711                case SPEED_10 + DUPLEX_HALF:
8712                case SPEED_10 + DUPLEX_FULL:
8713                case SPEED_100 + DUPLEX_HALF:
8714                        goto err_inval;
8715                default:
8716                        break;
8717                }
8718        }
8719
8720        switch (spd + dplx) {
8721        case SPEED_10 + DUPLEX_HALF:
8722                mac->forced_speed_duplex = ADVERTISE_10_HALF;
8723                break;
8724        case SPEED_10 + DUPLEX_FULL:
8725                mac->forced_speed_duplex = ADVERTISE_10_FULL;
8726                break;
8727        case SPEED_100 + DUPLEX_HALF:
8728                mac->forced_speed_duplex = ADVERTISE_100_HALF;
8729                break;
8730        case SPEED_100 + DUPLEX_FULL:
8731                mac->forced_speed_duplex = ADVERTISE_100_FULL;
8732                break;
8733        case SPEED_1000 + DUPLEX_FULL:
8734                mac->autoneg = 1;
8735                adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
8736                break;
8737        case SPEED_1000 + DUPLEX_HALF: /* not supported */
8738        default:
8739                goto err_inval;
8740        }
8741
8742        /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
8743        adapter->hw.phy.mdix = AUTO_ALL_MODES;
8744
8745        return 0;
8746
8747err_inval:
8748        dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
8749        return -EINVAL;
8750}
8751
8752static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
8753                          bool runtime)
8754{
8755        struct net_device *netdev = pci_get_drvdata(pdev);
8756        struct igb_adapter *adapter = netdev_priv(netdev);
8757        struct e1000_hw *hw = &adapter->hw;
8758        u32 ctrl, rctl, status;
8759        u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
8760        bool wake;
8761
8762        rtnl_lock();
8763        netif_device_detach(netdev);
8764
8765        if (netif_running(netdev))
8766                __igb_close(netdev, true);
8767
8768        igb_ptp_suspend(adapter);
8769
8770        igb_clear_interrupt_scheme(adapter);
8771        rtnl_unlock();
8772
8773        status = rd32(E1000_STATUS);
8774        if (status & E1000_STATUS_LU)
8775                wufc &= ~E1000_WUFC_LNKC;
8776
8777        if (wufc) {
8778                igb_setup_rctl(adapter);
8779                igb_set_rx_mode(netdev);
8780
8781                /* turn on all-multi mode if wake on multicast is enabled */
8782                if (wufc & E1000_WUFC_MC) {
8783                        rctl = rd32(E1000_RCTL);
8784                        rctl |= E1000_RCTL_MPE;
8785                        wr32(E1000_RCTL, rctl);
8786                }
8787
8788                ctrl = rd32(E1000_CTRL);
8789                ctrl |= E1000_CTRL_ADVD3WUC;
8790                wr32(E1000_CTRL, ctrl);
8791
8792                /* Allow time for pending master requests to run */
8793                igb_disable_pcie_master(hw);
8794
8795                wr32(E1000_WUC, E1000_WUC_PME_EN);
8796                wr32(E1000_WUFC, wufc);
8797        } else {
8798                wr32(E1000_WUC, 0);
8799                wr32(E1000_WUFC, 0);
8800        }
8801
8802        wake = wufc || adapter->en_mng_pt;
8803        if (!wake)
8804                igb_power_down_link(adapter);
8805        else
8806                igb_power_up_link(adapter);
8807
8808        if (enable_wake)
8809                *enable_wake = wake;
8810
8811        /* Release control of h/w to f/w.  If f/w is AMT enabled, this
8812         * would have already happened in close and is redundant.
8813         */
8814        igb_release_hw_control(adapter);
8815
8816        pci_disable_device(pdev);
8817
8818        return 0;
8819}
8820
8821static void igb_deliver_wake_packet(struct net_device *netdev)
8822{
8823        struct igb_adapter *adapter = netdev_priv(netdev);
8824        struct e1000_hw *hw = &adapter->hw;
8825        struct sk_buff *skb;
8826        u32 wupl;
8827
8828        wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
8829
8830        /* WUPM stores only the first 128 bytes of the wake packet.
8831         * Read the packet only if we have the whole thing.
8832         */
8833        if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
8834                return;
8835
8836        skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
8837        if (!skb)
8838                return;
8839
8840        skb_put(skb, wupl);
8841
8842        /* Ensure reads are 32-bit aligned */
8843        wupl = roundup(wupl, 4);
8844
8845        memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
8846
8847        skb->protocol = eth_type_trans(skb, netdev);
8848        netif_rx(skb);
8849}
8850
8851static int __maybe_unused igb_suspend(struct device *dev)
8852{
8853        return __igb_shutdown(to_pci_dev(dev), NULL, 0);
8854}
8855
8856static int __maybe_unused igb_resume(struct device *dev)
8857{
8858        struct pci_dev *pdev = to_pci_dev(dev);
8859        struct net_device *netdev = pci_get_drvdata(pdev);
8860        struct igb_adapter *adapter = netdev_priv(netdev);
8861        struct e1000_hw *hw = &adapter->hw;
8862        u32 err, val;
8863
8864        pci_set_power_state(pdev, PCI_D0);
8865        pci_restore_state(pdev);
8866        pci_save_state(pdev);
8867
8868        if (!pci_device_is_present(pdev))
8869                return -ENODEV;
8870        err = pci_enable_device_mem(pdev);
8871        if (err) {
8872                dev_err(&pdev->dev,
8873                        "igb: Cannot enable PCI device from suspend\n");
8874                return err;
8875        }
8876        pci_set_master(pdev);
8877
8878        pci_enable_wake(pdev, PCI_D3hot, 0);
8879        pci_enable_wake(pdev, PCI_D3cold, 0);
8880
8881        if (igb_init_interrupt_scheme(adapter, true)) {
8882                dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8883                return -ENOMEM;
8884        }
8885
8886        igb_reset(adapter);
8887
8888        /* let the f/w know that the h/w is now under the control of the
8889         * driver.
8890         */
8891        igb_get_hw_control(adapter);
8892
8893        val = rd32(E1000_WUS);
8894        if (val & WAKE_PKT_WUS)
8895                igb_deliver_wake_packet(netdev);
8896
8897        wr32(E1000_WUS, ~0);
8898
8899        rtnl_lock();
8900        if (!err && netif_running(netdev))
8901                err = __igb_open(netdev, true);
8902
8903        if (!err)
8904                netif_device_attach(netdev);
8905        rtnl_unlock();
8906
8907        return err;
8908}
8909
8910static int __maybe_unused igb_runtime_idle(struct device *dev)
8911{
8912        struct net_device *netdev = dev_get_drvdata(dev);
8913        struct igb_adapter *adapter = netdev_priv(netdev);
8914
8915        if (!igb_has_link(adapter))
8916                pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
8917
8918        return -EBUSY;
8919}
8920
8921static int __maybe_unused igb_runtime_suspend(struct device *dev)
8922{
8923        return __igb_shutdown(to_pci_dev(dev), NULL, 1);
8924}
8925
8926static int __maybe_unused igb_runtime_resume(struct device *dev)
8927{
8928        return igb_resume(dev);
8929}
8930
8931static void igb_shutdown(struct pci_dev *pdev)
8932{
8933        bool wake;
8934
8935        __igb_shutdown(pdev, &wake, 0);
8936
8937        if (system_state == SYSTEM_POWER_OFF) {
8938                pci_wake_from_d3(pdev, wake);
8939                pci_set_power_state(pdev, PCI_D3hot);
8940        }
8941}
8942
8943#ifdef CONFIG_PCI_IOV
8944static int igb_sriov_reinit(struct pci_dev *dev)
8945{
8946        struct net_device *netdev = pci_get_drvdata(dev);
8947        struct igb_adapter *adapter = netdev_priv(netdev);
8948        struct pci_dev *pdev = adapter->pdev;
8949
8950        rtnl_lock();
8951
8952        if (netif_running(netdev))
8953                igb_close(netdev);
8954        else
8955                igb_reset(adapter);
8956
8957        igb_clear_interrupt_scheme(adapter);
8958
8959        igb_init_queue_configuration(adapter);
8960
8961        if (igb_init_interrupt_scheme(adapter, true)) {
8962                rtnl_unlock();
8963                dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8964                return -ENOMEM;
8965        }
8966
8967        if (netif_running(netdev))
8968                igb_open(netdev);
8969
8970        rtnl_unlock();
8971
8972        return 0;
8973}
8974
8975static int igb_pci_disable_sriov(struct pci_dev *dev)
8976{
8977        int err = igb_disable_sriov(dev);
8978
8979        if (!err)
8980                err = igb_sriov_reinit(dev);
8981
8982        return err;
8983}
8984
8985static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
8986{
8987        int err = igb_enable_sriov(dev, num_vfs);
8988
8989        if (err)
8990                goto out;
8991
8992        err = igb_sriov_reinit(dev);
8993        if (!err)
8994                return num_vfs;
8995
8996out:
8997        return err;
8998}
8999
9000#endif
9001static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9002{
9003#ifdef CONFIG_PCI_IOV
9004        if (num_vfs == 0)
9005                return igb_pci_disable_sriov(dev);
9006        else
9007                return igb_pci_enable_sriov(dev, num_vfs);
9008#endif
9009        return 0;
9010}
9011
9012/**
9013 *  igb_io_error_detected - called when PCI error is detected
9014 *  @pdev: Pointer to PCI device
9015 *  @state: The current pci connection state
9016 *
9017 *  This function is called after a PCI bus error affecting
9018 *  this device has been detected.
9019 **/
9020static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9021                                              pci_channel_state_t state)
9022{
9023        struct net_device *netdev = pci_get_drvdata(pdev);
9024        struct igb_adapter *adapter = netdev_priv(netdev);
9025
9026        netif_device_detach(netdev);
9027
9028        if (state == pci_channel_io_perm_failure)
9029                return PCI_ERS_RESULT_DISCONNECT;
9030
9031        if (netif_running(netdev))
9032                igb_down(adapter);
9033        pci_disable_device(pdev);
9034
9035        /* Request a slot slot reset. */
9036        return PCI_ERS_RESULT_NEED_RESET;
9037}
9038
9039/**
9040 *  igb_io_slot_reset - called after the pci bus has been reset.
9041 *  @pdev: Pointer to PCI device
9042 *
9043 *  Restart the card from scratch, as if from a cold-boot. Implementation
9044 *  resembles the first-half of the igb_resume routine.
9045 **/
9046static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9047{
9048        struct net_device *netdev = pci_get_drvdata(pdev);
9049        struct igb_adapter *adapter = netdev_priv(netdev);
9050        struct e1000_hw *hw = &adapter->hw;
9051        pci_ers_result_t result;
9052
9053        if (pci_enable_device_mem(pdev)) {
9054                dev_err(&pdev->dev,
9055                        "Cannot re-enable PCI device after reset.\n");
9056                result = PCI_ERS_RESULT_DISCONNECT;
9057        } else {
9058                pci_set_master(pdev);
9059                pci_restore_state(pdev);
9060                pci_save_state(pdev);
9061
9062                pci_enable_wake(pdev, PCI_D3hot, 0);
9063                pci_enable_wake(pdev, PCI_D3cold, 0);
9064
9065                /* In case of PCI error, adapter lose its HW address
9066                 * so we should re-assign it here.
9067                 */
9068                hw->hw_addr = adapter->io_addr;
9069
9070                igb_reset(adapter);
9071                wr32(E1000_WUS, ~0);
9072                result = PCI_ERS_RESULT_RECOVERED;
9073        }
9074
9075        return result;
9076}
9077
9078/**
9079 *  igb_io_resume - called when traffic can start flowing again.
9080 *  @pdev: Pointer to PCI device
9081 *
9082 *  This callback is called when the error recovery driver tells us that
9083 *  its OK to resume normal operation. Implementation resembles the
9084 *  second-half of the igb_resume routine.
9085 */
9086static void igb_io_resume(struct pci_dev *pdev)
9087{
9088        struct net_device *netdev = pci_get_drvdata(pdev);
9089        struct igb_adapter *adapter = netdev_priv(netdev);
9090
9091        if (netif_running(netdev)) {
9092                if (igb_up(adapter)) {
9093                        dev_err(&pdev->dev, "igb_up failed after reset\n");
9094                        return;
9095                }
9096        }
9097
9098        netif_device_attach(netdev);
9099
9100        /* let the f/w know that the h/w is now under the control of the
9101         * driver.
9102         */
9103        igb_get_hw_control(adapter);
9104}
9105
9106/**
9107 *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9108 *  @adapter: Pointer to adapter structure
9109 *  @index: Index of the RAR entry which need to be synced with MAC table
9110 **/
9111static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9112{
9113        struct e1000_hw *hw = &adapter->hw;
9114        u32 rar_low, rar_high;
9115        u8 *addr = adapter->mac_table[index].addr;
9116
9117        /* HW expects these to be in network order when they are plugged
9118         * into the registers which are little endian.  In order to guarantee
9119         * that ordering we need to do an leXX_to_cpup here in order to be
9120         * ready for the byteswap that occurs with writel
9121         */
9122        rar_low = le32_to_cpup((__le32 *)(addr));
9123        rar_high = le16_to_cpup((__le16 *)(addr + 4));
9124
9125        /* Indicate to hardware the Address is Valid. */
9126        if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9127                if (is_valid_ether_addr(addr))
9128                        rar_high |= E1000_RAH_AV;
9129
9130                if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9131                        rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9132
9133                switch (hw->mac.type) {
9134                case e1000_82575:
9135                case e1000_i210:
9136                        if (adapter->mac_table[index].state &
9137                            IGB_MAC_STATE_QUEUE_STEERING)
9138                                rar_high |= E1000_RAH_QSEL_ENABLE;
9139
9140                        rar_high |= E1000_RAH_POOL_1 *
9141                                    adapter->mac_table[index].queue;
9142                        break;
9143                default:
9144                        rar_high |= E1000_RAH_POOL_1 <<
9145                                    adapter->mac_table[index].queue;
9146                        break;
9147                }
9148        }
9149
9150        wr32(E1000_RAL(index), rar_low);
9151        wrfl();
9152        wr32(E1000_RAH(index), rar_high);
9153        wrfl();
9154}
9155
9156static int igb_set_vf_mac(struct igb_adapter *adapter,
9157                          int vf, unsigned char *mac_addr)
9158{
9159        struct e1000_hw *hw = &adapter->hw;
9160        /* VF MAC addresses start at end of receive addresses and moves
9161         * towards the first, as a result a collision should not be possible
9162         */
9163        int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9164        unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9165
9166        ether_addr_copy(vf_mac_addr, mac_addr);
9167        ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9168        adapter->mac_table[rar_entry].queue = vf;
9169        adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9170        igb_rar_set_index(adapter, rar_entry);
9171
9172        return 0;
9173}
9174
9175static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9176{
9177        struct igb_adapter *adapter = netdev_priv(netdev);
9178
9179        if (vf >= adapter->vfs_allocated_count)
9180                return -EINVAL;
9181
9182        /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9183         * flag and allows to overwrite the MAC via VF netdev.  This
9184         * is necessary to allow libvirt a way to restore the original
9185         * MAC after unbinding vfio-pci and reloading igbvf after shutting
9186         * down a VM.
9187         */
9188        if (is_zero_ether_addr(mac)) {
9189                adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9190                dev_info(&adapter->pdev->dev,
9191                         "remove administratively set MAC on VF %d\n",
9192                         vf);
9193        } else if (is_valid_ether_addr(mac)) {
9194                adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9195                dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9196                         mac, vf);
9197                dev_info(&adapter->pdev->dev,
9198                         "Reload the VF driver to make this change effective.");
9199                /* Generate additional warning if PF is down */
9200                if (test_bit(__IGB_DOWN, &adapter->state)) {
9201                        dev_warn(&adapter->pdev->dev,
9202                                 "The VF MAC address has been set, but the PF device is not up.\n");
9203                        dev_warn(&adapter->pdev->dev,
9204                                 "Bring the PF device up before attempting to use the VF device.\n");
9205                }
9206        } else {
9207                return -EINVAL;
9208        }
9209        return igb_set_vf_mac(adapter, vf, mac);
9210}
9211
9212static int igb_link_mbps(int internal_link_speed)
9213{
9214        switch (internal_link_speed) {
9215        case SPEED_100:
9216                return 100;
9217        case SPEED_1000:
9218                return 1000;
9219        default:
9220                return 0;
9221        }
9222}
9223
9224static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9225                                  int link_speed)
9226{
9227        int rf_dec, rf_int;
9228        u32 bcnrc_val;
9229
9230        if (tx_rate != 0) {
9231                /* Calculate the rate factor values to set */
9232                rf_int = link_speed / tx_rate;
9233                rf_dec = (link_speed - (rf_int * tx_rate));
9234                rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9235                         tx_rate;
9236
9237                bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9238                bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9239                              E1000_RTTBCNRC_RF_INT_MASK);
9240                bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9241        } else {
9242                bcnrc_val = 0;
9243        }
9244
9245        wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9246        /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9247         * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9248         */
9249        wr32(E1000_RTTBCNRM, 0x14);
9250        wr32(E1000_RTTBCNRC, bcnrc_val);
9251}
9252
9253static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9254{
9255        int actual_link_speed, i;
9256        bool reset_rate = false;
9257
9258        /* VF TX rate limit was not set or not supported */
9259        if ((adapter->vf_rate_link_speed == 0) ||
9260            (adapter->hw.mac.type != e1000_82576))
9261                return;
9262
9263        actual_link_speed = igb_link_mbps(adapter->link_speed);
9264        if (actual_link_speed != adapter->vf_rate_link_speed) {
9265                reset_rate = true;
9266                adapter->vf_rate_link_speed = 0;
9267                dev_info(&adapter->pdev->dev,
9268                         "Link speed has been changed. VF Transmit rate is disabled\n");
9269        }
9270
9271        for (i = 0; i < adapter->vfs_allocated_count; i++) {
9272                if (reset_rate)
9273                        adapter->vf_data[i].tx_rate = 0;
9274
9275                igb_set_vf_rate_limit(&adapter->hw, i,
9276                                      adapter->vf_data[i].tx_rate,
9277                                      actual_link_speed);
9278        }
9279}
9280
9281static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9282                             int min_tx_rate, int max_tx_rate)
9283{
9284        struct igb_adapter *adapter = netdev_priv(netdev);
9285        struct e1000_hw *hw = &adapter->hw;
9286        int actual_link_speed;
9287
9288        if (hw->mac.type != e1000_82576)
9289                return -EOPNOTSUPP;
9290
9291        if (min_tx_rate)
9292                return -EINVAL;
9293
9294        actual_link_speed = igb_link_mbps(adapter->link_speed);
9295        if ((vf >= adapter->vfs_allocated_count) ||
9296            (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9297            (max_tx_rate < 0) ||
9298            (max_tx_rate > actual_link_speed))
9299                return -EINVAL;
9300
9301        adapter->vf_rate_link_speed = actual_link_speed;
9302        adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9303        igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9304
9305        return 0;
9306}
9307
9308static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9309                                   bool setting)
9310{
9311        struct igb_adapter *adapter = netdev_priv(netdev);
9312        struct e1000_hw *hw = &adapter->hw;
9313        u32 reg_val, reg_offset;
9314
9315        if (!adapter->vfs_allocated_count)
9316                return -EOPNOTSUPP;
9317
9318        if (vf >= adapter->vfs_allocated_count)
9319                return -EINVAL;
9320
9321        reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9322        reg_val = rd32(reg_offset);
9323        if (setting)
9324                reg_val |= (BIT(vf) |
9325                            BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9326        else
9327                reg_val &= ~(BIT(vf) |
9328                             BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9329        wr32(reg_offset, reg_val);
9330
9331        adapter->vf_data[vf].spoofchk_enabled = setting;
9332        return 0;
9333}
9334
9335static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9336{
9337        struct igb_adapter *adapter = netdev_priv(netdev);
9338
9339        if (vf >= adapter->vfs_allocated_count)
9340                return -EINVAL;
9341        if (adapter->vf_data[vf].trusted == setting)
9342                return 0;
9343
9344        adapter->vf_data[vf].trusted = setting;
9345
9346        dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9347                 vf, setting ? "" : "not ");
9348        return 0;
9349}
9350
9351static int igb_ndo_get_vf_config(struct net_device *netdev,
9352                                 int vf, struct ifla_vf_info *ivi)
9353{
9354        struct igb_adapter *adapter = netdev_priv(netdev);
9355        if (vf >= adapter->vfs_allocated_count)
9356                return -EINVAL;
9357        ivi->vf = vf;
9358        memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9359        ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9360        ivi->min_tx_rate = 0;
9361        ivi->vlan = adapter->vf_data[vf].pf_vlan;
9362        ivi->qos = adapter->vf_data[vf].pf_qos;
9363        ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9364        ivi->trusted = adapter->vf_data[vf].trusted;
9365        return 0;
9366}
9367
9368static void igb_vmm_control(struct igb_adapter *adapter)
9369{
9370        struct e1000_hw *hw = &adapter->hw;
9371        u32 reg;
9372
9373        switch (hw->mac.type) {
9374        case e1000_82575:
9375        case e1000_i210:
9376        case e1000_i211:
9377        case e1000_i354:
9378        default:
9379                /* replication is not supported for 82575 */
9380                return;
9381        case e1000_82576:
9382                /* notify HW that the MAC is adding vlan tags */
9383                reg = rd32(E1000_DTXCTL);
9384                reg |= E1000_DTXCTL_VLAN_ADDED;
9385                wr32(E1000_DTXCTL, reg);
9386                fallthrough;
9387        case e1000_82580:
9388                /* enable replication vlan tag stripping */
9389                reg = rd32(E1000_RPLOLR);
9390                reg |= E1000_RPLOLR_STRVLAN;
9391                wr32(E1000_RPLOLR, reg);
9392                fallthrough;
9393        case e1000_i350:
9394                /* none of the above registers are supported by i350 */
9395                break;
9396        }
9397
9398        if (adapter->vfs_allocated_count) {
9399                igb_vmdq_set_loopback_pf(hw, true);
9400                igb_vmdq_set_replication_pf(hw, true);
9401                igb_vmdq_set_anti_spoofing_pf(hw, true,
9402                                              adapter->vfs_allocated_count);
9403        } else {
9404                igb_vmdq_set_loopback_pf(hw, false);
9405                igb_vmdq_set_replication_pf(hw, false);
9406        }
9407}
9408
9409static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9410{
9411        struct e1000_hw *hw = &adapter->hw;
9412        u32 dmac_thr;
9413        u16 hwm;
9414
9415        if (hw->mac.type > e1000_82580) {
9416                if (adapter->flags & IGB_FLAG_DMAC) {
9417                        u32 reg;
9418
9419                        /* force threshold to 0. */
9420                        wr32(E1000_DMCTXTH, 0);
9421
9422                        /* DMA Coalescing high water mark needs to be greater
9423                         * than the Rx threshold. Set hwm to PBA - max frame
9424                         * size in 16B units, capping it at PBA - 6KB.
9425                         */
9426                        hwm = 64 * (pba - 6);
9427                        reg = rd32(E1000_FCRTC);
9428                        reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9429                        reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9430                                & E1000_FCRTC_RTH_COAL_MASK);
9431                        wr32(E1000_FCRTC, reg);
9432
9433                        /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9434                         * frame size, capping it at PBA - 10KB.
9435                         */
9436                        dmac_thr = pba - 10;
9437                        reg = rd32(E1000_DMACR);
9438                        reg &= ~E1000_DMACR_DMACTHR_MASK;
9439                        reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9440                                & E1000_DMACR_DMACTHR_MASK);
9441
9442                        /* transition to L0x or L1 if available..*/
9443                        reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9444
9445                        /* watchdog timer= +-1000 usec in 32usec intervals */
9446                        reg |= (1000 >> 5);
9447
9448                        /* Disable BMC-to-OS Watchdog Enable */
9449                        if (hw->mac.type != e1000_i354)
9450                                reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9451
9452                        wr32(E1000_DMACR, reg);
9453
9454                        /* no lower threshold to disable
9455                         * coalescing(smart fifb)-UTRESH=0
9456                         */
9457                        wr32(E1000_DMCRTRH, 0);
9458
9459                        reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9460
9461                        wr32(E1000_DMCTLX, reg);
9462
9463                        /* free space in tx packet buffer to wake from
9464                         * DMA coal
9465                         */
9466                        wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9467                             (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9468
9469                        /* make low power state decision controlled
9470                         * by DMA coal
9471                         */
9472                        reg = rd32(E1000_PCIEMISC);
9473                        reg &= ~E1000_PCIEMISC_LX_DECISION;
9474                        wr32(E1000_PCIEMISC, reg);
9475                } /* endif adapter->dmac is not disabled */
9476        } else if (hw->mac.type == e1000_82580) {
9477                u32 reg = rd32(E1000_PCIEMISC);
9478
9479                wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
9480                wr32(E1000_DMACR, 0);
9481        }
9482}
9483
9484/**
9485 *  igb_read_i2c_byte - Reads 8 bit word over I2C
9486 *  @hw: pointer to hardware structure
9487 *  @byte_offset: byte offset to read
9488 *  @dev_addr: device address
9489 *  @data: value read
9490 *
9491 *  Performs byte read operation over I2C interface at
9492 *  a specified device address.
9493 **/
9494s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9495                      u8 dev_addr, u8 *data)
9496{
9497        struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9498        struct i2c_client *this_client = adapter->i2c_client;
9499        s32 status;
9500        u16 swfw_mask = 0;
9501
9502        if (!this_client)
9503                return E1000_ERR_I2C;
9504
9505        swfw_mask = E1000_SWFW_PHY0_SM;
9506
9507        if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9508                return E1000_ERR_SWFW_SYNC;
9509
9510        status = i2c_smbus_read_byte_data(this_client, byte_offset);
9511        hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9512
9513        if (status < 0)
9514                return E1000_ERR_I2C;
9515        else {
9516                *data = status;
9517                return 0;
9518        }
9519}
9520
9521/**
9522 *  igb_write_i2c_byte - Writes 8 bit word over I2C
9523 *  @hw: pointer to hardware structure
9524 *  @byte_offset: byte offset to write
9525 *  @dev_addr: device address
9526 *  @data: value to write
9527 *
9528 *  Performs byte write operation over I2C interface at
9529 *  a specified device address.
9530 **/
9531s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9532                       u8 dev_addr, u8 data)
9533{
9534        struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9535        struct i2c_client *this_client = adapter->i2c_client;
9536        s32 status;
9537        u16 swfw_mask = E1000_SWFW_PHY0_SM;
9538
9539        if (!this_client)
9540                return E1000_ERR_I2C;
9541
9542        if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9543                return E1000_ERR_SWFW_SYNC;
9544        status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
9545        hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9546
9547        if (status)
9548                return E1000_ERR_I2C;
9549        else
9550                return 0;
9551
9552}
9553
9554int igb_reinit_queues(struct igb_adapter *adapter)
9555{
9556        struct net_device *netdev = adapter->netdev;
9557        struct pci_dev *pdev = adapter->pdev;
9558        int err = 0;
9559
9560        if (netif_running(netdev))
9561                igb_close(netdev);
9562
9563        igb_reset_interrupt_capability(adapter);
9564
9565        if (igb_init_interrupt_scheme(adapter, true)) {
9566                dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9567                return -ENOMEM;
9568        }
9569
9570        if (netif_running(netdev))
9571                err = igb_open(netdev);
9572
9573        return err;
9574}
9575
9576static void igb_nfc_filter_exit(struct igb_adapter *adapter)
9577{
9578        struct igb_nfc_filter *rule;
9579
9580        spin_lock(&adapter->nfc_lock);
9581
9582        hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9583                igb_erase_filter(adapter, rule);
9584
9585        hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
9586                igb_erase_filter(adapter, rule);
9587
9588        spin_unlock(&adapter->nfc_lock);
9589}
9590
9591static void igb_nfc_filter_restore(struct igb_adapter *adapter)
9592{
9593        struct igb_nfc_filter *rule;
9594
9595        spin_lock(&adapter->nfc_lock);
9596
9597        hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9598                igb_add_filter(adapter, rule);
9599
9600        spin_unlock(&adapter->nfc_lock);
9601}
9602/* igb_main.c */
9603