linux/drivers/net/ethernet/intel/igc/igc_main.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c)  2018 Intel Corporation */
   3
   4#include <linux/module.h>
   5#include <linux/types.h>
   6#include <linux/if_vlan.h>
   7#include <linux/aer.h>
   8#include <linux/tcp.h>
   9#include <linux/udp.h>
  10#include <linux/ip.h>
  11#include <linux/pm_runtime.h>
  12#include <net/pkt_sched.h>
  13
  14#include <net/ipv6.h>
  15
  16#include "igc.h"
  17#include "igc_hw.h"
  18#include "igc_tsn.h"
  19
  20#define DRV_SUMMARY     "Intel(R) 2.5G Ethernet Linux Driver"
  21
  22#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
  23
  24static int debug = -1;
  25
  26MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  27MODULE_DESCRIPTION(DRV_SUMMARY);
  28MODULE_LICENSE("GPL v2");
  29module_param(debug, int, 0);
  30MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  31
  32char igc_driver_name[] = "igc";
  33static const char igc_driver_string[] = DRV_SUMMARY;
  34static const char igc_copyright[] =
  35        "Copyright(c) 2018 Intel Corporation.";
  36
  37static const struct igc_info *igc_info_tbl[] = {
  38        [board_base] = &igc_base_info,
  39};
  40
  41static const struct pci_device_id igc_pci_tbl[] = {
  42        { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
  43        { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
  44        { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
  45        { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
  46        { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
  47        { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
  48        { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
  49        { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
  50        { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
  51        /* required last entry */
  52        {0, }
  53};
  54
  55MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
  56
  57enum latency_range {
  58        lowest_latency = 0,
  59        low_latency = 1,
  60        bulk_latency = 2,
  61        latency_invalid = 255
  62};
  63
  64void igc_reset(struct igc_adapter *adapter)
  65{
  66        struct net_device *dev = adapter->netdev;
  67        struct igc_hw *hw = &adapter->hw;
  68        struct igc_fc_info *fc = &hw->fc;
  69        u32 pba, hwm;
  70
  71        /* Repartition PBA for greater than 9k MTU if required */
  72        pba = IGC_PBA_34K;
  73
  74        /* flow control settings
  75         * The high water mark must be low enough to fit one full frame
  76         * after transmitting the pause frame.  As such we must have enough
  77         * space to allow for us to complete our current transmit and then
  78         * receive the frame that is in progress from the link partner.
  79         * Set it to:
  80         * - the full Rx FIFO size minus one full Tx plus one full Rx frame
  81         */
  82        hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
  83
  84        fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
  85        fc->low_water = fc->high_water - 16;
  86        fc->pause_time = 0xFFFF;
  87        fc->send_xon = 1;
  88        fc->current_mode = fc->requested_mode;
  89
  90        hw->mac.ops.reset_hw(hw);
  91
  92        if (hw->mac.ops.init_hw(hw))
  93                netdev_err(dev, "Error on hardware initialization\n");
  94
  95        /* Re-establish EEE setting */
  96        igc_set_eee_i225(hw, true, true, true);
  97
  98        if (!netif_running(adapter->netdev))
  99                igc_power_down_phy_copper_base(&adapter->hw);
 100
 101        /* Re-enable PTP, where applicable. */
 102        igc_ptp_reset(adapter);
 103
 104        /* Re-enable TSN offloading, where applicable. */
 105        igc_tsn_offload_apply(adapter);
 106
 107        igc_get_phy_info(hw);
 108}
 109
 110/**
 111 * igc_power_up_link - Power up the phy link
 112 * @adapter: address of board private structure
 113 */
 114static void igc_power_up_link(struct igc_adapter *adapter)
 115{
 116        igc_reset_phy(&adapter->hw);
 117
 118        igc_power_up_phy_copper(&adapter->hw);
 119
 120        igc_setup_link(&adapter->hw);
 121}
 122
 123/**
 124 * igc_release_hw_control - release control of the h/w to f/w
 125 * @adapter: address of board private structure
 126 *
 127 * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
 128 * For ASF and Pass Through versions of f/w this means that the
 129 * driver is no longer loaded.
 130 */
 131static void igc_release_hw_control(struct igc_adapter *adapter)
 132{
 133        struct igc_hw *hw = &adapter->hw;
 134        u32 ctrl_ext;
 135
 136        /* Let firmware take over control of h/w */
 137        ctrl_ext = rd32(IGC_CTRL_EXT);
 138        wr32(IGC_CTRL_EXT,
 139             ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
 140}
 141
 142/**
 143 * igc_get_hw_control - get control of the h/w from f/w
 144 * @adapter: address of board private structure
 145 *
 146 * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
 147 * For ASF and Pass Through versions of f/w this means that
 148 * the driver is loaded.
 149 */
 150static void igc_get_hw_control(struct igc_adapter *adapter)
 151{
 152        struct igc_hw *hw = &adapter->hw;
 153        u32 ctrl_ext;
 154
 155        /* Let firmware know the driver has taken over */
 156        ctrl_ext = rd32(IGC_CTRL_EXT);
 157        wr32(IGC_CTRL_EXT,
 158             ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
 159}
 160
 161/**
 162 * igc_clean_tx_ring - Free Tx Buffers
 163 * @tx_ring: ring to be cleaned
 164 */
 165static void igc_clean_tx_ring(struct igc_ring *tx_ring)
 166{
 167        u16 i = tx_ring->next_to_clean;
 168        struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
 169
 170        while (i != tx_ring->next_to_use) {
 171                union igc_adv_tx_desc *eop_desc, *tx_desc;
 172
 173                /* Free all the Tx ring sk_buffs */
 174                dev_kfree_skb_any(tx_buffer->skb);
 175
 176                /* unmap skb header data */
 177                dma_unmap_single(tx_ring->dev,
 178                                 dma_unmap_addr(tx_buffer, dma),
 179                                 dma_unmap_len(tx_buffer, len),
 180                                 DMA_TO_DEVICE);
 181
 182                /* check for eop_desc to determine the end of the packet */
 183                eop_desc = tx_buffer->next_to_watch;
 184                tx_desc = IGC_TX_DESC(tx_ring, i);
 185
 186                /* unmap remaining buffers */
 187                while (tx_desc != eop_desc) {
 188                        tx_buffer++;
 189                        tx_desc++;
 190                        i++;
 191                        if (unlikely(i == tx_ring->count)) {
 192                                i = 0;
 193                                tx_buffer = tx_ring->tx_buffer_info;
 194                                tx_desc = IGC_TX_DESC(tx_ring, 0);
 195                        }
 196
 197                        /* unmap any remaining paged data */
 198                        if (dma_unmap_len(tx_buffer, len))
 199                                dma_unmap_page(tx_ring->dev,
 200                                               dma_unmap_addr(tx_buffer, dma),
 201                                               dma_unmap_len(tx_buffer, len),
 202                                               DMA_TO_DEVICE);
 203                }
 204
 205                /* move us one more past the eop_desc for start of next pkt */
 206                tx_buffer++;
 207                i++;
 208                if (unlikely(i == tx_ring->count)) {
 209                        i = 0;
 210                        tx_buffer = tx_ring->tx_buffer_info;
 211                }
 212        }
 213
 214        /* reset BQL for queue */
 215        netdev_tx_reset_queue(txring_txq(tx_ring));
 216
 217        /* reset next_to_use and next_to_clean */
 218        tx_ring->next_to_use = 0;
 219        tx_ring->next_to_clean = 0;
 220}
 221
 222/**
 223 * igc_free_tx_resources - Free Tx Resources per Queue
 224 * @tx_ring: Tx descriptor ring for a specific queue
 225 *
 226 * Free all transmit software resources
 227 */
 228void igc_free_tx_resources(struct igc_ring *tx_ring)
 229{
 230        igc_clean_tx_ring(tx_ring);
 231
 232        vfree(tx_ring->tx_buffer_info);
 233        tx_ring->tx_buffer_info = NULL;
 234
 235        /* if not set, then don't free */
 236        if (!tx_ring->desc)
 237                return;
 238
 239        dma_free_coherent(tx_ring->dev, tx_ring->size,
 240                          tx_ring->desc, tx_ring->dma);
 241
 242        tx_ring->desc = NULL;
 243}
 244
 245/**
 246 * igc_free_all_tx_resources - Free Tx Resources for All Queues
 247 * @adapter: board private structure
 248 *
 249 * Free all transmit software resources
 250 */
 251static void igc_free_all_tx_resources(struct igc_adapter *adapter)
 252{
 253        int i;
 254
 255        for (i = 0; i < adapter->num_tx_queues; i++)
 256                igc_free_tx_resources(adapter->tx_ring[i]);
 257}
 258
 259/**
 260 * igc_clean_all_tx_rings - Free Tx Buffers for all queues
 261 * @adapter: board private structure
 262 */
 263static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
 264{
 265        int i;
 266
 267        for (i = 0; i < adapter->num_tx_queues; i++)
 268                if (adapter->tx_ring[i])
 269                        igc_clean_tx_ring(adapter->tx_ring[i]);
 270}
 271
 272/**
 273 * igc_setup_tx_resources - allocate Tx resources (Descriptors)
 274 * @tx_ring: tx descriptor ring (for a specific queue) to setup
 275 *
 276 * Return 0 on success, negative on failure
 277 */
 278int igc_setup_tx_resources(struct igc_ring *tx_ring)
 279{
 280        struct net_device *ndev = tx_ring->netdev;
 281        struct device *dev = tx_ring->dev;
 282        int size = 0;
 283
 284        size = sizeof(struct igc_tx_buffer) * tx_ring->count;
 285        tx_ring->tx_buffer_info = vzalloc(size);
 286        if (!tx_ring->tx_buffer_info)
 287                goto err;
 288
 289        /* round up to nearest 4K */
 290        tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
 291        tx_ring->size = ALIGN(tx_ring->size, 4096);
 292
 293        tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
 294                                           &tx_ring->dma, GFP_KERNEL);
 295
 296        if (!tx_ring->desc)
 297                goto err;
 298
 299        tx_ring->next_to_use = 0;
 300        tx_ring->next_to_clean = 0;
 301
 302        return 0;
 303
 304err:
 305        vfree(tx_ring->tx_buffer_info);
 306        netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
 307        return -ENOMEM;
 308}
 309
 310/**
 311 * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
 312 * @adapter: board private structure
 313 *
 314 * Return 0 on success, negative on failure
 315 */
 316static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
 317{
 318        struct net_device *dev = adapter->netdev;
 319        int i, err = 0;
 320
 321        for (i = 0; i < adapter->num_tx_queues; i++) {
 322                err = igc_setup_tx_resources(adapter->tx_ring[i]);
 323                if (err) {
 324                        netdev_err(dev, "Error on Tx queue %u setup\n", i);
 325                        for (i--; i >= 0; i--)
 326                                igc_free_tx_resources(adapter->tx_ring[i]);
 327                        break;
 328                }
 329        }
 330
 331        return err;
 332}
 333
 334/**
 335 * igc_clean_rx_ring - Free Rx Buffers per Queue
 336 * @rx_ring: ring to free buffers from
 337 */
 338static void igc_clean_rx_ring(struct igc_ring *rx_ring)
 339{
 340        u16 i = rx_ring->next_to_clean;
 341
 342        dev_kfree_skb(rx_ring->skb);
 343        rx_ring->skb = NULL;
 344
 345        /* Free all the Rx ring sk_buffs */
 346        while (i != rx_ring->next_to_alloc) {
 347                struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
 348
 349                /* Invalidate cache lines that may have been written to by
 350                 * device so that we avoid corrupting memory.
 351                 */
 352                dma_sync_single_range_for_cpu(rx_ring->dev,
 353                                              buffer_info->dma,
 354                                              buffer_info->page_offset,
 355                                              igc_rx_bufsz(rx_ring),
 356                                              DMA_FROM_DEVICE);
 357
 358                /* free resources associated with mapping */
 359                dma_unmap_page_attrs(rx_ring->dev,
 360                                     buffer_info->dma,
 361                                     igc_rx_pg_size(rx_ring),
 362                                     DMA_FROM_DEVICE,
 363                                     IGC_RX_DMA_ATTR);
 364                __page_frag_cache_drain(buffer_info->page,
 365                                        buffer_info->pagecnt_bias);
 366
 367                i++;
 368                if (i == rx_ring->count)
 369                        i = 0;
 370        }
 371
 372        rx_ring->next_to_alloc = 0;
 373        rx_ring->next_to_clean = 0;
 374        rx_ring->next_to_use = 0;
 375}
 376
 377/**
 378 * igc_clean_all_rx_rings - Free Rx Buffers for all queues
 379 * @adapter: board private structure
 380 */
 381static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
 382{
 383        int i;
 384
 385        for (i = 0; i < adapter->num_rx_queues; i++)
 386                if (adapter->rx_ring[i])
 387                        igc_clean_rx_ring(adapter->rx_ring[i]);
 388}
 389
 390/**
 391 * igc_free_rx_resources - Free Rx Resources
 392 * @rx_ring: ring to clean the resources from
 393 *
 394 * Free all receive software resources
 395 */
 396void igc_free_rx_resources(struct igc_ring *rx_ring)
 397{
 398        igc_clean_rx_ring(rx_ring);
 399
 400        vfree(rx_ring->rx_buffer_info);
 401        rx_ring->rx_buffer_info = NULL;
 402
 403        /* if not set, then don't free */
 404        if (!rx_ring->desc)
 405                return;
 406
 407        dma_free_coherent(rx_ring->dev, rx_ring->size,
 408                          rx_ring->desc, rx_ring->dma);
 409
 410        rx_ring->desc = NULL;
 411}
 412
 413/**
 414 * igc_free_all_rx_resources - Free Rx Resources for All Queues
 415 * @adapter: board private structure
 416 *
 417 * Free all receive software resources
 418 */
 419static void igc_free_all_rx_resources(struct igc_adapter *adapter)
 420{
 421        int i;
 422
 423        for (i = 0; i < adapter->num_rx_queues; i++)
 424                igc_free_rx_resources(adapter->rx_ring[i]);
 425}
 426
 427/**
 428 * igc_setup_rx_resources - allocate Rx resources (Descriptors)
 429 * @rx_ring:    rx descriptor ring (for a specific queue) to setup
 430 *
 431 * Returns 0 on success, negative on failure
 432 */
 433int igc_setup_rx_resources(struct igc_ring *rx_ring)
 434{
 435        struct net_device *ndev = rx_ring->netdev;
 436        struct device *dev = rx_ring->dev;
 437        int size, desc_len;
 438
 439        size = sizeof(struct igc_rx_buffer) * rx_ring->count;
 440        rx_ring->rx_buffer_info = vzalloc(size);
 441        if (!rx_ring->rx_buffer_info)
 442                goto err;
 443
 444        desc_len = sizeof(union igc_adv_rx_desc);
 445
 446        /* Round up to nearest 4K */
 447        rx_ring->size = rx_ring->count * desc_len;
 448        rx_ring->size = ALIGN(rx_ring->size, 4096);
 449
 450        rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
 451                                           &rx_ring->dma, GFP_KERNEL);
 452
 453        if (!rx_ring->desc)
 454                goto err;
 455
 456        rx_ring->next_to_alloc = 0;
 457        rx_ring->next_to_clean = 0;
 458        rx_ring->next_to_use = 0;
 459
 460        return 0;
 461
 462err:
 463        vfree(rx_ring->rx_buffer_info);
 464        rx_ring->rx_buffer_info = NULL;
 465        netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
 466        return -ENOMEM;
 467}
 468
 469/**
 470 * igc_setup_all_rx_resources - wrapper to allocate Rx resources
 471 *                                (Descriptors) for all queues
 472 * @adapter: board private structure
 473 *
 474 * Return 0 on success, negative on failure
 475 */
 476static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
 477{
 478        struct net_device *dev = adapter->netdev;
 479        int i, err = 0;
 480
 481        for (i = 0; i < adapter->num_rx_queues; i++) {
 482                err = igc_setup_rx_resources(adapter->rx_ring[i]);
 483                if (err) {
 484                        netdev_err(dev, "Error on Rx queue %u setup\n", i);
 485                        for (i--; i >= 0; i--)
 486                                igc_free_rx_resources(adapter->rx_ring[i]);
 487                        break;
 488                }
 489        }
 490
 491        return err;
 492}
 493
 494/**
 495 * igc_configure_rx_ring - Configure a receive ring after Reset
 496 * @adapter: board private structure
 497 * @ring: receive ring to be configured
 498 *
 499 * Configure the Rx unit of the MAC after a reset.
 500 */
 501static void igc_configure_rx_ring(struct igc_adapter *adapter,
 502                                  struct igc_ring *ring)
 503{
 504        struct igc_hw *hw = &adapter->hw;
 505        union igc_adv_rx_desc *rx_desc;
 506        int reg_idx = ring->reg_idx;
 507        u32 srrctl = 0, rxdctl = 0;
 508        u64 rdba = ring->dma;
 509
 510        /* disable the queue */
 511        wr32(IGC_RXDCTL(reg_idx), 0);
 512
 513        /* Set DMA base address registers */
 514        wr32(IGC_RDBAL(reg_idx),
 515             rdba & 0x00000000ffffffffULL);
 516        wr32(IGC_RDBAH(reg_idx), rdba >> 32);
 517        wr32(IGC_RDLEN(reg_idx),
 518             ring->count * sizeof(union igc_adv_rx_desc));
 519
 520        /* initialize head and tail */
 521        ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
 522        wr32(IGC_RDH(reg_idx), 0);
 523        writel(0, ring->tail);
 524
 525        /* reset next-to- use/clean to place SW in sync with hardware */
 526        ring->next_to_clean = 0;
 527        ring->next_to_use = 0;
 528
 529        /* set descriptor configuration */
 530        srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT;
 531        if (ring_uses_large_buffer(ring))
 532                srrctl |= IGC_RXBUFFER_3072 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
 533        else
 534                srrctl |= IGC_RXBUFFER_2048 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
 535        srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
 536
 537        wr32(IGC_SRRCTL(reg_idx), srrctl);
 538
 539        rxdctl |= IGC_RX_PTHRESH;
 540        rxdctl |= IGC_RX_HTHRESH << 8;
 541        rxdctl |= IGC_RX_WTHRESH << 16;
 542
 543        /* initialize rx_buffer_info */
 544        memset(ring->rx_buffer_info, 0,
 545               sizeof(struct igc_rx_buffer) * ring->count);
 546
 547        /* initialize Rx descriptor 0 */
 548        rx_desc = IGC_RX_DESC(ring, 0);
 549        rx_desc->wb.upper.length = 0;
 550
 551        /* enable receive descriptor fetching */
 552        rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
 553
 554        wr32(IGC_RXDCTL(reg_idx), rxdctl);
 555}
 556
 557/**
 558 * igc_configure_rx - Configure receive Unit after Reset
 559 * @adapter: board private structure
 560 *
 561 * Configure the Rx unit of the MAC after a reset.
 562 */
 563static void igc_configure_rx(struct igc_adapter *adapter)
 564{
 565        int i;
 566
 567        /* Setup the HW Rx Head and Tail Descriptor Pointers and
 568         * the Base and Length of the Rx Descriptor Ring
 569         */
 570        for (i = 0; i < adapter->num_rx_queues; i++)
 571                igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
 572}
 573
 574/**
 575 * igc_configure_tx_ring - Configure transmit ring after Reset
 576 * @adapter: board private structure
 577 * @ring: tx ring to configure
 578 *
 579 * Configure a transmit ring after a reset.
 580 */
 581static void igc_configure_tx_ring(struct igc_adapter *adapter,
 582                                  struct igc_ring *ring)
 583{
 584        struct igc_hw *hw = &adapter->hw;
 585        int reg_idx = ring->reg_idx;
 586        u64 tdba = ring->dma;
 587        u32 txdctl = 0;
 588
 589        /* disable the queue */
 590        wr32(IGC_TXDCTL(reg_idx), 0);
 591        wrfl();
 592        mdelay(10);
 593
 594        wr32(IGC_TDLEN(reg_idx),
 595             ring->count * sizeof(union igc_adv_tx_desc));
 596        wr32(IGC_TDBAL(reg_idx),
 597             tdba & 0x00000000ffffffffULL);
 598        wr32(IGC_TDBAH(reg_idx), tdba >> 32);
 599
 600        ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
 601        wr32(IGC_TDH(reg_idx), 0);
 602        writel(0, ring->tail);
 603
 604        txdctl |= IGC_TX_PTHRESH;
 605        txdctl |= IGC_TX_HTHRESH << 8;
 606        txdctl |= IGC_TX_WTHRESH << 16;
 607
 608        txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
 609        wr32(IGC_TXDCTL(reg_idx), txdctl);
 610}
 611
 612/**
 613 * igc_configure_tx - Configure transmit Unit after Reset
 614 * @adapter: board private structure
 615 *
 616 * Configure the Tx unit of the MAC after a reset.
 617 */
 618static void igc_configure_tx(struct igc_adapter *adapter)
 619{
 620        int i;
 621
 622        for (i = 0; i < adapter->num_tx_queues; i++)
 623                igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
 624}
 625
 626/**
 627 * igc_setup_mrqc - configure the multiple receive queue control registers
 628 * @adapter: Board private structure
 629 */
 630static void igc_setup_mrqc(struct igc_adapter *adapter)
 631{
 632        struct igc_hw *hw = &adapter->hw;
 633        u32 j, num_rx_queues;
 634        u32 mrqc, rxcsum;
 635        u32 rss_key[10];
 636
 637        netdev_rss_key_fill(rss_key, sizeof(rss_key));
 638        for (j = 0; j < 10; j++)
 639                wr32(IGC_RSSRK(j), rss_key[j]);
 640
 641        num_rx_queues = adapter->rss_queues;
 642
 643        if (adapter->rss_indir_tbl_init != num_rx_queues) {
 644                for (j = 0; j < IGC_RETA_SIZE; j++)
 645                        adapter->rss_indir_tbl[j] =
 646                        (j * num_rx_queues) / IGC_RETA_SIZE;
 647                adapter->rss_indir_tbl_init = num_rx_queues;
 648        }
 649        igc_write_rss_indir_tbl(adapter);
 650
 651        /* Disable raw packet checksumming so that RSS hash is placed in
 652         * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
 653         * offloads as they are enabled by default
 654         */
 655        rxcsum = rd32(IGC_RXCSUM);
 656        rxcsum |= IGC_RXCSUM_PCSD;
 657
 658        /* Enable Receive Checksum Offload for SCTP */
 659        rxcsum |= IGC_RXCSUM_CRCOFL;
 660
 661        /* Don't need to set TUOFL or IPOFL, they default to 1 */
 662        wr32(IGC_RXCSUM, rxcsum);
 663
 664        /* Generate RSS hash based on packet types, TCP/UDP
 665         * port numbers and/or IPv4/v6 src and dst addresses
 666         */
 667        mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
 668               IGC_MRQC_RSS_FIELD_IPV4_TCP |
 669               IGC_MRQC_RSS_FIELD_IPV6 |
 670               IGC_MRQC_RSS_FIELD_IPV6_TCP |
 671               IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
 672
 673        if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
 674                mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
 675        if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
 676                mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
 677
 678        mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
 679
 680        wr32(IGC_MRQC, mrqc);
 681}
 682
 683/**
 684 * igc_setup_rctl - configure the receive control registers
 685 * @adapter: Board private structure
 686 */
 687static void igc_setup_rctl(struct igc_adapter *adapter)
 688{
 689        struct igc_hw *hw = &adapter->hw;
 690        u32 rctl;
 691
 692        rctl = rd32(IGC_RCTL);
 693
 694        rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
 695        rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
 696
 697        rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
 698                (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
 699
 700        /* enable stripping of CRC. Newer features require
 701         * that the HW strips the CRC.
 702         */
 703        rctl |= IGC_RCTL_SECRC;
 704
 705        /* disable store bad packets and clear size bits. */
 706        rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
 707
 708        /* enable LPE to allow for reception of jumbo frames */
 709        rctl |= IGC_RCTL_LPE;
 710
 711        /* disable queue 0 to prevent tail write w/o re-config */
 712        wr32(IGC_RXDCTL(0), 0);
 713
 714        /* This is useful for sniffing bad packets. */
 715        if (adapter->netdev->features & NETIF_F_RXALL) {
 716                /* UPE and MPE will be handled by normal PROMISC logic
 717                 * in set_rx_mode
 718                 */
 719                rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
 720                         IGC_RCTL_BAM | /* RX All Bcast Pkts */
 721                         IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
 722
 723                rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
 724                          IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
 725        }
 726
 727        wr32(IGC_RCTL, rctl);
 728}
 729
 730/**
 731 * igc_setup_tctl - configure the transmit control registers
 732 * @adapter: Board private structure
 733 */
 734static void igc_setup_tctl(struct igc_adapter *adapter)
 735{
 736        struct igc_hw *hw = &adapter->hw;
 737        u32 tctl;
 738
 739        /* disable queue 0 which icould be enabled by default */
 740        wr32(IGC_TXDCTL(0), 0);
 741
 742        /* Program the Transmit Control Register */
 743        tctl = rd32(IGC_TCTL);
 744        tctl &= ~IGC_TCTL_CT;
 745        tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
 746                (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
 747
 748        /* Enable transmits */
 749        tctl |= IGC_TCTL_EN;
 750
 751        wr32(IGC_TCTL, tctl);
 752}
 753
 754/**
 755 * igc_set_mac_filter_hw() - Set MAC address filter in hardware
 756 * @adapter: Pointer to adapter where the filter should be set
 757 * @index: Filter index
 758 * @type: MAC address filter type (source or destination)
 759 * @addr: MAC address
 760 * @queue: If non-negative, queue assignment feature is enabled and frames
 761 *         matching the filter are enqueued onto 'queue'. Otherwise, queue
 762 *         assignment is disabled.
 763 */
 764static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
 765                                  enum igc_mac_filter_type type,
 766                                  const u8 *addr, int queue)
 767{
 768        struct net_device *dev = adapter->netdev;
 769        struct igc_hw *hw = &adapter->hw;
 770        u32 ral, rah;
 771
 772        if (WARN_ON(index >= hw->mac.rar_entry_count))
 773                return;
 774
 775        ral = le32_to_cpup((__le32 *)(addr));
 776        rah = le16_to_cpup((__le16 *)(addr + 4));
 777
 778        if (type == IGC_MAC_FILTER_TYPE_SRC) {
 779                rah &= ~IGC_RAH_ASEL_MASK;
 780                rah |= IGC_RAH_ASEL_SRC_ADDR;
 781        }
 782
 783        if (queue >= 0) {
 784                rah &= ~IGC_RAH_QSEL_MASK;
 785                rah |= (queue << IGC_RAH_QSEL_SHIFT);
 786                rah |= IGC_RAH_QSEL_ENABLE;
 787        }
 788
 789        rah |= IGC_RAH_AV;
 790
 791        wr32(IGC_RAL(index), ral);
 792        wr32(IGC_RAH(index), rah);
 793
 794        netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
 795}
 796
 797/**
 798 * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
 799 * @adapter: Pointer to adapter where the filter should be cleared
 800 * @index: Filter index
 801 */
 802static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
 803{
 804        struct net_device *dev = adapter->netdev;
 805        struct igc_hw *hw = &adapter->hw;
 806
 807        if (WARN_ON(index >= hw->mac.rar_entry_count))
 808                return;
 809
 810        wr32(IGC_RAL(index), 0);
 811        wr32(IGC_RAH(index), 0);
 812
 813        netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
 814}
 815
 816/* Set default MAC address for the PF in the first RAR entry */
 817static void igc_set_default_mac_filter(struct igc_adapter *adapter)
 818{
 819        struct net_device *dev = adapter->netdev;
 820        u8 *addr = adapter->hw.mac.addr;
 821
 822        netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
 823
 824        igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
 825}
 826
 827/**
 828 * igc_set_mac - Change the Ethernet Address of the NIC
 829 * @netdev: network interface device structure
 830 * @p: pointer to an address structure
 831 *
 832 * Returns 0 on success, negative on failure
 833 */
 834static int igc_set_mac(struct net_device *netdev, void *p)
 835{
 836        struct igc_adapter *adapter = netdev_priv(netdev);
 837        struct igc_hw *hw = &adapter->hw;
 838        struct sockaddr *addr = p;
 839
 840        if (!is_valid_ether_addr(addr->sa_data))
 841                return -EADDRNOTAVAIL;
 842
 843        memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
 844        memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
 845
 846        /* set the correct pool for the new PF MAC address in entry 0 */
 847        igc_set_default_mac_filter(adapter);
 848
 849        return 0;
 850}
 851
 852/**
 853 *  igc_write_mc_addr_list - write multicast addresses to MTA
 854 *  @netdev: network interface device structure
 855 *
 856 *  Writes multicast address list to the MTA hash table.
 857 *  Returns: -ENOMEM on failure
 858 *           0 on no addresses written
 859 *           X on writing X addresses to MTA
 860 **/
 861static int igc_write_mc_addr_list(struct net_device *netdev)
 862{
 863        struct igc_adapter *adapter = netdev_priv(netdev);
 864        struct igc_hw *hw = &adapter->hw;
 865        struct netdev_hw_addr *ha;
 866        u8  *mta_list;
 867        int i;
 868
 869        if (netdev_mc_empty(netdev)) {
 870                /* nothing to program, so clear mc list */
 871                igc_update_mc_addr_list(hw, NULL, 0);
 872                return 0;
 873        }
 874
 875        mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
 876        if (!mta_list)
 877                return -ENOMEM;
 878
 879        /* The shared function expects a packed array of only addresses. */
 880        i = 0;
 881        netdev_for_each_mc_addr(ha, netdev)
 882                memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
 883
 884        igc_update_mc_addr_list(hw, mta_list, i);
 885        kfree(mta_list);
 886
 887        return netdev_mc_count(netdev);
 888}
 889
 890static __le32 igc_tx_launchtime(struct igc_adapter *adapter, ktime_t txtime)
 891{
 892        ktime_t cycle_time = adapter->cycle_time;
 893        ktime_t base_time = adapter->base_time;
 894        u32 launchtime;
 895
 896        /* FIXME: when using ETF together with taprio, we may have a
 897         * case where 'delta' is larger than the cycle_time, this may
 898         * cause problems if we don't read the current value of
 899         * IGC_BASET, as the value writen into the launchtime
 900         * descriptor field may be misinterpreted.
 901         */
 902        div_s64_rem(ktime_sub_ns(txtime, base_time), cycle_time, &launchtime);
 903
 904        return cpu_to_le32(launchtime);
 905}
 906
 907static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
 908                            struct igc_tx_buffer *first,
 909                            u32 vlan_macip_lens, u32 type_tucmd,
 910                            u32 mss_l4len_idx)
 911{
 912        struct igc_adv_tx_context_desc *context_desc;
 913        u16 i = tx_ring->next_to_use;
 914
 915        context_desc = IGC_TX_CTXTDESC(tx_ring, i);
 916
 917        i++;
 918        tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
 919
 920        /* set bits to identify this as an advanced context descriptor */
 921        type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
 922
 923        /* For i225, context index must be unique per ring. */
 924        if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
 925                mss_l4len_idx |= tx_ring->reg_idx << 4;
 926
 927        context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
 928        context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
 929        context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
 930
 931        /* We assume there is always a valid Tx time available. Invalid times
 932         * should have been handled by the upper layers.
 933         */
 934        if (tx_ring->launchtime_enable) {
 935                struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
 936                ktime_t txtime = first->skb->tstamp;
 937
 938                first->skb->tstamp = ktime_set(0, 0);
 939                context_desc->launch_time = igc_tx_launchtime(adapter,
 940                                                              txtime);
 941        } else {
 942                context_desc->launch_time = 0;
 943        }
 944}
 945
 946static inline bool igc_ipv6_csum_is_sctp(struct sk_buff *skb)
 947{
 948        unsigned int offset = 0;
 949
 950        ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
 951
 952        return offset == skb_checksum_start_offset(skb);
 953}
 954
 955static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first)
 956{
 957        struct sk_buff *skb = first->skb;
 958        u32 vlan_macip_lens = 0;
 959        u32 type_tucmd = 0;
 960
 961        if (skb->ip_summed != CHECKSUM_PARTIAL) {
 962csum_failed:
 963                if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
 964                    !tx_ring->launchtime_enable)
 965                        return;
 966                goto no_csum;
 967        }
 968
 969        switch (skb->csum_offset) {
 970        case offsetof(struct tcphdr, check):
 971                type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
 972                fallthrough;
 973        case offsetof(struct udphdr, check):
 974                break;
 975        case offsetof(struct sctphdr, checksum):
 976                /* validate that this is actually an SCTP request */
 977                if ((first->protocol == htons(ETH_P_IP) &&
 978                     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
 979                    (first->protocol == htons(ETH_P_IPV6) &&
 980                     igc_ipv6_csum_is_sctp(skb))) {
 981                        type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
 982                        break;
 983                }
 984                fallthrough;
 985        default:
 986                skb_checksum_help(skb);
 987                goto csum_failed;
 988        }
 989
 990        /* update TX checksum flag */
 991        first->tx_flags |= IGC_TX_FLAGS_CSUM;
 992        vlan_macip_lens = skb_checksum_start_offset(skb) -
 993                          skb_network_offset(skb);
 994no_csum:
 995        vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
 996        vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
 997
 998        igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
 999}
1000
1001static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1002{
1003        struct net_device *netdev = tx_ring->netdev;
1004
1005        netif_stop_subqueue(netdev, tx_ring->queue_index);
1006
1007        /* memory barriier comment */
1008        smp_mb();
1009
1010        /* We need to check again in a case another CPU has just
1011         * made room available.
1012         */
1013        if (igc_desc_unused(tx_ring) < size)
1014                return -EBUSY;
1015
1016        /* A reprieve! */
1017        netif_wake_subqueue(netdev, tx_ring->queue_index);
1018
1019        u64_stats_update_begin(&tx_ring->tx_syncp2);
1020        tx_ring->tx_stats.restart_queue2++;
1021        u64_stats_update_end(&tx_ring->tx_syncp2);
1022
1023        return 0;
1024}
1025
1026static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1027{
1028        if (igc_desc_unused(tx_ring) >= size)
1029                return 0;
1030        return __igc_maybe_stop_tx(tx_ring, size);
1031}
1032
1033#define IGC_SET_FLAG(_input, _flag, _result) \
1034        (((_flag) <= (_result)) ?                               \
1035         ((u32)((_input) & (_flag)) * ((_result) / (_flag))) :  \
1036         ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1037
1038static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1039{
1040        /* set type for advanced descriptor with frame checksum insertion */
1041        u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1042                       IGC_ADVTXD_DCMD_DEXT |
1043                       IGC_ADVTXD_DCMD_IFCS;
1044
1045        /* set segmentation bits for TSO */
1046        cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1047                                 (IGC_ADVTXD_DCMD_TSE));
1048
1049        /* set timestamp bit if present */
1050        cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1051                                 (IGC_ADVTXD_MAC_TSTAMP));
1052
1053        return cmd_type;
1054}
1055
1056static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1057                                 union igc_adv_tx_desc *tx_desc,
1058                                 u32 tx_flags, unsigned int paylen)
1059{
1060        u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1061
1062        /* insert L4 checksum */
1063        olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
1064                          ((IGC_TXD_POPTS_TXSM << 8) /
1065                          IGC_TX_FLAGS_CSUM);
1066
1067        /* insert IPv4 checksum */
1068        olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
1069                          (((IGC_TXD_POPTS_IXSM << 8)) /
1070                          IGC_TX_FLAGS_IPV4);
1071
1072        tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1073}
1074
1075static int igc_tx_map(struct igc_ring *tx_ring,
1076                      struct igc_tx_buffer *first,
1077                      const u8 hdr_len)
1078{
1079        struct sk_buff *skb = first->skb;
1080        struct igc_tx_buffer *tx_buffer;
1081        union igc_adv_tx_desc *tx_desc;
1082        u32 tx_flags = first->tx_flags;
1083        skb_frag_t *frag;
1084        u16 i = tx_ring->next_to_use;
1085        unsigned int data_len, size;
1086        dma_addr_t dma;
1087        u32 cmd_type = igc_tx_cmd_type(skb, tx_flags);
1088
1089        tx_desc = IGC_TX_DESC(tx_ring, i);
1090
1091        igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1092
1093        size = skb_headlen(skb);
1094        data_len = skb->data_len;
1095
1096        dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1097
1098        tx_buffer = first;
1099
1100        for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1101                if (dma_mapping_error(tx_ring->dev, dma))
1102                        goto dma_error;
1103
1104                /* record length, and DMA address */
1105                dma_unmap_len_set(tx_buffer, len, size);
1106                dma_unmap_addr_set(tx_buffer, dma, dma);
1107
1108                tx_desc->read.buffer_addr = cpu_to_le64(dma);
1109
1110                while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1111                        tx_desc->read.cmd_type_len =
1112                                cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1113
1114                        i++;
1115                        tx_desc++;
1116                        if (i == tx_ring->count) {
1117                                tx_desc = IGC_TX_DESC(tx_ring, 0);
1118                                i = 0;
1119                        }
1120                        tx_desc->read.olinfo_status = 0;
1121
1122                        dma += IGC_MAX_DATA_PER_TXD;
1123                        size -= IGC_MAX_DATA_PER_TXD;
1124
1125                        tx_desc->read.buffer_addr = cpu_to_le64(dma);
1126                }
1127
1128                if (likely(!data_len))
1129                        break;
1130
1131                tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1132
1133                i++;
1134                tx_desc++;
1135                if (i == tx_ring->count) {
1136                        tx_desc = IGC_TX_DESC(tx_ring, 0);
1137                        i = 0;
1138                }
1139                tx_desc->read.olinfo_status = 0;
1140
1141                size = skb_frag_size(frag);
1142                data_len -= size;
1143
1144                dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1145                                       size, DMA_TO_DEVICE);
1146
1147                tx_buffer = &tx_ring->tx_buffer_info[i];
1148        }
1149
1150        /* write last descriptor with RS and EOP bits */
1151        cmd_type |= size | IGC_TXD_DCMD;
1152        tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1153
1154        netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1155
1156        /* set the timestamp */
1157        first->time_stamp = jiffies;
1158
1159        skb_tx_timestamp(skb);
1160
1161        /* Force memory writes to complete before letting h/w know there
1162         * are new descriptors to fetch.  (Only applicable for weak-ordered
1163         * memory model archs, such as IA-64).
1164         *
1165         * We also need this memory barrier to make certain all of the
1166         * status bits have been updated before next_to_watch is written.
1167         */
1168        wmb();
1169
1170        /* set next_to_watch value indicating a packet is present */
1171        first->next_to_watch = tx_desc;
1172
1173        i++;
1174        if (i == tx_ring->count)
1175                i = 0;
1176
1177        tx_ring->next_to_use = i;
1178
1179        /* Make sure there is space in the ring for the next send. */
1180        igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1181
1182        if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1183                writel(i, tx_ring->tail);
1184        }
1185
1186        return 0;
1187dma_error:
1188        netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1189        tx_buffer = &tx_ring->tx_buffer_info[i];
1190
1191        /* clear dma mappings for failed tx_buffer_info map */
1192        while (tx_buffer != first) {
1193                if (dma_unmap_len(tx_buffer, len))
1194                        dma_unmap_page(tx_ring->dev,
1195                                       dma_unmap_addr(tx_buffer, dma),
1196                                       dma_unmap_len(tx_buffer, len),
1197                                       DMA_TO_DEVICE);
1198                dma_unmap_len_set(tx_buffer, len, 0);
1199
1200                if (i-- == 0)
1201                        i += tx_ring->count;
1202                tx_buffer = &tx_ring->tx_buffer_info[i];
1203        }
1204
1205        if (dma_unmap_len(tx_buffer, len))
1206                dma_unmap_single(tx_ring->dev,
1207                                 dma_unmap_addr(tx_buffer, dma),
1208                                 dma_unmap_len(tx_buffer, len),
1209                                 DMA_TO_DEVICE);
1210        dma_unmap_len_set(tx_buffer, len, 0);
1211
1212        dev_kfree_skb_any(tx_buffer->skb);
1213        tx_buffer->skb = NULL;
1214
1215        tx_ring->next_to_use = i;
1216
1217        return -1;
1218}
1219
1220static int igc_tso(struct igc_ring *tx_ring,
1221                   struct igc_tx_buffer *first,
1222                   u8 *hdr_len)
1223{
1224        u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1225        struct sk_buff *skb = first->skb;
1226        union {
1227                struct iphdr *v4;
1228                struct ipv6hdr *v6;
1229                unsigned char *hdr;
1230        } ip;
1231        union {
1232                struct tcphdr *tcp;
1233                struct udphdr *udp;
1234                unsigned char *hdr;
1235        } l4;
1236        u32 paylen, l4_offset;
1237        int err;
1238
1239        if (skb->ip_summed != CHECKSUM_PARTIAL)
1240                return 0;
1241
1242        if (!skb_is_gso(skb))
1243                return 0;
1244
1245        err = skb_cow_head(skb, 0);
1246        if (err < 0)
1247                return err;
1248
1249        ip.hdr = skb_network_header(skb);
1250        l4.hdr = skb_checksum_start(skb);
1251
1252        /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1253        type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1254
1255        /* initialize outer IP header fields */
1256        if (ip.v4->version == 4) {
1257                unsigned char *csum_start = skb_checksum_start(skb);
1258                unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1259
1260                /* IP header will have to cancel out any data that
1261                 * is not a part of the outer IP header
1262                 */
1263                ip.v4->check = csum_fold(csum_partial(trans_start,
1264                                                      csum_start - trans_start,
1265                                                      0));
1266                type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1267
1268                ip.v4->tot_len = 0;
1269                first->tx_flags |= IGC_TX_FLAGS_TSO |
1270                                   IGC_TX_FLAGS_CSUM |
1271                                   IGC_TX_FLAGS_IPV4;
1272        } else {
1273                ip.v6->payload_len = 0;
1274                first->tx_flags |= IGC_TX_FLAGS_TSO |
1275                                   IGC_TX_FLAGS_CSUM;
1276        }
1277
1278        /* determine offset of inner transport header */
1279        l4_offset = l4.hdr - skb->data;
1280
1281        /* remove payload length from inner checksum */
1282        paylen = skb->len - l4_offset;
1283        if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1284                /* compute length of segmentation header */
1285                *hdr_len = (l4.tcp->doff * 4) + l4_offset;
1286                csum_replace_by_diff(&l4.tcp->check,
1287                                     (__force __wsum)htonl(paylen));
1288        } else {
1289                /* compute length of segmentation header */
1290                *hdr_len = sizeof(*l4.udp) + l4_offset;
1291                csum_replace_by_diff(&l4.udp->check,
1292                                     (__force __wsum)htonl(paylen));
1293        }
1294
1295        /* update gso size and bytecount with header size */
1296        first->gso_segs = skb_shinfo(skb)->gso_segs;
1297        first->bytecount += (first->gso_segs - 1) * *hdr_len;
1298
1299        /* MSS L4LEN IDX */
1300        mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1301        mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1302
1303        /* VLAN MACLEN IPLEN */
1304        vlan_macip_lens = l4.hdr - ip.hdr;
1305        vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1306        vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1307
1308        igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
1309                        type_tucmd, mss_l4len_idx);
1310
1311        return 1;
1312}
1313
1314static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1315                                       struct igc_ring *tx_ring)
1316{
1317        u16 count = TXD_USE_COUNT(skb_headlen(skb));
1318        __be16 protocol = vlan_get_protocol(skb);
1319        struct igc_tx_buffer *first;
1320        u32 tx_flags = 0;
1321        unsigned short f;
1322        u8 hdr_len = 0;
1323        int tso = 0;
1324
1325        /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1326         *      + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1327         *      + 2 desc gap to keep tail from touching head,
1328         *      + 1 desc for context descriptor,
1329         * otherwise try next time
1330         */
1331        for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1332                count += TXD_USE_COUNT(skb_frag_size(
1333                                                &skb_shinfo(skb)->frags[f]));
1334
1335        if (igc_maybe_stop_tx(tx_ring, count + 3)) {
1336                /* this is a hard error */
1337                return NETDEV_TX_BUSY;
1338        }
1339
1340        /* record the location of the first descriptor for this packet */
1341        first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1342        first->skb = skb;
1343        first->bytecount = skb->len;
1344        first->gso_segs = 1;
1345
1346        if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1347                struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1348
1349                /* FIXME: add support for retrieving timestamps from
1350                 * the other timer registers before skipping the
1351                 * timestamping request.
1352                 */
1353                if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
1354                    !test_and_set_bit_lock(__IGC_PTP_TX_IN_PROGRESS,
1355                                           &adapter->state)) {
1356                        skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1357                        tx_flags |= IGC_TX_FLAGS_TSTAMP;
1358
1359                        adapter->ptp_tx_skb = skb_get(skb);
1360                        adapter->ptp_tx_start = jiffies;
1361                } else {
1362                        adapter->tx_hwtstamp_skipped++;
1363                }
1364        }
1365
1366        /* record initial flags and protocol */
1367        first->tx_flags = tx_flags;
1368        first->protocol = protocol;
1369
1370        tso = igc_tso(tx_ring, first, &hdr_len);
1371        if (tso < 0)
1372                goto out_drop;
1373        else if (!tso)
1374                igc_tx_csum(tx_ring, first);
1375
1376        igc_tx_map(tx_ring, first, hdr_len);
1377
1378        return NETDEV_TX_OK;
1379
1380out_drop:
1381        dev_kfree_skb_any(first->skb);
1382        first->skb = NULL;
1383
1384        return NETDEV_TX_OK;
1385}
1386
1387static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1388                                                    struct sk_buff *skb)
1389{
1390        unsigned int r_idx = skb->queue_mapping;
1391
1392        if (r_idx >= adapter->num_tx_queues)
1393                r_idx = r_idx % adapter->num_tx_queues;
1394
1395        return adapter->tx_ring[r_idx];
1396}
1397
1398static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1399                                  struct net_device *netdev)
1400{
1401        struct igc_adapter *adapter = netdev_priv(netdev);
1402
1403        /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1404         * in order to meet this minimum size requirement.
1405         */
1406        if (skb->len < 17) {
1407                if (skb_padto(skb, 17))
1408                        return NETDEV_TX_OK;
1409                skb->len = 17;
1410        }
1411
1412        return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1413}
1414
1415static void igc_rx_checksum(struct igc_ring *ring,
1416                            union igc_adv_rx_desc *rx_desc,
1417                            struct sk_buff *skb)
1418{
1419        skb_checksum_none_assert(skb);
1420
1421        /* Ignore Checksum bit is set */
1422        if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1423                return;
1424
1425        /* Rx checksum disabled via ethtool */
1426        if (!(ring->netdev->features & NETIF_F_RXCSUM))
1427                return;
1428
1429        /* TCP/UDP checksum error bit is set */
1430        if (igc_test_staterr(rx_desc,
1431                             IGC_RXDEXT_STATERR_TCPE |
1432                             IGC_RXDEXT_STATERR_IPE)) {
1433                /* work around errata with sctp packets where the TCPE aka
1434                 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1435                 * packets (aka let the stack check the crc32c)
1436                 */
1437                if (!(skb->len == 60 &&
1438                      test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1439                        u64_stats_update_begin(&ring->rx_syncp);
1440                        ring->rx_stats.csum_err++;
1441                        u64_stats_update_end(&ring->rx_syncp);
1442                }
1443                /* let the stack verify checksum errors */
1444                return;
1445        }
1446        /* It must be a TCP or UDP packet with a valid checksum */
1447        if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1448                                      IGC_RXD_STAT_UDPCS))
1449                skb->ip_summed = CHECKSUM_UNNECESSARY;
1450
1451        netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1452                   le32_to_cpu(rx_desc->wb.upper.status_error));
1453}
1454
1455static inline void igc_rx_hash(struct igc_ring *ring,
1456                               union igc_adv_rx_desc *rx_desc,
1457                               struct sk_buff *skb)
1458{
1459        if (ring->netdev->features & NETIF_F_RXHASH)
1460                skb_set_hash(skb,
1461                             le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
1462                             PKT_HASH_TYPE_L3);
1463}
1464
1465/**
1466 * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1467 * @rx_ring: rx descriptor ring packet is being transacted on
1468 * @rx_desc: pointer to the EOP Rx descriptor
1469 * @skb: pointer to current skb being populated
1470 *
1471 * This function checks the ring, descriptor, and packet information in order
1472 * to populate the hash, checksum, VLAN, protocol, and other fields within the
1473 * skb.
1474 */
1475static void igc_process_skb_fields(struct igc_ring *rx_ring,
1476                                   union igc_adv_rx_desc *rx_desc,
1477                                   struct sk_buff *skb)
1478{
1479        igc_rx_hash(rx_ring, rx_desc, skb);
1480
1481        igc_rx_checksum(rx_ring, rx_desc, skb);
1482
1483        skb_record_rx_queue(skb, rx_ring->queue_index);
1484
1485        skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1486}
1487
1488static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1489                                               const unsigned int size)
1490{
1491        struct igc_rx_buffer *rx_buffer;
1492
1493        rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1494        prefetchw(rx_buffer->page);
1495
1496        /* we are reusing so sync this buffer for CPU use */
1497        dma_sync_single_range_for_cpu(rx_ring->dev,
1498                                      rx_buffer->dma,
1499                                      rx_buffer->page_offset,
1500                                      size,
1501                                      DMA_FROM_DEVICE);
1502
1503        rx_buffer->pagecnt_bias--;
1504
1505        return rx_buffer;
1506}
1507
1508/**
1509 * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1510 * @rx_ring: rx descriptor ring to transact packets on
1511 * @rx_buffer: buffer containing page to add
1512 * @skb: sk_buff to place the data into
1513 * @size: size of buffer to be added
1514 *
1515 * This function will add the data contained in rx_buffer->page to the skb.
1516 */
1517static void igc_add_rx_frag(struct igc_ring *rx_ring,
1518                            struct igc_rx_buffer *rx_buffer,
1519                            struct sk_buff *skb,
1520                            unsigned int size)
1521{
1522#if (PAGE_SIZE < 8192)
1523        unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1524
1525        skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1526                        rx_buffer->page_offset, size, truesize);
1527        rx_buffer->page_offset ^= truesize;
1528#else
1529        unsigned int truesize = ring_uses_build_skb(rx_ring) ?
1530                                SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1531                                SKB_DATA_ALIGN(size);
1532        skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1533                        rx_buffer->page_offset, size, truesize);
1534        rx_buffer->page_offset += truesize;
1535#endif
1536}
1537
1538static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1539                                     struct igc_rx_buffer *rx_buffer,
1540                                     union igc_adv_rx_desc *rx_desc,
1541                                     unsigned int size)
1542{
1543        void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1544#if (PAGE_SIZE < 8192)
1545        unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1546#else
1547        unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1548                                SKB_DATA_ALIGN(IGC_SKB_PAD + size);
1549#endif
1550        struct sk_buff *skb;
1551
1552        /* prefetch first cache line of first page */
1553        prefetch(va);
1554#if L1_CACHE_BYTES < 128
1555        prefetch(va + L1_CACHE_BYTES);
1556#endif
1557
1558        /* build an skb around the page buffer */
1559        skb = build_skb(va - IGC_SKB_PAD, truesize);
1560        if (unlikely(!skb))
1561                return NULL;
1562
1563        /* update pointers within the skb to store the data */
1564        skb_reserve(skb, IGC_SKB_PAD);
1565        __skb_put(skb, size);
1566
1567        /* update buffer offset */
1568#if (PAGE_SIZE < 8192)
1569        rx_buffer->page_offset ^= truesize;
1570#else
1571        rx_buffer->page_offset += truesize;
1572#endif
1573
1574        return skb;
1575}
1576
1577static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1578                                         struct igc_rx_buffer *rx_buffer,
1579                                         union igc_adv_rx_desc *rx_desc,
1580                                         unsigned int size)
1581{
1582        void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1583#if (PAGE_SIZE < 8192)
1584        unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1585#else
1586        unsigned int truesize = SKB_DATA_ALIGN(size);
1587#endif
1588        unsigned int headlen;
1589        struct sk_buff *skb;
1590
1591        /* prefetch first cache line of first page */
1592        prefetch(va);
1593#if L1_CACHE_BYTES < 128
1594        prefetch(va + L1_CACHE_BYTES);
1595#endif
1596
1597        /* allocate a skb to store the frags */
1598        skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGC_RX_HDR_LEN);
1599        if (unlikely(!skb))
1600                return NULL;
1601
1602        if (unlikely(igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP))) {
1603                igc_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
1604                va += IGC_TS_HDR_LEN;
1605                size -= IGC_TS_HDR_LEN;
1606        }
1607
1608        /* Determine available headroom for copy */
1609        headlen = size;
1610        if (headlen > IGC_RX_HDR_LEN)
1611                headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1612
1613        /* align pull length to size of long to optimize memcpy performance */
1614        memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1615
1616        /* update all of the pointers */
1617        size -= headlen;
1618        if (size) {
1619                skb_add_rx_frag(skb, 0, rx_buffer->page,
1620                                (va + headlen) - page_address(rx_buffer->page),
1621                                size, truesize);
1622#if (PAGE_SIZE < 8192)
1623                rx_buffer->page_offset ^= truesize;
1624#else
1625                rx_buffer->page_offset += truesize;
1626#endif
1627        } else {
1628                rx_buffer->pagecnt_bias++;
1629        }
1630
1631        return skb;
1632}
1633
1634/**
1635 * igc_reuse_rx_page - page flip buffer and store it back on the ring
1636 * @rx_ring: rx descriptor ring to store buffers on
1637 * @old_buff: donor buffer to have page reused
1638 *
1639 * Synchronizes page for reuse by the adapter
1640 */
1641static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1642                              struct igc_rx_buffer *old_buff)
1643{
1644        u16 nta = rx_ring->next_to_alloc;
1645        struct igc_rx_buffer *new_buff;
1646
1647        new_buff = &rx_ring->rx_buffer_info[nta];
1648
1649        /* update, and store next to alloc */
1650        nta++;
1651        rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1652
1653        /* Transfer page from old buffer to new buffer.
1654         * Move each member individually to avoid possible store
1655         * forwarding stalls.
1656         */
1657        new_buff->dma           = old_buff->dma;
1658        new_buff->page          = old_buff->page;
1659        new_buff->page_offset   = old_buff->page_offset;
1660        new_buff->pagecnt_bias  = old_buff->pagecnt_bias;
1661}
1662
1663static inline bool igc_page_is_reserved(struct page *page)
1664{
1665        return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
1666}
1667
1668static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer)
1669{
1670        unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1671        struct page *page = rx_buffer->page;
1672
1673        /* avoid re-using remote pages */
1674        if (unlikely(igc_page_is_reserved(page)))
1675                return false;
1676
1677#if (PAGE_SIZE < 8192)
1678        /* if we are only owner of page we can reuse it */
1679        if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
1680                return false;
1681#else
1682#define IGC_LAST_OFFSET \
1683        (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
1684
1685        if (rx_buffer->page_offset > IGC_LAST_OFFSET)
1686                return false;
1687#endif
1688
1689        /* If we have drained the page fragment pool we need to update
1690         * the pagecnt_bias and page count so that we fully restock the
1691         * number of references the driver holds.
1692         */
1693        if (unlikely(!pagecnt_bias)) {
1694                page_ref_add(page, USHRT_MAX);
1695                rx_buffer->pagecnt_bias = USHRT_MAX;
1696        }
1697
1698        return true;
1699}
1700
1701/**
1702 * igc_is_non_eop - process handling of non-EOP buffers
1703 * @rx_ring: Rx ring being processed
1704 * @rx_desc: Rx descriptor for current buffer
1705 *
1706 * This function updates next to clean.  If the buffer is an EOP buffer
1707 * this function exits returning false, otherwise it will place the
1708 * sk_buff in the next buffer to be chained and return true indicating
1709 * that this is in fact a non-EOP buffer.
1710 */
1711static bool igc_is_non_eop(struct igc_ring *rx_ring,
1712                           union igc_adv_rx_desc *rx_desc)
1713{
1714        u32 ntc = rx_ring->next_to_clean + 1;
1715
1716        /* fetch, update, and store next to clean */
1717        ntc = (ntc < rx_ring->count) ? ntc : 0;
1718        rx_ring->next_to_clean = ntc;
1719
1720        prefetch(IGC_RX_DESC(rx_ring, ntc));
1721
1722        if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
1723                return false;
1724
1725        return true;
1726}
1727
1728/**
1729 * igc_cleanup_headers - Correct corrupted or empty headers
1730 * @rx_ring: rx descriptor ring packet is being transacted on
1731 * @rx_desc: pointer to the EOP Rx descriptor
1732 * @skb: pointer to current skb being fixed
1733 *
1734 * Address the case where we are pulling data in on pages only
1735 * and as such no data is present in the skb header.
1736 *
1737 * In addition if skb is not at least 60 bytes we need to pad it so that
1738 * it is large enough to qualify as a valid Ethernet frame.
1739 *
1740 * Returns true if an error was encountered and skb was freed.
1741 */
1742static bool igc_cleanup_headers(struct igc_ring *rx_ring,
1743                                union igc_adv_rx_desc *rx_desc,
1744                                struct sk_buff *skb)
1745{
1746        if (unlikely((igc_test_staterr(rx_desc,
1747                                       IGC_RXDEXT_ERR_FRAME_ERR_MASK)))) {
1748                struct net_device *netdev = rx_ring->netdev;
1749
1750                if (!(netdev->features & NETIF_F_RXALL)) {
1751                        dev_kfree_skb_any(skb);
1752                        return true;
1753                }
1754        }
1755
1756        /* if eth_skb_pad returns an error the skb was freed */
1757        if (eth_skb_pad(skb))
1758                return true;
1759
1760        return false;
1761}
1762
1763static void igc_put_rx_buffer(struct igc_ring *rx_ring,
1764                              struct igc_rx_buffer *rx_buffer)
1765{
1766        if (igc_can_reuse_rx_page(rx_buffer)) {
1767                /* hand second half of page back to the ring */
1768                igc_reuse_rx_page(rx_ring, rx_buffer);
1769        } else {
1770                /* We are not reusing the buffer so unmap it and free
1771                 * any references we are holding to it
1772                 */
1773                dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1774                                     igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1775                                     IGC_RX_DMA_ATTR);
1776                __page_frag_cache_drain(rx_buffer->page,
1777                                        rx_buffer->pagecnt_bias);
1778        }
1779
1780        /* clear contents of rx_buffer */
1781        rx_buffer->page = NULL;
1782}
1783
1784static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
1785{
1786        return ring_uses_build_skb(rx_ring) ? IGC_SKB_PAD : 0;
1787}
1788
1789static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
1790                                  struct igc_rx_buffer *bi)
1791{
1792        struct page *page = bi->page;
1793        dma_addr_t dma;
1794
1795        /* since we are recycling buffers we should seldom need to alloc */
1796        if (likely(page))
1797                return true;
1798
1799        /* alloc new page for storage */
1800        page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
1801        if (unlikely(!page)) {
1802                rx_ring->rx_stats.alloc_failed++;
1803                return false;
1804        }
1805
1806        /* map page for use */
1807        dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1808                                 igc_rx_pg_size(rx_ring),
1809                                 DMA_FROM_DEVICE,
1810                                 IGC_RX_DMA_ATTR);
1811
1812        /* if mapping failed free memory back to system since
1813         * there isn't much point in holding memory we can't use
1814         */
1815        if (dma_mapping_error(rx_ring->dev, dma)) {
1816                __free_page(page);
1817
1818                rx_ring->rx_stats.alloc_failed++;
1819                return false;
1820        }
1821
1822        bi->dma = dma;
1823        bi->page = page;
1824        bi->page_offset = igc_rx_offset(rx_ring);
1825        bi->pagecnt_bias = 1;
1826
1827        return true;
1828}
1829
1830/**
1831 * igc_alloc_rx_buffers - Replace used receive buffers; packet split
1832 * @rx_ring: rx descriptor ring
1833 * @cleaned_count: number of buffers to clean
1834 */
1835static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
1836{
1837        union igc_adv_rx_desc *rx_desc;
1838        u16 i = rx_ring->next_to_use;
1839        struct igc_rx_buffer *bi;
1840        u16 bufsz;
1841
1842        /* nothing to do */
1843        if (!cleaned_count)
1844                return;
1845
1846        rx_desc = IGC_RX_DESC(rx_ring, i);
1847        bi = &rx_ring->rx_buffer_info[i];
1848        i -= rx_ring->count;
1849
1850        bufsz = igc_rx_bufsz(rx_ring);
1851
1852        do {
1853                if (!igc_alloc_mapped_page(rx_ring, bi))
1854                        break;
1855
1856                /* sync the buffer for use by the device */
1857                dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1858                                                 bi->page_offset, bufsz,
1859                                                 DMA_FROM_DEVICE);
1860
1861                /* Refresh the desc even if buffer_addrs didn't change
1862                 * because each write-back erases this info.
1863                 */
1864                rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1865
1866                rx_desc++;
1867                bi++;
1868                i++;
1869                if (unlikely(!i)) {
1870                        rx_desc = IGC_RX_DESC(rx_ring, 0);
1871                        bi = rx_ring->rx_buffer_info;
1872                        i -= rx_ring->count;
1873                }
1874
1875                /* clear the length for the next_to_use descriptor */
1876                rx_desc->wb.upper.length = 0;
1877
1878                cleaned_count--;
1879        } while (cleaned_count);
1880
1881        i += rx_ring->count;
1882
1883        if (rx_ring->next_to_use != i) {
1884                /* record the next descriptor to use */
1885                rx_ring->next_to_use = i;
1886
1887                /* update next to alloc since we have filled the ring */
1888                rx_ring->next_to_alloc = i;
1889
1890                /* Force memory writes to complete before letting h/w
1891                 * know there are new descriptors to fetch.  (Only
1892                 * applicable for weak-ordered memory model archs,
1893                 * such as IA-64).
1894                 */
1895                wmb();
1896                writel(i, rx_ring->tail);
1897        }
1898}
1899
1900static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
1901{
1902        unsigned int total_bytes = 0, total_packets = 0;
1903        struct igc_ring *rx_ring = q_vector->rx.ring;
1904        struct sk_buff *skb = rx_ring->skb;
1905        u16 cleaned_count = igc_desc_unused(rx_ring);
1906
1907        while (likely(total_packets < budget)) {
1908                union igc_adv_rx_desc *rx_desc;
1909                struct igc_rx_buffer *rx_buffer;
1910                unsigned int size;
1911
1912                /* return some buffers to hardware, one at a time is too slow */
1913                if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
1914                        igc_alloc_rx_buffers(rx_ring, cleaned_count);
1915                        cleaned_count = 0;
1916                }
1917
1918                rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
1919                size = le16_to_cpu(rx_desc->wb.upper.length);
1920                if (!size)
1921                        break;
1922
1923                /* This memory barrier is needed to keep us from reading
1924                 * any other fields out of the rx_desc until we know the
1925                 * descriptor has been written back
1926                 */
1927                dma_rmb();
1928
1929                rx_buffer = igc_get_rx_buffer(rx_ring, size);
1930
1931                /* retrieve a buffer from the ring */
1932                if (skb)
1933                        igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
1934                else if (ring_uses_build_skb(rx_ring))
1935                        skb = igc_build_skb(rx_ring, rx_buffer, rx_desc, size);
1936                else
1937                        skb = igc_construct_skb(rx_ring, rx_buffer,
1938                                                rx_desc, size);
1939
1940                /* exit if we failed to retrieve a buffer */
1941                if (!skb) {
1942                        rx_ring->rx_stats.alloc_failed++;
1943                        rx_buffer->pagecnt_bias++;
1944                        break;
1945                }
1946
1947                igc_put_rx_buffer(rx_ring, rx_buffer);
1948                cleaned_count++;
1949
1950                /* fetch next buffer in frame if non-eop */
1951                if (igc_is_non_eop(rx_ring, rx_desc))
1952                        continue;
1953
1954                /* verify the packet layout is correct */
1955                if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
1956                        skb = NULL;
1957                        continue;
1958                }
1959
1960                /* probably a little skewed due to removing CRC */
1961                total_bytes += skb->len;
1962
1963                /* populate checksum, VLAN, and protocol */
1964                igc_process_skb_fields(rx_ring, rx_desc, skb);
1965
1966                napi_gro_receive(&q_vector->napi, skb);
1967
1968                /* reset skb pointer */
1969                skb = NULL;
1970
1971                /* update budget accounting */
1972                total_packets++;
1973        }
1974
1975        /* place incomplete frames back on ring for completion */
1976        rx_ring->skb = skb;
1977
1978        u64_stats_update_begin(&rx_ring->rx_syncp);
1979        rx_ring->rx_stats.packets += total_packets;
1980        rx_ring->rx_stats.bytes += total_bytes;
1981        u64_stats_update_end(&rx_ring->rx_syncp);
1982        q_vector->rx.total_packets += total_packets;
1983        q_vector->rx.total_bytes += total_bytes;
1984
1985        if (cleaned_count)
1986                igc_alloc_rx_buffers(rx_ring, cleaned_count);
1987
1988        return total_packets;
1989}
1990
1991/**
1992 * igc_clean_tx_irq - Reclaim resources after transmit completes
1993 * @q_vector: pointer to q_vector containing needed info
1994 * @napi_budget: Used to determine if we are in netpoll
1995 *
1996 * returns true if ring is completely cleaned
1997 */
1998static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
1999{
2000        struct igc_adapter *adapter = q_vector->adapter;
2001        unsigned int total_bytes = 0, total_packets = 0;
2002        unsigned int budget = q_vector->tx.work_limit;
2003        struct igc_ring *tx_ring = q_vector->tx.ring;
2004        unsigned int i = tx_ring->next_to_clean;
2005        struct igc_tx_buffer *tx_buffer;
2006        union igc_adv_tx_desc *tx_desc;
2007
2008        if (test_bit(__IGC_DOWN, &adapter->state))
2009                return true;
2010
2011        tx_buffer = &tx_ring->tx_buffer_info[i];
2012        tx_desc = IGC_TX_DESC(tx_ring, i);
2013        i -= tx_ring->count;
2014
2015        do {
2016                union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
2017
2018                /* if next_to_watch is not set then there is no work pending */
2019                if (!eop_desc)
2020                        break;
2021
2022                /* prevent any other reads prior to eop_desc */
2023                smp_rmb();
2024
2025                /* if DD is not set pending work has not been completed */
2026                if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
2027                        break;
2028
2029                /* clear next_to_watch to prevent false hangs */
2030                tx_buffer->next_to_watch = NULL;
2031
2032                /* update the statistics for this packet */
2033                total_bytes += tx_buffer->bytecount;
2034                total_packets += tx_buffer->gso_segs;
2035
2036                /* free the skb */
2037                napi_consume_skb(tx_buffer->skb, napi_budget);
2038
2039                /* unmap skb header data */
2040                dma_unmap_single(tx_ring->dev,
2041                                 dma_unmap_addr(tx_buffer, dma),
2042                                 dma_unmap_len(tx_buffer, len),
2043                                 DMA_TO_DEVICE);
2044
2045                /* clear tx_buffer data */
2046                dma_unmap_len_set(tx_buffer, len, 0);
2047
2048                /* clear last DMA location and unmap remaining buffers */
2049                while (tx_desc != eop_desc) {
2050                        tx_buffer++;
2051                        tx_desc++;
2052                        i++;
2053                        if (unlikely(!i)) {
2054                                i -= tx_ring->count;
2055                                tx_buffer = tx_ring->tx_buffer_info;
2056                                tx_desc = IGC_TX_DESC(tx_ring, 0);
2057                        }
2058
2059                        /* unmap any remaining paged data */
2060                        if (dma_unmap_len(tx_buffer, len)) {
2061                                dma_unmap_page(tx_ring->dev,
2062                                               dma_unmap_addr(tx_buffer, dma),
2063                                               dma_unmap_len(tx_buffer, len),
2064                                               DMA_TO_DEVICE);
2065                                dma_unmap_len_set(tx_buffer, len, 0);
2066                        }
2067                }
2068
2069                /* move us one more past the eop_desc for start of next pkt */
2070                tx_buffer++;
2071                tx_desc++;
2072                i++;
2073                if (unlikely(!i)) {
2074                        i -= tx_ring->count;
2075                        tx_buffer = tx_ring->tx_buffer_info;
2076                        tx_desc = IGC_TX_DESC(tx_ring, 0);
2077                }
2078
2079                /* issue prefetch for next Tx descriptor */
2080                prefetch(tx_desc);
2081
2082                /* update budget accounting */
2083                budget--;
2084        } while (likely(budget));
2085
2086        netdev_tx_completed_queue(txring_txq(tx_ring),
2087                                  total_packets, total_bytes);
2088
2089        i += tx_ring->count;
2090        tx_ring->next_to_clean = i;
2091        u64_stats_update_begin(&tx_ring->tx_syncp);
2092        tx_ring->tx_stats.bytes += total_bytes;
2093        tx_ring->tx_stats.packets += total_packets;
2094        u64_stats_update_end(&tx_ring->tx_syncp);
2095        q_vector->tx.total_bytes += total_bytes;
2096        q_vector->tx.total_packets += total_packets;
2097
2098        if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
2099                struct igc_hw *hw = &adapter->hw;
2100
2101                /* Detect a transmit hang in hardware, this serializes the
2102                 * check with the clearing of time_stamp and movement of i
2103                 */
2104                clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
2105                if (tx_buffer->next_to_watch &&
2106                    time_after(jiffies, tx_buffer->time_stamp +
2107                    (adapter->tx_timeout_factor * HZ)) &&
2108                    !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) {
2109                        /* detected Tx unit hang */
2110                        netdev_err(tx_ring->netdev,
2111                                   "Detected Tx Unit Hang\n"
2112                                   "  Tx Queue             <%d>\n"
2113                                   "  TDH                  <%x>\n"
2114                                   "  TDT                  <%x>\n"
2115                                   "  next_to_use          <%x>\n"
2116                                   "  next_to_clean        <%x>\n"
2117                                   "buffer_info[next_to_clean]\n"
2118                                   "  time_stamp           <%lx>\n"
2119                                   "  next_to_watch        <%p>\n"
2120                                   "  jiffies              <%lx>\n"
2121                                   "  desc.status          <%x>\n",
2122                                   tx_ring->queue_index,
2123                                   rd32(IGC_TDH(tx_ring->reg_idx)),
2124                                   readl(tx_ring->tail),
2125                                   tx_ring->next_to_use,
2126                                   tx_ring->next_to_clean,
2127                                   tx_buffer->time_stamp,
2128                                   tx_buffer->next_to_watch,
2129                                   jiffies,
2130                                   tx_buffer->next_to_watch->wb.status);
2131                        netif_stop_subqueue(tx_ring->netdev,
2132                                            tx_ring->queue_index);
2133
2134                        /* we are about to reset, no point in enabling stuff */
2135                        return true;
2136                }
2137        }
2138
2139#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
2140        if (unlikely(total_packets &&
2141                     netif_carrier_ok(tx_ring->netdev) &&
2142                     igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
2143                /* Make sure that anybody stopping the queue after this
2144                 * sees the new next_to_clean.
2145                 */
2146                smp_mb();
2147                if (__netif_subqueue_stopped(tx_ring->netdev,
2148                                             tx_ring->queue_index) &&
2149                    !(test_bit(__IGC_DOWN, &adapter->state))) {
2150                        netif_wake_subqueue(tx_ring->netdev,
2151                                            tx_ring->queue_index);
2152
2153                        u64_stats_update_begin(&tx_ring->tx_syncp);
2154                        tx_ring->tx_stats.restart_queue++;
2155                        u64_stats_update_end(&tx_ring->tx_syncp);
2156                }
2157        }
2158
2159        return !!budget;
2160}
2161
2162static int igc_find_mac_filter(struct igc_adapter *adapter,
2163                               enum igc_mac_filter_type type, const u8 *addr)
2164{
2165        struct igc_hw *hw = &adapter->hw;
2166        int max_entries = hw->mac.rar_entry_count;
2167        u32 ral, rah;
2168        int i;
2169
2170        for (i = 0; i < max_entries; i++) {
2171                ral = rd32(IGC_RAL(i));
2172                rah = rd32(IGC_RAH(i));
2173
2174                if (!(rah & IGC_RAH_AV))
2175                        continue;
2176                if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
2177                        continue;
2178                if ((rah & IGC_RAH_RAH_MASK) !=
2179                    le16_to_cpup((__le16 *)(addr + 4)))
2180                        continue;
2181                if (ral != le32_to_cpup((__le32 *)(addr)))
2182                        continue;
2183
2184                return i;
2185        }
2186
2187        return -1;
2188}
2189
2190static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
2191{
2192        struct igc_hw *hw = &adapter->hw;
2193        int max_entries = hw->mac.rar_entry_count;
2194        u32 rah;
2195        int i;
2196
2197        for (i = 0; i < max_entries; i++) {
2198                rah = rd32(IGC_RAH(i));
2199
2200                if (!(rah & IGC_RAH_AV))
2201                        return i;
2202        }
2203
2204        return -1;
2205}
2206
2207/**
2208 * igc_add_mac_filter() - Add MAC address filter
2209 * @adapter: Pointer to adapter where the filter should be added
2210 * @type: MAC address filter type (source or destination)
2211 * @addr: MAC address
2212 * @queue: If non-negative, queue assignment feature is enabled and frames
2213 *         matching the filter are enqueued onto 'queue'. Otherwise, queue
2214 *         assignment is disabled.
2215 *
2216 * Return: 0 in case of success, negative errno code otherwise.
2217 */
2218static int igc_add_mac_filter(struct igc_adapter *adapter,
2219                              enum igc_mac_filter_type type, const u8 *addr,
2220                              int queue)
2221{
2222        struct net_device *dev = adapter->netdev;
2223        int index;
2224
2225        index = igc_find_mac_filter(adapter, type, addr);
2226        if (index >= 0)
2227                goto update_filter;
2228
2229        index = igc_get_avail_mac_filter_slot(adapter);
2230        if (index < 0)
2231                return -ENOSPC;
2232
2233        netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
2234                   index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2235                   addr, queue);
2236
2237update_filter:
2238        igc_set_mac_filter_hw(adapter, index, type, addr, queue);
2239        return 0;
2240}
2241
2242/**
2243 * igc_del_mac_filter() - Delete MAC address filter
2244 * @adapter: Pointer to adapter where the filter should be deleted from
2245 * @type: MAC address filter type (source or destination)
2246 * @addr: MAC address
2247 */
2248static void igc_del_mac_filter(struct igc_adapter *adapter,
2249                               enum igc_mac_filter_type type, const u8 *addr)
2250{
2251        struct net_device *dev = adapter->netdev;
2252        int index;
2253
2254        index = igc_find_mac_filter(adapter, type, addr);
2255        if (index < 0)
2256                return;
2257
2258        if (index == 0) {
2259                /* If this is the default filter, we don't actually delete it.
2260                 * We just reset to its default value i.e. disable queue
2261                 * assignment.
2262                 */
2263                netdev_dbg(dev, "Disable default MAC filter queue assignment");
2264
2265                igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
2266        } else {
2267                netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
2268                           index,
2269                           type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2270                           addr);
2271
2272                igc_clear_mac_filter_hw(adapter, index);
2273        }
2274}
2275
2276/**
2277 * igc_add_vlan_prio_filter() - Add VLAN priority filter
2278 * @adapter: Pointer to adapter where the filter should be added
2279 * @prio: VLAN priority value
2280 * @queue: Queue number which matching frames are assigned to
2281 *
2282 * Return: 0 in case of success, negative errno code otherwise.
2283 */
2284static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
2285                                    int queue)
2286{
2287        struct net_device *dev = adapter->netdev;
2288        struct igc_hw *hw = &adapter->hw;
2289        u32 vlanpqf;
2290
2291        vlanpqf = rd32(IGC_VLANPQF);
2292
2293        if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
2294                netdev_dbg(dev, "VLAN priority filter already in use\n");
2295                return -EEXIST;
2296        }
2297
2298        vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
2299        vlanpqf |= IGC_VLANPQF_VALID(prio);
2300
2301        wr32(IGC_VLANPQF, vlanpqf);
2302
2303        netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
2304                   prio, queue);
2305        return 0;
2306}
2307
2308/**
2309 * igc_del_vlan_prio_filter() - Delete VLAN priority filter
2310 * @adapter: Pointer to adapter where the filter should be deleted from
2311 * @prio: VLAN priority value
2312 */
2313static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
2314{
2315        struct igc_hw *hw = &adapter->hw;
2316        u32 vlanpqf;
2317
2318        vlanpqf = rd32(IGC_VLANPQF);
2319
2320        vlanpqf &= ~IGC_VLANPQF_VALID(prio);
2321        vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
2322
2323        wr32(IGC_VLANPQF, vlanpqf);
2324
2325        netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
2326                   prio);
2327}
2328
2329static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
2330{
2331        struct igc_hw *hw = &adapter->hw;
2332        int i;
2333
2334        for (i = 0; i < MAX_ETYPE_FILTER; i++) {
2335                u32 etqf = rd32(IGC_ETQF(i));
2336
2337                if (!(etqf & IGC_ETQF_FILTER_ENABLE))
2338                        return i;
2339        }
2340
2341        return -1;
2342}
2343
2344/**
2345 * igc_add_etype_filter() - Add ethertype filter
2346 * @adapter: Pointer to adapter where the filter should be added
2347 * @etype: Ethertype value
2348 * @queue: If non-negative, queue assignment feature is enabled and frames
2349 *         matching the filter are enqueued onto 'queue'. Otherwise, queue
2350 *         assignment is disabled.
2351 *
2352 * Return: 0 in case of success, negative errno code otherwise.
2353 */
2354static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
2355                                int queue)
2356{
2357        struct igc_hw *hw = &adapter->hw;
2358        int index;
2359        u32 etqf;
2360
2361        index = igc_get_avail_etype_filter_slot(adapter);
2362        if (index < 0)
2363                return -ENOSPC;
2364
2365        etqf = rd32(IGC_ETQF(index));
2366
2367        etqf &= ~IGC_ETQF_ETYPE_MASK;
2368        etqf |= etype;
2369
2370        if (queue >= 0) {
2371                etqf &= ~IGC_ETQF_QUEUE_MASK;
2372                etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
2373                etqf |= IGC_ETQF_QUEUE_ENABLE;
2374        }
2375
2376        etqf |= IGC_ETQF_FILTER_ENABLE;
2377
2378        wr32(IGC_ETQF(index), etqf);
2379
2380        netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
2381                   etype, queue);
2382        return 0;
2383}
2384
2385static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
2386{
2387        struct igc_hw *hw = &adapter->hw;
2388        int i;
2389
2390        for (i = 0; i < MAX_ETYPE_FILTER; i++) {
2391                u32 etqf = rd32(IGC_ETQF(i));
2392
2393                if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
2394                        return i;
2395        }
2396
2397        return -1;
2398}
2399
2400/**
2401 * igc_del_etype_filter() - Delete ethertype filter
2402 * @adapter: Pointer to adapter where the filter should be deleted from
2403 * @etype: Ethertype value
2404 */
2405static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
2406{
2407        struct igc_hw *hw = &adapter->hw;
2408        int index;
2409
2410        index = igc_find_etype_filter(adapter, etype);
2411        if (index < 0)
2412                return;
2413
2414        wr32(IGC_ETQF(index), 0);
2415
2416        netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
2417                   etype);
2418}
2419
2420static int igc_enable_nfc_rule(struct igc_adapter *adapter,
2421                               const struct igc_nfc_rule *rule)
2422{
2423        int err;
2424
2425        if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
2426                err = igc_add_etype_filter(adapter, rule->filter.etype,
2427                                           rule->action);
2428                if (err)
2429                        return err;
2430        }
2431
2432        if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
2433                err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
2434                                         rule->filter.src_addr, rule->action);
2435                if (err)
2436                        return err;
2437        }
2438
2439        if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
2440                err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
2441                                         rule->filter.dst_addr, rule->action);
2442                if (err)
2443                        return err;
2444        }
2445
2446        if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
2447                int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
2448                           VLAN_PRIO_SHIFT;
2449
2450                err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
2451                if (err)
2452                        return err;
2453        }
2454
2455        return 0;
2456}
2457
2458static void igc_disable_nfc_rule(struct igc_adapter *adapter,
2459                                 const struct igc_nfc_rule *rule)
2460{
2461        if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
2462                igc_del_etype_filter(adapter, rule->filter.etype);
2463
2464        if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
2465                int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
2466                           VLAN_PRIO_SHIFT;
2467
2468                igc_del_vlan_prio_filter(adapter, prio);
2469        }
2470
2471        if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
2472                igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
2473                                   rule->filter.src_addr);
2474
2475        if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
2476                igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
2477                                   rule->filter.dst_addr);
2478}
2479
2480/**
2481 * igc_get_nfc_rule() - Get NFC rule
2482 * @adapter: Pointer to adapter
2483 * @location: Rule location
2484 *
2485 * Context: Expects adapter->nfc_rule_lock to be held by caller.
2486 *
2487 * Return: Pointer to NFC rule at @location. If not found, NULL.
2488 */
2489struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
2490                                      u32 location)
2491{
2492        struct igc_nfc_rule *rule;
2493
2494        list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
2495                if (rule->location == location)
2496                        return rule;
2497                if (rule->location > location)
2498                        break;
2499        }
2500
2501        return NULL;
2502}
2503
2504/**
2505 * igc_del_nfc_rule() - Delete NFC rule
2506 * @adapter: Pointer to adapter
2507 * @rule: Pointer to rule to be deleted
2508 *
2509 * Disable NFC rule in hardware and delete it from adapter.
2510 *
2511 * Context: Expects adapter->nfc_rule_lock to be held by caller.
2512 */
2513void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
2514{
2515        igc_disable_nfc_rule(adapter, rule);
2516
2517        list_del(&rule->list);
2518        adapter->nfc_rule_count--;
2519
2520        kfree(rule);
2521}
2522
2523static void igc_flush_nfc_rules(struct igc_adapter *adapter)
2524{
2525        struct igc_nfc_rule *rule, *tmp;
2526
2527        mutex_lock(&adapter->nfc_rule_lock);
2528
2529        list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
2530                igc_del_nfc_rule(adapter, rule);
2531
2532        mutex_unlock(&adapter->nfc_rule_lock);
2533}
2534
2535/**
2536 * igc_add_nfc_rule() - Add NFC rule
2537 * @adapter: Pointer to adapter
2538 * @rule: Pointer to rule to be added
2539 *
2540 * Enable NFC rule in hardware and add it to adapter.
2541 *
2542 * Context: Expects adapter->nfc_rule_lock to be held by caller.
2543 *
2544 * Return: 0 on success, negative errno on failure.
2545 */
2546int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
2547{
2548        struct igc_nfc_rule *pred, *cur;
2549        int err;
2550
2551        err = igc_enable_nfc_rule(adapter, rule);
2552        if (err)
2553                return err;
2554
2555        pred = NULL;
2556        list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
2557                if (cur->location >= rule->location)
2558                        break;
2559                pred = cur;
2560        }
2561
2562        list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
2563        adapter->nfc_rule_count++;
2564        return 0;
2565}
2566
2567static void igc_restore_nfc_rules(struct igc_adapter *adapter)
2568{
2569        struct igc_nfc_rule *rule;
2570
2571        mutex_lock(&adapter->nfc_rule_lock);
2572
2573        list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
2574                igc_enable_nfc_rule(adapter, rule);
2575
2576        mutex_unlock(&adapter->nfc_rule_lock);
2577}
2578
2579static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
2580{
2581        struct igc_adapter *adapter = netdev_priv(netdev);
2582
2583        return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
2584}
2585
2586static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
2587{
2588        struct igc_adapter *adapter = netdev_priv(netdev);
2589
2590        igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
2591        return 0;
2592}
2593
2594/**
2595 * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2596 * @netdev: network interface device structure
2597 *
2598 * The set_rx_mode entry point is called whenever the unicast or multicast
2599 * address lists or the network interface flags are updated.  This routine is
2600 * responsible for configuring the hardware for proper unicast, multicast,
2601 * promiscuous mode, and all-multi behavior.
2602 */
2603static void igc_set_rx_mode(struct net_device *netdev)
2604{
2605        struct igc_adapter *adapter = netdev_priv(netdev);
2606        struct igc_hw *hw = &adapter->hw;
2607        u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
2608        int count;
2609
2610        /* Check for Promiscuous and All Multicast modes */
2611        if (netdev->flags & IFF_PROMISC) {
2612                rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
2613        } else {
2614                if (netdev->flags & IFF_ALLMULTI) {
2615                        rctl |= IGC_RCTL_MPE;
2616                } else {
2617                        /* Write addresses to the MTA, if the attempt fails
2618                         * then we should just turn on promiscuous mode so
2619                         * that we can at least receive multicast traffic
2620                         */
2621                        count = igc_write_mc_addr_list(netdev);
2622                        if (count < 0)
2623                                rctl |= IGC_RCTL_MPE;
2624                }
2625        }
2626
2627        /* Write addresses to available RAR registers, if there is not
2628         * sufficient space to store all the addresses then enable
2629         * unicast promiscuous mode
2630         */
2631        if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
2632                rctl |= IGC_RCTL_UPE;
2633
2634        /* update state of unicast and multicast */
2635        rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
2636        wr32(IGC_RCTL, rctl);
2637
2638#if (PAGE_SIZE < 8192)
2639        if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
2640                rlpml = IGC_MAX_FRAME_BUILD_SKB;
2641#endif
2642        wr32(IGC_RLPML, rlpml);
2643}
2644
2645/**
2646 * igc_configure - configure the hardware for RX and TX
2647 * @adapter: private board structure
2648 */
2649static void igc_configure(struct igc_adapter *adapter)
2650{
2651        struct net_device *netdev = adapter->netdev;
2652        int i = 0;
2653
2654        igc_get_hw_control(adapter);
2655        igc_set_rx_mode(netdev);
2656
2657        igc_setup_tctl(adapter);
2658        igc_setup_mrqc(adapter);
2659        igc_setup_rctl(adapter);
2660
2661        igc_set_default_mac_filter(adapter);
2662        igc_restore_nfc_rules(adapter);
2663
2664        igc_configure_tx(adapter);
2665        igc_configure_rx(adapter);
2666
2667        igc_rx_fifo_flush_base(&adapter->hw);
2668
2669        /* call igc_desc_unused which always leaves
2670         * at least 1 descriptor unused to make sure
2671         * next_to_use != next_to_clean
2672         */
2673        for (i = 0; i < adapter->num_rx_queues; i++) {
2674                struct igc_ring *ring = adapter->rx_ring[i];
2675
2676                igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
2677        }
2678}
2679
2680/**
2681 * igc_write_ivar - configure ivar for given MSI-X vector
2682 * @hw: pointer to the HW structure
2683 * @msix_vector: vector number we are allocating to a given ring
2684 * @index: row index of IVAR register to write within IVAR table
2685 * @offset: column offset of in IVAR, should be multiple of 8
2686 *
2687 * The IVAR table consists of 2 columns,
2688 * each containing an cause allocation for an Rx and Tx ring, and a
2689 * variable number of rows depending on the number of queues supported.
2690 */
2691static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
2692                           int index, int offset)
2693{
2694        u32 ivar = array_rd32(IGC_IVAR0, index);
2695
2696        /* clear any bits that are currently set */
2697        ivar &= ~((u32)0xFF << offset);
2698
2699        /* write vector and valid bit */
2700        ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
2701
2702        array_wr32(IGC_IVAR0, index, ivar);
2703}
2704
2705static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
2706{
2707        struct igc_adapter *adapter = q_vector->adapter;
2708        struct igc_hw *hw = &adapter->hw;
2709        int rx_queue = IGC_N0_QUEUE;
2710        int tx_queue = IGC_N0_QUEUE;
2711
2712        if (q_vector->rx.ring)
2713                rx_queue = q_vector->rx.ring->reg_idx;
2714        if (q_vector->tx.ring)
2715                tx_queue = q_vector->tx.ring->reg_idx;
2716
2717        switch (hw->mac.type) {
2718        case igc_i225:
2719                if (rx_queue > IGC_N0_QUEUE)
2720                        igc_write_ivar(hw, msix_vector,
2721                                       rx_queue >> 1,
2722                                       (rx_queue & 0x1) << 4);
2723                if (tx_queue > IGC_N0_QUEUE)
2724                        igc_write_ivar(hw, msix_vector,
2725                                       tx_queue >> 1,
2726                                       ((tx_queue & 0x1) << 4) + 8);
2727                q_vector->eims_value = BIT(msix_vector);
2728                break;
2729        default:
2730                WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
2731                break;
2732        }
2733
2734        /* add q_vector eims value to global eims_enable_mask */
2735        adapter->eims_enable_mask |= q_vector->eims_value;
2736
2737        /* configure q_vector to set itr on first interrupt */
2738        q_vector->set_itr = 1;
2739}
2740
2741/**
2742 * igc_configure_msix - Configure MSI-X hardware
2743 * @adapter: Pointer to adapter structure
2744 *
2745 * igc_configure_msix sets up the hardware to properly
2746 * generate MSI-X interrupts.
2747 */
2748static void igc_configure_msix(struct igc_adapter *adapter)
2749{
2750        struct igc_hw *hw = &adapter->hw;
2751        int i, vector = 0;
2752        u32 tmp;
2753
2754        adapter->eims_enable_mask = 0;
2755
2756        /* set vector for other causes, i.e. link changes */
2757        switch (hw->mac.type) {
2758        case igc_i225:
2759                /* Turn on MSI-X capability first, or our settings
2760                 * won't stick.  And it will take days to debug.
2761                 */
2762                wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
2763                     IGC_GPIE_PBA | IGC_GPIE_EIAME |
2764                     IGC_GPIE_NSICR);
2765
2766                /* enable msix_other interrupt */
2767                adapter->eims_other = BIT(vector);
2768                tmp = (vector++ | IGC_IVAR_VALID) << 8;
2769
2770                wr32(IGC_IVAR_MISC, tmp);
2771                break;
2772        default:
2773                /* do nothing, since nothing else supports MSI-X */
2774                break;
2775        } /* switch (hw->mac.type) */
2776
2777        adapter->eims_enable_mask |= adapter->eims_other;
2778
2779        for (i = 0; i < adapter->num_q_vectors; i++)
2780                igc_assign_vector(adapter->q_vector[i], vector++);
2781
2782        wrfl();
2783}
2784
2785/**
2786 * igc_irq_enable - Enable default interrupt generation settings
2787 * @adapter: board private structure
2788 */
2789static void igc_irq_enable(struct igc_adapter *adapter)
2790{
2791        struct igc_hw *hw = &adapter->hw;
2792
2793        if (adapter->msix_entries) {
2794                u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
2795                u32 regval = rd32(IGC_EIAC);
2796
2797                wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
2798                regval = rd32(IGC_EIAM);
2799                wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
2800                wr32(IGC_EIMS, adapter->eims_enable_mask);
2801                wr32(IGC_IMS, ims);
2802        } else {
2803                wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
2804                wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
2805        }
2806}
2807
2808/**
2809 * igc_irq_disable - Mask off interrupt generation on the NIC
2810 * @adapter: board private structure
2811 */
2812static void igc_irq_disable(struct igc_adapter *adapter)
2813{
2814        struct igc_hw *hw = &adapter->hw;
2815
2816        if (adapter->msix_entries) {
2817                u32 regval = rd32(IGC_EIAM);
2818
2819                wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
2820                wr32(IGC_EIMC, adapter->eims_enable_mask);
2821                regval = rd32(IGC_EIAC);
2822                wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
2823        }
2824
2825        wr32(IGC_IAM, 0);
2826        wr32(IGC_IMC, ~0);
2827        wrfl();
2828
2829        if (adapter->msix_entries) {
2830                int vector = 0, i;
2831
2832                synchronize_irq(adapter->msix_entries[vector++].vector);
2833
2834                for (i = 0; i < adapter->num_q_vectors; i++)
2835                        synchronize_irq(adapter->msix_entries[vector++].vector);
2836        } else {
2837                synchronize_irq(adapter->pdev->irq);
2838        }
2839}
2840
2841void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
2842                              const u32 max_rss_queues)
2843{
2844        /* Determine if we need to pair queues. */
2845        /* If rss_queues > half of max_rss_queues, pair the queues in
2846         * order to conserve interrupts due to limited supply.
2847         */
2848        if (adapter->rss_queues > (max_rss_queues / 2))
2849                adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
2850        else
2851                adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
2852}
2853
2854unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
2855{
2856        return IGC_MAX_RX_QUEUES;
2857}
2858
2859static void igc_init_queue_configuration(struct igc_adapter *adapter)
2860{
2861        u32 max_rss_queues;
2862
2863        max_rss_queues = igc_get_max_rss_queues(adapter);
2864        adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2865
2866        igc_set_flag_queue_pairs(adapter, max_rss_queues);
2867}
2868
2869/**
2870 * igc_reset_q_vector - Reset config for interrupt vector
2871 * @adapter: board private structure to initialize
2872 * @v_idx: Index of vector to be reset
2873 *
2874 * If NAPI is enabled it will delete any references to the
2875 * NAPI struct. This is preparation for igc_free_q_vector.
2876 */
2877static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
2878{
2879        struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
2880
2881        /* if we're coming from igc_set_interrupt_capability, the vectors are
2882         * not yet allocated
2883         */
2884        if (!q_vector)
2885                return;
2886
2887        if (q_vector->tx.ring)
2888                adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
2889
2890        if (q_vector->rx.ring)
2891                adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
2892
2893        netif_napi_del(&q_vector->napi);
2894}
2895
2896/**
2897 * igc_free_q_vector - Free memory allocated for specific interrupt vector
2898 * @adapter: board private structure to initialize
2899 * @v_idx: Index of vector to be freed
2900 *
2901 * This function frees the memory allocated to the q_vector.
2902 */
2903static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
2904{
2905        struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
2906
2907        adapter->q_vector[v_idx] = NULL;
2908
2909        /* igc_get_stats64() might access the rings on this vector,
2910         * we must wait a grace period before freeing it.
2911         */
2912        if (q_vector)
2913                kfree_rcu(q_vector, rcu);
2914}
2915
2916/**
2917 * igc_free_q_vectors - Free memory allocated for interrupt vectors
2918 * @adapter: board private structure to initialize
2919 *
2920 * This function frees the memory allocated to the q_vectors.  In addition if
2921 * NAPI is enabled it will delete any references to the NAPI struct prior
2922 * to freeing the q_vector.
2923 */
2924static void igc_free_q_vectors(struct igc_adapter *adapter)
2925{
2926        int v_idx = adapter->num_q_vectors;
2927
2928        adapter->num_tx_queues = 0;
2929        adapter->num_rx_queues = 0;
2930        adapter->num_q_vectors = 0;
2931
2932        while (v_idx--) {
2933                igc_reset_q_vector(adapter, v_idx);
2934                igc_free_q_vector(adapter, v_idx);
2935        }
2936}
2937
2938/**
2939 * igc_update_itr - update the dynamic ITR value based on statistics
2940 * @q_vector: pointer to q_vector
2941 * @ring_container: ring info to update the itr for
2942 *
2943 * Stores a new ITR value based on packets and byte
2944 * counts during the last interrupt.  The advantage of per interrupt
2945 * computation is faster updates and more accurate ITR for the current
2946 * traffic pattern.  Constants in this function were computed
2947 * based on theoretical maximum wire speed and thresholds were set based
2948 * on testing data as well as attempting to minimize response time
2949 * while increasing bulk throughput.
2950 * NOTE: These calculations are only valid when operating in a single-
2951 * queue environment.
2952 */
2953static void igc_update_itr(struct igc_q_vector *q_vector,
2954                           struct igc_ring_container *ring_container)
2955{
2956        unsigned int packets = ring_container->total_packets;
2957        unsigned int bytes = ring_container->total_bytes;
2958        u8 itrval = ring_container->itr;
2959
2960        /* no packets, exit with status unchanged */
2961        if (packets == 0)
2962                return;
2963
2964        switch (itrval) {
2965        case lowest_latency:
2966                /* handle TSO and jumbo frames */
2967                if (bytes / packets > 8000)
2968                        itrval = bulk_latency;
2969                else if ((packets < 5) && (bytes > 512))
2970                        itrval = low_latency;
2971                break;
2972        case low_latency:  /* 50 usec aka 20000 ints/s */
2973                if (bytes > 10000) {
2974                        /* this if handles the TSO accounting */
2975                        if (bytes / packets > 8000)
2976                                itrval = bulk_latency;
2977                        else if ((packets < 10) || ((bytes / packets) > 1200))
2978                                itrval = bulk_latency;
2979                        else if ((packets > 35))
2980                                itrval = lowest_latency;
2981                } else if (bytes / packets > 2000) {
2982                        itrval = bulk_latency;
2983                } else if (packets <= 2 && bytes < 512) {
2984                        itrval = lowest_latency;
2985                }
2986                break;
2987        case bulk_latency: /* 250 usec aka 4000 ints/s */
2988                if (bytes > 25000) {
2989                        if (packets > 35)
2990                                itrval = low_latency;
2991                } else if (bytes < 1500) {
2992                        itrval = low_latency;
2993                }
2994                break;
2995        }
2996
2997        /* clear work counters since we have the values we need */
2998        ring_container->total_bytes = 0;
2999        ring_container->total_packets = 0;
3000
3001        /* write updated itr to ring container */
3002        ring_container->itr = itrval;
3003}
3004
3005static void igc_set_itr(struct igc_q_vector *q_vector)
3006{
3007        struct igc_adapter *adapter = q_vector->adapter;
3008        u32 new_itr = q_vector->itr_val;
3009        u8 current_itr = 0;
3010
3011        /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3012        switch (adapter->link_speed) {
3013        case SPEED_10:
3014        case SPEED_100:
3015                current_itr = 0;
3016                new_itr = IGC_4K_ITR;
3017                goto set_itr_now;
3018        default:
3019                break;
3020        }
3021
3022        igc_update_itr(q_vector, &q_vector->tx);
3023        igc_update_itr(q_vector, &q_vector->rx);
3024
3025        current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3026
3027        /* conservative mode (itr 3) eliminates the lowest_latency setting */
3028        if (current_itr == lowest_latency &&
3029            ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3030            (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3031                current_itr = low_latency;
3032
3033        switch (current_itr) {
3034        /* counts and packets in update_itr are dependent on these numbers */
3035        case lowest_latency:
3036                new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
3037                break;
3038        case low_latency:
3039                new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
3040                break;
3041        case bulk_latency:
3042                new_itr = IGC_4K_ITR;  /* 4,000 ints/sec */
3043                break;
3044        default:
3045                break;
3046        }
3047
3048set_itr_now:
3049        if (new_itr != q_vector->itr_val) {
3050                /* this attempts to bias the interrupt rate towards Bulk
3051                 * by adding intermediate steps when interrupt rate is
3052                 * increasing
3053                 */
3054                new_itr = new_itr > q_vector->itr_val ?
3055                          max((new_itr * q_vector->itr_val) /
3056                          (new_itr + (q_vector->itr_val >> 2)),
3057                          new_itr) : new_itr;
3058                /* Don't write the value here; it resets the adapter's
3059                 * internal timer, and causes us to delay far longer than
3060                 * we should between interrupts.  Instead, we write the ITR
3061                 * value at the beginning of the next interrupt so the timing
3062                 * ends up being correct.
3063                 */
3064                q_vector->itr_val = new_itr;
3065                q_vector->set_itr = 1;
3066        }
3067}
3068
3069static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
3070{
3071        int v_idx = adapter->num_q_vectors;
3072
3073        if (adapter->msix_entries) {
3074                pci_disable_msix(adapter->pdev);
3075                kfree(adapter->msix_entries);
3076                adapter->msix_entries = NULL;
3077        } else if (adapter->flags & IGC_FLAG_HAS_MSI) {
3078                pci_disable_msi(adapter->pdev);
3079        }
3080
3081        while (v_idx--)
3082                igc_reset_q_vector(adapter, v_idx);
3083}
3084
3085/**
3086 * igc_set_interrupt_capability - set MSI or MSI-X if supported
3087 * @adapter: Pointer to adapter structure
3088 * @msix: boolean value for MSI-X capability
3089 *
3090 * Attempt to configure interrupts using the best available
3091 * capabilities of the hardware and kernel.
3092 */
3093static void igc_set_interrupt_capability(struct igc_adapter *adapter,
3094                                         bool msix)
3095{
3096        int numvecs, i;
3097        int err;
3098
3099        if (!msix)
3100                goto msi_only;
3101        adapter->flags |= IGC_FLAG_HAS_MSIX;
3102
3103        /* Number of supported queues. */
3104        adapter->num_rx_queues = adapter->rss_queues;
3105
3106        adapter->num_tx_queues = adapter->rss_queues;
3107
3108        /* start with one vector for every Rx queue */
3109        numvecs = adapter->num_rx_queues;
3110
3111        /* if Tx handler is separate add 1 for every Tx queue */
3112        if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
3113                numvecs += adapter->num_tx_queues;
3114
3115        /* store the number of vectors reserved for queues */
3116        adapter->num_q_vectors = numvecs;
3117
3118        /* add 1 vector for link status interrupts */
3119        numvecs++;
3120
3121        adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
3122                                        GFP_KERNEL);
3123
3124        if (!adapter->msix_entries)
3125                return;
3126
3127        /* populate entry values */
3128        for (i = 0; i < numvecs; i++)
3129                adapter->msix_entries[i].entry = i;
3130
3131        err = pci_enable_msix_range(adapter->pdev,
3132                                    adapter->msix_entries,
3133                                    numvecs,
3134                                    numvecs);
3135        if (err > 0)
3136                return;
3137
3138        kfree(adapter->msix_entries);
3139        adapter->msix_entries = NULL;
3140
3141        igc_reset_interrupt_capability(adapter);
3142
3143msi_only:
3144        adapter->flags &= ~IGC_FLAG_HAS_MSIX;
3145
3146        adapter->rss_queues = 1;
3147        adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3148        adapter->num_rx_queues = 1;
3149        adapter->num_tx_queues = 1;
3150        adapter->num_q_vectors = 1;
3151        if (!pci_enable_msi(adapter->pdev))
3152                adapter->flags |= IGC_FLAG_HAS_MSI;
3153}
3154
3155/**
3156 * igc_update_ring_itr - update the dynamic ITR value based on packet size
3157 * @q_vector: pointer to q_vector
3158 *
3159 * Stores a new ITR value based on strictly on packet size.  This
3160 * algorithm is less sophisticated than that used in igc_update_itr,
3161 * due to the difficulty of synchronizing statistics across multiple
3162 * receive rings.  The divisors and thresholds used by this function
3163 * were determined based on theoretical maximum wire speed and testing
3164 * data, in order to minimize response time while increasing bulk
3165 * throughput.
3166 * NOTE: This function is called only when operating in a multiqueue
3167 * receive environment.
3168 */
3169static void igc_update_ring_itr(struct igc_q_vector *q_vector)
3170{
3171        struct igc_adapter *adapter = q_vector->adapter;
3172        int new_val = q_vector->itr_val;
3173        int avg_wire_size = 0;
3174        unsigned int packets;
3175
3176        /* For non-gigabit speeds, just fix the interrupt rate at 4000
3177         * ints/sec - ITR timer value of 120 ticks.
3178         */
3179        switch (adapter->link_speed) {
3180        case SPEED_10:
3181        case SPEED_100:
3182                new_val = IGC_4K_ITR;
3183                goto set_itr_val;
3184        default:
3185                break;
3186        }
3187
3188        packets = q_vector->rx.total_packets;
3189        if (packets)
3190                avg_wire_size = q_vector->rx.total_bytes / packets;
3191
3192        packets = q_vector->tx.total_packets;
3193        if (packets)
3194                avg_wire_size = max_t(u32, avg_wire_size,
3195                                      q_vector->tx.total_bytes / packets);
3196
3197        /* if avg_wire_size isn't set no work was done */
3198        if (!avg_wire_size)
3199                goto clear_counts;
3200
3201        /* Add 24 bytes to size to account for CRC, preamble, and gap */
3202        avg_wire_size += 24;
3203
3204        /* Don't starve jumbo frames */
3205        avg_wire_size = min(avg_wire_size, 3000);
3206
3207        /* Give a little boost to mid-size frames */
3208        if (avg_wire_size > 300 && avg_wire_size < 1200)
3209                new_val = avg_wire_size / 3;
3210        else
3211                new_val = avg_wire_size / 2;
3212
3213        /* conservative mode (itr 3) eliminates the lowest_latency setting */
3214        if (new_val < IGC_20K_ITR &&
3215            ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3216            (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3217                new_val = IGC_20K_ITR;
3218
3219set_itr_val:
3220        if (new_val != q_vector->itr_val) {
3221                q_vector->itr_val = new_val;
3222                q_vector->set_itr = 1;
3223        }
3224clear_counts:
3225        q_vector->rx.total_bytes = 0;
3226        q_vector->rx.total_packets = 0;
3227        q_vector->tx.total_bytes = 0;
3228        q_vector->tx.total_packets = 0;
3229}
3230
3231static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
3232{
3233        struct igc_adapter *adapter = q_vector->adapter;
3234        struct igc_hw *hw = &adapter->hw;
3235
3236        if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
3237            (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
3238                if (adapter->num_q_vectors == 1)
3239                        igc_set_itr(q_vector);
3240                else
3241                        igc_update_ring_itr(q_vector);
3242        }
3243
3244        if (!test_bit(__IGC_DOWN, &adapter->state)) {
3245                if (adapter->msix_entries)
3246                        wr32(IGC_EIMS, q_vector->eims_value);
3247                else
3248                        igc_irq_enable(adapter);
3249        }
3250}
3251
3252static void igc_add_ring(struct igc_ring *ring,
3253                         struct igc_ring_container *head)
3254{
3255        head->ring = ring;
3256        head->count++;
3257}
3258
3259/**
3260 * igc_cache_ring_register - Descriptor ring to register mapping
3261 * @adapter: board private structure to initialize
3262 *
3263 * Once we know the feature-set enabled for the device, we'll cache
3264 * the register offset the descriptor ring is assigned to.
3265 */
3266static void igc_cache_ring_register(struct igc_adapter *adapter)
3267{
3268        int i = 0, j = 0;
3269
3270        switch (adapter->hw.mac.type) {
3271        case igc_i225:
3272        default:
3273                for (; i < adapter->num_rx_queues; i++)
3274                        adapter->rx_ring[i]->reg_idx = i;
3275                for (; j < adapter->num_tx_queues; j++)
3276                        adapter->tx_ring[j]->reg_idx = j;
3277                break;
3278        }
3279}
3280
3281/**
3282 * igc_poll - NAPI Rx polling callback
3283 * @napi: napi polling structure
3284 * @budget: count of how many packets we should handle
3285 */
3286static int igc_poll(struct napi_struct *napi, int budget)
3287{
3288        struct igc_q_vector *q_vector = container_of(napi,
3289                                                     struct igc_q_vector,
3290                                                     napi);
3291        bool clean_complete = true;
3292        int work_done = 0;
3293
3294        if (q_vector->tx.ring)
3295                clean_complete = igc_clean_tx_irq(q_vector, budget);
3296
3297        if (q_vector->rx.ring) {
3298                int cleaned = igc_clean_rx_irq(q_vector, budget);
3299
3300                work_done += cleaned;
3301                if (cleaned >= budget)
3302                        clean_complete = false;
3303        }
3304
3305        /* If all work not completed, return budget and keep polling */
3306        if (!clean_complete)
3307                return budget;
3308
3309        /* Exit the polling mode, but don't re-enable interrupts if stack might
3310         * poll us due to busy-polling
3311         */
3312        if (likely(napi_complete_done(napi, work_done)))
3313                igc_ring_irq_enable(q_vector);
3314
3315        return min(work_done, budget - 1);
3316}
3317
3318/**
3319 * igc_alloc_q_vector - Allocate memory for a single interrupt vector
3320 * @adapter: board private structure to initialize
3321 * @v_count: q_vectors allocated on adapter, used for ring interleaving
3322 * @v_idx: index of vector in adapter struct
3323 * @txr_count: total number of Tx rings to allocate
3324 * @txr_idx: index of first Tx ring to allocate
3325 * @rxr_count: total number of Rx rings to allocate
3326 * @rxr_idx: index of first Rx ring to allocate
3327 *
3328 * We allocate one q_vector.  If allocation fails we return -ENOMEM.
3329 */
3330static int igc_alloc_q_vector(struct igc_adapter *adapter,
3331                              unsigned int v_count, unsigned int v_idx,
3332                              unsigned int txr_count, unsigned int txr_idx,
3333                              unsigned int rxr_count, unsigned int rxr_idx)
3334{
3335        struct igc_q_vector *q_vector;
3336        struct igc_ring *ring;
3337        int ring_count;
3338
3339        /* igc only supports 1 Tx and/or 1 Rx queue per vector */
3340        if (txr_count > 1 || rxr_count > 1)
3341                return -ENOMEM;
3342
3343        ring_count = txr_count + rxr_count;
3344
3345        /* allocate q_vector and rings */
3346        q_vector = adapter->q_vector[v_idx];
3347        if (!q_vector)
3348                q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
3349                                   GFP_KERNEL);
3350        else
3351                memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
3352        if (!q_vector)
3353                return -ENOMEM;
3354
3355        /* initialize NAPI */
3356        netif_napi_add(adapter->netdev, &q_vector->napi,
3357                       igc_poll, 64);
3358
3359        /* tie q_vector and adapter together */
3360        adapter->q_vector[v_idx] = q_vector;
3361        q_vector->adapter = adapter;
3362
3363        /* initialize work limits */
3364        q_vector->tx.work_limit = adapter->tx_work_limit;
3365
3366        /* initialize ITR configuration */
3367        q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
3368        q_vector->itr_val = IGC_START_ITR;
3369
3370        /* initialize pointer to rings */
3371        ring = q_vector->ring;
3372
3373        /* initialize ITR */
3374        if (rxr_count) {
3375                /* rx or rx/tx vector */
3376                if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
3377                        q_vector->itr_val = adapter->rx_itr_setting;
3378        } else {
3379                /* tx only vector */
3380                if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
3381                        q_vector->itr_val = adapter->tx_itr_setting;
3382        }
3383
3384        if (txr_count) {
3385                /* assign generic ring traits */
3386                ring->dev = &adapter->pdev->dev;
3387                ring->netdev = adapter->netdev;
3388
3389                /* configure backlink on ring */
3390                ring->q_vector = q_vector;
3391
3392                /* update q_vector Tx values */
3393                igc_add_ring(ring, &q_vector->tx);
3394
3395                /* apply Tx specific ring traits */
3396                ring->count = adapter->tx_ring_count;
3397                ring->queue_index = txr_idx;
3398
3399                /* assign ring to adapter */
3400                adapter->tx_ring[txr_idx] = ring;
3401
3402                /* push pointer to next ring */
3403                ring++;
3404        }
3405
3406        if (rxr_count) {
3407                /* assign generic ring traits */
3408                ring->dev = &adapter->pdev->dev;
3409                ring->netdev = adapter->netdev;
3410
3411                /* configure backlink on ring */
3412                ring->q_vector = q_vector;
3413
3414                /* update q_vector Rx values */
3415                igc_add_ring(ring, &q_vector->rx);
3416
3417                /* apply Rx specific ring traits */
3418                ring->count = adapter->rx_ring_count;
3419                ring->queue_index = rxr_idx;
3420
3421                /* assign ring to adapter */
3422                adapter->rx_ring[rxr_idx] = ring;
3423        }
3424
3425        return 0;
3426}
3427
3428/**
3429 * igc_alloc_q_vectors - Allocate memory for interrupt vectors
3430 * @adapter: board private structure to initialize
3431 *
3432 * We allocate one q_vector per queue interrupt.  If allocation fails we
3433 * return -ENOMEM.
3434 */
3435static int igc_alloc_q_vectors(struct igc_adapter *adapter)
3436{
3437        int rxr_remaining = adapter->num_rx_queues;
3438        int txr_remaining = adapter->num_tx_queues;
3439        int rxr_idx = 0, txr_idx = 0, v_idx = 0;
3440        int q_vectors = adapter->num_q_vectors;
3441        int err;
3442
3443        if (q_vectors >= (rxr_remaining + txr_remaining)) {
3444                for (; rxr_remaining; v_idx++) {
3445                        err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3446                                                 0, 0, 1, rxr_idx);
3447
3448                        if (err)
3449                                goto err_out;
3450
3451                        /* update counts and index */
3452                        rxr_remaining--;
3453                        rxr_idx++;
3454                }
3455        }
3456
3457        for (; v_idx < q_vectors; v_idx++) {
3458                int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
3459                int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
3460
3461                err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3462                                         tqpv, txr_idx, rqpv, rxr_idx);
3463
3464                if (err)
3465                        goto err_out;
3466
3467                /* update counts and index */
3468                rxr_remaining -= rqpv;
3469                txr_remaining -= tqpv;
3470                rxr_idx++;
3471                txr_idx++;
3472        }
3473
3474        return 0;
3475
3476err_out:
3477        adapter->num_tx_queues = 0;
3478        adapter->num_rx_queues = 0;
3479        adapter->num_q_vectors = 0;
3480
3481        while (v_idx--)
3482                igc_free_q_vector(adapter, v_idx);
3483
3484        return -ENOMEM;
3485}
3486
3487/**
3488 * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
3489 * @adapter: Pointer to adapter structure
3490 * @msix: boolean for MSI-X capability
3491 *
3492 * This function initializes the interrupts and allocates all of the queues.
3493 */
3494static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
3495{
3496        struct net_device *dev = adapter->netdev;
3497        int err = 0;
3498
3499        igc_set_interrupt_capability(adapter, msix);
3500
3501        err = igc_alloc_q_vectors(adapter);
3502        if (err) {
3503                netdev_err(dev, "Unable to allocate memory for vectors\n");
3504                goto err_alloc_q_vectors;
3505        }
3506
3507        igc_cache_ring_register(adapter);
3508
3509        return 0;
3510
3511err_alloc_q_vectors:
3512        igc_reset_interrupt_capability(adapter);
3513        return err;
3514}
3515
3516/**
3517 * igc_sw_init - Initialize general software structures (struct igc_adapter)
3518 * @adapter: board private structure to initialize
3519 *
3520 * igc_sw_init initializes the Adapter private data structure.
3521 * Fields are initialized based on PCI device information and
3522 * OS network device settings (MTU size).
3523 */
3524static int igc_sw_init(struct igc_adapter *adapter)
3525{
3526        struct net_device *netdev = adapter->netdev;
3527        struct pci_dev *pdev = adapter->pdev;
3528        struct igc_hw *hw = &adapter->hw;
3529
3530        pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3531
3532        /* set default ring sizes */
3533        adapter->tx_ring_count = IGC_DEFAULT_TXD;
3534        adapter->rx_ring_count = IGC_DEFAULT_RXD;
3535
3536        /* set default ITR values */
3537        adapter->rx_itr_setting = IGC_DEFAULT_ITR;
3538        adapter->tx_itr_setting = IGC_DEFAULT_ITR;
3539
3540        /* set default work limits */
3541        adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
3542
3543        /* adjust max frame to be at least the size of a standard frame */
3544        adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3545                                VLAN_HLEN;
3546        adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3547
3548        mutex_init(&adapter->nfc_rule_lock);
3549        INIT_LIST_HEAD(&adapter->nfc_rule_list);
3550        adapter->nfc_rule_count = 0;
3551
3552        spin_lock_init(&adapter->stats64_lock);
3553        /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3554        adapter->flags |= IGC_FLAG_HAS_MSIX;
3555
3556        igc_init_queue_configuration(adapter);
3557
3558        /* This call may decrease the number of queues */
3559        if (igc_init_interrupt_scheme(adapter, true)) {
3560                netdev_err(netdev, "Unable to allocate memory for queues\n");
3561                return -ENOMEM;
3562        }
3563
3564        /* Explicitly disable IRQ since the NIC can be in any state. */
3565        igc_irq_disable(adapter);
3566
3567        set_bit(__IGC_DOWN, &adapter->state);
3568
3569        return 0;
3570}
3571
3572/**
3573 * igc_up - Open the interface and prepare it to handle traffic
3574 * @adapter: board private structure
3575 */
3576void igc_up(struct igc_adapter *adapter)
3577{
3578        struct igc_hw *hw = &adapter->hw;
3579        int i = 0;
3580
3581        /* hardware has been reset, we need to reload some things */
3582        igc_configure(adapter);
3583
3584        clear_bit(__IGC_DOWN, &adapter->state);
3585
3586        for (i = 0; i < adapter->num_q_vectors; i++)
3587                napi_enable(&adapter->q_vector[i]->napi);
3588
3589        if (adapter->msix_entries)
3590                igc_configure_msix(adapter);
3591        else
3592                igc_assign_vector(adapter->q_vector[0], 0);
3593
3594        /* Clear any pending interrupts. */
3595        rd32(IGC_ICR);
3596        igc_irq_enable(adapter);
3597
3598        netif_tx_start_all_queues(adapter->netdev);
3599
3600        /* start the watchdog. */
3601        hw->mac.get_link_status = 1;
3602        schedule_work(&adapter->watchdog_task);
3603}
3604
3605/**
3606 * igc_update_stats - Update the board statistics counters
3607 * @adapter: board private structure
3608 */
3609void igc_update_stats(struct igc_adapter *adapter)
3610{
3611        struct rtnl_link_stats64 *net_stats = &adapter->stats64;
3612        struct pci_dev *pdev = adapter->pdev;
3613        struct igc_hw *hw = &adapter->hw;
3614        u64 _bytes, _packets;
3615        u64 bytes, packets;
3616        unsigned int start;
3617        u32 mpc;
3618        int i;
3619
3620        /* Prevent stats update while adapter is being reset, or if the pci
3621         * connection is down.
3622         */
3623        if (adapter->link_speed == 0)
3624                return;
3625        if (pci_channel_offline(pdev))
3626                return;
3627
3628        packets = 0;
3629        bytes = 0;
3630
3631        rcu_read_lock();
3632        for (i = 0; i < adapter->num_rx_queues; i++) {
3633                struct igc_ring *ring = adapter->rx_ring[i];
3634                u32 rqdpc = rd32(IGC_RQDPC(i));
3635
3636                if (hw->mac.type >= igc_i225)
3637                        wr32(IGC_RQDPC(i), 0);
3638
3639                if (rqdpc) {
3640                        ring->rx_stats.drops += rqdpc;
3641                        net_stats->rx_fifo_errors += rqdpc;
3642                }
3643
3644                do {
3645                        start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
3646                        _bytes = ring->rx_stats.bytes;
3647                        _packets = ring->rx_stats.packets;
3648                } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
3649                bytes += _bytes;
3650                packets += _packets;
3651        }
3652
3653        net_stats->rx_bytes = bytes;
3654        net_stats->rx_packets = packets;
3655
3656        packets = 0;
3657        bytes = 0;
3658        for (i = 0; i < adapter->num_tx_queues; i++) {
3659                struct igc_ring *ring = adapter->tx_ring[i];
3660
3661                do {
3662                        start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
3663                        _bytes = ring->tx_stats.bytes;
3664                        _packets = ring->tx_stats.packets;
3665                } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
3666                bytes += _bytes;
3667                packets += _packets;
3668        }
3669        net_stats->tx_bytes = bytes;
3670        net_stats->tx_packets = packets;
3671        rcu_read_unlock();
3672
3673        /* read stats registers */
3674        adapter->stats.crcerrs += rd32(IGC_CRCERRS);
3675        adapter->stats.gprc += rd32(IGC_GPRC);
3676        adapter->stats.gorc += rd32(IGC_GORCL);
3677        rd32(IGC_GORCH); /* clear GORCL */
3678        adapter->stats.bprc += rd32(IGC_BPRC);
3679        adapter->stats.mprc += rd32(IGC_MPRC);
3680        adapter->stats.roc += rd32(IGC_ROC);
3681
3682        adapter->stats.prc64 += rd32(IGC_PRC64);
3683        adapter->stats.prc127 += rd32(IGC_PRC127);
3684        adapter->stats.prc255 += rd32(IGC_PRC255);
3685        adapter->stats.prc511 += rd32(IGC_PRC511);
3686        adapter->stats.prc1023 += rd32(IGC_PRC1023);
3687        adapter->stats.prc1522 += rd32(IGC_PRC1522);
3688
3689        mpc = rd32(IGC_MPC);
3690        adapter->stats.mpc += mpc;
3691        net_stats->rx_fifo_errors += mpc;
3692        adapter->stats.scc += rd32(IGC_SCC);
3693        adapter->stats.ecol += rd32(IGC_ECOL);
3694        adapter->stats.mcc += rd32(IGC_MCC);
3695        adapter->stats.latecol += rd32(IGC_LATECOL);
3696        adapter->stats.dc += rd32(IGC_DC);
3697        adapter->stats.rlec += rd32(IGC_RLEC);
3698        adapter->stats.xonrxc += rd32(IGC_XONRXC);
3699        adapter->stats.xontxc += rd32(IGC_XONTXC);
3700        adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
3701        adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
3702        adapter->stats.fcruc += rd32(IGC_FCRUC);
3703        adapter->stats.gptc += rd32(IGC_GPTC);
3704        adapter->stats.gotc += rd32(IGC_GOTCL);
3705        rd32(IGC_GOTCH); /* clear GOTCL */
3706        adapter->stats.rnbc += rd32(IGC_RNBC);
3707        adapter->stats.ruc += rd32(IGC_RUC);
3708        adapter->stats.rfc += rd32(IGC_RFC);
3709        adapter->stats.rjc += rd32(IGC_RJC);
3710        adapter->stats.tor += rd32(IGC_TORH);
3711        adapter->stats.tot += rd32(IGC_TOTH);
3712        adapter->stats.tpr += rd32(IGC_TPR);
3713
3714        adapter->stats.ptc64 += rd32(IGC_PTC64);
3715        adapter->stats.ptc127 += rd32(IGC_PTC127);
3716        adapter->stats.ptc255 += rd32(IGC_PTC255);
3717        adapter->stats.ptc511 += rd32(IGC_PTC511);
3718        adapter->stats.ptc1023 += rd32(IGC_PTC1023);
3719        adapter->stats.ptc1522 += rd32(IGC_PTC1522);
3720
3721        adapter->stats.mptc += rd32(IGC_MPTC);
3722        adapter->stats.bptc += rd32(IGC_BPTC);
3723
3724        adapter->stats.tpt += rd32(IGC_TPT);
3725        adapter->stats.colc += rd32(IGC_COLC);
3726        adapter->stats.colc += rd32(IGC_RERC);
3727
3728        adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
3729
3730        adapter->stats.tsctc += rd32(IGC_TSCTC);
3731
3732        adapter->stats.iac += rd32(IGC_IAC);
3733
3734        /* Fill out the OS statistics structure */
3735        net_stats->multicast = adapter->stats.mprc;
3736        net_stats->collisions = adapter->stats.colc;
3737
3738        /* Rx Errors */
3739
3740        /* RLEC on some newer hardware can be incorrect so build
3741         * our own version based on RUC and ROC
3742         */
3743        net_stats->rx_errors = adapter->stats.rxerrc +
3744                adapter->stats.crcerrs + adapter->stats.algnerrc +
3745                adapter->stats.ruc + adapter->stats.roc +
3746                adapter->stats.cexterr;
3747        net_stats->rx_length_errors = adapter->stats.ruc +
3748                                      adapter->stats.roc;
3749        net_stats->rx_crc_errors = adapter->stats.crcerrs;
3750        net_stats->rx_frame_errors = adapter->stats.algnerrc;
3751        net_stats->rx_missed_errors = adapter->stats.mpc;
3752
3753        /* Tx Errors */
3754        net_stats->tx_errors = adapter->stats.ecol +
3755                               adapter->stats.latecol;
3756        net_stats->tx_aborted_errors = adapter->stats.ecol;
3757        net_stats->tx_window_errors = adapter->stats.latecol;
3758        net_stats->tx_carrier_errors = adapter->stats.tncrs;
3759
3760        /* Tx Dropped needs to be maintained elsewhere */
3761
3762        /* Management Stats */
3763        adapter->stats.mgptc += rd32(IGC_MGTPTC);
3764        adapter->stats.mgprc += rd32(IGC_MGTPRC);
3765        adapter->stats.mgpdc += rd32(IGC_MGTPDC);
3766}
3767
3768/**
3769 * igc_down - Close the interface
3770 * @adapter: board private structure
3771 */
3772void igc_down(struct igc_adapter *adapter)
3773{
3774        struct net_device *netdev = adapter->netdev;
3775        struct igc_hw *hw = &adapter->hw;
3776        u32 tctl, rctl;
3777        int i = 0;
3778
3779        set_bit(__IGC_DOWN, &adapter->state);
3780
3781        /* disable receives in the hardware */
3782        rctl = rd32(IGC_RCTL);
3783        wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
3784        /* flush and sleep below */
3785
3786        /* set trans_start so we don't get spurious watchdogs during reset */
3787        netif_trans_update(netdev);
3788
3789        netif_carrier_off(netdev);
3790        netif_tx_stop_all_queues(netdev);
3791
3792        /* disable transmits in the hardware */
3793        tctl = rd32(IGC_TCTL);
3794        tctl &= ~IGC_TCTL_EN;
3795        wr32(IGC_TCTL, tctl);
3796        /* flush both disables and wait for them to finish */
3797        wrfl();
3798        usleep_range(10000, 20000);
3799
3800        igc_irq_disable(adapter);
3801
3802        adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
3803
3804        for (i = 0; i < adapter->num_q_vectors; i++) {
3805                if (adapter->q_vector[i]) {
3806                        napi_synchronize(&adapter->q_vector[i]->napi);
3807                        napi_disable(&adapter->q_vector[i]->napi);
3808                }
3809        }
3810
3811        del_timer_sync(&adapter->watchdog_timer);
3812        del_timer_sync(&adapter->phy_info_timer);
3813
3814        /* record the stats before reset*/
3815        spin_lock(&adapter->stats64_lock);
3816        igc_update_stats(adapter);
3817        spin_unlock(&adapter->stats64_lock);
3818
3819        adapter->link_speed = 0;
3820        adapter->link_duplex = 0;
3821
3822        if (!pci_channel_offline(adapter->pdev))
3823                igc_reset(adapter);
3824
3825        /* clear VLAN promisc flag so VFTA will be updated if necessary */
3826        adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
3827
3828        igc_clean_all_tx_rings(adapter);
3829        igc_clean_all_rx_rings(adapter);
3830}
3831
3832void igc_reinit_locked(struct igc_adapter *adapter)
3833{
3834        WARN_ON(in_interrupt());
3835        while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
3836                usleep_range(1000, 2000);
3837        igc_down(adapter);
3838        igc_up(adapter);
3839        clear_bit(__IGC_RESETTING, &adapter->state);
3840}
3841
3842static void igc_reset_task(struct work_struct *work)
3843{
3844        struct igc_adapter *adapter;
3845
3846        adapter = container_of(work, struct igc_adapter, reset_task);
3847
3848        igc_rings_dump(adapter);
3849        igc_regs_dump(adapter);
3850        netdev_err(adapter->netdev, "Reset adapter\n");
3851        igc_reinit_locked(adapter);
3852}
3853
3854/**
3855 * igc_change_mtu - Change the Maximum Transfer Unit
3856 * @netdev: network interface device structure
3857 * @new_mtu: new value for maximum frame size
3858 *
3859 * Returns 0 on success, negative on failure
3860 */
3861static int igc_change_mtu(struct net_device *netdev, int new_mtu)
3862{
3863        int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
3864        struct igc_adapter *adapter = netdev_priv(netdev);
3865
3866        /* adjust max frame to be at least the size of a standard frame */
3867        if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
3868                max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
3869
3870        while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
3871                usleep_range(1000, 2000);
3872
3873        /* igc_down has a dependency on max_frame_size */
3874        adapter->max_frame_size = max_frame;
3875
3876        if (netif_running(netdev))
3877                igc_down(adapter);
3878
3879        netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
3880        netdev->mtu = new_mtu;
3881
3882        if (netif_running(netdev))
3883                igc_up(adapter);
3884        else
3885                igc_reset(adapter);
3886
3887        clear_bit(__IGC_RESETTING, &adapter->state);
3888
3889        return 0;
3890}
3891
3892/**
3893 * igc_get_stats - Get System Network Statistics
3894 * @netdev: network interface device structure
3895 *
3896 * Returns the address of the device statistics structure.
3897 * The statistics are updated here and also from the timer callback.
3898 */
3899static struct net_device_stats *igc_get_stats(struct net_device *netdev)
3900{
3901        struct igc_adapter *adapter = netdev_priv(netdev);
3902
3903        if (!test_bit(__IGC_RESETTING, &adapter->state))
3904                igc_update_stats(adapter);
3905
3906        /* only return the current stats */
3907        return &netdev->stats;
3908}
3909
3910static netdev_features_t igc_fix_features(struct net_device *netdev,
3911                                          netdev_features_t features)
3912{
3913        /* Since there is no support for separate Rx/Tx vlan accel
3914         * enable/disable make sure Tx flag is always in same state as Rx.
3915         */
3916        if (features & NETIF_F_HW_VLAN_CTAG_RX)
3917                features |= NETIF_F_HW_VLAN_CTAG_TX;
3918        else
3919                features &= ~NETIF_F_HW_VLAN_CTAG_TX;
3920
3921        return features;
3922}
3923
3924static int igc_set_features(struct net_device *netdev,
3925                            netdev_features_t features)
3926{
3927        netdev_features_t changed = netdev->features ^ features;
3928        struct igc_adapter *adapter = netdev_priv(netdev);
3929
3930        /* Add VLAN support */
3931        if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
3932                return 0;
3933
3934        if (!(features & NETIF_F_NTUPLE))
3935                igc_flush_nfc_rules(adapter);
3936
3937        netdev->features = features;
3938
3939        if (netif_running(netdev))
3940                igc_reinit_locked(adapter);
3941        else
3942                igc_reset(adapter);
3943
3944        return 1;
3945}
3946
3947static netdev_features_t
3948igc_features_check(struct sk_buff *skb, struct net_device *dev,
3949                   netdev_features_t features)
3950{
3951        unsigned int network_hdr_len, mac_hdr_len;
3952
3953        /* Make certain the headers can be described by a context descriptor */
3954        mac_hdr_len = skb_network_header(skb) - skb->data;
3955        if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
3956                return features & ~(NETIF_F_HW_CSUM |
3957                                    NETIF_F_SCTP_CRC |
3958                                    NETIF_F_HW_VLAN_CTAG_TX |
3959                                    NETIF_F_TSO |
3960                                    NETIF_F_TSO6);
3961
3962        network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
3963        if (unlikely(network_hdr_len >  IGC_MAX_NETWORK_HDR_LEN))
3964                return features & ~(NETIF_F_HW_CSUM |
3965                                    NETIF_F_SCTP_CRC |
3966                                    NETIF_F_TSO |
3967                                    NETIF_F_TSO6);
3968
3969        /* We can only support IPv4 TSO in tunnels if we can mangle the
3970         * inner IP ID field, so strip TSO if MANGLEID is not supported.
3971         */
3972        if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
3973                features &= ~NETIF_F_TSO;
3974
3975        return features;
3976}
3977
3978static void igc_tsync_interrupt(struct igc_adapter *adapter)
3979{
3980        struct igc_hw *hw = &adapter->hw;
3981        u32 tsicr = rd32(IGC_TSICR);
3982        u32 ack = 0;
3983
3984        if (tsicr & IGC_TSICR_TXTS) {
3985                /* retrieve hardware timestamp */
3986                schedule_work(&adapter->ptp_tx_work);
3987                ack |= IGC_TSICR_TXTS;
3988        }
3989
3990        /* acknowledge the interrupts */
3991        wr32(IGC_TSICR, ack);
3992}
3993
3994/**
3995 * igc_msix_other - msix other interrupt handler
3996 * @irq: interrupt number
3997 * @data: pointer to a q_vector
3998 */
3999static irqreturn_t igc_msix_other(int irq, void *data)
4000{
4001        struct igc_adapter *adapter = data;
4002        struct igc_hw *hw = &adapter->hw;
4003        u32 icr = rd32(IGC_ICR);
4004
4005        /* reading ICR causes bit 31 of EICR to be cleared */
4006        if (icr & IGC_ICR_DRSTA)
4007                schedule_work(&adapter->reset_task);
4008
4009        if (icr & IGC_ICR_DOUTSYNC) {
4010                /* HW is reporting DMA is out of sync */
4011                adapter->stats.doosync++;
4012        }
4013
4014        if (icr & IGC_ICR_LSC) {
4015                hw->mac.get_link_status = 1;
4016                /* guard against interrupt when we're going down */
4017                if (!test_bit(__IGC_DOWN, &adapter->state))
4018                        mod_timer(&adapter->watchdog_timer, jiffies + 1);
4019        }
4020
4021        if (icr & IGC_ICR_TS)
4022                igc_tsync_interrupt(adapter);
4023
4024        wr32(IGC_EIMS, adapter->eims_other);
4025
4026        return IRQ_HANDLED;
4027}
4028
4029static void igc_write_itr(struct igc_q_vector *q_vector)
4030{
4031        u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
4032
4033        if (!q_vector->set_itr)
4034                return;
4035
4036        if (!itr_val)
4037                itr_val = IGC_ITR_VAL_MASK;
4038
4039        itr_val |= IGC_EITR_CNT_IGNR;
4040
4041        writel(itr_val, q_vector->itr_register);
4042        q_vector->set_itr = 0;
4043}
4044
4045static irqreturn_t igc_msix_ring(int irq, void *data)
4046{
4047        struct igc_q_vector *q_vector = data;
4048
4049        /* Write the ITR value calculated from the previous interrupt. */
4050        igc_write_itr(q_vector);
4051
4052        napi_schedule(&q_vector->napi);
4053
4054        return IRQ_HANDLED;
4055}
4056
4057/**
4058 * igc_request_msix - Initialize MSI-X interrupts
4059 * @adapter: Pointer to adapter structure
4060 *
4061 * igc_request_msix allocates MSI-X vectors and requests interrupts from the
4062 * kernel.
4063 */
4064static int igc_request_msix(struct igc_adapter *adapter)
4065{
4066        int i = 0, err = 0, vector = 0, free_vector = 0;
4067        struct net_device *netdev = adapter->netdev;
4068
4069        err = request_irq(adapter->msix_entries[vector].vector,
4070                          &igc_msix_other, 0, netdev->name, adapter);
4071        if (err)
4072                goto err_out;
4073
4074        for (i = 0; i < adapter->num_q_vectors; i++) {
4075                struct igc_q_vector *q_vector = adapter->q_vector[i];
4076
4077                vector++;
4078
4079                q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
4080
4081                if (q_vector->rx.ring && q_vector->tx.ring)
4082                        sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
4083                                q_vector->rx.ring->queue_index);
4084                else if (q_vector->tx.ring)
4085                        sprintf(q_vector->name, "%s-tx-%u", netdev->name,
4086                                q_vector->tx.ring->queue_index);
4087                else if (q_vector->rx.ring)
4088                        sprintf(q_vector->name, "%s-rx-%u", netdev->name,
4089                                q_vector->rx.ring->queue_index);
4090                else
4091                        sprintf(q_vector->name, "%s-unused", netdev->name);
4092
4093                err = request_irq(adapter->msix_entries[vector].vector,
4094                                  igc_msix_ring, 0, q_vector->name,
4095                                  q_vector);
4096                if (err)
4097                        goto err_free;
4098        }
4099
4100        igc_configure_msix(adapter);
4101        return 0;
4102
4103err_free:
4104        /* free already assigned IRQs */
4105        free_irq(adapter->msix_entries[free_vector++].vector, adapter);
4106
4107        vector--;
4108        for (i = 0; i < vector; i++) {
4109                free_irq(adapter->msix_entries[free_vector++].vector,
4110                         adapter->q_vector[i]);
4111        }
4112err_out:
4113        return err;
4114}
4115
4116/**
4117 * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
4118 * @adapter: Pointer to adapter structure
4119 *
4120 * This function resets the device so that it has 0 rx queues, tx queues, and
4121 * MSI-X interrupts allocated.
4122 */
4123static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
4124{
4125        igc_free_q_vectors(adapter);
4126        igc_reset_interrupt_capability(adapter);
4127}
4128
4129/* Need to wait a few seconds after link up to get diagnostic information from
4130 * the phy
4131 */
4132static void igc_update_phy_info(struct timer_list *t)
4133{
4134        struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4135
4136        igc_get_phy_info(&adapter->hw);
4137}
4138
4139/**
4140 * igc_has_link - check shared code for link and determine up/down
4141 * @adapter: pointer to driver private info
4142 */
4143bool igc_has_link(struct igc_adapter *adapter)
4144{
4145        struct igc_hw *hw = &adapter->hw;
4146        bool link_active = false;
4147
4148        /* get_link_status is set on LSC (link status) interrupt or
4149         * rx sequence error interrupt.  get_link_status will stay
4150         * false until the igc_check_for_link establishes link
4151         * for copper adapters ONLY
4152         */
4153        switch (hw->phy.media_type) {
4154        case igc_media_type_copper:
4155                if (!hw->mac.get_link_status)
4156                        return true;
4157                hw->mac.ops.check_for_link(hw);
4158                link_active = !hw->mac.get_link_status;
4159                break;
4160        default:
4161        case igc_media_type_unknown:
4162                break;
4163        }
4164
4165        if (hw->mac.type == igc_i225 &&
4166            hw->phy.id == I225_I_PHY_ID) {
4167                if (!netif_carrier_ok(adapter->netdev)) {
4168                        adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4169                } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
4170                        adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
4171                        adapter->link_check_timeout = jiffies;
4172                }
4173        }
4174
4175        return link_active;
4176}
4177
4178/**
4179 * igc_watchdog - Timer Call-back
4180 * @t: timer for the watchdog
4181 */
4182static void igc_watchdog(struct timer_list *t)
4183{
4184        struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
4185        /* Do the rest outside of interrupt context */
4186        schedule_work(&adapter->watchdog_task);
4187}
4188
4189static void igc_watchdog_task(struct work_struct *work)
4190{
4191        struct igc_adapter *adapter = container_of(work,
4192                                                   struct igc_adapter,
4193                                                   watchdog_task);
4194        struct net_device *netdev = adapter->netdev;
4195        struct igc_hw *hw = &adapter->hw;
4196        struct igc_phy_info *phy = &hw->phy;
4197        u16 phy_data, retry_count = 20;
4198        u32 link;
4199        int i;
4200
4201        link = igc_has_link(adapter);
4202
4203        if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
4204                if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4205                        adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4206                else
4207                        link = false;
4208        }
4209
4210        if (link) {
4211                /* Cancel scheduled suspend requests. */
4212                pm_runtime_resume(netdev->dev.parent);
4213
4214                if (!netif_carrier_ok(netdev)) {
4215                        u32 ctrl;
4216
4217                        hw->mac.ops.get_speed_and_duplex(hw,
4218                                                         &adapter->link_speed,
4219                                                         &adapter->link_duplex);
4220
4221                        ctrl = rd32(IGC_CTRL);
4222                        /* Link status message must follow this format */
4223                        netdev_info(netdev,
4224                                    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4225                                    adapter->link_speed,
4226                                    adapter->link_duplex == FULL_DUPLEX ?
4227                                    "Full" : "Half",
4228                                    (ctrl & IGC_CTRL_TFCE) &&
4229                                    (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
4230                                    (ctrl & IGC_CTRL_RFCE) ?  "RX" :
4231                                    (ctrl & IGC_CTRL_TFCE) ?  "TX" : "None");
4232
4233                        /* disable EEE if enabled */
4234                        if ((adapter->flags & IGC_FLAG_EEE) &&
4235                            adapter->link_duplex == HALF_DUPLEX) {
4236                                netdev_info(netdev,
4237                                            "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
4238                                adapter->hw.dev_spec._base.eee_enable = false;
4239                                adapter->flags &= ~IGC_FLAG_EEE;
4240                        }
4241
4242                        /* check if SmartSpeed worked */
4243                        igc_check_downshift(hw);
4244                        if (phy->speed_downgraded)
4245                                netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4246
4247                        /* adjust timeout factor according to speed/duplex */
4248                        adapter->tx_timeout_factor = 1;
4249                        switch (adapter->link_speed) {
4250                        case SPEED_10:
4251                                adapter->tx_timeout_factor = 14;
4252                                break;
4253                        case SPEED_100:
4254                                /* maybe add some timeout factor ? */
4255                                break;
4256                        }
4257
4258                        if (adapter->link_speed != SPEED_1000)
4259                                goto no_wait;
4260
4261                        /* wait for Remote receiver status OK */
4262retry_read_status:
4263                        if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
4264                                              &phy_data)) {
4265                                if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
4266                                    retry_count) {
4267                                        msleep(100);
4268                                        retry_count--;
4269                                        goto retry_read_status;
4270                                } else if (!retry_count) {
4271                                        netdev_err(netdev, "exceed max 2 second\n");
4272                                }
4273                        } else {
4274                                netdev_err(netdev, "read 1000Base-T Status Reg\n");
4275                        }
4276no_wait:
4277                        netif_carrier_on(netdev);
4278
4279                        /* link state has changed, schedule phy info update */
4280                        if (!test_bit(__IGC_DOWN, &adapter->state))
4281                                mod_timer(&adapter->phy_info_timer,
4282                                          round_jiffies(jiffies + 2 * HZ));
4283                }
4284        } else {
4285                if (netif_carrier_ok(netdev)) {
4286                        adapter->link_speed = 0;
4287                        adapter->link_duplex = 0;
4288
4289                        /* Links status message must follow this format */
4290                        netdev_info(netdev, "NIC Link is Down\n");
4291                        netif_carrier_off(netdev);
4292
4293                        /* link state has changed, schedule phy info update */
4294                        if (!test_bit(__IGC_DOWN, &adapter->state))
4295                                mod_timer(&adapter->phy_info_timer,
4296                                          round_jiffies(jiffies + 2 * HZ));
4297
4298                        /* link is down, time to check for alternate media */
4299                        if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
4300                                if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
4301                                        schedule_work(&adapter->reset_task);
4302                                        /* return immediately */
4303                                        return;
4304                                }
4305                        }
4306                        pm_schedule_suspend(netdev->dev.parent,
4307                                            MSEC_PER_SEC * 5);
4308
4309                /* also check for alternate media here */
4310                } else if (!netif_carrier_ok(netdev) &&
4311                           (adapter->flags & IGC_FLAG_MAS_ENABLE)) {
4312                        if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
4313                                schedule_work(&adapter->reset_task);
4314                                /* return immediately */
4315                                return;
4316                        }
4317                }
4318        }
4319
4320        spin_lock(&adapter->stats64_lock);
4321        igc_update_stats(adapter);
4322        spin_unlock(&adapter->stats64_lock);
4323
4324        for (i = 0; i < adapter->num_tx_queues; i++) {
4325                struct igc_ring *tx_ring = adapter->tx_ring[i];
4326
4327                if (!netif_carrier_ok(netdev)) {
4328                        /* We've lost link, so the controller stops DMA,
4329                         * but we've got queued Tx work that's never going
4330                         * to get done, so reset controller to flush Tx.
4331                         * (Do the reset outside of interrupt context).
4332                         */
4333                        if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
4334                                adapter->tx_timeout_count++;
4335                                schedule_work(&adapter->reset_task);
4336                                /* return immediately since reset is imminent */
4337                                return;
4338                        }
4339                }
4340
4341                /* Force detection of hung controller every watchdog period */
4342                set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4343        }
4344
4345        /* Cause software interrupt to ensure Rx ring is cleaned */
4346        if (adapter->flags & IGC_FLAG_HAS_MSIX) {
4347                u32 eics = 0;
4348
4349                for (i = 0; i < adapter->num_q_vectors; i++)
4350                        eics |= adapter->q_vector[i]->eims_value;
4351                wr32(IGC_EICS, eics);
4352        } else {
4353                wr32(IGC_ICS, IGC_ICS_RXDMT0);
4354        }
4355
4356        igc_ptp_tx_hang(adapter);
4357
4358        /* Reset the timer */
4359        if (!test_bit(__IGC_DOWN, &adapter->state)) {
4360                if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
4361                        mod_timer(&adapter->watchdog_timer,
4362                                  round_jiffies(jiffies +  HZ));
4363                else
4364                        mod_timer(&adapter->watchdog_timer,
4365                                  round_jiffies(jiffies + 2 * HZ));
4366        }
4367}
4368
4369/**
4370 * igc_intr_msi - Interrupt Handler
4371 * @irq: interrupt number
4372 * @data: pointer to a network interface device structure
4373 */
4374static irqreturn_t igc_intr_msi(int irq, void *data)
4375{
4376        struct igc_adapter *adapter = data;
4377        struct igc_q_vector *q_vector = adapter->q_vector[0];
4378        struct igc_hw *hw = &adapter->hw;
4379        /* read ICR disables interrupts using IAM */
4380        u32 icr = rd32(IGC_ICR);
4381
4382        igc_write_itr(q_vector);
4383
4384        if (icr & IGC_ICR_DRSTA)
4385                schedule_work(&adapter->reset_task);
4386
4387        if (icr & IGC_ICR_DOUTSYNC) {
4388                /* HW is reporting DMA is out of sync */
4389                adapter->stats.doosync++;
4390        }
4391
4392        if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
4393                hw->mac.get_link_status = 1;
4394                if (!test_bit(__IGC_DOWN, &adapter->state))
4395                        mod_timer(&adapter->watchdog_timer, jiffies + 1);
4396        }
4397
4398        napi_schedule(&q_vector->napi);
4399
4400        return IRQ_HANDLED;
4401}
4402
4403/**
4404 * igc_intr - Legacy Interrupt Handler
4405 * @irq: interrupt number
4406 * @data: pointer to a network interface device structure
4407 */
4408static irqreturn_t igc_intr(int irq, void *data)
4409{
4410        struct igc_adapter *adapter = data;
4411        struct igc_q_vector *q_vector = adapter->q_vector[0];
4412        struct igc_hw *hw = &adapter->hw;
4413        /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
4414         * need for the IMC write
4415         */
4416        u32 icr = rd32(IGC_ICR);
4417
4418        /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4419         * not set, then the adapter didn't send an interrupt
4420         */
4421        if (!(icr & IGC_ICR_INT_ASSERTED))
4422                return IRQ_NONE;
4423
4424        igc_write_itr(q_vector);
4425
4426        if (icr & IGC_ICR_DRSTA)
4427                schedule_work(&adapter->reset_task);
4428
4429        if (icr & IGC_ICR_DOUTSYNC) {
4430                /* HW is reporting DMA is out of sync */
4431                adapter->stats.doosync++;
4432        }
4433
4434        if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
4435                hw->mac.get_link_status = 1;
4436                /* guard against interrupt when we're going down */
4437                if (!test_bit(__IGC_DOWN, &adapter->state))
4438                        mod_timer(&adapter->watchdog_timer, jiffies + 1);
4439        }
4440
4441        napi_schedule(&q_vector->napi);
4442
4443        return IRQ_HANDLED;
4444}
4445
4446static void igc_free_irq(struct igc_adapter *adapter)
4447{
4448        if (adapter->msix_entries) {
4449                int vector = 0, i;
4450
4451                free_irq(adapter->msix_entries[vector++].vector, adapter);
4452
4453                for (i = 0; i < adapter->num_q_vectors; i++)
4454                        free_irq(adapter->msix_entries[vector++].vector,
4455                                 adapter->q_vector[i]);
4456        } else {
4457                free_irq(adapter->pdev->irq, adapter);
4458        }
4459}
4460
4461/**
4462 * igc_request_irq - initialize interrupts
4463 * @adapter: Pointer to adapter structure
4464 *
4465 * Attempts to configure interrupts using the best available
4466 * capabilities of the hardware and kernel.
4467 */
4468static int igc_request_irq(struct igc_adapter *adapter)
4469{
4470        struct net_device *netdev = adapter->netdev;
4471        struct pci_dev *pdev = adapter->pdev;
4472        int err = 0;
4473
4474        if (adapter->flags & IGC_FLAG_HAS_MSIX) {
4475                err = igc_request_msix(adapter);
4476                if (!err)
4477                        goto request_done;
4478                /* fall back to MSI */
4479                igc_free_all_tx_resources(adapter);
4480                igc_free_all_rx_resources(adapter);
4481
4482                igc_clear_interrupt_scheme(adapter);
4483                err = igc_init_interrupt_scheme(adapter, false);
4484                if (err)
4485                        goto request_done;
4486                igc_setup_all_tx_resources(adapter);
4487                igc_setup_all_rx_resources(adapter);
4488                igc_configure(adapter);
4489        }
4490
4491        igc_assign_vector(adapter->q_vector[0], 0);
4492
4493        if (adapter->flags & IGC_FLAG_HAS_MSI) {
4494                err = request_irq(pdev->irq, &igc_intr_msi, 0,
4495                                  netdev->name, adapter);
4496                if (!err)
4497                        goto request_done;
4498
4499                /* fall back to legacy interrupts */
4500                igc_reset_interrupt_capability(adapter);
4501                adapter->flags &= ~IGC_FLAG_HAS_MSI;
4502        }
4503
4504        err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
4505                          netdev->name, adapter);
4506
4507        if (err)
4508                netdev_err(netdev, "Error %d getting interrupt\n", err);
4509
4510request_done:
4511        return err;
4512}
4513
4514/**
4515 * __igc_open - Called when a network interface is made active
4516 * @netdev: network interface device structure
4517 * @resuming: boolean indicating if the device is resuming
4518 *
4519 * Returns 0 on success, negative value on failure
4520 *
4521 * The open entry point is called when a network interface is made
4522 * active by the system (IFF_UP).  At this point all resources needed
4523 * for transmit and receive operations are allocated, the interrupt
4524 * handler is registered with the OS, the watchdog timer is started,
4525 * and the stack is notified that the interface is ready.
4526 */
4527static int __igc_open(struct net_device *netdev, bool resuming)
4528{
4529        struct igc_adapter *adapter = netdev_priv(netdev);
4530        struct pci_dev *pdev = adapter->pdev;
4531        struct igc_hw *hw = &adapter->hw;
4532        int err = 0;
4533        int i = 0;
4534
4535        /* disallow open during test */
4536
4537        if (test_bit(__IGC_TESTING, &adapter->state)) {
4538                WARN_ON(resuming);
4539                return -EBUSY;
4540        }
4541
4542        if (!resuming)
4543                pm_runtime_get_sync(&pdev->dev);
4544
4545        netif_carrier_off(netdev);
4546
4547        /* allocate transmit descriptors */
4548        err = igc_setup_all_tx_resources(adapter);
4549        if (err)
4550                goto err_setup_tx;
4551
4552        /* allocate receive descriptors */
4553        err = igc_setup_all_rx_resources(adapter);
4554        if (err)
4555                goto err_setup_rx;
4556
4557        igc_power_up_link(adapter);
4558
4559        igc_configure(adapter);
4560
4561        err = igc_request_irq(adapter);
4562        if (err)
4563                goto err_req_irq;
4564
4565        /* Notify the stack of the actual queue counts. */
4566        err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
4567        if (err)
4568                goto err_set_queues;
4569
4570        err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
4571        if (err)
4572                goto err_set_queues;
4573
4574        clear_bit(__IGC_DOWN, &adapter->state);
4575
4576        for (i = 0; i < adapter->num_q_vectors; i++)
4577                napi_enable(&adapter->q_vector[i]->napi);
4578
4579        /* Clear any pending interrupts. */
4580        rd32(IGC_ICR);
4581        igc_irq_enable(adapter);
4582
4583        if (!resuming)
4584                pm_runtime_put(&pdev->dev);
4585
4586        netif_tx_start_all_queues(netdev);
4587
4588        /* start the watchdog. */
4589        hw->mac.get_link_status = 1;
4590        schedule_work(&adapter->watchdog_task);
4591
4592        return IGC_SUCCESS;
4593
4594err_set_queues:
4595        igc_free_irq(adapter);
4596err_req_irq:
4597        igc_release_hw_control(adapter);
4598        igc_power_down_phy_copper_base(&adapter->hw);
4599        igc_free_all_rx_resources(adapter);
4600err_setup_rx:
4601        igc_free_all_tx_resources(adapter);
4602err_setup_tx:
4603        igc_reset(adapter);
4604        if (!resuming)
4605                pm_runtime_put(&pdev->dev);
4606
4607        return err;
4608}
4609
4610int igc_open(struct net_device *netdev)
4611{
4612        return __igc_open(netdev, false);
4613}
4614
4615/**
4616 * __igc_close - Disables a network interface
4617 * @netdev: network interface device structure
4618 * @suspending: boolean indicating the device is suspending
4619 *
4620 * Returns 0, this is not allowed to fail
4621 *
4622 * The close entry point is called when an interface is de-activated
4623 * by the OS.  The hardware is still under the driver's control, but
4624 * needs to be disabled.  A global MAC reset is issued to stop the
4625 * hardware, and all transmit and receive resources are freed.
4626 */
4627static int __igc_close(struct net_device *netdev, bool suspending)
4628{
4629        struct igc_adapter *adapter = netdev_priv(netdev);
4630        struct pci_dev *pdev = adapter->pdev;
4631
4632        WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
4633
4634        if (!suspending)
4635                pm_runtime_get_sync(&pdev->dev);
4636
4637        igc_down(adapter);
4638
4639        igc_release_hw_control(adapter);
4640
4641        igc_free_irq(adapter);
4642
4643        igc_free_all_tx_resources(adapter);
4644        igc_free_all_rx_resources(adapter);
4645
4646        if (!suspending)
4647                pm_runtime_put_sync(&pdev->dev);
4648
4649        return 0;
4650}
4651
4652int igc_close(struct net_device *netdev)
4653{
4654        if (netif_device_present(netdev) || netdev->dismantle)
4655                return __igc_close(netdev, false);
4656        return 0;
4657}
4658
4659/**
4660 * igc_ioctl - Access the hwtstamp interface
4661 * @netdev: network interface device structure
4662 * @ifreq: interface request data
4663 * @cmd: ioctl command
4664 **/
4665static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4666{
4667        switch (cmd) {
4668        case SIOCGHWTSTAMP:
4669                return igc_ptp_get_ts_config(netdev, ifr);
4670        case SIOCSHWTSTAMP:
4671                return igc_ptp_set_ts_config(netdev, ifr);
4672        default:
4673                return -EOPNOTSUPP;
4674        }
4675}
4676
4677static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
4678                                      bool enable)
4679{
4680        struct igc_ring *ring;
4681        int i;
4682
4683        if (queue < 0 || queue >= adapter->num_tx_queues)
4684                return -EINVAL;
4685
4686        ring = adapter->tx_ring[queue];
4687        ring->launchtime_enable = enable;
4688
4689        if (adapter->base_time)
4690                return 0;
4691
4692        adapter->cycle_time = NSEC_PER_SEC;
4693
4694        for (i = 0; i < adapter->num_tx_queues; i++) {
4695                ring = adapter->tx_ring[i];
4696                ring->start_time = 0;
4697                ring->end_time = NSEC_PER_SEC;
4698        }
4699
4700        return 0;
4701}
4702
4703static bool validate_schedule(const struct tc_taprio_qopt_offload *qopt)
4704{
4705        int queue_uses[IGC_MAX_TX_QUEUES] = { };
4706        size_t n;
4707
4708        if (qopt->cycle_time_extension)
4709                return false;
4710
4711        for (n = 0; n < qopt->num_entries; n++) {
4712                const struct tc_taprio_sched_entry *e;
4713                int i;
4714
4715                e = &qopt->entries[n];
4716
4717                /* i225 only supports "global" frame preemption
4718                 * settings.
4719                 */
4720                if (e->command != TC_TAPRIO_CMD_SET_GATES)
4721                        return false;
4722
4723                for (i = 0; i < IGC_MAX_TX_QUEUES; i++) {
4724                        if (e->gate_mask & BIT(i))
4725                                queue_uses[i]++;
4726
4727                        if (queue_uses[i] > 1)
4728                                return false;
4729                }
4730        }
4731
4732        return true;
4733}
4734
4735static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
4736                                     struct tc_etf_qopt_offload *qopt)
4737{
4738        struct igc_hw *hw = &adapter->hw;
4739        int err;
4740
4741        if (hw->mac.type != igc_i225)
4742                return -EOPNOTSUPP;
4743
4744        err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
4745        if (err)
4746                return err;
4747
4748        return igc_tsn_offload_apply(adapter);
4749}
4750
4751static int igc_save_qbv_schedule(struct igc_adapter *adapter,
4752                                 struct tc_taprio_qopt_offload *qopt)
4753{
4754        u32 start_time = 0, end_time = 0;
4755        size_t n;
4756
4757        if (!qopt->enable) {
4758                adapter->base_time = 0;
4759                return 0;
4760        }
4761
4762        if (adapter->base_time)
4763                return -EALREADY;
4764
4765        if (!validate_schedule(qopt))
4766                return -EINVAL;
4767
4768        adapter->cycle_time = qopt->cycle_time;
4769        adapter->base_time = qopt->base_time;
4770
4771        /* FIXME: be a little smarter about cases when the gate for a
4772         * queue stays open for more than one entry.
4773         */
4774        for (n = 0; n < qopt->num_entries; n++) {
4775                struct tc_taprio_sched_entry *e = &qopt->entries[n];
4776                int i;
4777
4778                end_time += e->interval;
4779
4780                for (i = 0; i < IGC_MAX_TX_QUEUES; i++) {
4781                        struct igc_ring *ring = adapter->tx_ring[i];
4782
4783                        if (!(e->gate_mask & BIT(i)))
4784                                continue;
4785
4786                        ring->start_time = start_time;
4787                        ring->end_time = end_time;
4788                }
4789
4790                start_time += e->interval;
4791        }
4792
4793        return 0;
4794}
4795
4796static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
4797                                         struct tc_taprio_qopt_offload *qopt)
4798{
4799        struct igc_hw *hw = &adapter->hw;
4800        int err;
4801
4802        if (hw->mac.type != igc_i225)
4803                return -EOPNOTSUPP;
4804
4805        err = igc_save_qbv_schedule(adapter, qopt);
4806        if (err)
4807                return err;
4808
4809        return igc_tsn_offload_apply(adapter);
4810}
4811
4812static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
4813                        void *type_data)
4814{
4815        struct igc_adapter *adapter = netdev_priv(dev);
4816
4817        switch (type) {
4818        case TC_SETUP_QDISC_TAPRIO:
4819                return igc_tsn_enable_qbv_scheduling(adapter, type_data);
4820
4821        case TC_SETUP_QDISC_ETF:
4822                return igc_tsn_enable_launchtime(adapter, type_data);
4823
4824        default:
4825                return -EOPNOTSUPP;
4826        }
4827}
4828
4829static const struct net_device_ops igc_netdev_ops = {
4830        .ndo_open               = igc_open,
4831        .ndo_stop               = igc_close,
4832        .ndo_start_xmit         = igc_xmit_frame,
4833        .ndo_set_rx_mode        = igc_set_rx_mode,
4834        .ndo_set_mac_address    = igc_set_mac,
4835        .ndo_change_mtu         = igc_change_mtu,
4836        .ndo_get_stats          = igc_get_stats,
4837        .ndo_fix_features       = igc_fix_features,
4838        .ndo_set_features       = igc_set_features,
4839        .ndo_features_check     = igc_features_check,
4840        .ndo_do_ioctl           = igc_ioctl,
4841        .ndo_setup_tc           = igc_setup_tc,
4842};
4843
4844/* PCIe configuration access */
4845void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
4846{
4847        struct igc_adapter *adapter = hw->back;
4848
4849        pci_read_config_word(adapter->pdev, reg, value);
4850}
4851
4852void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
4853{
4854        struct igc_adapter *adapter = hw->back;
4855
4856        pci_write_config_word(adapter->pdev, reg, *value);
4857}
4858
4859s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
4860{
4861        struct igc_adapter *adapter = hw->back;
4862
4863        if (!pci_is_pcie(adapter->pdev))
4864                return -IGC_ERR_CONFIG;
4865
4866        pcie_capability_read_word(adapter->pdev, reg, value);
4867
4868        return IGC_SUCCESS;
4869}
4870
4871s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
4872{
4873        struct igc_adapter *adapter = hw->back;
4874
4875        if (!pci_is_pcie(adapter->pdev))
4876                return -IGC_ERR_CONFIG;
4877
4878        pcie_capability_write_word(adapter->pdev, reg, *value);
4879
4880        return IGC_SUCCESS;
4881}
4882
4883u32 igc_rd32(struct igc_hw *hw, u32 reg)
4884{
4885        struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
4886        u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
4887        u32 value = 0;
4888
4889        value = readl(&hw_addr[reg]);
4890
4891        /* reads should not return all F's */
4892        if (!(~value) && (!reg || !(~readl(hw_addr)))) {
4893                struct net_device *netdev = igc->netdev;
4894
4895                hw->hw_addr = NULL;
4896                netif_device_detach(netdev);
4897                netdev_err(netdev, "PCIe link lost, device now detached\n");
4898                WARN(pci_device_is_present(igc->pdev),
4899                     "igc: Failed to read reg 0x%x!\n", reg);
4900        }
4901
4902        return value;
4903}
4904
4905int igc_set_spd_dplx(struct igc_adapter *adapter, u32 spd, u8 dplx)
4906{
4907        struct igc_mac_info *mac = &adapter->hw.mac;
4908
4909        mac->autoneg = 0;
4910
4911        /* Make sure dplx is at most 1 bit and lsb of speed is not set
4912         * for the switch() below to work
4913         */
4914        if ((spd & 1) || (dplx & ~1))
4915                goto err_inval;
4916
4917        switch (spd + dplx) {
4918        case SPEED_10 + DUPLEX_HALF:
4919                mac->forced_speed_duplex = ADVERTISE_10_HALF;
4920                break;
4921        case SPEED_10 + DUPLEX_FULL:
4922                mac->forced_speed_duplex = ADVERTISE_10_FULL;
4923                break;
4924        case SPEED_100 + DUPLEX_HALF:
4925                mac->forced_speed_duplex = ADVERTISE_100_HALF;
4926                break;
4927        case SPEED_100 + DUPLEX_FULL:
4928                mac->forced_speed_duplex = ADVERTISE_100_FULL;
4929                break;
4930        case SPEED_1000 + DUPLEX_FULL:
4931                mac->autoneg = 1;
4932                adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4933                break;
4934        case SPEED_1000 + DUPLEX_HALF: /* not supported */
4935                goto err_inval;
4936        case SPEED_2500 + DUPLEX_FULL:
4937                mac->autoneg = 1;
4938                adapter->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
4939                break;
4940        case SPEED_2500 + DUPLEX_HALF: /* not supported */
4941        default:
4942                goto err_inval;
4943        }
4944
4945        /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
4946        adapter->hw.phy.mdix = AUTO_ALL_MODES;
4947
4948        return 0;
4949
4950err_inval:
4951        netdev_err(adapter->netdev, "Unsupported Speed/Duplex configuration\n");
4952        return -EINVAL;
4953}
4954
4955/**
4956 * igc_probe - Device Initialization Routine
4957 * @pdev: PCI device information struct
4958 * @ent: entry in igc_pci_tbl
4959 *
4960 * Returns 0 on success, negative on failure
4961 *
4962 * igc_probe initializes an adapter identified by a pci_dev structure.
4963 * The OS initialization, configuring the adapter private structure,
4964 * and a hardware reset occur.
4965 */
4966static int igc_probe(struct pci_dev *pdev,
4967                     const struct pci_device_id *ent)
4968{
4969        struct igc_adapter *adapter;
4970        struct net_device *netdev;
4971        struct igc_hw *hw;
4972        const struct igc_info *ei = igc_info_tbl[ent->driver_data];
4973        int err, pci_using_dac;
4974
4975        err = pci_enable_device_mem(pdev);
4976        if (err)
4977                return err;
4978
4979        pci_using_dac = 0;
4980        err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4981        if (!err) {
4982                pci_using_dac = 1;
4983        } else {
4984                err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4985                if (err) {
4986                        dev_err(&pdev->dev,
4987                                "No usable DMA configuration, aborting\n");
4988                        goto err_dma;
4989                }
4990        }
4991
4992        err = pci_request_mem_regions(pdev, igc_driver_name);
4993        if (err)
4994                goto err_pci_reg;
4995
4996        pci_enable_pcie_error_reporting(pdev);
4997
4998        pci_set_master(pdev);
4999
5000        err = -ENOMEM;
5001        netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
5002                                   IGC_MAX_TX_QUEUES);
5003
5004        if (!netdev)
5005                goto err_alloc_etherdev;
5006
5007        SET_NETDEV_DEV(netdev, &pdev->dev);
5008
5009        pci_set_drvdata(pdev, netdev);
5010        adapter = netdev_priv(netdev);
5011        adapter->netdev = netdev;
5012        adapter->pdev = pdev;
5013        hw = &adapter->hw;
5014        hw->back = adapter;
5015        adapter->port_num = hw->bus.func;
5016        adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
5017
5018        err = pci_save_state(pdev);
5019        if (err)
5020                goto err_ioremap;
5021
5022        err = -EIO;
5023        adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
5024                                   pci_resource_len(pdev, 0));
5025        if (!adapter->io_addr)
5026                goto err_ioremap;
5027
5028        /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
5029        hw->hw_addr = adapter->io_addr;
5030
5031        netdev->netdev_ops = &igc_netdev_ops;
5032        igc_ethtool_set_ops(netdev);
5033        netdev->watchdog_timeo = 5 * HZ;
5034
5035        netdev->mem_start = pci_resource_start(pdev, 0);
5036        netdev->mem_end = pci_resource_end(pdev, 0);
5037
5038        /* PCI config space info */
5039        hw->vendor_id = pdev->vendor;
5040        hw->device_id = pdev->device;
5041        hw->revision_id = pdev->revision;
5042        hw->subsystem_vendor_id = pdev->subsystem_vendor;
5043        hw->subsystem_device_id = pdev->subsystem_device;
5044
5045        /* Copy the default MAC and PHY function pointers */
5046        memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
5047        memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
5048
5049        /* Initialize skew-specific constants */
5050        err = ei->get_invariants(hw);
5051        if (err)
5052                goto err_sw_init;
5053
5054        /* Add supported features to the features list*/
5055        netdev->features |= NETIF_F_SG;
5056        netdev->features |= NETIF_F_TSO;
5057        netdev->features |= NETIF_F_TSO6;
5058        netdev->features |= NETIF_F_TSO_ECN;
5059        netdev->features |= NETIF_F_RXCSUM;
5060        netdev->features |= NETIF_F_HW_CSUM;
5061        netdev->features |= NETIF_F_SCTP_CRC;
5062        netdev->features |= NETIF_F_HW_TC;
5063
5064#define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
5065                                  NETIF_F_GSO_GRE_CSUM | \
5066                                  NETIF_F_GSO_IPXIP4 | \
5067                                  NETIF_F_GSO_IPXIP6 | \
5068                                  NETIF_F_GSO_UDP_TUNNEL | \
5069                                  NETIF_F_GSO_UDP_TUNNEL_CSUM)
5070
5071        netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
5072        netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
5073
5074        /* setup the private structure */
5075        err = igc_sw_init(adapter);
5076        if (err)
5077                goto err_sw_init;
5078
5079        /* copy netdev features into list of user selectable features */
5080        netdev->hw_features |= NETIF_F_NTUPLE;
5081        netdev->hw_features |= netdev->features;
5082
5083        if (pci_using_dac)
5084                netdev->features |= NETIF_F_HIGHDMA;
5085
5086        /* MTU range: 68 - 9216 */
5087        netdev->min_mtu = ETH_MIN_MTU;
5088        netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
5089
5090        /* before reading the NVM, reset the controller to put the device in a
5091         * known good starting state
5092         */
5093        hw->mac.ops.reset_hw(hw);
5094
5095        if (igc_get_flash_presence_i225(hw)) {
5096                if (hw->nvm.ops.validate(hw) < 0) {
5097                        dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
5098                        err = -EIO;
5099                        goto err_eeprom;
5100                }
5101        }
5102
5103        if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
5104                /* copy the MAC address out of the NVM */
5105                if (hw->mac.ops.read_mac_addr(hw))
5106                        dev_err(&pdev->dev, "NVM Read Error\n");
5107        }
5108
5109        memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
5110
5111        if (!is_valid_ether_addr(netdev->dev_addr)) {
5112                dev_err(&pdev->dev, "Invalid MAC Address\n");
5113                err = -EIO;
5114                goto err_eeprom;
5115        }
5116
5117        /* configure RXPBSIZE and TXPBSIZE */
5118        wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
5119        wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
5120
5121        timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
5122        timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
5123
5124        INIT_WORK(&adapter->reset_task, igc_reset_task);
5125        INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
5126
5127        /* Initialize link properties that are user-changeable */
5128        adapter->fc_autoneg = true;
5129        hw->mac.autoneg = true;
5130        hw->phy.autoneg_advertised = 0xaf;
5131
5132        hw->fc.requested_mode = igc_fc_default;
5133        hw->fc.current_mode = igc_fc_default;
5134
5135        /* By default, support wake on port A */
5136        adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
5137
5138        /* initialize the wol settings based on the eeprom settings */
5139        if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
5140                adapter->wol |= IGC_WUFC_MAG;
5141
5142        device_set_wakeup_enable(&adapter->pdev->dev,
5143                                 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
5144
5145        igc_ptp_init(adapter);
5146
5147        /* reset the hardware with the new settings */
5148        igc_reset(adapter);
5149
5150        /* let the f/w know that the h/w is now under the control of the
5151         * driver.
5152         */
5153        igc_get_hw_control(adapter);
5154
5155        strncpy(netdev->name, "eth%d", IFNAMSIZ);
5156        err = register_netdev(netdev);
5157        if (err)
5158                goto err_register;
5159
5160         /* carrier off reporting is important to ethtool even BEFORE open */
5161        netif_carrier_off(netdev);
5162
5163        /* Check if Media Autosense is enabled */
5164        adapter->ei = *ei;
5165
5166        /* print pcie link status and MAC address */
5167        pcie_print_link_status(pdev);
5168        netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
5169
5170        dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
5171        /* Disable EEE for internal PHY devices */
5172        hw->dev_spec._base.eee_enable = false;
5173        adapter->flags &= ~IGC_FLAG_EEE;
5174        igc_set_eee_i225(hw, false, false, false);
5175
5176        pm_runtime_put_noidle(&pdev->dev);
5177
5178        return 0;
5179
5180err_register:
5181        igc_release_hw_control(adapter);
5182err_eeprom:
5183        if (!igc_check_reset_block(hw))
5184                igc_reset_phy(hw);
5185err_sw_init:
5186        igc_clear_interrupt_scheme(adapter);
5187        iounmap(adapter->io_addr);
5188err_ioremap:
5189        free_netdev(netdev);
5190err_alloc_etherdev:
5191        pci_release_mem_regions(pdev);
5192err_pci_reg:
5193err_dma:
5194        pci_disable_device(pdev);
5195        return err;
5196}
5197
5198/**
5199 * igc_remove - Device Removal Routine
5200 * @pdev: PCI device information struct
5201 *
5202 * igc_remove is called by the PCI subsystem to alert the driver
5203 * that it should release a PCI device.  This could be caused by a
5204 * Hot-Plug event, or because the driver is going to be removed from
5205 * memory.
5206 */
5207static void igc_remove(struct pci_dev *pdev)
5208{
5209        struct net_device *netdev = pci_get_drvdata(pdev);
5210        struct igc_adapter *adapter = netdev_priv(netdev);
5211
5212        pm_runtime_get_noresume(&pdev->dev);
5213
5214        igc_flush_nfc_rules(adapter);
5215
5216        igc_ptp_stop(adapter);
5217
5218        set_bit(__IGC_DOWN, &adapter->state);
5219
5220        del_timer_sync(&adapter->watchdog_timer);
5221        del_timer_sync(&adapter->phy_info_timer);
5222
5223        cancel_work_sync(&adapter->reset_task);
5224        cancel_work_sync(&adapter->watchdog_task);
5225
5226        /* Release control of h/w to f/w.  If f/w is AMT enabled, this
5227         * would have already happened in close and is redundant.
5228         */
5229        igc_release_hw_control(adapter);
5230        unregister_netdev(netdev);
5231
5232        igc_clear_interrupt_scheme(adapter);
5233        pci_iounmap(pdev, adapter->io_addr);
5234        pci_release_mem_regions(pdev);
5235
5236        free_netdev(netdev);
5237
5238        pci_disable_pcie_error_reporting(pdev);
5239
5240        pci_disable_device(pdev);
5241}
5242
5243static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
5244                          bool runtime)
5245{
5246        struct net_device *netdev = pci_get_drvdata(pdev);
5247        struct igc_adapter *adapter = netdev_priv(netdev);
5248        u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
5249        struct igc_hw *hw = &adapter->hw;
5250        u32 ctrl, rctl, status;
5251        bool wake;
5252
5253        rtnl_lock();
5254        netif_device_detach(netdev);
5255
5256        if (netif_running(netdev))
5257                __igc_close(netdev, true);
5258
5259        igc_ptp_suspend(adapter);
5260
5261        igc_clear_interrupt_scheme(adapter);
5262        rtnl_unlock();
5263
5264        status = rd32(IGC_STATUS);
5265        if (status & IGC_STATUS_LU)
5266                wufc &= ~IGC_WUFC_LNKC;
5267
5268        if (wufc) {
5269                igc_setup_rctl(adapter);
5270                igc_set_rx_mode(netdev);
5271
5272                /* turn on all-multi mode if wake on multicast is enabled */
5273                if (wufc & IGC_WUFC_MC) {
5274                        rctl = rd32(IGC_RCTL);
5275                        rctl |= IGC_RCTL_MPE;
5276                        wr32(IGC_RCTL, rctl);
5277                }
5278
5279                ctrl = rd32(IGC_CTRL);
5280                ctrl |= IGC_CTRL_ADVD3WUC;
5281                wr32(IGC_CTRL, ctrl);
5282
5283                /* Allow time for pending master requests to run */
5284                igc_disable_pcie_master(hw);
5285
5286                wr32(IGC_WUC, IGC_WUC_PME_EN);
5287                wr32(IGC_WUFC, wufc);
5288        } else {
5289                wr32(IGC_WUC, 0);
5290                wr32(IGC_WUFC, 0);
5291        }
5292
5293        wake = wufc || adapter->en_mng_pt;
5294        if (!wake)
5295                igc_power_down_phy_copper_base(&adapter->hw);
5296        else
5297                igc_power_up_link(adapter);
5298
5299        if (enable_wake)
5300                *enable_wake = wake;
5301
5302        /* Release control of h/w to f/w.  If f/w is AMT enabled, this
5303         * would have already happened in close and is redundant.
5304         */
5305        igc_release_hw_control(adapter);
5306
5307        pci_disable_device(pdev);
5308
5309        return 0;
5310}
5311
5312#ifdef CONFIG_PM
5313static int __maybe_unused igc_runtime_suspend(struct device *dev)
5314{
5315        return __igc_shutdown(to_pci_dev(dev), NULL, 1);
5316}
5317
5318static void igc_deliver_wake_packet(struct net_device *netdev)
5319{
5320        struct igc_adapter *adapter = netdev_priv(netdev);
5321        struct igc_hw *hw = &adapter->hw;
5322        struct sk_buff *skb;
5323        u32 wupl;
5324
5325        wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
5326
5327        /* WUPM stores only the first 128 bytes of the wake packet.
5328         * Read the packet only if we have the whole thing.
5329         */
5330        if (wupl == 0 || wupl > IGC_WUPM_BYTES)
5331                return;
5332
5333        skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
5334        if (!skb)
5335                return;
5336
5337        skb_put(skb, wupl);
5338
5339        /* Ensure reads are 32-bit aligned */
5340        wupl = roundup(wupl, 4);
5341
5342        memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
5343
5344        skb->protocol = eth_type_trans(skb, netdev);
5345        netif_rx(skb);
5346}
5347
5348static int __maybe_unused igc_resume(struct device *dev)
5349{
5350        struct pci_dev *pdev = to_pci_dev(dev);
5351        struct net_device *netdev = pci_get_drvdata(pdev);
5352        struct igc_adapter *adapter = netdev_priv(netdev);
5353        struct igc_hw *hw = &adapter->hw;
5354        u32 err, val;
5355
5356        pci_set_power_state(pdev, PCI_D0);
5357        pci_restore_state(pdev);
5358        pci_save_state(pdev);
5359
5360        if (!pci_device_is_present(pdev))
5361                return -ENODEV;
5362        err = pci_enable_device_mem(pdev);
5363        if (err) {
5364                netdev_err(netdev, "Cannot enable PCI device from suspend\n");
5365                return err;
5366        }
5367        pci_set_master(pdev);
5368
5369        pci_enable_wake(pdev, PCI_D3hot, 0);
5370        pci_enable_wake(pdev, PCI_D3cold, 0);
5371
5372        if (igc_init_interrupt_scheme(adapter, true)) {
5373                netdev_err(netdev, "Unable to allocate memory for queues\n");
5374                return -ENOMEM;
5375        }
5376
5377        igc_reset(adapter);
5378
5379        /* let the f/w know that the h/w is now under the control of the
5380         * driver.
5381         */
5382        igc_get_hw_control(adapter);
5383
5384        val = rd32(IGC_WUS);
5385        if (val & WAKE_PKT_WUS)
5386                igc_deliver_wake_packet(netdev);
5387
5388        wr32(IGC_WUS, ~0);
5389
5390        rtnl_lock();
5391        if (!err && netif_running(netdev))
5392                err = __igc_open(netdev, true);
5393
5394        if (!err)
5395                netif_device_attach(netdev);
5396        rtnl_unlock();
5397
5398        return err;
5399}
5400
5401static int __maybe_unused igc_runtime_resume(struct device *dev)
5402{
5403        return igc_resume(dev);
5404}
5405
5406static int __maybe_unused igc_suspend(struct device *dev)
5407{
5408        return __igc_shutdown(to_pci_dev(dev), NULL, 0);
5409}
5410
5411static int __maybe_unused igc_runtime_idle(struct device *dev)
5412{
5413        struct net_device *netdev = dev_get_drvdata(dev);
5414        struct igc_adapter *adapter = netdev_priv(netdev);
5415
5416        if (!igc_has_link(adapter))
5417                pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
5418
5419        return -EBUSY;
5420}
5421#endif /* CONFIG_PM */
5422
5423static void igc_shutdown(struct pci_dev *pdev)
5424{
5425        bool wake;
5426
5427        __igc_shutdown(pdev, &wake, 0);
5428
5429        if (system_state == SYSTEM_POWER_OFF) {
5430                pci_wake_from_d3(pdev, wake);
5431                pci_set_power_state(pdev, PCI_D3hot);
5432        }
5433}
5434
5435/**
5436 *  igc_io_error_detected - called when PCI error is detected
5437 *  @pdev: Pointer to PCI device
5438 *  @state: The current PCI connection state
5439 *
5440 *  This function is called after a PCI bus error affecting
5441 *  this device has been detected.
5442 **/
5443static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
5444                                              pci_channel_state_t state)
5445{
5446        struct net_device *netdev = pci_get_drvdata(pdev);
5447        struct igc_adapter *adapter = netdev_priv(netdev);
5448
5449        netif_device_detach(netdev);
5450
5451        if (state == pci_channel_io_perm_failure)
5452                return PCI_ERS_RESULT_DISCONNECT;
5453
5454        if (netif_running(netdev))
5455                igc_down(adapter);
5456        pci_disable_device(pdev);
5457
5458        /* Request a slot reset. */
5459        return PCI_ERS_RESULT_NEED_RESET;
5460}
5461
5462/**
5463 *  igc_io_slot_reset - called after the PCI bus has been reset.
5464 *  @pdev: Pointer to PCI device
5465 *
5466 *  Restart the card from scratch, as if from a cold-boot. Implementation
5467 *  resembles the first-half of the igc_resume routine.
5468 **/
5469static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
5470{
5471        struct net_device *netdev = pci_get_drvdata(pdev);
5472        struct igc_adapter *adapter = netdev_priv(netdev);
5473        struct igc_hw *hw = &adapter->hw;
5474        pci_ers_result_t result;
5475
5476        if (pci_enable_device_mem(pdev)) {
5477                netdev_err(netdev, "Could not re-enable PCI device after reset\n");
5478                result = PCI_ERS_RESULT_DISCONNECT;
5479        } else {
5480                pci_set_master(pdev);
5481                pci_restore_state(pdev);
5482                pci_save_state(pdev);
5483
5484                pci_enable_wake(pdev, PCI_D3hot, 0);
5485                pci_enable_wake(pdev, PCI_D3cold, 0);
5486
5487                /* In case of PCI error, adapter loses its HW address
5488                 * so we should re-assign it here.
5489                 */
5490                hw->hw_addr = adapter->io_addr;
5491
5492                igc_reset(adapter);
5493                wr32(IGC_WUS, ~0);
5494                result = PCI_ERS_RESULT_RECOVERED;
5495        }
5496
5497        return result;
5498}
5499
5500/**
5501 *  igc_io_resume - called when traffic can start to flow again.
5502 *  @pdev: Pointer to PCI device
5503 *
5504 *  This callback is called when the error recovery driver tells us that
5505 *  its OK to resume normal operation. Implementation resembles the
5506 *  second-half of the igc_resume routine.
5507 */
5508static void igc_io_resume(struct pci_dev *pdev)
5509{
5510        struct net_device *netdev = pci_get_drvdata(pdev);
5511        struct igc_adapter *adapter = netdev_priv(netdev);
5512
5513        rtnl_lock();
5514        if (netif_running(netdev)) {
5515                if (igc_open(netdev)) {
5516                        netdev_err(netdev, "igc_open failed after reset\n");
5517                        return;
5518                }
5519        }
5520
5521        netif_device_attach(netdev);
5522
5523        /* let the f/w know that the h/w is now under the control of the
5524         * driver.
5525         */
5526        igc_get_hw_control(adapter);
5527        rtnl_unlock();
5528}
5529
5530static const struct pci_error_handlers igc_err_handler = {
5531        .error_detected = igc_io_error_detected,
5532        .slot_reset = igc_io_slot_reset,
5533        .resume = igc_io_resume,
5534};
5535
5536#ifdef CONFIG_PM
5537static const struct dev_pm_ops igc_pm_ops = {
5538        SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume)
5539        SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume,
5540                           igc_runtime_idle)
5541};
5542#endif
5543
5544static struct pci_driver igc_driver = {
5545        .name     = igc_driver_name,
5546        .id_table = igc_pci_tbl,
5547        .probe    = igc_probe,
5548        .remove   = igc_remove,
5549#ifdef CONFIG_PM
5550        .driver.pm = &igc_pm_ops,
5551#endif
5552        .shutdown = igc_shutdown,
5553        .err_handler = &igc_err_handler,
5554};
5555
5556/**
5557 * igc_reinit_queues - return error
5558 * @adapter: pointer to adapter structure
5559 */
5560int igc_reinit_queues(struct igc_adapter *adapter)
5561{
5562        struct net_device *netdev = adapter->netdev;
5563        int err = 0;
5564
5565        if (netif_running(netdev))
5566                igc_close(netdev);
5567
5568        igc_reset_interrupt_capability(adapter);
5569
5570        if (igc_init_interrupt_scheme(adapter, true)) {
5571                netdev_err(netdev, "Unable to allocate memory for queues\n");
5572                return -ENOMEM;
5573        }
5574
5575        if (netif_running(netdev))
5576                err = igc_open(netdev);
5577
5578        return err;
5579}
5580
5581/**
5582 * igc_get_hw_dev - return device
5583 * @hw: pointer to hardware structure
5584 *
5585 * used by hardware layer to print debugging information
5586 */
5587struct net_device *igc_get_hw_dev(struct igc_hw *hw)
5588{
5589        struct igc_adapter *adapter = hw->back;
5590
5591        return adapter->netdev;
5592}
5593
5594/**
5595 * igc_init_module - Driver Registration Routine
5596 *
5597 * igc_init_module is the first routine called when the driver is
5598 * loaded. All it does is register with the PCI subsystem.
5599 */
5600static int __init igc_init_module(void)
5601{
5602        int ret;
5603
5604        pr_info("%s\n", igc_driver_string);
5605        pr_info("%s\n", igc_copyright);
5606
5607        ret = pci_register_driver(&igc_driver);
5608        return ret;
5609}
5610
5611module_init(igc_init_module);
5612
5613/**
5614 * igc_exit_module - Driver Exit Cleanup Routine
5615 *
5616 * igc_exit_module is called just before the driver is removed
5617 * from memory.
5618 */
5619static void __exit igc_exit_module(void)
5620{
5621        pci_unregister_driver(&igc_driver);
5622}
5623
5624module_exit(igc_exit_module);
5625/* igc_main.c */
5626