linux/drivers/net/vrf.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * vrf.c: device driver to encapsulate a VRF space
   4 *
   5 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
   6 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
   7 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
   8 *
   9 * Based on dummy, team and ipvlan drivers
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/kernel.h>
  14#include <linux/netdevice.h>
  15#include <linux/etherdevice.h>
  16#include <linux/ip.h>
  17#include <linux/init.h>
  18#include <linux/moduleparam.h>
  19#include <linux/netfilter.h>
  20#include <linux/rtnetlink.h>
  21#include <net/rtnetlink.h>
  22#include <linux/u64_stats_sync.h>
  23#include <linux/hashtable.h>
  24#include <linux/spinlock_types.h>
  25
  26#include <linux/inetdevice.h>
  27#include <net/arp.h>
  28#include <net/ip.h>
  29#include <net/ip_fib.h>
  30#include <net/ip6_fib.h>
  31#include <net/ip6_route.h>
  32#include <net/route.h>
  33#include <net/addrconf.h>
  34#include <net/l3mdev.h>
  35#include <net/fib_rules.h>
  36#include <net/netns/generic.h>
  37
  38#define DRV_NAME        "vrf"
  39#define DRV_VERSION     "1.1"
  40
  41#define FIB_RULE_PREF  1000       /* default preference for FIB rules */
  42
  43#define HT_MAP_BITS     4
  44#define HASH_INITVAL    ((u32)0xcafef00d)
  45
  46struct  vrf_map {
  47        DECLARE_HASHTABLE(ht, HT_MAP_BITS);
  48        spinlock_t vmap_lock;
  49
  50        /* shared_tables:
  51         * count how many distinct tables do not comply with the strict mode
  52         * requirement.
  53         * shared_tables value must be 0 in order to enable the strict mode.
  54         *
  55         * example of the evolution of shared_tables:
  56         *                                                        | time
  57         * add  vrf0 --> table 100        shared_tables = 0       | t0
  58         * add  vrf1 --> table 101        shared_tables = 0       | t1
  59         * add  vrf2 --> table 100        shared_tables = 1       | t2
  60         * add  vrf3 --> table 100        shared_tables = 1       | t3
  61         * add  vrf4 --> table 101        shared_tables = 2       v t4
  62         *
  63         * shared_tables is a "step function" (or "staircase function")
  64         * and it is increased by one when the second vrf is associated to a
  65         * table.
  66         *
  67         * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
  68         *
  69         * at t3, another dev (vrf3) is bound to the same table 100 but the
  70         * value of shared_tables is still 1.
  71         * This means that no matter how many new vrfs will register on the
  72         * table 100, the shared_tables will not increase (considering only
  73         * table 100).
  74         *
  75         * at t4, vrf4 is bound to table 101, and shared_tables = 2.
  76         *
  77         * Looking at the value of shared_tables we can immediately know if
  78         * the strict_mode can or cannot be enforced. Indeed, strict_mode
  79         * can be enforced iff shared_tables = 0.
  80         *
  81         * Conversely, shared_tables is decreased when a vrf is de-associated
  82         * from a table with exactly two associated vrfs.
  83         */
  84        u32 shared_tables;
  85
  86        bool strict_mode;
  87};
  88
  89struct vrf_map_elem {
  90        struct hlist_node hnode;
  91        struct list_head vrf_list;  /* VRFs registered to this table */
  92
  93        u32 table_id;
  94        int users;
  95        int ifindex;
  96};
  97
  98static unsigned int vrf_net_id;
  99
 100/* per netns vrf data */
 101struct netns_vrf {
 102        /* protected by rtnl lock */
 103        bool add_fib_rules;
 104
 105        struct vrf_map vmap;
 106        struct ctl_table_header *ctl_hdr;
 107};
 108
 109struct net_vrf {
 110        struct rtable __rcu     *rth;
 111        struct rt6_info __rcu   *rt6;
 112#if IS_ENABLED(CONFIG_IPV6)
 113        struct fib6_table       *fib6_table;
 114#endif
 115        u32                     tb_id;
 116
 117        struct list_head        me_list;   /* entry in vrf_map_elem */
 118        int                     ifindex;
 119};
 120
 121struct pcpu_dstats {
 122        u64                     tx_pkts;
 123        u64                     tx_bytes;
 124        u64                     tx_drps;
 125        u64                     rx_pkts;
 126        u64                     rx_bytes;
 127        u64                     rx_drps;
 128        struct u64_stats_sync   syncp;
 129};
 130
 131static void vrf_rx_stats(struct net_device *dev, int len)
 132{
 133        struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
 134
 135        u64_stats_update_begin(&dstats->syncp);
 136        dstats->rx_pkts++;
 137        dstats->rx_bytes += len;
 138        u64_stats_update_end(&dstats->syncp);
 139}
 140
 141static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
 142{
 143        vrf_dev->stats.tx_errors++;
 144        kfree_skb(skb);
 145}
 146
 147static void vrf_get_stats64(struct net_device *dev,
 148                            struct rtnl_link_stats64 *stats)
 149{
 150        int i;
 151
 152        for_each_possible_cpu(i) {
 153                const struct pcpu_dstats *dstats;
 154                u64 tbytes, tpkts, tdrops, rbytes, rpkts;
 155                unsigned int start;
 156
 157                dstats = per_cpu_ptr(dev->dstats, i);
 158                do {
 159                        start = u64_stats_fetch_begin_irq(&dstats->syncp);
 160                        tbytes = dstats->tx_bytes;
 161                        tpkts = dstats->tx_pkts;
 162                        tdrops = dstats->tx_drps;
 163                        rbytes = dstats->rx_bytes;
 164                        rpkts = dstats->rx_pkts;
 165                } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
 166                stats->tx_bytes += tbytes;
 167                stats->tx_packets += tpkts;
 168                stats->tx_dropped += tdrops;
 169                stats->rx_bytes += rbytes;
 170                stats->rx_packets += rpkts;
 171        }
 172}
 173
 174static struct vrf_map *netns_vrf_map(struct net *net)
 175{
 176        struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
 177
 178        return &nn_vrf->vmap;
 179}
 180
 181static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
 182{
 183        return netns_vrf_map(dev_net(dev));
 184}
 185
 186static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
 187{
 188        struct list_head *me_head = &me->vrf_list;
 189        struct net_vrf *vrf;
 190
 191        if (list_empty(me_head))
 192                return -ENODEV;
 193
 194        vrf = list_first_entry(me_head, struct net_vrf, me_list);
 195
 196        return vrf->ifindex;
 197}
 198
 199static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
 200{
 201        struct vrf_map_elem *me;
 202
 203        me = kmalloc(sizeof(*me), flags);
 204        if (!me)
 205                return NULL;
 206
 207        return me;
 208}
 209
 210static void vrf_map_elem_free(struct vrf_map_elem *me)
 211{
 212        kfree(me);
 213}
 214
 215static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
 216                              int ifindex, int users)
 217{
 218        me->table_id = table_id;
 219        me->ifindex = ifindex;
 220        me->users = users;
 221        INIT_LIST_HEAD(&me->vrf_list);
 222}
 223
 224static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
 225                                                u32 table_id)
 226{
 227        struct vrf_map_elem *me;
 228        u32 key;
 229
 230        key = jhash_1word(table_id, HASH_INITVAL);
 231        hash_for_each_possible(vmap->ht, me, hnode, key) {
 232                if (me->table_id == table_id)
 233                        return me;
 234        }
 235
 236        return NULL;
 237}
 238
 239static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
 240{
 241        u32 table_id = me->table_id;
 242        u32 key;
 243
 244        key = jhash_1word(table_id, HASH_INITVAL);
 245        hash_add(vmap->ht, &me->hnode, key);
 246}
 247
 248static void vrf_map_del_elem(struct vrf_map_elem *me)
 249{
 250        hash_del(&me->hnode);
 251}
 252
 253static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
 254{
 255        spin_lock(&vmap->vmap_lock);
 256}
 257
 258static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
 259{
 260        spin_unlock(&vmap->vmap_lock);
 261}
 262
 263/* called with rtnl lock held */
 264static int
 265vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
 266{
 267        struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
 268        struct net_vrf *vrf = netdev_priv(dev);
 269        struct vrf_map_elem *new_me, *me;
 270        u32 table_id = vrf->tb_id;
 271        bool free_new_me = false;
 272        int users;
 273        int res;
 274
 275        /* we pre-allocate elements used in the spin-locked section (so that we
 276         * keep the spinlock as short as possibile).
 277         */
 278        new_me = vrf_map_elem_alloc(GFP_KERNEL);
 279        if (!new_me)
 280                return -ENOMEM;
 281
 282        vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
 283
 284        vrf_map_lock(vmap);
 285
 286        me = vrf_map_lookup_elem(vmap, table_id);
 287        if (!me) {
 288                me = new_me;
 289                vrf_map_add_elem(vmap, me);
 290                goto link_vrf;
 291        }
 292
 293        /* we already have an entry in the vrf_map, so it means there is (at
 294         * least) a vrf registered on the specific table.
 295         */
 296        free_new_me = true;
 297        if (vmap->strict_mode) {
 298                /* vrfs cannot share the same table */
 299                NL_SET_ERR_MSG(extack, "Table is used by another VRF");
 300                res = -EBUSY;
 301                goto unlock;
 302        }
 303
 304link_vrf:
 305        users = ++me->users;
 306        if (users == 2)
 307                ++vmap->shared_tables;
 308
 309        list_add(&vrf->me_list, &me->vrf_list);
 310
 311        res = 0;
 312
 313unlock:
 314        vrf_map_unlock(vmap);
 315
 316        /* clean-up, if needed */
 317        if (free_new_me)
 318                vrf_map_elem_free(new_me);
 319
 320        return res;
 321}
 322
 323/* called with rtnl lock held */
 324static void vrf_map_unregister_dev(struct net_device *dev)
 325{
 326        struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
 327        struct net_vrf *vrf = netdev_priv(dev);
 328        u32 table_id = vrf->tb_id;
 329        struct vrf_map_elem *me;
 330        int users;
 331
 332        vrf_map_lock(vmap);
 333
 334        me = vrf_map_lookup_elem(vmap, table_id);
 335        if (!me)
 336                goto unlock;
 337
 338        list_del(&vrf->me_list);
 339
 340        users = --me->users;
 341        if (users == 1) {
 342                --vmap->shared_tables;
 343        } else if (users == 0) {
 344                vrf_map_del_elem(me);
 345
 346                /* no one will refer to this element anymore */
 347                vrf_map_elem_free(me);
 348        }
 349
 350unlock:
 351        vrf_map_unlock(vmap);
 352}
 353
 354/* return the vrf device index associated with the table_id */
 355static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
 356{
 357        struct vrf_map *vmap = netns_vrf_map(net);
 358        struct vrf_map_elem *me;
 359        int ifindex;
 360
 361        vrf_map_lock(vmap);
 362
 363        if (!vmap->strict_mode) {
 364                ifindex = -EPERM;
 365                goto unlock;
 366        }
 367
 368        me = vrf_map_lookup_elem(vmap, table_id);
 369        if (!me) {
 370                ifindex = -ENODEV;
 371                goto unlock;
 372        }
 373
 374        ifindex = vrf_map_elem_get_vrf_ifindex(me);
 375
 376unlock:
 377        vrf_map_unlock(vmap);
 378
 379        return ifindex;
 380}
 381
 382/* by default VRF devices do not have a qdisc and are expected
 383 * to be created with only a single queue.
 384 */
 385static bool qdisc_tx_is_default(const struct net_device *dev)
 386{
 387        struct netdev_queue *txq;
 388        struct Qdisc *qdisc;
 389
 390        if (dev->num_tx_queues > 1)
 391                return false;
 392
 393        txq = netdev_get_tx_queue(dev, 0);
 394        qdisc = rcu_access_pointer(txq->qdisc);
 395
 396        return !qdisc->enqueue;
 397}
 398
 399/* Local traffic destined to local address. Reinsert the packet to rx
 400 * path, similar to loopback handling.
 401 */
 402static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
 403                          struct dst_entry *dst)
 404{
 405        int len = skb->len;
 406
 407        skb_orphan(skb);
 408
 409        skb_dst_set(skb, dst);
 410
 411        /* set pkt_type to avoid skb hitting packet taps twice -
 412         * once on Tx and again in Rx processing
 413         */
 414        skb->pkt_type = PACKET_LOOPBACK;
 415
 416        skb->protocol = eth_type_trans(skb, dev);
 417
 418        if (likely(netif_rx(skb) == NET_RX_SUCCESS))
 419                vrf_rx_stats(dev, len);
 420        else
 421                this_cpu_inc(dev->dstats->rx_drps);
 422
 423        return NETDEV_TX_OK;
 424}
 425
 426#if IS_ENABLED(CONFIG_IPV6)
 427static int vrf_ip6_local_out(struct net *net, struct sock *sk,
 428                             struct sk_buff *skb)
 429{
 430        int err;
 431
 432        err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
 433                      sk, skb, NULL, skb_dst(skb)->dev, dst_output);
 434
 435        if (likely(err == 1))
 436                err = dst_output(net, sk, skb);
 437
 438        return err;
 439}
 440
 441static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
 442                                           struct net_device *dev)
 443{
 444        const struct ipv6hdr *iph;
 445        struct net *net = dev_net(skb->dev);
 446        struct flowi6 fl6;
 447        int ret = NET_XMIT_DROP;
 448        struct dst_entry *dst;
 449        struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
 450
 451        if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
 452                goto err;
 453
 454        iph = ipv6_hdr(skb);
 455
 456        memset(&fl6, 0, sizeof(fl6));
 457        /* needed to match OIF rule */
 458        fl6.flowi6_oif = dev->ifindex;
 459        fl6.flowi6_iif = LOOPBACK_IFINDEX;
 460        fl6.daddr = iph->daddr;
 461        fl6.saddr = iph->saddr;
 462        fl6.flowlabel = ip6_flowinfo(iph);
 463        fl6.flowi6_mark = skb->mark;
 464        fl6.flowi6_proto = iph->nexthdr;
 465        fl6.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF;
 466
 467        dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
 468        if (IS_ERR(dst) || dst == dst_null)
 469                goto err;
 470
 471        skb_dst_drop(skb);
 472
 473        /* if dst.dev is loopback or the VRF device again this is locally
 474         * originated traffic destined to a local address. Short circuit
 475         * to Rx path
 476         */
 477        if (dst->dev == dev)
 478                return vrf_local_xmit(skb, dev, dst);
 479
 480        skb_dst_set(skb, dst);
 481
 482        /* strip the ethernet header added for pass through VRF device */
 483        __skb_pull(skb, skb_network_offset(skb));
 484
 485        ret = vrf_ip6_local_out(net, skb->sk, skb);
 486        if (unlikely(net_xmit_eval(ret)))
 487                dev->stats.tx_errors++;
 488        else
 489                ret = NET_XMIT_SUCCESS;
 490
 491        return ret;
 492err:
 493        vrf_tx_error(dev, skb);
 494        return NET_XMIT_DROP;
 495}
 496#else
 497static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
 498                                           struct net_device *dev)
 499{
 500        vrf_tx_error(dev, skb);
 501        return NET_XMIT_DROP;
 502}
 503#endif
 504
 505/* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
 506static int vrf_ip_local_out(struct net *net, struct sock *sk,
 507                            struct sk_buff *skb)
 508{
 509        int err;
 510
 511        err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
 512                      skb, NULL, skb_dst(skb)->dev, dst_output);
 513        if (likely(err == 1))
 514                err = dst_output(net, sk, skb);
 515
 516        return err;
 517}
 518
 519static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
 520                                           struct net_device *vrf_dev)
 521{
 522        struct iphdr *ip4h;
 523        int ret = NET_XMIT_DROP;
 524        struct flowi4 fl4;
 525        struct net *net = dev_net(vrf_dev);
 526        struct rtable *rt;
 527
 528        if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
 529                goto err;
 530
 531        ip4h = ip_hdr(skb);
 532
 533        memset(&fl4, 0, sizeof(fl4));
 534        /* needed to match OIF rule */
 535        fl4.flowi4_oif = vrf_dev->ifindex;
 536        fl4.flowi4_iif = LOOPBACK_IFINDEX;
 537        fl4.flowi4_tos = RT_TOS(ip4h->tos);
 538        fl4.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF;
 539        fl4.flowi4_proto = ip4h->protocol;
 540        fl4.daddr = ip4h->daddr;
 541        fl4.saddr = ip4h->saddr;
 542
 543        rt = ip_route_output_flow(net, &fl4, NULL);
 544        if (IS_ERR(rt))
 545                goto err;
 546
 547        skb_dst_drop(skb);
 548
 549        /* if dst.dev is loopback or the VRF device again this is locally
 550         * originated traffic destined to a local address. Short circuit
 551         * to Rx path
 552         */
 553        if (rt->dst.dev == vrf_dev)
 554                return vrf_local_xmit(skb, vrf_dev, &rt->dst);
 555
 556        skb_dst_set(skb, &rt->dst);
 557
 558        /* strip the ethernet header added for pass through VRF device */
 559        __skb_pull(skb, skb_network_offset(skb));
 560
 561        if (!ip4h->saddr) {
 562                ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
 563                                               RT_SCOPE_LINK);
 564        }
 565
 566        ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
 567        if (unlikely(net_xmit_eval(ret)))
 568                vrf_dev->stats.tx_errors++;
 569        else
 570                ret = NET_XMIT_SUCCESS;
 571
 572out:
 573        return ret;
 574err:
 575        vrf_tx_error(vrf_dev, skb);
 576        goto out;
 577}
 578
 579static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
 580{
 581        switch (skb->protocol) {
 582        case htons(ETH_P_IP):
 583                return vrf_process_v4_outbound(skb, dev);
 584        case htons(ETH_P_IPV6):
 585                return vrf_process_v6_outbound(skb, dev);
 586        default:
 587                vrf_tx_error(dev, skb);
 588                return NET_XMIT_DROP;
 589        }
 590}
 591
 592static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
 593{
 594        int len = skb->len;
 595        netdev_tx_t ret = is_ip_tx_frame(skb, dev);
 596
 597        if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
 598                struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
 599
 600                u64_stats_update_begin(&dstats->syncp);
 601                dstats->tx_pkts++;
 602                dstats->tx_bytes += len;
 603                u64_stats_update_end(&dstats->syncp);
 604        } else {
 605                this_cpu_inc(dev->dstats->tx_drps);
 606        }
 607
 608        return ret;
 609}
 610
 611static int vrf_finish_direct(struct net *net, struct sock *sk,
 612                             struct sk_buff *skb)
 613{
 614        struct net_device *vrf_dev = skb->dev;
 615
 616        if (!list_empty(&vrf_dev->ptype_all) &&
 617            likely(skb_headroom(skb) >= ETH_HLEN)) {
 618                struct ethhdr *eth = skb_push(skb, ETH_HLEN);
 619
 620                ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
 621                eth_zero_addr(eth->h_dest);
 622                eth->h_proto = skb->protocol;
 623
 624                rcu_read_lock_bh();
 625                dev_queue_xmit_nit(skb, vrf_dev);
 626                rcu_read_unlock_bh();
 627
 628                skb_pull(skb, ETH_HLEN);
 629        }
 630
 631        return 1;
 632}
 633
 634#if IS_ENABLED(CONFIG_IPV6)
 635/* modelled after ip6_finish_output2 */
 636static int vrf_finish_output6(struct net *net, struct sock *sk,
 637                              struct sk_buff *skb)
 638{
 639        struct dst_entry *dst = skb_dst(skb);
 640        struct net_device *dev = dst->dev;
 641        const struct in6_addr *nexthop;
 642        struct neighbour *neigh;
 643        int ret;
 644
 645        nf_reset_ct(skb);
 646
 647        skb->protocol = htons(ETH_P_IPV6);
 648        skb->dev = dev;
 649
 650        rcu_read_lock_bh();
 651        nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
 652        neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
 653        if (unlikely(!neigh))
 654                neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
 655        if (!IS_ERR(neigh)) {
 656                sock_confirm_neigh(skb, neigh);
 657                ret = neigh_output(neigh, skb, false);
 658                rcu_read_unlock_bh();
 659                return ret;
 660        }
 661        rcu_read_unlock_bh();
 662
 663        IP6_INC_STATS(dev_net(dst->dev),
 664                      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
 665        kfree_skb(skb);
 666        return -EINVAL;
 667}
 668
 669/* modelled after ip6_output */
 670static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
 671{
 672        return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
 673                            net, sk, skb, NULL, skb_dst(skb)->dev,
 674                            vrf_finish_output6,
 675                            !(IP6CB(skb)->flags & IP6SKB_REROUTED));
 676}
 677
 678/* set dst on skb to send packet to us via dev_xmit path. Allows
 679 * packet to go through device based features such as qdisc, netfilter
 680 * hooks and packet sockets with skb->dev set to vrf device.
 681 */
 682static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
 683                                            struct sk_buff *skb)
 684{
 685        struct net_vrf *vrf = netdev_priv(vrf_dev);
 686        struct dst_entry *dst = NULL;
 687        struct rt6_info *rt6;
 688
 689        rcu_read_lock();
 690
 691        rt6 = rcu_dereference(vrf->rt6);
 692        if (likely(rt6)) {
 693                dst = &rt6->dst;
 694                dst_hold(dst);
 695        }
 696
 697        rcu_read_unlock();
 698
 699        if (unlikely(!dst)) {
 700                vrf_tx_error(vrf_dev, skb);
 701                return NULL;
 702        }
 703
 704        skb_dst_drop(skb);
 705        skb_dst_set(skb, dst);
 706
 707        return skb;
 708}
 709
 710static int vrf_output6_direct(struct net *net, struct sock *sk,
 711                              struct sk_buff *skb)
 712{
 713        skb->protocol = htons(ETH_P_IPV6);
 714
 715        return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
 716                            net, sk, skb, NULL, skb->dev,
 717                            vrf_finish_direct,
 718                            !(IPCB(skb)->flags & IPSKB_REROUTED));
 719}
 720
 721static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
 722                                          struct sock *sk,
 723                                          struct sk_buff *skb)
 724{
 725        struct net *net = dev_net(vrf_dev);
 726        int err;
 727
 728        skb->dev = vrf_dev;
 729
 730        err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
 731                      skb, NULL, vrf_dev, vrf_output6_direct);
 732
 733        if (likely(err == 1))
 734                err = vrf_output6_direct(net, sk, skb);
 735
 736        /* reset skb device */
 737        if (likely(err == 1))
 738                nf_reset_ct(skb);
 739        else
 740                skb = NULL;
 741
 742        return skb;
 743}
 744
 745static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
 746                                   struct sock *sk,
 747                                   struct sk_buff *skb)
 748{
 749        /* don't divert link scope packets */
 750        if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
 751                return skb;
 752
 753        if (qdisc_tx_is_default(vrf_dev) ||
 754            IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
 755                return vrf_ip6_out_direct(vrf_dev, sk, skb);
 756
 757        return vrf_ip6_out_redirect(vrf_dev, skb);
 758}
 759
 760/* holding rtnl */
 761static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
 762{
 763        struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
 764        struct net *net = dev_net(dev);
 765        struct dst_entry *dst;
 766
 767        RCU_INIT_POINTER(vrf->rt6, NULL);
 768        synchronize_rcu();
 769
 770        /* move dev in dst's to loopback so this VRF device can be deleted
 771         * - based on dst_ifdown
 772         */
 773        if (rt6) {
 774                dst = &rt6->dst;
 775                dev_put(dst->dev);
 776                dst->dev = net->loopback_dev;
 777                dev_hold(dst->dev);
 778                dst_release(dst);
 779        }
 780}
 781
 782static int vrf_rt6_create(struct net_device *dev)
 783{
 784        int flags = DST_NOPOLICY | DST_NOXFRM;
 785        struct net_vrf *vrf = netdev_priv(dev);
 786        struct net *net = dev_net(dev);
 787        struct rt6_info *rt6;
 788        int rc = -ENOMEM;
 789
 790        /* IPv6 can be CONFIG enabled and then disabled runtime */
 791        if (!ipv6_mod_enabled())
 792                return 0;
 793
 794        vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
 795        if (!vrf->fib6_table)
 796                goto out;
 797
 798        /* create a dst for routing packets out a VRF device */
 799        rt6 = ip6_dst_alloc(net, dev, flags);
 800        if (!rt6)
 801                goto out;
 802
 803        rt6->dst.output = vrf_output6;
 804
 805        rcu_assign_pointer(vrf->rt6, rt6);
 806
 807        rc = 0;
 808out:
 809        return rc;
 810}
 811#else
 812static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
 813                                   struct sock *sk,
 814                                   struct sk_buff *skb)
 815{
 816        return skb;
 817}
 818
 819static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
 820{
 821}
 822
 823static int vrf_rt6_create(struct net_device *dev)
 824{
 825        return 0;
 826}
 827#endif
 828
 829/* modelled after ip_finish_output2 */
 830static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 831{
 832        struct dst_entry *dst = skb_dst(skb);
 833        struct rtable *rt = (struct rtable *)dst;
 834        struct net_device *dev = dst->dev;
 835        unsigned int hh_len = LL_RESERVED_SPACE(dev);
 836        struct neighbour *neigh;
 837        bool is_v6gw = false;
 838        int ret = -EINVAL;
 839
 840        nf_reset_ct(skb);
 841
 842        /* Be paranoid, rather than too clever. */
 843        if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
 844                struct sk_buff *skb2;
 845
 846                skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
 847                if (!skb2) {
 848                        ret = -ENOMEM;
 849                        goto err;
 850                }
 851                if (skb->sk)
 852                        skb_set_owner_w(skb2, skb->sk);
 853
 854                consume_skb(skb);
 855                skb = skb2;
 856        }
 857
 858        rcu_read_lock_bh();
 859
 860        neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
 861        if (!IS_ERR(neigh)) {
 862                sock_confirm_neigh(skb, neigh);
 863                /* if crossing protocols, can not use the cached header */
 864                ret = neigh_output(neigh, skb, is_v6gw);
 865                rcu_read_unlock_bh();
 866                return ret;
 867        }
 868
 869        rcu_read_unlock_bh();
 870err:
 871        vrf_tx_error(skb->dev, skb);
 872        return ret;
 873}
 874
 875static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 876{
 877        struct net_device *dev = skb_dst(skb)->dev;
 878
 879        IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
 880
 881        skb->dev = dev;
 882        skb->protocol = htons(ETH_P_IP);
 883
 884        return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
 885                            net, sk, skb, NULL, dev,
 886                            vrf_finish_output,
 887                            !(IPCB(skb)->flags & IPSKB_REROUTED));
 888}
 889
 890/* set dst on skb to send packet to us via dev_xmit path. Allows
 891 * packet to go through device based features such as qdisc, netfilter
 892 * hooks and packet sockets with skb->dev set to vrf device.
 893 */
 894static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
 895                                           struct sk_buff *skb)
 896{
 897        struct net_vrf *vrf = netdev_priv(vrf_dev);
 898        struct dst_entry *dst = NULL;
 899        struct rtable *rth;
 900
 901        rcu_read_lock();
 902
 903        rth = rcu_dereference(vrf->rth);
 904        if (likely(rth)) {
 905                dst = &rth->dst;
 906                dst_hold(dst);
 907        }
 908
 909        rcu_read_unlock();
 910
 911        if (unlikely(!dst)) {
 912                vrf_tx_error(vrf_dev, skb);
 913                return NULL;
 914        }
 915
 916        skb_dst_drop(skb);
 917        skb_dst_set(skb, dst);
 918
 919        return skb;
 920}
 921
 922static int vrf_output_direct(struct net *net, struct sock *sk,
 923                             struct sk_buff *skb)
 924{
 925        skb->protocol = htons(ETH_P_IP);
 926
 927        return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
 928                            net, sk, skb, NULL, skb->dev,
 929                            vrf_finish_direct,
 930                            !(IPCB(skb)->flags & IPSKB_REROUTED));
 931}
 932
 933static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
 934                                         struct sock *sk,
 935                                         struct sk_buff *skb)
 936{
 937        struct net *net = dev_net(vrf_dev);
 938        int err;
 939
 940        skb->dev = vrf_dev;
 941
 942        err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
 943                      skb, NULL, vrf_dev, vrf_output_direct);
 944
 945        if (likely(err == 1))
 946                err = vrf_output_direct(net, sk, skb);
 947
 948        /* reset skb device */
 949        if (likely(err == 1))
 950                nf_reset_ct(skb);
 951        else
 952                skb = NULL;
 953
 954        return skb;
 955}
 956
 957static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
 958                                  struct sock *sk,
 959                                  struct sk_buff *skb)
 960{
 961        /* don't divert multicast or local broadcast */
 962        if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
 963            ipv4_is_lbcast(ip_hdr(skb)->daddr))
 964                return skb;
 965
 966        if (qdisc_tx_is_default(vrf_dev) ||
 967            IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
 968                return vrf_ip_out_direct(vrf_dev, sk, skb);
 969
 970        return vrf_ip_out_redirect(vrf_dev, skb);
 971}
 972
 973/* called with rcu lock held */
 974static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
 975                                  struct sock *sk,
 976                                  struct sk_buff *skb,
 977                                  u16 proto)
 978{
 979        switch (proto) {
 980        case AF_INET:
 981                return vrf_ip_out(vrf_dev, sk, skb);
 982        case AF_INET6:
 983                return vrf_ip6_out(vrf_dev, sk, skb);
 984        }
 985
 986        return skb;
 987}
 988
 989/* holding rtnl */
 990static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
 991{
 992        struct rtable *rth = rtnl_dereference(vrf->rth);
 993        struct net *net = dev_net(dev);
 994        struct dst_entry *dst;
 995
 996        RCU_INIT_POINTER(vrf->rth, NULL);
 997        synchronize_rcu();
 998
 999        /* move dev in dst's to loopback so this VRF device can be deleted
1000         * - based on dst_ifdown
1001         */
1002        if (rth) {
1003                dst = &rth->dst;
1004                dev_put(dst->dev);
1005                dst->dev = net->loopback_dev;
1006                dev_hold(dst->dev);
1007                dst_release(dst);
1008        }
1009}
1010
1011static int vrf_rtable_create(struct net_device *dev)
1012{
1013        struct net_vrf *vrf = netdev_priv(dev);
1014        struct rtable *rth;
1015
1016        if (!fib_new_table(dev_net(dev), vrf->tb_id))
1017                return -ENOMEM;
1018
1019        /* create a dst for routing packets out through a VRF device */
1020        rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1);
1021        if (!rth)
1022                return -ENOMEM;
1023
1024        rth->dst.output = vrf_output;
1025
1026        rcu_assign_pointer(vrf->rth, rth);
1027
1028        return 0;
1029}
1030
1031/**************************** device handling ********************/
1032
1033/* cycle interface to flush neighbor cache and move routes across tables */
1034static void cycle_netdev(struct net_device *dev,
1035                         struct netlink_ext_ack *extack)
1036{
1037        unsigned int flags = dev->flags;
1038        int ret;
1039
1040        if (!netif_running(dev))
1041                return;
1042
1043        ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
1044        if (ret >= 0)
1045                ret = dev_change_flags(dev, flags, extack);
1046
1047        if (ret < 0) {
1048                netdev_err(dev,
1049                           "Failed to cycle device %s; route tables might be wrong!\n",
1050                           dev->name);
1051        }
1052}
1053
1054static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1055                            struct netlink_ext_ack *extack)
1056{
1057        int ret;
1058
1059        /* do not allow loopback device to be enslaved to a VRF.
1060         * The vrf device acts as the loopback for the vrf.
1061         */
1062        if (port_dev == dev_net(dev)->loopback_dev) {
1063                NL_SET_ERR_MSG(extack,
1064                               "Can not enslave loopback device to a VRF");
1065                return -EOPNOTSUPP;
1066        }
1067
1068        port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
1069        ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
1070        if (ret < 0)
1071                goto err;
1072
1073        cycle_netdev(port_dev, extack);
1074
1075        return 0;
1076
1077err:
1078        port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1079        return ret;
1080}
1081
1082static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1083                         struct netlink_ext_ack *extack)
1084{
1085        if (netif_is_l3_master(port_dev)) {
1086                NL_SET_ERR_MSG(extack,
1087                               "Can not enslave an L3 master device to a VRF");
1088                return -EINVAL;
1089        }
1090
1091        if (netif_is_l3_slave(port_dev))
1092                return -EINVAL;
1093
1094        return do_vrf_add_slave(dev, port_dev, extack);
1095}
1096
1097/* inverse of do_vrf_add_slave */
1098static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1099{
1100        netdev_upper_dev_unlink(port_dev, dev);
1101        port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1102
1103        cycle_netdev(port_dev, NULL);
1104
1105        return 0;
1106}
1107
1108static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1109{
1110        return do_vrf_del_slave(dev, port_dev);
1111}
1112
1113static void vrf_dev_uninit(struct net_device *dev)
1114{
1115        struct net_vrf *vrf = netdev_priv(dev);
1116
1117        vrf_rtable_release(dev, vrf);
1118        vrf_rt6_release(dev, vrf);
1119
1120        free_percpu(dev->dstats);
1121        dev->dstats = NULL;
1122}
1123
1124static int vrf_dev_init(struct net_device *dev)
1125{
1126        struct net_vrf *vrf = netdev_priv(dev);
1127
1128        dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
1129        if (!dev->dstats)
1130                goto out_nomem;
1131
1132        /* create the default dst which points back to us */
1133        if (vrf_rtable_create(dev) != 0)
1134                goto out_stats;
1135
1136        if (vrf_rt6_create(dev) != 0)
1137                goto out_rth;
1138
1139        dev->flags = IFF_MASTER | IFF_NOARP;
1140
1141        /* MTU is irrelevant for VRF device; set to 64k similar to lo */
1142        dev->mtu = 64 * 1024;
1143
1144        /* similarly, oper state is irrelevant; set to up to avoid confusion */
1145        dev->operstate = IF_OPER_UP;
1146        netdev_lockdep_set_classes(dev);
1147        return 0;
1148
1149out_rth:
1150        vrf_rtable_release(dev, vrf);
1151out_stats:
1152        free_percpu(dev->dstats);
1153        dev->dstats = NULL;
1154out_nomem:
1155        return -ENOMEM;
1156}
1157
1158static const struct net_device_ops vrf_netdev_ops = {
1159        .ndo_init               = vrf_dev_init,
1160        .ndo_uninit             = vrf_dev_uninit,
1161        .ndo_start_xmit         = vrf_xmit,
1162        .ndo_set_mac_address    = eth_mac_addr,
1163        .ndo_get_stats64        = vrf_get_stats64,
1164        .ndo_add_slave          = vrf_add_slave,
1165        .ndo_del_slave          = vrf_del_slave,
1166};
1167
1168static u32 vrf_fib_table(const struct net_device *dev)
1169{
1170        struct net_vrf *vrf = netdev_priv(dev);
1171
1172        return vrf->tb_id;
1173}
1174
1175static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1176{
1177        kfree_skb(skb);
1178        return 0;
1179}
1180
1181static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
1182                                      struct sk_buff *skb,
1183                                      struct net_device *dev)
1184{
1185        struct net *net = dev_net(dev);
1186
1187        if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1188                skb = NULL;    /* kfree_skb(skb) handled by nf code */
1189
1190        return skb;
1191}
1192
1193#if IS_ENABLED(CONFIG_IPV6)
1194/* neighbor handling is done with actual device; do not want
1195 * to flip skb->dev for those ndisc packets. This really fails
1196 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1197 * a start.
1198 */
1199static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1200{
1201        const struct ipv6hdr *iph = ipv6_hdr(skb);
1202        bool rc = false;
1203
1204        if (iph->nexthdr == NEXTHDR_ICMP) {
1205                const struct icmp6hdr *icmph;
1206                struct icmp6hdr _icmph;
1207
1208                icmph = skb_header_pointer(skb, sizeof(*iph),
1209                                           sizeof(_icmph), &_icmph);
1210                if (!icmph)
1211                        goto out;
1212
1213                switch (icmph->icmp6_type) {
1214                case NDISC_ROUTER_SOLICITATION:
1215                case NDISC_ROUTER_ADVERTISEMENT:
1216                case NDISC_NEIGHBOUR_SOLICITATION:
1217                case NDISC_NEIGHBOUR_ADVERTISEMENT:
1218                case NDISC_REDIRECT:
1219                        rc = true;
1220                        break;
1221                }
1222        }
1223
1224out:
1225        return rc;
1226}
1227
1228static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1229                                             const struct net_device *dev,
1230                                             struct flowi6 *fl6,
1231                                             int ifindex,
1232                                             const struct sk_buff *skb,
1233                                             int flags)
1234{
1235        struct net_vrf *vrf = netdev_priv(dev);
1236
1237        return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
1238}
1239
1240static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1241                              int ifindex)
1242{
1243        const struct ipv6hdr *iph = ipv6_hdr(skb);
1244        struct flowi6 fl6 = {
1245                .flowi6_iif     = ifindex,
1246                .flowi6_mark    = skb->mark,
1247                .flowi6_proto   = iph->nexthdr,
1248                .daddr          = iph->daddr,
1249                .saddr          = iph->saddr,
1250                .flowlabel      = ip6_flowinfo(iph),
1251        };
1252        struct net *net = dev_net(vrf_dev);
1253        struct rt6_info *rt6;
1254
1255        rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
1256                                   RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1257        if (unlikely(!rt6))
1258                return;
1259
1260        if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1261                return;
1262
1263        skb_dst_set(skb, &rt6->dst);
1264}
1265
1266static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1267                                   struct sk_buff *skb)
1268{
1269        int orig_iif = skb->skb_iif;
1270        bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1271        bool is_ndisc = ipv6_ndisc_frame(skb);
1272
1273        /* loopback, multicast & non-ND link-local traffic; do not push through
1274         * packet taps again. Reset pkt_type for upper layers to process skb
1275         */
1276        if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
1277                skb->dev = vrf_dev;
1278                skb->skb_iif = vrf_dev->ifindex;
1279                IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1280                if (skb->pkt_type == PACKET_LOOPBACK)
1281                        skb->pkt_type = PACKET_HOST;
1282                goto out;
1283        }
1284
1285        /* if packet is NDISC then keep the ingress interface */
1286        if (!is_ndisc) {
1287                vrf_rx_stats(vrf_dev, skb->len);
1288                skb->dev = vrf_dev;
1289                skb->skb_iif = vrf_dev->ifindex;
1290
1291                if (!list_empty(&vrf_dev->ptype_all)) {
1292                        skb_push(skb, skb->mac_len);
1293                        dev_queue_xmit_nit(skb, vrf_dev);
1294                        skb_pull(skb, skb->mac_len);
1295                }
1296
1297                IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1298        }
1299
1300        if (need_strict)
1301                vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1302
1303        skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1304out:
1305        return skb;
1306}
1307
1308#else
1309static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1310                                   struct sk_buff *skb)
1311{
1312        return skb;
1313}
1314#endif
1315
1316static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1317                                  struct sk_buff *skb)
1318{
1319        skb->dev = vrf_dev;
1320        skb->skb_iif = vrf_dev->ifindex;
1321        IPCB(skb)->flags |= IPSKB_L3SLAVE;
1322
1323        if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1324                goto out;
1325
1326        /* loopback traffic; do not push through packet taps again.
1327         * Reset pkt_type for upper layers to process skb
1328         */
1329        if (skb->pkt_type == PACKET_LOOPBACK) {
1330                skb->pkt_type = PACKET_HOST;
1331                goto out;
1332        }
1333
1334        vrf_rx_stats(vrf_dev, skb->len);
1335
1336        if (!list_empty(&vrf_dev->ptype_all)) {
1337                skb_push(skb, skb->mac_len);
1338                dev_queue_xmit_nit(skb, vrf_dev);
1339                skb_pull(skb, skb->mac_len);
1340        }
1341
1342        skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1343out:
1344        return skb;
1345}
1346
1347/* called with rcu lock held */
1348static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1349                                  struct sk_buff *skb,
1350                                  u16 proto)
1351{
1352        switch (proto) {
1353        case AF_INET:
1354                return vrf_ip_rcv(vrf_dev, skb);
1355        case AF_INET6:
1356                return vrf_ip6_rcv(vrf_dev, skb);
1357        }
1358
1359        return skb;
1360}
1361
1362#if IS_ENABLED(CONFIG_IPV6)
1363/* send to link-local or multicast address via interface enslaved to
1364 * VRF device. Force lookup to VRF table without changing flow struct
1365 * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1366 * is taken on the dst by this function.
1367 */
1368static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1369                                              struct flowi6 *fl6)
1370{
1371        struct net *net = dev_net(dev);
1372        int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1373        struct dst_entry *dst = NULL;
1374        struct rt6_info *rt;
1375
1376        /* VRF device does not have a link-local address and
1377         * sending packets to link-local or mcast addresses over
1378         * a VRF device does not make sense
1379         */
1380        if (fl6->flowi6_oif == dev->ifindex) {
1381                dst = &net->ipv6.ip6_null_entry->dst;
1382                return dst;
1383        }
1384
1385        if (!ipv6_addr_any(&fl6->saddr))
1386                flags |= RT6_LOOKUP_F_HAS_SADDR;
1387
1388        rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1389        if (rt)
1390                dst = &rt->dst;
1391
1392        return dst;
1393}
1394#endif
1395
1396static const struct l3mdev_ops vrf_l3mdev_ops = {
1397        .l3mdev_fib_table       = vrf_fib_table,
1398        .l3mdev_l3_rcv          = vrf_l3_rcv,
1399        .l3mdev_l3_out          = vrf_l3_out,
1400#if IS_ENABLED(CONFIG_IPV6)
1401        .l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1402#endif
1403};
1404
1405static void vrf_get_drvinfo(struct net_device *dev,
1406                            struct ethtool_drvinfo *info)
1407{
1408        strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1409        strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1410}
1411
1412static const struct ethtool_ops vrf_ethtool_ops = {
1413        .get_drvinfo    = vrf_get_drvinfo,
1414};
1415
1416static inline size_t vrf_fib_rule_nl_size(void)
1417{
1418        size_t sz;
1419
1420        sz  = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1421        sz += nla_total_size(sizeof(u8));       /* FRA_L3MDEV */
1422        sz += nla_total_size(sizeof(u32));      /* FRA_PRIORITY */
1423        sz += nla_total_size(sizeof(u8));       /* FRA_PROTOCOL */
1424
1425        return sz;
1426}
1427
1428static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1429{
1430        struct fib_rule_hdr *frh;
1431        struct nlmsghdr *nlh;
1432        struct sk_buff *skb;
1433        int err;
1434
1435        if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1436            !ipv6_mod_enabled())
1437                return 0;
1438
1439        skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1440        if (!skb)
1441                return -ENOMEM;
1442
1443        nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1444        if (!nlh)
1445                goto nla_put_failure;
1446
1447        /* rule only needs to appear once */
1448        nlh->nlmsg_flags |= NLM_F_EXCL;
1449
1450        frh = nlmsg_data(nlh);
1451        memset(frh, 0, sizeof(*frh));
1452        frh->family = family;
1453        frh->action = FR_ACT_TO_TBL;
1454
1455        if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1456                goto nla_put_failure;
1457
1458        if (nla_put_u8(skb, FRA_L3MDEV, 1))
1459                goto nla_put_failure;
1460
1461        if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1462                goto nla_put_failure;
1463
1464        nlmsg_end(skb, nlh);
1465
1466        /* fib_nl_{new,del}rule handling looks for net from skb->sk */
1467        skb->sk = dev_net(dev)->rtnl;
1468        if (add_it) {
1469                err = fib_nl_newrule(skb, nlh, NULL);
1470                if (err == -EEXIST)
1471                        err = 0;
1472        } else {
1473                err = fib_nl_delrule(skb, nlh, NULL);
1474                if (err == -ENOENT)
1475                        err = 0;
1476        }
1477        nlmsg_free(skb);
1478
1479        return err;
1480
1481nla_put_failure:
1482        nlmsg_free(skb);
1483
1484        return -EMSGSIZE;
1485}
1486
1487static int vrf_add_fib_rules(const struct net_device *dev)
1488{
1489        int err;
1490
1491        err = vrf_fib_rule(dev, AF_INET,  true);
1492        if (err < 0)
1493                goto out_err;
1494
1495        err = vrf_fib_rule(dev, AF_INET6, true);
1496        if (err < 0)
1497                goto ipv6_err;
1498
1499#if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1500        err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1501        if (err < 0)
1502                goto ipmr_err;
1503#endif
1504
1505#if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1506        err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1507        if (err < 0)
1508                goto ip6mr_err;
1509#endif
1510
1511        return 0;
1512
1513#if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1514ip6mr_err:
1515        vrf_fib_rule(dev, RTNL_FAMILY_IPMR,  false);
1516#endif
1517
1518#if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1519ipmr_err:
1520        vrf_fib_rule(dev, AF_INET6,  false);
1521#endif
1522
1523ipv6_err:
1524        vrf_fib_rule(dev, AF_INET,  false);
1525
1526out_err:
1527        netdev_err(dev, "Failed to add FIB rules.\n");
1528        return err;
1529}
1530
1531static void vrf_setup(struct net_device *dev)
1532{
1533        ether_setup(dev);
1534
1535        /* Initialize the device structure. */
1536        dev->netdev_ops = &vrf_netdev_ops;
1537        dev->l3mdev_ops = &vrf_l3mdev_ops;
1538        dev->ethtool_ops = &vrf_ethtool_ops;
1539        dev->needs_free_netdev = true;
1540
1541        /* Fill in device structure with ethernet-generic values. */
1542        eth_hw_addr_random(dev);
1543
1544        /* don't acquire vrf device's netif_tx_lock when transmitting */
1545        dev->features |= NETIF_F_LLTX;
1546
1547        /* don't allow vrf devices to change network namespaces. */
1548        dev->features |= NETIF_F_NETNS_LOCAL;
1549
1550        /* does not make sense for a VLAN to be added to a vrf device */
1551        dev->features   |= NETIF_F_VLAN_CHALLENGED;
1552
1553        /* enable offload features */
1554        dev->features   |= NETIF_F_GSO_SOFTWARE;
1555        dev->features   |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1556        dev->features   |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1557
1558        dev->hw_features = dev->features;
1559        dev->hw_enc_features = dev->features;
1560
1561        /* default to no qdisc; user can add if desired */
1562        dev->priv_flags |= IFF_NO_QUEUE;
1563        dev->priv_flags |= IFF_NO_RX_HANDLER;
1564        dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1565
1566        /* VRF devices do not care about MTU, but if the MTU is set
1567         * too low then the ipv4 and ipv6 protocols are disabled
1568         * which breaks networking.
1569         */
1570        dev->min_mtu = IPV6_MIN_MTU;
1571        dev->max_mtu = ETH_MAX_MTU;
1572}
1573
1574static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1575                        struct netlink_ext_ack *extack)
1576{
1577        if (tb[IFLA_ADDRESS]) {
1578                if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1579                        NL_SET_ERR_MSG(extack, "Invalid hardware address");
1580                        return -EINVAL;
1581                }
1582                if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1583                        NL_SET_ERR_MSG(extack, "Invalid hardware address");
1584                        return -EADDRNOTAVAIL;
1585                }
1586        }
1587        return 0;
1588}
1589
1590static void vrf_dellink(struct net_device *dev, struct list_head *head)
1591{
1592        struct net_device *port_dev;
1593        struct list_head *iter;
1594
1595        netdev_for_each_lower_dev(dev, port_dev, iter)
1596                vrf_del_slave(dev, port_dev);
1597
1598        vrf_map_unregister_dev(dev);
1599
1600        unregister_netdevice_queue(dev, head);
1601}
1602
1603static int vrf_newlink(struct net *src_net, struct net_device *dev,
1604                       struct nlattr *tb[], struct nlattr *data[],
1605                       struct netlink_ext_ack *extack)
1606{
1607        struct net_vrf *vrf = netdev_priv(dev);
1608        struct netns_vrf *nn_vrf;
1609        bool *add_fib_rules;
1610        struct net *net;
1611        int err;
1612
1613        if (!data || !data[IFLA_VRF_TABLE]) {
1614                NL_SET_ERR_MSG(extack, "VRF table id is missing");
1615                return -EINVAL;
1616        }
1617
1618        vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1619        if (vrf->tb_id == RT_TABLE_UNSPEC) {
1620                NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1621                                    "Invalid VRF table id");
1622                return -EINVAL;
1623        }
1624
1625        dev->priv_flags |= IFF_L3MDEV_MASTER;
1626
1627        err = register_netdevice(dev);
1628        if (err)
1629                goto out;
1630
1631        /* mapping between table_id and vrf;
1632         * note: such binding could not be done in the dev init function
1633         * because dev->ifindex id is not available yet.
1634         */
1635        vrf->ifindex = dev->ifindex;
1636
1637        err = vrf_map_register_dev(dev, extack);
1638        if (err) {
1639                unregister_netdevice(dev);
1640                goto out;
1641        }
1642
1643        net = dev_net(dev);
1644        nn_vrf = net_generic(net, vrf_net_id);
1645
1646        add_fib_rules = &nn_vrf->add_fib_rules;
1647        if (*add_fib_rules) {
1648                err = vrf_add_fib_rules(dev);
1649                if (err) {
1650                        vrf_map_unregister_dev(dev);
1651                        unregister_netdevice(dev);
1652                        goto out;
1653                }
1654                *add_fib_rules = false;
1655        }
1656
1657out:
1658        return err;
1659}
1660
1661static size_t vrf_nl_getsize(const struct net_device *dev)
1662{
1663        return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
1664}
1665
1666static int vrf_fillinfo(struct sk_buff *skb,
1667                        const struct net_device *dev)
1668{
1669        struct net_vrf *vrf = netdev_priv(dev);
1670
1671        return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1672}
1673
1674static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1675                                 const struct net_device *slave_dev)
1676{
1677        return nla_total_size(sizeof(u32));  /* IFLA_VRF_PORT_TABLE */
1678}
1679
1680static int vrf_fill_slave_info(struct sk_buff *skb,
1681                               const struct net_device *vrf_dev,
1682                               const struct net_device *slave_dev)
1683{
1684        struct net_vrf *vrf = netdev_priv(vrf_dev);
1685
1686        if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1687                return -EMSGSIZE;
1688
1689        return 0;
1690}
1691
1692static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1693        [IFLA_VRF_TABLE] = { .type = NLA_U32 },
1694};
1695
1696static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1697        .kind           = DRV_NAME,
1698        .priv_size      = sizeof(struct net_vrf),
1699
1700        .get_size       = vrf_nl_getsize,
1701        .policy         = vrf_nl_policy,
1702        .validate       = vrf_validate,
1703        .fill_info      = vrf_fillinfo,
1704
1705        .get_slave_size  = vrf_get_slave_size,
1706        .fill_slave_info = vrf_fill_slave_info,
1707
1708        .newlink        = vrf_newlink,
1709        .dellink        = vrf_dellink,
1710        .setup          = vrf_setup,
1711        .maxtype        = IFLA_VRF_MAX,
1712};
1713
1714static int vrf_device_event(struct notifier_block *unused,
1715                            unsigned long event, void *ptr)
1716{
1717        struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1718
1719        /* only care about unregister events to drop slave references */
1720        if (event == NETDEV_UNREGISTER) {
1721                struct net_device *vrf_dev;
1722
1723                if (!netif_is_l3_slave(dev))
1724                        goto out;
1725
1726                vrf_dev = netdev_master_upper_dev_get(dev);
1727                vrf_del_slave(vrf_dev, dev);
1728        }
1729out:
1730        return NOTIFY_DONE;
1731}
1732
1733static struct notifier_block vrf_notifier_block __read_mostly = {
1734        .notifier_call = vrf_device_event,
1735};
1736
1737static int vrf_map_init(struct vrf_map *vmap)
1738{
1739        spin_lock_init(&vmap->vmap_lock);
1740        hash_init(vmap->ht);
1741
1742        vmap->strict_mode = false;
1743
1744        return 0;
1745}
1746
1747#ifdef CONFIG_SYSCTL
1748static bool vrf_strict_mode(struct vrf_map *vmap)
1749{
1750        bool strict_mode;
1751
1752        vrf_map_lock(vmap);
1753        strict_mode = vmap->strict_mode;
1754        vrf_map_unlock(vmap);
1755
1756        return strict_mode;
1757}
1758
1759static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
1760{
1761        bool *cur_mode;
1762        int res = 0;
1763
1764        vrf_map_lock(vmap);
1765
1766        cur_mode = &vmap->strict_mode;
1767        if (*cur_mode == new_mode)
1768                goto unlock;
1769
1770        if (*cur_mode) {
1771                /* disable strict mode */
1772                *cur_mode = false;
1773        } else {
1774                if (vmap->shared_tables) {
1775                        /* we cannot allow strict_mode because there are some
1776                         * vrfs that share one or more tables.
1777                         */
1778                        res = -EBUSY;
1779                        goto unlock;
1780                }
1781
1782                /* no tables are shared among vrfs, so we can go back
1783                 * to 1:1 association between a vrf with its table.
1784                 */
1785                *cur_mode = true;
1786        }
1787
1788unlock:
1789        vrf_map_unlock(vmap);
1790
1791        return res;
1792}
1793
1794static int vrf_shared_table_handler(struct ctl_table *table, int write,
1795                                    void *buffer, size_t *lenp, loff_t *ppos)
1796{
1797        struct net *net = (struct net *)table->extra1;
1798        struct vrf_map *vmap = netns_vrf_map(net);
1799        int proc_strict_mode = 0;
1800        struct ctl_table tmp = {
1801                .procname       = table->procname,
1802                .data           = &proc_strict_mode,
1803                .maxlen         = sizeof(int),
1804                .mode           = table->mode,
1805                .extra1         = SYSCTL_ZERO,
1806                .extra2         = SYSCTL_ONE,
1807        };
1808        int ret;
1809
1810        if (!write)
1811                proc_strict_mode = vrf_strict_mode(vmap);
1812
1813        ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
1814
1815        if (write && ret == 0)
1816                ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
1817
1818        return ret;
1819}
1820
1821static const struct ctl_table vrf_table[] = {
1822        {
1823                .procname       = "strict_mode",
1824                .data           = NULL,
1825                .maxlen         = sizeof(int),
1826                .mode           = 0644,
1827                .proc_handler   = vrf_shared_table_handler,
1828                /* set by the vrf_netns_init */
1829                .extra1         = NULL,
1830        },
1831        { },
1832};
1833
1834static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1835{
1836        struct ctl_table *table;
1837
1838        table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
1839        if (!table)
1840                return -ENOMEM;
1841
1842        /* init the extra1 parameter with the reference to current netns */
1843        table[0].extra1 = net;
1844
1845        nn_vrf->ctl_hdr = register_net_sysctl(net, "net/vrf", table);
1846        if (!nn_vrf->ctl_hdr) {
1847                kfree(table);
1848                return -ENOMEM;
1849        }
1850
1851        return 0;
1852}
1853
1854static void vrf_netns_exit_sysctl(struct net *net)
1855{
1856        struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1857        struct ctl_table *table;
1858
1859        table = nn_vrf->ctl_hdr->ctl_table_arg;
1860        unregister_net_sysctl_table(nn_vrf->ctl_hdr);
1861        kfree(table);
1862}
1863#else
1864static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1865{
1866        return 0;
1867}
1868
1869static void vrf_netns_exit_sysctl(struct net *net)
1870{
1871}
1872#endif
1873
1874/* Initialize per network namespace state */
1875static int __net_init vrf_netns_init(struct net *net)
1876{
1877        struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1878
1879        nn_vrf->add_fib_rules = true;
1880        vrf_map_init(&nn_vrf->vmap);
1881
1882        return vrf_netns_init_sysctl(net, nn_vrf);
1883}
1884
1885static void __net_exit vrf_netns_exit(struct net *net)
1886{
1887        vrf_netns_exit_sysctl(net);
1888}
1889
1890static struct pernet_operations vrf_net_ops __net_initdata = {
1891        .init = vrf_netns_init,
1892        .exit = vrf_netns_exit,
1893        .id   = &vrf_net_id,
1894        .size = sizeof(struct netns_vrf),
1895};
1896
1897static int __init vrf_init_module(void)
1898{
1899        int rc;
1900
1901        register_netdevice_notifier(&vrf_notifier_block);
1902
1903        rc = register_pernet_subsys(&vrf_net_ops);
1904        if (rc < 0)
1905                goto error;
1906
1907        rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
1908                                          vrf_ifindex_lookup_by_table_id);
1909        if (rc < 0)
1910                goto unreg_pernet;
1911
1912        rc = rtnl_link_register(&vrf_link_ops);
1913        if (rc < 0)
1914                goto table_lookup_unreg;
1915
1916        return 0;
1917
1918table_lookup_unreg:
1919        l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
1920                                       vrf_ifindex_lookup_by_table_id);
1921
1922unreg_pernet:
1923        unregister_pernet_subsys(&vrf_net_ops);
1924
1925error:
1926        unregister_netdevice_notifier(&vrf_notifier_block);
1927        return rc;
1928}
1929
1930module_init(vrf_init_module);
1931MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
1932MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
1933MODULE_LICENSE("GPL");
1934MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1935MODULE_VERSION(DRV_VERSION);
1936