linux/drivers/net/ethernet/intel/igbvf/netdev.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2009 - 2018 Intel Corporation. */
   3
   4#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   5
   6#include <linux/module.h>
   7#include <linux/types.h>
   8#include <linux/init.h>
   9#include <linux/pci.h>
  10#include <linux/vmalloc.h>
  11#include <linux/pagemap.h>
  12#include <linux/delay.h>
  13#include <linux/netdevice.h>
  14#include <linux/tcp.h>
  15#include <linux/ipv6.h>
  16#include <linux/slab.h>
  17#include <net/checksum.h>
  18#include <net/ip6_checksum.h>
  19#include <linux/mii.h>
  20#include <linux/ethtool.h>
  21#include <linux/if_vlan.h>
  22#include <linux/prefetch.h>
  23#include <linux/sctp.h>
  24
  25#include "igbvf.h"
  26
  27char igbvf_driver_name[] = "igbvf";
  28static const char igbvf_driver_string[] =
  29                  "Intel(R) Gigabit Virtual Function Network Driver";
  30static const char igbvf_copyright[] =
  31                  "Copyright (c) 2009 - 2012 Intel Corporation.";
  32
  33#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
  34static int debug = -1;
  35module_param(debug, int, 0);
  36MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  37
  38static int igbvf_poll(struct napi_struct *napi, int budget);
  39static void igbvf_reset(struct igbvf_adapter *);
  40static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
  41static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
  42
  43static struct igbvf_info igbvf_vf_info = {
  44        .mac            = e1000_vfadapt,
  45        .flags          = 0,
  46        .pba            = 10,
  47        .init_ops       = e1000_init_function_pointers_vf,
  48};
  49
  50static struct igbvf_info igbvf_i350_vf_info = {
  51        .mac            = e1000_vfadapt_i350,
  52        .flags          = 0,
  53        .pba            = 10,
  54        .init_ops       = e1000_init_function_pointers_vf,
  55};
  56
  57static const struct igbvf_info *igbvf_info_tbl[] = {
  58        [board_vf]      = &igbvf_vf_info,
  59        [board_i350_vf] = &igbvf_i350_vf_info,
  60};
  61
  62/**
  63 * igbvf_desc_unused - calculate if we have unused descriptors
  64 * @rx_ring: address of receive ring structure
  65 **/
  66static int igbvf_desc_unused(struct igbvf_ring *ring)
  67{
  68        if (ring->next_to_clean > ring->next_to_use)
  69                return ring->next_to_clean - ring->next_to_use - 1;
  70
  71        return ring->count + ring->next_to_clean - ring->next_to_use - 1;
  72}
  73
  74/**
  75 * igbvf_receive_skb - helper function to handle Rx indications
  76 * @adapter: board private structure
  77 * @status: descriptor status field as written by hardware
  78 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
  79 * @skb: pointer to sk_buff to be indicated to stack
  80 **/
  81static void igbvf_receive_skb(struct igbvf_adapter *adapter,
  82                              struct net_device *netdev,
  83                              struct sk_buff *skb,
  84                              u32 status, u16 vlan)
  85{
  86        u16 vid;
  87
  88        if (status & E1000_RXD_STAT_VP) {
  89                if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
  90                    (status & E1000_RXDEXT_STATERR_LB))
  91                        vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
  92                else
  93                        vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
  94                if (test_bit(vid, adapter->active_vlans))
  95                        __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
  96        }
  97
  98        napi_gro_receive(&adapter->rx_ring->napi, skb);
  99}
 100
 101static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
 102                                         u32 status_err, struct sk_buff *skb)
 103{
 104        skb_checksum_none_assert(skb);
 105
 106        /* Ignore Checksum bit is set or checksum is disabled through ethtool */
 107        if ((status_err & E1000_RXD_STAT_IXSM) ||
 108            (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
 109                return;
 110
 111        /* TCP/UDP checksum error bit is set */
 112        if (status_err &
 113            (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
 114                /* let the stack verify checksum errors */
 115                adapter->hw_csum_err++;
 116                return;
 117        }
 118
 119        /* It must be a TCP or UDP packet with a valid checksum */
 120        if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
 121                skb->ip_summed = CHECKSUM_UNNECESSARY;
 122
 123        adapter->hw_csum_good++;
 124}
 125
 126/**
 127 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
 128 * @rx_ring: address of ring structure to repopulate
 129 * @cleaned_count: number of buffers to repopulate
 130 **/
 131static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
 132                                   int cleaned_count)
 133{
 134        struct igbvf_adapter *adapter = rx_ring->adapter;
 135        struct net_device *netdev = adapter->netdev;
 136        struct pci_dev *pdev = adapter->pdev;
 137        union e1000_adv_rx_desc *rx_desc;
 138        struct igbvf_buffer *buffer_info;
 139        struct sk_buff *skb;
 140        unsigned int i;
 141        int bufsz;
 142
 143        i = rx_ring->next_to_use;
 144        buffer_info = &rx_ring->buffer_info[i];
 145
 146        if (adapter->rx_ps_hdr_size)
 147                bufsz = adapter->rx_ps_hdr_size;
 148        else
 149                bufsz = adapter->rx_buffer_len;
 150
 151        while (cleaned_count--) {
 152                rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
 153
 154                if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
 155                        if (!buffer_info->page) {
 156                                buffer_info->page = alloc_page(GFP_ATOMIC);
 157                                if (!buffer_info->page) {
 158                                        adapter->alloc_rx_buff_failed++;
 159                                        goto no_buffers;
 160                                }
 161                                buffer_info->page_offset = 0;
 162                        } else {
 163                                buffer_info->page_offset ^= PAGE_SIZE / 2;
 164                        }
 165                        buffer_info->page_dma =
 166                                dma_map_page(&pdev->dev, buffer_info->page,
 167                                             buffer_info->page_offset,
 168                                             PAGE_SIZE / 2,
 169                                             DMA_FROM_DEVICE);
 170                        if (dma_mapping_error(&pdev->dev,
 171                                              buffer_info->page_dma)) {
 172                                __free_page(buffer_info->page);
 173                                buffer_info->page = NULL;
 174                                dev_err(&pdev->dev, "RX DMA map failed\n");
 175                                break;
 176                        }
 177                }
 178
 179                if (!buffer_info->skb) {
 180                        skb = netdev_alloc_skb_ip_align(netdev, bufsz);
 181                        if (!skb) {
 182                                adapter->alloc_rx_buff_failed++;
 183                                goto no_buffers;
 184                        }
 185
 186                        buffer_info->skb = skb;
 187                        buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 188                                                          bufsz,
 189                                                          DMA_FROM_DEVICE);
 190                        if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 191                                dev_kfree_skb(buffer_info->skb);
 192                                buffer_info->skb = NULL;
 193                                dev_err(&pdev->dev, "RX DMA map failed\n");
 194                                goto no_buffers;
 195                        }
 196                }
 197                /* Refresh the desc even if buffer_addrs didn't change because
 198                 * each write-back erases this info.
 199                 */
 200                if (adapter->rx_ps_hdr_size) {
 201                        rx_desc->read.pkt_addr =
 202                             cpu_to_le64(buffer_info->page_dma);
 203                        rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
 204                } else {
 205                        rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
 206                        rx_desc->read.hdr_addr = 0;
 207                }
 208
 209                i++;
 210                if (i == rx_ring->count)
 211                        i = 0;
 212                buffer_info = &rx_ring->buffer_info[i];
 213        }
 214
 215no_buffers:
 216        if (rx_ring->next_to_use != i) {
 217                rx_ring->next_to_use = i;
 218                if (i == 0)
 219                        i = (rx_ring->count - 1);
 220                else
 221                        i--;
 222
 223                /* Force memory writes to complete before letting h/w
 224                 * know there are new descriptors to fetch.  (Only
 225                 * applicable for weak-ordered memory model archs,
 226                 * such as IA-64).
 227                */
 228                wmb();
 229                writel(i, adapter->hw.hw_addr + rx_ring->tail);
 230        }
 231}
 232
 233/**
 234 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
 235 * @adapter: board private structure
 236 *
 237 * the return value indicates whether actual cleaning was done, there
 238 * is no guarantee that everything was cleaned
 239 **/
 240static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
 241                               int *work_done, int work_to_do)
 242{
 243        struct igbvf_ring *rx_ring = adapter->rx_ring;
 244        struct net_device *netdev = adapter->netdev;
 245        struct pci_dev *pdev = adapter->pdev;
 246        union e1000_adv_rx_desc *rx_desc, *next_rxd;
 247        struct igbvf_buffer *buffer_info, *next_buffer;
 248        struct sk_buff *skb;
 249        bool cleaned = false;
 250        int cleaned_count = 0;
 251        unsigned int total_bytes = 0, total_packets = 0;
 252        unsigned int i;
 253        u32 length, hlen, staterr;
 254
 255        i = rx_ring->next_to_clean;
 256        rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
 257        staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 258
 259        while (staterr & E1000_RXD_STAT_DD) {
 260                if (*work_done >= work_to_do)
 261                        break;
 262                (*work_done)++;
 263                rmb(); /* read descriptor and rx_buffer_info after status DD */
 264
 265                buffer_info = &rx_ring->buffer_info[i];
 266
 267                /* HW will not DMA in data larger than the given buffer, even
 268                 * if it parses the (NFS, of course) header to be larger.  In
 269                 * that case, it fills the header buffer and spills the rest
 270                 * into the page.
 271                 */
 272                hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info)
 273                       & E1000_RXDADV_HDRBUFLEN_MASK) >>
 274                       E1000_RXDADV_HDRBUFLEN_SHIFT;
 275                if (hlen > adapter->rx_ps_hdr_size)
 276                        hlen = adapter->rx_ps_hdr_size;
 277
 278                length = le16_to_cpu(rx_desc->wb.upper.length);
 279                cleaned = true;
 280                cleaned_count++;
 281
 282                skb = buffer_info->skb;
 283                prefetch(skb->data - NET_IP_ALIGN);
 284                buffer_info->skb = NULL;
 285                if (!adapter->rx_ps_hdr_size) {
 286                        dma_unmap_single(&pdev->dev, buffer_info->dma,
 287                                         adapter->rx_buffer_len,
 288                                         DMA_FROM_DEVICE);
 289                        buffer_info->dma = 0;
 290                        skb_put(skb, length);
 291                        goto send_up;
 292                }
 293
 294                if (!skb_shinfo(skb)->nr_frags) {
 295                        dma_unmap_single(&pdev->dev, buffer_info->dma,
 296                                         adapter->rx_ps_hdr_size,
 297                                         DMA_FROM_DEVICE);
 298                        buffer_info->dma = 0;
 299                        skb_put(skb, hlen);
 300                }
 301
 302                if (length) {
 303                        dma_unmap_page(&pdev->dev, buffer_info->page_dma,
 304                                       PAGE_SIZE / 2,
 305                                       DMA_FROM_DEVICE);
 306                        buffer_info->page_dma = 0;
 307
 308                        skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
 309                                           buffer_info->page,
 310                                           buffer_info->page_offset,
 311                                           length);
 312
 313                        if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
 314                            (page_count(buffer_info->page) != 1))
 315                                buffer_info->page = NULL;
 316                        else
 317                                get_page(buffer_info->page);
 318
 319                        skb->len += length;
 320                        skb->data_len += length;
 321                        skb->truesize += PAGE_SIZE / 2;
 322                }
 323send_up:
 324                i++;
 325                if (i == rx_ring->count)
 326                        i = 0;
 327                next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
 328                prefetch(next_rxd);
 329                next_buffer = &rx_ring->buffer_info[i];
 330
 331                if (!(staterr & E1000_RXD_STAT_EOP)) {
 332                        buffer_info->skb = next_buffer->skb;
 333                        buffer_info->dma = next_buffer->dma;
 334                        next_buffer->skb = skb;
 335                        next_buffer->dma = 0;
 336                        goto next_desc;
 337                }
 338
 339                if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
 340                        dev_kfree_skb_irq(skb);
 341                        goto next_desc;
 342                }
 343
 344                total_bytes += skb->len;
 345                total_packets++;
 346
 347                igbvf_rx_checksum_adv(adapter, staterr, skb);
 348
 349                skb->protocol = eth_type_trans(skb, netdev);
 350
 351                igbvf_receive_skb(adapter, netdev, skb, staterr,
 352                                  rx_desc->wb.upper.vlan);
 353
 354next_desc:
 355                rx_desc->wb.upper.status_error = 0;
 356
 357                /* return some buffers to hardware, one at a time is too slow */
 358                if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
 359                        igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
 360                        cleaned_count = 0;
 361                }
 362
 363                /* use prefetched values */
 364                rx_desc = next_rxd;
 365                buffer_info = next_buffer;
 366
 367                staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 368        }
 369
 370        rx_ring->next_to_clean = i;
 371        cleaned_count = igbvf_desc_unused(rx_ring);
 372
 373        if (cleaned_count)
 374                igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
 375
 376        adapter->total_rx_packets += total_packets;
 377        adapter->total_rx_bytes += total_bytes;
 378        netdev->stats.rx_bytes += total_bytes;
 379        netdev->stats.rx_packets += total_packets;
 380        return cleaned;
 381}
 382
 383static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
 384                            struct igbvf_buffer *buffer_info)
 385{
 386        if (buffer_info->dma) {
 387                if (buffer_info->mapped_as_page)
 388                        dma_unmap_page(&adapter->pdev->dev,
 389                                       buffer_info->dma,
 390                                       buffer_info->length,
 391                                       DMA_TO_DEVICE);
 392                else
 393                        dma_unmap_single(&adapter->pdev->dev,
 394                                         buffer_info->dma,
 395                                         buffer_info->length,
 396                                         DMA_TO_DEVICE);
 397                buffer_info->dma = 0;
 398        }
 399        if (buffer_info->skb) {
 400                dev_kfree_skb_any(buffer_info->skb);
 401                buffer_info->skb = NULL;
 402        }
 403        buffer_info->time_stamp = 0;
 404}
 405
 406/**
 407 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
 408 * @adapter: board private structure
 409 *
 410 * Return 0 on success, negative on failure
 411 **/
 412int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
 413                             struct igbvf_ring *tx_ring)
 414{
 415        struct pci_dev *pdev = adapter->pdev;
 416        int size;
 417
 418        size = sizeof(struct igbvf_buffer) * tx_ring->count;
 419        tx_ring->buffer_info = vzalloc(size);
 420        if (!tx_ring->buffer_info)
 421                goto err;
 422
 423        /* round up to nearest 4K */
 424        tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
 425        tx_ring->size = ALIGN(tx_ring->size, 4096);
 426
 427        tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
 428                                           &tx_ring->dma, GFP_KERNEL);
 429        if (!tx_ring->desc)
 430                goto err;
 431
 432        tx_ring->adapter = adapter;
 433        tx_ring->next_to_use = 0;
 434        tx_ring->next_to_clean = 0;
 435
 436        return 0;
 437err:
 438        vfree(tx_ring->buffer_info);
 439        dev_err(&adapter->pdev->dev,
 440                "Unable to allocate memory for the transmit descriptor ring\n");
 441        return -ENOMEM;
 442}
 443
 444/**
 445 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
 446 * @adapter: board private structure
 447 *
 448 * Returns 0 on success, negative on failure
 449 **/
 450int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
 451                             struct igbvf_ring *rx_ring)
 452{
 453        struct pci_dev *pdev = adapter->pdev;
 454        int size, desc_len;
 455
 456        size = sizeof(struct igbvf_buffer) * rx_ring->count;
 457        rx_ring->buffer_info = vzalloc(size);
 458        if (!rx_ring->buffer_info)
 459                goto err;
 460
 461        desc_len = sizeof(union e1000_adv_rx_desc);
 462
 463        /* Round up to nearest 4K */
 464        rx_ring->size = rx_ring->count * desc_len;
 465        rx_ring->size = ALIGN(rx_ring->size, 4096);
 466
 467        rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
 468                                           &rx_ring->dma, GFP_KERNEL);
 469        if (!rx_ring->desc)
 470                goto err;
 471
 472        rx_ring->next_to_clean = 0;
 473        rx_ring->next_to_use = 0;
 474
 475        rx_ring->adapter = adapter;
 476
 477        return 0;
 478
 479err:
 480        vfree(rx_ring->buffer_info);
 481        rx_ring->buffer_info = NULL;
 482        dev_err(&adapter->pdev->dev,
 483                "Unable to allocate memory for the receive descriptor ring\n");
 484        return -ENOMEM;
 485}
 486
 487/**
 488 * igbvf_clean_tx_ring - Free Tx Buffers
 489 * @tx_ring: ring to be cleaned
 490 **/
 491static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
 492{
 493        struct igbvf_adapter *adapter = tx_ring->adapter;
 494        struct igbvf_buffer *buffer_info;
 495        unsigned long size;
 496        unsigned int i;
 497
 498        if (!tx_ring->buffer_info)
 499                return;
 500
 501        /* Free all the Tx ring sk_buffs */
 502        for (i = 0; i < tx_ring->count; i++) {
 503                buffer_info = &tx_ring->buffer_info[i];
 504                igbvf_put_txbuf(adapter, buffer_info);
 505        }
 506
 507        size = sizeof(struct igbvf_buffer) * tx_ring->count;
 508        memset(tx_ring->buffer_info, 0, size);
 509
 510        /* Zero out the descriptor ring */
 511        memset(tx_ring->desc, 0, tx_ring->size);
 512
 513        tx_ring->next_to_use = 0;
 514        tx_ring->next_to_clean = 0;
 515
 516        writel(0, adapter->hw.hw_addr + tx_ring->head);
 517        writel(0, adapter->hw.hw_addr + tx_ring->tail);
 518}
 519
 520/**
 521 * igbvf_free_tx_resources - Free Tx Resources per Queue
 522 * @tx_ring: ring to free resources from
 523 *
 524 * Free all transmit software resources
 525 **/
 526void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
 527{
 528        struct pci_dev *pdev = tx_ring->adapter->pdev;
 529
 530        igbvf_clean_tx_ring(tx_ring);
 531
 532        vfree(tx_ring->buffer_info);
 533        tx_ring->buffer_info = NULL;
 534
 535        dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
 536                          tx_ring->dma);
 537
 538        tx_ring->desc = NULL;
 539}
 540
 541/**
 542 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
 543 * @adapter: board private structure
 544 **/
 545static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
 546{
 547        struct igbvf_adapter *adapter = rx_ring->adapter;
 548        struct igbvf_buffer *buffer_info;
 549        struct pci_dev *pdev = adapter->pdev;
 550        unsigned long size;
 551        unsigned int i;
 552
 553        if (!rx_ring->buffer_info)
 554                return;
 555
 556        /* Free all the Rx ring sk_buffs */
 557        for (i = 0; i < rx_ring->count; i++) {
 558                buffer_info = &rx_ring->buffer_info[i];
 559                if (buffer_info->dma) {
 560                        if (adapter->rx_ps_hdr_size) {
 561                                dma_unmap_single(&pdev->dev, buffer_info->dma,
 562                                                 adapter->rx_ps_hdr_size,
 563                                                 DMA_FROM_DEVICE);
 564                        } else {
 565                                dma_unmap_single(&pdev->dev, buffer_info->dma,
 566                                                 adapter->rx_buffer_len,
 567                                                 DMA_FROM_DEVICE);
 568                        }
 569                        buffer_info->dma = 0;
 570                }
 571
 572                if (buffer_info->skb) {
 573                        dev_kfree_skb(buffer_info->skb);
 574                        buffer_info->skb = NULL;
 575                }
 576
 577                if (buffer_info->page) {
 578                        if (buffer_info->page_dma)
 579                                dma_unmap_page(&pdev->dev,
 580                                               buffer_info->page_dma,
 581                                               PAGE_SIZE / 2,
 582                                               DMA_FROM_DEVICE);
 583                        put_page(buffer_info->page);
 584                        buffer_info->page = NULL;
 585                        buffer_info->page_dma = 0;
 586                        buffer_info->page_offset = 0;
 587                }
 588        }
 589
 590        size = sizeof(struct igbvf_buffer) * rx_ring->count;
 591        memset(rx_ring->buffer_info, 0, size);
 592
 593        /* Zero out the descriptor ring */
 594        memset(rx_ring->desc, 0, rx_ring->size);
 595
 596        rx_ring->next_to_clean = 0;
 597        rx_ring->next_to_use = 0;
 598
 599        writel(0, adapter->hw.hw_addr + rx_ring->head);
 600        writel(0, adapter->hw.hw_addr + rx_ring->tail);
 601}
 602
 603/**
 604 * igbvf_free_rx_resources - Free Rx Resources
 605 * @rx_ring: ring to clean the resources from
 606 *
 607 * Free all receive software resources
 608 **/
 609
 610void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
 611{
 612        struct pci_dev *pdev = rx_ring->adapter->pdev;
 613
 614        igbvf_clean_rx_ring(rx_ring);
 615
 616        vfree(rx_ring->buffer_info);
 617        rx_ring->buffer_info = NULL;
 618
 619        dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
 620                          rx_ring->dma);
 621        rx_ring->desc = NULL;
 622}
 623
 624/**
 625 * igbvf_update_itr - update the dynamic ITR value based on statistics
 626 * @adapter: pointer to adapter
 627 * @itr_setting: current adapter->itr
 628 * @packets: the number of packets during this measurement interval
 629 * @bytes: the number of bytes during this measurement interval
 630 *
 631 * Stores a new ITR value based on packets and byte counts during the last
 632 * interrupt.  The advantage of per interrupt computation is faster updates
 633 * and more accurate ITR for the current traffic pattern.  Constants in this
 634 * function were computed based on theoretical maximum wire speed and thresholds
 635 * were set based on testing data as well as attempting to minimize response
 636 * time while increasing bulk throughput.
 637 **/
 638static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
 639                                           enum latency_range itr_setting,
 640                                           int packets, int bytes)
 641{
 642        enum latency_range retval = itr_setting;
 643
 644        if (packets == 0)
 645                goto update_itr_done;
 646
 647        switch (itr_setting) {
 648        case lowest_latency:
 649                /* handle TSO and jumbo frames */
 650                if (bytes/packets > 8000)
 651                        retval = bulk_latency;
 652                else if ((packets < 5) && (bytes > 512))
 653                        retval = low_latency;
 654                break;
 655        case low_latency:  /* 50 usec aka 20000 ints/s */
 656                if (bytes > 10000) {
 657                        /* this if handles the TSO accounting */
 658                        if (bytes/packets > 8000)
 659                                retval = bulk_latency;
 660                        else if ((packets < 10) || ((bytes/packets) > 1200))
 661                                retval = bulk_latency;
 662                        else if ((packets > 35))
 663                                retval = lowest_latency;
 664                } else if (bytes/packets > 2000) {
 665                        retval = bulk_latency;
 666                } else if (packets <= 2 && bytes < 512) {
 667                        retval = lowest_latency;
 668                }
 669                break;
 670        case bulk_latency: /* 250 usec aka 4000 ints/s */
 671                if (bytes > 25000) {
 672                        if (packets > 35)
 673                                retval = low_latency;
 674                } else if (bytes < 6000) {
 675                        retval = low_latency;
 676                }
 677                break;
 678        default:
 679                break;
 680        }
 681
 682update_itr_done:
 683        return retval;
 684}
 685
 686static int igbvf_range_to_itr(enum latency_range current_range)
 687{
 688        int new_itr;
 689
 690        switch (current_range) {
 691        /* counts and packets in update_itr are dependent on these numbers */
 692        case lowest_latency:
 693                new_itr = IGBVF_70K_ITR;
 694                break;
 695        case low_latency:
 696                new_itr = IGBVF_20K_ITR;
 697                break;
 698        case bulk_latency:
 699                new_itr = IGBVF_4K_ITR;
 700                break;
 701        default:
 702                new_itr = IGBVF_START_ITR;
 703                break;
 704        }
 705        return new_itr;
 706}
 707
 708static void igbvf_set_itr(struct igbvf_adapter *adapter)
 709{
 710        u32 new_itr;
 711
 712        adapter->tx_ring->itr_range =
 713                        igbvf_update_itr(adapter,
 714                                         adapter->tx_ring->itr_val,
 715                                         adapter->total_tx_packets,
 716                                         adapter->total_tx_bytes);
 717
 718        /* conservative mode (itr 3) eliminates the lowest_latency setting */
 719        if (adapter->requested_itr == 3 &&
 720            adapter->tx_ring->itr_range == lowest_latency)
 721                adapter->tx_ring->itr_range = low_latency;
 722
 723        new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
 724
 725        if (new_itr != adapter->tx_ring->itr_val) {
 726                u32 current_itr = adapter->tx_ring->itr_val;
 727                /* this attempts to bias the interrupt rate towards Bulk
 728                 * by adding intermediate steps when interrupt rate is
 729                 * increasing
 730                 */
 731                new_itr = new_itr > current_itr ?
 732                          min(current_itr + (new_itr >> 2), new_itr) :
 733                          new_itr;
 734                adapter->tx_ring->itr_val = new_itr;
 735
 736                adapter->tx_ring->set_itr = 1;
 737        }
 738
 739        adapter->rx_ring->itr_range =
 740                        igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
 741                                         adapter->total_rx_packets,
 742                                         adapter->total_rx_bytes);
 743        if (adapter->requested_itr == 3 &&
 744            adapter->rx_ring->itr_range == lowest_latency)
 745                adapter->rx_ring->itr_range = low_latency;
 746
 747        new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
 748
 749        if (new_itr != adapter->rx_ring->itr_val) {
 750                u32 current_itr = adapter->rx_ring->itr_val;
 751
 752                new_itr = new_itr > current_itr ?
 753                          min(current_itr + (new_itr >> 2), new_itr) :
 754                          new_itr;
 755                adapter->rx_ring->itr_val = new_itr;
 756
 757                adapter->rx_ring->set_itr = 1;
 758        }
 759}
 760
 761/**
 762 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
 763 * @adapter: board private structure
 764 *
 765 * returns true if ring is completely cleaned
 766 **/
 767static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
 768{
 769        struct igbvf_adapter *adapter = tx_ring->adapter;
 770        struct net_device *netdev = adapter->netdev;
 771        struct igbvf_buffer *buffer_info;
 772        struct sk_buff *skb;
 773        union e1000_adv_tx_desc *tx_desc, *eop_desc;
 774        unsigned int total_bytes = 0, total_packets = 0;
 775        unsigned int i, count = 0;
 776        bool cleaned = false;
 777
 778        i = tx_ring->next_to_clean;
 779        buffer_info = &tx_ring->buffer_info[i];
 780        eop_desc = buffer_info->next_to_watch;
 781
 782        do {
 783                /* if next_to_watch is not set then there is no work pending */
 784                if (!eop_desc)
 785                        break;
 786
 787                /* prevent any other reads prior to eop_desc */
 788                smp_rmb();
 789
 790                /* if DD is not set pending work has not been completed */
 791                if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
 792                        break;
 793
 794                /* clear next_to_watch to prevent false hangs */
 795                buffer_info->next_to_watch = NULL;
 796
 797                for (cleaned = false; !cleaned; count++) {
 798                        tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
 799                        cleaned = (tx_desc == eop_desc);
 800                        skb = buffer_info->skb;
 801
 802                        if (skb) {
 803                                unsigned int segs, bytecount;
 804
 805                                /* gso_segs is currently only valid for tcp */
 806                                segs = skb_shinfo(skb)->gso_segs ?: 1;
 807                                /* multiply data chunks by size of headers */
 808                                bytecount = ((segs - 1) * skb_headlen(skb)) +
 809                                            skb->len;
 810                                total_packets += segs;
 811                                total_bytes += bytecount;
 812                        }
 813
 814                        igbvf_put_txbuf(adapter, buffer_info);
 815                        tx_desc->wb.status = 0;
 816
 817                        i++;
 818                        if (i == tx_ring->count)
 819                                i = 0;
 820
 821                        buffer_info = &tx_ring->buffer_info[i];
 822                }
 823
 824                eop_desc = buffer_info->next_to_watch;
 825        } while (count < tx_ring->count);
 826
 827        tx_ring->next_to_clean = i;
 828
 829        if (unlikely(count && netif_carrier_ok(netdev) &&
 830            igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
 831                /* Make sure that anybody stopping the queue after this
 832                 * sees the new next_to_clean.
 833                 */
 834                smp_mb();
 835                if (netif_queue_stopped(netdev) &&
 836                    !(test_bit(__IGBVF_DOWN, &adapter->state))) {
 837                        netif_wake_queue(netdev);
 838                        ++adapter->restart_queue;
 839                }
 840        }
 841
 842        netdev->stats.tx_bytes += total_bytes;
 843        netdev->stats.tx_packets += total_packets;
 844        return count < tx_ring->count;
 845}
 846
 847static irqreturn_t igbvf_msix_other(int irq, void *data)
 848{
 849        struct net_device *netdev = data;
 850        struct igbvf_adapter *adapter = netdev_priv(netdev);
 851        struct e1000_hw *hw = &adapter->hw;
 852
 853        adapter->int_counter1++;
 854
 855        hw->mac.get_link_status = 1;
 856        if (!test_bit(__IGBVF_DOWN, &adapter->state))
 857                mod_timer(&adapter->watchdog_timer, jiffies + 1);
 858
 859        ew32(EIMS, adapter->eims_other);
 860
 861        return IRQ_HANDLED;
 862}
 863
 864static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
 865{
 866        struct net_device *netdev = data;
 867        struct igbvf_adapter *adapter = netdev_priv(netdev);
 868        struct e1000_hw *hw = &adapter->hw;
 869        struct igbvf_ring *tx_ring = adapter->tx_ring;
 870
 871        if (tx_ring->set_itr) {
 872                writel(tx_ring->itr_val,
 873                       adapter->hw.hw_addr + tx_ring->itr_register);
 874                adapter->tx_ring->set_itr = 0;
 875        }
 876
 877        adapter->total_tx_bytes = 0;
 878        adapter->total_tx_packets = 0;
 879
 880        /* auto mask will automatically re-enable the interrupt when we write
 881         * EICS
 882         */
 883        if (!igbvf_clean_tx_irq(tx_ring))
 884                /* Ring was not completely cleaned, so fire another interrupt */
 885                ew32(EICS, tx_ring->eims_value);
 886        else
 887                ew32(EIMS, tx_ring->eims_value);
 888
 889        return IRQ_HANDLED;
 890}
 891
 892static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
 893{
 894        struct net_device *netdev = data;
 895        struct igbvf_adapter *adapter = netdev_priv(netdev);
 896
 897        adapter->int_counter0++;
 898
 899        /* Write the ITR value calculated at the end of the
 900         * previous interrupt.
 901         */
 902        if (adapter->rx_ring->set_itr) {
 903                writel(adapter->rx_ring->itr_val,
 904                       adapter->hw.hw_addr + adapter->rx_ring->itr_register);
 905                adapter->rx_ring->set_itr = 0;
 906        }
 907
 908        if (napi_schedule_prep(&adapter->rx_ring->napi)) {
 909                adapter->total_rx_bytes = 0;
 910                adapter->total_rx_packets = 0;
 911                __napi_schedule(&adapter->rx_ring->napi);
 912        }
 913
 914        return IRQ_HANDLED;
 915}
 916
 917#define IGBVF_NO_QUEUE -1
 918
 919static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
 920                                int tx_queue, int msix_vector)
 921{
 922        struct e1000_hw *hw = &adapter->hw;
 923        u32 ivar, index;
 924
 925        /* 82576 uses a table-based method for assigning vectors.
 926         * Each queue has a single entry in the table to which we write
 927         * a vector number along with a "valid" bit.  Sadly, the layout
 928         * of the table is somewhat counterintuitive.
 929         */
 930        if (rx_queue > IGBVF_NO_QUEUE) {
 931                index = (rx_queue >> 1);
 932                ivar = array_er32(IVAR0, index);
 933                if (rx_queue & 0x1) {
 934                        /* vector goes into third byte of register */
 935                        ivar = ivar & 0xFF00FFFF;
 936                        ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
 937                } else {
 938                        /* vector goes into low byte of register */
 939                        ivar = ivar & 0xFFFFFF00;
 940                        ivar |= msix_vector | E1000_IVAR_VALID;
 941                }
 942                adapter->rx_ring[rx_queue].eims_value = BIT(msix_vector);
 943                array_ew32(IVAR0, index, ivar);
 944        }
 945        if (tx_queue > IGBVF_NO_QUEUE) {
 946                index = (tx_queue >> 1);
 947                ivar = array_er32(IVAR0, index);
 948                if (tx_queue & 0x1) {
 949                        /* vector goes into high byte of register */
 950                        ivar = ivar & 0x00FFFFFF;
 951                        ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
 952                } else {
 953                        /* vector goes into second byte of register */
 954                        ivar = ivar & 0xFFFF00FF;
 955                        ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
 956                }
 957                adapter->tx_ring[tx_queue].eims_value = BIT(msix_vector);
 958                array_ew32(IVAR0, index, ivar);
 959        }
 960}
 961
 962/**
 963 * igbvf_configure_msix - Configure MSI-X hardware
 964 * @adapter: board private structure
 965 *
 966 * igbvf_configure_msix sets up the hardware to properly
 967 * generate MSI-X interrupts.
 968 **/
 969static void igbvf_configure_msix(struct igbvf_adapter *adapter)
 970{
 971        u32 tmp;
 972        struct e1000_hw *hw = &adapter->hw;
 973        struct igbvf_ring *tx_ring = adapter->tx_ring;
 974        struct igbvf_ring *rx_ring = adapter->rx_ring;
 975        int vector = 0;
 976
 977        adapter->eims_enable_mask = 0;
 978
 979        igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
 980        adapter->eims_enable_mask |= tx_ring->eims_value;
 981        writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
 982        igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
 983        adapter->eims_enable_mask |= rx_ring->eims_value;
 984        writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
 985
 986        /* set vector for other causes, i.e. link changes */
 987
 988        tmp = (vector++ | E1000_IVAR_VALID);
 989
 990        ew32(IVAR_MISC, tmp);
 991
 992        adapter->eims_enable_mask = GENMASK(vector - 1, 0);
 993        adapter->eims_other = BIT(vector - 1);
 994        e1e_flush();
 995}
 996
 997static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
 998{
 999        if (adapter->msix_entries) {
1000                pci_disable_msix(adapter->pdev);
1001                kfree(adapter->msix_entries);
1002                adapter->msix_entries = NULL;
1003        }
1004}
1005
1006/**
1007 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1008 * @adapter: board private structure
1009 *
1010 * Attempt to configure interrupts using the best available
1011 * capabilities of the hardware and kernel.
1012 **/
1013static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1014{
1015        int err = -ENOMEM;
1016        int i;
1017
1018        /* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
1019        adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1020                                        GFP_KERNEL);
1021        if (adapter->msix_entries) {
1022                for (i = 0; i < 3; i++)
1023                        adapter->msix_entries[i].entry = i;
1024
1025                err = pci_enable_msix_range(adapter->pdev,
1026                                            adapter->msix_entries, 3, 3);
1027        }
1028
1029        if (err < 0) {
1030                /* MSI-X failed */
1031                dev_err(&adapter->pdev->dev,
1032                        "Failed to initialize MSI-X interrupts.\n");
1033                igbvf_reset_interrupt_capability(adapter);
1034        }
1035}
1036
1037/**
1038 * igbvf_request_msix - Initialize MSI-X interrupts
1039 * @adapter: board private structure
1040 *
1041 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1042 * kernel.
1043 **/
1044static int igbvf_request_msix(struct igbvf_adapter *adapter)
1045{
1046        struct net_device *netdev = adapter->netdev;
1047        int err = 0, vector = 0;
1048
1049        if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1050                sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1051                sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1052        } else {
1053                memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1054                memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1055        }
1056
1057        err = request_irq(adapter->msix_entries[vector].vector,
1058                          igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1059                          netdev);
1060        if (err)
1061                goto out;
1062
1063        adapter->tx_ring->itr_register = E1000_EITR(vector);
1064        adapter->tx_ring->itr_val = adapter->current_itr;
1065        vector++;
1066
1067        err = request_irq(adapter->msix_entries[vector].vector,
1068                          igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1069                          netdev);
1070        if (err)
1071                goto out;
1072
1073        adapter->rx_ring->itr_register = E1000_EITR(vector);
1074        adapter->rx_ring->itr_val = adapter->current_itr;
1075        vector++;
1076
1077        err = request_irq(adapter->msix_entries[vector].vector,
1078                          igbvf_msix_other, 0, netdev->name, netdev);
1079        if (err)
1080                goto out;
1081
1082        igbvf_configure_msix(adapter);
1083        return 0;
1084out:
1085        return err;
1086}
1087
1088/**
1089 * igbvf_alloc_queues - Allocate memory for all rings
1090 * @adapter: board private structure to initialize
1091 **/
1092static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1093{
1094        struct net_device *netdev = adapter->netdev;
1095
1096        adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1097        if (!adapter->tx_ring)
1098                return -ENOMEM;
1099
1100        adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1101        if (!adapter->rx_ring) {
1102                kfree(adapter->tx_ring);
1103                return -ENOMEM;
1104        }
1105
1106        netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1107
1108        return 0;
1109}
1110
1111/**
1112 * igbvf_request_irq - initialize interrupts
1113 * @adapter: board private structure
1114 *
1115 * Attempts to configure interrupts using the best available
1116 * capabilities of the hardware and kernel.
1117 **/
1118static int igbvf_request_irq(struct igbvf_adapter *adapter)
1119{
1120        int err = -1;
1121
1122        /* igbvf supports msi-x only */
1123        if (adapter->msix_entries)
1124                err = igbvf_request_msix(adapter);
1125
1126        if (!err)
1127                return err;
1128
1129        dev_err(&adapter->pdev->dev,
1130                "Unable to allocate interrupt, Error: %d\n", err);
1131
1132        return err;
1133}
1134
1135static void igbvf_free_irq(struct igbvf_adapter *adapter)
1136{
1137        struct net_device *netdev = adapter->netdev;
1138        int vector;
1139
1140        if (adapter->msix_entries) {
1141                for (vector = 0; vector < 3; vector++)
1142                        free_irq(adapter->msix_entries[vector].vector, netdev);
1143        }
1144}
1145
1146/**
1147 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1148 * @adapter: board private structure
1149 **/
1150static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1151{
1152        struct e1000_hw *hw = &adapter->hw;
1153
1154        ew32(EIMC, ~0);
1155
1156        if (adapter->msix_entries)
1157                ew32(EIAC, 0);
1158}
1159
1160/**
1161 * igbvf_irq_enable - Enable default interrupt generation settings
1162 * @adapter: board private structure
1163 **/
1164static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1165{
1166        struct e1000_hw *hw = &adapter->hw;
1167
1168        ew32(EIAC, adapter->eims_enable_mask);
1169        ew32(EIAM, adapter->eims_enable_mask);
1170        ew32(EIMS, adapter->eims_enable_mask);
1171}
1172
1173/**
1174 * igbvf_poll - NAPI Rx polling callback
1175 * @napi: struct associated with this polling callback
1176 * @budget: amount of packets driver is allowed to process this poll
1177 **/
1178static int igbvf_poll(struct napi_struct *napi, int budget)
1179{
1180        struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1181        struct igbvf_adapter *adapter = rx_ring->adapter;
1182        struct e1000_hw *hw = &adapter->hw;
1183        int work_done = 0;
1184
1185        igbvf_clean_rx_irq(adapter, &work_done, budget);
1186
1187        if (work_done == budget)
1188                return budget;
1189
1190        /* Exit the polling mode, but don't re-enable interrupts if stack might
1191         * poll us due to busy-polling
1192         */
1193        if (likely(napi_complete_done(napi, work_done))) {
1194                if (adapter->requested_itr & 3)
1195                        igbvf_set_itr(adapter);
1196
1197                if (!test_bit(__IGBVF_DOWN, &adapter->state))
1198                        ew32(EIMS, adapter->rx_ring->eims_value);
1199        }
1200
1201        return work_done;
1202}
1203
1204/**
1205 * igbvf_set_rlpml - set receive large packet maximum length
1206 * @adapter: board private structure
1207 *
1208 * Configure the maximum size of packets that will be received
1209 */
1210static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1211{
1212        int max_frame_size;
1213        struct e1000_hw *hw = &adapter->hw;
1214
1215        max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1216
1217        spin_lock_bh(&hw->mbx_lock);
1218
1219        e1000_rlpml_set_vf(hw, max_frame_size);
1220
1221        spin_unlock_bh(&hw->mbx_lock);
1222}
1223
1224static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1225                                 __be16 proto, u16 vid)
1226{
1227        struct igbvf_adapter *adapter = netdev_priv(netdev);
1228        struct e1000_hw *hw = &adapter->hw;
1229
1230        spin_lock_bh(&hw->mbx_lock);
1231
1232        if (hw->mac.ops.set_vfta(hw, vid, true)) {
1233                dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1234                spin_unlock_bh(&hw->mbx_lock);
1235                return -EINVAL;
1236        }
1237
1238        spin_unlock_bh(&hw->mbx_lock);
1239
1240        set_bit(vid, adapter->active_vlans);
1241        return 0;
1242}
1243
1244static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1245                                  __be16 proto, u16 vid)
1246{
1247        struct igbvf_adapter *adapter = netdev_priv(netdev);
1248        struct e1000_hw *hw = &adapter->hw;
1249
1250        spin_lock_bh(&hw->mbx_lock);
1251
1252        if (hw->mac.ops.set_vfta(hw, vid, false)) {
1253                dev_err(&adapter->pdev->dev,
1254                        "Failed to remove vlan id %d\n", vid);
1255                spin_unlock_bh(&hw->mbx_lock);
1256                return -EINVAL;
1257        }
1258
1259        spin_unlock_bh(&hw->mbx_lock);
1260
1261        clear_bit(vid, adapter->active_vlans);
1262        return 0;
1263}
1264
1265static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1266{
1267        u16 vid;
1268
1269        for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1270                igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1271}
1272
1273/**
1274 * igbvf_configure_tx - Configure Transmit Unit after Reset
1275 * @adapter: board private structure
1276 *
1277 * Configure the Tx unit of the MAC after a reset.
1278 **/
1279static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1280{
1281        struct e1000_hw *hw = &adapter->hw;
1282        struct igbvf_ring *tx_ring = adapter->tx_ring;
1283        u64 tdba;
1284        u32 txdctl, dca_txctrl;
1285
1286        /* disable transmits */
1287        txdctl = er32(TXDCTL(0));
1288        ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1289        e1e_flush();
1290        msleep(10);
1291
1292        /* Setup the HW Tx Head and Tail descriptor pointers */
1293        ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1294        tdba = tx_ring->dma;
1295        ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1296        ew32(TDBAH(0), (tdba >> 32));
1297        ew32(TDH(0), 0);
1298        ew32(TDT(0), 0);
1299        tx_ring->head = E1000_TDH(0);
1300        tx_ring->tail = E1000_TDT(0);
1301
1302        /* Turn off Relaxed Ordering on head write-backs.  The writebacks
1303         * MUST be delivered in order or it will completely screw up
1304         * our bookkeeping.
1305         */
1306        dca_txctrl = er32(DCA_TXCTRL(0));
1307        dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1308        ew32(DCA_TXCTRL(0), dca_txctrl);
1309
1310        /* enable transmits */
1311        txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1312        ew32(TXDCTL(0), txdctl);
1313
1314        /* Setup Transmit Descriptor Settings for eop descriptor */
1315        adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1316
1317        /* enable Report Status bit */
1318        adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1319}
1320
1321/**
1322 * igbvf_setup_srrctl - configure the receive control registers
1323 * @adapter: Board private structure
1324 **/
1325static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1326{
1327        struct e1000_hw *hw = &adapter->hw;
1328        u32 srrctl = 0;
1329
1330        srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1331                    E1000_SRRCTL_BSIZEHDR_MASK |
1332                    E1000_SRRCTL_BSIZEPKT_MASK);
1333
1334        /* Enable queue drop to avoid head of line blocking */
1335        srrctl |= E1000_SRRCTL_DROP_EN;
1336
1337        /* Setup buffer sizes */
1338        srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1339                  E1000_SRRCTL_BSIZEPKT_SHIFT;
1340
1341        if (adapter->rx_buffer_len < 2048) {
1342                adapter->rx_ps_hdr_size = 0;
1343                srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1344        } else {
1345                adapter->rx_ps_hdr_size = 128;
1346                srrctl |= adapter->rx_ps_hdr_size <<
1347                          E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1348                srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1349        }
1350
1351        ew32(SRRCTL(0), srrctl);
1352}
1353
1354/**
1355 * igbvf_configure_rx - Configure Receive Unit after Reset
1356 * @adapter: board private structure
1357 *
1358 * Configure the Rx unit of the MAC after a reset.
1359 **/
1360static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1361{
1362        struct e1000_hw *hw = &adapter->hw;
1363        struct igbvf_ring *rx_ring = adapter->rx_ring;
1364        u64 rdba;
1365        u32 rxdctl;
1366
1367        /* disable receives */
1368        rxdctl = er32(RXDCTL(0));
1369        ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1370        e1e_flush();
1371        msleep(10);
1372
1373        /* Setup the HW Rx Head and Tail Descriptor Pointers and
1374         * the Base and Length of the Rx Descriptor Ring
1375         */
1376        rdba = rx_ring->dma;
1377        ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1378        ew32(RDBAH(0), (rdba >> 32));
1379        ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1380        rx_ring->head = E1000_RDH(0);
1381        rx_ring->tail = E1000_RDT(0);
1382        ew32(RDH(0), 0);
1383        ew32(RDT(0), 0);
1384
1385        rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1386        rxdctl &= 0xFFF00000;
1387        rxdctl |= IGBVF_RX_PTHRESH;
1388        rxdctl |= IGBVF_RX_HTHRESH << 8;
1389        rxdctl |= IGBVF_RX_WTHRESH << 16;
1390
1391        igbvf_set_rlpml(adapter);
1392
1393        /* enable receives */
1394        ew32(RXDCTL(0), rxdctl);
1395}
1396
1397/**
1398 * igbvf_set_multi - Multicast and Promiscuous mode set
1399 * @netdev: network interface device structure
1400 *
1401 * The set_multi entry point is called whenever the multicast address
1402 * list or the network interface flags are updated.  This routine is
1403 * responsible for configuring the hardware for proper multicast,
1404 * promiscuous mode, and all-multi behavior.
1405 **/
1406static void igbvf_set_multi(struct net_device *netdev)
1407{
1408        struct igbvf_adapter *adapter = netdev_priv(netdev);
1409        struct e1000_hw *hw = &adapter->hw;
1410        struct netdev_hw_addr *ha;
1411        u8  *mta_list = NULL;
1412        int i;
1413
1414        if (!netdev_mc_empty(netdev)) {
1415                mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1416                                         GFP_ATOMIC);
1417                if (!mta_list)
1418                        return;
1419        }
1420
1421        /* prepare a packed array of only addresses. */
1422        i = 0;
1423        netdev_for_each_mc_addr(ha, netdev)
1424                memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1425
1426        spin_lock_bh(&hw->mbx_lock);
1427
1428        hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1429
1430        spin_unlock_bh(&hw->mbx_lock);
1431        kfree(mta_list);
1432}
1433
1434/**
1435 * igbvf_set_uni - Configure unicast MAC filters
1436 * @netdev: network interface device structure
1437 *
1438 * This routine is responsible for configuring the hardware for proper
1439 * unicast filters.
1440 **/
1441static int igbvf_set_uni(struct net_device *netdev)
1442{
1443        struct igbvf_adapter *adapter = netdev_priv(netdev);
1444        struct e1000_hw *hw = &adapter->hw;
1445
1446        if (netdev_uc_count(netdev) > IGBVF_MAX_MAC_FILTERS) {
1447                pr_err("Too many unicast filters - No Space\n");
1448                return -ENOSPC;
1449        }
1450
1451        spin_lock_bh(&hw->mbx_lock);
1452
1453        /* Clear all unicast MAC filters */
1454        hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_CLR, NULL);
1455
1456        spin_unlock_bh(&hw->mbx_lock);
1457
1458        if (!netdev_uc_empty(netdev)) {
1459                struct netdev_hw_addr *ha;
1460
1461                /* Add MAC filters one by one */
1462                netdev_for_each_uc_addr(ha, netdev) {
1463                        spin_lock_bh(&hw->mbx_lock);
1464
1465                        hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_ADD,
1466                                                ha->addr);
1467
1468                        spin_unlock_bh(&hw->mbx_lock);
1469                        udelay(200);
1470                }
1471        }
1472
1473        return 0;
1474}
1475
1476static void igbvf_set_rx_mode(struct net_device *netdev)
1477{
1478        igbvf_set_multi(netdev);
1479        igbvf_set_uni(netdev);
1480}
1481
1482/**
1483 * igbvf_configure - configure the hardware for Rx and Tx
1484 * @adapter: private board structure
1485 **/
1486static void igbvf_configure(struct igbvf_adapter *adapter)
1487{
1488        igbvf_set_rx_mode(adapter->netdev);
1489
1490        igbvf_restore_vlan(adapter);
1491
1492        igbvf_configure_tx(adapter);
1493        igbvf_setup_srrctl(adapter);
1494        igbvf_configure_rx(adapter);
1495        igbvf_alloc_rx_buffers(adapter->rx_ring,
1496                               igbvf_desc_unused(adapter->rx_ring));
1497}
1498
1499/* igbvf_reset - bring the hardware into a known good state
1500 * @adapter: private board structure
1501 *
1502 * This function boots the hardware and enables some settings that
1503 * require a configuration cycle of the hardware - those cannot be
1504 * set/changed during runtime. After reset the device needs to be
1505 * properly configured for Rx, Tx etc.
1506 */
1507static void igbvf_reset(struct igbvf_adapter *adapter)
1508{
1509        struct e1000_mac_info *mac = &adapter->hw.mac;
1510        struct net_device *netdev = adapter->netdev;
1511        struct e1000_hw *hw = &adapter->hw;
1512
1513        spin_lock_bh(&hw->mbx_lock);
1514
1515        /* Allow time for pending master requests to run */
1516        if (mac->ops.reset_hw(hw))
1517                dev_err(&adapter->pdev->dev, "PF still resetting\n");
1518
1519        mac->ops.init_hw(hw);
1520
1521        spin_unlock_bh(&hw->mbx_lock);
1522
1523        if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1524                memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1525                       netdev->addr_len);
1526                memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1527                       netdev->addr_len);
1528        }
1529
1530        adapter->last_reset = jiffies;
1531}
1532
1533int igbvf_up(struct igbvf_adapter *adapter)
1534{
1535        struct e1000_hw *hw = &adapter->hw;
1536
1537        /* hardware has been reset, we need to reload some things */
1538        igbvf_configure(adapter);
1539
1540        clear_bit(__IGBVF_DOWN, &adapter->state);
1541
1542        napi_enable(&adapter->rx_ring->napi);
1543        if (adapter->msix_entries)
1544                igbvf_configure_msix(adapter);
1545
1546        /* Clear any pending interrupts. */
1547        er32(EICR);
1548        igbvf_irq_enable(adapter);
1549
1550        /* start the watchdog */
1551        hw->mac.get_link_status = 1;
1552        mod_timer(&adapter->watchdog_timer, jiffies + 1);
1553
1554        return 0;
1555}
1556
1557void igbvf_down(struct igbvf_adapter *adapter)
1558{
1559        struct net_device *netdev = adapter->netdev;
1560        struct e1000_hw *hw = &adapter->hw;
1561        u32 rxdctl, txdctl;
1562
1563        /* signal that we're down so the interrupt handler does not
1564         * reschedule our watchdog timer
1565         */
1566        set_bit(__IGBVF_DOWN, &adapter->state);
1567
1568        /* disable receives in the hardware */
1569        rxdctl = er32(RXDCTL(0));
1570        ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1571
1572        netif_carrier_off(netdev);
1573        netif_stop_queue(netdev);
1574
1575        /* disable transmits in the hardware */
1576        txdctl = er32(TXDCTL(0));
1577        ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1578
1579        /* flush both disables and wait for them to finish */
1580        e1e_flush();
1581        msleep(10);
1582
1583        napi_disable(&adapter->rx_ring->napi);
1584
1585        igbvf_irq_disable(adapter);
1586
1587        del_timer_sync(&adapter->watchdog_timer);
1588
1589        /* record the stats before reset*/
1590        igbvf_update_stats(adapter);
1591
1592        adapter->link_speed = 0;
1593        adapter->link_duplex = 0;
1594
1595        igbvf_reset(adapter);
1596        igbvf_clean_tx_ring(adapter->tx_ring);
1597        igbvf_clean_rx_ring(adapter->rx_ring);
1598}
1599
1600void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1601{
1602        might_sleep();
1603        while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1604                usleep_range(1000, 2000);
1605        igbvf_down(adapter);
1606        igbvf_up(adapter);
1607        clear_bit(__IGBVF_RESETTING, &adapter->state);
1608}
1609
1610/**
1611 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1612 * @adapter: board private structure to initialize
1613 *
1614 * igbvf_sw_init initializes the Adapter private data structure.
1615 * Fields are initialized based on PCI device information and
1616 * OS network device settings (MTU size).
1617 **/
1618static int igbvf_sw_init(struct igbvf_adapter *adapter)
1619{
1620        struct net_device *netdev = adapter->netdev;
1621        s32 rc;
1622
1623        adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1624        adapter->rx_ps_hdr_size = 0;
1625        adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1626        adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1627
1628        adapter->tx_int_delay = 8;
1629        adapter->tx_abs_int_delay = 32;
1630        adapter->rx_int_delay = 0;
1631        adapter->rx_abs_int_delay = 8;
1632        adapter->requested_itr = 3;
1633        adapter->current_itr = IGBVF_START_ITR;
1634
1635        /* Set various function pointers */
1636        adapter->ei->init_ops(&adapter->hw);
1637
1638        rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1639        if (rc)
1640                return rc;
1641
1642        rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1643        if (rc)
1644                return rc;
1645
1646        igbvf_set_interrupt_capability(adapter);
1647
1648        if (igbvf_alloc_queues(adapter))
1649                return -ENOMEM;
1650
1651        spin_lock_init(&adapter->tx_queue_lock);
1652
1653        /* Explicitly disable IRQ since the NIC can be in any state. */
1654        igbvf_irq_disable(adapter);
1655
1656        spin_lock_init(&adapter->stats_lock);
1657        spin_lock_init(&adapter->hw.mbx_lock);
1658
1659        set_bit(__IGBVF_DOWN, &adapter->state);
1660        return 0;
1661}
1662
1663static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1664{
1665        struct e1000_hw *hw = &adapter->hw;
1666
1667        adapter->stats.last_gprc = er32(VFGPRC);
1668        adapter->stats.last_gorc = er32(VFGORC);
1669        adapter->stats.last_gptc = er32(VFGPTC);
1670        adapter->stats.last_gotc = er32(VFGOTC);
1671        adapter->stats.last_mprc = er32(VFMPRC);
1672        adapter->stats.last_gotlbc = er32(VFGOTLBC);
1673        adapter->stats.last_gptlbc = er32(VFGPTLBC);
1674        adapter->stats.last_gorlbc = er32(VFGORLBC);
1675        adapter->stats.last_gprlbc = er32(VFGPRLBC);
1676
1677        adapter->stats.base_gprc = er32(VFGPRC);
1678        adapter->stats.base_gorc = er32(VFGORC);
1679        adapter->stats.base_gptc = er32(VFGPTC);
1680        adapter->stats.base_gotc = er32(VFGOTC);
1681        adapter->stats.base_mprc = er32(VFMPRC);
1682        adapter->stats.base_gotlbc = er32(VFGOTLBC);
1683        adapter->stats.base_gptlbc = er32(VFGPTLBC);
1684        adapter->stats.base_gorlbc = er32(VFGORLBC);
1685        adapter->stats.base_gprlbc = er32(VFGPRLBC);
1686}
1687
1688/**
1689 * igbvf_open - Called when a network interface is made active
1690 * @netdev: network interface device structure
1691 *
1692 * Returns 0 on success, negative value on failure
1693 *
1694 * The open entry point is called when a network interface is made
1695 * active by the system (IFF_UP).  At this point all resources needed
1696 * for transmit and receive operations are allocated, the interrupt
1697 * handler is registered with the OS, the watchdog timer is started,
1698 * and the stack is notified that the interface is ready.
1699 **/
1700static int igbvf_open(struct net_device *netdev)
1701{
1702        struct igbvf_adapter *adapter = netdev_priv(netdev);
1703        struct e1000_hw *hw = &adapter->hw;
1704        int err;
1705
1706        /* disallow open during test */
1707        if (test_bit(__IGBVF_TESTING, &adapter->state))
1708                return -EBUSY;
1709
1710        /* allocate transmit descriptors */
1711        err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1712        if (err)
1713                goto err_setup_tx;
1714
1715        /* allocate receive descriptors */
1716        err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1717        if (err)
1718                goto err_setup_rx;
1719
1720        /* before we allocate an interrupt, we must be ready to handle it.
1721         * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1722         * as soon as we call pci_request_irq, so we have to setup our
1723         * clean_rx handler before we do so.
1724         */
1725        igbvf_configure(adapter);
1726
1727        err = igbvf_request_irq(adapter);
1728        if (err)
1729                goto err_req_irq;
1730
1731        /* From here on the code is the same as igbvf_up() */
1732        clear_bit(__IGBVF_DOWN, &adapter->state);
1733
1734        napi_enable(&adapter->rx_ring->napi);
1735
1736        /* clear any pending interrupts */
1737        er32(EICR);
1738
1739        igbvf_irq_enable(adapter);
1740
1741        /* start the watchdog */
1742        hw->mac.get_link_status = 1;
1743        mod_timer(&adapter->watchdog_timer, jiffies + 1);
1744
1745        return 0;
1746
1747err_req_irq:
1748        igbvf_free_rx_resources(adapter->rx_ring);
1749err_setup_rx:
1750        igbvf_free_tx_resources(adapter->tx_ring);
1751err_setup_tx:
1752        igbvf_reset(adapter);
1753
1754        return err;
1755}
1756
1757/**
1758 * igbvf_close - Disables a network interface
1759 * @netdev: network interface device structure
1760 *
1761 * Returns 0, this is not allowed to fail
1762 *
1763 * The close entry point is called when an interface is de-activated
1764 * by the OS.  The hardware is still under the drivers control, but
1765 * needs to be disabled.  A global MAC reset is issued to stop the
1766 * hardware, and all transmit and receive resources are freed.
1767 **/
1768static int igbvf_close(struct net_device *netdev)
1769{
1770        struct igbvf_adapter *adapter = netdev_priv(netdev);
1771
1772        WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1773        igbvf_down(adapter);
1774
1775        igbvf_free_irq(adapter);
1776
1777        igbvf_free_tx_resources(adapter->tx_ring);
1778        igbvf_free_rx_resources(adapter->rx_ring);
1779
1780        return 0;
1781}
1782
1783/**
1784 * igbvf_set_mac - Change the Ethernet Address of the NIC
1785 * @netdev: network interface device structure
1786 * @p: pointer to an address structure
1787 *
1788 * Returns 0 on success, negative on failure
1789 **/
1790static int igbvf_set_mac(struct net_device *netdev, void *p)
1791{
1792        struct igbvf_adapter *adapter = netdev_priv(netdev);
1793        struct e1000_hw *hw = &adapter->hw;
1794        struct sockaddr *addr = p;
1795
1796        if (!is_valid_ether_addr(addr->sa_data))
1797                return -EADDRNOTAVAIL;
1798
1799        memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1800
1801        spin_lock_bh(&hw->mbx_lock);
1802
1803        hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1804
1805        spin_unlock_bh(&hw->mbx_lock);
1806
1807        if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1808                return -EADDRNOTAVAIL;
1809
1810        memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1811
1812        return 0;
1813}
1814
1815#define UPDATE_VF_COUNTER(reg, name) \
1816{ \
1817        u32 current_counter = er32(reg); \
1818        if (current_counter < adapter->stats.last_##name) \
1819                adapter->stats.name += 0x100000000LL; \
1820        adapter->stats.last_##name = current_counter; \
1821        adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1822        adapter->stats.name |= current_counter; \
1823}
1824
1825/**
1826 * igbvf_update_stats - Update the board statistics counters
1827 * @adapter: board private structure
1828**/
1829void igbvf_update_stats(struct igbvf_adapter *adapter)
1830{
1831        struct e1000_hw *hw = &adapter->hw;
1832        struct pci_dev *pdev = adapter->pdev;
1833
1834        /* Prevent stats update while adapter is being reset, link is down
1835         * or if the pci connection is down.
1836         */
1837        if (adapter->link_speed == 0)
1838                return;
1839
1840        if (test_bit(__IGBVF_RESETTING, &adapter->state))
1841                return;
1842
1843        if (pci_channel_offline(pdev))
1844                return;
1845
1846        UPDATE_VF_COUNTER(VFGPRC, gprc);
1847        UPDATE_VF_COUNTER(VFGORC, gorc);
1848        UPDATE_VF_COUNTER(VFGPTC, gptc);
1849        UPDATE_VF_COUNTER(VFGOTC, gotc);
1850        UPDATE_VF_COUNTER(VFMPRC, mprc);
1851        UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1852        UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1853        UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1854        UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1855
1856        /* Fill out the OS statistics structure */
1857        adapter->netdev->stats.multicast = adapter->stats.mprc;
1858}
1859
1860static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1861{
1862        dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1863                 adapter->link_speed,
1864                 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1865}
1866
1867static bool igbvf_has_link(struct igbvf_adapter *adapter)
1868{
1869        struct e1000_hw *hw = &adapter->hw;
1870        s32 ret_val = E1000_SUCCESS;
1871        bool link_active;
1872
1873        /* If interface is down, stay link down */
1874        if (test_bit(__IGBVF_DOWN, &adapter->state))
1875                return false;
1876
1877        spin_lock_bh(&hw->mbx_lock);
1878
1879        ret_val = hw->mac.ops.check_for_link(hw);
1880
1881        spin_unlock_bh(&hw->mbx_lock);
1882
1883        link_active = !hw->mac.get_link_status;
1884
1885        /* if check for link returns error we will need to reset */
1886        if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1887                schedule_work(&adapter->reset_task);
1888
1889        return link_active;
1890}
1891
1892/**
1893 * igbvf_watchdog - Timer Call-back
1894 * @data: pointer to adapter cast into an unsigned long
1895 **/
1896static void igbvf_watchdog(struct timer_list *t)
1897{
1898        struct igbvf_adapter *adapter = from_timer(adapter, t, watchdog_timer);
1899
1900        /* Do the rest outside of interrupt context */
1901        schedule_work(&adapter->watchdog_task);
1902}
1903
1904static void igbvf_watchdog_task(struct work_struct *work)
1905{
1906        struct igbvf_adapter *adapter = container_of(work,
1907                                                     struct igbvf_adapter,
1908                                                     watchdog_task);
1909        struct net_device *netdev = adapter->netdev;
1910        struct e1000_mac_info *mac = &adapter->hw.mac;
1911        struct igbvf_ring *tx_ring = adapter->tx_ring;
1912        struct e1000_hw *hw = &adapter->hw;
1913        u32 link;
1914        int tx_pending = 0;
1915
1916        link = igbvf_has_link(adapter);
1917
1918        if (link) {
1919                if (!netif_carrier_ok(netdev)) {
1920                        mac->ops.get_link_up_info(&adapter->hw,
1921                                                  &adapter->link_speed,
1922                                                  &adapter->link_duplex);
1923                        igbvf_print_link_info(adapter);
1924
1925                        netif_carrier_on(netdev);
1926                        netif_wake_queue(netdev);
1927                }
1928        } else {
1929                if (netif_carrier_ok(netdev)) {
1930                        adapter->link_speed = 0;
1931                        adapter->link_duplex = 0;
1932                        dev_info(&adapter->pdev->dev, "Link is Down\n");
1933                        netif_carrier_off(netdev);
1934                        netif_stop_queue(netdev);
1935                }
1936        }
1937
1938        if (netif_carrier_ok(netdev)) {
1939                igbvf_update_stats(adapter);
1940        } else {
1941                tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1942                              tx_ring->count);
1943                if (tx_pending) {
1944                        /* We've lost link, so the controller stops DMA,
1945                         * but we've got queued Tx work that's never going
1946                         * to get done, so reset controller to flush Tx.
1947                         * (Do the reset outside of interrupt context).
1948                         */
1949                        adapter->tx_timeout_count++;
1950                        schedule_work(&adapter->reset_task);
1951                }
1952        }
1953
1954        /* Cause software interrupt to ensure Rx ring is cleaned */
1955        ew32(EICS, adapter->rx_ring->eims_value);
1956
1957        /* Reset the timer */
1958        if (!test_bit(__IGBVF_DOWN, &adapter->state))
1959                mod_timer(&adapter->watchdog_timer,
1960                          round_jiffies(jiffies + (2 * HZ)));
1961}
1962
1963#define IGBVF_TX_FLAGS_CSUM             0x00000001
1964#define IGBVF_TX_FLAGS_VLAN             0x00000002
1965#define IGBVF_TX_FLAGS_TSO              0x00000004
1966#define IGBVF_TX_FLAGS_IPV4             0x00000008
1967#define IGBVF_TX_FLAGS_VLAN_MASK        0xffff0000
1968#define IGBVF_TX_FLAGS_VLAN_SHIFT       16
1969
1970static void igbvf_tx_ctxtdesc(struct igbvf_ring *tx_ring, u32 vlan_macip_lens,
1971                              u32 type_tucmd, u32 mss_l4len_idx)
1972{
1973        struct e1000_adv_tx_context_desc *context_desc;
1974        struct igbvf_buffer *buffer_info;
1975        u16 i = tx_ring->next_to_use;
1976
1977        context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1978        buffer_info = &tx_ring->buffer_info[i];
1979
1980        i++;
1981        tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1982
1983        /* set bits to identify this as an advanced context descriptor */
1984        type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
1985
1986        context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
1987        context_desc->seqnum_seed       = 0;
1988        context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
1989        context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
1990
1991        buffer_info->time_stamp = jiffies;
1992        buffer_info->dma = 0;
1993}
1994
1995static int igbvf_tso(struct igbvf_ring *tx_ring,
1996                     struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1997{
1998        u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1999        union {
2000                struct iphdr *v4;
2001                struct ipv6hdr *v6;
2002                unsigned char *hdr;
2003        } ip;
2004        union {
2005                struct tcphdr *tcp;
2006                unsigned char *hdr;
2007        } l4;
2008        u32 paylen, l4_offset;
2009        int err;
2010
2011        if (skb->ip_summed != CHECKSUM_PARTIAL)
2012                return 0;
2013
2014        if (!skb_is_gso(skb))
2015                return 0;
2016
2017        err = skb_cow_head(skb, 0);
2018        if (err < 0)
2019                return err;
2020
2021        ip.hdr = skb_network_header(skb);
2022        l4.hdr = skb_checksum_start(skb);
2023
2024        /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2025        type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2026
2027        /* initialize outer IP header fields */
2028        if (ip.v4->version == 4) {
2029                unsigned char *csum_start = skb_checksum_start(skb);
2030                unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
2031
2032                /* IP header will have to cancel out any data that
2033                 * is not a part of the outer IP header
2034                 */
2035                ip.v4->check = csum_fold(csum_partial(trans_start,
2036                                                      csum_start - trans_start,
2037                                                      0));
2038                type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
2039
2040                ip.v4->tot_len = 0;
2041        } else {
2042                ip.v6->payload_len = 0;
2043        }
2044
2045        /* determine offset of inner transport header */
2046        l4_offset = l4.hdr - skb->data;
2047
2048        /* compute length of segmentation header */
2049        *hdr_len = (l4.tcp->doff * 4) + l4_offset;
2050
2051        /* remove payload length from inner checksum */
2052        paylen = skb->len - l4_offset;
2053        csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
2054
2055        /* MSS L4LEN IDX */
2056        mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
2057        mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
2058
2059        /* VLAN MACLEN IPLEN */
2060        vlan_macip_lens = l4.hdr - ip.hdr;
2061        vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
2062        vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2063
2064        igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
2065
2066        return 1;
2067}
2068
2069static inline bool igbvf_ipv6_csum_is_sctp(struct sk_buff *skb)
2070{
2071        unsigned int offset = 0;
2072
2073        ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
2074
2075        return offset == skb_checksum_start_offset(skb);
2076}
2077
2078static bool igbvf_tx_csum(struct igbvf_ring *tx_ring, struct sk_buff *skb,
2079                          u32 tx_flags, __be16 protocol)
2080{
2081        u32 vlan_macip_lens = 0;
2082        u32 type_tucmd = 0;
2083
2084        if (skb->ip_summed != CHECKSUM_PARTIAL) {
2085csum_failed:
2086                if (!(tx_flags & IGBVF_TX_FLAGS_VLAN))
2087                        return false;
2088                goto no_csum;
2089        }
2090
2091        switch (skb->csum_offset) {
2092        case offsetof(struct tcphdr, check):
2093                type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2094                fallthrough;
2095        case offsetof(struct udphdr, check):
2096                break;
2097        case offsetof(struct sctphdr, checksum):
2098                /* validate that this is actually an SCTP request */
2099                if (((protocol == htons(ETH_P_IP)) &&
2100                     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
2101                    ((protocol == htons(ETH_P_IPV6)) &&
2102                     igbvf_ipv6_csum_is_sctp(skb))) {
2103                        type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
2104                        break;
2105                }
2106                fallthrough;
2107        default:
2108                skb_checksum_help(skb);
2109                goto csum_failed;
2110        }
2111
2112        vlan_macip_lens = skb_checksum_start_offset(skb) -
2113                          skb_network_offset(skb);
2114no_csum:
2115        vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
2116        vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2117
2118        igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
2119        return true;
2120}
2121
2122static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2123{
2124        struct igbvf_adapter *adapter = netdev_priv(netdev);
2125
2126        /* there is enough descriptors then we don't need to worry  */
2127        if (igbvf_desc_unused(adapter->tx_ring) >= size)
2128                return 0;
2129
2130        netif_stop_queue(netdev);
2131
2132        /* Herbert's original patch had:
2133         *  smp_mb__after_netif_stop_queue();
2134         * but since that doesn't exist yet, just open code it.
2135         */
2136        smp_mb();
2137
2138        /* We need to check again just in case room has been made available */
2139        if (igbvf_desc_unused(adapter->tx_ring) < size)
2140                return -EBUSY;
2141
2142        netif_wake_queue(netdev);
2143
2144        ++adapter->restart_queue;
2145        return 0;
2146}
2147
2148#define IGBVF_MAX_TXD_PWR       16
2149#define IGBVF_MAX_DATA_PER_TXD  (1u << IGBVF_MAX_TXD_PWR)
2150
2151static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2152                                   struct igbvf_ring *tx_ring,
2153                                   struct sk_buff *skb)
2154{
2155        struct igbvf_buffer *buffer_info;
2156        struct pci_dev *pdev = adapter->pdev;
2157        unsigned int len = skb_headlen(skb);
2158        unsigned int count = 0, i;
2159        unsigned int f;
2160
2161        i = tx_ring->next_to_use;
2162
2163        buffer_info = &tx_ring->buffer_info[i];
2164        BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2165        buffer_info->length = len;
2166        /* set time_stamp *before* dma to help avoid a possible race */
2167        buffer_info->time_stamp = jiffies;
2168        buffer_info->mapped_as_page = false;
2169        buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2170                                          DMA_TO_DEVICE);
2171        if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2172                goto dma_error;
2173
2174        for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2175                const skb_frag_t *frag;
2176
2177                count++;
2178                i++;
2179                if (i == tx_ring->count)
2180                        i = 0;
2181
2182                frag = &skb_shinfo(skb)->frags[f];
2183                len = skb_frag_size(frag);
2184
2185                buffer_info = &tx_ring->buffer_info[i];
2186                BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2187                buffer_info->length = len;
2188                buffer_info->time_stamp = jiffies;
2189                buffer_info->mapped_as_page = true;
2190                buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2191                                                    DMA_TO_DEVICE);
2192                if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2193                        goto dma_error;
2194        }
2195
2196        tx_ring->buffer_info[i].skb = skb;
2197
2198        return ++count;
2199
2200dma_error:
2201        dev_err(&pdev->dev, "TX DMA map failed\n");
2202
2203        /* clear timestamp and dma mappings for failed buffer_info mapping */
2204        buffer_info->dma = 0;
2205        buffer_info->time_stamp = 0;
2206        buffer_info->length = 0;
2207        buffer_info->mapped_as_page = false;
2208        if (count)
2209                count--;
2210
2211        /* clear timestamp and dma mappings for remaining portion of packet */
2212        while (count--) {
2213                if (i == 0)
2214                        i += tx_ring->count;
2215                i--;
2216                buffer_info = &tx_ring->buffer_info[i];
2217                igbvf_put_txbuf(adapter, buffer_info);
2218        }
2219
2220        return 0;
2221}
2222
2223static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2224                                      struct igbvf_ring *tx_ring,
2225                                      int tx_flags, int count,
2226                                      unsigned int first, u32 paylen,
2227                                      u8 hdr_len)
2228{
2229        union e1000_adv_tx_desc *tx_desc = NULL;
2230        struct igbvf_buffer *buffer_info;
2231        u32 olinfo_status = 0, cmd_type_len;
2232        unsigned int i;
2233
2234        cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2235                        E1000_ADVTXD_DCMD_DEXT);
2236
2237        if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2238                cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2239
2240        if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2241                cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2242
2243                /* insert tcp checksum */
2244                olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2245
2246                /* insert ip checksum */
2247                if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2248                        olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2249
2250        } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2251                olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2252        }
2253
2254        olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2255
2256        i = tx_ring->next_to_use;
2257        while (count--) {
2258                buffer_info = &tx_ring->buffer_info[i];
2259                tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2260                tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2261                tx_desc->read.cmd_type_len =
2262                         cpu_to_le32(cmd_type_len | buffer_info->length);
2263                tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2264                i++;
2265                if (i == tx_ring->count)
2266                        i = 0;
2267        }
2268
2269        tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2270        /* Force memory writes to complete before letting h/w
2271         * know there are new descriptors to fetch.  (Only
2272         * applicable for weak-ordered memory model archs,
2273         * such as IA-64).
2274         */
2275        wmb();
2276
2277        tx_ring->buffer_info[first].next_to_watch = tx_desc;
2278        tx_ring->next_to_use = i;
2279        writel(i, adapter->hw.hw_addr + tx_ring->tail);
2280}
2281
2282static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2283                                             struct net_device *netdev,
2284                                             struct igbvf_ring *tx_ring)
2285{
2286        struct igbvf_adapter *adapter = netdev_priv(netdev);
2287        unsigned int first, tx_flags = 0;
2288        u8 hdr_len = 0;
2289        int count = 0;
2290        int tso = 0;
2291        __be16 protocol = vlan_get_protocol(skb);
2292
2293        if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2294                dev_kfree_skb_any(skb);
2295                return NETDEV_TX_OK;
2296        }
2297
2298        if (skb->len <= 0) {
2299                dev_kfree_skb_any(skb);
2300                return NETDEV_TX_OK;
2301        }
2302
2303        /* need: count + 4 desc gap to keep tail from touching
2304         *       + 2 desc gap to keep tail from touching head,
2305         *       + 1 desc for skb->data,
2306         *       + 1 desc for context descriptor,
2307         * head, otherwise try next time
2308         */
2309        if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2310                /* this is a hard error */
2311                return NETDEV_TX_BUSY;
2312        }
2313
2314        if (skb_vlan_tag_present(skb)) {
2315                tx_flags |= IGBVF_TX_FLAGS_VLAN;
2316                tx_flags |= (skb_vlan_tag_get(skb) <<
2317                             IGBVF_TX_FLAGS_VLAN_SHIFT);
2318        }
2319
2320        if (protocol == htons(ETH_P_IP))
2321                tx_flags |= IGBVF_TX_FLAGS_IPV4;
2322
2323        first = tx_ring->next_to_use;
2324
2325        tso = igbvf_tso(tx_ring, skb, tx_flags, &hdr_len);
2326        if (unlikely(tso < 0)) {
2327                dev_kfree_skb_any(skb);
2328                return NETDEV_TX_OK;
2329        }
2330
2331        if (tso)
2332                tx_flags |= IGBVF_TX_FLAGS_TSO;
2333        else if (igbvf_tx_csum(tx_ring, skb, tx_flags, protocol) &&
2334                 (skb->ip_summed == CHECKSUM_PARTIAL))
2335                tx_flags |= IGBVF_TX_FLAGS_CSUM;
2336
2337        /* count reflects descriptors mapped, if 0 then mapping error
2338         * has occurred and we need to rewind the descriptor queue
2339         */
2340        count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2341
2342        if (count) {
2343                igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2344                                   first, skb->len, hdr_len);
2345                /* Make sure there is space in the ring for the next send. */
2346                igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2347        } else {
2348                dev_kfree_skb_any(skb);
2349                tx_ring->buffer_info[first].time_stamp = 0;
2350                tx_ring->next_to_use = first;
2351        }
2352
2353        return NETDEV_TX_OK;
2354}
2355
2356static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2357                                    struct net_device *netdev)
2358{
2359        struct igbvf_adapter *adapter = netdev_priv(netdev);
2360        struct igbvf_ring *tx_ring;
2361
2362        if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2363                dev_kfree_skb_any(skb);
2364                return NETDEV_TX_OK;
2365        }
2366
2367        tx_ring = &adapter->tx_ring[0];
2368
2369        return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2370}
2371
2372/**
2373 * igbvf_tx_timeout - Respond to a Tx Hang
2374 * @netdev: network interface device structure
2375 **/
2376static void igbvf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
2377{
2378        struct igbvf_adapter *adapter = netdev_priv(netdev);
2379
2380        /* Do the reset outside of interrupt context */
2381        adapter->tx_timeout_count++;
2382        schedule_work(&adapter->reset_task);
2383}
2384
2385static void igbvf_reset_task(struct work_struct *work)
2386{
2387        struct igbvf_adapter *adapter;
2388
2389        adapter = container_of(work, struct igbvf_adapter, reset_task);
2390
2391        igbvf_reinit_locked(adapter);
2392}
2393
2394/**
2395 * igbvf_change_mtu - Change the Maximum Transfer Unit
2396 * @netdev: network interface device structure
2397 * @new_mtu: new value for maximum frame size
2398 *
2399 * Returns 0 on success, negative on failure
2400 **/
2401static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2402{
2403        struct igbvf_adapter *adapter = netdev_priv(netdev);
2404        int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2405
2406        while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2407                usleep_range(1000, 2000);
2408        /* igbvf_down has a dependency on max_frame_size */
2409        adapter->max_frame_size = max_frame;
2410        if (netif_running(netdev))
2411                igbvf_down(adapter);
2412
2413        /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2414         * means we reserve 2 more, this pushes us to allocate from the next
2415         * larger slab size.
2416         * i.e. RXBUFFER_2048 --> size-4096 slab
2417         * However with the new *_jumbo_rx* routines, jumbo receives will use
2418         * fragmented skbs
2419         */
2420
2421        if (max_frame <= 1024)
2422                adapter->rx_buffer_len = 1024;
2423        else if (max_frame <= 2048)
2424                adapter->rx_buffer_len = 2048;
2425        else
2426#if (PAGE_SIZE / 2) > 16384
2427                adapter->rx_buffer_len = 16384;
2428#else
2429                adapter->rx_buffer_len = PAGE_SIZE / 2;
2430#endif
2431
2432        /* adjust allocation if LPE protects us, and we aren't using SBP */
2433        if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2434            (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2435                adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2436                                         ETH_FCS_LEN;
2437
2438        netdev_dbg(netdev, "changing MTU from %d to %d\n",
2439                   netdev->mtu, new_mtu);
2440        netdev->mtu = new_mtu;
2441
2442        if (netif_running(netdev))
2443                igbvf_up(adapter);
2444        else
2445                igbvf_reset(adapter);
2446
2447        clear_bit(__IGBVF_RESETTING, &adapter->state);
2448
2449        return 0;
2450}
2451
2452static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2453{
2454        switch (cmd) {
2455        default:
2456                return -EOPNOTSUPP;
2457        }
2458}
2459
2460static int igbvf_suspend(struct device *dev_d)
2461{
2462        struct net_device *netdev = dev_get_drvdata(dev_d);
2463        struct igbvf_adapter *adapter = netdev_priv(netdev);
2464
2465        netif_device_detach(netdev);
2466
2467        if (netif_running(netdev)) {
2468                WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2469                igbvf_down(adapter);
2470                igbvf_free_irq(adapter);
2471        }
2472
2473        return 0;
2474}
2475
2476static int __maybe_unused igbvf_resume(struct device *dev_d)
2477{
2478        struct pci_dev *pdev = to_pci_dev(dev_d);
2479        struct net_device *netdev = pci_get_drvdata(pdev);
2480        struct igbvf_adapter *adapter = netdev_priv(netdev);
2481        u32 err;
2482
2483        pci_set_master(pdev);
2484
2485        if (netif_running(netdev)) {
2486                err = igbvf_request_irq(adapter);
2487                if (err)
2488                        return err;
2489        }
2490
2491        igbvf_reset(adapter);
2492
2493        if (netif_running(netdev))
2494                igbvf_up(adapter);
2495
2496        netif_device_attach(netdev);
2497
2498        return 0;
2499}
2500
2501static void igbvf_shutdown(struct pci_dev *pdev)
2502{
2503        igbvf_suspend(&pdev->dev);
2504}
2505
2506#ifdef CONFIG_NET_POLL_CONTROLLER
2507/* Polling 'interrupt' - used by things like netconsole to send skbs
2508 * without having to re-enable interrupts. It's not called while
2509 * the interrupt routine is executing.
2510 */
2511static void igbvf_netpoll(struct net_device *netdev)
2512{
2513        struct igbvf_adapter *adapter = netdev_priv(netdev);
2514
2515        disable_irq(adapter->pdev->irq);
2516
2517        igbvf_clean_tx_irq(adapter->tx_ring);
2518
2519        enable_irq(adapter->pdev->irq);
2520}
2521#endif
2522
2523/**
2524 * igbvf_io_error_detected - called when PCI error is detected
2525 * @pdev: Pointer to PCI device
2526 * @state: The current pci connection state
2527 *
2528 * This function is called after a PCI bus error affecting
2529 * this device has been detected.
2530 */
2531static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2532                                                pci_channel_state_t state)
2533{
2534        struct net_device *netdev = pci_get_drvdata(pdev);
2535        struct igbvf_adapter *adapter = netdev_priv(netdev);
2536
2537        netif_device_detach(netdev);
2538
2539        if (state == pci_channel_io_perm_failure)
2540                return PCI_ERS_RESULT_DISCONNECT;
2541
2542        if (netif_running(netdev))
2543                igbvf_down(adapter);
2544        pci_disable_device(pdev);
2545
2546        /* Request a slot slot reset. */
2547        return PCI_ERS_RESULT_NEED_RESET;
2548}
2549
2550/**
2551 * igbvf_io_slot_reset - called after the pci bus has been reset.
2552 * @pdev: Pointer to PCI device
2553 *
2554 * Restart the card from scratch, as if from a cold-boot. Implementation
2555 * resembles the first-half of the igbvf_resume routine.
2556 */
2557static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2558{
2559        struct net_device *netdev = pci_get_drvdata(pdev);
2560        struct igbvf_adapter *adapter = netdev_priv(netdev);
2561
2562        if (pci_enable_device_mem(pdev)) {
2563                dev_err(&pdev->dev,
2564                        "Cannot re-enable PCI device after reset.\n");
2565                return PCI_ERS_RESULT_DISCONNECT;
2566        }
2567        pci_set_master(pdev);
2568
2569        igbvf_reset(adapter);
2570
2571        return PCI_ERS_RESULT_RECOVERED;
2572}
2573
2574/**
2575 * igbvf_io_resume - called when traffic can start flowing again.
2576 * @pdev: Pointer to PCI device
2577 *
2578 * This callback is called when the error recovery driver tells us that
2579 * its OK to resume normal operation. Implementation resembles the
2580 * second-half of the igbvf_resume routine.
2581 */
2582static void igbvf_io_resume(struct pci_dev *pdev)
2583{
2584        struct net_device *netdev = pci_get_drvdata(pdev);
2585        struct igbvf_adapter *adapter = netdev_priv(netdev);
2586
2587        if (netif_running(netdev)) {
2588                if (igbvf_up(adapter)) {
2589                        dev_err(&pdev->dev,
2590                                "can't bring device back up after reset\n");
2591                        return;
2592                }
2593        }
2594
2595        netif_device_attach(netdev);
2596}
2597
2598static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2599{
2600        struct e1000_hw *hw = &adapter->hw;
2601        struct net_device *netdev = adapter->netdev;
2602        struct pci_dev *pdev = adapter->pdev;
2603
2604        if (hw->mac.type == e1000_vfadapt_i350)
2605                dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2606        else
2607                dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2608        dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2609}
2610
2611static int igbvf_set_features(struct net_device *netdev,
2612                              netdev_features_t features)
2613{
2614        struct igbvf_adapter *adapter = netdev_priv(netdev);
2615
2616        if (features & NETIF_F_RXCSUM)
2617                adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2618        else
2619                adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2620
2621        return 0;
2622}
2623
2624#define IGBVF_MAX_MAC_HDR_LEN           127
2625#define IGBVF_MAX_NETWORK_HDR_LEN       511
2626
2627static netdev_features_t
2628igbvf_features_check(struct sk_buff *skb, struct net_device *dev,
2629                     netdev_features_t features)
2630{
2631        unsigned int network_hdr_len, mac_hdr_len;
2632
2633        /* Make certain the headers can be described by a context descriptor */
2634        mac_hdr_len = skb_network_header(skb) - skb->data;
2635        if (unlikely(mac_hdr_len > IGBVF_MAX_MAC_HDR_LEN))
2636                return features & ~(NETIF_F_HW_CSUM |
2637                                    NETIF_F_SCTP_CRC |
2638                                    NETIF_F_HW_VLAN_CTAG_TX |
2639                                    NETIF_F_TSO |
2640                                    NETIF_F_TSO6);
2641
2642        network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2643        if (unlikely(network_hdr_len >  IGBVF_MAX_NETWORK_HDR_LEN))
2644                return features & ~(NETIF_F_HW_CSUM |
2645                                    NETIF_F_SCTP_CRC |
2646                                    NETIF_F_TSO |
2647                                    NETIF_F_TSO6);
2648
2649        /* We can only support IPV4 TSO in tunnels if we can mangle the
2650         * inner IP ID field, so strip TSO if MANGLEID is not supported.
2651         */
2652        if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2653                features &= ~NETIF_F_TSO;
2654
2655        return features;
2656}
2657
2658static const struct net_device_ops igbvf_netdev_ops = {
2659        .ndo_open               = igbvf_open,
2660        .ndo_stop               = igbvf_close,
2661        .ndo_start_xmit         = igbvf_xmit_frame,
2662        .ndo_set_rx_mode        = igbvf_set_rx_mode,
2663        .ndo_set_mac_address    = igbvf_set_mac,
2664        .ndo_change_mtu         = igbvf_change_mtu,
2665        .ndo_do_ioctl           = igbvf_ioctl,
2666        .ndo_tx_timeout         = igbvf_tx_timeout,
2667        .ndo_vlan_rx_add_vid    = igbvf_vlan_rx_add_vid,
2668        .ndo_vlan_rx_kill_vid   = igbvf_vlan_rx_kill_vid,
2669#ifdef CONFIG_NET_POLL_CONTROLLER
2670        .ndo_poll_controller    = igbvf_netpoll,
2671#endif
2672        .ndo_set_features       = igbvf_set_features,
2673        .ndo_features_check     = igbvf_features_check,
2674};
2675
2676/**
2677 * igbvf_probe - Device Initialization Routine
2678 * @pdev: PCI device information struct
2679 * @ent: entry in igbvf_pci_tbl
2680 *
2681 * Returns 0 on success, negative on failure
2682 *
2683 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2684 * The OS initialization, configuring of the adapter private structure,
2685 * and a hardware reset occur.
2686 **/
2687static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2688{
2689        struct net_device *netdev;
2690        struct igbvf_adapter *adapter;
2691        struct e1000_hw *hw;
2692        const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2693
2694        static int cards_found;
2695        int err, pci_using_dac;
2696
2697        err = pci_enable_device_mem(pdev);
2698        if (err)
2699                return err;
2700
2701        pci_using_dac = 0;
2702        err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2703        if (!err) {
2704                pci_using_dac = 1;
2705        } else {
2706                err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2707                if (err) {
2708                        dev_err(&pdev->dev,
2709                                "No usable DMA configuration, aborting\n");
2710                        goto err_dma;
2711                }
2712        }
2713
2714        err = pci_request_regions(pdev, igbvf_driver_name);
2715        if (err)
2716                goto err_pci_reg;
2717
2718        pci_set_master(pdev);
2719
2720        err = -ENOMEM;
2721        netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2722        if (!netdev)
2723                goto err_alloc_etherdev;
2724
2725        SET_NETDEV_DEV(netdev, &pdev->dev);
2726
2727        pci_set_drvdata(pdev, netdev);
2728        adapter = netdev_priv(netdev);
2729        hw = &adapter->hw;
2730        adapter->netdev = netdev;
2731        adapter->pdev = pdev;
2732        adapter->ei = ei;
2733        adapter->pba = ei->pba;
2734        adapter->flags = ei->flags;
2735        adapter->hw.back = adapter;
2736        adapter->hw.mac.type = ei->mac;
2737        adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2738
2739        /* PCI config space info */
2740
2741        hw->vendor_id = pdev->vendor;
2742        hw->device_id = pdev->device;
2743        hw->subsystem_vendor_id = pdev->subsystem_vendor;
2744        hw->subsystem_device_id = pdev->subsystem_device;
2745        hw->revision_id = pdev->revision;
2746
2747        err = -EIO;
2748        adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2749                                      pci_resource_len(pdev, 0));
2750
2751        if (!adapter->hw.hw_addr)
2752                goto err_ioremap;
2753
2754        if (ei->get_variants) {
2755                err = ei->get_variants(adapter);
2756                if (err)
2757                        goto err_get_variants;
2758        }
2759
2760        /* setup adapter struct */
2761        err = igbvf_sw_init(adapter);
2762        if (err)
2763                goto err_sw_init;
2764
2765        /* construct the net_device struct */
2766        netdev->netdev_ops = &igbvf_netdev_ops;
2767
2768        igbvf_set_ethtool_ops(netdev);
2769        netdev->watchdog_timeo = 5 * HZ;
2770        strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2771
2772        adapter->bd_number = cards_found++;
2773
2774        netdev->hw_features = NETIF_F_SG |
2775                              NETIF_F_TSO |
2776                              NETIF_F_TSO6 |
2777                              NETIF_F_RXCSUM |
2778                              NETIF_F_HW_CSUM |
2779                              NETIF_F_SCTP_CRC;
2780
2781#define IGBVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2782                                    NETIF_F_GSO_GRE_CSUM | \
2783                                    NETIF_F_GSO_IPXIP4 | \
2784                                    NETIF_F_GSO_IPXIP6 | \
2785                                    NETIF_F_GSO_UDP_TUNNEL | \
2786                                    NETIF_F_GSO_UDP_TUNNEL_CSUM)
2787
2788        netdev->gso_partial_features = IGBVF_GSO_PARTIAL_FEATURES;
2789        netdev->hw_features |= NETIF_F_GSO_PARTIAL |
2790                               IGBVF_GSO_PARTIAL_FEATURES;
2791
2792        netdev->features = netdev->hw_features;
2793
2794        if (pci_using_dac)
2795                netdev->features |= NETIF_F_HIGHDMA;
2796
2797        netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2798        netdev->mpls_features |= NETIF_F_HW_CSUM;
2799        netdev->hw_enc_features |= netdev->vlan_features;
2800
2801        /* set this bit last since it cannot be part of vlan_features */
2802        netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2803                            NETIF_F_HW_VLAN_CTAG_RX |
2804                            NETIF_F_HW_VLAN_CTAG_TX;
2805
2806        /* MTU range: 68 - 9216 */
2807        netdev->min_mtu = ETH_MIN_MTU;
2808        netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2809
2810        spin_lock_bh(&hw->mbx_lock);
2811
2812        /*reset the controller to put the device in a known good state */
2813        err = hw->mac.ops.reset_hw(hw);
2814        if (err) {
2815                dev_info(&pdev->dev,
2816                         "PF still in reset state. Is the PF interface up?\n");
2817        } else {
2818                err = hw->mac.ops.read_mac_addr(hw);
2819                if (err)
2820                        dev_info(&pdev->dev, "Error reading MAC address.\n");
2821                else if (is_zero_ether_addr(adapter->hw.mac.addr))
2822                        dev_info(&pdev->dev,
2823                                 "MAC address not assigned by administrator.\n");
2824                memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2825                       netdev->addr_len);
2826        }
2827
2828        spin_unlock_bh(&hw->mbx_lock);
2829
2830        if (!is_valid_ether_addr(netdev->dev_addr)) {
2831                dev_info(&pdev->dev, "Assigning random MAC address.\n");
2832                eth_hw_addr_random(netdev);
2833                memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2834                       netdev->addr_len);
2835        }
2836
2837        timer_setup(&adapter->watchdog_timer, igbvf_watchdog, 0);
2838
2839        INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2840        INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2841
2842        /* ring size defaults */
2843        adapter->rx_ring->count = 1024;
2844        adapter->tx_ring->count = 1024;
2845
2846        /* reset the hardware with the new settings */
2847        igbvf_reset(adapter);
2848
2849        /* set hardware-specific flags */
2850        if (adapter->hw.mac.type == e1000_vfadapt_i350)
2851                adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2852
2853        strcpy(netdev->name, "eth%d");
2854        err = register_netdev(netdev);
2855        if (err)
2856                goto err_hw_init;
2857
2858        /* tell the stack to leave us alone until igbvf_open() is called */
2859        netif_carrier_off(netdev);
2860        netif_stop_queue(netdev);
2861
2862        igbvf_print_device_info(adapter);
2863
2864        igbvf_initialize_last_counter_stats(adapter);
2865
2866        return 0;
2867
2868err_hw_init:
2869        kfree(adapter->tx_ring);
2870        kfree(adapter->rx_ring);
2871err_sw_init:
2872        igbvf_reset_interrupt_capability(adapter);
2873err_get_variants:
2874        iounmap(adapter->hw.hw_addr);
2875err_ioremap:
2876        free_netdev(netdev);
2877err_alloc_etherdev:
2878        pci_release_regions(pdev);
2879err_pci_reg:
2880err_dma:
2881        pci_disable_device(pdev);
2882        return err;
2883}
2884
2885/**
2886 * igbvf_remove - Device Removal Routine
2887 * @pdev: PCI device information struct
2888 *
2889 * igbvf_remove is called by the PCI subsystem to alert the driver
2890 * that it should release a PCI device.  The could be caused by a
2891 * Hot-Plug event, or because the driver is going to be removed from
2892 * memory.
2893 **/
2894static void igbvf_remove(struct pci_dev *pdev)
2895{
2896        struct net_device *netdev = pci_get_drvdata(pdev);
2897        struct igbvf_adapter *adapter = netdev_priv(netdev);
2898        struct e1000_hw *hw = &adapter->hw;
2899
2900        /* The watchdog timer may be rescheduled, so explicitly
2901         * disable it from being rescheduled.
2902         */
2903        set_bit(__IGBVF_DOWN, &adapter->state);
2904        del_timer_sync(&adapter->watchdog_timer);
2905
2906        cancel_work_sync(&adapter->reset_task);
2907        cancel_work_sync(&adapter->watchdog_task);
2908
2909        unregister_netdev(netdev);
2910
2911        igbvf_reset_interrupt_capability(adapter);
2912
2913        /* it is important to delete the NAPI struct prior to freeing the
2914         * Rx ring so that you do not end up with null pointer refs
2915         */
2916        netif_napi_del(&adapter->rx_ring->napi);
2917        kfree(adapter->tx_ring);
2918        kfree(adapter->rx_ring);
2919
2920        iounmap(hw->hw_addr);
2921        if (hw->flash_address)
2922                iounmap(hw->flash_address);
2923        pci_release_regions(pdev);
2924
2925        free_netdev(netdev);
2926
2927        pci_disable_device(pdev);
2928}
2929
2930/* PCI Error Recovery (ERS) */
2931static const struct pci_error_handlers igbvf_err_handler = {
2932        .error_detected = igbvf_io_error_detected,
2933        .slot_reset = igbvf_io_slot_reset,
2934        .resume = igbvf_io_resume,
2935};
2936
2937static const struct pci_device_id igbvf_pci_tbl[] = {
2938        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2939        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2940        { } /* terminate list */
2941};
2942MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2943
2944static SIMPLE_DEV_PM_OPS(igbvf_pm_ops, igbvf_suspend, igbvf_resume);
2945
2946/* PCI Device API Driver */
2947static struct pci_driver igbvf_driver = {
2948        .name           = igbvf_driver_name,
2949        .id_table       = igbvf_pci_tbl,
2950        .probe          = igbvf_probe,
2951        .remove         = igbvf_remove,
2952        .driver.pm      = &igbvf_pm_ops,
2953        .shutdown       = igbvf_shutdown,
2954        .err_handler    = &igbvf_err_handler
2955};
2956
2957/**
2958 * igbvf_init_module - Driver Registration Routine
2959 *
2960 * igbvf_init_module is the first routine called when the driver is
2961 * loaded. All it does is register with the PCI subsystem.
2962 **/
2963static int __init igbvf_init_module(void)
2964{
2965        int ret;
2966
2967        pr_info("%s\n", igbvf_driver_string);
2968        pr_info("%s\n", igbvf_copyright);
2969
2970        ret = pci_register_driver(&igbvf_driver);
2971
2972        return ret;
2973}
2974module_init(igbvf_init_module);
2975
2976/**
2977 * igbvf_exit_module - Driver Exit Cleanup Routine
2978 *
2979 * igbvf_exit_module is called just before the driver is removed
2980 * from memory.
2981 **/
2982static void __exit igbvf_exit_module(void)
2983{
2984        pci_unregister_driver(&igbvf_driver);
2985}
2986module_exit(igbvf_exit_module);
2987
2988MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2989MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2990MODULE_LICENSE("GPL v2");
2991
2992/* netdev.c */
2993