linux/drivers/net/ethernet/micrel/ksz884x.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/**
   3 * drivers/net/ethernet/micrel/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver
   4 *
   5 * Copyright (c) 2009-2010 Micrel, Inc.
   6 *      Tristram Ha <Tristram.Ha@micrel.com>
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/init.h>
  12#include <linux/interrupt.h>
  13#include <linux/kernel.h>
  14#include <linux/module.h>
  15#include <linux/ioport.h>
  16#include <linux/pci.h>
  17#include <linux/proc_fs.h>
  18#include <linux/mii.h>
  19#include <linux/platform_device.h>
  20#include <linux/ethtool.h>
  21#include <linux/etherdevice.h>
  22#include <linux/in.h>
  23#include <linux/ip.h>
  24#include <linux/if_vlan.h>
  25#include <linux/crc32.h>
  26#include <linux/sched.h>
  27#include <linux/slab.h>
  28
  29
  30/* DMA Registers */
  31
  32#define KS_DMA_TX_CTRL                  0x0000
  33#define DMA_TX_ENABLE                   0x00000001
  34#define DMA_TX_CRC_ENABLE               0x00000002
  35#define DMA_TX_PAD_ENABLE               0x00000004
  36#define DMA_TX_LOOPBACK                 0x00000100
  37#define DMA_TX_FLOW_ENABLE              0x00000200
  38#define DMA_TX_CSUM_IP                  0x00010000
  39#define DMA_TX_CSUM_TCP                 0x00020000
  40#define DMA_TX_CSUM_UDP                 0x00040000
  41#define DMA_TX_BURST_SIZE               0x3F000000
  42
  43#define KS_DMA_RX_CTRL                  0x0004
  44#define DMA_RX_ENABLE                   0x00000001
  45#define KS884X_DMA_RX_MULTICAST         0x00000002
  46#define DMA_RX_PROMISCUOUS              0x00000004
  47#define DMA_RX_ERROR                    0x00000008
  48#define DMA_RX_UNICAST                  0x00000010
  49#define DMA_RX_ALL_MULTICAST            0x00000020
  50#define DMA_RX_BROADCAST                0x00000040
  51#define DMA_RX_FLOW_ENABLE              0x00000200
  52#define DMA_RX_CSUM_IP                  0x00010000
  53#define DMA_RX_CSUM_TCP                 0x00020000
  54#define DMA_RX_CSUM_UDP                 0x00040000
  55#define DMA_RX_BURST_SIZE               0x3F000000
  56
  57#define DMA_BURST_SHIFT                 24
  58#define DMA_BURST_DEFAULT               8
  59
  60#define KS_DMA_TX_START                 0x0008
  61#define KS_DMA_RX_START                 0x000C
  62#define DMA_START                       0x00000001
  63
  64#define KS_DMA_TX_ADDR                  0x0010
  65#define KS_DMA_RX_ADDR                  0x0014
  66
  67#define DMA_ADDR_LIST_MASK              0xFFFFFFFC
  68#define DMA_ADDR_LIST_SHIFT             2
  69
  70/* MTR0 */
  71#define KS884X_MULTICAST_0_OFFSET       0x0020
  72#define KS884X_MULTICAST_1_OFFSET       0x0021
  73#define KS884X_MULTICAST_2_OFFSET       0x0022
  74#define KS884x_MULTICAST_3_OFFSET       0x0023
  75/* MTR1 */
  76#define KS884X_MULTICAST_4_OFFSET       0x0024
  77#define KS884X_MULTICAST_5_OFFSET       0x0025
  78#define KS884X_MULTICAST_6_OFFSET       0x0026
  79#define KS884X_MULTICAST_7_OFFSET       0x0027
  80
  81/* Interrupt Registers */
  82
  83/* INTEN */
  84#define KS884X_INTERRUPTS_ENABLE        0x0028
  85/* INTST */
  86#define KS884X_INTERRUPTS_STATUS        0x002C
  87
  88#define KS884X_INT_RX_STOPPED           0x02000000
  89#define KS884X_INT_TX_STOPPED           0x04000000
  90#define KS884X_INT_RX_OVERRUN           0x08000000
  91#define KS884X_INT_TX_EMPTY             0x10000000
  92#define KS884X_INT_RX                   0x20000000
  93#define KS884X_INT_TX                   0x40000000
  94#define KS884X_INT_PHY                  0x80000000
  95
  96#define KS884X_INT_RX_MASK              \
  97        (KS884X_INT_RX | KS884X_INT_RX_OVERRUN)
  98#define KS884X_INT_TX_MASK              \
  99        (KS884X_INT_TX | KS884X_INT_TX_EMPTY)
 100#define KS884X_INT_MASK (KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY)
 101
 102/* MAC Additional Station Address */
 103
 104/* MAAL0 */
 105#define KS_ADD_ADDR_0_LO                0x0080
 106/* MAAH0 */
 107#define KS_ADD_ADDR_0_HI                0x0084
 108/* MAAL1 */
 109#define KS_ADD_ADDR_1_LO                0x0088
 110/* MAAH1 */
 111#define KS_ADD_ADDR_1_HI                0x008C
 112/* MAAL2 */
 113#define KS_ADD_ADDR_2_LO                0x0090
 114/* MAAH2 */
 115#define KS_ADD_ADDR_2_HI                0x0094
 116/* MAAL3 */
 117#define KS_ADD_ADDR_3_LO                0x0098
 118/* MAAH3 */
 119#define KS_ADD_ADDR_3_HI                0x009C
 120/* MAAL4 */
 121#define KS_ADD_ADDR_4_LO                0x00A0
 122/* MAAH4 */
 123#define KS_ADD_ADDR_4_HI                0x00A4
 124/* MAAL5 */
 125#define KS_ADD_ADDR_5_LO                0x00A8
 126/* MAAH5 */
 127#define KS_ADD_ADDR_5_HI                0x00AC
 128/* MAAL6 */
 129#define KS_ADD_ADDR_6_LO                0x00B0
 130/* MAAH6 */
 131#define KS_ADD_ADDR_6_HI                0x00B4
 132/* MAAL7 */
 133#define KS_ADD_ADDR_7_LO                0x00B8
 134/* MAAH7 */
 135#define KS_ADD_ADDR_7_HI                0x00BC
 136/* MAAL8 */
 137#define KS_ADD_ADDR_8_LO                0x00C0
 138/* MAAH8 */
 139#define KS_ADD_ADDR_8_HI                0x00C4
 140/* MAAL9 */
 141#define KS_ADD_ADDR_9_LO                0x00C8
 142/* MAAH9 */
 143#define KS_ADD_ADDR_9_HI                0x00CC
 144/* MAAL10 */
 145#define KS_ADD_ADDR_A_LO                0x00D0
 146/* MAAH10 */
 147#define KS_ADD_ADDR_A_HI                0x00D4
 148/* MAAL11 */
 149#define KS_ADD_ADDR_B_LO                0x00D8
 150/* MAAH11 */
 151#define KS_ADD_ADDR_B_HI                0x00DC
 152/* MAAL12 */
 153#define KS_ADD_ADDR_C_LO                0x00E0
 154/* MAAH12 */
 155#define KS_ADD_ADDR_C_HI                0x00E4
 156/* MAAL13 */
 157#define KS_ADD_ADDR_D_LO                0x00E8
 158/* MAAH13 */
 159#define KS_ADD_ADDR_D_HI                0x00EC
 160/* MAAL14 */
 161#define KS_ADD_ADDR_E_LO                0x00F0
 162/* MAAH14 */
 163#define KS_ADD_ADDR_E_HI                0x00F4
 164/* MAAL15 */
 165#define KS_ADD_ADDR_F_LO                0x00F8
 166/* MAAH15 */
 167#define KS_ADD_ADDR_F_HI                0x00FC
 168
 169#define ADD_ADDR_HI_MASK                0x0000FFFF
 170#define ADD_ADDR_ENABLE                 0x80000000
 171#define ADD_ADDR_INCR                   8
 172
 173/* Miscellaneous Registers */
 174
 175/* MARL */
 176#define KS884X_ADDR_0_OFFSET            0x0200
 177#define KS884X_ADDR_1_OFFSET            0x0201
 178/* MARM */
 179#define KS884X_ADDR_2_OFFSET            0x0202
 180#define KS884X_ADDR_3_OFFSET            0x0203
 181/* MARH */
 182#define KS884X_ADDR_4_OFFSET            0x0204
 183#define KS884X_ADDR_5_OFFSET            0x0205
 184
 185/* OBCR */
 186#define KS884X_BUS_CTRL_OFFSET          0x0210
 187
 188#define BUS_SPEED_125_MHZ               0x0000
 189#define BUS_SPEED_62_5_MHZ              0x0001
 190#define BUS_SPEED_41_66_MHZ             0x0002
 191#define BUS_SPEED_25_MHZ                0x0003
 192
 193/* EEPCR */
 194#define KS884X_EEPROM_CTRL_OFFSET       0x0212
 195
 196#define EEPROM_CHIP_SELECT              0x0001
 197#define EEPROM_SERIAL_CLOCK             0x0002
 198#define EEPROM_DATA_OUT                 0x0004
 199#define EEPROM_DATA_IN                  0x0008
 200#define EEPROM_ACCESS_ENABLE            0x0010
 201
 202/* MBIR */
 203#define KS884X_MEM_INFO_OFFSET          0x0214
 204
 205#define RX_MEM_TEST_FAILED              0x0008
 206#define RX_MEM_TEST_FINISHED            0x0010
 207#define TX_MEM_TEST_FAILED              0x0800
 208#define TX_MEM_TEST_FINISHED            0x1000
 209
 210/* GCR */
 211#define KS884X_GLOBAL_CTRL_OFFSET       0x0216
 212#define GLOBAL_SOFTWARE_RESET           0x0001
 213
 214#define KS8841_POWER_MANAGE_OFFSET      0x0218
 215
 216/* WFCR */
 217#define KS8841_WOL_CTRL_OFFSET          0x021A
 218#define KS8841_WOL_MAGIC_ENABLE         0x0080
 219#define KS8841_WOL_FRAME3_ENABLE        0x0008
 220#define KS8841_WOL_FRAME2_ENABLE        0x0004
 221#define KS8841_WOL_FRAME1_ENABLE        0x0002
 222#define KS8841_WOL_FRAME0_ENABLE        0x0001
 223
 224/* WF0 */
 225#define KS8841_WOL_FRAME_CRC_OFFSET     0x0220
 226#define KS8841_WOL_FRAME_BYTE0_OFFSET   0x0224
 227#define KS8841_WOL_FRAME_BYTE2_OFFSET   0x0228
 228
 229/* IACR */
 230#define KS884X_IACR_P                   0x04A0
 231#define KS884X_IACR_OFFSET              KS884X_IACR_P
 232
 233/* IADR1 */
 234#define KS884X_IADR1_P                  0x04A2
 235#define KS884X_IADR2_P                  0x04A4
 236#define KS884X_IADR3_P                  0x04A6
 237#define KS884X_IADR4_P                  0x04A8
 238#define KS884X_IADR5_P                  0x04AA
 239
 240#define KS884X_ACC_CTRL_SEL_OFFSET      KS884X_IACR_P
 241#define KS884X_ACC_CTRL_INDEX_OFFSET    (KS884X_ACC_CTRL_SEL_OFFSET + 1)
 242
 243#define KS884X_ACC_DATA_0_OFFSET        KS884X_IADR4_P
 244#define KS884X_ACC_DATA_1_OFFSET        (KS884X_ACC_DATA_0_OFFSET + 1)
 245#define KS884X_ACC_DATA_2_OFFSET        KS884X_IADR5_P
 246#define KS884X_ACC_DATA_3_OFFSET        (KS884X_ACC_DATA_2_OFFSET + 1)
 247#define KS884X_ACC_DATA_4_OFFSET        KS884X_IADR2_P
 248#define KS884X_ACC_DATA_5_OFFSET        (KS884X_ACC_DATA_4_OFFSET + 1)
 249#define KS884X_ACC_DATA_6_OFFSET        KS884X_IADR3_P
 250#define KS884X_ACC_DATA_7_OFFSET        (KS884X_ACC_DATA_6_OFFSET + 1)
 251#define KS884X_ACC_DATA_8_OFFSET        KS884X_IADR1_P
 252
 253/* P1MBCR */
 254#define KS884X_P1MBCR_P                 0x04D0
 255#define KS884X_P1MBSR_P                 0x04D2
 256#define KS884X_PHY1ILR_P                0x04D4
 257#define KS884X_PHY1IHR_P                0x04D6
 258#define KS884X_P1ANAR_P                 0x04D8
 259#define KS884X_P1ANLPR_P                0x04DA
 260
 261/* P2MBCR */
 262#define KS884X_P2MBCR_P                 0x04E0
 263#define KS884X_P2MBSR_P                 0x04E2
 264#define KS884X_PHY2ILR_P                0x04E4
 265#define KS884X_PHY2IHR_P                0x04E6
 266#define KS884X_P2ANAR_P                 0x04E8
 267#define KS884X_P2ANLPR_P                0x04EA
 268
 269#define KS884X_PHY_1_CTRL_OFFSET        KS884X_P1MBCR_P
 270#define PHY_CTRL_INTERVAL               (KS884X_P2MBCR_P - KS884X_P1MBCR_P)
 271
 272#define KS884X_PHY_CTRL_OFFSET          0x00
 273
 274/* Mode Control Register */
 275#define PHY_REG_CTRL                    0
 276
 277#define PHY_RESET                       0x8000
 278#define PHY_LOOPBACK                    0x4000
 279#define PHY_SPEED_100MBIT               0x2000
 280#define PHY_AUTO_NEG_ENABLE             0x1000
 281#define PHY_POWER_DOWN                  0x0800
 282#define PHY_MII_DISABLE                 0x0400
 283#define PHY_AUTO_NEG_RESTART            0x0200
 284#define PHY_FULL_DUPLEX                 0x0100
 285#define PHY_COLLISION_TEST              0x0080
 286#define PHY_HP_MDIX                     0x0020
 287#define PHY_FORCE_MDIX                  0x0010
 288#define PHY_AUTO_MDIX_DISABLE           0x0008
 289#define PHY_REMOTE_FAULT_DISABLE        0x0004
 290#define PHY_TRANSMIT_DISABLE            0x0002
 291#define PHY_LED_DISABLE                 0x0001
 292
 293#define KS884X_PHY_STATUS_OFFSET        0x02
 294
 295/* Mode Status Register */
 296#define PHY_REG_STATUS                  1
 297
 298#define PHY_100BT4_CAPABLE              0x8000
 299#define PHY_100BTX_FD_CAPABLE           0x4000
 300#define PHY_100BTX_CAPABLE              0x2000
 301#define PHY_10BT_FD_CAPABLE             0x1000
 302#define PHY_10BT_CAPABLE                0x0800
 303#define PHY_MII_SUPPRESS_CAPABLE        0x0040
 304#define PHY_AUTO_NEG_ACKNOWLEDGE        0x0020
 305#define PHY_REMOTE_FAULT                0x0010
 306#define PHY_AUTO_NEG_CAPABLE            0x0008
 307#define PHY_LINK_STATUS                 0x0004
 308#define PHY_JABBER_DETECT               0x0002
 309#define PHY_EXTENDED_CAPABILITY         0x0001
 310
 311#define KS884X_PHY_ID_1_OFFSET          0x04
 312#define KS884X_PHY_ID_2_OFFSET          0x06
 313
 314/* PHY Identifier Registers */
 315#define PHY_REG_ID_1                    2
 316#define PHY_REG_ID_2                    3
 317
 318#define KS884X_PHY_AUTO_NEG_OFFSET      0x08
 319
 320/* Auto-Negotiation Advertisement Register */
 321#define PHY_REG_AUTO_NEGOTIATION        4
 322
 323#define PHY_AUTO_NEG_NEXT_PAGE          0x8000
 324#define PHY_AUTO_NEG_REMOTE_FAULT       0x2000
 325/* Not supported. */
 326#define PHY_AUTO_NEG_ASYM_PAUSE         0x0800
 327#define PHY_AUTO_NEG_SYM_PAUSE          0x0400
 328#define PHY_AUTO_NEG_100BT4             0x0200
 329#define PHY_AUTO_NEG_100BTX_FD          0x0100
 330#define PHY_AUTO_NEG_100BTX             0x0080
 331#define PHY_AUTO_NEG_10BT_FD            0x0040
 332#define PHY_AUTO_NEG_10BT               0x0020
 333#define PHY_AUTO_NEG_SELECTOR           0x001F
 334#define PHY_AUTO_NEG_802_3              0x0001
 335
 336#define PHY_AUTO_NEG_PAUSE  (PHY_AUTO_NEG_SYM_PAUSE | PHY_AUTO_NEG_ASYM_PAUSE)
 337
 338#define KS884X_PHY_REMOTE_CAP_OFFSET    0x0A
 339
 340/* Auto-Negotiation Link Partner Ability Register */
 341#define PHY_REG_REMOTE_CAPABILITY       5
 342
 343#define PHY_REMOTE_NEXT_PAGE            0x8000
 344#define PHY_REMOTE_ACKNOWLEDGE          0x4000
 345#define PHY_REMOTE_REMOTE_FAULT         0x2000
 346#define PHY_REMOTE_SYM_PAUSE            0x0400
 347#define PHY_REMOTE_100BTX_FD            0x0100
 348#define PHY_REMOTE_100BTX               0x0080
 349#define PHY_REMOTE_10BT_FD              0x0040
 350#define PHY_REMOTE_10BT                 0x0020
 351
 352/* P1VCT */
 353#define KS884X_P1VCT_P                  0x04F0
 354#define KS884X_P1PHYCTRL_P              0x04F2
 355
 356/* P2VCT */
 357#define KS884X_P2VCT_P                  0x04F4
 358#define KS884X_P2PHYCTRL_P              0x04F6
 359
 360#define KS884X_PHY_SPECIAL_OFFSET       KS884X_P1VCT_P
 361#define PHY_SPECIAL_INTERVAL            (KS884X_P2VCT_P - KS884X_P1VCT_P)
 362
 363#define KS884X_PHY_LINK_MD_OFFSET       0x00
 364
 365#define PHY_START_CABLE_DIAG            0x8000
 366#define PHY_CABLE_DIAG_RESULT           0x6000
 367#define PHY_CABLE_STAT_NORMAL           0x0000
 368#define PHY_CABLE_STAT_OPEN             0x2000
 369#define PHY_CABLE_STAT_SHORT            0x4000
 370#define PHY_CABLE_STAT_FAILED           0x6000
 371#define PHY_CABLE_10M_SHORT             0x1000
 372#define PHY_CABLE_FAULT_COUNTER         0x01FF
 373
 374#define KS884X_PHY_PHY_CTRL_OFFSET      0x02
 375
 376#define PHY_STAT_REVERSED_POLARITY      0x0020
 377#define PHY_STAT_MDIX                   0x0010
 378#define PHY_FORCE_LINK                  0x0008
 379#define PHY_POWER_SAVING_DISABLE        0x0004
 380#define PHY_REMOTE_LOOPBACK             0x0002
 381
 382/* SIDER */
 383#define KS884X_SIDER_P                  0x0400
 384#define KS884X_CHIP_ID_OFFSET           KS884X_SIDER_P
 385#define KS884X_FAMILY_ID_OFFSET         (KS884X_CHIP_ID_OFFSET + 1)
 386
 387#define REG_FAMILY_ID                   0x88
 388
 389#define REG_CHIP_ID_41                  0x8810
 390#define REG_CHIP_ID_42                  0x8800
 391
 392#define KS884X_CHIP_ID_MASK_41          0xFF10
 393#define KS884X_CHIP_ID_MASK             0xFFF0
 394#define KS884X_CHIP_ID_SHIFT            4
 395#define KS884X_REVISION_MASK            0x000E
 396#define KS884X_REVISION_SHIFT           1
 397#define KS8842_START                    0x0001
 398
 399#define CHIP_IP_41_M                    0x8810
 400#define CHIP_IP_42_M                    0x8800
 401#define CHIP_IP_61_M                    0x8890
 402#define CHIP_IP_62_M                    0x8880
 403
 404#define CHIP_IP_41_P                    0x8850
 405#define CHIP_IP_42_P                    0x8840
 406#define CHIP_IP_61_P                    0x88D0
 407#define CHIP_IP_62_P                    0x88C0
 408
 409/* SGCR1 */
 410#define KS8842_SGCR1_P                  0x0402
 411#define KS8842_SWITCH_CTRL_1_OFFSET     KS8842_SGCR1_P
 412
 413#define SWITCH_PASS_ALL                 0x8000
 414#define SWITCH_TX_FLOW_CTRL             0x2000
 415#define SWITCH_RX_FLOW_CTRL             0x1000
 416#define SWITCH_CHECK_LENGTH             0x0800
 417#define SWITCH_AGING_ENABLE             0x0400
 418#define SWITCH_FAST_AGING               0x0200
 419#define SWITCH_AGGR_BACKOFF             0x0100
 420#define SWITCH_PASS_PAUSE               0x0008
 421#define SWITCH_LINK_AUTO_AGING          0x0001
 422
 423/* SGCR2 */
 424#define KS8842_SGCR2_P                  0x0404
 425#define KS8842_SWITCH_CTRL_2_OFFSET     KS8842_SGCR2_P
 426
 427#define SWITCH_VLAN_ENABLE              0x8000
 428#define SWITCH_IGMP_SNOOP               0x4000
 429#define IPV6_MLD_SNOOP_ENABLE           0x2000
 430#define IPV6_MLD_SNOOP_OPTION           0x1000
 431#define PRIORITY_SCHEME_SELECT          0x0800
 432#define SWITCH_MIRROR_RX_TX             0x0100
 433#define UNICAST_VLAN_BOUNDARY           0x0080
 434#define MULTICAST_STORM_DISABLE         0x0040
 435#define SWITCH_BACK_PRESSURE            0x0020
 436#define FAIR_FLOW_CTRL                  0x0010
 437#define NO_EXC_COLLISION_DROP           0x0008
 438#define SWITCH_HUGE_PACKET              0x0004
 439#define SWITCH_LEGAL_PACKET             0x0002
 440#define SWITCH_BUF_RESERVE              0x0001
 441
 442/* SGCR3 */
 443#define KS8842_SGCR3_P                  0x0406
 444#define KS8842_SWITCH_CTRL_3_OFFSET     KS8842_SGCR3_P
 445
 446#define BROADCAST_STORM_RATE_LO         0xFF00
 447#define SWITCH_REPEATER                 0x0080
 448#define SWITCH_HALF_DUPLEX              0x0040
 449#define SWITCH_FLOW_CTRL                0x0020
 450#define SWITCH_10_MBIT                  0x0010
 451#define SWITCH_REPLACE_NULL_VID         0x0008
 452#define BROADCAST_STORM_RATE_HI         0x0007
 453
 454#define BROADCAST_STORM_RATE            0x07FF
 455
 456/* SGCR4 */
 457#define KS8842_SGCR4_P                  0x0408
 458
 459/* SGCR5 */
 460#define KS8842_SGCR5_P                  0x040A
 461#define KS8842_SWITCH_CTRL_5_OFFSET     KS8842_SGCR5_P
 462
 463#define LED_MODE                        0x8200
 464#define LED_SPEED_DUPLEX_ACT            0x0000
 465#define LED_SPEED_DUPLEX_LINK_ACT       0x8000
 466#define LED_DUPLEX_10_100               0x0200
 467
 468/* SGCR6 */
 469#define KS8842_SGCR6_P                  0x0410
 470#define KS8842_SWITCH_CTRL_6_OFFSET     KS8842_SGCR6_P
 471
 472#define KS8842_PRIORITY_MASK            3
 473#define KS8842_PRIORITY_SHIFT           2
 474
 475/* SGCR7 */
 476#define KS8842_SGCR7_P                  0x0412
 477#define KS8842_SWITCH_CTRL_7_OFFSET     KS8842_SGCR7_P
 478
 479#define SWITCH_UNK_DEF_PORT_ENABLE      0x0008
 480#define SWITCH_UNK_DEF_PORT_3           0x0004
 481#define SWITCH_UNK_DEF_PORT_2           0x0002
 482#define SWITCH_UNK_DEF_PORT_1           0x0001
 483
 484/* MACAR1 */
 485#define KS8842_MACAR1_P                 0x0470
 486#define KS8842_MACAR2_P                 0x0472
 487#define KS8842_MACAR3_P                 0x0474
 488#define KS8842_MAC_ADDR_1_OFFSET        KS8842_MACAR1_P
 489#define KS8842_MAC_ADDR_0_OFFSET        (KS8842_MAC_ADDR_1_OFFSET + 1)
 490#define KS8842_MAC_ADDR_3_OFFSET        KS8842_MACAR2_P
 491#define KS8842_MAC_ADDR_2_OFFSET        (KS8842_MAC_ADDR_3_OFFSET + 1)
 492#define KS8842_MAC_ADDR_5_OFFSET        KS8842_MACAR3_P
 493#define KS8842_MAC_ADDR_4_OFFSET        (KS8842_MAC_ADDR_5_OFFSET + 1)
 494
 495/* TOSR1 */
 496#define KS8842_TOSR1_P                  0x0480
 497#define KS8842_TOSR2_P                  0x0482
 498#define KS8842_TOSR3_P                  0x0484
 499#define KS8842_TOSR4_P                  0x0486
 500#define KS8842_TOSR5_P                  0x0488
 501#define KS8842_TOSR6_P                  0x048A
 502#define KS8842_TOSR7_P                  0x0490
 503#define KS8842_TOSR8_P                  0x0492
 504#define KS8842_TOS_1_OFFSET             KS8842_TOSR1_P
 505#define KS8842_TOS_2_OFFSET             KS8842_TOSR2_P
 506#define KS8842_TOS_3_OFFSET             KS8842_TOSR3_P
 507#define KS8842_TOS_4_OFFSET             KS8842_TOSR4_P
 508#define KS8842_TOS_5_OFFSET             KS8842_TOSR5_P
 509#define KS8842_TOS_6_OFFSET             KS8842_TOSR6_P
 510
 511#define KS8842_TOS_7_OFFSET             KS8842_TOSR7_P
 512#define KS8842_TOS_8_OFFSET             KS8842_TOSR8_P
 513
 514/* P1CR1 */
 515#define KS8842_P1CR1_P                  0x0500
 516#define KS8842_P1CR2_P                  0x0502
 517#define KS8842_P1VIDR_P                 0x0504
 518#define KS8842_P1CR3_P                  0x0506
 519#define KS8842_P1IRCR_P                 0x0508
 520#define KS8842_P1ERCR_P                 0x050A
 521#define KS884X_P1SCSLMD_P               0x0510
 522#define KS884X_P1CR4_P                  0x0512
 523#define KS884X_P1SR_P                   0x0514
 524
 525/* P2CR1 */
 526#define KS8842_P2CR1_P                  0x0520
 527#define KS8842_P2CR2_P                  0x0522
 528#define KS8842_P2VIDR_P                 0x0524
 529#define KS8842_P2CR3_P                  0x0526
 530#define KS8842_P2IRCR_P                 0x0528
 531#define KS8842_P2ERCR_P                 0x052A
 532#define KS884X_P2SCSLMD_P               0x0530
 533#define KS884X_P2CR4_P                  0x0532
 534#define KS884X_P2SR_P                   0x0534
 535
 536/* P3CR1 */
 537#define KS8842_P3CR1_P                  0x0540
 538#define KS8842_P3CR2_P                  0x0542
 539#define KS8842_P3VIDR_P                 0x0544
 540#define KS8842_P3CR3_P                  0x0546
 541#define KS8842_P3IRCR_P                 0x0548
 542#define KS8842_P3ERCR_P                 0x054A
 543
 544#define KS8842_PORT_1_CTRL_1            KS8842_P1CR1_P
 545#define KS8842_PORT_2_CTRL_1            KS8842_P2CR1_P
 546#define KS8842_PORT_3_CTRL_1            KS8842_P3CR1_P
 547
 548#define PORT_CTRL_ADDR(port, addr)              \
 549        (addr = KS8842_PORT_1_CTRL_1 + (port) * \
 550                (KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1))
 551
 552#define KS8842_PORT_CTRL_1_OFFSET       0x00
 553
 554#define PORT_BROADCAST_STORM            0x0080
 555#define PORT_DIFFSERV_ENABLE            0x0040
 556#define PORT_802_1P_ENABLE              0x0020
 557#define PORT_BASED_PRIORITY_MASK        0x0018
 558#define PORT_BASED_PRIORITY_BASE        0x0003
 559#define PORT_BASED_PRIORITY_SHIFT       3
 560#define PORT_BASED_PRIORITY_0           0x0000
 561#define PORT_BASED_PRIORITY_1           0x0008
 562#define PORT_BASED_PRIORITY_2           0x0010
 563#define PORT_BASED_PRIORITY_3           0x0018
 564#define PORT_INSERT_TAG                 0x0004
 565#define PORT_REMOVE_TAG                 0x0002
 566#define PORT_PRIO_QUEUE_ENABLE          0x0001
 567
 568#define KS8842_PORT_CTRL_2_OFFSET       0x02
 569
 570#define PORT_INGRESS_VLAN_FILTER        0x4000
 571#define PORT_DISCARD_NON_VID            0x2000
 572#define PORT_FORCE_FLOW_CTRL            0x1000
 573#define PORT_BACK_PRESSURE              0x0800
 574#define PORT_TX_ENABLE                  0x0400
 575#define PORT_RX_ENABLE                  0x0200
 576#define PORT_LEARN_DISABLE              0x0100
 577#define PORT_MIRROR_SNIFFER             0x0080
 578#define PORT_MIRROR_RX                  0x0040
 579#define PORT_MIRROR_TX                  0x0020
 580#define PORT_USER_PRIORITY_CEILING      0x0008
 581#define PORT_VLAN_MEMBERSHIP            0x0007
 582
 583#define KS8842_PORT_CTRL_VID_OFFSET     0x04
 584
 585#define PORT_DEFAULT_VID                0x0001
 586
 587#define KS8842_PORT_CTRL_3_OFFSET       0x06
 588
 589#define PORT_INGRESS_LIMIT_MODE         0x000C
 590#define PORT_INGRESS_ALL                0x0000
 591#define PORT_INGRESS_UNICAST            0x0004
 592#define PORT_INGRESS_MULTICAST          0x0008
 593#define PORT_INGRESS_BROADCAST          0x000C
 594#define PORT_COUNT_IFG                  0x0002
 595#define PORT_COUNT_PREAMBLE             0x0001
 596
 597#define KS8842_PORT_IN_RATE_OFFSET      0x08
 598#define KS8842_PORT_OUT_RATE_OFFSET     0x0A
 599
 600#define PORT_PRIORITY_RATE              0x0F
 601#define PORT_PRIORITY_RATE_SHIFT        4
 602
 603#define KS884X_PORT_LINK_MD             0x10
 604
 605#define PORT_CABLE_10M_SHORT            0x8000
 606#define PORT_CABLE_DIAG_RESULT          0x6000
 607#define PORT_CABLE_STAT_NORMAL          0x0000
 608#define PORT_CABLE_STAT_OPEN            0x2000
 609#define PORT_CABLE_STAT_SHORT           0x4000
 610#define PORT_CABLE_STAT_FAILED          0x6000
 611#define PORT_START_CABLE_DIAG           0x1000
 612#define PORT_FORCE_LINK                 0x0800
 613#define PORT_POWER_SAVING_DISABLE       0x0400
 614#define PORT_PHY_REMOTE_LOOPBACK        0x0200
 615#define PORT_CABLE_FAULT_COUNTER        0x01FF
 616
 617#define KS884X_PORT_CTRL_4_OFFSET       0x12
 618
 619#define PORT_LED_OFF                    0x8000
 620#define PORT_TX_DISABLE                 0x4000
 621#define PORT_AUTO_NEG_RESTART           0x2000
 622#define PORT_REMOTE_FAULT_DISABLE       0x1000
 623#define PORT_POWER_DOWN                 0x0800
 624#define PORT_AUTO_MDIX_DISABLE          0x0400
 625#define PORT_FORCE_MDIX                 0x0200
 626#define PORT_LOOPBACK                   0x0100
 627#define PORT_AUTO_NEG_ENABLE            0x0080
 628#define PORT_FORCE_100_MBIT             0x0040
 629#define PORT_FORCE_FULL_DUPLEX          0x0020
 630#define PORT_AUTO_NEG_SYM_PAUSE         0x0010
 631#define PORT_AUTO_NEG_100BTX_FD         0x0008
 632#define PORT_AUTO_NEG_100BTX            0x0004
 633#define PORT_AUTO_NEG_10BT_FD           0x0002
 634#define PORT_AUTO_NEG_10BT              0x0001
 635
 636#define KS884X_PORT_STATUS_OFFSET       0x14
 637
 638#define PORT_HP_MDIX                    0x8000
 639#define PORT_REVERSED_POLARITY          0x2000
 640#define PORT_RX_FLOW_CTRL               0x0800
 641#define PORT_TX_FLOW_CTRL               0x1000
 642#define PORT_STATUS_SPEED_100MBIT       0x0400
 643#define PORT_STATUS_FULL_DUPLEX         0x0200
 644#define PORT_REMOTE_FAULT               0x0100
 645#define PORT_MDIX_STATUS                0x0080
 646#define PORT_AUTO_NEG_COMPLETE          0x0040
 647#define PORT_STATUS_LINK_GOOD           0x0020
 648#define PORT_REMOTE_SYM_PAUSE           0x0010
 649#define PORT_REMOTE_100BTX_FD           0x0008
 650#define PORT_REMOTE_100BTX              0x0004
 651#define PORT_REMOTE_10BT_FD             0x0002
 652#define PORT_REMOTE_10BT                0x0001
 653
 654/*
 655#define STATIC_MAC_TABLE_ADDR           00-0000FFFF-FFFFFFFF
 656#define STATIC_MAC_TABLE_FWD_PORTS      00-00070000-00000000
 657#define STATIC_MAC_TABLE_VALID          00-00080000-00000000
 658#define STATIC_MAC_TABLE_OVERRIDE       00-00100000-00000000
 659#define STATIC_MAC_TABLE_USE_FID        00-00200000-00000000
 660#define STATIC_MAC_TABLE_FID            00-03C00000-00000000
 661*/
 662
 663#define STATIC_MAC_TABLE_ADDR           0x0000FFFF
 664#define STATIC_MAC_TABLE_FWD_PORTS      0x00070000
 665#define STATIC_MAC_TABLE_VALID          0x00080000
 666#define STATIC_MAC_TABLE_OVERRIDE       0x00100000
 667#define STATIC_MAC_TABLE_USE_FID        0x00200000
 668#define STATIC_MAC_TABLE_FID            0x03C00000
 669
 670#define STATIC_MAC_FWD_PORTS_SHIFT      16
 671#define STATIC_MAC_FID_SHIFT            22
 672
 673/*
 674#define VLAN_TABLE_VID                  00-00000000-00000FFF
 675#define VLAN_TABLE_FID                  00-00000000-0000F000
 676#define VLAN_TABLE_MEMBERSHIP           00-00000000-00070000
 677#define VLAN_TABLE_VALID                00-00000000-00080000
 678*/
 679
 680#define VLAN_TABLE_VID                  0x00000FFF
 681#define VLAN_TABLE_FID                  0x0000F000
 682#define VLAN_TABLE_MEMBERSHIP           0x00070000
 683#define VLAN_TABLE_VALID                0x00080000
 684
 685#define VLAN_TABLE_FID_SHIFT            12
 686#define VLAN_TABLE_MEMBERSHIP_SHIFT     16
 687
 688/*
 689#define DYNAMIC_MAC_TABLE_ADDR          00-0000FFFF-FFFFFFFF
 690#define DYNAMIC_MAC_TABLE_FID           00-000F0000-00000000
 691#define DYNAMIC_MAC_TABLE_SRC_PORT      00-00300000-00000000
 692#define DYNAMIC_MAC_TABLE_TIMESTAMP     00-00C00000-00000000
 693#define DYNAMIC_MAC_TABLE_ENTRIES       03-FF000000-00000000
 694#define DYNAMIC_MAC_TABLE_MAC_EMPTY     04-00000000-00000000
 695#define DYNAMIC_MAC_TABLE_RESERVED      78-00000000-00000000
 696#define DYNAMIC_MAC_TABLE_NOT_READY     80-00000000-00000000
 697*/
 698
 699#define DYNAMIC_MAC_TABLE_ADDR          0x0000FFFF
 700#define DYNAMIC_MAC_TABLE_FID           0x000F0000
 701#define DYNAMIC_MAC_TABLE_SRC_PORT      0x00300000
 702#define DYNAMIC_MAC_TABLE_TIMESTAMP     0x00C00000
 703#define DYNAMIC_MAC_TABLE_ENTRIES       0xFF000000
 704
 705#define DYNAMIC_MAC_TABLE_ENTRIES_H     0x03
 706#define DYNAMIC_MAC_TABLE_MAC_EMPTY     0x04
 707#define DYNAMIC_MAC_TABLE_RESERVED      0x78
 708#define DYNAMIC_MAC_TABLE_NOT_READY     0x80
 709
 710#define DYNAMIC_MAC_FID_SHIFT           16
 711#define DYNAMIC_MAC_SRC_PORT_SHIFT      20
 712#define DYNAMIC_MAC_TIMESTAMP_SHIFT     22
 713#define DYNAMIC_MAC_ENTRIES_SHIFT       24
 714#define DYNAMIC_MAC_ENTRIES_H_SHIFT     8
 715
 716/*
 717#define MIB_COUNTER_VALUE               00-00000000-3FFFFFFF
 718#define MIB_COUNTER_VALID               00-00000000-40000000
 719#define MIB_COUNTER_OVERFLOW            00-00000000-80000000
 720*/
 721
 722#define MIB_COUNTER_VALUE               0x3FFFFFFF
 723#define MIB_COUNTER_VALID               0x40000000
 724#define MIB_COUNTER_OVERFLOW            0x80000000
 725
 726#define MIB_PACKET_DROPPED              0x0000FFFF
 727
 728#define KS_MIB_PACKET_DROPPED_TX_0      0x100
 729#define KS_MIB_PACKET_DROPPED_TX_1      0x101
 730#define KS_MIB_PACKET_DROPPED_TX        0x102
 731#define KS_MIB_PACKET_DROPPED_RX_0      0x103
 732#define KS_MIB_PACKET_DROPPED_RX_1      0x104
 733#define KS_MIB_PACKET_DROPPED_RX        0x105
 734
 735/* Change default LED mode. */
 736#define SET_DEFAULT_LED                 LED_SPEED_DUPLEX_ACT
 737
 738#define MAC_ADDR_ORDER(i)               (ETH_ALEN - 1 - (i))
 739
 740#define MAX_ETHERNET_BODY_SIZE          1500
 741#define ETHERNET_HEADER_SIZE            (14 + VLAN_HLEN)
 742
 743#define MAX_ETHERNET_PACKET_SIZE        \
 744        (MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE)
 745
 746#define REGULAR_RX_BUF_SIZE             (MAX_ETHERNET_PACKET_SIZE + 4)
 747#define MAX_RX_BUF_SIZE                 (1912 + 4)
 748
 749#define ADDITIONAL_ENTRIES              16
 750#define MAX_MULTICAST_LIST              32
 751
 752#define HW_MULTICAST_SIZE               8
 753
 754#define HW_TO_DEV_PORT(port)            (port - 1)
 755
 756enum {
 757        media_connected,
 758        media_disconnected
 759};
 760
 761enum {
 762        OID_COUNTER_UNKOWN,
 763
 764        OID_COUNTER_FIRST,
 765
 766        /* total transmit errors */
 767        OID_COUNTER_XMIT_ERROR,
 768
 769        /* total receive errors */
 770        OID_COUNTER_RCV_ERROR,
 771
 772        OID_COUNTER_LAST
 773};
 774
 775/*
 776 * Hardware descriptor definitions
 777 */
 778
 779#define DESC_ALIGNMENT                  16
 780#define BUFFER_ALIGNMENT                8
 781
 782#define NUM_OF_RX_DESC                  64
 783#define NUM_OF_TX_DESC                  64
 784
 785#define KS_DESC_RX_FRAME_LEN            0x000007FF
 786#define KS_DESC_RX_FRAME_TYPE           0x00008000
 787#define KS_DESC_RX_ERROR_CRC            0x00010000
 788#define KS_DESC_RX_ERROR_RUNT           0x00020000
 789#define KS_DESC_RX_ERROR_TOO_LONG       0x00040000
 790#define KS_DESC_RX_ERROR_PHY            0x00080000
 791#define KS884X_DESC_RX_PORT_MASK        0x00300000
 792#define KS_DESC_RX_MULTICAST            0x01000000
 793#define KS_DESC_RX_ERROR                0x02000000
 794#define KS_DESC_RX_ERROR_CSUM_UDP       0x04000000
 795#define KS_DESC_RX_ERROR_CSUM_TCP       0x08000000
 796#define KS_DESC_RX_ERROR_CSUM_IP        0x10000000
 797#define KS_DESC_RX_LAST                 0x20000000
 798#define KS_DESC_RX_FIRST                0x40000000
 799#define KS_DESC_RX_ERROR_COND           \
 800        (KS_DESC_RX_ERROR_CRC |         \
 801        KS_DESC_RX_ERROR_RUNT |         \
 802        KS_DESC_RX_ERROR_PHY |          \
 803        KS_DESC_RX_ERROR_TOO_LONG)
 804
 805#define KS_DESC_HW_OWNED                0x80000000
 806
 807#define KS_DESC_BUF_SIZE                0x000007FF
 808#define KS884X_DESC_TX_PORT_MASK        0x00300000
 809#define KS_DESC_END_OF_RING             0x02000000
 810#define KS_DESC_TX_CSUM_GEN_UDP         0x04000000
 811#define KS_DESC_TX_CSUM_GEN_TCP         0x08000000
 812#define KS_DESC_TX_CSUM_GEN_IP          0x10000000
 813#define KS_DESC_TX_LAST                 0x20000000
 814#define KS_DESC_TX_FIRST                0x40000000
 815#define KS_DESC_TX_INTERRUPT            0x80000000
 816
 817#define KS_DESC_PORT_SHIFT              20
 818
 819#define KS_DESC_RX_MASK                 (KS_DESC_BUF_SIZE)
 820
 821#define KS_DESC_TX_MASK                 \
 822        (KS_DESC_TX_INTERRUPT |         \
 823        KS_DESC_TX_FIRST |              \
 824        KS_DESC_TX_LAST |               \
 825        KS_DESC_TX_CSUM_GEN_IP |        \
 826        KS_DESC_TX_CSUM_GEN_TCP |       \
 827        KS_DESC_TX_CSUM_GEN_UDP |       \
 828        KS_DESC_BUF_SIZE)
 829
 830struct ksz_desc_rx_stat {
 831#ifdef __BIG_ENDIAN_BITFIELD
 832        u32 hw_owned:1;
 833        u32 first_desc:1;
 834        u32 last_desc:1;
 835        u32 csum_err_ip:1;
 836        u32 csum_err_tcp:1;
 837        u32 csum_err_udp:1;
 838        u32 error:1;
 839        u32 multicast:1;
 840        u32 src_port:4;
 841        u32 err_phy:1;
 842        u32 err_too_long:1;
 843        u32 err_runt:1;
 844        u32 err_crc:1;
 845        u32 frame_type:1;
 846        u32 reserved1:4;
 847        u32 frame_len:11;
 848#else
 849        u32 frame_len:11;
 850        u32 reserved1:4;
 851        u32 frame_type:1;
 852        u32 err_crc:1;
 853        u32 err_runt:1;
 854        u32 err_too_long:1;
 855        u32 err_phy:1;
 856        u32 src_port:4;
 857        u32 multicast:1;
 858        u32 error:1;
 859        u32 csum_err_udp:1;
 860        u32 csum_err_tcp:1;
 861        u32 csum_err_ip:1;
 862        u32 last_desc:1;
 863        u32 first_desc:1;
 864        u32 hw_owned:1;
 865#endif
 866};
 867
 868struct ksz_desc_tx_stat {
 869#ifdef __BIG_ENDIAN_BITFIELD
 870        u32 hw_owned:1;
 871        u32 reserved1:31;
 872#else
 873        u32 reserved1:31;
 874        u32 hw_owned:1;
 875#endif
 876};
 877
 878struct ksz_desc_rx_buf {
 879#ifdef __BIG_ENDIAN_BITFIELD
 880        u32 reserved4:6;
 881        u32 end_of_ring:1;
 882        u32 reserved3:14;
 883        u32 buf_size:11;
 884#else
 885        u32 buf_size:11;
 886        u32 reserved3:14;
 887        u32 end_of_ring:1;
 888        u32 reserved4:6;
 889#endif
 890};
 891
 892struct ksz_desc_tx_buf {
 893#ifdef __BIG_ENDIAN_BITFIELD
 894        u32 intr:1;
 895        u32 first_seg:1;
 896        u32 last_seg:1;
 897        u32 csum_gen_ip:1;
 898        u32 csum_gen_tcp:1;
 899        u32 csum_gen_udp:1;
 900        u32 end_of_ring:1;
 901        u32 reserved4:1;
 902        u32 dest_port:4;
 903        u32 reserved3:9;
 904        u32 buf_size:11;
 905#else
 906        u32 buf_size:11;
 907        u32 reserved3:9;
 908        u32 dest_port:4;
 909        u32 reserved4:1;
 910        u32 end_of_ring:1;
 911        u32 csum_gen_udp:1;
 912        u32 csum_gen_tcp:1;
 913        u32 csum_gen_ip:1;
 914        u32 last_seg:1;
 915        u32 first_seg:1;
 916        u32 intr:1;
 917#endif
 918};
 919
 920union desc_stat {
 921        struct ksz_desc_rx_stat rx;
 922        struct ksz_desc_tx_stat tx;
 923        u32 data;
 924};
 925
 926union desc_buf {
 927        struct ksz_desc_rx_buf rx;
 928        struct ksz_desc_tx_buf tx;
 929        u32 data;
 930};
 931
 932/**
 933 * struct ksz_hw_desc - Hardware descriptor data structure
 934 * @ctrl:       Descriptor control value.
 935 * @buf:        Descriptor buffer value.
 936 * @addr:       Physical address of memory buffer.
 937 * @next:       Pointer to next hardware descriptor.
 938 */
 939struct ksz_hw_desc {
 940        union desc_stat ctrl;
 941        union desc_buf buf;
 942        u32 addr;
 943        u32 next;
 944};
 945
 946/**
 947 * struct ksz_sw_desc - Software descriptor data structure
 948 * @ctrl:       Descriptor control value.
 949 * @buf:        Descriptor buffer value.
 950 * @buf_size:   Current buffers size value in hardware descriptor.
 951 */
 952struct ksz_sw_desc {
 953        union desc_stat ctrl;
 954        union desc_buf buf;
 955        u32 buf_size;
 956};
 957
 958/**
 959 * struct ksz_dma_buf - OS dependent DMA buffer data structure
 960 * @skb:        Associated socket buffer.
 961 * @dma:        Associated physical DMA address.
 962 * len:         Actual len used.
 963 */
 964struct ksz_dma_buf {
 965        struct sk_buff *skb;
 966        dma_addr_t dma;
 967        int len;
 968};
 969
 970/**
 971 * struct ksz_desc - Descriptor structure
 972 * @phw:        Hardware descriptor pointer to uncached physical memory.
 973 * @sw:         Cached memory to hold hardware descriptor values for
 974 *              manipulation.
 975 * @dma_buf:    Operating system dependent data structure to hold physical
 976 *              memory buffer allocation information.
 977 */
 978struct ksz_desc {
 979        struct ksz_hw_desc *phw;
 980        struct ksz_sw_desc sw;
 981        struct ksz_dma_buf dma_buf;
 982};
 983
 984#define DMA_BUFFER(desc)  ((struct ksz_dma_buf *)(&(desc)->dma_buf))
 985
 986/**
 987 * struct ksz_desc_info - Descriptor information data structure
 988 * @ring:       First descriptor in the ring.
 989 * @cur:        Current descriptor being manipulated.
 990 * @ring_virt:  First hardware descriptor in the ring.
 991 * @ring_phys:  The physical address of the first descriptor of the ring.
 992 * @size:       Size of hardware descriptor.
 993 * @alloc:      Number of descriptors allocated.
 994 * @avail:      Number of descriptors available for use.
 995 * @last:       Index for last descriptor released to hardware.
 996 * @next:       Index for next descriptor available for use.
 997 * @mask:       Mask for index wrapping.
 998 */
 999struct ksz_desc_info {
1000        struct ksz_desc *ring;
1001        struct ksz_desc *cur;
1002        struct ksz_hw_desc *ring_virt;
1003        u32 ring_phys;
1004        int size;
1005        int alloc;
1006        int avail;
1007        int last;
1008        int next;
1009        int mask;
1010};
1011
1012/*
1013 * KSZ8842 switch definitions
1014 */
1015
1016enum {
1017        TABLE_STATIC_MAC = 0,
1018        TABLE_VLAN,
1019        TABLE_DYNAMIC_MAC,
1020        TABLE_MIB
1021};
1022
1023#define LEARNED_MAC_TABLE_ENTRIES       1024
1024#define STATIC_MAC_TABLE_ENTRIES        8
1025
1026/**
1027 * struct ksz_mac_table - Static MAC table data structure
1028 * @mac_addr:   MAC address to filter.
1029 * @vid:        VID value.
1030 * @fid:        FID value.
1031 * @ports:      Port membership.
1032 * @override:   Override setting.
1033 * @use_fid:    FID use setting.
1034 * @valid:      Valid setting indicating the entry is being used.
1035 */
1036struct ksz_mac_table {
1037        u8 mac_addr[ETH_ALEN];
1038        u16 vid;
1039        u8 fid;
1040        u8 ports;
1041        u8 override:1;
1042        u8 use_fid:1;
1043        u8 valid:1;
1044};
1045
1046#define VLAN_TABLE_ENTRIES              16
1047
1048/**
1049 * struct ksz_vlan_table - VLAN table data structure
1050 * @vid:        VID value.
1051 * @fid:        FID value.
1052 * @member:     Port membership.
1053 */
1054struct ksz_vlan_table {
1055        u16 vid;
1056        u8 fid;
1057        u8 member;
1058};
1059
1060#define DIFFSERV_ENTRIES                64
1061#define PRIO_802_1P_ENTRIES             8
1062#define PRIO_QUEUES                     4
1063
1064#define SWITCH_PORT_NUM                 2
1065#define TOTAL_PORT_NUM                  (SWITCH_PORT_NUM + 1)
1066#define HOST_MASK                       (1 << SWITCH_PORT_NUM)
1067#define PORT_MASK                       7
1068
1069#define MAIN_PORT                       0
1070#define OTHER_PORT                      1
1071#define HOST_PORT                       SWITCH_PORT_NUM
1072
1073#define PORT_COUNTER_NUM                0x20
1074#define TOTAL_PORT_COUNTER_NUM          (PORT_COUNTER_NUM + 2)
1075
1076#define MIB_COUNTER_RX_LO_PRIORITY      0x00
1077#define MIB_COUNTER_RX_HI_PRIORITY      0x01
1078#define MIB_COUNTER_RX_UNDERSIZE        0x02
1079#define MIB_COUNTER_RX_FRAGMENT         0x03
1080#define MIB_COUNTER_RX_OVERSIZE         0x04
1081#define MIB_COUNTER_RX_JABBER           0x05
1082#define MIB_COUNTER_RX_SYMBOL_ERR       0x06
1083#define MIB_COUNTER_RX_CRC_ERR          0x07
1084#define MIB_COUNTER_RX_ALIGNMENT_ERR    0x08
1085#define MIB_COUNTER_RX_CTRL_8808        0x09
1086#define MIB_COUNTER_RX_PAUSE            0x0A
1087#define MIB_COUNTER_RX_BROADCAST        0x0B
1088#define MIB_COUNTER_RX_MULTICAST        0x0C
1089#define MIB_COUNTER_RX_UNICAST          0x0D
1090#define MIB_COUNTER_RX_OCTET_64         0x0E
1091#define MIB_COUNTER_RX_OCTET_65_127     0x0F
1092#define MIB_COUNTER_RX_OCTET_128_255    0x10
1093#define MIB_COUNTER_RX_OCTET_256_511    0x11
1094#define MIB_COUNTER_RX_OCTET_512_1023   0x12
1095#define MIB_COUNTER_RX_OCTET_1024_1522  0x13
1096#define MIB_COUNTER_TX_LO_PRIORITY      0x14
1097#define MIB_COUNTER_TX_HI_PRIORITY      0x15
1098#define MIB_COUNTER_TX_LATE_COLLISION   0x16
1099#define MIB_COUNTER_TX_PAUSE            0x17
1100#define MIB_COUNTER_TX_BROADCAST        0x18
1101#define MIB_COUNTER_TX_MULTICAST        0x19
1102#define MIB_COUNTER_TX_UNICAST          0x1A
1103#define MIB_COUNTER_TX_DEFERRED         0x1B
1104#define MIB_COUNTER_TX_TOTAL_COLLISION  0x1C
1105#define MIB_COUNTER_TX_EXCESS_COLLISION 0x1D
1106#define MIB_COUNTER_TX_SINGLE_COLLISION 0x1E
1107#define MIB_COUNTER_TX_MULTI_COLLISION  0x1F
1108
1109#define MIB_COUNTER_RX_DROPPED_PACKET   0x20
1110#define MIB_COUNTER_TX_DROPPED_PACKET   0x21
1111
1112/**
1113 * struct ksz_port_mib - Port MIB data structure
1114 * @cnt_ptr:    Current pointer to MIB counter index.
1115 * @link_down:  Indication the link has just gone down.
1116 * @state:      Connection status of the port.
1117 * @mib_start:  The starting counter index.  Some ports do not start at 0.
1118 * @counter:    64-bit MIB counter value.
1119 * @dropped:    Temporary buffer to remember last read packet dropped values.
1120 *
1121 * MIB counters needs to be read periodically so that counters do not get
1122 * overflowed and give incorrect values.  A right balance is needed to
1123 * satisfy this condition and not waste too much CPU time.
1124 *
1125 * It is pointless to read MIB counters when the port is disconnected.  The
1126 * @state provides the connection status so that MIB counters are read only
1127 * when the port is connected.  The @link_down indicates the port is just
1128 * disconnected so that all MIB counters are read one last time to update the
1129 * information.
1130 */
1131struct ksz_port_mib {
1132        u8 cnt_ptr;
1133        u8 link_down;
1134        u8 state;
1135        u8 mib_start;
1136
1137        u64 counter[TOTAL_PORT_COUNTER_NUM];
1138        u32 dropped[2];
1139};
1140
1141/**
1142 * struct ksz_port_cfg - Port configuration data structure
1143 * @vid:        VID value.
1144 * @member:     Port membership.
1145 * @port_prio:  Port priority.
1146 * @rx_rate:    Receive priority rate.
1147 * @tx_rate:    Transmit priority rate.
1148 * @stp_state:  Current Spanning Tree Protocol state.
1149 */
1150struct ksz_port_cfg {
1151        u16 vid;
1152        u8 member;
1153        u8 port_prio;
1154        u32 rx_rate[PRIO_QUEUES];
1155        u32 tx_rate[PRIO_QUEUES];
1156        int stp_state;
1157};
1158
1159/**
1160 * struct ksz_switch - KSZ8842 switch data structure
1161 * @mac_table:  MAC table entries information.
1162 * @vlan_table: VLAN table entries information.
1163 * @port_cfg:   Port configuration information.
1164 * @diffserv:   DiffServ priority settings.  Possible values from 6-bit of ToS
1165 *              (bit7 ~ bit2) field.
1166 * @p_802_1p:   802.1P priority settings.  Possible values from 3-bit of 802.1p
1167 *              Tag priority field.
1168 * @br_addr:    Bridge address.  Used for STP.
1169 * @other_addr: Other MAC address.  Used for multiple network device mode.
1170 * @broad_per:  Broadcast storm percentage.
1171 * @member:     Current port membership.  Used for STP.
1172 */
1173struct ksz_switch {
1174        struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES];
1175        struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES];
1176        struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM];
1177
1178        u8 diffserv[DIFFSERV_ENTRIES];
1179        u8 p_802_1p[PRIO_802_1P_ENTRIES];
1180
1181        u8 br_addr[ETH_ALEN];
1182        u8 other_addr[ETH_ALEN];
1183
1184        u8 broad_per;
1185        u8 member;
1186};
1187
1188#define TX_RATE_UNIT                    10000
1189
1190/**
1191 * struct ksz_port_info - Port information data structure
1192 * @state:      Connection status of the port.
1193 * @tx_rate:    Transmit rate divided by 10000 to get Mbit.
1194 * @duplex:     Duplex mode.
1195 * @advertised: Advertised auto-negotiation setting.  Used to determine link.
1196 * @partner:    Auto-negotiation partner setting.  Used to determine link.
1197 * @port_id:    Port index to access actual hardware register.
1198 * @pdev:       Pointer to OS dependent network device.
1199 */
1200struct ksz_port_info {
1201        uint state;
1202        uint tx_rate;
1203        u8 duplex;
1204        u8 advertised;
1205        u8 partner;
1206        u8 port_id;
1207        void *pdev;
1208};
1209
1210#define MAX_TX_HELD_SIZE                52000
1211
1212/* Hardware features and bug fixes. */
1213#define LINK_INT_WORKING                (1 << 0)
1214#define SMALL_PACKET_TX_BUG             (1 << 1)
1215#define HALF_DUPLEX_SIGNAL_BUG          (1 << 2)
1216#define RX_HUGE_FRAME                   (1 << 4)
1217#define STP_SUPPORT                     (1 << 8)
1218
1219/* Software overrides. */
1220#define PAUSE_FLOW_CTRL                 (1 << 0)
1221#define FAST_AGING                      (1 << 1)
1222
1223/**
1224 * struct ksz_hw - KSZ884X hardware data structure
1225 * @io:                 Virtual address assigned.
1226 * @ksz_switch:         Pointer to KSZ8842 switch.
1227 * @port_info:          Port information.
1228 * @port_mib:           Port MIB information.
1229 * @dev_count:          Number of network devices this hardware supports.
1230 * @dst_ports:          Destination ports in switch for transmission.
1231 * @id:                 Hardware ID.  Used for display only.
1232 * @mib_cnt:            Number of MIB counters this hardware has.
1233 * @mib_port_cnt:       Number of ports with MIB counters.
1234 * @tx_cfg:             Cached transmit control settings.
1235 * @rx_cfg:             Cached receive control settings.
1236 * @intr_mask:          Current interrupt mask.
1237 * @intr_set:           Current interrup set.
1238 * @intr_blocked:       Interrupt blocked.
1239 * @rx_desc_info:       Receive descriptor information.
1240 * @tx_desc_info:       Transmit descriptor information.
1241 * @tx_int_cnt:         Transmit interrupt count.  Used for TX optimization.
1242 * @tx_int_mask:        Transmit interrupt mask.  Used for TX optimization.
1243 * @tx_size:            Transmit data size.  Used for TX optimization.
1244 *                      The maximum is defined by MAX_TX_HELD_SIZE.
1245 * @perm_addr:          Permanent MAC address.
1246 * @override_addr:      Overridden MAC address.
1247 * @address:            Additional MAC address entries.
1248 * @addr_list_size:     Additional MAC address list size.
1249 * @mac_override:       Indication of MAC address overridden.
1250 * @promiscuous:        Counter to keep track of promiscuous mode set.
1251 * @all_multi:          Counter to keep track of all multicast mode set.
1252 * @multi_list:         Multicast address entries.
1253 * @multi_bits:         Cached multicast hash table settings.
1254 * @multi_list_size:    Multicast address list size.
1255 * @enabled:            Indication of hardware enabled.
1256 * @rx_stop:            Indication of receive process stop.
1257 * @features:           Hardware features to enable.
1258 * @overrides:          Hardware features to override.
1259 * @parent:             Pointer to parent, network device private structure.
1260 */
1261struct ksz_hw {
1262        void __iomem *io;
1263
1264        struct ksz_switch *ksz_switch;
1265        struct ksz_port_info port_info[SWITCH_PORT_NUM];
1266        struct ksz_port_mib port_mib[TOTAL_PORT_NUM];
1267        int dev_count;
1268        int dst_ports;
1269        int id;
1270        int mib_cnt;
1271        int mib_port_cnt;
1272
1273        u32 tx_cfg;
1274        u32 rx_cfg;
1275        u32 intr_mask;
1276        u32 intr_set;
1277        uint intr_blocked;
1278
1279        struct ksz_desc_info rx_desc_info;
1280        struct ksz_desc_info tx_desc_info;
1281
1282        int tx_int_cnt;
1283        int tx_int_mask;
1284        int tx_size;
1285
1286        u8 perm_addr[ETH_ALEN];
1287        u8 override_addr[ETH_ALEN];
1288        u8 address[ADDITIONAL_ENTRIES][ETH_ALEN];
1289        u8 addr_list_size;
1290        u8 mac_override;
1291        u8 promiscuous;
1292        u8 all_multi;
1293        u8 multi_list[MAX_MULTICAST_LIST][ETH_ALEN];
1294        u8 multi_bits[HW_MULTICAST_SIZE];
1295        u8 multi_list_size;
1296
1297        u8 enabled;
1298        u8 rx_stop;
1299        u8 reserved2[1];
1300
1301        uint features;
1302        uint overrides;
1303
1304        void *parent;
1305};
1306
1307enum {
1308        PHY_NO_FLOW_CTRL,
1309        PHY_FLOW_CTRL,
1310        PHY_TX_ONLY,
1311        PHY_RX_ONLY
1312};
1313
1314/**
1315 * struct ksz_port - Virtual port data structure
1316 * @duplex:             Duplex mode setting.  1 for half duplex, 2 for full
1317 *                      duplex, and 0 for auto, which normally results in full
1318 *                      duplex.
1319 * @speed:              Speed setting.  10 for 10 Mbit, 100 for 100 Mbit, and
1320 *                      0 for auto, which normally results in 100 Mbit.
1321 * @force_link:         Force link setting.  0 for auto-negotiation, and 1 for
1322 *                      force.
1323 * @flow_ctrl:          Flow control setting.  PHY_NO_FLOW_CTRL for no flow
1324 *                      control, and PHY_FLOW_CTRL for flow control.
1325 *                      PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100
1326 *                      Mbit PHY.
1327 * @first_port:         Index of first port this port supports.
1328 * @mib_port_cnt:       Number of ports with MIB counters.
1329 * @port_cnt:           Number of ports this port supports.
1330 * @counter:            Port statistics counter.
1331 * @hw:                 Pointer to hardware structure.
1332 * @linked:             Pointer to port information linked to this port.
1333 */
1334struct ksz_port {
1335        u8 duplex;
1336        u8 speed;
1337        u8 force_link;
1338        u8 flow_ctrl;
1339
1340        int first_port;
1341        int mib_port_cnt;
1342        int port_cnt;
1343        u64 counter[OID_COUNTER_LAST];
1344
1345        struct ksz_hw *hw;
1346        struct ksz_port_info *linked;
1347};
1348
1349/**
1350 * struct ksz_timer_info - Timer information data structure
1351 * @timer:      Kernel timer.
1352 * @cnt:        Running timer counter.
1353 * @max:        Number of times to run timer; -1 for infinity.
1354 * @period:     Timer period in jiffies.
1355 */
1356struct ksz_timer_info {
1357        struct timer_list timer;
1358        int cnt;
1359        int max;
1360        int period;
1361};
1362
1363/**
1364 * struct ksz_shared_mem - OS dependent shared memory data structure
1365 * @dma_addr:   Physical DMA address allocated.
1366 * @alloc_size: Allocation size.
1367 * @phys:       Actual physical address used.
1368 * @alloc_virt: Virtual address allocated.
1369 * @virt:       Actual virtual address used.
1370 */
1371struct ksz_shared_mem {
1372        dma_addr_t dma_addr;
1373        uint alloc_size;
1374        uint phys;
1375        u8 *alloc_virt;
1376        u8 *virt;
1377};
1378
1379/**
1380 * struct ksz_counter_info - OS dependent counter information data structure
1381 * @counter:    Wait queue to wakeup after counters are read.
1382 * @time:       Next time in jiffies to read counter.
1383 * @read:       Indication of counters read in full or not.
1384 */
1385struct ksz_counter_info {
1386        wait_queue_head_t counter;
1387        unsigned long time;
1388        int read;
1389};
1390
1391/**
1392 * struct dev_info - Network device information data structure
1393 * @dev:                Pointer to network device.
1394 * @pdev:               Pointer to PCI device.
1395 * @hw:                 Hardware structure.
1396 * @desc_pool:          Physical memory used for descriptor pool.
1397 * @hwlock:             Spinlock to prevent hardware from accessing.
1398 * @lock:               Mutex lock to prevent device from accessing.
1399 * @dev_rcv:            Receive process function used.
1400 * @last_skb:           Socket buffer allocated for descriptor rx fragments.
1401 * @skb_index:          Buffer index for receiving fragments.
1402 * @skb_len:            Buffer length for receiving fragments.
1403 * @mib_read:           Workqueue to read MIB counters.
1404 * @mib_timer_info:     Timer to read MIB counters.
1405 * @counter:            Used for MIB reading.
1406 * @mtu:                Current MTU used.  The default is REGULAR_RX_BUF_SIZE;
1407 *                      the maximum is MAX_RX_BUF_SIZE.
1408 * @opened:             Counter to keep track of device open.
1409 * @rx_tasklet:         Receive processing tasklet.
1410 * @tx_tasklet:         Transmit processing tasklet.
1411 * @wol_enable:         Wake-on-LAN enable set by ethtool.
1412 * @wol_support:        Wake-on-LAN support used by ethtool.
1413 * @pme_wait:           Used for KSZ8841 power management.
1414 */
1415struct dev_info {
1416        struct net_device *dev;
1417        struct pci_dev *pdev;
1418
1419        struct ksz_hw hw;
1420        struct ksz_shared_mem desc_pool;
1421
1422        spinlock_t hwlock;
1423        struct mutex lock;
1424
1425        int (*dev_rcv)(struct dev_info *);
1426
1427        struct sk_buff *last_skb;
1428        int skb_index;
1429        int skb_len;
1430
1431        struct work_struct mib_read;
1432        struct ksz_timer_info mib_timer_info;
1433        struct ksz_counter_info counter[TOTAL_PORT_NUM];
1434
1435        int mtu;
1436        int opened;
1437
1438        struct tasklet_struct rx_tasklet;
1439        struct tasklet_struct tx_tasklet;
1440
1441        int wol_enable;
1442        int wol_support;
1443        unsigned long pme_wait;
1444};
1445
1446/**
1447 * struct dev_priv - Network device private data structure
1448 * @adapter:            Adapter device information.
1449 * @port:               Port information.
1450 * @monitor_time_info:  Timer to monitor ports.
1451 * @proc_sem:           Semaphore for proc accessing.
1452 * @id:                 Device ID.
1453 * @mii_if:             MII interface information.
1454 * @advertising:        Temporary variable to store advertised settings.
1455 * @msg_enable:         The message flags controlling driver output.
1456 * @media_state:        The connection status of the device.
1457 * @multicast:          The all multicast state of the device.
1458 * @promiscuous:        The promiscuous state of the device.
1459 */
1460struct dev_priv {
1461        struct dev_info *adapter;
1462        struct ksz_port port;
1463        struct ksz_timer_info monitor_timer_info;
1464
1465        struct semaphore proc_sem;
1466        int id;
1467
1468        struct mii_if_info mii_if;
1469        u32 advertising;
1470
1471        u32 msg_enable;
1472        int media_state;
1473        int multicast;
1474        int promiscuous;
1475};
1476
1477#define DRV_NAME                "KSZ884X PCI"
1478#define DEVICE_NAME             "KSZ884x PCI"
1479#define DRV_VERSION             "1.0.0"
1480#define DRV_RELDATE             "Feb 8, 2010"
1481
1482static char version[] =
1483        "Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")";
1484
1485static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 };
1486
1487/*
1488 * Interrupt processing primary routines
1489 */
1490
1491static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt)
1492{
1493        writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS);
1494}
1495
1496static inline void hw_dis_intr(struct ksz_hw *hw)
1497{
1498        hw->intr_blocked = hw->intr_mask;
1499        writel(0, hw->io + KS884X_INTERRUPTS_ENABLE);
1500        hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1501}
1502
1503static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt)
1504{
1505        hw->intr_set = interrupt;
1506        writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE);
1507}
1508
1509static inline void hw_ena_intr(struct ksz_hw *hw)
1510{
1511        hw->intr_blocked = 0;
1512        hw_set_intr(hw, hw->intr_mask);
1513}
1514
1515static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit)
1516{
1517        hw->intr_mask &= ~(bit);
1518}
1519
1520static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt)
1521{
1522        u32 read_intr;
1523
1524        read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1525        hw->intr_set = read_intr & ~interrupt;
1526        writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1527        hw_dis_intr_bit(hw, interrupt);
1528}
1529
1530/**
1531 * hw_turn_on_intr - turn on specified interrupts
1532 * @hw:         The hardware instance.
1533 * @bit:        The interrupt bits to be on.
1534 *
1535 * This routine turns on the specified interrupts in the interrupt mask so that
1536 * those interrupts will be enabled.
1537 */
1538static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit)
1539{
1540        hw->intr_mask |= bit;
1541
1542        if (!hw->intr_blocked)
1543                hw_set_intr(hw, hw->intr_mask);
1544}
1545
1546static inline void hw_ena_intr_bit(struct ksz_hw *hw, uint interrupt)
1547{
1548        u32 read_intr;
1549
1550        read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1551        hw->intr_set = read_intr | interrupt;
1552        writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1553}
1554
1555static inline void hw_read_intr(struct ksz_hw *hw, uint *status)
1556{
1557        *status = readl(hw->io + KS884X_INTERRUPTS_STATUS);
1558        *status = *status & hw->intr_set;
1559}
1560
1561static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt)
1562{
1563        if (interrupt)
1564                hw_ena_intr(hw);
1565}
1566
1567/**
1568 * hw_block_intr - block hardware interrupts
1569 *
1570 * This function blocks all interrupts of the hardware and returns the current
1571 * interrupt enable mask so that interrupts can be restored later.
1572 *
1573 * Return the current interrupt enable mask.
1574 */
1575static uint hw_block_intr(struct ksz_hw *hw)
1576{
1577        uint interrupt = 0;
1578
1579        if (!hw->intr_blocked) {
1580                hw_dis_intr(hw);
1581                interrupt = hw->intr_blocked;
1582        }
1583        return interrupt;
1584}
1585
1586/*
1587 * Hardware descriptor routines
1588 */
1589
1590static inline void reset_desc(struct ksz_desc *desc, union desc_stat status)
1591{
1592        status.rx.hw_owned = 0;
1593        desc->phw->ctrl.data = cpu_to_le32(status.data);
1594}
1595
1596static inline void release_desc(struct ksz_desc *desc)
1597{
1598        desc->sw.ctrl.tx.hw_owned = 1;
1599        if (desc->sw.buf_size != desc->sw.buf.data) {
1600                desc->sw.buf_size = desc->sw.buf.data;
1601                desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data);
1602        }
1603        desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data);
1604}
1605
1606static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc)
1607{
1608        *desc = &info->ring[info->last];
1609        info->last++;
1610        info->last &= info->mask;
1611        info->avail--;
1612        (*desc)->sw.buf.data &= ~KS_DESC_RX_MASK;
1613}
1614
1615static inline void set_rx_buf(struct ksz_desc *desc, u32 addr)
1616{
1617        desc->phw->addr = cpu_to_le32(addr);
1618}
1619
1620static inline void set_rx_len(struct ksz_desc *desc, u32 len)
1621{
1622        desc->sw.buf.rx.buf_size = len;
1623}
1624
1625static inline void get_tx_pkt(struct ksz_desc_info *info,
1626        struct ksz_desc **desc)
1627{
1628        *desc = &info->ring[info->next];
1629        info->next++;
1630        info->next &= info->mask;
1631        info->avail--;
1632        (*desc)->sw.buf.data &= ~KS_DESC_TX_MASK;
1633}
1634
1635static inline void set_tx_buf(struct ksz_desc *desc, u32 addr)
1636{
1637        desc->phw->addr = cpu_to_le32(addr);
1638}
1639
1640static inline void set_tx_len(struct ksz_desc *desc, u32 len)
1641{
1642        desc->sw.buf.tx.buf_size = len;
1643}
1644
1645/* Switch functions */
1646
1647#define TABLE_READ                      0x10
1648#define TABLE_SEL_SHIFT                 2
1649
1650#define HW_DELAY(hw, reg)                       \
1651        do {                                    \
1652                u16 dummy;                      \
1653                dummy = readw(hw->io + reg);    \
1654        } while (0)
1655
1656/**
1657 * sw_r_table - read 4 bytes of data from switch table
1658 * @hw:         The hardware instance.
1659 * @table:      The table selector.
1660 * @addr:       The address of the table entry.
1661 * @data:       Buffer to store the read data.
1662 *
1663 * This routine reads 4 bytes of data from the table of the switch.
1664 * Hardware interrupts are disabled to minimize corruption of read data.
1665 */
1666static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data)
1667{
1668        u16 ctrl_addr;
1669        uint interrupt;
1670
1671        ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr;
1672
1673        interrupt = hw_block_intr(hw);
1674
1675        writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1676        HW_DELAY(hw, KS884X_IACR_OFFSET);
1677        *data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1678
1679        hw_restore_intr(hw, interrupt);
1680}
1681
1682/**
1683 * sw_w_table_64 - write 8 bytes of data to the switch table
1684 * @hw:         The hardware instance.
1685 * @table:      The table selector.
1686 * @addr:       The address of the table entry.
1687 * @data_hi:    The high part of data to be written (bit63 ~ bit32).
1688 * @data_lo:    The low part of data to be written (bit31 ~ bit0).
1689 *
1690 * This routine writes 8 bytes of data to the table of the switch.
1691 * Hardware interrupts are disabled to minimize corruption of written data.
1692 */
1693static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi,
1694        u32 data_lo)
1695{
1696        u16 ctrl_addr;
1697        uint interrupt;
1698
1699        ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr;
1700
1701        interrupt = hw_block_intr(hw);
1702
1703        writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET);
1704        writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET);
1705
1706        writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1707        HW_DELAY(hw, KS884X_IACR_OFFSET);
1708
1709        hw_restore_intr(hw, interrupt);
1710}
1711
1712/**
1713 * sw_w_sta_mac_table - write to the static MAC table
1714 * @hw:         The hardware instance.
1715 * @addr:       The address of the table entry.
1716 * @mac_addr:   The MAC address.
1717 * @ports:      The port members.
1718 * @override:   The flag to override the port receive/transmit settings.
1719 * @valid:      The flag to indicate entry is valid.
1720 * @use_fid:    The flag to indicate the FID is valid.
1721 * @fid:        The FID value.
1722 *
1723 * This routine writes an entry of the static MAC table of the switch.  It
1724 * calls sw_w_table_64() to write the data.
1725 */
1726static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr,
1727        u8 ports, int override, int valid, int use_fid, u8 fid)
1728{
1729        u32 data_hi;
1730        u32 data_lo;
1731
1732        data_lo = ((u32) mac_addr[2] << 24) |
1733                ((u32) mac_addr[3] << 16) |
1734                ((u32) mac_addr[4] << 8) | mac_addr[5];
1735        data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1];
1736        data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT;
1737
1738        if (override)
1739                data_hi |= STATIC_MAC_TABLE_OVERRIDE;
1740        if (use_fid) {
1741                data_hi |= STATIC_MAC_TABLE_USE_FID;
1742                data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT;
1743        }
1744        if (valid)
1745                data_hi |= STATIC_MAC_TABLE_VALID;
1746
1747        sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo);
1748}
1749
1750/**
1751 * sw_r_vlan_table - read from the VLAN table
1752 * @hw:         The hardware instance.
1753 * @addr:       The address of the table entry.
1754 * @vid:        Buffer to store the VID.
1755 * @fid:        Buffer to store the VID.
1756 * @member:     Buffer to store the port membership.
1757 *
1758 * This function reads an entry of the VLAN table of the switch.  It calls
1759 * sw_r_table() to get the data.
1760 *
1761 * Return 0 if the entry is valid; otherwise -1.
1762 */
1763static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid,
1764        u8 *member)
1765{
1766        u32 data;
1767
1768        sw_r_table(hw, TABLE_VLAN, addr, &data);
1769        if (data & VLAN_TABLE_VALID) {
1770                *vid = (u16)(data & VLAN_TABLE_VID);
1771                *fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT);
1772                *member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >>
1773                        VLAN_TABLE_MEMBERSHIP_SHIFT);
1774                return 0;
1775        }
1776        return -1;
1777}
1778
1779/**
1780 * port_r_mib_cnt - read MIB counter
1781 * @hw:         The hardware instance.
1782 * @port:       The port index.
1783 * @addr:       The address of the counter.
1784 * @cnt:        Buffer to store the counter.
1785 *
1786 * This routine reads a MIB counter of the port.
1787 * Hardware interrupts are disabled to minimize corruption of read data.
1788 */
1789static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt)
1790{
1791        u32 data;
1792        u16 ctrl_addr;
1793        uint interrupt;
1794        int timeout;
1795
1796        ctrl_addr = addr + PORT_COUNTER_NUM * port;
1797
1798        interrupt = hw_block_intr(hw);
1799
1800        ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8);
1801        writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1802        HW_DELAY(hw, KS884X_IACR_OFFSET);
1803
1804        for (timeout = 100; timeout > 0; timeout--) {
1805                data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1806
1807                if (data & MIB_COUNTER_VALID) {
1808                        if (data & MIB_COUNTER_OVERFLOW)
1809                                *cnt += MIB_COUNTER_VALUE + 1;
1810                        *cnt += data & MIB_COUNTER_VALUE;
1811                        break;
1812                }
1813        }
1814
1815        hw_restore_intr(hw, interrupt);
1816}
1817
1818/**
1819 * port_r_mib_pkt - read dropped packet counts
1820 * @hw:         The hardware instance.
1821 * @port:       The port index.
1822 * @cnt:        Buffer to store the receive and transmit dropped packet counts.
1823 *
1824 * This routine reads the dropped packet counts of the port.
1825 * Hardware interrupts are disabled to minimize corruption of read data.
1826 */
1827static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt)
1828{
1829        u32 cur;
1830        u32 data;
1831        u16 ctrl_addr;
1832        uint interrupt;
1833        int index;
1834
1835        index = KS_MIB_PACKET_DROPPED_RX_0 + port;
1836        do {
1837                interrupt = hw_block_intr(hw);
1838
1839                ctrl_addr = (u16) index;
1840                ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ)
1841                        << 8);
1842                writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1843                HW_DELAY(hw, KS884X_IACR_OFFSET);
1844                data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1845
1846                hw_restore_intr(hw, interrupt);
1847
1848                data &= MIB_PACKET_DROPPED;
1849                cur = *last;
1850                if (data != cur) {
1851                        *last = data;
1852                        if (data < cur)
1853                                data += MIB_PACKET_DROPPED + 1;
1854                        data -= cur;
1855                        *cnt += data;
1856                }
1857                ++last;
1858                ++cnt;
1859                index -= KS_MIB_PACKET_DROPPED_TX -
1860                        KS_MIB_PACKET_DROPPED_TX_0 + 1;
1861        } while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port);
1862}
1863
1864/**
1865 * port_r_cnt - read MIB counters periodically
1866 * @hw:         The hardware instance.
1867 * @port:       The port index.
1868 *
1869 * This routine is used to read the counters of the port periodically to avoid
1870 * counter overflow.  The hardware should be acquired first before calling this
1871 * routine.
1872 *
1873 * Return non-zero when not all counters not read.
1874 */
1875static int port_r_cnt(struct ksz_hw *hw, int port)
1876{
1877        struct ksz_port_mib *mib = &hw->port_mib[port];
1878
1879        if (mib->mib_start < PORT_COUNTER_NUM)
1880                while (mib->cnt_ptr < PORT_COUNTER_NUM) {
1881                        port_r_mib_cnt(hw, port, mib->cnt_ptr,
1882                                &mib->counter[mib->cnt_ptr]);
1883                        ++mib->cnt_ptr;
1884                }
1885        if (hw->mib_cnt > PORT_COUNTER_NUM)
1886                port_r_mib_pkt(hw, port, mib->dropped,
1887                        &mib->counter[PORT_COUNTER_NUM]);
1888        mib->cnt_ptr = 0;
1889        return 0;
1890}
1891
1892/**
1893 * port_init_cnt - initialize MIB counter values
1894 * @hw:         The hardware instance.
1895 * @port:       The port index.
1896 *
1897 * This routine is used to initialize all counters to zero if the hardware
1898 * cannot do it after reset.
1899 */
1900static void port_init_cnt(struct ksz_hw *hw, int port)
1901{
1902        struct ksz_port_mib *mib = &hw->port_mib[port];
1903
1904        mib->cnt_ptr = 0;
1905        if (mib->mib_start < PORT_COUNTER_NUM)
1906                do {
1907                        port_r_mib_cnt(hw, port, mib->cnt_ptr,
1908                                &mib->counter[mib->cnt_ptr]);
1909                        ++mib->cnt_ptr;
1910                } while (mib->cnt_ptr < PORT_COUNTER_NUM);
1911        if (hw->mib_cnt > PORT_COUNTER_NUM)
1912                port_r_mib_pkt(hw, port, mib->dropped,
1913                        &mib->counter[PORT_COUNTER_NUM]);
1914        memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
1915        mib->cnt_ptr = 0;
1916}
1917
1918/*
1919 * Port functions
1920 */
1921
1922/**
1923 * port_chk - check port register bits
1924 * @hw:         The hardware instance.
1925 * @port:       The port index.
1926 * @offset:     The offset of the port register.
1927 * @bits:       The data bits to check.
1928 *
1929 * This function checks whether the specified bits of the port register are set
1930 * or not.
1931 *
1932 * Return 0 if the bits are not set.
1933 */
1934static int port_chk(struct ksz_hw *hw, int port, int offset, u16 bits)
1935{
1936        u32 addr;
1937        u16 data;
1938
1939        PORT_CTRL_ADDR(port, addr);
1940        addr += offset;
1941        data = readw(hw->io + addr);
1942        return (data & bits) == bits;
1943}
1944
1945/**
1946 * port_cfg - set port register bits
1947 * @hw:         The hardware instance.
1948 * @port:       The port index.
1949 * @offset:     The offset of the port register.
1950 * @bits:       The data bits to set.
1951 * @set:        The flag indicating whether the bits are to be set or not.
1952 *
1953 * This routine sets or resets the specified bits of the port register.
1954 */
1955static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits,
1956        int set)
1957{
1958        u32 addr;
1959        u16 data;
1960
1961        PORT_CTRL_ADDR(port, addr);
1962        addr += offset;
1963        data = readw(hw->io + addr);
1964        if (set)
1965                data |= bits;
1966        else
1967                data &= ~bits;
1968        writew(data, hw->io + addr);
1969}
1970
1971/**
1972 * port_chk_shift - check port bit
1973 * @hw:         The hardware instance.
1974 * @port:       The port index.
1975 * @offset:     The offset of the register.
1976 * @shift:      Number of bits to shift.
1977 *
1978 * This function checks whether the specified port is set in the register or
1979 * not.
1980 *
1981 * Return 0 if the port is not set.
1982 */
1983static int port_chk_shift(struct ksz_hw *hw, int port, u32 addr, int shift)
1984{
1985        u16 data;
1986        u16 bit = 1 << port;
1987
1988        data = readw(hw->io + addr);
1989        data >>= shift;
1990        return (data & bit) == bit;
1991}
1992
1993/**
1994 * port_cfg_shift - set port bit
1995 * @hw:         The hardware instance.
1996 * @port:       The port index.
1997 * @offset:     The offset of the register.
1998 * @shift:      Number of bits to shift.
1999 * @set:        The flag indicating whether the port is to be set or not.
2000 *
2001 * This routine sets or resets the specified port in the register.
2002 */
2003static void port_cfg_shift(struct ksz_hw *hw, int port, u32 addr, int shift,
2004        int set)
2005{
2006        u16 data;
2007        u16 bits = 1 << port;
2008
2009        data = readw(hw->io + addr);
2010        bits <<= shift;
2011        if (set)
2012                data |= bits;
2013        else
2014                data &= ~bits;
2015        writew(data, hw->io + addr);
2016}
2017
2018/**
2019 * port_r8 - read byte from port register
2020 * @hw:         The hardware instance.
2021 * @port:       The port index.
2022 * @offset:     The offset of the port register.
2023 * @data:       Buffer to store the data.
2024 *
2025 * This routine reads a byte from the port register.
2026 */
2027static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data)
2028{
2029        u32 addr;
2030
2031        PORT_CTRL_ADDR(port, addr);
2032        addr += offset;
2033        *data = readb(hw->io + addr);
2034}
2035
2036/**
2037 * port_r16 - read word from port register.
2038 * @hw:         The hardware instance.
2039 * @port:       The port index.
2040 * @offset:     The offset of the port register.
2041 * @data:       Buffer to store the data.
2042 *
2043 * This routine reads a word from the port register.
2044 */
2045static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data)
2046{
2047        u32 addr;
2048
2049        PORT_CTRL_ADDR(port, addr);
2050        addr += offset;
2051        *data = readw(hw->io + addr);
2052}
2053
2054/**
2055 * port_w16 - write word to port register.
2056 * @hw:         The hardware instance.
2057 * @port:       The port index.
2058 * @offset:     The offset of the port register.
2059 * @data:       Data to write.
2060 *
2061 * This routine writes a word to the port register.
2062 */
2063static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data)
2064{
2065        u32 addr;
2066
2067        PORT_CTRL_ADDR(port, addr);
2068        addr += offset;
2069        writew(data, hw->io + addr);
2070}
2071
2072/**
2073 * sw_chk - check switch register bits
2074 * @hw:         The hardware instance.
2075 * @addr:       The address of the switch register.
2076 * @bits:       The data bits to check.
2077 *
2078 * This function checks whether the specified bits of the switch register are
2079 * set or not.
2080 *
2081 * Return 0 if the bits are not set.
2082 */
2083static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits)
2084{
2085        u16 data;
2086
2087        data = readw(hw->io + addr);
2088        return (data & bits) == bits;
2089}
2090
2091/**
2092 * sw_cfg - set switch register bits
2093 * @hw:         The hardware instance.
2094 * @addr:       The address of the switch register.
2095 * @bits:       The data bits to set.
2096 * @set:        The flag indicating whether the bits are to be set or not.
2097 *
2098 * This function sets or resets the specified bits of the switch register.
2099 */
2100static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set)
2101{
2102        u16 data;
2103
2104        data = readw(hw->io + addr);
2105        if (set)
2106                data |= bits;
2107        else
2108                data &= ~bits;
2109        writew(data, hw->io + addr);
2110}
2111
2112/* Bandwidth */
2113
2114static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set)
2115{
2116        port_cfg(hw, p,
2117                KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set);
2118}
2119
2120static inline int port_chk_broad_storm(struct ksz_hw *hw, int p)
2121{
2122        return port_chk(hw, p,
2123                KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM);
2124}
2125
2126/* Driver set switch broadcast storm protection at 10% rate. */
2127#define BROADCAST_STORM_PROTECTION_RATE 10
2128
2129/* 148,800 frames * 67 ms / 100 */
2130#define BROADCAST_STORM_VALUE           9969
2131
2132/**
2133 * sw_cfg_broad_storm - configure broadcast storm threshold
2134 * @hw:         The hardware instance.
2135 * @percent:    Broadcast storm threshold in percent of transmit rate.
2136 *
2137 * This routine configures the broadcast storm threshold of the switch.
2138 */
2139static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2140{
2141        u16 data;
2142        u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100);
2143
2144        if (value > BROADCAST_STORM_RATE)
2145                value = BROADCAST_STORM_RATE;
2146
2147        data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2148        data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI);
2149        data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
2150        writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2151}
2152
2153/**
2154 * sw_get_board_storm - get broadcast storm threshold
2155 * @hw:         The hardware instance.
2156 * @percent:    Buffer to store the broadcast storm threshold percentage.
2157 *
2158 * This routine retrieves the broadcast storm threshold of the switch.
2159 */
2160static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent)
2161{
2162        int num;
2163        u16 data;
2164
2165        data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2166        num = (data & BROADCAST_STORM_RATE_HI);
2167        num <<= 8;
2168        num |= (data & BROADCAST_STORM_RATE_LO) >> 8;
2169        num = DIV_ROUND_CLOSEST(num * 100, BROADCAST_STORM_VALUE);
2170        *percent = (u8) num;
2171}
2172
2173/**
2174 * sw_dis_broad_storm - disable broadstorm
2175 * @hw:         The hardware instance.
2176 * @port:       The port index.
2177 *
2178 * This routine disables the broadcast storm limit function of the switch.
2179 */
2180static void sw_dis_broad_storm(struct ksz_hw *hw, int port)
2181{
2182        port_cfg_broad_storm(hw, port, 0);
2183}
2184
2185/**
2186 * sw_ena_broad_storm - enable broadcast storm
2187 * @hw:         The hardware instance.
2188 * @port:       The port index.
2189 *
2190 * This routine enables the broadcast storm limit function of the switch.
2191 */
2192static void sw_ena_broad_storm(struct ksz_hw *hw, int port)
2193{
2194        sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2195        port_cfg_broad_storm(hw, port, 1);
2196}
2197
2198/**
2199 * sw_init_broad_storm - initialize broadcast storm
2200 * @hw:         The hardware instance.
2201 *
2202 * This routine initializes the broadcast storm limit function of the switch.
2203 */
2204static void sw_init_broad_storm(struct ksz_hw *hw)
2205{
2206        int port;
2207
2208        hw->ksz_switch->broad_per = 1;
2209        sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2210        for (port = 0; port < TOTAL_PORT_NUM; port++)
2211                sw_dis_broad_storm(hw, port);
2212        sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1);
2213}
2214
2215/**
2216 * hw_cfg_broad_storm - configure broadcast storm
2217 * @hw:         The hardware instance.
2218 * @percent:    Broadcast storm threshold in percent of transmit rate.
2219 *
2220 * This routine configures the broadcast storm threshold of the switch.
2221 * It is called by user functions.  The hardware should be acquired first.
2222 */
2223static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2224{
2225        if (percent > 100)
2226                percent = 100;
2227
2228        sw_cfg_broad_storm(hw, percent);
2229        sw_get_broad_storm(hw, &percent);
2230        hw->ksz_switch->broad_per = percent;
2231}
2232
2233/**
2234 * sw_dis_prio_rate - disable switch priority rate
2235 * @hw:         The hardware instance.
2236 * @port:       The port index.
2237 *
2238 * This routine disables the priority rate function of the switch.
2239 */
2240static void sw_dis_prio_rate(struct ksz_hw *hw, int port)
2241{
2242        u32 addr;
2243
2244        PORT_CTRL_ADDR(port, addr);
2245        addr += KS8842_PORT_IN_RATE_OFFSET;
2246        writel(0, hw->io + addr);
2247}
2248
2249/**
2250 * sw_init_prio_rate - initialize switch prioirty rate
2251 * @hw:         The hardware instance.
2252 *
2253 * This routine initializes the priority rate function of the switch.
2254 */
2255static void sw_init_prio_rate(struct ksz_hw *hw)
2256{
2257        int port;
2258        int prio;
2259        struct ksz_switch *sw = hw->ksz_switch;
2260
2261        for (port = 0; port < TOTAL_PORT_NUM; port++) {
2262                for (prio = 0; prio < PRIO_QUEUES; prio++) {
2263                        sw->port_cfg[port].rx_rate[prio] =
2264                        sw->port_cfg[port].tx_rate[prio] = 0;
2265                }
2266                sw_dis_prio_rate(hw, port);
2267        }
2268}
2269
2270/* Communication */
2271
2272static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set)
2273{
2274        port_cfg(hw, p,
2275                KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set);
2276}
2277
2278static inline void port_cfg_force_flow_ctrl(struct ksz_hw *hw, int p, int set)
2279{
2280        port_cfg(hw, p,
2281                KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL, set);
2282}
2283
2284static inline int port_chk_back_pressure(struct ksz_hw *hw, int p)
2285{
2286        return port_chk(hw, p,
2287                KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE);
2288}
2289
2290static inline int port_chk_force_flow_ctrl(struct ksz_hw *hw, int p)
2291{
2292        return port_chk(hw, p,
2293                KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL);
2294}
2295
2296/* Spanning Tree */
2297
2298static inline void port_cfg_rx(struct ksz_hw *hw, int p, int set)
2299{
2300        port_cfg(hw, p,
2301                KS8842_PORT_CTRL_2_OFFSET, PORT_RX_ENABLE, set);
2302}
2303
2304static inline void port_cfg_tx(struct ksz_hw *hw, int p, int set)
2305{
2306        port_cfg(hw, p,
2307                KS8842_PORT_CTRL_2_OFFSET, PORT_TX_ENABLE, set);
2308}
2309
2310static inline void sw_cfg_fast_aging(struct ksz_hw *hw, int set)
2311{
2312        sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_FAST_AGING, set);
2313}
2314
2315static inline void sw_flush_dyn_mac_table(struct ksz_hw *hw)
2316{
2317        if (!(hw->overrides & FAST_AGING)) {
2318                sw_cfg_fast_aging(hw, 1);
2319                mdelay(1);
2320                sw_cfg_fast_aging(hw, 0);
2321        }
2322}
2323
2324/* VLAN */
2325
2326static inline void port_cfg_ins_tag(struct ksz_hw *hw, int p, int insert)
2327{
2328        port_cfg(hw, p,
2329                KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG, insert);
2330}
2331
2332static inline void port_cfg_rmv_tag(struct ksz_hw *hw, int p, int remove)
2333{
2334        port_cfg(hw, p,
2335                KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG, remove);
2336}
2337
2338static inline int port_chk_ins_tag(struct ksz_hw *hw, int p)
2339{
2340        return port_chk(hw, p,
2341                KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG);
2342}
2343
2344static inline int port_chk_rmv_tag(struct ksz_hw *hw, int p)
2345{
2346        return port_chk(hw, p,
2347                KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG);
2348}
2349
2350static inline void port_cfg_dis_non_vid(struct ksz_hw *hw, int p, int set)
2351{
2352        port_cfg(hw, p,
2353                KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID, set);
2354}
2355
2356static inline void port_cfg_in_filter(struct ksz_hw *hw, int p, int set)
2357{
2358        port_cfg(hw, p,
2359                KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER, set);
2360}
2361
2362static inline int port_chk_dis_non_vid(struct ksz_hw *hw, int p)
2363{
2364        return port_chk(hw, p,
2365                KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID);
2366}
2367
2368static inline int port_chk_in_filter(struct ksz_hw *hw, int p)
2369{
2370        return port_chk(hw, p,
2371                KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER);
2372}
2373
2374/* Mirroring */
2375
2376static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set)
2377{
2378        port_cfg(hw, p,
2379                KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set);
2380}
2381
2382static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set)
2383{
2384        port_cfg(hw, p,
2385                KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set);
2386}
2387
2388static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set)
2389{
2390        port_cfg(hw, p,
2391                KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set);
2392}
2393
2394static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set)
2395{
2396        sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set);
2397}
2398
2399static void sw_init_mirror(struct ksz_hw *hw)
2400{
2401        int port;
2402
2403        for (port = 0; port < TOTAL_PORT_NUM; port++) {
2404                port_cfg_mirror_sniffer(hw, port, 0);
2405                port_cfg_mirror_rx(hw, port, 0);
2406                port_cfg_mirror_tx(hw, port, 0);
2407        }
2408        sw_cfg_mirror_rx_tx(hw, 0);
2409}
2410
2411static inline void sw_cfg_unk_def_deliver(struct ksz_hw *hw, int set)
2412{
2413        sw_cfg(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2414                SWITCH_UNK_DEF_PORT_ENABLE, set);
2415}
2416
2417static inline int sw_cfg_chk_unk_def_deliver(struct ksz_hw *hw)
2418{
2419        return sw_chk(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2420                SWITCH_UNK_DEF_PORT_ENABLE);
2421}
2422
2423static inline void sw_cfg_unk_def_port(struct ksz_hw *hw, int port, int set)
2424{
2425        port_cfg_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0, set);
2426}
2427
2428static inline int sw_chk_unk_def_port(struct ksz_hw *hw, int port)
2429{
2430        return port_chk_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0);
2431}
2432
2433/* Priority */
2434
2435static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set)
2436{
2437        port_cfg(hw, p,
2438                KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set);
2439}
2440
2441static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set)
2442{
2443        port_cfg(hw, p,
2444                KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set);
2445}
2446
2447static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set)
2448{
2449        port_cfg(hw, p,
2450                KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set);
2451}
2452
2453static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set)
2454{
2455        port_cfg(hw, p,
2456                KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set);
2457}
2458
2459static inline int port_chk_diffserv(struct ksz_hw *hw, int p)
2460{
2461        return port_chk(hw, p,
2462                KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE);
2463}
2464
2465static inline int port_chk_802_1p(struct ksz_hw *hw, int p)
2466{
2467        return port_chk(hw, p,
2468                KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE);
2469}
2470
2471static inline int port_chk_replace_vid(struct ksz_hw *hw, int p)
2472{
2473        return port_chk(hw, p,
2474                KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING);
2475}
2476
2477static inline int port_chk_prio(struct ksz_hw *hw, int p)
2478{
2479        return port_chk(hw, p,
2480                KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE);
2481}
2482
2483/**
2484 * sw_dis_diffserv - disable switch DiffServ priority
2485 * @hw:         The hardware instance.
2486 * @port:       The port index.
2487 *
2488 * This routine disables the DiffServ priority function of the switch.
2489 */
2490static void sw_dis_diffserv(struct ksz_hw *hw, int port)
2491{
2492        port_cfg_diffserv(hw, port, 0);
2493}
2494
2495/**
2496 * sw_dis_802_1p - disable switch 802.1p priority
2497 * @hw:         The hardware instance.
2498 * @port:       The port index.
2499 *
2500 * This routine disables the 802.1p priority function of the switch.
2501 */
2502static void sw_dis_802_1p(struct ksz_hw *hw, int port)
2503{
2504        port_cfg_802_1p(hw, port, 0);
2505}
2506
2507/**
2508 * sw_cfg_replace_null_vid -
2509 * @hw:         The hardware instance.
2510 * @set:        The flag to disable or enable.
2511 *
2512 */
2513static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set)
2514{
2515        sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set);
2516}
2517
2518/**
2519 * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping
2520 * @hw:         The hardware instance.
2521 * @port:       The port index.
2522 * @set:        The flag to disable or enable.
2523 *
2524 * This routine enables the 802.1p priority re-mapping function of the switch.
2525 * That allows 802.1p priority field to be replaced with the port's default
2526 * tag's priority value if the ingress packet's 802.1p priority has a higher
2527 * priority than port's default tag's priority.
2528 */
2529static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set)
2530{
2531        port_cfg_replace_vid(hw, port, set);
2532}
2533
2534/**
2535 * sw_cfg_port_based - configure switch port based priority
2536 * @hw:         The hardware instance.
2537 * @port:       The port index.
2538 * @prio:       The priority to set.
2539 *
2540 * This routine configures the port based priority of the switch.
2541 */
2542static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio)
2543{
2544        u16 data;
2545
2546        if (prio > PORT_BASED_PRIORITY_BASE)
2547                prio = PORT_BASED_PRIORITY_BASE;
2548
2549        hw->ksz_switch->port_cfg[port].port_prio = prio;
2550
2551        port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data);
2552        data &= ~PORT_BASED_PRIORITY_MASK;
2553        data |= prio << PORT_BASED_PRIORITY_SHIFT;
2554        port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data);
2555}
2556
2557/**
2558 * sw_dis_multi_queue - disable transmit multiple queues
2559 * @hw:         The hardware instance.
2560 * @port:       The port index.
2561 *
2562 * This routine disables the transmit multiple queues selection of the switch
2563 * port.  Only single transmit queue on the port.
2564 */
2565static void sw_dis_multi_queue(struct ksz_hw *hw, int port)
2566{
2567        port_cfg_prio(hw, port, 0);
2568}
2569
2570/**
2571 * sw_init_prio - initialize switch priority
2572 * @hw:         The hardware instance.
2573 *
2574 * This routine initializes the switch QoS priority functions.
2575 */
2576static void sw_init_prio(struct ksz_hw *hw)
2577{
2578        int port;
2579        int tos;
2580        struct ksz_switch *sw = hw->ksz_switch;
2581
2582        /*
2583         * Init all the 802.1p tag priority value to be assigned to different
2584         * priority queue.
2585         */
2586        sw->p_802_1p[0] = 0;
2587        sw->p_802_1p[1] = 0;
2588        sw->p_802_1p[2] = 1;
2589        sw->p_802_1p[3] = 1;
2590        sw->p_802_1p[4] = 2;
2591        sw->p_802_1p[5] = 2;
2592        sw->p_802_1p[6] = 3;
2593        sw->p_802_1p[7] = 3;
2594
2595        /*
2596         * Init all the DiffServ priority value to be assigned to priority
2597         * queue 0.
2598         */
2599        for (tos = 0; tos < DIFFSERV_ENTRIES; tos++)
2600                sw->diffserv[tos] = 0;
2601
2602        /* All QoS functions disabled. */
2603        for (port = 0; port < TOTAL_PORT_NUM; port++) {
2604                sw_dis_multi_queue(hw, port);
2605                sw_dis_diffserv(hw, port);
2606                sw_dis_802_1p(hw, port);
2607                sw_cfg_replace_vid(hw, port, 0);
2608
2609                sw->port_cfg[port].port_prio = 0;
2610                sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio);
2611        }
2612        sw_cfg_replace_null_vid(hw, 0);
2613}
2614
2615/**
2616 * port_get_def_vid - get port default VID.
2617 * @hw:         The hardware instance.
2618 * @port:       The port index.
2619 * @vid:        Buffer to store the VID.
2620 *
2621 * This routine retrieves the default VID of the port.
2622 */
2623static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid)
2624{
2625        u32 addr;
2626
2627        PORT_CTRL_ADDR(port, addr);
2628        addr += KS8842_PORT_CTRL_VID_OFFSET;
2629        *vid = readw(hw->io + addr);
2630}
2631
2632/**
2633 * sw_init_vlan - initialize switch VLAN
2634 * @hw:         The hardware instance.
2635 *
2636 * This routine initializes the VLAN function of the switch.
2637 */
2638static void sw_init_vlan(struct ksz_hw *hw)
2639{
2640        int port;
2641        int entry;
2642        struct ksz_switch *sw = hw->ksz_switch;
2643
2644        /* Read 16 VLAN entries from device's VLAN table. */
2645        for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) {
2646                sw_r_vlan_table(hw, entry,
2647                        &sw->vlan_table[entry].vid,
2648                        &sw->vlan_table[entry].fid,
2649                        &sw->vlan_table[entry].member);
2650        }
2651
2652        for (port = 0; port < TOTAL_PORT_NUM; port++) {
2653                port_get_def_vid(hw, port, &sw->port_cfg[port].vid);
2654                sw->port_cfg[port].member = PORT_MASK;
2655        }
2656}
2657
2658/**
2659 * sw_cfg_port_base_vlan - configure port-based VLAN membership
2660 * @hw:         The hardware instance.
2661 * @port:       The port index.
2662 * @member:     The port-based VLAN membership.
2663 *
2664 * This routine configures the port-based VLAN membership of the port.
2665 */
2666static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member)
2667{
2668        u32 addr;
2669        u8 data;
2670
2671        PORT_CTRL_ADDR(port, addr);
2672        addr += KS8842_PORT_CTRL_2_OFFSET;
2673
2674        data = readb(hw->io + addr);
2675        data &= ~PORT_VLAN_MEMBERSHIP;
2676        data |= (member & PORT_MASK);
2677        writeb(data, hw->io + addr);
2678
2679        hw->ksz_switch->port_cfg[port].member = member;
2680}
2681
2682/**
2683 * sw_get_addr - get the switch MAC address.
2684 * @hw:         The hardware instance.
2685 * @mac_addr:   Buffer to store the MAC address.
2686 *
2687 * This function retrieves the MAC address of the switch.
2688 */
2689static inline void sw_get_addr(struct ksz_hw *hw, u8 *mac_addr)
2690{
2691        int i;
2692
2693        for (i = 0; i < 6; i += 2) {
2694                mac_addr[i] = readb(hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2695                mac_addr[1 + i] = readb(hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2696        }
2697}
2698
2699/**
2700 * sw_set_addr - configure switch MAC address
2701 * @hw:         The hardware instance.
2702 * @mac_addr:   The MAC address.
2703 *
2704 * This function configures the MAC address of the switch.
2705 */
2706static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr)
2707{
2708        int i;
2709
2710        for (i = 0; i < 6; i += 2) {
2711                writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2712                writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2713        }
2714}
2715
2716/**
2717 * sw_set_global_ctrl - set switch global control
2718 * @hw:         The hardware instance.
2719 *
2720 * This routine sets the global control of the switch function.
2721 */
2722static void sw_set_global_ctrl(struct ksz_hw *hw)
2723{
2724        u16 data;
2725
2726        /* Enable switch MII flow control. */
2727        data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2728        data |= SWITCH_FLOW_CTRL;
2729        writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2730
2731        data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2732
2733        /* Enable aggressive back off algorithm in half duplex mode. */
2734        data |= SWITCH_AGGR_BACKOFF;
2735
2736        /* Enable automatic fast aging when link changed detected. */
2737        data |= SWITCH_AGING_ENABLE;
2738        data |= SWITCH_LINK_AUTO_AGING;
2739
2740        if (hw->overrides & FAST_AGING)
2741                data |= SWITCH_FAST_AGING;
2742        else
2743                data &= ~SWITCH_FAST_AGING;
2744        writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2745
2746        data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2747
2748        /* Enable no excessive collision drop. */
2749        data |= NO_EXC_COLLISION_DROP;
2750        writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2751}
2752
2753enum {
2754        STP_STATE_DISABLED = 0,
2755        STP_STATE_LISTENING,
2756        STP_STATE_LEARNING,
2757        STP_STATE_FORWARDING,
2758        STP_STATE_BLOCKED,
2759        STP_STATE_SIMPLE
2760};
2761
2762/**
2763 * port_set_stp_state - configure port spanning tree state
2764 * @hw:         The hardware instance.
2765 * @port:       The port index.
2766 * @state:      The spanning tree state.
2767 *
2768 * This routine configures the spanning tree state of the port.
2769 */
2770static void port_set_stp_state(struct ksz_hw *hw, int port, int state)
2771{
2772        u16 data;
2773
2774        port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data);
2775        switch (state) {
2776        case STP_STATE_DISABLED:
2777                data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2778                data |= PORT_LEARN_DISABLE;
2779                break;
2780        case STP_STATE_LISTENING:
2781/*
2782 * No need to turn on transmit because of port direct mode.
2783 * Turning on receive is required if static MAC table is not setup.
2784 */
2785                data &= ~PORT_TX_ENABLE;
2786                data |= PORT_RX_ENABLE;
2787                data |= PORT_LEARN_DISABLE;
2788                break;
2789        case STP_STATE_LEARNING:
2790                data &= ~PORT_TX_ENABLE;
2791                data |= PORT_RX_ENABLE;
2792                data &= ~PORT_LEARN_DISABLE;
2793                break;
2794        case STP_STATE_FORWARDING:
2795                data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2796                data &= ~PORT_LEARN_DISABLE;
2797                break;
2798        case STP_STATE_BLOCKED:
2799/*
2800 * Need to setup static MAC table with override to keep receiving BPDU
2801 * messages.  See sw_init_stp routine.
2802 */
2803                data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2804                data |= PORT_LEARN_DISABLE;
2805                break;
2806        case STP_STATE_SIMPLE:
2807                data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2808                data |= PORT_LEARN_DISABLE;
2809                break;
2810        }
2811        port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data);
2812        hw->ksz_switch->port_cfg[port].stp_state = state;
2813}
2814
2815#define STP_ENTRY                       0
2816#define BROADCAST_ENTRY                 1
2817#define BRIDGE_ADDR_ENTRY               2
2818#define IPV6_ADDR_ENTRY                 3
2819
2820/**
2821 * sw_clr_sta_mac_table - clear static MAC table
2822 * @hw:         The hardware instance.
2823 *
2824 * This routine clears the static MAC table.
2825 */
2826static void sw_clr_sta_mac_table(struct ksz_hw *hw)
2827{
2828        struct ksz_mac_table *entry;
2829        int i;
2830
2831        for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) {
2832                entry = &hw->ksz_switch->mac_table[i];
2833                sw_w_sta_mac_table(hw, i,
2834                        entry->mac_addr, entry->ports,
2835                        entry->override, 0,
2836                        entry->use_fid, entry->fid);
2837        }
2838}
2839
2840/**
2841 * sw_init_stp - initialize switch spanning tree support
2842 * @hw:         The hardware instance.
2843 *
2844 * This routine initializes the spanning tree support of the switch.
2845 */
2846static void sw_init_stp(struct ksz_hw *hw)
2847{
2848        struct ksz_mac_table *entry;
2849
2850        entry = &hw->ksz_switch->mac_table[STP_ENTRY];
2851        entry->mac_addr[0] = 0x01;
2852        entry->mac_addr[1] = 0x80;
2853        entry->mac_addr[2] = 0xC2;
2854        entry->mac_addr[3] = 0x00;
2855        entry->mac_addr[4] = 0x00;
2856        entry->mac_addr[5] = 0x00;
2857        entry->ports = HOST_MASK;
2858        entry->override = 1;
2859        entry->valid = 1;
2860        sw_w_sta_mac_table(hw, STP_ENTRY,
2861                entry->mac_addr, entry->ports,
2862                entry->override, entry->valid,
2863                entry->use_fid, entry->fid);
2864}
2865
2866/**
2867 * sw_block_addr - block certain packets from the host port
2868 * @hw:         The hardware instance.
2869 *
2870 * This routine blocks certain packets from reaching to the host port.
2871 */
2872static void sw_block_addr(struct ksz_hw *hw)
2873{
2874        struct ksz_mac_table *entry;
2875        int i;
2876
2877        for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) {
2878                entry = &hw->ksz_switch->mac_table[i];
2879                entry->valid = 0;
2880                sw_w_sta_mac_table(hw, i,
2881                        entry->mac_addr, entry->ports,
2882                        entry->override, entry->valid,
2883                        entry->use_fid, entry->fid);
2884        }
2885}
2886
2887#define PHY_LINK_SUPPORT                \
2888        (PHY_AUTO_NEG_ASYM_PAUSE |      \
2889        PHY_AUTO_NEG_SYM_PAUSE |        \
2890        PHY_AUTO_NEG_100BT4 |           \
2891        PHY_AUTO_NEG_100BTX_FD |        \
2892        PHY_AUTO_NEG_100BTX |           \
2893        PHY_AUTO_NEG_10BT_FD |          \
2894        PHY_AUTO_NEG_10BT)
2895
2896static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data)
2897{
2898        *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2899}
2900
2901static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data)
2902{
2903        writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2904}
2905
2906static inline void hw_r_phy_link_stat(struct ksz_hw *hw, int phy, u16 *data)
2907{
2908        *data = readw(hw->io + phy + KS884X_PHY_STATUS_OFFSET);
2909}
2910
2911static inline void hw_r_phy_auto_neg(struct ksz_hw *hw, int phy, u16 *data)
2912{
2913        *data = readw(hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2914}
2915
2916static inline void hw_w_phy_auto_neg(struct ksz_hw *hw, int phy, u16 data)
2917{
2918        writew(data, hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2919}
2920
2921static inline void hw_r_phy_rem_cap(struct ksz_hw *hw, int phy, u16 *data)
2922{
2923        *data = readw(hw->io + phy + KS884X_PHY_REMOTE_CAP_OFFSET);
2924}
2925
2926static inline void hw_r_phy_crossover(struct ksz_hw *hw, int phy, u16 *data)
2927{
2928        *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2929}
2930
2931static inline void hw_w_phy_crossover(struct ksz_hw *hw, int phy, u16 data)
2932{
2933        writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2934}
2935
2936static inline void hw_r_phy_polarity(struct ksz_hw *hw, int phy, u16 *data)
2937{
2938        *data = readw(hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2939}
2940
2941static inline void hw_w_phy_polarity(struct ksz_hw *hw, int phy, u16 data)
2942{
2943        writew(data, hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2944}
2945
2946static inline void hw_r_phy_link_md(struct ksz_hw *hw, int phy, u16 *data)
2947{
2948        *data = readw(hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2949}
2950
2951static inline void hw_w_phy_link_md(struct ksz_hw *hw, int phy, u16 data)
2952{
2953        writew(data, hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2954}
2955
2956/**
2957 * hw_r_phy - read data from PHY register
2958 * @hw:         The hardware instance.
2959 * @port:       Port to read.
2960 * @reg:        PHY register to read.
2961 * @val:        Buffer to store the read data.
2962 *
2963 * This routine reads data from the PHY register.
2964 */
2965static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val)
2966{
2967        int phy;
2968
2969        phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2970        *val = readw(hw->io + phy);
2971}
2972
2973/**
2974 * port_w_phy - write data to PHY register
2975 * @hw:         The hardware instance.
2976 * @port:       Port to write.
2977 * @reg:        PHY register to write.
2978 * @val:        Word data to write.
2979 *
2980 * This routine writes data to the PHY register.
2981 */
2982static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val)
2983{
2984        int phy;
2985
2986        phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2987        writew(val, hw->io + phy);
2988}
2989
2990/*
2991 * EEPROM access functions
2992 */
2993
2994#define AT93C_CODE                      0
2995#define AT93C_WR_OFF                    0x00
2996#define AT93C_WR_ALL                    0x10
2997#define AT93C_ER_ALL                    0x20
2998#define AT93C_WR_ON                     0x30
2999
3000#define AT93C_WRITE                     1
3001#define AT93C_READ                      2
3002#define AT93C_ERASE                     3
3003
3004#define EEPROM_DELAY                    4
3005
3006static inline void drop_gpio(struct ksz_hw *hw, u8 gpio)
3007{
3008        u16 data;
3009
3010        data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3011        data &= ~gpio;
3012        writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3013}
3014
3015static inline void raise_gpio(struct ksz_hw *hw, u8 gpio)
3016{
3017        u16 data;
3018
3019        data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3020        data |= gpio;
3021        writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3022}
3023
3024static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio)
3025{
3026        u16 data;
3027
3028        data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3029        return (u8)(data & gpio);
3030}
3031
3032static void eeprom_clk(struct ksz_hw *hw)
3033{
3034        raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3035        udelay(EEPROM_DELAY);
3036        drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3037        udelay(EEPROM_DELAY);
3038}
3039
3040static u16 spi_r(struct ksz_hw *hw)
3041{
3042        int i;
3043        u16 temp = 0;
3044
3045        for (i = 15; i >= 0; i--) {
3046                raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3047                udelay(EEPROM_DELAY);
3048
3049                temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0;
3050
3051                drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3052                udelay(EEPROM_DELAY);
3053        }
3054        return temp;
3055}
3056
3057static void spi_w(struct ksz_hw *hw, u16 data)
3058{
3059        int i;
3060
3061        for (i = 15; i >= 0; i--) {
3062                (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3063                        drop_gpio(hw, EEPROM_DATA_OUT);
3064                eeprom_clk(hw);
3065        }
3066}
3067
3068static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg)
3069{
3070        int i;
3071
3072        /* Initial start bit */
3073        raise_gpio(hw, EEPROM_DATA_OUT);
3074        eeprom_clk(hw);
3075
3076        /* AT93C operation */
3077        for (i = 1; i >= 0; i--) {
3078                (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3079                        drop_gpio(hw, EEPROM_DATA_OUT);
3080                eeprom_clk(hw);
3081        }
3082
3083        /* Address location */
3084        for (i = 5; i >= 0; i--) {
3085                (reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3086                        drop_gpio(hw, EEPROM_DATA_OUT);
3087                eeprom_clk(hw);
3088        }
3089}
3090
3091#define EEPROM_DATA_RESERVED            0
3092#define EEPROM_DATA_MAC_ADDR_0          1
3093#define EEPROM_DATA_MAC_ADDR_1          2
3094#define EEPROM_DATA_MAC_ADDR_2          3
3095#define EEPROM_DATA_SUBSYS_ID           4
3096#define EEPROM_DATA_SUBSYS_VEN_ID       5
3097#define EEPROM_DATA_PM_CAP              6
3098
3099/* User defined EEPROM data */
3100#define EEPROM_DATA_OTHER_MAC_ADDR      9
3101
3102/**
3103 * eeprom_read - read from AT93C46 EEPROM
3104 * @hw:         The hardware instance.
3105 * @reg:        The register offset.
3106 *
3107 * This function reads a word from the AT93C46 EEPROM.
3108 *
3109 * Return the data value.
3110 */
3111static u16 eeprom_read(struct ksz_hw *hw, u8 reg)
3112{
3113        u16 data;
3114
3115        raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3116
3117        spi_reg(hw, AT93C_READ, reg);
3118        data = spi_r(hw);
3119
3120        drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3121
3122        return data;
3123}
3124
3125/**
3126 * eeprom_write - write to AT93C46 EEPROM
3127 * @hw:         The hardware instance.
3128 * @reg:        The register offset.
3129 * @data:       The data value.
3130 *
3131 * This procedure writes a word to the AT93C46 EEPROM.
3132 */
3133static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data)
3134{
3135        int timeout;
3136
3137        raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3138
3139        /* Enable write. */
3140        spi_reg(hw, AT93C_CODE, AT93C_WR_ON);
3141        drop_gpio(hw, EEPROM_CHIP_SELECT);
3142        udelay(1);
3143
3144        /* Erase the register. */
3145        raise_gpio(hw, EEPROM_CHIP_SELECT);
3146        spi_reg(hw, AT93C_ERASE, reg);
3147        drop_gpio(hw, EEPROM_CHIP_SELECT);
3148        udelay(1);
3149
3150        /* Check operation complete. */
3151        raise_gpio(hw, EEPROM_CHIP_SELECT);
3152        timeout = 8;
3153        mdelay(2);
3154        do {
3155                mdelay(1);
3156        } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3157        drop_gpio(hw, EEPROM_CHIP_SELECT);
3158        udelay(1);
3159
3160        /* Write the register. */
3161        raise_gpio(hw, EEPROM_CHIP_SELECT);
3162        spi_reg(hw, AT93C_WRITE, reg);
3163        spi_w(hw, data);
3164        drop_gpio(hw, EEPROM_CHIP_SELECT);
3165        udelay(1);
3166
3167        /* Check operation complete. */
3168        raise_gpio(hw, EEPROM_CHIP_SELECT);
3169        timeout = 8;
3170        mdelay(2);
3171        do {
3172                mdelay(1);
3173        } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3174        drop_gpio(hw, EEPROM_CHIP_SELECT);
3175        udelay(1);
3176
3177        /* Disable write. */
3178        raise_gpio(hw, EEPROM_CHIP_SELECT);
3179        spi_reg(hw, AT93C_CODE, AT93C_WR_OFF);
3180
3181        drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3182}
3183
3184/*
3185 * Link detection routines
3186 */
3187
3188static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl)
3189{
3190        ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE;
3191        switch (port->flow_ctrl) {
3192        case PHY_FLOW_CTRL:
3193                ctrl |= PORT_AUTO_NEG_SYM_PAUSE;
3194                break;
3195        /* Not supported. */
3196        case PHY_TX_ONLY:
3197        case PHY_RX_ONLY:
3198        default:
3199                break;
3200        }
3201        return ctrl;
3202}
3203
3204static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx)
3205{
3206        u32 rx_cfg;
3207        u32 tx_cfg;
3208
3209        rx_cfg = hw->rx_cfg;
3210        tx_cfg = hw->tx_cfg;
3211        if (rx)
3212                hw->rx_cfg |= DMA_RX_FLOW_ENABLE;
3213        else
3214                hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE;
3215        if (tx)
3216                hw->tx_cfg |= DMA_TX_FLOW_ENABLE;
3217        else
3218                hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3219        if (hw->enabled) {
3220                if (rx_cfg != hw->rx_cfg)
3221                        writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3222                if (tx_cfg != hw->tx_cfg)
3223                        writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3224        }
3225}
3226
3227static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port,
3228        u16 local, u16 remote)
3229{
3230        int rx;
3231        int tx;
3232
3233        if (hw->overrides & PAUSE_FLOW_CTRL)
3234                return;
3235
3236        rx = tx = 0;
3237        if (port->force_link)
3238                rx = tx = 1;
3239        if (remote & PHY_AUTO_NEG_SYM_PAUSE) {
3240                if (local & PHY_AUTO_NEG_SYM_PAUSE) {
3241                        rx = tx = 1;
3242                } else if ((remote & PHY_AUTO_NEG_ASYM_PAUSE) &&
3243                                (local & PHY_AUTO_NEG_PAUSE) ==
3244                                PHY_AUTO_NEG_ASYM_PAUSE) {
3245                        tx = 1;
3246                }
3247        } else if (remote & PHY_AUTO_NEG_ASYM_PAUSE) {
3248                if ((local & PHY_AUTO_NEG_PAUSE) == PHY_AUTO_NEG_PAUSE)
3249                        rx = 1;
3250        }
3251        if (!hw->ksz_switch)
3252                set_flow_ctrl(hw, rx, tx);
3253}
3254
3255static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port,
3256        struct ksz_port_info *info, u16 link_status)
3257{
3258        if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) &&
3259                        !(hw->overrides & PAUSE_FLOW_CTRL)) {
3260                u32 cfg = hw->tx_cfg;
3261
3262                /* Disable flow control in the half duplex mode. */
3263                if (1 == info->duplex)
3264                        hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3265                if (hw->enabled && cfg != hw->tx_cfg)
3266                        writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3267        }
3268}
3269
3270/**
3271 * port_get_link_speed - get current link status
3272 * @port:       The port instance.
3273 *
3274 * This routine reads PHY registers to determine the current link status of the
3275 * switch ports.
3276 */
3277static void port_get_link_speed(struct ksz_port *port)
3278{
3279        uint interrupt;
3280        struct ksz_port_info *info;
3281        struct ksz_port_info *linked = NULL;
3282        struct ksz_hw *hw = port->hw;
3283        u16 data;
3284        u16 status;
3285        u8 local;
3286        u8 remote;
3287        int i;
3288        int p;
3289        int change = 0;
3290
3291        interrupt = hw_block_intr(hw);
3292
3293        for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3294                info = &hw->port_info[p];
3295                port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3296                port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3297
3298                /*
3299                 * Link status is changing all the time even when there is no
3300                 * cable connection!
3301                 */
3302                remote = status & (PORT_AUTO_NEG_COMPLETE |
3303                        PORT_STATUS_LINK_GOOD);
3304                local = (u8) data;
3305
3306                /* No change to status. */
3307                if (local == info->advertised && remote == info->partner)
3308                        continue;
3309
3310                info->advertised = local;
3311                info->partner = remote;
3312                if (status & PORT_STATUS_LINK_GOOD) {
3313
3314                        /* Remember the first linked port. */
3315                        if (!linked)
3316                                linked = info;
3317
3318                        info->tx_rate = 10 * TX_RATE_UNIT;
3319                        if (status & PORT_STATUS_SPEED_100MBIT)
3320                                info->tx_rate = 100 * TX_RATE_UNIT;
3321
3322                        info->duplex = 1;
3323                        if (status & PORT_STATUS_FULL_DUPLEX)
3324                                info->duplex = 2;
3325
3326                        if (media_connected != info->state) {
3327                                hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET,
3328                                        &data);
3329                                hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET,
3330                                        &status);
3331                                determine_flow_ctrl(hw, port, data, status);
3332                                if (hw->ksz_switch) {
3333                                        port_cfg_back_pressure(hw, p,
3334                                                (1 == info->duplex));
3335                                }
3336                                change |= 1 << i;
3337                                port_cfg_change(hw, port, info, status);
3338                        }
3339                        info->state = media_connected;
3340                } else {
3341                        if (media_disconnected != info->state) {
3342                                change |= 1 << i;
3343
3344                                /* Indicate the link just goes down. */
3345                                hw->port_mib[p].link_down = 1;
3346                        }
3347                        info->state = media_disconnected;
3348                }
3349                hw->port_mib[p].state = (u8) info->state;
3350        }
3351
3352        if (linked && media_disconnected == port->linked->state)
3353                port->linked = linked;
3354
3355        hw_restore_intr(hw, interrupt);
3356}
3357
3358#define PHY_RESET_TIMEOUT               10
3359
3360/**
3361 * port_set_link_speed - set port speed
3362 * @port:       The port instance.
3363 *
3364 * This routine sets the link speed of the switch ports.
3365 */
3366static void port_set_link_speed(struct ksz_port *port)
3367{
3368        struct ksz_hw *hw = port->hw;
3369        u16 data;
3370        u16 cfg;
3371        u8 status;
3372        int i;
3373        int p;
3374
3375        for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3376                port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3377                port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3378
3379                cfg = 0;
3380                if (status & PORT_STATUS_LINK_GOOD)
3381                        cfg = data;
3382
3383                data |= PORT_AUTO_NEG_ENABLE;
3384                data = advertised_flow_ctrl(port, data);
3385
3386                data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX |
3387                        PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT;
3388
3389                /* Check if manual configuration is specified by the user. */
3390                if (port->speed || port->duplex) {
3391                        if (10 == port->speed)
3392                                data &= ~(PORT_AUTO_NEG_100BTX_FD |
3393                                        PORT_AUTO_NEG_100BTX);
3394                        else if (100 == port->speed)
3395                                data &= ~(PORT_AUTO_NEG_10BT_FD |
3396                                        PORT_AUTO_NEG_10BT);
3397                        if (1 == port->duplex)
3398                                data &= ~(PORT_AUTO_NEG_100BTX_FD |
3399                                        PORT_AUTO_NEG_10BT_FD);
3400                        else if (2 == port->duplex)
3401                                data &= ~(PORT_AUTO_NEG_100BTX |
3402                                        PORT_AUTO_NEG_10BT);
3403                }
3404                if (data != cfg) {
3405                        data |= PORT_AUTO_NEG_RESTART;
3406                        port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data);
3407                }
3408        }
3409}
3410
3411/**
3412 * port_force_link_speed - force port speed
3413 * @port:       The port instance.
3414 *
3415 * This routine forces the link speed of the switch ports.
3416 */
3417static void port_force_link_speed(struct ksz_port *port)
3418{
3419        struct ksz_hw *hw = port->hw;
3420        u16 data;
3421        int i;
3422        int phy;
3423        int p;
3424
3425        for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3426                phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL;
3427                hw_r_phy_ctrl(hw, phy, &data);
3428
3429                data &= ~PHY_AUTO_NEG_ENABLE;
3430
3431                if (10 == port->speed)
3432                        data &= ~PHY_SPEED_100MBIT;
3433                else if (100 == port->speed)
3434                        data |= PHY_SPEED_100MBIT;
3435                if (1 == port->duplex)
3436                        data &= ~PHY_FULL_DUPLEX;
3437                else if (2 == port->duplex)
3438                        data |= PHY_FULL_DUPLEX;
3439                hw_w_phy_ctrl(hw, phy, data);
3440        }
3441}
3442
3443static void port_set_power_saving(struct ksz_port *port, int enable)
3444{
3445        struct ksz_hw *hw = port->hw;
3446        int i;
3447        int p;
3448
3449        for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++)
3450                port_cfg(hw, p,
3451                        KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable);
3452}
3453
3454/*
3455 * KSZ8841 power management functions
3456 */
3457
3458/**
3459 * hw_chk_wol_pme_status - check PMEN pin
3460 * @hw:         The hardware instance.
3461 *
3462 * This function is used to check PMEN pin is asserted.
3463 *
3464 * Return 1 if PMEN pin is asserted; otherwise, 0.
3465 */
3466static int hw_chk_wol_pme_status(struct ksz_hw *hw)
3467{
3468        struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3469        struct pci_dev *pdev = hw_priv->pdev;
3470        u16 data;
3471
3472        if (!pdev->pm_cap)
3473                return 0;
3474        pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3475        return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS;
3476}
3477
3478/**
3479 * hw_clr_wol_pme_status - clear PMEN pin
3480 * @hw:         The hardware instance.
3481 *
3482 * This routine is used to clear PME_Status to deassert PMEN pin.
3483 */
3484static void hw_clr_wol_pme_status(struct ksz_hw *hw)
3485{
3486        struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3487        struct pci_dev *pdev = hw_priv->pdev;
3488        u16 data;
3489
3490        if (!pdev->pm_cap)
3491                return;
3492
3493        /* Clear PME_Status to deassert PMEN pin. */
3494        pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3495        data |= PCI_PM_CTRL_PME_STATUS;
3496        pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3497}
3498
3499/**
3500 * hw_cfg_wol_pme - enable or disable Wake-on-LAN
3501 * @hw:         The hardware instance.
3502 * @set:        The flag indicating whether to enable or disable.
3503 *
3504 * This routine is used to enable or disable Wake-on-LAN.
3505 */
3506static void hw_cfg_wol_pme(struct ksz_hw *hw, int set)
3507{
3508        struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3509        struct pci_dev *pdev = hw_priv->pdev;
3510        u16 data;
3511
3512        if (!pdev->pm_cap)
3513                return;
3514        pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3515        data &= ~PCI_PM_CTRL_STATE_MASK;
3516        if (set)
3517                data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot;
3518        else
3519                data &= ~PCI_PM_CTRL_PME_ENABLE;
3520        pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3521}
3522
3523/**
3524 * hw_cfg_wol - configure Wake-on-LAN features
3525 * @hw:         The hardware instance.
3526 * @frame:      The pattern frame bit.
3527 * @set:        The flag indicating whether to enable or disable.
3528 *
3529 * This routine is used to enable or disable certain Wake-on-LAN features.
3530 */
3531static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set)
3532{
3533        u16 data;
3534
3535        data = readw(hw->io + KS8841_WOL_CTRL_OFFSET);
3536        if (set)
3537                data |= frame;
3538        else
3539                data &= ~frame;
3540        writew(data, hw->io + KS8841_WOL_CTRL_OFFSET);
3541}
3542
3543/**
3544 * hw_set_wol_frame - program Wake-on-LAN pattern
3545 * @hw:         The hardware instance.
3546 * @i:          The frame index.
3547 * @mask_size:  The size of the mask.
3548 * @mask:       Mask to ignore certain bytes in the pattern.
3549 * @frame_size: The size of the frame.
3550 * @pattern:    The frame data.
3551 *
3552 * This routine is used to program Wake-on-LAN pattern.
3553 */
3554static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size,
3555        const u8 *mask, uint frame_size, const u8 *pattern)
3556{
3557        int bits;
3558        int from;
3559        int len;
3560        int to;
3561        u32 crc;
3562        u8 data[64];
3563        u8 val = 0;
3564
3565        if (frame_size > mask_size * 8)
3566                frame_size = mask_size * 8;
3567        if (frame_size > 64)
3568                frame_size = 64;
3569
3570        i *= 0x10;
3571        writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i);
3572        writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i);
3573
3574        bits = len = from = to = 0;
3575        do {
3576                if (bits) {
3577                        if ((val & 1))
3578                                data[to++] = pattern[from];
3579                        val >>= 1;
3580                        ++from;
3581                        --bits;
3582                } else {
3583                        val = mask[len];
3584                        writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i
3585                                + len);
3586                        ++len;
3587                        if (val)
3588                                bits = 8;
3589                        else
3590                                from += 8;
3591                }
3592        } while (from < (int) frame_size);
3593        if (val) {
3594                bits = mask[len - 1];
3595                val <<= (from % 8);
3596                bits &= ~val;
3597                writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len -
3598                        1);
3599        }
3600        crc = ether_crc(to, data);
3601        writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i);
3602}
3603
3604/**
3605 * hw_add_wol_arp - add ARP pattern
3606 * @hw:         The hardware instance.
3607 * @ip_addr:    The IPv4 address assigned to the device.
3608 *
3609 * This routine is used to add ARP pattern for waking up the host.
3610 */
3611static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr)
3612{
3613        static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 };
3614        u8 pattern[42] = {
3615                0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
3616                0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3617                0x08, 0x06,
3618                0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01,
3619                0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3620                0x00, 0x00, 0x00, 0x00,
3621                0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3622                0x00, 0x00, 0x00, 0x00 };
3623
3624        memcpy(&pattern[38], ip_addr, 4);
3625        hw_set_wol_frame(hw, 3, 6, mask, 42, pattern);
3626}
3627
3628/**
3629 * hw_add_wol_bcast - add broadcast pattern
3630 * @hw:         The hardware instance.
3631 *
3632 * This routine is used to add broadcast pattern for waking up the host.
3633 */
3634static void hw_add_wol_bcast(struct ksz_hw *hw)
3635{
3636        static const u8 mask[] = { 0x3F };
3637        static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3638
3639        hw_set_wol_frame(hw, 2, 1, mask, ETH_ALEN, pattern);
3640}
3641
3642/**
3643 * hw_add_wol_mcast - add multicast pattern
3644 * @hw:         The hardware instance.
3645 *
3646 * This routine is used to add multicast pattern for waking up the host.
3647 *
3648 * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used
3649 * by IPv6 ping command.  Note that multicast packets are filtred through the
3650 * multicast hash table, so not all multicast packets can wake up the host.
3651 */
3652static void hw_add_wol_mcast(struct ksz_hw *hw)
3653{
3654        static const u8 mask[] = { 0x3F };
3655        u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 };
3656
3657        memcpy(&pattern[3], &hw->override_addr[3], 3);
3658        hw_set_wol_frame(hw, 1, 1, mask, 6, pattern);
3659}
3660
3661/**
3662 * hw_add_wol_ucast - add unicast pattern
3663 * @hw:         The hardware instance.
3664 *
3665 * This routine is used to add unicast pattern to wakeup the host.
3666 *
3667 * It is assumed the unicast packet is directed to the device, as the hardware
3668 * can only receive them in normal case.
3669 */
3670static void hw_add_wol_ucast(struct ksz_hw *hw)
3671{
3672        static const u8 mask[] = { 0x3F };
3673
3674        hw_set_wol_frame(hw, 0, 1, mask, ETH_ALEN, hw->override_addr);
3675}
3676
3677/**
3678 * hw_enable_wol - enable Wake-on-LAN
3679 * @hw:         The hardware instance.
3680 * @wol_enable: The Wake-on-LAN settings.
3681 * @net_addr:   The IPv4 address assigned to the device.
3682 *
3683 * This routine is used to enable Wake-on-LAN depending on driver settings.
3684 */
3685static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr)
3686{
3687        hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC));
3688        hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST));
3689        hw_add_wol_ucast(hw);
3690        hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST));
3691        hw_add_wol_mcast(hw);
3692        hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST));
3693        hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP));
3694        hw_add_wol_arp(hw, net_addr);
3695}
3696
3697/**
3698 * hw_init - check driver is correct for the hardware
3699 * @hw:         The hardware instance.
3700 *
3701 * This function checks the hardware is correct for this driver and sets the
3702 * hardware up for proper initialization.
3703 *
3704 * Return number of ports or 0 if not right.
3705 */
3706static int hw_init(struct ksz_hw *hw)
3707{
3708        int rc = 0;
3709        u16 data;
3710        u16 revision;
3711
3712        /* Set bus speed to 125MHz. */
3713        writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET);
3714
3715        /* Check KSZ884x chip ID. */
3716        data = readw(hw->io + KS884X_CHIP_ID_OFFSET);
3717
3718        revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT;
3719        data &= KS884X_CHIP_ID_MASK_41;
3720        if (REG_CHIP_ID_41 == data)
3721                rc = 1;
3722        else if (REG_CHIP_ID_42 == data)
3723                rc = 2;
3724        else
3725                return 0;
3726
3727        /* Setup hardware features or bug workarounds. */
3728        if (revision <= 1) {
3729                hw->features |= SMALL_PACKET_TX_BUG;
3730                if (1 == rc)
3731                        hw->features |= HALF_DUPLEX_SIGNAL_BUG;
3732        }
3733        return rc;
3734}
3735
3736/**
3737 * hw_reset - reset the hardware
3738 * @hw:         The hardware instance.
3739 *
3740 * This routine resets the hardware.
3741 */
3742static void hw_reset(struct ksz_hw *hw)
3743{
3744        writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3745
3746        /* Wait for device to reset. */
3747        mdelay(10);
3748
3749        /* Write 0 to clear device reset. */
3750        writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3751}
3752
3753/**
3754 * hw_setup - setup the hardware
3755 * @hw:         The hardware instance.
3756 *
3757 * This routine setup the hardware for proper operation.
3758 */
3759static void hw_setup(struct ksz_hw *hw)
3760{
3761#if SET_DEFAULT_LED
3762        u16 data;
3763
3764        /* Change default LED mode. */
3765        data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3766        data &= ~LED_MODE;
3767        data |= SET_DEFAULT_LED;
3768        writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3769#endif
3770
3771        /* Setup transmit control. */
3772        hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE |
3773                (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE);
3774
3775        /* Setup receive control. */
3776        hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST |
3777                (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE);
3778        hw->rx_cfg |= KS884X_DMA_RX_MULTICAST;
3779
3780        /* Hardware cannot handle UDP packet in IP fragments. */
3781        hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
3782
3783        if (hw->all_multi)
3784                hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3785        if (hw->promiscuous)
3786                hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3787}
3788
3789/**
3790 * hw_setup_intr - setup interrupt mask
3791 * @hw:         The hardware instance.
3792 *
3793 * This routine setup the interrupt mask for proper operation.
3794 */
3795static void hw_setup_intr(struct ksz_hw *hw)
3796{
3797        hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN;
3798}
3799
3800static void ksz_check_desc_num(struct ksz_desc_info *info)
3801{
3802#define MIN_DESC_SHIFT  2
3803
3804        int alloc = info->alloc;
3805        int shift;
3806
3807        shift = 0;
3808        while (!(alloc & 1)) {
3809                shift++;
3810                alloc >>= 1;
3811        }
3812        if (alloc != 1 || shift < MIN_DESC_SHIFT) {
3813                pr_alert("Hardware descriptor numbers not right!\n");
3814                while (alloc) {
3815                        shift++;
3816                        alloc >>= 1;
3817                }
3818                if (shift < MIN_DESC_SHIFT)
3819                        shift = MIN_DESC_SHIFT;
3820                alloc = 1 << shift;
3821                info->alloc = alloc;
3822        }
3823        info->mask = info->alloc - 1;
3824}
3825
3826static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit)
3827{
3828        int i;
3829        u32 phys = desc_info->ring_phys;
3830        struct ksz_hw_desc *desc = desc_info->ring_virt;
3831        struct ksz_desc *cur = desc_info->ring;
3832        struct ksz_desc *previous = NULL;
3833
3834        for (i = 0; i < desc_info->alloc; i++) {
3835                cur->phw = desc++;
3836                phys += desc_info->size;
3837                previous = cur++;
3838                previous->phw->next = cpu_to_le32(phys);
3839        }
3840        previous->phw->next = cpu_to_le32(desc_info->ring_phys);
3841        previous->sw.buf.rx.end_of_ring = 1;
3842        previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data);
3843
3844        desc_info->avail = desc_info->alloc;
3845        desc_info->last = desc_info->next = 0;
3846
3847        desc_info->cur = desc_info->ring;
3848}
3849
3850/**
3851 * hw_set_desc_base - set descriptor base addresses
3852 * @hw:         The hardware instance.
3853 * @tx_addr:    The transmit descriptor base.
3854 * @rx_addr:    The receive descriptor base.
3855 *
3856 * This routine programs the descriptor base addresses after reset.
3857 */
3858static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr)
3859{
3860        /* Set base address of Tx/Rx descriptors. */
3861        writel(tx_addr, hw->io + KS_DMA_TX_ADDR);
3862        writel(rx_addr, hw->io + KS_DMA_RX_ADDR);
3863}
3864
3865static void hw_reset_pkts(struct ksz_desc_info *info)
3866{
3867        info->cur = info->ring;
3868        info->avail = info->alloc;
3869        info->last = info->next = 0;
3870}
3871
3872static inline void hw_resume_rx(struct ksz_hw *hw)
3873{
3874        writel(DMA_START, hw->io + KS_DMA_RX_START);
3875}
3876
3877/**
3878 * hw_start_rx - start receiving
3879 * @hw:         The hardware instance.
3880 *
3881 * This routine starts the receive function of the hardware.
3882 */
3883static void hw_start_rx(struct ksz_hw *hw)
3884{
3885        writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3886
3887        /* Notify when the receive stops. */
3888        hw->intr_mask |= KS884X_INT_RX_STOPPED;
3889
3890        writel(DMA_START, hw->io + KS_DMA_RX_START);
3891        hw_ack_intr(hw, KS884X_INT_RX_STOPPED);
3892        hw->rx_stop++;
3893
3894        /* Variable overflows. */
3895        if (0 == hw->rx_stop)
3896                hw->rx_stop = 2;
3897}
3898
3899/**
3900 * hw_stop_rx - stop receiving
3901 * @hw:         The hardware instance.
3902 *
3903 * This routine stops the receive function of the hardware.
3904 */
3905static void hw_stop_rx(struct ksz_hw *hw)
3906{
3907        hw->rx_stop = 0;
3908        hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED);
3909        writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL);
3910}
3911
3912/**
3913 * hw_start_tx - start transmitting
3914 * @hw:         The hardware instance.
3915 *
3916 * This routine starts the transmit function of the hardware.
3917 */
3918static void hw_start_tx(struct ksz_hw *hw)
3919{
3920        writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3921}
3922
3923/**
3924 * hw_stop_tx - stop transmitting
3925 * @hw:         The hardware instance.
3926 *
3927 * This routine stops the transmit function of the hardware.
3928 */
3929static void hw_stop_tx(struct ksz_hw *hw)
3930{
3931        writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL);
3932}
3933
3934/**
3935 * hw_disable - disable hardware
3936 * @hw:         The hardware instance.
3937 *
3938 * This routine disables the hardware.
3939 */
3940static void hw_disable(struct ksz_hw *hw)
3941{
3942        hw_stop_rx(hw);
3943        hw_stop_tx(hw);
3944        hw->enabled = 0;
3945}
3946
3947/**
3948 * hw_enable - enable hardware
3949 * @hw:         The hardware instance.
3950 *
3951 * This routine enables the hardware.
3952 */
3953static void hw_enable(struct ksz_hw *hw)
3954{
3955        hw_start_tx(hw);
3956        hw_start_rx(hw);
3957        hw->enabled = 1;
3958}
3959
3960/**
3961 * hw_alloc_pkt - allocate enough descriptors for transmission
3962 * @hw:         The hardware instance.
3963 * @length:     The length of the packet.
3964 * @physical:   Number of descriptors required.
3965 *
3966 * This function allocates descriptors for transmission.
3967 *
3968 * Return 0 if not successful; 1 for buffer copy; or number of descriptors.
3969 */
3970static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical)
3971{
3972        /* Always leave one descriptor free. */
3973        if (hw->tx_desc_info.avail <= 1)
3974                return 0;
3975
3976        /* Allocate a descriptor for transmission and mark it current. */
3977        get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur);
3978        hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1;
3979
3980        /* Keep track of number of transmit descriptors used so far. */
3981        ++hw->tx_int_cnt;
3982        hw->tx_size += length;
3983
3984        /* Cannot hold on too much data. */
3985        if (hw->tx_size >= MAX_TX_HELD_SIZE)
3986                hw->tx_int_cnt = hw->tx_int_mask + 1;
3987
3988        if (physical > hw->tx_desc_info.avail)
3989                return 1;
3990
3991        return hw->tx_desc_info.avail;
3992}
3993
3994/**
3995 * hw_send_pkt - mark packet for transmission
3996 * @hw:         The hardware instance.
3997 *
3998 * This routine marks the packet for transmission in PCI version.
3999 */
4000static void hw_send_pkt(struct ksz_hw *hw)
4001{
4002        struct ksz_desc *cur = hw->tx_desc_info.cur;
4003
4004        cur->sw.buf.tx.last_seg = 1;
4005
4006        /* Interrupt only after specified number of descriptors used. */
4007        if (hw->tx_int_cnt > hw->tx_int_mask) {
4008                cur->sw.buf.tx.intr = 1;
4009                hw->tx_int_cnt = 0;
4010                hw->tx_size = 0;
4011        }
4012
4013        /* KSZ8842 supports port directed transmission. */
4014        cur->sw.buf.tx.dest_port = hw->dst_ports;
4015
4016        release_desc(cur);
4017
4018        writel(0, hw->io + KS_DMA_TX_START);
4019}
4020
4021static int empty_addr(u8 *addr)
4022{
4023        u32 *addr1 = (u32 *) addr;
4024        u16 *addr2 = (u16 *) &addr[4];
4025
4026        return 0 == *addr1 && 0 == *addr2;
4027}
4028
4029/**
4030 * hw_set_addr - set MAC address
4031 * @hw:         The hardware instance.
4032 *
4033 * This routine programs the MAC address of the hardware when the address is
4034 * overridden.
4035 */
4036static void hw_set_addr(struct ksz_hw *hw)
4037{
4038        int i;
4039
4040        for (i = 0; i < ETH_ALEN; i++)
4041                writeb(hw->override_addr[MAC_ADDR_ORDER(i)],
4042                        hw->io + KS884X_ADDR_0_OFFSET + i);
4043
4044        sw_set_addr(hw, hw->override_addr);
4045}
4046
4047/**
4048 * hw_read_addr - read MAC address
4049 * @hw:         The hardware instance.
4050 *
4051 * This routine retrieves the MAC address of the hardware.
4052 */
4053static void hw_read_addr(struct ksz_hw *hw)
4054{
4055        int i;
4056
4057        for (i = 0; i < ETH_ALEN; i++)
4058                hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io +
4059                        KS884X_ADDR_0_OFFSET + i);
4060
4061        if (!hw->mac_override) {
4062                memcpy(hw->override_addr, hw->perm_addr, ETH_ALEN);
4063                if (empty_addr(hw->override_addr)) {
4064                        memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS, ETH_ALEN);
4065                        memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS,
4066                               ETH_ALEN);
4067                        hw->override_addr[5] += hw->id;
4068                        hw_set_addr(hw);
4069                }
4070        }
4071}
4072
4073static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr)
4074{
4075        int i;
4076        u32 mac_addr_lo;
4077        u32 mac_addr_hi;
4078
4079        mac_addr_hi = 0;
4080        for (i = 0; i < 2; i++) {
4081                mac_addr_hi <<= 8;
4082                mac_addr_hi |= mac_addr[i];
4083        }
4084        mac_addr_hi |= ADD_ADDR_ENABLE;
4085        mac_addr_lo = 0;
4086        for (i = 2; i < 6; i++) {
4087                mac_addr_lo <<= 8;
4088                mac_addr_lo |= mac_addr[i];
4089        }
4090        index *= ADD_ADDR_INCR;
4091
4092        writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO);
4093        writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI);
4094}
4095
4096static void hw_set_add_addr(struct ksz_hw *hw)
4097{
4098        int i;
4099
4100        for (i = 0; i < ADDITIONAL_ENTRIES; i++) {
4101                if (empty_addr(hw->address[i]))
4102                        writel(0, hw->io + ADD_ADDR_INCR * i +
4103                                KS_ADD_ADDR_0_HI);
4104                else
4105                        hw_ena_add_addr(hw, i, hw->address[i]);
4106        }
4107}
4108
4109static int hw_add_addr(struct ksz_hw *hw, u8 *mac_addr)
4110{
4111        int i;
4112        int j = ADDITIONAL_ENTRIES;
4113
4114        if (ether_addr_equal(hw->override_addr, mac_addr))
4115                return 0;
4116        for (i = 0; i < hw->addr_list_size; i++) {
4117                if (ether_addr_equal(hw->address[i], mac_addr))
4118                        return 0;
4119                if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i]))
4120                        j = i;
4121        }
4122        if (j < ADDITIONAL_ENTRIES) {
4123                memcpy(hw->address[j], mac_addr, ETH_ALEN);
4124                hw_ena_add_addr(hw, j, hw->address[j]);
4125                return 0;
4126        }
4127        return -1;
4128}
4129
4130static int hw_del_addr(struct ksz_hw *hw, u8 *mac_addr)
4131{
4132        int i;
4133
4134        for (i = 0; i < hw->addr_list_size; i++) {
4135                if (ether_addr_equal(hw->address[i], mac_addr)) {
4136                        eth_zero_addr(hw->address[i]);
4137                        writel(0, hw->io + ADD_ADDR_INCR * i +
4138                                KS_ADD_ADDR_0_HI);
4139                        return 0;
4140                }
4141        }
4142        return -1;
4143}
4144
4145/**
4146 * hw_clr_multicast - clear multicast addresses
4147 * @hw:         The hardware instance.
4148 *
4149 * This routine removes all multicast addresses set in the hardware.
4150 */
4151static void hw_clr_multicast(struct ksz_hw *hw)
4152{
4153        int i;
4154
4155        for (i = 0; i < HW_MULTICAST_SIZE; i++) {
4156                hw->multi_bits[i] = 0;
4157
4158                writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i);
4159        }
4160}
4161
4162/**
4163 * hw_set_grp_addr - set multicast addresses
4164 * @hw:         The hardware instance.
4165 *
4166 * This routine programs multicast addresses for the hardware to accept those
4167 * addresses.
4168 */
4169static void hw_set_grp_addr(struct ksz_hw *hw)
4170{
4171        int i;
4172        int index;
4173        int position;
4174        int value;
4175
4176        memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE);
4177
4178        for (i = 0; i < hw->multi_list_size; i++) {
4179                position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f;
4180                index = position >> 3;
4181                value = 1 << (position & 7);
4182                hw->multi_bits[index] |= (u8) value;
4183        }
4184
4185        for (i = 0; i < HW_MULTICAST_SIZE; i++)
4186                writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET +
4187                        i);
4188}
4189
4190/**
4191 * hw_set_multicast - enable or disable all multicast receiving
4192 * @hw:         The hardware instance.
4193 * @multicast:  To turn on or off the all multicast feature.
4194 *
4195 * This routine enables/disables the hardware to accept all multicast packets.
4196 */
4197static void hw_set_multicast(struct ksz_hw *hw, u8 multicast)
4198{
4199        /* Stop receiving for reconfiguration. */
4200        hw_stop_rx(hw);
4201
4202        if (multicast)
4203                hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
4204        else
4205                hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST;
4206
4207        if (hw->enabled)
4208                hw_start_rx(hw);
4209}
4210
4211/**
4212 * hw_set_promiscuous - enable or disable promiscuous receiving
4213 * @hw:         The hardware instance.
4214 * @prom:       To turn on or off the promiscuous feature.
4215 *
4216 * This routine enables/disables the hardware to accept all packets.
4217 */
4218static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom)
4219{
4220        /* Stop receiving for reconfiguration. */
4221        hw_stop_rx(hw);
4222
4223        if (prom)
4224                hw->rx_cfg |= DMA_RX_PROMISCUOUS;
4225        else
4226                hw->rx_cfg &= ~DMA_RX_PROMISCUOUS;
4227
4228        if (hw->enabled)
4229                hw_start_rx(hw);
4230}
4231
4232/**
4233 * sw_enable - enable the switch
4234 * @hw:         The hardware instance.
4235 * @enable:     The flag to enable or disable the switch
4236 *
4237 * This routine is used to enable/disable the switch in KSZ8842.
4238 */
4239static void sw_enable(struct ksz_hw *hw, int enable)
4240{
4241        int port;
4242
4243        for (port = 0; port < SWITCH_PORT_NUM; port++) {
4244                if (hw->dev_count > 1) {
4245                        /* Set port-base vlan membership with host port. */
4246                        sw_cfg_port_base_vlan(hw, port,
4247                                HOST_MASK | (1 << port));
4248                        port_set_stp_state(hw, port, STP_STATE_DISABLED);
4249                } else {
4250                        sw_cfg_port_base_vlan(hw, port, PORT_MASK);
4251                        port_set_stp_state(hw, port, STP_STATE_FORWARDING);
4252                }
4253        }
4254        if (hw->dev_count > 1)
4255                port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
4256        else
4257                port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING);
4258
4259        if (enable)
4260                enable = KS8842_START;
4261        writew(enable, hw->io + KS884X_CHIP_ID_OFFSET);
4262}
4263
4264/**
4265 * sw_setup - setup the switch
4266 * @hw:         The hardware instance.
4267 *
4268 * This routine setup the hardware switch engine for default operation.
4269 */
4270static void sw_setup(struct ksz_hw *hw)
4271{
4272        int port;
4273
4274        sw_set_global_ctrl(hw);
4275
4276        /* Enable switch broadcast storm protection at 10% percent rate. */
4277        sw_init_broad_storm(hw);
4278        hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE);
4279        for (port = 0; port < SWITCH_PORT_NUM; port++)
4280                sw_ena_broad_storm(hw, port);
4281
4282        sw_init_prio(hw);
4283
4284        sw_init_mirror(hw);
4285
4286        sw_init_prio_rate(hw);
4287
4288        sw_init_vlan(hw);
4289
4290        if (hw->features & STP_SUPPORT)
4291                sw_init_stp(hw);
4292        if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
4293                        SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL))
4294                hw->overrides |= PAUSE_FLOW_CTRL;
4295        sw_enable(hw, 1);
4296}
4297
4298/**
4299 * ksz_start_timer - start kernel timer
4300 * @info:       Kernel timer information.
4301 * @time:       The time tick.
4302 *
4303 * This routine starts the kernel timer after the specified time tick.
4304 */
4305static void ksz_start_timer(struct ksz_timer_info *info, int time)
4306{
4307        info->cnt = 0;
4308        info->timer.expires = jiffies + time;
4309        add_timer(&info->timer);
4310
4311        /* infinity */
4312        info->max = -1;
4313}
4314
4315/**
4316 * ksz_stop_timer - stop kernel timer
4317 * @info:       Kernel timer information.
4318 *
4319 * This routine stops the kernel timer.
4320 */
4321static void ksz_stop_timer(struct ksz_timer_info *info)
4322{
4323        if (info->max) {
4324                info->max = 0;
4325                del_timer_sync(&info->timer);
4326        }
4327}
4328
4329static void ksz_init_timer(struct ksz_timer_info *info, int period,
4330        void (*function)(struct timer_list *))
4331{
4332        info->max = 0;
4333        info->period = period;
4334        timer_setup(&info->timer, function, 0);
4335}
4336
4337static void ksz_update_timer(struct ksz_timer_info *info)
4338{
4339        ++info->cnt;
4340        if (info->max > 0) {
4341                if (info->cnt < info->max) {
4342                        info->timer.expires = jiffies + info->period;
4343                        add_timer(&info->timer);
4344                } else
4345                        info->max = 0;
4346        } else if (info->max < 0) {
4347                info->timer.expires = jiffies + info->period;
4348                add_timer(&info->timer);
4349        }
4350}
4351
4352/**
4353 * ksz_alloc_soft_desc - allocate software descriptors
4354 * @desc_info:  Descriptor information structure.
4355 * @transmit:   Indication that descriptors are for transmit.
4356 *
4357 * This local function allocates software descriptors for manipulation in
4358 * memory.
4359 *
4360 * Return 0 if successful.
4361 */
4362static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit)
4363{
4364        desc_info->ring = kcalloc(desc_info->alloc, sizeof(struct ksz_desc),
4365                                  GFP_KERNEL);
4366        if (!desc_info->ring)
4367                return 1;
4368        hw_init_desc(desc_info, transmit);
4369        return 0;
4370}
4371
4372/**
4373 * ksz_alloc_desc - allocate hardware descriptors
4374 * @adapter:    Adapter information structure.
4375 *
4376 * This local function allocates hardware descriptors for receiving and
4377 * transmitting.
4378 *
4379 * Return 0 if successful.
4380 */
4381static int ksz_alloc_desc(struct dev_info *adapter)
4382{
4383        struct ksz_hw *hw = &adapter->hw;
4384        int offset;
4385
4386        /* Allocate memory for RX & TX descriptors. */
4387        adapter->desc_pool.alloc_size =
4388                hw->rx_desc_info.size * hw->rx_desc_info.alloc +
4389                hw->tx_desc_info.size * hw->tx_desc_info.alloc +
4390                DESC_ALIGNMENT;
4391
4392        adapter->desc_pool.alloc_virt =
4393                dma_alloc_coherent(&adapter->pdev->dev,
4394                                   adapter->desc_pool.alloc_size,
4395                                   &adapter->desc_pool.dma_addr, GFP_KERNEL);
4396        if (adapter->desc_pool.alloc_virt == NULL) {
4397                adapter->desc_pool.alloc_size = 0;
4398                return 1;
4399        }
4400
4401        /* Align to the next cache line boundary. */
4402        offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ?
4403                (DESC_ALIGNMENT -
4404                ((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0);
4405        adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset;
4406        adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset;
4407
4408        /* Allocate receive/transmit descriptors. */
4409        hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)
4410                adapter->desc_pool.virt;
4411        hw->rx_desc_info.ring_phys = adapter->desc_pool.phys;
4412        offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size;
4413        hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)
4414                (adapter->desc_pool.virt + offset);
4415        hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset;
4416
4417        if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0))
4418                return 1;
4419        if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1))
4420                return 1;
4421
4422        return 0;
4423}
4424
4425/**
4426 * free_dma_buf - release DMA buffer resources
4427 * @adapter:    Adapter information structure.
4428 *
4429 * This routine is just a helper function to release the DMA buffer resources.
4430 */
4431static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf,
4432        int direction)
4433{
4434        dma_unmap_single(&adapter->pdev->dev, dma_buf->dma, dma_buf->len,
4435                         direction);
4436        dev_kfree_skb(dma_buf->skb);
4437        dma_buf->skb = NULL;
4438        dma_buf->dma = 0;
4439}
4440
4441/**
4442 * ksz_init_rx_buffers - initialize receive descriptors
4443 * @adapter:    Adapter information structure.
4444 *
4445 * This routine initializes DMA buffers for receiving.
4446 */
4447static void ksz_init_rx_buffers(struct dev_info *adapter)
4448{
4449        int i;
4450        struct ksz_desc *desc;
4451        struct ksz_dma_buf *dma_buf;
4452        struct ksz_hw *hw = &adapter->hw;
4453        struct ksz_desc_info *info = &hw->rx_desc_info;
4454
4455        for (i = 0; i < hw->rx_desc_info.alloc; i++) {
4456                get_rx_pkt(info, &desc);
4457
4458                dma_buf = DMA_BUFFER(desc);
4459                if (dma_buf->skb && dma_buf->len != adapter->mtu)
4460                        free_dma_buf(adapter, dma_buf, DMA_FROM_DEVICE);
4461                dma_buf->len = adapter->mtu;
4462                if (!dma_buf->skb)
4463                        dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC);
4464                if (dma_buf->skb && !dma_buf->dma)
4465                        dma_buf->dma = dma_map_single(&adapter->pdev->dev,
4466                                                skb_tail_pointer(dma_buf->skb),
4467                                                dma_buf->len,
4468                                                DMA_FROM_DEVICE);
4469
4470                /* Set descriptor. */
4471                set_rx_buf(desc, dma_buf->dma);
4472                set_rx_len(desc, dma_buf->len);
4473                release_desc(desc);
4474        }
4475}
4476
4477/**
4478 * ksz_alloc_mem - allocate memory for hardware descriptors
4479 * @adapter:    Adapter information structure.
4480 *
4481 * This function allocates memory for use by hardware descriptors for receiving
4482 * and transmitting.
4483 *
4484 * Return 0 if successful.
4485 */
4486static int ksz_alloc_mem(struct dev_info *adapter)
4487{
4488        struct ksz_hw *hw = &adapter->hw;
4489
4490        /* Determine the number of receive and transmit descriptors. */
4491        hw->rx_desc_info.alloc = NUM_OF_RX_DESC;
4492        hw->tx_desc_info.alloc = NUM_OF_TX_DESC;
4493
4494        /* Determine how many descriptors to skip transmit interrupt. */
4495        hw->tx_int_cnt = 0;
4496        hw->tx_int_mask = NUM_OF_TX_DESC / 4;
4497        if (hw->tx_int_mask > 8)
4498                hw->tx_int_mask = 8;
4499        while (hw->tx_int_mask) {
4500                hw->tx_int_cnt++;
4501                hw->tx_int_mask >>= 1;
4502        }
4503        if (hw->tx_int_cnt) {
4504                hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1;
4505                hw->tx_int_cnt = 0;
4506        }
4507
4508        /* Determine the descriptor size. */
4509        hw->rx_desc_info.size =
4510                (((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4511                DESC_ALIGNMENT) * DESC_ALIGNMENT);
4512        hw->tx_desc_info.size =
4513                (((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4514                DESC_ALIGNMENT) * DESC_ALIGNMENT);
4515        if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc))
4516                pr_alert("Hardware descriptor size not right!\n");
4517        ksz_check_desc_num(&hw->rx_desc_info);
4518        ksz_check_desc_num(&hw->tx_desc_info);
4519
4520        /* Allocate descriptors. */
4521        if (ksz_alloc_desc(adapter))
4522                return 1;
4523
4524        return 0;
4525}
4526
4527/**
4528 * ksz_free_desc - free software and hardware descriptors
4529 * @adapter:    Adapter information structure.
4530 *
4531 * This local routine frees the software and hardware descriptors allocated by
4532 * ksz_alloc_desc().
4533 */
4534static void ksz_free_desc(struct dev_info *adapter)
4535{
4536        struct ksz_hw *hw = &adapter->hw;
4537
4538        /* Reset descriptor. */
4539        hw->rx_desc_info.ring_virt = NULL;
4540        hw->tx_desc_info.ring_virt = NULL;
4541        hw->rx_desc_info.ring_phys = 0;
4542        hw->tx_desc_info.ring_phys = 0;
4543
4544        /* Free memory. */
4545        if (adapter->desc_pool.alloc_virt)
4546                dma_free_coherent(&adapter->pdev->dev,
4547                                  adapter->desc_pool.alloc_size,
4548                                  adapter->desc_pool.alloc_virt,
4549                                  adapter->desc_pool.dma_addr);
4550
4551        /* Reset resource pool. */
4552        adapter->desc_pool.alloc_size = 0;
4553        adapter->desc_pool.alloc_virt = NULL;
4554
4555        kfree(hw->rx_desc_info.ring);
4556        hw->rx_desc_info.ring = NULL;
4557        kfree(hw->tx_desc_info.ring);
4558        hw->tx_desc_info.ring = NULL;
4559}
4560
4561/**
4562 * ksz_free_buffers - free buffers used in the descriptors
4563 * @adapter:    Adapter information structure.
4564 * @desc_info:  Descriptor information structure.
4565 *
4566 * This local routine frees buffers used in the DMA buffers.
4567 */
4568static void ksz_free_buffers(struct dev_info *adapter,
4569        struct ksz_desc_info *desc_info, int direction)
4570{
4571        int i;
4572        struct ksz_dma_buf *dma_buf;
4573        struct ksz_desc *desc = desc_info->ring;
4574
4575        for (i = 0; i < desc_info->alloc; i++) {
4576                dma_buf = DMA_BUFFER(desc);
4577                if (dma_buf->skb)
4578                        free_dma_buf(adapter, dma_buf, direction);
4579                desc++;
4580        }
4581}
4582
4583/**
4584 * ksz_free_mem - free all resources used by descriptors
4585 * @adapter:    Adapter information structure.
4586 *
4587 * This local routine frees all the resources allocated by ksz_alloc_mem().
4588 */
4589static void ksz_free_mem(struct dev_info *adapter)
4590{
4591        /* Free transmit buffers. */
4592        ksz_free_buffers(adapter, &adapter->hw.tx_desc_info, DMA_TO_DEVICE);
4593
4594        /* Free receive buffers. */
4595        ksz_free_buffers(adapter, &adapter->hw.rx_desc_info, DMA_FROM_DEVICE);
4596
4597        /* Free descriptors. */
4598        ksz_free_desc(adapter);
4599}
4600
4601static void get_mib_counters(struct ksz_hw *hw, int first, int cnt,
4602        u64 *counter)
4603{
4604        int i;
4605        int mib;
4606        int port;
4607        struct ksz_port_mib *port_mib;
4608
4609        memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
4610        for (i = 0, port = first; i < cnt; i++, port++) {
4611                port_mib = &hw->port_mib[port];
4612                for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++)
4613                        counter[mib] += port_mib->counter[mib];
4614        }
4615}
4616
4617/**
4618 * send_packet - send packet
4619 * @skb:        Socket buffer.
4620 * @dev:        Network device.
4621 *
4622 * This routine is used to send a packet out to the network.
4623 */
4624static void send_packet(struct sk_buff *skb, struct net_device *dev)
4625{
4626        struct ksz_desc *desc;
4627        struct ksz_desc *first;
4628        struct dev_priv *priv = netdev_priv(dev);
4629        struct dev_info *hw_priv = priv->adapter;
4630        struct ksz_hw *hw = &hw_priv->hw;
4631        struct ksz_desc_info *info = &hw->tx_desc_info;
4632        struct ksz_dma_buf *dma_buf;
4633        int len;
4634        int last_frag = skb_shinfo(skb)->nr_frags;
4635
4636        /*
4637         * KSZ8842 with multiple device interfaces needs to be told which port
4638         * to send.
4639         */
4640        if (hw->dev_count > 1)
4641                hw->dst_ports = 1 << priv->port.first_port;
4642
4643        /* Hardware will pad the length to 60. */
4644        len = skb->len;
4645
4646        /* Remember the very first descriptor. */
4647        first = info->cur;
4648        desc = first;
4649
4650        dma_buf = DMA_BUFFER(desc);
4651        if (last_frag) {
4652                int frag;
4653                skb_frag_t *this_frag;
4654
4655                dma_buf->len = skb_headlen(skb);
4656
4657                dma_buf->dma = dma_map_single(&hw_priv->pdev->dev, skb->data,
4658                                              dma_buf->len, DMA_TO_DEVICE);
4659                set_tx_buf(desc, dma_buf->dma);
4660                set_tx_len(desc, dma_buf->len);
4661
4662                frag = 0;
4663                do {
4664                        this_frag = &skb_shinfo(skb)->frags[frag];
4665
4666                        /* Get a new descriptor. */
4667                        get_tx_pkt(info, &desc);
4668
4669                        /* Keep track of descriptors used so far. */
4670                        ++hw->tx_int_cnt;
4671
4672                        dma_buf = DMA_BUFFER(desc);
4673                        dma_buf->len = skb_frag_size(this_frag);
4674
4675                        dma_buf->dma = dma_map_single(&hw_priv->pdev->dev,
4676                                                      skb_frag_address(this_frag),
4677                                                      dma_buf->len,
4678                                                      DMA_TO_DEVICE);
4679                        set_tx_buf(desc, dma_buf->dma);
4680                        set_tx_len(desc, dma_buf->len);
4681
4682                        frag++;
4683                        if (frag == last_frag)
4684                                break;
4685
4686                        /* Do not release the last descriptor here. */
4687                        release_desc(desc);
4688                } while (1);
4689
4690                /* current points to the last descriptor. */
4691                info->cur = desc;
4692
4693                /* Release the first descriptor. */
4694                release_desc(first);
4695        } else {
4696                dma_buf->len = len;
4697
4698                dma_buf->dma = dma_map_single(&hw_priv->pdev->dev, skb->data,
4699                                              dma_buf->len, DMA_TO_DEVICE);
4700                set_tx_buf(desc, dma_buf->dma);
4701                set_tx_len(desc, dma_buf->len);
4702        }
4703
4704        if (skb->ip_summed == CHECKSUM_PARTIAL) {
4705                (desc)->sw.buf.tx.csum_gen_tcp = 1;
4706                (desc)->sw.buf.tx.csum_gen_udp = 1;
4707        }
4708
4709        /*
4710         * The last descriptor holds the packet so that it can be returned to
4711         * network subsystem after all descriptors are transmitted.
4712         */
4713        dma_buf->skb = skb;
4714
4715        hw_send_pkt(hw);
4716
4717        /* Update transmit statistics. */
4718        dev->stats.tx_packets++;
4719        dev->stats.tx_bytes += len;
4720}
4721
4722/**
4723 * transmit_cleanup - clean up transmit descriptors
4724 * @dev:        Network device.
4725 *
4726 * This routine is called to clean up the transmitted buffers.
4727 */
4728static void transmit_cleanup(struct dev_info *hw_priv, int normal)
4729{
4730        int last;
4731        union desc_stat status;
4732        struct ksz_hw *hw = &hw_priv->hw;
4733        struct ksz_desc_info *info = &hw->tx_desc_info;
4734        struct ksz_desc *desc;
4735        struct ksz_dma_buf *dma_buf;
4736        struct net_device *dev = NULL;
4737
4738        spin_lock_irq(&hw_priv->hwlock);
4739        last = info->last;
4740
4741        while (info->avail < info->alloc) {
4742                /* Get next descriptor which is not hardware owned. */
4743                desc = &info->ring[last];
4744                status.data = le32_to_cpu(desc->phw->ctrl.data);
4745                if (status.tx.hw_owned) {
4746                        if (normal)
4747                                break;
4748                        else
4749                                reset_desc(desc, status);
4750                }
4751
4752                dma_buf = DMA_BUFFER(desc);
4753                dma_unmap_single(&hw_priv->pdev->dev, dma_buf->dma,
4754                                 dma_buf->len, DMA_TO_DEVICE);
4755
4756                /* This descriptor contains the last buffer in the packet. */
4757                if (dma_buf->skb) {
4758                        dev = dma_buf->skb->dev;
4759
4760                        /* Release the packet back to network subsystem. */
4761                        dev_kfree_skb_irq(dma_buf->skb);
4762                        dma_buf->skb = NULL;
4763                }
4764
4765                /* Free the transmitted descriptor. */
4766                last++;
4767                last &= info->mask;
4768                info->avail++;
4769        }
4770        info->last = last;
4771        spin_unlock_irq(&hw_priv->hwlock);
4772
4773        /* Notify the network subsystem that the packet has been sent. */
4774        if (dev)
4775                netif_trans_update(dev);
4776}
4777
4778/**
4779 * transmit_done - transmit done processing
4780 * @dev:        Network device.
4781 *
4782 * This routine is called when the transmit interrupt is triggered, indicating
4783 * either a packet is sent successfully or there are transmit errors.
4784 */
4785static void tx_done(struct dev_info *hw_priv)
4786{
4787        struct ksz_hw *hw = &hw_priv->hw;
4788        int port;
4789
4790        transmit_cleanup(hw_priv, 1);
4791
4792        for (port = 0; port < hw->dev_count; port++) {
4793                struct net_device *dev = hw->port_info[port].pdev;
4794
4795                if (netif_running(dev) && netif_queue_stopped(dev))
4796                        netif_wake_queue(dev);
4797        }
4798}
4799
4800static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb)
4801{
4802        skb->dev = old->dev;
4803        skb->protocol = old->protocol;
4804        skb->ip_summed = old->ip_summed;
4805        skb->csum = old->csum;
4806        skb_set_network_header(skb, ETH_HLEN);
4807
4808        dev_consume_skb_any(old);
4809}
4810
4811/**
4812 * netdev_tx - send out packet
4813 * @skb:        Socket buffer.
4814 * @dev:        Network device.
4815 *
4816 * This function is used by the upper network layer to send out a packet.
4817 *
4818 * Return 0 if successful; otherwise an error code indicating failure.
4819 */
4820static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev)
4821{
4822        struct dev_priv *priv = netdev_priv(dev);
4823        struct dev_info *hw_priv = priv->adapter;
4824        struct ksz_hw *hw = &hw_priv->hw;
4825        int left;
4826        int num = 1;
4827        int rc = 0;
4828
4829        if (hw->features & SMALL_PACKET_TX_BUG) {
4830                struct sk_buff *org_skb = skb;
4831
4832                if (skb->len <= 48) {
4833                        if (skb_end_pointer(skb) - skb->data >= 50) {
4834                                memset(&skb->data[skb->len], 0, 50 - skb->len);
4835                                skb->len = 50;
4836                        } else {
4837                                skb = netdev_alloc_skb(dev, 50);
4838                                if (!skb)
4839                                        return NETDEV_TX_BUSY;
4840                                memcpy(skb->data, org_skb->data, org_skb->len);
4841                                memset(&skb->data[org_skb->len], 0,
4842                                        50 - org_skb->len);
4843                                skb->len = 50;
4844                                copy_old_skb(org_skb, skb);
4845                        }
4846                }
4847        }
4848
4849        spin_lock_irq(&hw_priv->hwlock);
4850
4851        num = skb_shinfo(skb)->nr_frags + 1;
4852        left = hw_alloc_pkt(hw, skb->len, num);
4853        if (left) {
4854                if (left < num ||
4855                    (CHECKSUM_PARTIAL == skb->ip_summed &&
4856                     skb->protocol == htons(ETH_P_IPV6))) {
4857                        struct sk_buff *org_skb = skb;
4858
4859                        skb = netdev_alloc_skb(dev, org_skb->len);
4860                        if (!skb) {
4861                                rc = NETDEV_TX_BUSY;
4862                                goto unlock;
4863                        }
4864                        skb_copy_and_csum_dev(org_skb, skb->data);
4865                        org_skb->ip_summed = CHECKSUM_NONE;
4866                        skb->len = org_skb->len;
4867                        copy_old_skb(org_skb, skb);
4868                }
4869                send_packet(skb, dev);
4870                if (left <= num)
4871                        netif_stop_queue(dev);
4872        } else {
4873                /* Stop the transmit queue until packet is allocated. */
4874                netif_stop_queue(dev);
4875                rc = NETDEV_TX_BUSY;
4876        }
4877unlock:
4878        spin_unlock_irq(&hw_priv->hwlock);
4879
4880        return rc;
4881}
4882
4883/**
4884 * netdev_tx_timeout - transmit timeout processing
4885 * @dev:        Network device.
4886 *
4887 * This routine is called when the transmit timer expires.  That indicates the
4888 * hardware is not running correctly because transmit interrupts are not
4889 * triggered to free up resources so that the transmit routine can continue
4890 * sending out packets.  The hardware is reset to correct the problem.
4891 */
4892static void netdev_tx_timeout(struct net_device *dev, unsigned int txqueue)
4893{
4894        static unsigned long last_reset;
4895
4896        struct dev_priv *priv = netdev_priv(dev);
4897        struct dev_info *hw_priv = priv->adapter;
4898        struct ksz_hw *hw = &hw_priv->hw;
4899        int port;
4900
4901        if (hw->dev_count > 1) {
4902                /*
4903                 * Only reset the hardware if time between calls is long
4904                 * enough.
4905                 */
4906                if (time_before_eq(jiffies, last_reset + dev->watchdog_timeo))
4907                        hw_priv = NULL;
4908        }
4909
4910        last_reset = jiffies;
4911        if (hw_priv) {
4912                hw_dis_intr(hw);
4913                hw_disable(hw);
4914
4915                transmit_cleanup(hw_priv, 0);
4916                hw_reset_pkts(&hw->rx_desc_info);
4917                hw_reset_pkts(&hw->tx_desc_info);
4918                ksz_init_rx_buffers(hw_priv);
4919
4920                hw_reset(hw);
4921
4922                hw_set_desc_base(hw,
4923                        hw->tx_desc_info.ring_phys,
4924                        hw->rx_desc_info.ring_phys);
4925                hw_set_addr(hw);
4926                if (hw->all_multi)
4927                        hw_set_multicast(hw, hw->all_multi);
4928                else if (hw->multi_list_size)
4929                        hw_set_grp_addr(hw);
4930
4931                if (hw->dev_count > 1) {
4932                        hw_set_add_addr(hw);
4933                        for (port = 0; port < SWITCH_PORT_NUM; port++) {
4934                                struct net_device *port_dev;
4935
4936                                port_set_stp_state(hw, port,
4937                                        STP_STATE_DISABLED);
4938
4939                                port_dev = hw->port_info[port].pdev;
4940                                if (netif_running(port_dev))
4941                                        port_set_stp_state(hw, port,
4942                                                STP_STATE_SIMPLE);
4943                        }
4944                }
4945
4946                hw_enable(hw);
4947                hw_ena_intr(hw);
4948        }
4949
4950        netif_trans_update(dev);
4951        netif_wake_queue(dev);
4952}
4953
4954static inline void csum_verified(struct sk_buff *skb)
4955{
4956        unsigned short protocol;
4957        struct iphdr *iph;
4958
4959        protocol = skb->protocol;
4960        skb_reset_network_header(skb);
4961        iph = (struct iphdr *) skb_network_header(skb);
4962        if (protocol == htons(ETH_P_8021Q)) {
4963                protocol = iph->tot_len;
4964                skb_set_network_header(skb, VLAN_HLEN);
4965                iph = (struct iphdr *) skb_network_header(skb);
4966        }
4967        if (protocol == htons(ETH_P_IP)) {
4968                if (iph->protocol == IPPROTO_TCP)
4969                        skb->ip_summed = CHECKSUM_UNNECESSARY;
4970        }
4971}
4972
4973static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw,
4974        struct ksz_desc *desc, union desc_stat status)
4975{
4976        int packet_len;
4977        struct dev_priv *priv = netdev_priv(dev);
4978        struct dev_info *hw_priv = priv->adapter;
4979        struct ksz_dma_buf *dma_buf;
4980        struct sk_buff *skb;
4981        int rx_status;
4982
4983        /* Received length includes 4-byte CRC. */
4984        packet_len = status.rx.frame_len - 4;
4985
4986        dma_buf = DMA_BUFFER(desc);
4987        dma_sync_single_for_cpu(&hw_priv->pdev->dev, dma_buf->dma,
4988                                packet_len + 4, DMA_FROM_DEVICE);
4989
4990        do {
4991                /* skb->data != skb->head */
4992                skb = netdev_alloc_skb(dev, packet_len + 2);
4993                if (!skb) {
4994                        dev->stats.rx_dropped++;
4995                        return -ENOMEM;
4996                }
4997
4998                /*
4999                 * Align socket buffer in 4-byte boundary for better
5000                 * performance.
5001                 */
5002                skb_reserve(skb, 2);
5003
5004                skb_put_data(skb, dma_buf->skb->data, packet_len);
5005        } while (0);
5006
5007        skb->protocol = eth_type_trans(skb, dev);
5008
5009        if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP))
5010                csum_verified(skb);
5011
5012        /* Update receive statistics. */
5013        dev->stats.rx_packets++;
5014        dev->stats.rx_bytes += packet_len;
5015
5016        /* Notify upper layer for received packet. */
5017        rx_status = netif_rx(skb);
5018
5019        return 0;
5020}
5021
5022static int dev_rcv_packets(struct dev_info *hw_priv)
5023{
5024        int next;
5025        union desc_stat status;
5026        struct ksz_hw *hw = &hw_priv->hw;
5027        struct net_device *dev = hw->port_info[0].pdev;
5028        struct ksz_desc_info *info = &hw->rx_desc_info;
5029        int left = info->alloc;
5030        struct ksz_desc *desc;
5031        int received = 0;
5032
5033        next = info->next;
5034        while (left--) {
5035                /* Get next descriptor which is not hardware owned. */
5036                desc = &info->ring[next];
5037                status.data = le32_to_cpu(desc->phw->ctrl.data);
5038                if (status.rx.hw_owned)
5039                        break;
5040
5041                /* Status valid only when last descriptor bit is set. */
5042                if (status.rx.last_desc && status.rx.first_desc) {
5043                        if (rx_proc(dev, hw, desc, status))
5044                                goto release_packet;
5045                        received++;
5046                }
5047
5048release_packet:
5049                release_desc(desc);
5050                next++;
5051                next &= info->mask;
5052        }
5053        info->next = next;
5054
5055        return received;
5056}
5057
5058static int port_rcv_packets(struct dev_info *hw_priv)
5059{
5060        int next;
5061        union desc_stat status;
5062        struct ksz_hw *hw = &hw_priv->hw;
5063        struct net_device *dev = hw->port_info[0].pdev;
5064        struct ksz_desc_info *info = &hw->rx_desc_info;
5065        int left = info->alloc;
5066        struct ksz_desc *desc;
5067        int received = 0;
5068
5069        next = info->next;
5070        while (left--) {
5071                /* Get next descriptor which is not hardware owned. */
5072                desc = &info->ring[next];
5073                status.data = le32_to_cpu(desc->phw->ctrl.data);
5074                if (status.rx.hw_owned)
5075                        break;
5076
5077                if (hw->dev_count > 1) {
5078                        /* Get received port number. */
5079                        int p = HW_TO_DEV_PORT(status.rx.src_port);
5080
5081                        dev = hw->port_info[p].pdev;
5082                        if (!netif_running(dev))
5083                                goto release_packet;
5084                }
5085
5086                /* Status valid only when last descriptor bit is set. */
5087                if (status.rx.last_desc && status.rx.first_desc) {
5088                        if (rx_proc(dev, hw, desc, status))
5089                                goto release_packet;
5090                        received++;
5091                }
5092
5093release_packet:
5094                release_desc(desc);
5095                next++;
5096                next &= info->mask;
5097        }
5098        info->next = next;
5099
5100        return received;
5101}
5102
5103static int dev_rcv_special(struct dev_info *hw_priv)
5104{
5105        int next;
5106        union desc_stat status;
5107        struct ksz_hw *hw = &hw_priv->hw;
5108        struct net_device *dev = hw->port_info[0].pdev;
5109        struct ksz_desc_info *info = &hw->rx_desc_info;
5110        int left = info->alloc;
5111        struct ksz_desc *desc;
5112        int received = 0;
5113
5114        next = info->next;
5115        while (left--) {
5116                /* Get next descriptor which is not hardware owned. */
5117                desc = &info->ring[next];
5118                status.data = le32_to_cpu(desc->phw->ctrl.data);
5119                if (status.rx.hw_owned)
5120                        break;
5121
5122                if (hw->dev_count > 1) {
5123                        /* Get received port number. */
5124                        int p = HW_TO_DEV_PORT(status.rx.src_port);
5125
5126                        dev = hw->port_info[p].pdev;
5127                        if (!netif_running(dev))
5128                                goto release_packet;
5129                }
5130
5131                /* Status valid only when last descriptor bit is set. */
5132                if (status.rx.last_desc && status.rx.first_desc) {
5133                        /*
5134                         * Receive without error.  With receive errors
5135                         * disabled, packets with receive errors will be
5136                         * dropped, so no need to check the error bit.
5137                         */
5138                        if (!status.rx.error || (status.data &
5139                                        KS_DESC_RX_ERROR_COND) ==
5140                                        KS_DESC_RX_ERROR_TOO_LONG) {
5141                                if (rx_proc(dev, hw, desc, status))
5142                                        goto release_packet;
5143                                received++;
5144                        } else {
5145                                struct dev_priv *priv = netdev_priv(dev);
5146
5147                                /* Update receive error statistics. */
5148                                priv->port.counter[OID_COUNTER_RCV_ERROR]++;
5149                        }
5150                }
5151
5152release_packet:
5153                release_desc(desc);
5154                next++;
5155                next &= info->mask;
5156        }
5157        info->next = next;
5158
5159        return received;
5160}
5161
5162static void rx_proc_task(unsigned long data)
5163{
5164        struct dev_info *hw_priv = (struct dev_info *) data;
5165        struct ksz_hw *hw = &hw_priv->hw;
5166
5167        if (!hw->enabled)
5168                return;
5169        if (unlikely(!hw_priv->dev_rcv(hw_priv))) {
5170
5171                /* In case receive process is suspended because of overrun. */
5172                hw_resume_rx(hw);
5173
5174                /* tasklets are interruptible. */
5175                spin_lock_irq(&hw_priv->hwlock);
5176                hw_turn_on_intr(hw, KS884X_INT_RX_MASK);
5177                spin_unlock_irq(&hw_priv->hwlock);
5178        } else {
5179                hw_ack_intr(hw, KS884X_INT_RX);
5180                tasklet_schedule(&hw_priv->rx_tasklet);
5181        }
5182}
5183
5184static void tx_proc_task(unsigned long data)
5185{
5186        struct dev_info *hw_priv = (struct dev_info *) data;
5187        struct ksz_hw *hw = &hw_priv->hw;
5188
5189        hw_ack_intr(hw, KS884X_INT_TX_MASK);
5190
5191        tx_done(hw_priv);
5192
5193        /* tasklets are interruptible. */
5194        spin_lock_irq(&hw_priv->hwlock);
5195        hw_turn_on_intr(hw, KS884X_INT_TX);
5196        spin_unlock_irq(&hw_priv->hwlock);
5197}
5198
5199static inline void handle_rx_stop(struct ksz_hw *hw)
5200{
5201        /* Receive just has been stopped. */
5202        if (0 == hw->rx_stop)
5203                hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5204        else if (hw->rx_stop > 1) {
5205                if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) {
5206                        hw_start_rx(hw);
5207                } else {
5208                        hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5209                        hw->rx_stop = 0;
5210                }
5211        } else
5212                /* Receive just has been started. */
5213                hw->rx_stop++;
5214}
5215
5216/**
5217 * netdev_intr - interrupt handling
5218 * @irq:        Interrupt number.
5219 * @dev_id:     Network device.
5220 *
5221 * This function is called by upper network layer to signal interrupt.
5222 *
5223 * Return IRQ_HANDLED if interrupt is handled.
5224 */
5225static irqreturn_t netdev_intr(int irq, void *dev_id)
5226{
5227        uint int_enable = 0;
5228        struct net_device *dev = (struct net_device *) dev_id;
5229        struct dev_priv *priv = netdev_priv(dev);
5230        struct dev_info *hw_priv = priv->adapter;
5231        struct ksz_hw *hw = &hw_priv->hw;
5232
5233        spin_lock(&hw_priv->hwlock);
5234
5235        hw_read_intr(hw, &int_enable);
5236
5237        /* Not our interrupt! */
5238        if (!int_enable) {
5239                spin_unlock(&hw_priv->hwlock);
5240                return IRQ_NONE;
5241        }
5242
5243        do {
5244                hw_ack_intr(hw, int_enable);
5245                int_enable &= hw->intr_mask;
5246
5247                if (unlikely(int_enable & KS884X_INT_TX_MASK)) {
5248                        hw_dis_intr_bit(hw, KS884X_INT_TX_MASK);
5249                        tasklet_schedule(&hw_priv->tx_tasklet);
5250                }
5251
5252                if (likely(int_enable & KS884X_INT_RX)) {
5253                        hw_dis_intr_bit(hw, KS884X_INT_RX);
5254                        tasklet_schedule(&hw_priv->rx_tasklet);
5255                }
5256
5257                if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) {
5258                        dev->stats.rx_fifo_errors++;
5259                        hw_resume_rx(hw);
5260                }
5261
5262                if (unlikely(int_enable & KS884X_INT_PHY)) {
5263                        struct ksz_port *port = &priv->port;
5264
5265                        hw->features |= LINK_INT_WORKING;
5266                        port_get_link_speed(port);
5267                }
5268
5269                if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) {
5270                        handle_rx_stop(hw);
5271                        break;
5272                }
5273
5274                if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) {
5275                        u32 data;
5276
5277                        hw->intr_mask &= ~KS884X_INT_TX_STOPPED;
5278                        pr_info("Tx stopped\n");
5279                        data = readl(hw->io + KS_DMA_TX_CTRL);
5280                        if (!(data & DMA_TX_ENABLE))
5281                                pr_info("Tx disabled\n");
5282                        break;
5283                }
5284        } while (0);
5285
5286        hw_ena_intr(hw);
5287
5288        spin_unlock(&hw_priv->hwlock);
5289
5290        return IRQ_HANDLED;
5291}
5292
5293/*
5294 * Linux network device functions
5295 */
5296
5297static unsigned long next_jiffies;
5298
5299#ifdef CONFIG_NET_POLL_CONTROLLER
5300static void netdev_netpoll(struct net_device *dev)
5301{
5302        struct dev_priv *priv = netdev_priv(dev);
5303        struct dev_info *hw_priv = priv->adapter;
5304
5305        hw_dis_intr(&hw_priv->hw);
5306        netdev_intr(dev->irq, dev);
5307}
5308#endif
5309
5310static void bridge_change(struct ksz_hw *hw)
5311{
5312        int port;
5313        u8  member;
5314        struct ksz_switch *sw = hw->ksz_switch;
5315
5316        /* No ports in forwarding state. */
5317        if (!sw->member) {
5318                port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
5319                sw_block_addr(hw);
5320        }
5321        for (port = 0; port < SWITCH_PORT_NUM; port++) {
5322                if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state)
5323                        member = HOST_MASK | sw->member;
5324                else
5325                        member = HOST_MASK | (1 << port);
5326                if (member != sw->port_cfg[port].member)
5327                        sw_cfg_port_base_vlan(hw, port, member);
5328        }
5329}
5330
5331/**
5332 * netdev_close - close network device
5333 * @dev:        Network device.
5334 *
5335 * This function process the close operation of network device.  This is caused
5336 * by the user command "ifconfig ethX down."
5337 *
5338 * Return 0 if successful; otherwise an error code indicating failure.
5339 */
5340static int netdev_close(struct net_device *dev)
5341{
5342        struct dev_priv *priv = netdev_priv(dev);
5343        struct dev_info *hw_priv = priv->adapter;
5344        struct ksz_port *port = &priv->port;
5345        struct ksz_hw *hw = &hw_priv->hw;
5346        int pi;
5347
5348        netif_stop_queue(dev);
5349
5350        ksz_stop_timer(&priv->monitor_timer_info);
5351
5352        /* Need to shut the port manually in multiple device interfaces mode. */
5353        if (hw->dev_count > 1) {
5354                port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED);
5355
5356                /* Port is closed.  Need to change bridge setting. */
5357                if (hw->features & STP_SUPPORT) {
5358                        pi = 1 << port->first_port;
5359                        if (hw->ksz_switch->member & pi) {
5360                                hw->ksz_switch->member &= ~pi;
5361                                bridge_change(hw);
5362                        }
5363                }
5364        }
5365        if (port->first_port > 0)
5366                hw_del_addr(hw, dev->dev_addr);
5367        if (!hw_priv->wol_enable)
5368                port_set_power_saving(port, true);
5369
5370        if (priv->multicast)
5371                --hw->all_multi;
5372        if (priv->promiscuous)
5373                --hw->promiscuous;
5374
5375        hw_priv->opened--;
5376        if (!(hw_priv->opened)) {
5377                ksz_stop_timer(&hw_priv->mib_timer_info);
5378                flush_work(&hw_priv->mib_read);
5379
5380                hw_dis_intr(hw);
5381                hw_disable(hw);
5382                hw_clr_multicast(hw);
5383
5384                /* Delay for receive task to stop scheduling itself. */
5385                msleep(2000 / HZ);
5386
5387                tasklet_kill(&hw_priv->rx_tasklet);
5388                tasklet_kill(&hw_priv->tx_tasklet);
5389                free_irq(dev->irq, hw_priv->dev);
5390
5391                transmit_cleanup(hw_priv, 0);
5392                hw_reset_pkts(&hw->rx_desc_info);
5393                hw_reset_pkts(&hw->tx_desc_info);
5394
5395                /* Clean out static MAC table when the switch is shutdown. */
5396                if (hw->features & STP_SUPPORT)
5397                        sw_clr_sta_mac_table(hw);
5398        }
5399
5400        return 0;
5401}
5402
5403static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw)
5404{
5405        if (hw->ksz_switch) {
5406                u32 data;
5407
5408                data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5409                if (hw->features & RX_HUGE_FRAME)
5410                        data |= SWITCH_HUGE_PACKET;
5411                else
5412                        data &= ~SWITCH_HUGE_PACKET;
5413                writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5414        }
5415        if (hw->features & RX_HUGE_FRAME) {
5416                hw->rx_cfg |= DMA_RX_ERROR;
5417                hw_priv->dev_rcv = dev_rcv_special;
5418        } else {
5419                hw->rx_cfg &= ~DMA_RX_ERROR;
5420                if (hw->dev_count > 1)
5421                        hw_priv->dev_rcv = port_rcv_packets;
5422                else
5423                        hw_priv->dev_rcv = dev_rcv_packets;
5424        }
5425}
5426
5427static int prepare_hardware(struct net_device *dev)
5428{
5429        struct dev_priv *priv = netdev_priv(dev);
5430        struct dev_info *hw_priv = priv->adapter;
5431        struct ksz_hw *hw = &hw_priv->hw;
5432        int rc = 0;
5433
5434        /* Remember the network device that requests interrupts. */
5435        hw_priv->dev = dev;
5436        rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev);
5437        if (rc)
5438                return rc;
5439        tasklet_init(&hw_priv->rx_tasklet, rx_proc_task,
5440                     (unsigned long) hw_priv);
5441        tasklet_init(&hw_priv->tx_tasklet, tx_proc_task,
5442                     (unsigned long) hw_priv);
5443
5444        hw->promiscuous = 0;
5445        hw->all_multi = 0;
5446        hw->multi_list_size = 0;
5447
5448        hw_reset(hw);
5449
5450        hw_set_desc_base(hw,
5451                hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys);
5452        hw_set_addr(hw);
5453        hw_cfg_huge_frame(hw_priv, hw);
5454        ksz_init_rx_buffers(hw_priv);
5455        return 0;
5456}
5457
5458static void set_media_state(struct net_device *dev, int media_state)
5459{
5460        struct dev_priv *priv = netdev_priv(dev);
5461
5462        if (media_state == priv->media_state)
5463                netif_carrier_on(dev);
5464        else
5465                netif_carrier_off(dev);
5466        netif_info(priv, link, dev, "link %s\n",
5467                   media_state == priv->media_state ? "on" : "off");
5468}
5469
5470/**
5471 * netdev_open - open network device
5472 * @dev:        Network device.
5473 *
5474 * This function process the open operation of network device.  This is caused
5475 * by the user command "ifconfig ethX up."
5476 *
5477 * Return 0 if successful; otherwise an error code indicating failure.
5478 */
5479static int netdev_open(struct net_device *dev)
5480{
5481        struct dev_priv *priv = netdev_priv(dev);
5482        struct dev_info *hw_priv = priv->adapter;
5483        struct ksz_hw *hw = &hw_priv->hw;
5484        struct ksz_port *port = &priv->port;
5485        int i;
5486        int p;
5487        int rc = 0;
5488
5489        priv->multicast = 0;
5490        priv->promiscuous = 0;
5491
5492        /* Reset device statistics. */
5493        memset(&dev->stats, 0, sizeof(struct net_device_stats));
5494        memset((void *) port->counter, 0,
5495                (sizeof(u64) * OID_COUNTER_LAST));
5496
5497        if (!(hw_priv->opened)) {
5498                rc = prepare_hardware(dev);
5499                if (rc)
5500                        return rc;
5501                for (i = 0; i < hw->mib_port_cnt; i++) {
5502                        if (next_jiffies < jiffies)
5503                                next_jiffies = jiffies + HZ * 2;
5504                        else
5505                                next_jiffies += HZ * 1;
5506                        hw_priv->counter[i].time = next_jiffies;
5507                        hw->port_mib[i].state = media_disconnected;
5508                        port_init_cnt(hw, i);
5509                }
5510                if (hw->ksz_switch)
5511                        hw->port_mib[HOST_PORT].state = media_connected;
5512                else {
5513                        hw_add_wol_bcast(hw);
5514                        hw_cfg_wol_pme(hw, 0);
5515                        hw_clr_wol_pme_status(&hw_priv->hw);
5516                }
5517        }
5518        port_set_power_saving(port, false);
5519
5520        for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
5521                /*
5522                 * Initialize to invalid value so that link detection
5523                 * is done.
5524                 */
5525                hw->port_info[p].partner = 0xFF;
5526                hw->port_info[p].state = media_disconnected;
5527        }
5528
5529        /* Need to open the port in multiple device interfaces mode. */
5530        if (hw->dev_count > 1) {
5531                port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE);
5532                if (port->first_port > 0)
5533                        hw_add_addr(hw, dev->dev_addr);
5534        }
5535
5536        port_get_link_speed(port);
5537        if (port->force_link)
5538                port_force_link_speed(port);
5539        else
5540                port_set_link_speed(port);
5541
5542        if (!(hw_priv->opened)) {
5543                hw_setup_intr(hw);
5544                hw_enable(hw);
5545                hw_ena_intr(hw);
5546
5547                if (hw->mib_port_cnt)
5548                        ksz_start_timer(&hw_priv->mib_timer_info,
5549                                hw_priv->mib_timer_info.period);
5550        }
5551
5552        hw_priv->opened++;
5553
5554        ksz_start_timer(&priv->monitor_timer_info,
5555                priv->monitor_timer_info.period);
5556
5557        priv->media_state = port->linked->state;
5558
5559        set_media_state(dev, media_connected);
5560        netif_start_queue(dev);
5561
5562        return 0;
5563}
5564
5565/* RX errors = rx_errors */
5566/* RX dropped = rx_dropped */
5567/* RX overruns = rx_fifo_errors */
5568/* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */
5569/* TX errors = tx_errors */
5570/* TX dropped = tx_dropped */
5571/* TX overruns = tx_fifo_errors */
5572/* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */
5573/* collisions = collisions */
5574
5575/**
5576 * netdev_query_statistics - query network device statistics
5577 * @dev:        Network device.
5578 *
5579 * This function returns the statistics of the network device.  The device
5580 * needs not be opened.
5581 *
5582 * Return network device statistics.
5583 */
5584static struct net_device_stats *netdev_query_statistics(struct net_device *dev)
5585{
5586        struct dev_priv *priv = netdev_priv(dev);
5587        struct ksz_port *port = &priv->port;
5588        struct ksz_hw *hw = &priv->adapter->hw;
5589        struct ksz_port_mib *mib;
5590        int i;
5591        int p;
5592
5593        dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR];
5594        dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR];
5595
5596        /* Reset to zero to add count later. */
5597        dev->stats.multicast = 0;
5598        dev->stats.collisions = 0;
5599        dev->stats.rx_length_errors = 0;
5600        dev->stats.rx_crc_errors = 0;
5601        dev->stats.rx_frame_errors = 0;
5602        dev->stats.tx_window_errors = 0;
5603
5604        for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
5605                mib = &hw->port_mib[p];
5606
5607                dev->stats.multicast += (unsigned long)
5608                        mib->counter[MIB_COUNTER_RX_MULTICAST];
5609
5610                dev->stats.collisions += (unsigned long)
5611                        mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION];
5612
5613                dev->stats.rx_length_errors += (unsigned long)(
5614                        mib->counter[MIB_COUNTER_RX_UNDERSIZE] +
5615                        mib->counter[MIB_COUNTER_RX_FRAGMENT] +
5616                        mib->counter[MIB_COUNTER_RX_OVERSIZE] +
5617                        mib->counter[MIB_COUNTER_RX_JABBER]);
5618                dev->stats.rx_crc_errors += (unsigned long)
5619                        mib->counter[MIB_COUNTER_RX_CRC_ERR];
5620                dev->stats.rx_frame_errors += (unsigned long)(
5621                        mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] +
5622                        mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]);
5623
5624                dev->stats.tx_window_errors += (unsigned long)
5625                        mib->counter[MIB_COUNTER_TX_LATE_COLLISION];
5626        }
5627
5628        return &dev->stats;
5629}
5630
5631/**
5632 * netdev_set_mac_address - set network device MAC address
5633 * @dev:        Network device.
5634 * @addr:       Buffer of MAC address.
5635 *
5636 * This function is used to set the MAC address of the network device.
5637 *
5638 * Return 0 to indicate success.
5639 */
5640static int netdev_set_mac_address(struct net_device *dev, void *addr)
5641{
5642        struct dev_priv *priv = netdev_priv(dev);
5643        struct dev_info *hw_priv = priv->adapter;
5644        struct ksz_hw *hw = &hw_priv->hw;
5645        struct sockaddr *mac = addr;
5646        uint interrupt;
5647
5648        if (priv->port.first_port > 0)
5649                hw_del_addr(hw, dev->dev_addr);
5650        else {
5651                hw->mac_override = 1;
5652                memcpy(hw->override_addr, mac->sa_data, ETH_ALEN);
5653        }
5654
5655        memcpy(dev->dev_addr, mac->sa_data, ETH_ALEN);
5656
5657        interrupt = hw_block_intr(hw);
5658
5659        if (priv->port.first_port > 0)
5660                hw_add_addr(hw, dev->dev_addr);
5661        else
5662                hw_set_addr(hw);
5663        hw_restore_intr(hw, interrupt);
5664
5665        return 0;
5666}
5667
5668static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv,
5669        struct ksz_hw *hw, int promiscuous)
5670{
5671        if (promiscuous != priv->promiscuous) {
5672                u8 prev_state = hw->promiscuous;
5673
5674                if (promiscuous)
5675                        ++hw->promiscuous;
5676                else
5677                        --hw->promiscuous;
5678                priv->promiscuous = promiscuous;
5679
5680                /* Turn on/off promiscuous mode. */
5681                if (hw->promiscuous <= 1 && prev_state <= 1)
5682                        hw_set_promiscuous(hw, hw->promiscuous);
5683
5684                /*
5685                 * Port is not in promiscuous mode, meaning it is released
5686                 * from the bridge.
5687                 */
5688                if ((hw->features & STP_SUPPORT) && !promiscuous &&
5689                    netif_is_bridge_port(dev)) {
5690                        struct ksz_switch *sw = hw->ksz_switch;
5691                        int port = priv->port.first_port;
5692
5693                        port_set_stp_state(hw, port, STP_STATE_DISABLED);
5694                        port = 1 << port;
5695                        if (sw->member & port) {
5696                                sw->member &= ~port;
5697                                bridge_change(hw);
5698                        }
5699                }
5700        }
5701}
5702
5703static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw,
5704        int multicast)
5705{
5706        if (multicast != priv->multicast) {
5707                u8 all_multi = hw->all_multi;
5708
5709                if (multicast)
5710                        ++hw->all_multi;
5711                else
5712                        --hw->all_multi;
5713                priv->multicast = multicast;
5714
5715                /* Turn on/off all multicast mode. */
5716                if (hw->all_multi <= 1 && all_multi <= 1)
5717                        hw_set_multicast(hw, hw->all_multi);
5718        }
5719}
5720
5721/**
5722 * netdev_set_rx_mode
5723 * @dev:        Network device.
5724 *
5725 * This routine is used to set multicast addresses or put the network device
5726 * into promiscuous mode.
5727 */
5728static void netdev_set_rx_mode(struct net_device *dev)
5729{
5730        struct dev_priv *priv = netdev_priv(dev);
5731        struct dev_info *hw_priv = priv->adapter;
5732        struct ksz_hw *hw = &hw_priv->hw;
5733        struct netdev_hw_addr *ha;
5734        int multicast = (dev->flags & IFF_ALLMULTI);
5735
5736        dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC));
5737
5738        if (hw_priv->hw.dev_count > 1)
5739                multicast |= (dev->flags & IFF_MULTICAST);
5740        dev_set_multicast(priv, hw, multicast);
5741
5742        /* Cannot use different hashes in multiple device interfaces mode. */
5743        if (hw_priv->hw.dev_count > 1)
5744                return;
5745
5746        if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
5747                int i = 0;
5748
5749                /* List too big to support so turn on all multicast mode. */
5750                if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) {
5751                        if (MAX_MULTICAST_LIST != hw->multi_list_size) {
5752                                hw->multi_list_size = MAX_MULTICAST_LIST;
5753                                ++hw->all_multi;
5754                                hw_set_multicast(hw, hw->all_multi);
5755                        }
5756                        return;
5757                }
5758
5759                netdev_for_each_mc_addr(ha, dev) {
5760                        if (i >= MAX_MULTICAST_LIST)
5761                                break;
5762                        memcpy(hw->multi_list[i++], ha->addr, ETH_ALEN);
5763                }
5764                hw->multi_list_size = (u8) i;
5765                hw_set_grp_addr(hw);
5766        } else {
5767                if (MAX_MULTICAST_LIST == hw->multi_list_size) {
5768                        --hw->all_multi;
5769                        hw_set_multicast(hw, hw->all_multi);
5770                }
5771                hw->multi_list_size = 0;
5772                hw_clr_multicast(hw);
5773        }
5774}
5775
5776static int netdev_change_mtu(struct net_device *dev, int new_mtu)
5777{
5778        struct dev_priv *priv = netdev_priv(dev);
5779        struct dev_info *hw_priv = priv->adapter;
5780        struct ksz_hw *hw = &hw_priv->hw;
5781        int hw_mtu;
5782
5783        if (netif_running(dev))
5784                return -EBUSY;
5785
5786        /* Cannot use different MTU in multiple device interfaces mode. */
5787        if (hw->dev_count > 1)
5788                if (dev != hw_priv->dev)
5789                        return 0;
5790
5791        hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4;
5792        if (hw_mtu > REGULAR_RX_BUF_SIZE) {
5793                hw->features |= RX_HUGE_FRAME;
5794                hw_mtu = MAX_RX_BUF_SIZE;
5795        } else {
5796                hw->features &= ~RX_HUGE_FRAME;
5797                hw_mtu = REGULAR_RX_BUF_SIZE;
5798        }
5799        hw_mtu = (hw_mtu + 3) & ~3;
5800        hw_priv->mtu = hw_mtu;
5801        dev->mtu = new_mtu;
5802
5803        return 0;
5804}
5805
5806/**
5807 * netdev_ioctl - I/O control processing
5808 * @dev:        Network device.
5809 * @ifr:        Interface request structure.
5810 * @cmd:        I/O control code.
5811 *
5812 * This function is used to process I/O control calls.
5813 *
5814 * Return 0 to indicate success.
5815 */
5816static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5817{
5818        struct dev_priv *priv = netdev_priv(dev);
5819        struct dev_info *hw_priv = priv->adapter;
5820        struct ksz_hw *hw = &hw_priv->hw;
5821        struct ksz_port *port = &priv->port;
5822        int result = 0;
5823        struct mii_ioctl_data *data = if_mii(ifr);
5824
5825        if (down_interruptible(&priv->proc_sem))
5826                return -ERESTARTSYS;
5827
5828        switch (cmd) {
5829        /* Get address of MII PHY in use. */
5830        case SIOCGMIIPHY:
5831                data->phy_id = priv->id;
5832
5833                /* Fallthrough... */
5834
5835        /* Read MII PHY register. */
5836        case SIOCGMIIREG:
5837                if (data->phy_id != priv->id || data->reg_num >= 6)
5838                        result = -EIO;
5839                else
5840                        hw_r_phy(hw, port->linked->port_id, data->reg_num,
5841                                &data->val_out);
5842                break;
5843
5844        /* Write MII PHY register. */
5845        case SIOCSMIIREG:
5846                if (!capable(CAP_NET_ADMIN))
5847                        result = -EPERM;
5848                else if (data->phy_id != priv->id || data->reg_num >= 6)
5849                        result = -EIO;
5850                else
5851                        hw_w_phy(hw, port->linked->port_id, data->reg_num,
5852                                data->val_in);
5853                break;
5854
5855        default:
5856                result = -EOPNOTSUPP;
5857        }
5858
5859        up(&priv->proc_sem);
5860
5861        return result;
5862}
5863
5864/*
5865 * MII support
5866 */
5867
5868/**
5869 * mdio_read - read PHY register
5870 * @dev:        Network device.
5871 * @phy_id:     The PHY id.
5872 * @reg_num:    The register number.
5873 *
5874 * This function returns the PHY register value.
5875 *
5876 * Return the register value.
5877 */
5878static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
5879{
5880        struct dev_priv *priv = netdev_priv(dev);
5881        struct ksz_port *port = &priv->port;
5882        struct ksz_hw *hw = port->hw;
5883        u16 val_out;
5884
5885        hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out);
5886        return val_out;
5887}
5888
5889/**
5890 * mdio_write - set PHY register
5891 * @dev:        Network device.
5892 * @phy_id:     The PHY id.
5893 * @reg_num:    The register number.
5894 * @val:        The register value.
5895 *
5896 * This procedure sets the PHY register value.
5897 */
5898static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
5899{
5900        struct dev_priv *priv = netdev_priv(dev);
5901        struct ksz_port *port = &priv->port;
5902        struct ksz_hw *hw = port->hw;
5903        int i;
5904        int pi;
5905
5906        for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++)
5907                hw_w_phy(hw, pi, reg_num << 1, val);
5908}
5909
5910/*
5911 * ethtool support
5912 */
5913
5914#define EEPROM_SIZE                     0x40
5915
5916static u16 eeprom_data[EEPROM_SIZE] = { 0 };
5917
5918#define ADVERTISED_ALL                  \
5919        (ADVERTISED_10baseT_Half |      \
5920        ADVERTISED_10baseT_Full |       \
5921        ADVERTISED_100baseT_Half |      \
5922        ADVERTISED_100baseT_Full)
5923
5924/* These functions use the MII functions in mii.c. */
5925
5926/**
5927 * netdev_get_link_ksettings - get network device settings
5928 * @dev:        Network device.
5929 * @cmd:        Ethtool command.
5930 *
5931 * This function queries the PHY and returns its state in the ethtool command.
5932 *
5933 * Return 0 if successful; otherwise an error code.
5934 */
5935static int netdev_get_link_ksettings(struct net_device *dev,
5936                                     struct ethtool_link_ksettings *cmd)
5937{
5938        struct dev_priv *priv = netdev_priv(dev);
5939        struct dev_info *hw_priv = priv->adapter;
5940
5941        mutex_lock(&hw_priv->lock);
5942        mii_ethtool_get_link_ksettings(&priv->mii_if, cmd);
5943        ethtool_link_ksettings_add_link_mode(cmd, advertising, TP);
5944        mutex_unlock(&hw_priv->lock);
5945
5946        /* Save advertised settings for workaround in next function. */
5947        ethtool_convert_link_mode_to_legacy_u32(&priv->advertising,
5948                                                cmd->link_modes.advertising);
5949
5950        return 0;
5951}
5952
5953/**
5954 * netdev_set_link_ksettings - set network device settings
5955 * @dev:        Network device.
5956 * @cmd:        Ethtool command.
5957 *
5958 * This function sets the PHY according to the ethtool command.
5959 *
5960 * Return 0 if successful; otherwise an error code.
5961 */
5962static int netdev_set_link_ksettings(struct net_device *dev,
5963                                     const struct ethtool_link_ksettings *cmd)
5964{
5965        struct dev_priv *priv = netdev_priv(dev);
5966        struct dev_info *hw_priv = priv->adapter;
5967        struct ksz_port *port = &priv->port;
5968        struct ethtool_link_ksettings copy_cmd;
5969        u32 speed = cmd->base.speed;
5970        u32 advertising;
5971        int rc;
5972
5973        ethtool_convert_link_mode_to_legacy_u32(&advertising,
5974                                                cmd->link_modes.advertising);
5975
5976        /*
5977         * ethtool utility does not change advertised setting if auto
5978         * negotiation is not specified explicitly.
5979         */
5980        if (cmd->base.autoneg && priv->advertising == advertising) {
5981                advertising |= ADVERTISED_ALL;
5982                if (10 == speed)
5983                        advertising &=
5984                                ~(ADVERTISED_100baseT_Full |
5985                                ADVERTISED_100baseT_Half);
5986                else if (100 == speed)
5987                        advertising &=
5988                                ~(ADVERTISED_10baseT_Full |
5989                                ADVERTISED_10baseT_Half);
5990                if (0 == cmd->base.duplex)
5991                        advertising &=
5992                                ~(ADVERTISED_100baseT_Full |
5993                                ADVERTISED_10baseT_Full);
5994                else if (1 == cmd->base.duplex)
5995                        advertising &=
5996                                ~(ADVERTISED_100baseT_Half |
5997                                ADVERTISED_10baseT_Half);
5998        }
5999        mutex_lock(&hw_priv->lock);
6000        if (cmd->base.autoneg &&
6001            (advertising & ADVERTISED_ALL) == ADVERTISED_ALL) {
6002                port->duplex = 0;
6003                port->speed = 0;
6004                port->force_link = 0;
6005        } else {
6006                port->duplex = cmd->base.duplex + 1;
6007                if (1000 != speed)
6008                        port->speed = speed;
6009                if (cmd->base.autoneg)
6010                        port->force_link = 0;
6011                else
6012                        port->force_link = 1;
6013        }
6014
6015        memcpy(&copy_cmd, cmd, sizeof(copy_cmd));
6016        ethtool_convert_legacy_u32_to_link_mode(copy_cmd.link_modes.advertising,
6017                                                advertising);
6018        rc = mii_ethtool_set_link_ksettings(
6019                &priv->mii_if,
6020                (const struct ethtool_link_ksettings *)&copy_cmd);
6021        mutex_unlock(&hw_priv->lock);
6022        return rc;
6023}
6024
6025/**
6026 * netdev_nway_reset - restart auto-negotiation
6027 * @dev:        Network device.
6028 *
6029 * This function restarts the PHY for auto-negotiation.
6030 *
6031 * Return 0 if successful; otherwise an error code.
6032 */
6033static int netdev_nway_reset(struct net_device *dev)
6034{
6035        struct dev_priv *priv = netdev_priv(dev);
6036        struct dev_info *hw_priv = priv->adapter;
6037        int rc;
6038
6039        mutex_lock(&hw_priv->lock);
6040        rc = mii_nway_restart(&priv->mii_if);
6041        mutex_unlock(&hw_priv->lock);
6042        return rc;
6043}
6044
6045/**
6046 * netdev_get_link - get network device link status
6047 * @dev:        Network device.
6048 *
6049 * This function gets the link status from the PHY.
6050 *
6051 * Return true if PHY is linked and false otherwise.
6052 */
6053static u32 netdev_get_link(struct net_device *dev)
6054{
6055        struct dev_priv *priv = netdev_priv(dev);
6056        int rc;
6057
6058        rc = mii_link_ok(&priv->mii_if);
6059        return rc;
6060}
6061
6062/**
6063 * netdev_get_drvinfo - get network driver information
6064 * @dev:        Network device.
6065 * @info:       Ethtool driver info data structure.
6066 *
6067 * This procedure returns the driver information.
6068 */
6069static void netdev_get_drvinfo(struct net_device *dev,
6070        struct ethtool_drvinfo *info)
6071{
6072        struct dev_priv *priv = netdev_priv(dev);
6073        struct dev_info *hw_priv = priv->adapter;
6074
6075        strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
6076        strlcpy(info->version, DRV_VERSION, sizeof(info->version));
6077        strlcpy(info->bus_info, pci_name(hw_priv->pdev),
6078                sizeof(info->bus_info));
6079}
6080
6081/**
6082 * netdev_get_regs_len - get length of register dump
6083 * @dev:        Network device.
6084 *
6085 * This function returns the length of the register dump.
6086 *
6087 * Return length of the register dump.
6088 */
6089static struct hw_regs {
6090        int start;
6091        int end;
6092} hw_regs_range[] = {
6093        { KS_DMA_TX_CTRL,       KS884X_INTERRUPTS_STATUS },
6094        { KS_ADD_ADDR_0_LO,     KS_ADD_ADDR_F_HI },
6095        { KS884X_ADDR_0_OFFSET, KS8841_WOL_FRAME_BYTE2_OFFSET },
6096        { KS884X_SIDER_P,       KS8842_SGCR7_P },
6097        { KS8842_MACAR1_P,      KS8842_TOSR8_P },
6098        { KS884X_P1MBCR_P,      KS8842_P3ERCR_P },
6099        { 0, 0 }
6100};
6101
6102static int netdev_get_regs_len(struct net_device *dev)
6103{
6104        struct hw_regs *range = hw_regs_range;
6105        int regs_len = 0x10 * sizeof(u32);
6106
6107        while (range->end > range->start) {
6108                regs_len += (range->end - range->start + 3) / 4 * 4;
6109                range++;
6110        }
6111        return regs_len;
6112}
6113
6114/**
6115 * netdev_get_regs - get register dump
6116 * @dev:        Network device.
6117 * @regs:       Ethtool registers data structure.
6118 * @ptr:        Buffer to store the register values.
6119 *
6120 * This procedure dumps the register values in the provided buffer.
6121 */
6122static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs,
6123        void *ptr)
6124{
6125        struct dev_priv *priv = netdev_priv(dev);
6126        struct dev_info *hw_priv = priv->adapter;
6127        struct ksz_hw *hw = &hw_priv->hw;
6128        int *buf = (int *) ptr;
6129        struct hw_regs *range = hw_regs_range;
6130        int len;
6131
6132        mutex_lock(&hw_priv->lock);
6133        regs->version = 0;
6134        for (len = 0; len < 0x40; len += 4) {
6135                pci_read_config_dword(hw_priv->pdev, len, buf);
6136                buf++;
6137        }
6138        while (range->end > range->start) {
6139                for (len = range->start; len < range->end; len += 4) {
6140                        *buf = readl(hw->io + len);
6141                        buf++;
6142                }
6143                range++;
6144        }
6145        mutex_unlock(&hw_priv->lock);
6146}
6147
6148#define WOL_SUPPORT                     \
6149        (WAKE_PHY | WAKE_MAGIC |        \
6150        WAKE_UCAST | WAKE_MCAST |       \
6151        WAKE_BCAST | WAKE_ARP)
6152
6153/**
6154 * netdev_get_wol - get Wake-on-LAN support
6155 * @dev:        Network device.
6156 * @wol:        Ethtool Wake-on-LAN data structure.
6157 *
6158 * This procedure returns Wake-on-LAN support.
6159 */
6160static void netdev_get_wol(struct net_device *dev,
6161        struct ethtool_wolinfo *wol)
6162{
6163        struct dev_priv *priv = netdev_priv(dev);
6164        struct dev_info *hw_priv = priv->adapter;
6165
6166        wol->supported = hw_priv->wol_support;
6167        wol->wolopts = hw_priv->wol_enable;
6168        memset(&wol->sopass, 0, sizeof(wol->sopass));
6169}
6170
6171/**
6172 * netdev_set_wol - set Wake-on-LAN support
6173 * @dev:        Network device.
6174 * @wol:        Ethtool Wake-on-LAN data structure.
6175 *
6176 * This function sets Wake-on-LAN support.
6177 *
6178 * Return 0 if successful; otherwise an error code.
6179 */
6180static int netdev_set_wol(struct net_device *dev,
6181        struct ethtool_wolinfo *wol)
6182{
6183        struct dev_priv *priv = netdev_priv(dev);
6184        struct dev_info *hw_priv = priv->adapter;
6185
6186        /* Need to find a way to retrieve the device IP address. */
6187        static const u8 net_addr[] = { 192, 168, 1, 1 };
6188
6189        if (wol->wolopts & ~hw_priv->wol_support)
6190                return -EINVAL;
6191
6192        hw_priv->wol_enable = wol->wolopts;
6193
6194        /* Link wakeup cannot really be disabled. */
6195        if (wol->wolopts)
6196                hw_priv->wol_enable |= WAKE_PHY;
6197        hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr);
6198        return 0;
6199}
6200
6201/**
6202 * netdev_get_msglevel - get debug message level
6203 * @dev:        Network device.
6204 *
6205 * This function returns current debug message level.
6206 *
6207 * Return current debug message flags.
6208 */
6209static u32 netdev_get_msglevel(struct net_device *dev)
6210{
6211        struct dev_priv *priv = netdev_priv(dev);
6212
6213        return priv->msg_enable;
6214}
6215
6216/**
6217 * netdev_set_msglevel - set debug message level
6218 * @dev:        Network device.
6219 * @value:      Debug message flags.
6220 *
6221 * This procedure sets debug message level.
6222 */
6223static void netdev_set_msglevel(struct net_device *dev, u32 value)
6224{
6225        struct dev_priv *priv = netdev_priv(dev);
6226
6227        priv->msg_enable = value;
6228}
6229
6230/**
6231 * netdev_get_eeprom_len - get EEPROM length
6232 * @dev:        Network device.
6233 *
6234 * This function returns the length of the EEPROM.
6235 *
6236 * Return length of the EEPROM.
6237 */
6238static int netdev_get_eeprom_len(struct net_device *dev)
6239{
6240        return EEPROM_SIZE * 2;
6241}
6242
6243/**
6244 * netdev_get_eeprom - get EEPROM data
6245 * @dev:        Network device.
6246 * @eeprom:     Ethtool EEPROM data structure.
6247 * @data:       Buffer to store the EEPROM data.
6248 *
6249 * This function dumps the EEPROM data in the provided buffer.
6250 *
6251 * Return 0 if successful; otherwise an error code.
6252 */
6253#define EEPROM_MAGIC                    0x10A18842
6254
6255static int netdev_get_eeprom(struct net_device *dev,
6256        struct ethtool_eeprom *eeprom, u8 *data)
6257{
6258        struct dev_priv *priv = netdev_priv(dev);
6259        struct dev_info *hw_priv = priv->adapter;
6260        u8 *eeprom_byte = (u8 *) eeprom_data;
6261        int i;
6262        int len;
6263
6264        len = (eeprom->offset + eeprom->len + 1) / 2;
6265        for (i = eeprom->offset / 2; i < len; i++)
6266                eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6267        eeprom->magic = EEPROM_MAGIC;
6268        memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len);
6269
6270        return 0;
6271}
6272
6273/**
6274 * netdev_set_eeprom - write EEPROM data
6275 * @dev:        Network device.
6276 * @eeprom:     Ethtool EEPROM data structure.
6277 * @data:       Data buffer.
6278 *
6279 * This function modifies the EEPROM data one byte at a time.
6280 *
6281 * Return 0 if successful; otherwise an error code.
6282 */
6283static int netdev_set_eeprom(struct net_device *dev,
6284        struct ethtool_eeprom *eeprom, u8 *data)
6285{
6286        struct dev_priv *priv = netdev_priv(dev);
6287        struct dev_info *hw_priv = priv->adapter;
6288        u16 eeprom_word[EEPROM_SIZE];
6289        u8 *eeprom_byte = (u8 *) eeprom_word;
6290        int i;
6291        int len;
6292
6293        if (eeprom->magic != EEPROM_MAGIC)
6294                return -EINVAL;
6295
6296        len = (eeprom->offset + eeprom->len + 1) / 2;
6297        for (i = eeprom->offset / 2; i < len; i++)
6298                eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6299        memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2);
6300        memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len);
6301        for (i = 0; i < EEPROM_SIZE; i++)
6302                if (eeprom_word[i] != eeprom_data[i]) {
6303                        eeprom_data[i] = eeprom_word[i];
6304                        eeprom_write(&hw_priv->hw, i, eeprom_data[i]);
6305        }
6306
6307        return 0;
6308}
6309
6310/**
6311 * netdev_get_pauseparam - get flow control parameters
6312 * @dev:        Network device.
6313 * @pause:      Ethtool PAUSE settings data structure.
6314 *
6315 * This procedure returns the PAUSE control flow settings.
6316 */
6317static void netdev_get_pauseparam(struct net_device *dev,
6318        struct ethtool_pauseparam *pause)
6319{
6320        struct dev_priv *priv = netdev_priv(dev);
6321        struct dev_info *hw_priv = priv->adapter;
6322        struct ksz_hw *hw = &hw_priv->hw;
6323
6324        pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1;
6325        if (!hw->ksz_switch) {
6326                pause->rx_pause =
6327                        (hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0;
6328                pause->tx_pause =
6329                        (hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0;
6330        } else {
6331                pause->rx_pause =
6332                        (sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6333                                SWITCH_RX_FLOW_CTRL)) ? 1 : 0;
6334                pause->tx_pause =
6335                        (sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6336                                SWITCH_TX_FLOW_CTRL)) ? 1 : 0;
6337        }
6338}
6339
6340/**
6341 * netdev_set_pauseparam - set flow control parameters
6342 * @dev:        Network device.
6343 * @pause:      Ethtool PAUSE settings data structure.
6344 *
6345 * This function sets the PAUSE control flow settings.
6346 * Not implemented yet.
6347 *
6348 * Return 0 if successful; otherwise an error code.
6349 */
6350static int netdev_set_pauseparam(struct net_device *dev,
6351        struct ethtool_pauseparam *pause)
6352{
6353        struct dev_priv *priv = netdev_priv(dev);
6354        struct dev_info *hw_priv = priv->adapter;
6355        struct ksz_hw *hw = &hw_priv->hw;
6356        struct ksz_port *port = &priv->port;
6357
6358        mutex_lock(&hw_priv->lock);
6359        if (pause->autoneg) {
6360                if (!pause->rx_pause && !pause->tx_pause)
6361                        port->flow_ctrl = PHY_NO_FLOW_CTRL;
6362                else
6363                        port->flow_ctrl = PHY_FLOW_CTRL;
6364                hw->overrides &= ~PAUSE_FLOW_CTRL;
6365                port->force_link = 0;
6366                if (hw->ksz_switch) {
6367                        sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6368                                SWITCH_RX_FLOW_CTRL, 1);
6369                        sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6370                                SWITCH_TX_FLOW_CTRL, 1);
6371                }
6372                port_set_link_speed(port);
6373        } else {
6374                hw->overrides |= PAUSE_FLOW_CTRL;
6375                if (hw->ksz_switch) {
6376                        sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6377                                SWITCH_RX_FLOW_CTRL, pause->rx_pause);
6378                        sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6379                                SWITCH_TX_FLOW_CTRL, pause->tx_pause);
6380                } else
6381                        set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause);
6382        }
6383        mutex_unlock(&hw_priv->lock);
6384
6385        return 0;
6386}
6387
6388/**
6389 * netdev_get_ringparam - get tx/rx ring parameters
6390 * @dev:        Network device.
6391 * @pause:      Ethtool RING settings data structure.
6392 *
6393 * This procedure returns the TX/RX ring settings.
6394 */
6395static void netdev_get_ringparam(struct net_device *dev,
6396        struct ethtool_ringparam *ring)
6397{
6398        struct dev_priv *priv = netdev_priv(dev);
6399        struct dev_info *hw_priv = priv->adapter;
6400        struct ksz_hw *hw = &hw_priv->hw;
6401
6402        ring->tx_max_pending = (1 << 9);
6403        ring->tx_pending = hw->tx_desc_info.alloc;
6404        ring->rx_max_pending = (1 << 9);
6405        ring->rx_pending = hw->rx_desc_info.alloc;
6406}
6407
6408#define STATS_LEN                       (TOTAL_PORT_COUNTER_NUM)
6409
6410static struct {
6411        char string[ETH_GSTRING_LEN];
6412} ethtool_stats_keys[STATS_LEN] = {
6413        { "rx_lo_priority_octets" },
6414        { "rx_hi_priority_octets" },
6415        { "rx_undersize_packets" },
6416        { "rx_fragments" },
6417        { "rx_oversize_packets" },
6418        { "rx_jabbers" },
6419        { "rx_symbol_errors" },
6420        { "rx_crc_errors" },
6421        { "rx_align_errors" },
6422        { "rx_mac_ctrl_packets" },
6423        { "rx_pause_packets" },
6424        { "rx_bcast_packets" },
6425        { "rx_mcast_packets" },
6426        { "rx_ucast_packets" },
6427        { "rx_64_or_less_octet_packets" },
6428        { "rx_65_to_127_octet_packets" },
6429        { "rx_128_to_255_octet_packets" },
6430        { "rx_256_to_511_octet_packets" },
6431        { "rx_512_to_1023_octet_packets" },
6432        { "rx_1024_to_1522_octet_packets" },
6433
6434        { "tx_lo_priority_octets" },
6435        { "tx_hi_priority_octets" },
6436        { "tx_late_collisions" },
6437        { "tx_pause_packets" },
6438        { "tx_bcast_packets" },
6439        { "tx_mcast_packets" },
6440        { "tx_ucast_packets" },
6441        { "tx_deferred" },
6442        { "tx_total_collisions" },
6443        { "tx_excessive_collisions" },
6444        { "tx_single_collisions" },
6445        { "tx_mult_collisions" },
6446
6447        { "rx_discards" },
6448        { "tx_discards" },
6449};
6450
6451/**
6452 * netdev_get_strings - get statistics identity strings
6453 * @dev:        Network device.
6454 * @stringset:  String set identifier.
6455 * @buf:        Buffer to store the strings.
6456 *
6457 * This procedure returns the strings used to identify the statistics.
6458 */
6459static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
6460{
6461        struct dev_priv *priv = netdev_priv(dev);
6462        struct dev_info *hw_priv = priv->adapter;
6463        struct ksz_hw *hw = &hw_priv->hw;
6464
6465        if (ETH_SS_STATS == stringset)
6466                memcpy(buf, &ethtool_stats_keys,
6467                        ETH_GSTRING_LEN * hw->mib_cnt);
6468}
6469
6470/**
6471 * netdev_get_sset_count - get statistics size
6472 * @dev:        Network device.
6473 * @sset:       The statistics set number.
6474 *
6475 * This function returns the size of the statistics to be reported.
6476 *
6477 * Return size of the statistics to be reported.
6478 */
6479static int netdev_get_sset_count(struct net_device *dev, int sset)
6480{
6481        struct dev_priv *priv = netdev_priv(dev);
6482        struct dev_info *hw_priv = priv->adapter;
6483        struct ksz_hw *hw = &hw_priv->hw;
6484
6485        switch (sset) {
6486        case ETH_SS_STATS:
6487                return hw->mib_cnt;
6488        default:
6489                return -EOPNOTSUPP;
6490        }
6491}
6492
6493/**
6494 * netdev_get_ethtool_stats - get network device statistics
6495 * @dev:        Network device.
6496 * @stats:      Ethtool statistics data structure.
6497 * @data:       Buffer to store the statistics.
6498 *
6499 * This procedure returns the statistics.
6500 */
6501static void netdev_get_ethtool_stats(struct net_device *dev,
6502        struct ethtool_stats *stats, u64 *data)
6503{
6504        struct dev_priv *priv = netdev_priv(dev);
6505        struct dev_info *hw_priv = priv->adapter;
6506        struct ksz_hw *hw = &hw_priv->hw;
6507        struct ksz_port *port = &priv->port;
6508        int n_stats = stats->n_stats;
6509        int i;
6510        int n;
6511        int p;
6512        int rc;
6513        u64 counter[TOTAL_PORT_COUNTER_NUM];
6514
6515        mutex_lock(&hw_priv->lock);
6516        n = SWITCH_PORT_NUM;
6517        for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
6518                if (media_connected == hw->port_mib[p].state) {
6519                        hw_priv->counter[p].read = 1;
6520
6521                        /* Remember first port that requests read. */
6522                        if (n == SWITCH_PORT_NUM)
6523                                n = p;
6524                }
6525        }
6526        mutex_unlock(&hw_priv->lock);
6527
6528        if (n < SWITCH_PORT_NUM)
6529                schedule_work(&hw_priv->mib_read);
6530
6531        if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) {
6532                p = n;
6533                rc = wait_event_interruptible_timeout(
6534                        hw_priv->counter[p].counter,
6535                        2 == hw_priv->counter[p].read,
6536                        HZ * 1);
6537        } else
6538                for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) {
6539                        if (0 == i) {
6540                                rc = wait_event_interruptible_timeout(
6541                                        hw_priv->counter[p].counter,
6542                                        2 == hw_priv->counter[p].read,
6543                                        HZ * 2);
6544                        } else if (hw->port_mib[p].cnt_ptr) {
6545                                rc = wait_event_interruptible_timeout(
6546                                        hw_priv->counter[p].counter,
6547                                        2 == hw_priv->counter[p].read,
6548                                        HZ * 1);
6549                        }
6550                }
6551
6552        get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter);
6553        n = hw->mib_cnt;
6554        if (n > n_stats)
6555                n = n_stats;
6556        n_stats -= n;
6557        for (i = 0; i < n; i++)
6558                *data++ = counter[i];
6559}
6560
6561/**
6562 * netdev_set_features - set receive checksum support
6563 * @dev:        Network device.
6564 * @features:   New device features (offloads).
6565 *
6566 * This function sets receive checksum support setting.
6567 *
6568 * Return 0 if successful; otherwise an error code.
6569 */
6570static int netdev_set_features(struct net_device *dev,
6571        netdev_features_t features)
6572{
6573        struct dev_priv *priv = netdev_priv(dev);
6574        struct dev_info *hw_priv = priv->adapter;
6575        struct ksz_hw *hw = &hw_priv->hw;
6576
6577        mutex_lock(&hw_priv->lock);
6578
6579        /* see note in hw_setup() */
6580        if (features & NETIF_F_RXCSUM)
6581                hw->rx_cfg |= DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP;
6582        else
6583                hw->rx_cfg &= ~(DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
6584
6585        if (hw->enabled)
6586                writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
6587
6588        mutex_unlock(&hw_priv->lock);
6589
6590        return 0;
6591}
6592
6593static const struct ethtool_ops netdev_ethtool_ops = {
6594        .nway_reset             = netdev_nway_reset,
6595        .get_link               = netdev_get_link,
6596        .get_drvinfo            = netdev_get_drvinfo,
6597        .get_regs_len           = netdev_get_regs_len,
6598        .get_regs               = netdev_get_regs,
6599        .get_wol                = netdev_get_wol,
6600        .set_wol                = netdev_set_wol,
6601        .get_msglevel           = netdev_get_msglevel,
6602        .set_msglevel           = netdev_set_msglevel,
6603        .get_eeprom_len         = netdev_get_eeprom_len,
6604        .get_eeprom             = netdev_get_eeprom,
6605        .set_eeprom             = netdev_set_eeprom,
6606        .get_pauseparam         = netdev_get_pauseparam,
6607        .set_pauseparam         = netdev_set_pauseparam,
6608        .get_ringparam          = netdev_get_ringparam,
6609        .get_strings            = netdev_get_strings,
6610        .get_sset_count         = netdev_get_sset_count,
6611        .get_ethtool_stats      = netdev_get_ethtool_stats,
6612        .get_link_ksettings     = netdev_get_link_ksettings,
6613        .set_link_ksettings     = netdev_set_link_ksettings,
6614};
6615
6616/*
6617 * Hardware monitoring
6618 */
6619
6620static void update_link(struct net_device *dev, struct dev_priv *priv,
6621        struct ksz_port *port)
6622{
6623        if (priv->media_state != port->linked->state) {
6624                priv->media_state = port->linked->state;
6625                if (netif_running(dev))
6626                        set_media_state(dev, media_connected);
6627        }
6628}
6629
6630static void mib_read_work(struct work_struct *work)
6631{
6632        struct dev_info *hw_priv =
6633                container_of(work, struct dev_info, mib_read);
6634        struct ksz_hw *hw = &hw_priv->hw;
6635        struct ksz_port_mib *mib;
6636        int i;
6637
6638        next_jiffies = jiffies;
6639        for (i = 0; i < hw->mib_port_cnt; i++) {
6640                mib = &hw->port_mib[i];
6641
6642                /* Reading MIB counters or requested to read. */
6643                if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) {
6644
6645                        /* Need to process receive interrupt. */
6646                        if (port_r_cnt(hw, i))
6647                                break;
6648                        hw_priv->counter[i].read = 0;
6649
6650                        /* Finish reading counters. */
6651                        if (0 == mib->cnt_ptr) {
6652                                hw_priv->counter[i].read = 2;
6653                                wake_up_interruptible(
6654                                        &hw_priv->counter[i].counter);
6655                        }
6656                } else if (time_after_eq(jiffies, hw_priv->counter[i].time)) {
6657                        /* Only read MIB counters when the port is connected. */
6658                        if (media_connected == mib->state)
6659                                hw_priv->counter[i].read = 1;
6660                        next_jiffies += HZ * 1 * hw->mib_port_cnt;
6661                        hw_priv->counter[i].time = next_jiffies;
6662
6663                /* Port is just disconnected. */
6664                } else if (mib->link_down) {
6665                        mib->link_down = 0;
6666
6667                        /* Read counters one last time after link is lost. */
6668                        hw_priv->counter[i].read = 1;
6669                }
6670        }
6671}
6672
6673static void mib_monitor(struct timer_list *t)
6674{
6675        struct dev_info *hw_priv = from_timer(hw_priv, t, mib_timer_info.timer);
6676
6677        mib_read_work(&hw_priv->mib_read);
6678
6679        /* This is used to verify Wake-on-LAN is working. */
6680        if (hw_priv->pme_wait) {
6681                if (time_is_before_eq_jiffies(hw_priv->pme_wait)) {
6682                        hw_clr_wol_pme_status(&hw_priv->hw);
6683                        hw_priv->pme_wait = 0;
6684                }
6685        } else if (hw_chk_wol_pme_status(&hw_priv->hw)) {
6686
6687                /* PME is asserted.  Wait 2 seconds to clear it. */
6688                hw_priv->pme_wait = jiffies + HZ * 2;
6689        }
6690
6691        ksz_update_timer(&hw_priv->mib_timer_info);
6692}
6693
6694/**
6695 * dev_monitor - periodic monitoring
6696 * @ptr:        Network device pointer.
6697 *
6698 * This routine is run in a kernel timer to monitor the network device.
6699 */
6700static void dev_monitor(struct timer_list *t)
6701{
6702        struct dev_priv *priv = from_timer(priv, t, monitor_timer_info.timer);
6703        struct net_device *dev = priv->mii_if.dev;
6704        struct dev_info *hw_priv = priv->adapter;
6705        struct ksz_hw *hw = &hw_priv->hw;
6706        struct ksz_port *port = &priv->port;
6707
6708        if (!(hw->features & LINK_INT_WORKING))
6709                port_get_link_speed(port);
6710        update_link(dev, priv, port);
6711
6712        ksz_update_timer(&priv->monitor_timer_info);
6713}
6714
6715/*
6716 * Linux network device interface functions
6717 */
6718
6719/* Driver exported variables */
6720
6721static int msg_enable;
6722
6723static char *macaddr = ":";
6724static char *mac1addr = ":";
6725
6726/*
6727 * This enables multiple network device mode for KSZ8842, which contains a
6728 * switch with two physical ports.  Some users like to take control of the
6729 * ports for running Spanning Tree Protocol.  The driver will create an
6730 * additional eth? device for the other port.
6731 *
6732 * Some limitations are the network devices cannot have different MTU and
6733 * multicast hash tables.
6734 */
6735static int multi_dev;
6736
6737/*
6738 * As most users select multiple network device mode to use Spanning Tree
6739 * Protocol, this enables a feature in which most unicast and multicast packets
6740 * are forwarded inside the switch and not passed to the host.  Only packets
6741 * that need the host's attention are passed to it.  This prevents the host
6742 * wasting CPU time to examine each and every incoming packets and do the
6743 * forwarding itself.
6744 *
6745 * As the hack requires the private bridge header, the driver cannot compile
6746 * with just the kernel headers.
6747 *
6748 * Enabling STP support also turns on multiple network device mode.
6749 */
6750static int stp;
6751
6752/*
6753 * This enables fast aging in the KSZ8842 switch.  Not sure what situation
6754 * needs that.  However, fast aging is used to flush the dynamic MAC table when
6755 * STP support is enabled.
6756 */
6757static int fast_aging;
6758
6759/**
6760 * netdev_init - initialize network device.
6761 * @dev:        Network device.
6762 *
6763 * This function initializes the network device.
6764 *
6765 * Return 0 if successful; otherwise an error code indicating failure.
6766 */
6767static int __init netdev_init(struct net_device *dev)
6768{
6769        struct dev_priv *priv = netdev_priv(dev);
6770
6771        /* 500 ms timeout */
6772        ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000,
6773                dev_monitor);
6774
6775        /* 500 ms timeout */
6776        dev->watchdog_timeo = HZ / 2;
6777
6778        dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM;
6779
6780        /*
6781         * Hardware does not really support IPv6 checksum generation, but
6782         * driver actually runs faster with this on.
6783         */
6784        dev->hw_features |= NETIF_F_IPV6_CSUM;
6785
6786        dev->features |= dev->hw_features;
6787
6788        sema_init(&priv->proc_sem, 1);
6789
6790        priv->mii_if.phy_id_mask = 0x1;
6791        priv->mii_if.reg_num_mask = 0x7;
6792        priv->mii_if.dev = dev;
6793        priv->mii_if.mdio_read = mdio_read;
6794        priv->mii_if.mdio_write = mdio_write;
6795        priv->mii_if.phy_id = priv->port.first_port + 1;
6796
6797        priv->msg_enable = netif_msg_init(msg_enable,
6798                (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK));
6799
6800        return 0;
6801}
6802
6803static const struct net_device_ops netdev_ops = {
6804        .ndo_init               = netdev_init,
6805        .ndo_open               = netdev_open,
6806        .ndo_stop               = netdev_close,
6807        .ndo_get_stats          = netdev_query_statistics,
6808        .ndo_start_xmit         = netdev_tx,
6809        .ndo_tx_timeout         = netdev_tx_timeout,
6810        .ndo_change_mtu         = netdev_change_mtu,
6811        .ndo_set_features       = netdev_set_features,
6812        .ndo_set_mac_address    = netdev_set_mac_address,
6813        .ndo_validate_addr      = eth_validate_addr,
6814        .ndo_do_ioctl           = netdev_ioctl,
6815        .ndo_set_rx_mode        = netdev_set_rx_mode,
6816#ifdef CONFIG_NET_POLL_CONTROLLER
6817        .ndo_poll_controller    = netdev_netpoll,
6818#endif
6819};
6820
6821static void netdev_free(struct net_device *dev)
6822{
6823        if (dev->watchdog_timeo)
6824                unregister_netdev(dev);
6825
6826        free_netdev(dev);
6827}
6828
6829struct platform_info {
6830        struct dev_info dev_info;
6831        struct net_device *netdev[SWITCH_PORT_NUM];
6832};
6833
6834static int net_device_present;
6835
6836static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port)
6837{
6838        int i;
6839        int j;
6840        int got_num;
6841        int num;
6842
6843        i = j = num = got_num = 0;
6844        while (j < ETH_ALEN) {
6845                if (macaddr[i]) {
6846                        int digit;
6847
6848                        got_num = 1;
6849                        digit = hex_to_bin(macaddr[i]);
6850                        if (digit >= 0)
6851                                num = num * 16 + digit;
6852                        else if (':' == macaddr[i])
6853                                got_num = 2;
6854                        else
6855                                break;
6856                } else if (got_num)
6857                        got_num = 2;
6858                else
6859                        break;
6860                if (2 == got_num) {
6861                        if (MAIN_PORT == port) {
6862                                hw_priv->hw.override_addr[j++] = (u8) num;
6863                                hw_priv->hw.override_addr[5] +=
6864                                        hw_priv->hw.id;
6865                        } else {
6866                                hw_priv->hw.ksz_switch->other_addr[j++] =
6867                                        (u8) num;
6868                                hw_priv->hw.ksz_switch->other_addr[5] +=
6869                                        hw_priv->hw.id;
6870                        }
6871                        num = got_num = 0;
6872                }
6873                i++;
6874        }
6875        if (ETH_ALEN == j) {
6876                if (MAIN_PORT == port)
6877                        hw_priv->hw.mac_override = 1;
6878        }
6879}
6880
6881#define KS884X_DMA_MASK                 (~0x0UL)
6882
6883static void read_other_addr(struct ksz_hw *hw)
6884{
6885        int i;
6886        u16 data[3];
6887        struct ksz_switch *sw = hw->ksz_switch;
6888
6889        for (i = 0; i < 3; i++)
6890                data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR);
6891        if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) {
6892                sw->other_addr[5] = (u8) data[0];
6893                sw->other_addr[4] = (u8)(data[0] >> 8);
6894                sw->other_addr[3] = (u8) data[1];
6895                sw->other_addr[2] = (u8)(data[1] >> 8);
6896                sw->other_addr[1] = (u8) data[2];
6897                sw->other_addr[0] = (u8)(data[2] >> 8);
6898        }
6899}
6900
6901#ifndef PCI_VENDOR_ID_MICREL_KS
6902#define PCI_VENDOR_ID_MICREL_KS         0x16c6
6903#endif
6904
6905static int pcidev_init(struct pci_dev *pdev, const struct pci_device_id *id)
6906{
6907        struct net_device *dev;
6908        struct dev_priv *priv;
6909        struct dev_info *hw_priv;
6910        struct ksz_hw *hw;
6911        struct platform_info *info;
6912        struct ksz_port *port;
6913        unsigned long reg_base;
6914        unsigned long reg_len;
6915        int cnt;
6916        int i;
6917        int mib_port_count;
6918        int pi;
6919        int port_count;
6920        int result;
6921        char banner[sizeof(version)];
6922        struct ksz_switch *sw = NULL;
6923
6924        result = pci_enable_device(pdev);
6925        if (result)
6926                return result;
6927
6928        result = -ENODEV;
6929
6930        if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)) ||
6931            dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)))
6932                return result;
6933
6934        reg_base = pci_resource_start(pdev, 0);
6935        reg_len = pci_resource_len(pdev, 0);
6936        if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0)
6937                return result;
6938
6939        if (!request_mem_region(reg_base, reg_len, DRV_NAME))
6940                return result;
6941        pci_set_master(pdev);
6942
6943        result = -ENOMEM;
6944
6945        info = kzalloc(sizeof(struct platform_info), GFP_KERNEL);
6946        if (!info)
6947                goto pcidev_init_dev_err;
6948
6949        hw_priv = &info->dev_info;
6950        hw_priv->pdev = pdev;
6951
6952        hw = &hw_priv->hw;
6953
6954        hw->io = ioremap(reg_base, reg_len);
6955        if (!hw->io)
6956                goto pcidev_init_io_err;
6957
6958        cnt = hw_init(hw);
6959        if (!cnt) {
6960                if (msg_enable & NETIF_MSG_PROBE)
6961                        pr_alert("chip not detected\n");
6962                result = -ENODEV;
6963                goto pcidev_init_alloc_err;
6964        }
6965
6966        snprintf(banner, sizeof(banner), "%s", version);
6967        banner[13] = cnt + '0';         /* Replace x in "Micrel KSZ884x" */
6968        dev_info(&hw_priv->pdev->dev, "%s\n", banner);
6969        dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq);
6970
6971        /* Assume device is KSZ8841. */
6972        hw->dev_count = 1;
6973        port_count = 1;
6974        mib_port_count = 1;
6975        hw->addr_list_size = 0;
6976        hw->mib_cnt = PORT_COUNTER_NUM;
6977        hw->mib_port_cnt = 1;
6978
6979        /* KSZ8842 has a switch with multiple ports. */
6980        if (2 == cnt) {
6981                if (fast_aging)
6982                        hw->overrides |= FAST_AGING;
6983
6984                hw->mib_cnt = TOTAL_PORT_COUNTER_NUM;
6985
6986                /* Multiple network device interfaces are required. */
6987                if (multi_dev) {
6988                        hw->dev_count = SWITCH_PORT_NUM;
6989                        hw->addr_list_size = SWITCH_PORT_NUM - 1;
6990                }
6991
6992                /* Single network device has multiple ports. */
6993                if (1 == hw->dev_count) {
6994                        port_count = SWITCH_PORT_NUM;
6995                        mib_port_count = SWITCH_PORT_NUM;
6996                }
6997                hw->mib_port_cnt = TOTAL_PORT_NUM;
6998                hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL);
6999                if (!hw->ksz_switch)
7000                        goto pcidev_init_alloc_err;
7001
7002                sw = hw->ksz_switch;
7003        }
7004        for (i = 0; i < hw->mib_port_cnt; i++)
7005                hw->port_mib[i].mib_start = 0;
7006
7007        hw->parent = hw_priv;
7008
7009        /* Default MTU is 1500. */
7010        hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3;
7011
7012        if (ksz_alloc_mem(hw_priv))
7013                goto pcidev_init_mem_err;
7014
7015        hw_priv->hw.id = net_device_present;
7016
7017        spin_lock_init(&hw_priv->hwlock);
7018        mutex_init(&hw_priv->lock);
7019
7020        for (i = 0; i < TOTAL_PORT_NUM; i++)
7021                init_waitqueue_head(&hw_priv->counter[i].counter);
7022
7023        if (macaddr[0] != ':')
7024                get_mac_addr(hw_priv, macaddr, MAIN_PORT);
7025
7026        /* Read MAC address and initialize override address if not overridden. */
7027        hw_read_addr(hw);
7028
7029        /* Multiple device interfaces mode requires a second MAC address. */
7030        if (hw->dev_count > 1) {
7031                memcpy(sw->other_addr, hw->override_addr, ETH_ALEN);
7032                read_other_addr(hw);
7033                if (mac1addr[0] != ':')
7034                        get_mac_addr(hw_priv, mac1addr, OTHER_PORT);
7035        }
7036
7037        hw_setup(hw);
7038        if (hw->ksz_switch)
7039                sw_setup(hw);
7040        else {
7041                hw_priv->wol_support = WOL_SUPPORT;
7042                hw_priv->wol_enable = 0;
7043        }
7044
7045        INIT_WORK(&hw_priv->mib_read, mib_read_work);
7046
7047        /* 500 ms timeout */
7048        ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000,
7049                mib_monitor);
7050
7051        for (i = 0; i < hw->dev_count; i++) {
7052                dev = alloc_etherdev(sizeof(struct dev_priv));
7053                if (!dev)
7054                        goto pcidev_init_reg_err;
7055                SET_NETDEV_DEV(dev, &pdev->dev);
7056                info->netdev[i] = dev;
7057
7058                priv = netdev_priv(dev);
7059                priv->adapter = hw_priv;
7060                priv->id = net_device_present++;
7061
7062                port = &priv->port;
7063                port->port_cnt = port_count;
7064                port->mib_port_cnt = mib_port_count;
7065                port->first_port = i;
7066                port->flow_ctrl = PHY_FLOW_CTRL;
7067
7068                port->hw = hw;
7069                port->linked = &hw->port_info[port->first_port];
7070
7071                for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) {
7072                        hw->port_info[pi].port_id = pi;
7073                        hw->port_info[pi].pdev = dev;
7074                        hw->port_info[pi].state = media_disconnected;
7075                }
7076
7077                dev->mem_start = (unsigned long) hw->io;
7078                dev->mem_end = dev->mem_start + reg_len - 1;
7079                dev->irq = pdev->irq;
7080                if (MAIN_PORT == i)
7081                        memcpy(dev->dev_addr, hw_priv->hw.override_addr,
7082                               ETH_ALEN);
7083                else {
7084                        memcpy(dev->dev_addr, sw->other_addr, ETH_ALEN);
7085                        if (ether_addr_equal(sw->other_addr, hw->override_addr))
7086                                dev->dev_addr[5] += port->first_port;
7087                }
7088
7089                dev->netdev_ops = &netdev_ops;
7090                dev->ethtool_ops = &netdev_ethtool_ops;
7091
7092                /* MTU range: 60 - 1894 */
7093                dev->min_mtu = ETH_ZLEN;
7094                dev->max_mtu = MAX_RX_BUF_SIZE -
7095                               (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
7096
7097                if (register_netdev(dev))
7098                        goto pcidev_init_reg_err;
7099                port_set_power_saving(port, true);
7100        }
7101
7102        pci_dev_get(hw_priv->pdev);
7103        pci_set_drvdata(pdev, info);
7104        return 0;
7105
7106pcidev_init_reg_err:
7107        for (i = 0; i < hw->dev_count; i++) {
7108                if (info->netdev[i]) {
7109                        netdev_free(info->netdev[i]);
7110                        info->netdev[i] = NULL;
7111                }
7112        }
7113
7114pcidev_init_mem_err:
7115        ksz_free_mem(hw_priv);
7116        kfree(hw->ksz_switch);
7117
7118pcidev_init_alloc_err:
7119        iounmap(hw->io);
7120
7121pcidev_init_io_err:
7122        kfree(info);
7123
7124pcidev_init_dev_err:
7125        release_mem_region(reg_base, reg_len);
7126
7127        return result;
7128}
7129
7130static void pcidev_exit(struct pci_dev *pdev)
7131{
7132        int i;
7133        struct platform_info *info = pci_get_drvdata(pdev);
7134        struct dev_info *hw_priv = &info->dev_info;
7135
7136        release_mem_region(pci_resource_start(pdev, 0),
7137                pci_resource_len(pdev, 0));
7138        for (i = 0; i < hw_priv->hw.dev_count; i++) {
7139                if (info->netdev[i])
7140                        netdev_free(info->netdev[i]);
7141        }
7142        if (hw_priv->hw.io)
7143                iounmap(hw_priv->hw.io);
7144        ksz_free_mem(hw_priv);
7145        kfree(hw_priv->hw.ksz_switch);
7146        pci_dev_put(hw_priv->pdev);
7147        kfree(info);
7148}
7149
7150static int __maybe_unused pcidev_resume(struct device *dev_d)
7151{
7152        int i;
7153        struct platform_info *info = dev_get_drvdata(dev_d);
7154        struct dev_info *hw_priv = &info->dev_info;
7155        struct ksz_hw *hw = &hw_priv->hw;
7156
7157        device_wakeup_disable(dev_d);
7158
7159        if (hw_priv->wol_enable)
7160                hw_cfg_wol_pme(hw, 0);
7161        for (i = 0; i < hw->dev_count; i++) {
7162                if (info->netdev[i]) {
7163                        struct net_device *dev = info->netdev[i];
7164
7165                        if (netif_running(dev)) {
7166                                netdev_open(dev);
7167                                netif_device_attach(dev);
7168                        }
7169                }
7170        }
7171        return 0;
7172}
7173
7174static int __maybe_unused pcidev_suspend(struct device *dev_d)
7175{
7176        int i;
7177        struct platform_info *info = dev_get_drvdata(dev_d);
7178        struct dev_info *hw_priv = &info->dev_info;
7179        struct ksz_hw *hw = &hw_priv->hw;
7180
7181        /* Need to find a way to retrieve the device IP address. */
7182        static const u8 net_addr[] = { 192, 168, 1, 1 };
7183
7184        for (i = 0; i < hw->dev_count; i++) {
7185                if (info->netdev[i]) {
7186                        struct net_device *dev = info->netdev[i];
7187
7188                        if (netif_running(dev)) {
7189                                netif_device_detach(dev);
7190                                netdev_close(dev);
7191                        }
7192                }
7193        }
7194        if (hw_priv->wol_enable) {
7195                hw_enable_wol(hw, hw_priv->wol_enable, net_addr);
7196                hw_cfg_wol_pme(hw, 1);
7197        }
7198
7199        device_wakeup_enable(dev_d);
7200        return 0;
7201}
7202
7203static char pcidev_name[] = "ksz884xp";
7204
7205static const struct pci_device_id pcidev_table[] = {
7206        { PCI_VENDOR_ID_MICREL_KS, 0x8841,
7207                PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7208        { PCI_VENDOR_ID_MICREL_KS, 0x8842,
7209                PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7210        { 0 }
7211};
7212
7213MODULE_DEVICE_TABLE(pci, pcidev_table);
7214
7215static SIMPLE_DEV_PM_OPS(pcidev_pm_ops, pcidev_suspend, pcidev_resume);
7216
7217static struct pci_driver pci_device_driver = {
7218        .driver.pm      = &pcidev_pm_ops,
7219        .name           = pcidev_name,
7220        .id_table       = pcidev_table,
7221        .probe          = pcidev_init,
7222        .remove         = pcidev_exit
7223};
7224
7225module_pci_driver(pci_device_driver);
7226
7227MODULE_DESCRIPTION("KSZ8841/2 PCI network driver");
7228MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>");
7229MODULE_LICENSE("GPL");
7230
7231module_param_named(message, msg_enable, int, 0);
7232MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
7233
7234module_param(macaddr, charp, 0);
7235module_param(mac1addr, charp, 0);
7236module_param(fast_aging, int, 0);
7237module_param(multi_dev, int, 0);
7238module_param(stp, int, 0);
7239MODULE_PARM_DESC(macaddr, "MAC address");
7240MODULE_PARM_DESC(mac1addr, "Second MAC address");
7241MODULE_PARM_DESC(fast_aging, "Fast aging");
7242MODULE_PARM_DESC(multi_dev, "Multiple device interfaces");
7243MODULE_PARM_DESC(stp, "STP support");
7244