linux/drivers/net/wan/farsync.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *      FarSync WAN driver for Linux (2.6.x kernel version)
   4 *
   5 *      Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards
   6 *
   7 *      Copyright (C) 2001-2004 FarSite Communications Ltd.
   8 *      www.farsite.co.uk
   9 *
  10 *      Author:      R.J.Dunlop    <bob.dunlop@farsite.co.uk>
  11 *      Maintainer:  Kevin Curtis  <kevin.curtis@farsite.co.uk>
  12 */
  13
  14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  15
  16#include <linux/module.h>
  17#include <linux/kernel.h>
  18#include <linux/version.h>
  19#include <linux/pci.h>
  20#include <linux/sched.h>
  21#include <linux/slab.h>
  22#include <linux/ioport.h>
  23#include <linux/init.h>
  24#include <linux/interrupt.h>
  25#include <linux/delay.h>
  26#include <linux/if.h>
  27#include <linux/hdlc.h>
  28#include <asm/io.h>
  29#include <linux/uaccess.h>
  30
  31#include "farsync.h"
  32
  33/*
  34 *      Module info
  35 */
  36MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>");
  37MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd.");
  38MODULE_LICENSE("GPL");
  39
  40/*      Driver configuration and global parameters
  41 *      ==========================================
  42 */
  43
  44/*      Number of ports (per card) and cards supported
  45 */
  46#define FST_MAX_PORTS           4
  47#define FST_MAX_CARDS           32
  48
  49/*      Default parameters for the link
  50 */
  51#define FST_TX_QUEUE_LEN        100     /* At 8Mbps a longer queue length is
  52                                         * useful */
  53#define FST_TXQ_DEPTH           16      /* This one is for the buffering
  54                                         * of frames on the way down to the card
  55                                         * so that we can keep the card busy
  56                                         * and maximise throughput
  57                                         */
  58#define FST_HIGH_WATER_MARK     12      /* Point at which we flow control
  59                                         * network layer */
  60#define FST_LOW_WATER_MARK      8       /* Point at which we remove flow
  61                                         * control from network layer */
  62#define FST_MAX_MTU             8000    /* Huge but possible */
  63#define FST_DEF_MTU             1500    /* Common sane value */
  64
  65#define FST_TX_TIMEOUT          (2*HZ)
  66
  67#ifdef ARPHRD_RAWHDLC
  68#define ARPHRD_MYTYPE   ARPHRD_RAWHDLC  /* Raw frames */
  69#else
  70#define ARPHRD_MYTYPE   ARPHRD_HDLC     /* Cisco-HDLC (keepalives etc) */
  71#endif
  72
  73/*
  74 * Modules parameters and associated variables
  75 */
  76static int fst_txq_low = FST_LOW_WATER_MARK;
  77static int fst_txq_high = FST_HIGH_WATER_MARK;
  78static int fst_max_reads = 7;
  79static int fst_excluded_cards = 0;
  80static int fst_excluded_list[FST_MAX_CARDS];
  81
  82module_param(fst_txq_low, int, 0);
  83module_param(fst_txq_high, int, 0);
  84module_param(fst_max_reads, int, 0);
  85module_param(fst_excluded_cards, int, 0);
  86module_param_array(fst_excluded_list, int, NULL, 0);
  87
  88/*      Card shared memory layout
  89 *      =========================
  90 */
  91#pragma pack(1)
  92
  93/*      This information is derived in part from the FarSite FarSync Smc.h
  94 *      file. Unfortunately various name clashes and the non-portability of the
  95 *      bit field declarations in that file have meant that I have chosen to
  96 *      recreate the information here.
  97 *
  98 *      The SMC (Shared Memory Configuration) has a version number that is
  99 *      incremented every time there is a significant change. This number can
 100 *      be used to check that we have not got out of step with the firmware
 101 *      contained in the .CDE files.
 102 */
 103#define SMC_VERSION 24
 104
 105#define FST_MEMSIZE 0x100000    /* Size of card memory (1Mb) */
 106
 107#define SMC_BASE 0x00002000L    /* Base offset of the shared memory window main
 108                                 * configuration structure */
 109#define BFM_BASE 0x00010000L    /* Base offset of the shared memory window DMA
 110                                 * buffers */
 111
 112#define LEN_TX_BUFFER 8192      /* Size of packet buffers */
 113#define LEN_RX_BUFFER 8192
 114
 115#define LEN_SMALL_TX_BUFFER 256 /* Size of obsolete buffs used for DOS diags */
 116#define LEN_SMALL_RX_BUFFER 256
 117
 118#define NUM_TX_BUFFER 2         /* Must be power of 2. Fixed by firmware */
 119#define NUM_RX_BUFFER 8
 120
 121/* Interrupt retry time in milliseconds */
 122#define INT_RETRY_TIME 2
 123
 124/*      The Am186CH/CC processors support a SmartDMA mode using circular pools
 125 *      of buffer descriptors. The structure is almost identical to that used
 126 *      in the LANCE Ethernet controllers. Details available as PDF from the
 127 *      AMD web site: https://www.amd.com/products/epd/processors/\
 128 *                    2.16bitcont/3.am186cxfa/a21914/21914.pdf
 129 */
 130struct txdesc {                 /* Transmit descriptor */
 131        volatile u16 ladr;      /* Low order address of packet. This is a
 132                                 * linear address in the Am186 memory space
 133                                 */
 134        volatile u8 hadr;       /* High order address. Low 4 bits only, high 4
 135                                 * bits must be zero
 136                                 */
 137        volatile u8 bits;       /* Status and config */
 138        volatile u16 bcnt;      /* 2s complement of packet size in low 15 bits.
 139                                 * Transmit terminal count interrupt enable in
 140                                 * top bit.
 141                                 */
 142        u16 unused;             /* Not used in Tx */
 143};
 144
 145struct rxdesc {                 /* Receive descriptor */
 146        volatile u16 ladr;      /* Low order address of packet */
 147        volatile u8 hadr;       /* High order address */
 148        volatile u8 bits;       /* Status and config */
 149        volatile u16 bcnt;      /* 2s complement of buffer size in low 15 bits.
 150                                 * Receive terminal count interrupt enable in
 151                                 * top bit.
 152                                 */
 153        volatile u16 mcnt;      /* Message byte count (15 bits) */
 154};
 155
 156/* Convert a length into the 15 bit 2's complement */
 157/* #define cnv_bcnt(len)   (( ~(len) + 1 ) & 0x7FFF ) */
 158/* Since we need to set the high bit to enable the completion interrupt this
 159 * can be made a lot simpler
 160 */
 161#define cnv_bcnt(len)   (-(len))
 162
 163/* Status and config bits for the above */
 164#define DMA_OWN         0x80    /* SmartDMA owns the descriptor */
 165#define TX_STP          0x02    /* Tx: start of packet */
 166#define TX_ENP          0x01    /* Tx: end of packet */
 167#define RX_ERR          0x40    /* Rx: error (OR of next 4 bits) */
 168#define RX_FRAM         0x20    /* Rx: framing error */
 169#define RX_OFLO         0x10    /* Rx: overflow error */
 170#define RX_CRC          0x08    /* Rx: CRC error */
 171#define RX_HBUF         0x04    /* Rx: buffer error */
 172#define RX_STP          0x02    /* Rx: start of packet */
 173#define RX_ENP          0x01    /* Rx: end of packet */
 174
 175/* Interrupts from the card are caused by various events which are presented
 176 * in a circular buffer as several events may be processed on one physical int
 177 */
 178#define MAX_CIRBUFF     32
 179
 180struct cirbuff {
 181        u8 rdindex;             /* read, then increment and wrap */
 182        u8 wrindex;             /* write, then increment and wrap */
 183        u8 evntbuff[MAX_CIRBUFF];
 184};
 185
 186/* Interrupt event codes.
 187 * Where appropriate the two low order bits indicate the port number
 188 */
 189#define CTLA_CHG        0x18    /* Control signal changed */
 190#define CTLB_CHG        0x19
 191#define CTLC_CHG        0x1A
 192#define CTLD_CHG        0x1B
 193
 194#define INIT_CPLT       0x20    /* Initialisation complete */
 195#define INIT_FAIL       0x21    /* Initialisation failed */
 196
 197#define ABTA_SENT       0x24    /* Abort sent */
 198#define ABTB_SENT       0x25
 199#define ABTC_SENT       0x26
 200#define ABTD_SENT       0x27
 201
 202#define TXA_UNDF        0x28    /* Transmission underflow */
 203#define TXB_UNDF        0x29
 204#define TXC_UNDF        0x2A
 205#define TXD_UNDF        0x2B
 206
 207#define F56_INT         0x2C
 208#define M32_INT         0x2D
 209
 210#define TE1_ALMA        0x30
 211
 212/* Port physical configuration. See farsync.h for field values */
 213struct port_cfg {
 214        u16 lineInterface;      /* Physical interface type */
 215        u8 x25op;               /* Unused at present */
 216        u8 internalClock;       /* 1 => internal clock, 0 => external */
 217        u8 transparentMode;     /* 1 => on, 0 => off */
 218        u8 invertClock;         /* 0 => normal, 1 => inverted */
 219        u8 padBytes[6];         /* Padding */
 220        u32 lineSpeed;          /* Speed in bps */
 221};
 222
 223/* TE1 port physical configuration */
 224struct su_config {
 225        u32 dataRate;
 226        u8 clocking;
 227        u8 framing;
 228        u8 structure;
 229        u8 interface;
 230        u8 coding;
 231        u8 lineBuildOut;
 232        u8 equalizer;
 233        u8 transparentMode;
 234        u8 loopMode;
 235        u8 range;
 236        u8 txBufferMode;
 237        u8 rxBufferMode;
 238        u8 startingSlot;
 239        u8 losThreshold;
 240        u8 enableIdleCode;
 241        u8 idleCode;
 242        u8 spare[44];
 243};
 244
 245/* TE1 Status */
 246struct su_status {
 247        u32 receiveBufferDelay;
 248        u32 framingErrorCount;
 249        u32 codeViolationCount;
 250        u32 crcErrorCount;
 251        u32 lineAttenuation;
 252        u8 portStarted;
 253        u8 lossOfSignal;
 254        u8 receiveRemoteAlarm;
 255        u8 alarmIndicationSignal;
 256        u8 spare[40];
 257};
 258
 259/* Finally sling all the above together into the shared memory structure.
 260 * Sorry it's a hodge podge of arrays, structures and unused bits, it's been
 261 * evolving under NT for some time so I guess we're stuck with it.
 262 * The structure starts at offset SMC_BASE.
 263 * See farsync.h for some field values.
 264 */
 265struct fst_shared {
 266        /* DMA descriptor rings */
 267        struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER];
 268        struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER];
 269
 270        /* Obsolete small buffers */
 271        u8 smallRxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_SMALL_RX_BUFFER];
 272        u8 smallTxBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_SMALL_TX_BUFFER];
 273
 274        u8 taskStatus;          /* 0x00 => initialising, 0x01 => running,
 275                                 * 0xFF => halted
 276                                 */
 277
 278        u8 interruptHandshake;  /* Set to 0x01 by adapter to signal interrupt,
 279                                 * set to 0xEE by host to acknowledge interrupt
 280                                 */
 281
 282        u16 smcVersion;         /* Must match SMC_VERSION */
 283
 284        u32 smcFirmwareVersion; /* 0xIIVVRRBB where II = product ID, VV = major
 285                                 * version, RR = revision and BB = build
 286                                 */
 287
 288        u16 txa_done;           /* Obsolete completion flags */
 289        u16 rxa_done;
 290        u16 txb_done;
 291        u16 rxb_done;
 292        u16 txc_done;
 293        u16 rxc_done;
 294        u16 txd_done;
 295        u16 rxd_done;
 296
 297        u16 mailbox[4];         /* Diagnostics mailbox. Not used */
 298
 299        struct cirbuff interruptEvent;  /* interrupt causes */
 300
 301        u32 v24IpSts[FST_MAX_PORTS];    /* V.24 control input status */
 302        u32 v24OpSts[FST_MAX_PORTS];    /* V.24 control output status */
 303
 304        struct port_cfg portConfig[FST_MAX_PORTS];
 305
 306        u16 clockStatus[FST_MAX_PORTS]; /* lsb: 0=> present, 1=> absent */
 307
 308        u16 cableStatus;        /* lsb: 0=> present, 1=> absent */
 309
 310        u16 txDescrIndex[FST_MAX_PORTS];        /* transmit descriptor ring index */
 311        u16 rxDescrIndex[FST_MAX_PORTS];        /* receive descriptor ring index */
 312
 313        u16 portMailbox[FST_MAX_PORTS][2];      /* command, modifier */
 314        u16 cardMailbox[4];     /* Not used */
 315
 316        /* Number of times the card thinks the host has
 317         * missed an interrupt by not acknowledging
 318         * within 2mS (I guess NT has problems)
 319         */
 320        u32 interruptRetryCount;
 321
 322        /* Driver private data used as an ID. We'll not
 323         * use this as I'd rather keep such things
 324         * in main memory rather than on the PCI bus
 325         */
 326        u32 portHandle[FST_MAX_PORTS];
 327
 328        /* Count of Tx underflows for stats */
 329        u32 transmitBufferUnderflow[FST_MAX_PORTS];
 330
 331        /* Debounced V.24 control input status */
 332        u32 v24DebouncedSts[FST_MAX_PORTS];
 333
 334        /* Adapter debounce timers. Don't touch */
 335        u32 ctsTimer[FST_MAX_PORTS];
 336        u32 ctsTimerRun[FST_MAX_PORTS];
 337        u32 dcdTimer[FST_MAX_PORTS];
 338        u32 dcdTimerRun[FST_MAX_PORTS];
 339
 340        u32 numberOfPorts;      /* Number of ports detected at startup */
 341
 342        u16 _reserved[64];
 343
 344        u16 cardMode;           /* Bit-mask to enable features:
 345                                 * Bit 0: 1 enables LED identify mode
 346                                 */
 347
 348        u16 portScheduleOffset;
 349
 350        struct su_config suConfig;      /* TE1 Bits */
 351        struct su_status suStatus;
 352
 353        u32 endOfSmcSignature;  /* endOfSmcSignature MUST be the last member of
 354                                 * the structure and marks the end of shared
 355                                 * memory. Adapter code initializes it as
 356                                 * END_SIG.
 357                                 */
 358};
 359
 360/* endOfSmcSignature value */
 361#define END_SIG                 0x12345678
 362
 363/* Mailbox values. (portMailbox) */
 364#define NOP             0       /* No operation */
 365#define ACK             1       /* Positive acknowledgement to PC driver */
 366#define NAK             2       /* Negative acknowledgement to PC driver */
 367#define STARTPORT       3       /* Start an HDLC port */
 368#define STOPPORT        4       /* Stop an HDLC port */
 369#define ABORTTX         5       /* Abort the transmitter for a port */
 370#define SETV24O         6       /* Set V24 outputs */
 371
 372/* PLX Chip Register Offsets */
 373#define CNTRL_9052      0x50    /* Control Register */
 374#define CNTRL_9054      0x6c    /* Control Register */
 375
 376#define INTCSR_9052     0x4c    /* Interrupt control/status register */
 377#define INTCSR_9054     0x68    /* Interrupt control/status register */
 378
 379/* 9054 DMA Registers */
 380/*
 381 * Note that we will be using DMA Channel 0 for copying rx data
 382 * and Channel 1 for copying tx data
 383 */
 384#define DMAMODE0        0x80
 385#define DMAPADR0        0x84
 386#define DMALADR0        0x88
 387#define DMASIZ0         0x8c
 388#define DMADPR0         0x90
 389#define DMAMODE1        0x94
 390#define DMAPADR1        0x98
 391#define DMALADR1        0x9c
 392#define DMASIZ1         0xa0
 393#define DMADPR1         0xa4
 394#define DMACSR0         0xa8
 395#define DMACSR1         0xa9
 396#define DMAARB          0xac
 397#define DMATHR          0xb0
 398#define DMADAC0         0xb4
 399#define DMADAC1         0xb8
 400#define DMAMARBR        0xac
 401
 402#define FST_MIN_DMA_LEN 64
 403#define FST_RX_DMA_INT  0x01
 404#define FST_TX_DMA_INT  0x02
 405#define FST_CARD_INT    0x04
 406
 407/* Larger buffers are positioned in memory at offset BFM_BASE */
 408struct buf_window {
 409        u8 txBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_TX_BUFFER];
 410        u8 rxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_RX_BUFFER];
 411};
 412
 413/* Calculate offset of a buffer object within the shared memory window */
 414#define BUF_OFFSET(X)   (BFM_BASE + offsetof(struct buf_window, X))
 415
 416#pragma pack()
 417
 418/*      Device driver private information
 419 *      =================================
 420 */
 421/*      Per port (line or channel) information
 422 */
 423struct fst_port_info {
 424        struct net_device *dev; /* Device struct - must be first */
 425        struct fst_card_info *card;     /* Card we're associated with */
 426        int index;              /* Port index on the card */
 427        int hwif;               /* Line hardware (lineInterface copy) */
 428        int run;                /* Port is running */
 429        int mode;               /* Normal or FarSync raw */
 430        int rxpos;              /* Next Rx buffer to use */
 431        int txpos;              /* Next Tx buffer to use */
 432        int txipos;             /* Next Tx buffer to check for free */
 433        int start;              /* Indication of start/stop to network */
 434        /*
 435         * A sixteen entry transmit queue
 436         */
 437        int txqs;               /* index to get next buffer to tx */
 438        int txqe;               /* index to queue next packet */
 439        struct sk_buff *txq[FST_TXQ_DEPTH];     /* The queue */
 440        int rxqdepth;
 441};
 442
 443/*      Per card information
 444 */
 445struct fst_card_info {
 446        char __iomem *mem;      /* Card memory mapped to kernel space */
 447        char __iomem *ctlmem;   /* Control memory for PCI cards */
 448        unsigned int phys_mem;  /* Physical memory window address */
 449        unsigned int phys_ctlmem;       /* Physical control memory address */
 450        unsigned int irq;       /* Interrupt request line number */
 451        unsigned int nports;    /* Number of serial ports */
 452        unsigned int type;      /* Type index of card */
 453        unsigned int state;     /* State of card */
 454        spinlock_t card_lock;   /* Lock for SMP access */
 455        unsigned short pci_conf;        /* PCI card config in I/O space */
 456        /* Per port info */
 457        struct fst_port_info ports[FST_MAX_PORTS];
 458        struct pci_dev *device; /* Information about the pci device */
 459        int card_no;            /* Inst of the card on the system */
 460        int family;             /* TxP or TxU */
 461        int dmarx_in_progress;
 462        int dmatx_in_progress;
 463        unsigned long int_count;
 464        unsigned long int_time_ave;
 465        void *rx_dma_handle_host;
 466        dma_addr_t rx_dma_handle_card;
 467        void *tx_dma_handle_host;
 468        dma_addr_t tx_dma_handle_card;
 469        struct sk_buff *dma_skb_rx;
 470        struct fst_port_info *dma_port_rx;
 471        struct fst_port_info *dma_port_tx;
 472        int dma_len_rx;
 473        int dma_len_tx;
 474        int dma_txpos;
 475        int dma_rxpos;
 476};
 477
 478/* Convert an HDLC device pointer into a port info pointer and similar */
 479#define dev_to_port(D)  (dev_to_hdlc(D)->priv)
 480#define port_to_dev(P)  ((P)->dev)
 481
 482
 483/*
 484 *      Shared memory window access macros
 485 *
 486 *      We have a nice memory based structure above, which could be directly
 487 *      mapped on i386 but might not work on other architectures unless we use
 488 *      the readb,w,l and writeb,w,l macros. Unfortunately these macros take
 489 *      physical offsets so we have to convert. The only saving grace is that
 490 *      this should all collapse back to a simple indirection eventually.
 491 */
 492#define WIN_OFFSET(X)   ((long)&(((struct fst_shared *)SMC_BASE)->X))
 493
 494#define FST_RDB(C,E)    readb ((C)->mem + WIN_OFFSET(E))
 495#define FST_RDW(C,E)    readw ((C)->mem + WIN_OFFSET(E))
 496#define FST_RDL(C,E)    readl ((C)->mem + WIN_OFFSET(E))
 497
 498#define FST_WRB(C,E,B)  writeb ((B), (C)->mem + WIN_OFFSET(E))
 499#define FST_WRW(C,E,W)  writew ((W), (C)->mem + WIN_OFFSET(E))
 500#define FST_WRL(C,E,L)  writel ((L), (C)->mem + WIN_OFFSET(E))
 501
 502/*
 503 *      Debug support
 504 */
 505#if FST_DEBUG
 506
 507static int fst_debug_mask = { FST_DEBUG };
 508
 509/* Most common debug activity is to print something if the corresponding bit
 510 * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to
 511 * support variable numbers of macro parameters. The inverted if prevents us
 512 * eating someone else's else clause.
 513 */
 514#define dbg(F, fmt, args...)                                    \
 515do {                                                            \
 516        if (fst_debug_mask & (F))                               \
 517                printk(KERN_DEBUG pr_fmt(fmt), ##args);         \
 518} while (0)
 519#else
 520#define dbg(F, fmt, args...)                                    \
 521do {                                                            \
 522        if (0)                                                  \
 523                printk(KERN_DEBUG pr_fmt(fmt), ##args);         \
 524} while (0)
 525#endif
 526
 527/*
 528 *      PCI ID lookup table
 529 */
 530static const struct pci_device_id fst_pci_dev_id[] = {
 531        {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID, 
 532         PCI_ANY_ID, 0, 0, FST_TYPE_T2P},
 533
 534        {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID, 
 535         PCI_ANY_ID, 0, 0, FST_TYPE_T4P},
 536
 537        {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID, 
 538         PCI_ANY_ID, 0, 0, FST_TYPE_T1U},
 539
 540        {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID, 
 541         PCI_ANY_ID, 0, 0, FST_TYPE_T2U},
 542
 543        {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID, 
 544         PCI_ANY_ID, 0, 0, FST_TYPE_T4U},
 545
 546        {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID, 
 547         PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
 548
 549        {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID, 
 550         PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
 551        {0,}                    /* End */
 552};
 553
 554MODULE_DEVICE_TABLE(pci, fst_pci_dev_id);
 555
 556/*
 557 *      Device Driver Work Queues
 558 *
 559 *      So that we don't spend too much time processing events in the 
 560 *      Interrupt Service routine, we will declare a work queue per Card 
 561 *      and make the ISR schedule a task in the queue for later execution.
 562 *      In the 2.4 Kernel we used to use the immediate queue for BH's
 563 *      Now that they are gone, tasklets seem to be much better than work 
 564 *      queues.
 565 */
 566
 567static void do_bottom_half_tx(struct fst_card_info *card);
 568static void do_bottom_half_rx(struct fst_card_info *card);
 569static void fst_process_tx_work_q(unsigned long work_q);
 570static void fst_process_int_work_q(unsigned long work_q);
 571
 572static DECLARE_TASKLET_OLD(fst_tx_task, fst_process_tx_work_q);
 573static DECLARE_TASKLET_OLD(fst_int_task, fst_process_int_work_q);
 574
 575static struct fst_card_info *fst_card_array[FST_MAX_CARDS];
 576static spinlock_t fst_work_q_lock;
 577static u64 fst_work_txq;
 578static u64 fst_work_intq;
 579
 580static void
 581fst_q_work_item(u64 * queue, int card_index)
 582{
 583        unsigned long flags;
 584        u64 mask;
 585
 586        /*
 587         * Grab the queue exclusively
 588         */
 589        spin_lock_irqsave(&fst_work_q_lock, flags);
 590
 591        /*
 592         * Making an entry in the queue is simply a matter of setting
 593         * a bit for the card indicating that there is work to do in the
 594         * bottom half for the card.  Note the limitation of 64 cards.
 595         * That ought to be enough
 596         */
 597        mask = (u64)1 << card_index;
 598        *queue |= mask;
 599        spin_unlock_irqrestore(&fst_work_q_lock, flags);
 600}
 601
 602static void
 603fst_process_tx_work_q(unsigned long /*void **/work_q)
 604{
 605        unsigned long flags;
 606        u64 work_txq;
 607        int i;
 608
 609        /*
 610         * Grab the queue exclusively
 611         */
 612        dbg(DBG_TX, "fst_process_tx_work_q\n");
 613        spin_lock_irqsave(&fst_work_q_lock, flags);
 614        work_txq = fst_work_txq;
 615        fst_work_txq = 0;
 616        spin_unlock_irqrestore(&fst_work_q_lock, flags);
 617
 618        /*
 619         * Call the bottom half for each card with work waiting
 620         */
 621        for (i = 0; i < FST_MAX_CARDS; i++) {
 622                if (work_txq & 0x01) {
 623                        if (fst_card_array[i] != NULL) {
 624                                dbg(DBG_TX, "Calling tx bh for card %d\n", i);
 625                                do_bottom_half_tx(fst_card_array[i]);
 626                        }
 627                }
 628                work_txq = work_txq >> 1;
 629        }
 630}
 631
 632static void
 633fst_process_int_work_q(unsigned long /*void **/work_q)
 634{
 635        unsigned long flags;
 636        u64 work_intq;
 637        int i;
 638
 639        /*
 640         * Grab the queue exclusively
 641         */
 642        dbg(DBG_INTR, "fst_process_int_work_q\n");
 643        spin_lock_irqsave(&fst_work_q_lock, flags);
 644        work_intq = fst_work_intq;
 645        fst_work_intq = 0;
 646        spin_unlock_irqrestore(&fst_work_q_lock, flags);
 647
 648        /*
 649         * Call the bottom half for each card with work waiting
 650         */
 651        for (i = 0; i < FST_MAX_CARDS; i++) {
 652                if (work_intq & 0x01) {
 653                        if (fst_card_array[i] != NULL) {
 654                                dbg(DBG_INTR,
 655                                    "Calling rx & tx bh for card %d\n", i);
 656                                do_bottom_half_rx(fst_card_array[i]);
 657                                do_bottom_half_tx(fst_card_array[i]);
 658                        }
 659                }
 660                work_intq = work_intq >> 1;
 661        }
 662}
 663
 664/*      Card control functions
 665 *      ======================
 666 */
 667/*      Place the processor in reset state
 668 *
 669 * Used to be a simple write to card control space but a glitch in the latest
 670 * AMD Am186CH processor means that we now have to do it by asserting and de-
 671 * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register
 672 * at offset 9052_CNTRL.  Note the updates for the TXU.
 673 */
 674static inline void
 675fst_cpureset(struct fst_card_info *card)
 676{
 677        unsigned char interrupt_line_register;
 678        unsigned int regval;
 679
 680        if (card->family == FST_FAMILY_TXU) {
 681                if (pci_read_config_byte
 682                    (card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) {
 683                        dbg(DBG_ASS,
 684                            "Error in reading interrupt line register\n");
 685                }
 686                /*
 687                 * Assert PLX software reset and Am186 hardware reset
 688                 * and then deassert the PLX software reset but 186 still in reset
 689                 */
 690                outw(0x440f, card->pci_conf + CNTRL_9054 + 2);
 691                outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
 692                /*
 693                 * We are delaying here to allow the 9054 to reset itself
 694                 */
 695                usleep_range(10, 20);
 696                outw(0x240f, card->pci_conf + CNTRL_9054 + 2);
 697                /*
 698                 * We are delaying here to allow the 9054 to reload its eeprom
 699                 */
 700                usleep_range(10, 20);
 701                outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
 702
 703                if (pci_write_config_byte
 704                    (card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) {
 705                        dbg(DBG_ASS,
 706                            "Error in writing interrupt line register\n");
 707                }
 708
 709        } else {
 710                regval = inl(card->pci_conf + CNTRL_9052);
 711
 712                outl(regval | 0x40000000, card->pci_conf + CNTRL_9052);
 713                outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052);
 714        }
 715}
 716
 717/*      Release the processor from reset
 718 */
 719static inline void
 720fst_cpurelease(struct fst_card_info *card)
 721{
 722        if (card->family == FST_FAMILY_TXU) {
 723                /*
 724                 * Force posted writes to complete
 725                 */
 726                (void) readb(card->mem);
 727
 728                /*
 729                 * Release LRESET DO = 1
 730                 * Then release Local Hold, DO = 1
 731                 */
 732                outw(0x040e, card->pci_conf + CNTRL_9054 + 2);
 733                outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
 734        } else {
 735                (void) readb(card->ctlmem);
 736        }
 737}
 738
 739/*      Clear the cards interrupt flag
 740 */
 741static inline void
 742fst_clear_intr(struct fst_card_info *card)
 743{
 744        if (card->family == FST_FAMILY_TXU) {
 745                (void) readb(card->ctlmem);
 746        } else {
 747                /* Poke the appropriate PLX chip register (same as enabling interrupts)
 748                 */
 749                outw(0x0543, card->pci_conf + INTCSR_9052);
 750        }
 751}
 752
 753/*      Enable card interrupts
 754 */
 755static inline void
 756fst_enable_intr(struct fst_card_info *card)
 757{
 758        if (card->family == FST_FAMILY_TXU) {
 759                outl(0x0f0c0900, card->pci_conf + INTCSR_9054);
 760        } else {
 761                outw(0x0543, card->pci_conf + INTCSR_9052);
 762        }
 763}
 764
 765/*      Disable card interrupts
 766 */
 767static inline void
 768fst_disable_intr(struct fst_card_info *card)
 769{
 770        if (card->family == FST_FAMILY_TXU) {
 771                outl(0x00000000, card->pci_conf + INTCSR_9054);
 772        } else {
 773                outw(0x0000, card->pci_conf + INTCSR_9052);
 774        }
 775}
 776
 777/*      Process the result of trying to pass a received frame up the stack
 778 */
 779static void
 780fst_process_rx_status(int rx_status, char *name)
 781{
 782        switch (rx_status) {
 783        case NET_RX_SUCCESS:
 784                {
 785                        /*
 786                         * Nothing to do here
 787                         */
 788                        break;
 789                }
 790        case NET_RX_DROP:
 791                {
 792                        dbg(DBG_ASS, "%s: Received packet dropped\n", name);
 793                        break;
 794                }
 795        }
 796}
 797
 798/*      Initilaise DMA for PLX 9054
 799 */
 800static inline void
 801fst_init_dma(struct fst_card_info *card)
 802{
 803        /*
 804         * This is only required for the PLX 9054
 805         */
 806        if (card->family == FST_FAMILY_TXU) {
 807                pci_set_master(card->device);
 808                outl(0x00020441, card->pci_conf + DMAMODE0);
 809                outl(0x00020441, card->pci_conf + DMAMODE1);
 810                outl(0x0, card->pci_conf + DMATHR);
 811        }
 812}
 813
 814/*      Tx dma complete interrupt
 815 */
 816static void
 817fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
 818                    int len, int txpos)
 819{
 820        struct net_device *dev = port_to_dev(port);
 821
 822        /*
 823         * Everything is now set, just tell the card to go
 824         */
 825        dbg(DBG_TX, "fst_tx_dma_complete\n");
 826        FST_WRB(card, txDescrRing[port->index][txpos].bits,
 827                DMA_OWN | TX_STP | TX_ENP);
 828        dev->stats.tx_packets++;
 829        dev->stats.tx_bytes += len;
 830        netif_trans_update(dev);
 831}
 832
 833/*
 834 * Mark it for our own raw sockets interface
 835 */
 836static __be16 farsync_type_trans(struct sk_buff *skb, struct net_device *dev)
 837{
 838        skb->dev = dev;
 839        skb_reset_mac_header(skb);
 840        skb->pkt_type = PACKET_HOST;
 841        return htons(ETH_P_CUST);
 842}
 843
 844/*      Rx dma complete interrupt
 845 */
 846static void
 847fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
 848                    int len, struct sk_buff *skb, int rxp)
 849{
 850        struct net_device *dev = port_to_dev(port);
 851        int pi;
 852        int rx_status;
 853
 854        dbg(DBG_TX, "fst_rx_dma_complete\n");
 855        pi = port->index;
 856        skb_put_data(skb, card->rx_dma_handle_host, len);
 857
 858        /* Reset buffer descriptor */
 859        FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
 860
 861        /* Update stats */
 862        dev->stats.rx_packets++;
 863        dev->stats.rx_bytes += len;
 864
 865        /* Push upstream */
 866        dbg(DBG_RX, "Pushing the frame up the stack\n");
 867        if (port->mode == FST_RAW)
 868                skb->protocol = farsync_type_trans(skb, dev);
 869        else
 870                skb->protocol = hdlc_type_trans(skb, dev);
 871        rx_status = netif_rx(skb);
 872        fst_process_rx_status(rx_status, port_to_dev(port)->name);
 873        if (rx_status == NET_RX_DROP)
 874                dev->stats.rx_dropped++;
 875}
 876
 877/*
 878 *      Receive a frame through the DMA
 879 */
 880static inline void
 881fst_rx_dma(struct fst_card_info *card, dma_addr_t dma, u32 mem, int len)
 882{
 883        /*
 884         * This routine will setup the DMA and start it
 885         */
 886
 887        dbg(DBG_RX, "In fst_rx_dma %x %x %d\n", (u32)dma, mem, len);
 888        if (card->dmarx_in_progress) {
 889                dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n");
 890        }
 891
 892        outl(dma, card->pci_conf + DMAPADR0);   /* Copy to here */
 893        outl(mem, card->pci_conf + DMALADR0);   /* from here */
 894        outl(len, card->pci_conf + DMASIZ0);    /* for this length */
 895        outl(0x00000000c, card->pci_conf + DMADPR0);    /* In this direction */
 896
 897        /*
 898         * We use the dmarx_in_progress flag to flag the channel as busy
 899         */
 900        card->dmarx_in_progress = 1;
 901        outb(0x03, card->pci_conf + DMACSR0);   /* Start the transfer */
 902}
 903
 904/*
 905 *      Send a frame through the DMA
 906 */
 907static inline void
 908fst_tx_dma(struct fst_card_info *card, dma_addr_t dma, u32 mem, int len)
 909{
 910        /*
 911         * This routine will setup the DMA and start it.
 912         */
 913
 914        dbg(DBG_TX, "In fst_tx_dma %x %x %d\n", (u32)dma, mem, len);
 915        if (card->dmatx_in_progress) {
 916                dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n");
 917        }
 918
 919        outl(dma, card->pci_conf + DMAPADR1);   /* Copy from here */
 920        outl(mem, card->pci_conf + DMALADR1);   /* to here */
 921        outl(len, card->pci_conf + DMASIZ1);    /* for this length */
 922        outl(0x000000004, card->pci_conf + DMADPR1);    /* In this direction */
 923
 924        /*
 925         * We use the dmatx_in_progress to flag the channel as busy
 926         */
 927        card->dmatx_in_progress = 1;
 928        outb(0x03, card->pci_conf + DMACSR1);   /* Start the transfer */
 929}
 930
 931/*      Issue a Mailbox command for a port.
 932 *      Note we issue them on a fire and forget basis, not expecting to see an
 933 *      error and not waiting for completion.
 934 */
 935static void
 936fst_issue_cmd(struct fst_port_info *port, unsigned short cmd)
 937{
 938        struct fst_card_info *card;
 939        unsigned short mbval;
 940        unsigned long flags;
 941        int safety;
 942
 943        card = port->card;
 944        spin_lock_irqsave(&card->card_lock, flags);
 945        mbval = FST_RDW(card, portMailbox[port->index][0]);
 946
 947        safety = 0;
 948        /* Wait for any previous command to complete */
 949        while (mbval > NAK) {
 950                spin_unlock_irqrestore(&card->card_lock, flags);
 951                schedule_timeout_uninterruptible(1);
 952                spin_lock_irqsave(&card->card_lock, flags);
 953
 954                if (++safety > 2000) {
 955                        pr_err("Mailbox safety timeout\n");
 956                        break;
 957                }
 958
 959                mbval = FST_RDW(card, portMailbox[port->index][0]);
 960        }
 961        if (safety > 0) {
 962                dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety);
 963        }
 964        if (mbval == NAK) {
 965                dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n");
 966        }
 967
 968        FST_WRW(card, portMailbox[port->index][0], cmd);
 969
 970        if (cmd == ABORTTX || cmd == STARTPORT) {
 971                port->txpos = 0;
 972                port->txipos = 0;
 973                port->start = 0;
 974        }
 975
 976        spin_unlock_irqrestore(&card->card_lock, flags);
 977}
 978
 979/*      Port output signals control
 980 */
 981static inline void
 982fst_op_raise(struct fst_port_info *port, unsigned int outputs)
 983{
 984        outputs |= FST_RDL(port->card, v24OpSts[port->index]);
 985        FST_WRL(port->card, v24OpSts[port->index], outputs);
 986
 987        if (port->run)
 988                fst_issue_cmd(port, SETV24O);
 989}
 990
 991static inline void
 992fst_op_lower(struct fst_port_info *port, unsigned int outputs)
 993{
 994        outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]);
 995        FST_WRL(port->card, v24OpSts[port->index], outputs);
 996
 997        if (port->run)
 998                fst_issue_cmd(port, SETV24O);
 999}
1000
1001/*
1002 *      Setup port Rx buffers
1003 */
1004static void
1005fst_rx_config(struct fst_port_info *port)
1006{
1007        int i;
1008        int pi;
1009        unsigned int offset;
1010        unsigned long flags;
1011        struct fst_card_info *card;
1012
1013        pi = port->index;
1014        card = port->card;
1015        spin_lock_irqsave(&card->card_lock, flags);
1016        for (i = 0; i < NUM_RX_BUFFER; i++) {
1017                offset = BUF_OFFSET(rxBuffer[pi][i][0]);
1018
1019                FST_WRW(card, rxDescrRing[pi][i].ladr, (u16) offset);
1020                FST_WRB(card, rxDescrRing[pi][i].hadr, (u8) (offset >> 16));
1021                FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER));
1022                FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER);
1023                FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN);
1024        }
1025        port->rxpos = 0;
1026        spin_unlock_irqrestore(&card->card_lock, flags);
1027}
1028
1029/*
1030 *      Setup port Tx buffers
1031 */
1032static void
1033fst_tx_config(struct fst_port_info *port)
1034{
1035        int i;
1036        int pi;
1037        unsigned int offset;
1038        unsigned long flags;
1039        struct fst_card_info *card;
1040
1041        pi = port->index;
1042        card = port->card;
1043        spin_lock_irqsave(&card->card_lock, flags);
1044        for (i = 0; i < NUM_TX_BUFFER; i++) {
1045                offset = BUF_OFFSET(txBuffer[pi][i][0]);
1046
1047                FST_WRW(card, txDescrRing[pi][i].ladr, (u16) offset);
1048                FST_WRB(card, txDescrRing[pi][i].hadr, (u8) (offset >> 16));
1049                FST_WRW(card, txDescrRing[pi][i].bcnt, 0);
1050                FST_WRB(card, txDescrRing[pi][i].bits, 0);
1051        }
1052        port->txpos = 0;
1053        port->txipos = 0;
1054        port->start = 0;
1055        spin_unlock_irqrestore(&card->card_lock, flags);
1056}
1057
1058/*      TE1 Alarm change interrupt event
1059 */
1060static void
1061fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port)
1062{
1063        u8 los;
1064        u8 rra;
1065        u8 ais;
1066
1067        los = FST_RDB(card, suStatus.lossOfSignal);
1068        rra = FST_RDB(card, suStatus.receiveRemoteAlarm);
1069        ais = FST_RDB(card, suStatus.alarmIndicationSignal);
1070
1071        if (los) {
1072                /*
1073                 * Lost the link
1074                 */
1075                if (netif_carrier_ok(port_to_dev(port))) {
1076                        dbg(DBG_INTR, "Net carrier off\n");
1077                        netif_carrier_off(port_to_dev(port));
1078                }
1079        } else {
1080                /*
1081                 * Link available
1082                 */
1083                if (!netif_carrier_ok(port_to_dev(port))) {
1084                        dbg(DBG_INTR, "Net carrier on\n");
1085                        netif_carrier_on(port_to_dev(port));
1086                }
1087        }
1088
1089        if (los)
1090                dbg(DBG_INTR, "Assert LOS Alarm\n");
1091        else
1092                dbg(DBG_INTR, "De-assert LOS Alarm\n");
1093        if (rra)
1094                dbg(DBG_INTR, "Assert RRA Alarm\n");
1095        else
1096                dbg(DBG_INTR, "De-assert RRA Alarm\n");
1097
1098        if (ais)
1099                dbg(DBG_INTR, "Assert AIS Alarm\n");
1100        else
1101                dbg(DBG_INTR, "De-assert AIS Alarm\n");
1102}
1103
1104/*      Control signal change interrupt event
1105 */
1106static void
1107fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port)
1108{
1109        int signals;
1110
1111        signals = FST_RDL(card, v24DebouncedSts[port->index]);
1112
1113        if (signals & (((port->hwif == X21) || (port->hwif == X21D))
1114                       ? IPSTS_INDICATE : IPSTS_DCD)) {
1115                if (!netif_carrier_ok(port_to_dev(port))) {
1116                        dbg(DBG_INTR, "DCD active\n");
1117                        netif_carrier_on(port_to_dev(port));
1118                }
1119        } else {
1120                if (netif_carrier_ok(port_to_dev(port))) {
1121                        dbg(DBG_INTR, "DCD lost\n");
1122                        netif_carrier_off(port_to_dev(port));
1123                }
1124        }
1125}
1126
1127/*      Log Rx Errors
1128 */
1129static void
1130fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1131                 unsigned char dmabits, int rxp, unsigned short len)
1132{
1133        struct net_device *dev = port_to_dev(port);
1134
1135        /*
1136         * Increment the appropriate error counter
1137         */
1138        dev->stats.rx_errors++;
1139        if (dmabits & RX_OFLO) {
1140                dev->stats.rx_fifo_errors++;
1141                dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n",
1142                    card->card_no, port->index, rxp);
1143        }
1144        if (dmabits & RX_CRC) {
1145                dev->stats.rx_crc_errors++;
1146                dbg(DBG_ASS, "Rx crc error on card %d port %d\n",
1147                    card->card_no, port->index);
1148        }
1149        if (dmabits & RX_FRAM) {
1150                dev->stats.rx_frame_errors++;
1151                dbg(DBG_ASS, "Rx frame error on card %d port %d\n",
1152                    card->card_no, port->index);
1153        }
1154        if (dmabits == (RX_STP | RX_ENP)) {
1155                dev->stats.rx_length_errors++;
1156                dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n",
1157                    len, card->card_no, port->index);
1158        }
1159}
1160
1161/*      Rx Error Recovery
1162 */
1163static void
1164fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1165                     unsigned char dmabits, int rxp, unsigned short len)
1166{
1167        int i;
1168        int pi;
1169
1170        pi = port->index;
1171        /* 
1172         * Discard buffer descriptors until we see the start of the
1173         * next frame.  Note that for long frames this could be in
1174         * a subsequent interrupt. 
1175         */
1176        i = 0;
1177        while ((dmabits & (DMA_OWN | RX_STP)) == 0) {
1178                FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1179                rxp = (rxp+1) % NUM_RX_BUFFER;
1180                if (++i > NUM_RX_BUFFER) {
1181                        dbg(DBG_ASS, "intr_rx: Discarding more bufs"
1182                            " than we have\n");
1183                        break;
1184                }
1185                dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1186                dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits);
1187        }
1188        dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i);
1189
1190        /* Discard the terminal buffer */
1191        if (!(dmabits & DMA_OWN)) {
1192                FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1193                rxp = (rxp+1) % NUM_RX_BUFFER;
1194        }
1195        port->rxpos = rxp;
1196        return;
1197
1198}
1199
1200/*      Rx complete interrupt
1201 */
1202static void
1203fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port)
1204{
1205        unsigned char dmabits;
1206        int pi;
1207        int rxp;
1208        int rx_status;
1209        unsigned short len;
1210        struct sk_buff *skb;
1211        struct net_device *dev = port_to_dev(port);
1212
1213        /* Check we have a buffer to process */
1214        pi = port->index;
1215        rxp = port->rxpos;
1216        dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1217        if (dmabits & DMA_OWN) {
1218                dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n",
1219                    pi, rxp);
1220                return;
1221        }
1222        if (card->dmarx_in_progress) {
1223                return;
1224        }
1225
1226        /* Get buffer length */
1227        len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt);
1228        /* Discard the CRC */
1229        len -= 2;
1230        if (len == 0) {
1231                /*
1232                 * This seems to happen on the TE1 interface sometimes
1233                 * so throw the frame away and log the event.
1234                 */
1235                pr_err("Frame received with 0 length. Card %d Port %d\n",
1236                       card->card_no, port->index);
1237                /* Return descriptor to card */
1238                FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1239
1240                rxp = (rxp+1) % NUM_RX_BUFFER;
1241                port->rxpos = rxp;
1242                return;
1243        }
1244
1245        /* Check buffer length and for other errors. We insist on one packet
1246         * in one buffer. This simplifies things greatly and since we've
1247         * allocated 8K it shouldn't be a real world limitation
1248         */
1249        dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len);
1250        if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) {
1251                fst_log_rx_error(card, port, dmabits, rxp, len);
1252                fst_recover_rx_error(card, port, dmabits, rxp, len);
1253                return;
1254        }
1255
1256        /* Allocate SKB */
1257        if ((skb = dev_alloc_skb(len)) == NULL) {
1258                dbg(DBG_RX, "intr_rx: can't allocate buffer\n");
1259
1260                dev->stats.rx_dropped++;
1261
1262                /* Return descriptor to card */
1263                FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1264
1265                rxp = (rxp+1) % NUM_RX_BUFFER;
1266                port->rxpos = rxp;
1267                return;
1268        }
1269
1270        /*
1271         * We know the length we need to receive, len.
1272         * It's not worth using the DMA for reads of less than
1273         * FST_MIN_DMA_LEN
1274         */
1275
1276        if ((len < FST_MIN_DMA_LEN) || (card->family == FST_FAMILY_TXP)) {
1277                memcpy_fromio(skb_put(skb, len),
1278                              card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]),
1279                              len);
1280
1281                /* Reset buffer descriptor */
1282                FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1283
1284                /* Update stats */
1285                dev->stats.rx_packets++;
1286                dev->stats.rx_bytes += len;
1287
1288                /* Push upstream */
1289                dbg(DBG_RX, "Pushing frame up the stack\n");
1290                if (port->mode == FST_RAW)
1291                        skb->protocol = farsync_type_trans(skb, dev);
1292                else
1293                        skb->protocol = hdlc_type_trans(skb, dev);
1294                rx_status = netif_rx(skb);
1295                fst_process_rx_status(rx_status, port_to_dev(port)->name);
1296                if (rx_status == NET_RX_DROP)
1297                        dev->stats.rx_dropped++;
1298        } else {
1299                card->dma_skb_rx = skb;
1300                card->dma_port_rx = port;
1301                card->dma_len_rx = len;
1302                card->dma_rxpos = rxp;
1303                fst_rx_dma(card, card->rx_dma_handle_card,
1304                           BUF_OFFSET(rxBuffer[pi][rxp][0]), len);
1305        }
1306        if (rxp != port->rxpos) {
1307                dbg(DBG_ASS, "About to increment rxpos by more than 1\n");
1308                dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos);
1309        }
1310        rxp = (rxp+1) % NUM_RX_BUFFER;
1311        port->rxpos = rxp;
1312}
1313
1314/*
1315 *      The bottom halfs to the ISR
1316 *
1317 */
1318
1319static void
1320do_bottom_half_tx(struct fst_card_info *card)
1321{
1322        struct fst_port_info *port;
1323        int pi;
1324        int txq_length;
1325        struct sk_buff *skb;
1326        unsigned long flags;
1327        struct net_device *dev;
1328
1329        /*
1330         *  Find a free buffer for the transmit
1331         *  Step through each port on this card
1332         */
1333
1334        dbg(DBG_TX, "do_bottom_half_tx\n");
1335        for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1336                if (!port->run)
1337                        continue;
1338
1339                dev = port_to_dev(port);
1340                while (!(FST_RDB(card, txDescrRing[pi][port->txpos].bits) &
1341                         DMA_OWN) &&
1342                       !(card->dmatx_in_progress)) {
1343                        /*
1344                         * There doesn't seem to be a txdone event per-se
1345                         * We seem to have to deduce it, by checking the DMA_OWN
1346                         * bit on the next buffer we think we can use
1347                         */
1348                        spin_lock_irqsave(&card->card_lock, flags);
1349                        if ((txq_length = port->txqe - port->txqs) < 0) {
1350                                /*
1351                                 * This is the case where one has wrapped and the
1352                                 * maths gives us a negative number
1353                                 */
1354                                txq_length = txq_length + FST_TXQ_DEPTH;
1355                        }
1356                        spin_unlock_irqrestore(&card->card_lock, flags);
1357                        if (txq_length > 0) {
1358                                /*
1359                                 * There is something to send
1360                                 */
1361                                spin_lock_irqsave(&card->card_lock, flags);
1362                                skb = port->txq[port->txqs];
1363                                port->txqs++;
1364                                if (port->txqs == FST_TXQ_DEPTH) {
1365                                        port->txqs = 0;
1366                                }
1367                                spin_unlock_irqrestore(&card->card_lock, flags);
1368                                /*
1369                                 * copy the data and set the required indicators on the
1370                                 * card.
1371                                 */
1372                                FST_WRW(card, txDescrRing[pi][port->txpos].bcnt,
1373                                        cnv_bcnt(skb->len));
1374                                if ((skb->len < FST_MIN_DMA_LEN) ||
1375                                    (card->family == FST_FAMILY_TXP)) {
1376                                        /* Enqueue the packet with normal io */
1377                                        memcpy_toio(card->mem +
1378                                                    BUF_OFFSET(txBuffer[pi]
1379                                                               [port->
1380                                                                txpos][0]),
1381                                                    skb->data, skb->len);
1382                                        FST_WRB(card,
1383                                                txDescrRing[pi][port->txpos].
1384                                                bits,
1385                                                DMA_OWN | TX_STP | TX_ENP);
1386                                        dev->stats.tx_packets++;
1387                                        dev->stats.tx_bytes += skb->len;
1388                                        netif_trans_update(dev);
1389                                } else {
1390                                        /* Or do it through dma */
1391                                        memcpy(card->tx_dma_handle_host,
1392                                               skb->data, skb->len);
1393                                        card->dma_port_tx = port;
1394                                        card->dma_len_tx = skb->len;
1395                                        card->dma_txpos = port->txpos;
1396                                        fst_tx_dma(card,
1397                                                   card->tx_dma_handle_card,
1398                                                   BUF_OFFSET(txBuffer[pi]
1399                                                              [port->txpos][0]),
1400                                                   skb->len);
1401                                }
1402                                if (++port->txpos >= NUM_TX_BUFFER)
1403                                        port->txpos = 0;
1404                                /*
1405                                 * If we have flow control on, can we now release it?
1406                                 */
1407                                if (port->start) {
1408                                        if (txq_length < fst_txq_low) {
1409                                                netif_wake_queue(port_to_dev
1410                                                                 (port));
1411                                                port->start = 0;
1412                                        }
1413                                }
1414                                dev_kfree_skb(skb);
1415                        } else {
1416                                /*
1417                                 * Nothing to send so break out of the while loop
1418                                 */
1419                                break;
1420                        }
1421                }
1422        }
1423}
1424
1425static void
1426do_bottom_half_rx(struct fst_card_info *card)
1427{
1428        struct fst_port_info *port;
1429        int pi;
1430        int rx_count = 0;
1431
1432        /* Check for rx completions on all ports on this card */
1433        dbg(DBG_RX, "do_bottom_half_rx\n");
1434        for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1435                if (!port->run)
1436                        continue;
1437
1438                while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits)
1439                         & DMA_OWN) && !(card->dmarx_in_progress)) {
1440                        if (rx_count > fst_max_reads) {
1441                                /*
1442                                 * Don't spend forever in receive processing
1443                                 * Schedule another event
1444                                 */
1445                                fst_q_work_item(&fst_work_intq, card->card_no);
1446                                tasklet_schedule(&fst_int_task);
1447                                break;  /* Leave the loop */
1448                        }
1449                        fst_intr_rx(card, port);
1450                        rx_count++;
1451                }
1452        }
1453}
1454
1455/*
1456 *      The interrupt service routine
1457 *      Dev_id is our fst_card_info pointer
1458 */
1459static irqreturn_t
1460fst_intr(int dummy, void *dev_id)
1461{
1462        struct fst_card_info *card = dev_id;
1463        struct fst_port_info *port;
1464        int rdidx;              /* Event buffer indices */
1465        int wridx;
1466        int event;              /* Actual event for processing */
1467        unsigned int dma_intcsr = 0;
1468        unsigned int do_card_interrupt;
1469        unsigned int int_retry_count;
1470
1471        /*
1472         * Check to see if the interrupt was for this card
1473         * return if not
1474         * Note that the call to clear the interrupt is important
1475         */
1476        dbg(DBG_INTR, "intr: %d %p\n", card->irq, card);
1477        if (card->state != FST_RUNNING) {
1478                pr_err("Interrupt received for card %d in a non running state (%d)\n",
1479                       card->card_no, card->state);
1480
1481                /* 
1482                 * It is possible to really be running, i.e. we have re-loaded
1483                 * a running card
1484                 * Clear and reprime the interrupt source 
1485                 */
1486                fst_clear_intr(card);
1487                return IRQ_HANDLED;
1488        }
1489
1490        /* Clear and reprime the interrupt source */
1491        fst_clear_intr(card);
1492
1493        /*
1494         * Is the interrupt for this card (handshake == 1)
1495         */
1496        do_card_interrupt = 0;
1497        if (FST_RDB(card, interruptHandshake) == 1) {
1498                do_card_interrupt += FST_CARD_INT;
1499                /* Set the software acknowledge */
1500                FST_WRB(card, interruptHandshake, 0xEE);
1501        }
1502        if (card->family == FST_FAMILY_TXU) {
1503                /*
1504                 * Is it a DMA Interrupt
1505                 */
1506                dma_intcsr = inl(card->pci_conf + INTCSR_9054);
1507                if (dma_intcsr & 0x00200000) {
1508                        /*
1509                         * DMA Channel 0 (Rx transfer complete)
1510                         */
1511                        dbg(DBG_RX, "DMA Rx xfer complete\n");
1512                        outb(0x8, card->pci_conf + DMACSR0);
1513                        fst_rx_dma_complete(card, card->dma_port_rx,
1514                                            card->dma_len_rx, card->dma_skb_rx,
1515                                            card->dma_rxpos);
1516                        card->dmarx_in_progress = 0;
1517                        do_card_interrupt += FST_RX_DMA_INT;
1518                }
1519                if (dma_intcsr & 0x00400000) {
1520                        /*
1521                         * DMA Channel 1 (Tx transfer complete)
1522                         */
1523                        dbg(DBG_TX, "DMA Tx xfer complete\n");
1524                        outb(0x8, card->pci_conf + DMACSR1);
1525                        fst_tx_dma_complete(card, card->dma_port_tx,
1526                                            card->dma_len_tx, card->dma_txpos);
1527                        card->dmatx_in_progress = 0;
1528                        do_card_interrupt += FST_TX_DMA_INT;
1529                }
1530        }
1531
1532        /*
1533         * Have we been missing Interrupts
1534         */
1535        int_retry_count = FST_RDL(card, interruptRetryCount);
1536        if (int_retry_count) {
1537                dbg(DBG_ASS, "Card %d int_retry_count is  %d\n",
1538                    card->card_no, int_retry_count);
1539                FST_WRL(card, interruptRetryCount, 0);
1540        }
1541
1542        if (!do_card_interrupt) {
1543                return IRQ_HANDLED;
1544        }
1545
1546        /* Scehdule the bottom half of the ISR */
1547        fst_q_work_item(&fst_work_intq, card->card_no);
1548        tasklet_schedule(&fst_int_task);
1549
1550        /* Drain the event queue */
1551        rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f;
1552        wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f;
1553        while (rdidx != wridx) {
1554                event = FST_RDB(card, interruptEvent.evntbuff[rdidx]);
1555                port = &card->ports[event & 0x03];
1556
1557                dbg(DBG_INTR, "Processing Interrupt event: %x\n", event);
1558
1559                switch (event) {
1560                case TE1_ALMA:
1561                        dbg(DBG_INTR, "TE1 Alarm intr\n");
1562                        if (port->run)
1563                                fst_intr_te1_alarm(card, port);
1564                        break;
1565
1566                case CTLA_CHG:
1567                case CTLB_CHG:
1568                case CTLC_CHG:
1569                case CTLD_CHG:
1570                        if (port->run)
1571                                fst_intr_ctlchg(card, port);
1572                        break;
1573
1574                case ABTA_SENT:
1575                case ABTB_SENT:
1576                case ABTC_SENT:
1577                case ABTD_SENT:
1578                        dbg(DBG_TX, "Abort complete port %d\n", port->index);
1579                        break;
1580
1581                case TXA_UNDF:
1582                case TXB_UNDF:
1583                case TXC_UNDF:
1584                case TXD_UNDF:
1585                        /* Difficult to see how we'd get this given that we
1586                         * always load up the entire packet for DMA.
1587                         */
1588                        dbg(DBG_TX, "Tx underflow port %d\n", port->index);
1589                        port_to_dev(port)->stats.tx_errors++;
1590                        port_to_dev(port)->stats.tx_fifo_errors++;
1591                        dbg(DBG_ASS, "Tx underflow on card %d port %d\n",
1592                            card->card_no, port->index);
1593                        break;
1594
1595                case INIT_CPLT:
1596                        dbg(DBG_INIT, "Card init OK intr\n");
1597                        break;
1598
1599                case INIT_FAIL:
1600                        dbg(DBG_INIT, "Card init FAILED intr\n");
1601                        card->state = FST_IFAILED;
1602                        break;
1603
1604                default:
1605                        pr_err("intr: unknown card event %d. ignored\n", event);
1606                        break;
1607                }
1608
1609                /* Bump and wrap the index */
1610                if (++rdidx >= MAX_CIRBUFF)
1611                        rdidx = 0;
1612        }
1613        FST_WRB(card, interruptEvent.rdindex, rdidx);
1614        return IRQ_HANDLED;
1615}
1616
1617/*      Check that the shared memory configuration is one that we can handle
1618 *      and that some basic parameters are correct
1619 */
1620static void
1621check_started_ok(struct fst_card_info *card)
1622{
1623        int i;
1624
1625        /* Check structure version and end marker */
1626        if (FST_RDW(card, smcVersion) != SMC_VERSION) {
1627                pr_err("Bad shared memory version %d expected %d\n",
1628                       FST_RDW(card, smcVersion), SMC_VERSION);
1629                card->state = FST_BADVERSION;
1630                return;
1631        }
1632        if (FST_RDL(card, endOfSmcSignature) != END_SIG) {
1633                pr_err("Missing shared memory signature\n");
1634                card->state = FST_BADVERSION;
1635                return;
1636        }
1637        /* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */
1638        if ((i = FST_RDB(card, taskStatus)) == 0x01) {
1639                card->state = FST_RUNNING;
1640        } else if (i == 0xFF) {
1641                pr_err("Firmware initialisation failed. Card halted\n");
1642                card->state = FST_HALTED;
1643                return;
1644        } else if (i != 0x00) {
1645                pr_err("Unknown firmware status 0x%x\n", i);
1646                card->state = FST_HALTED;
1647                return;
1648        }
1649
1650        /* Finally check the number of ports reported by firmware against the
1651         * number we assumed at card detection. Should never happen with
1652         * existing firmware etc so we just report it for the moment.
1653         */
1654        if (FST_RDL(card, numberOfPorts) != card->nports) {
1655                pr_warn("Port count mismatch on card %d.  Firmware thinks %d we say %d\n",
1656                        card->card_no,
1657                        FST_RDL(card, numberOfPorts), card->nports);
1658        }
1659}
1660
1661static int
1662set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port,
1663                   struct fstioc_info *info)
1664{
1665        int err;
1666        unsigned char my_framing;
1667
1668        /* Set things according to the user set valid flags 
1669         * Several of the old options have been invalidated/replaced by the 
1670         * generic hdlc package.
1671         */
1672        err = 0;
1673        if (info->valid & FSTVAL_PROTO) {
1674                if (info->proto == FST_RAW)
1675                        port->mode = FST_RAW;
1676                else
1677                        port->mode = FST_GEN_HDLC;
1678        }
1679
1680        if (info->valid & FSTVAL_CABLE)
1681                err = -EINVAL;
1682
1683        if (info->valid & FSTVAL_SPEED)
1684                err = -EINVAL;
1685
1686        if (info->valid & FSTVAL_PHASE)
1687                FST_WRB(card, portConfig[port->index].invertClock,
1688                        info->invertClock);
1689        if (info->valid & FSTVAL_MODE)
1690                FST_WRW(card, cardMode, info->cardMode);
1691        if (info->valid & FSTVAL_TE1) {
1692                FST_WRL(card, suConfig.dataRate, info->lineSpeed);
1693                FST_WRB(card, suConfig.clocking, info->clockSource);
1694                my_framing = FRAMING_E1;
1695                if (info->framing == E1)
1696                        my_framing = FRAMING_E1;
1697                if (info->framing == T1)
1698                        my_framing = FRAMING_T1;
1699                if (info->framing == J1)
1700                        my_framing = FRAMING_J1;
1701                FST_WRB(card, suConfig.framing, my_framing);
1702                FST_WRB(card, suConfig.structure, info->structure);
1703                FST_WRB(card, suConfig.interface, info->interface);
1704                FST_WRB(card, suConfig.coding, info->coding);
1705                FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut);
1706                FST_WRB(card, suConfig.equalizer, info->equalizer);
1707                FST_WRB(card, suConfig.transparentMode, info->transparentMode);
1708                FST_WRB(card, suConfig.loopMode, info->loopMode);
1709                FST_WRB(card, suConfig.range, info->range);
1710                FST_WRB(card, suConfig.txBufferMode, info->txBufferMode);
1711                FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode);
1712                FST_WRB(card, suConfig.startingSlot, info->startingSlot);
1713                FST_WRB(card, suConfig.losThreshold, info->losThreshold);
1714                if (info->idleCode)
1715                        FST_WRB(card, suConfig.enableIdleCode, 1);
1716                else
1717                        FST_WRB(card, suConfig.enableIdleCode, 0);
1718                FST_WRB(card, suConfig.idleCode, info->idleCode);
1719#if FST_DEBUG
1720                if (info->valid & FSTVAL_TE1) {
1721                        printk("Setting TE1 data\n");
1722                        printk("Line Speed = %d\n", info->lineSpeed);
1723                        printk("Start slot = %d\n", info->startingSlot);
1724                        printk("Clock source = %d\n", info->clockSource);
1725                        printk("Framing = %d\n", my_framing);
1726                        printk("Structure = %d\n", info->structure);
1727                        printk("interface = %d\n", info->interface);
1728                        printk("Coding = %d\n", info->coding);
1729                        printk("Line build out = %d\n", info->lineBuildOut);
1730                        printk("Equaliser = %d\n", info->equalizer);
1731                        printk("Transparent mode = %d\n",
1732                               info->transparentMode);
1733                        printk("Loop mode = %d\n", info->loopMode);
1734                        printk("Range = %d\n", info->range);
1735                        printk("Tx Buffer mode = %d\n", info->txBufferMode);
1736                        printk("Rx Buffer mode = %d\n", info->rxBufferMode);
1737                        printk("LOS Threshold = %d\n", info->losThreshold);
1738                        printk("Idle Code = %d\n", info->idleCode);
1739                }
1740#endif
1741        }
1742#if FST_DEBUG
1743        if (info->valid & FSTVAL_DEBUG) {
1744                fst_debug_mask = info->debug;
1745        }
1746#endif
1747
1748        return err;
1749}
1750
1751static void
1752gather_conf_info(struct fst_card_info *card, struct fst_port_info *port,
1753                 struct fstioc_info *info)
1754{
1755        int i;
1756
1757        memset(info, 0, sizeof (struct fstioc_info));
1758
1759        i = port->index;
1760        info->kernelVersion = LINUX_VERSION_CODE;
1761        info->nports = card->nports;
1762        info->type = card->type;
1763        info->state = card->state;
1764        info->proto = FST_GEN_HDLC;
1765        info->index = i;
1766#if FST_DEBUG
1767        info->debug = fst_debug_mask;
1768#endif
1769
1770        /* Only mark information as valid if card is running.
1771         * Copy the data anyway in case it is useful for diagnostics
1772         */
1773        info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD)
1774#if FST_DEBUG
1775            | FSTVAL_DEBUG
1776#endif
1777            ;
1778
1779        info->lineInterface = FST_RDW(card, portConfig[i].lineInterface);
1780        info->internalClock = FST_RDB(card, portConfig[i].internalClock);
1781        info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed);
1782        info->invertClock = FST_RDB(card, portConfig[i].invertClock);
1783        info->v24IpSts = FST_RDL(card, v24IpSts[i]);
1784        info->v24OpSts = FST_RDL(card, v24OpSts[i]);
1785        info->clockStatus = FST_RDW(card, clockStatus[i]);
1786        info->cableStatus = FST_RDW(card, cableStatus);
1787        info->cardMode = FST_RDW(card, cardMode);
1788        info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion);
1789
1790        /*
1791         * The T2U can report cable presence for both A or B
1792         * in bits 0 and 1 of cableStatus.  See which port we are and 
1793         * do the mapping.
1794         */
1795        if (card->family == FST_FAMILY_TXU) {
1796                if (port->index == 0) {
1797                        /*
1798                         * Port A
1799                         */
1800                        info->cableStatus = info->cableStatus & 1;
1801                } else {
1802                        /*
1803                         * Port B
1804                         */
1805                        info->cableStatus = info->cableStatus >> 1;
1806                        info->cableStatus = info->cableStatus & 1;
1807                }
1808        }
1809        /*
1810         * Some additional bits if we are TE1
1811         */
1812        if (card->type == FST_TYPE_TE1) {
1813                info->lineSpeed = FST_RDL(card, suConfig.dataRate);
1814                info->clockSource = FST_RDB(card, suConfig.clocking);
1815                info->framing = FST_RDB(card, suConfig.framing);
1816                info->structure = FST_RDB(card, suConfig.structure);
1817                info->interface = FST_RDB(card, suConfig.interface);
1818                info->coding = FST_RDB(card, suConfig.coding);
1819                info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut);
1820                info->equalizer = FST_RDB(card, suConfig.equalizer);
1821                info->loopMode = FST_RDB(card, suConfig.loopMode);
1822                info->range = FST_RDB(card, suConfig.range);
1823                info->txBufferMode = FST_RDB(card, suConfig.txBufferMode);
1824                info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode);
1825                info->startingSlot = FST_RDB(card, suConfig.startingSlot);
1826                info->losThreshold = FST_RDB(card, suConfig.losThreshold);
1827                if (FST_RDB(card, suConfig.enableIdleCode))
1828                        info->idleCode = FST_RDB(card, suConfig.idleCode);
1829                else
1830                        info->idleCode = 0;
1831                info->receiveBufferDelay =
1832                    FST_RDL(card, suStatus.receiveBufferDelay);
1833                info->framingErrorCount =
1834                    FST_RDL(card, suStatus.framingErrorCount);
1835                info->codeViolationCount =
1836                    FST_RDL(card, suStatus.codeViolationCount);
1837                info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount);
1838                info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation);
1839                info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal);
1840                info->receiveRemoteAlarm =
1841                    FST_RDB(card, suStatus.receiveRemoteAlarm);
1842                info->alarmIndicationSignal =
1843                    FST_RDB(card, suStatus.alarmIndicationSignal);
1844        }
1845}
1846
1847static int
1848fst_set_iface(struct fst_card_info *card, struct fst_port_info *port,
1849              struct ifreq *ifr)
1850{
1851        sync_serial_settings sync;
1852        int i;
1853
1854        if (ifr->ifr_settings.size != sizeof (sync)) {
1855                return -ENOMEM;
1856        }
1857
1858        if (copy_from_user
1859            (&sync, ifr->ifr_settings.ifs_ifsu.sync, sizeof (sync))) {
1860                return -EFAULT;
1861        }
1862
1863        if (sync.loopback)
1864                return -EINVAL;
1865
1866        i = port->index;
1867
1868        switch (ifr->ifr_settings.type) {
1869        case IF_IFACE_V35:
1870                FST_WRW(card, portConfig[i].lineInterface, V35);
1871                port->hwif = V35;
1872                break;
1873
1874        case IF_IFACE_V24:
1875                FST_WRW(card, portConfig[i].lineInterface, V24);
1876                port->hwif = V24;
1877                break;
1878
1879        case IF_IFACE_X21:
1880                FST_WRW(card, portConfig[i].lineInterface, X21);
1881                port->hwif = X21;
1882                break;
1883
1884        case IF_IFACE_X21D:
1885                FST_WRW(card, portConfig[i].lineInterface, X21D);
1886                port->hwif = X21D;
1887                break;
1888
1889        case IF_IFACE_T1:
1890                FST_WRW(card, portConfig[i].lineInterface, T1);
1891                port->hwif = T1;
1892                break;
1893
1894        case IF_IFACE_E1:
1895                FST_WRW(card, portConfig[i].lineInterface, E1);
1896                port->hwif = E1;
1897                break;
1898
1899        case IF_IFACE_SYNC_SERIAL:
1900                break;
1901
1902        default:
1903                return -EINVAL;
1904        }
1905
1906        switch (sync.clock_type) {
1907        case CLOCK_EXT:
1908                FST_WRB(card, portConfig[i].internalClock, EXTCLK);
1909                break;
1910
1911        case CLOCK_INT:
1912                FST_WRB(card, portConfig[i].internalClock, INTCLK);
1913                break;
1914
1915        default:
1916                return -EINVAL;
1917        }
1918        FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate);
1919        return 0;
1920}
1921
1922static int
1923fst_get_iface(struct fst_card_info *card, struct fst_port_info *port,
1924              struct ifreq *ifr)
1925{
1926        sync_serial_settings sync;
1927        int i;
1928
1929        /* First check what line type is set, we'll default to reporting X.21
1930         * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be
1931         * changed
1932         */
1933        switch (port->hwif) {
1934        case E1:
1935                ifr->ifr_settings.type = IF_IFACE_E1;
1936                break;
1937        case T1:
1938                ifr->ifr_settings.type = IF_IFACE_T1;
1939                break;
1940        case V35:
1941                ifr->ifr_settings.type = IF_IFACE_V35;
1942                break;
1943        case V24:
1944                ifr->ifr_settings.type = IF_IFACE_V24;
1945                break;
1946        case X21D:
1947                ifr->ifr_settings.type = IF_IFACE_X21D;
1948                break;
1949        case X21:
1950        default:
1951                ifr->ifr_settings.type = IF_IFACE_X21;
1952                break;
1953        }
1954        if (ifr->ifr_settings.size == 0) {
1955                return 0;       /* only type requested */
1956        }
1957        if (ifr->ifr_settings.size < sizeof (sync)) {
1958                return -ENOMEM;
1959        }
1960
1961        i = port->index;
1962        memset(&sync, 0, sizeof(sync));
1963        sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed);
1964        /* Lucky card and linux use same encoding here */
1965        sync.clock_type = FST_RDB(card, portConfig[i].internalClock) ==
1966            INTCLK ? CLOCK_INT : CLOCK_EXT;
1967        sync.loopback = 0;
1968
1969        if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &sync, sizeof (sync))) {
1970                return -EFAULT;
1971        }
1972
1973        ifr->ifr_settings.size = sizeof (sync);
1974        return 0;
1975}
1976
1977static int
1978fst_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1979{
1980        struct fst_card_info *card;
1981        struct fst_port_info *port;
1982        struct fstioc_write wrthdr;
1983        struct fstioc_info info;
1984        unsigned long flags;
1985        void *buf;
1986
1987        dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, ifr->ifr_data);
1988
1989        port = dev_to_port(dev);
1990        card = port->card;
1991
1992        if (!capable(CAP_NET_ADMIN))
1993                return -EPERM;
1994
1995        switch (cmd) {
1996        case FSTCPURESET:
1997                fst_cpureset(card);
1998                card->state = FST_RESET;
1999                return 0;
2000
2001        case FSTCPURELEASE:
2002                fst_cpurelease(card);
2003                card->state = FST_STARTING;
2004                return 0;
2005
2006        case FSTWRITE:          /* Code write (download) */
2007
2008                /* First copy in the header with the length and offset of data
2009                 * to write
2010                 */
2011                if (ifr->ifr_data == NULL) {
2012                        return -EINVAL;
2013                }
2014                if (copy_from_user(&wrthdr, ifr->ifr_data,
2015                                   sizeof (struct fstioc_write))) {
2016                        return -EFAULT;
2017                }
2018
2019                /* Sanity check the parameters. We don't support partial writes
2020                 * when going over the top
2021                 */
2022                if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE ||
2023                    wrthdr.size + wrthdr.offset > FST_MEMSIZE) {
2024                        return -ENXIO;
2025                }
2026
2027                /* Now copy the data to the card. */
2028
2029                buf = memdup_user(ifr->ifr_data + sizeof(struct fstioc_write),
2030                                  wrthdr.size);
2031                if (IS_ERR(buf))
2032                        return PTR_ERR(buf);
2033
2034                memcpy_toio(card->mem + wrthdr.offset, buf, wrthdr.size);
2035                kfree(buf);
2036
2037                /* Writes to the memory of a card in the reset state constitute
2038                 * a download
2039                 */
2040                if (card->state == FST_RESET) {
2041                        card->state = FST_DOWNLOAD;
2042                }
2043                return 0;
2044
2045        case FSTGETCONF:
2046
2047                /* If card has just been started check the shared memory config
2048                 * version and marker
2049                 */
2050                if (card->state == FST_STARTING) {
2051                        check_started_ok(card);
2052
2053                        /* If everything checked out enable card interrupts */
2054                        if (card->state == FST_RUNNING) {
2055                                spin_lock_irqsave(&card->card_lock, flags);
2056                                fst_enable_intr(card);
2057                                FST_WRB(card, interruptHandshake, 0xEE);
2058                                spin_unlock_irqrestore(&card->card_lock, flags);
2059                        }
2060                }
2061
2062                if (ifr->ifr_data == NULL) {
2063                        return -EINVAL;
2064                }
2065
2066                gather_conf_info(card, port, &info);
2067
2068                if (copy_to_user(ifr->ifr_data, &info, sizeof (info))) {
2069                        return -EFAULT;
2070                }
2071                return 0;
2072
2073        case FSTSETCONF:
2074
2075                /*
2076                 * Most of the settings have been moved to the generic ioctls
2077                 * this just covers debug and board ident now
2078                 */
2079
2080                if (card->state != FST_RUNNING) {
2081                        pr_err("Attempt to configure card %d in non-running state (%d)\n",
2082                               card->card_no, card->state);
2083                        return -EIO;
2084                }
2085                if (copy_from_user(&info, ifr->ifr_data, sizeof (info))) {
2086                        return -EFAULT;
2087                }
2088
2089                return set_conf_from_info(card, port, &info);
2090
2091        case SIOCWANDEV:
2092                switch (ifr->ifr_settings.type) {
2093                case IF_GET_IFACE:
2094                        return fst_get_iface(card, port, ifr);
2095
2096                case IF_IFACE_SYNC_SERIAL:
2097                case IF_IFACE_V35:
2098                case IF_IFACE_V24:
2099                case IF_IFACE_X21:
2100                case IF_IFACE_X21D:
2101                case IF_IFACE_T1:
2102                case IF_IFACE_E1:
2103                        return fst_set_iface(card, port, ifr);
2104
2105                case IF_PROTO_RAW:
2106                        port->mode = FST_RAW;
2107                        return 0;
2108
2109                case IF_GET_PROTO:
2110                        if (port->mode == FST_RAW) {
2111                                ifr->ifr_settings.type = IF_PROTO_RAW;
2112                                return 0;
2113                        }
2114                        return hdlc_ioctl(dev, ifr, cmd);
2115
2116                default:
2117                        port->mode = FST_GEN_HDLC;
2118                        dbg(DBG_IOCTL, "Passing this type to hdlc %x\n",
2119                            ifr->ifr_settings.type);
2120                        return hdlc_ioctl(dev, ifr, cmd);
2121                }
2122
2123        default:
2124                /* Not one of ours. Pass through to HDLC package */
2125                return hdlc_ioctl(dev, ifr, cmd);
2126        }
2127}
2128
2129static void
2130fst_openport(struct fst_port_info *port)
2131{
2132        int signals;
2133
2134        /* Only init things if card is actually running. This allows open to
2135         * succeed for downloads etc.
2136         */
2137        if (port->card->state == FST_RUNNING) {
2138                if (port->run) {
2139                        dbg(DBG_OPEN, "open: found port already running\n");
2140
2141                        fst_issue_cmd(port, STOPPORT);
2142                        port->run = 0;
2143                }
2144
2145                fst_rx_config(port);
2146                fst_tx_config(port);
2147                fst_op_raise(port, OPSTS_RTS | OPSTS_DTR);
2148
2149                fst_issue_cmd(port, STARTPORT);
2150                port->run = 1;
2151
2152                signals = FST_RDL(port->card, v24DebouncedSts[port->index]);
2153                if (signals & (((port->hwif == X21) || (port->hwif == X21D))
2154                               ? IPSTS_INDICATE : IPSTS_DCD))
2155                        netif_carrier_on(port_to_dev(port));
2156                else
2157                        netif_carrier_off(port_to_dev(port));
2158
2159                port->txqe = 0;
2160                port->txqs = 0;
2161        }
2162
2163}
2164
2165static void
2166fst_closeport(struct fst_port_info *port)
2167{
2168        if (port->card->state == FST_RUNNING) {
2169                if (port->run) {
2170                        port->run = 0;
2171                        fst_op_lower(port, OPSTS_RTS | OPSTS_DTR);
2172
2173                        fst_issue_cmd(port, STOPPORT);
2174                } else {
2175                        dbg(DBG_OPEN, "close: port not running\n");
2176                }
2177        }
2178}
2179
2180static int
2181fst_open(struct net_device *dev)
2182{
2183        int err;
2184        struct fst_port_info *port;
2185
2186        port = dev_to_port(dev);
2187        if (!try_module_get(THIS_MODULE))
2188          return -EBUSY;
2189
2190        if (port->mode != FST_RAW) {
2191                err = hdlc_open(dev);
2192                if (err) {
2193                        module_put(THIS_MODULE);
2194                        return err;
2195                }
2196        }
2197
2198        fst_openport(port);
2199        netif_wake_queue(dev);
2200        return 0;
2201}
2202
2203static int
2204fst_close(struct net_device *dev)
2205{
2206        struct fst_port_info *port;
2207        struct fst_card_info *card;
2208        unsigned char tx_dma_done;
2209        unsigned char rx_dma_done;
2210
2211        port = dev_to_port(dev);
2212        card = port->card;
2213
2214        tx_dma_done = inb(card->pci_conf + DMACSR1);
2215        rx_dma_done = inb(card->pci_conf + DMACSR0);
2216        dbg(DBG_OPEN,
2217            "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n",
2218            card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress,
2219            rx_dma_done);
2220
2221        netif_stop_queue(dev);
2222        fst_closeport(dev_to_port(dev));
2223        if (port->mode != FST_RAW) {
2224                hdlc_close(dev);
2225        }
2226        module_put(THIS_MODULE);
2227        return 0;
2228}
2229
2230static int
2231fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity)
2232{
2233        /*
2234         * Setting currently fixed in FarSync card so we check and forget
2235         */
2236        if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT)
2237                return -EINVAL;
2238        return 0;
2239}
2240
2241static void
2242fst_tx_timeout(struct net_device *dev, unsigned int txqueue)
2243{
2244        struct fst_port_info *port;
2245        struct fst_card_info *card;
2246
2247        port = dev_to_port(dev);
2248        card = port->card;
2249        dev->stats.tx_errors++;
2250        dev->stats.tx_aborted_errors++;
2251        dbg(DBG_ASS, "Tx timeout card %d port %d\n",
2252            card->card_no, port->index);
2253        fst_issue_cmd(port, ABORTTX);
2254
2255        netif_trans_update(dev);
2256        netif_wake_queue(dev);
2257        port->start = 0;
2258}
2259
2260static netdev_tx_t
2261fst_start_xmit(struct sk_buff *skb, struct net_device *dev)
2262{
2263        struct fst_card_info *card;
2264        struct fst_port_info *port;
2265        unsigned long flags;
2266        int txq_length;
2267
2268        port = dev_to_port(dev);
2269        card = port->card;
2270        dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len);
2271
2272        /* Drop packet with error if we don't have carrier */
2273        if (!netif_carrier_ok(dev)) {
2274                dev_kfree_skb(skb);
2275                dev->stats.tx_errors++;
2276                dev->stats.tx_carrier_errors++;
2277                dbg(DBG_ASS,
2278                    "Tried to transmit but no carrier on card %d port %d\n",
2279                    card->card_no, port->index);
2280                return NETDEV_TX_OK;
2281        }
2282
2283        /* Drop it if it's too big! MTU failure ? */
2284        if (skb->len > LEN_TX_BUFFER) {
2285                dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len,
2286                    LEN_TX_BUFFER);
2287                dev_kfree_skb(skb);
2288                dev->stats.tx_errors++;
2289                return NETDEV_TX_OK;
2290        }
2291
2292        /*
2293         * We are always going to queue the packet
2294         * so that the bottom half is the only place we tx from
2295         * Check there is room in the port txq
2296         */
2297        spin_lock_irqsave(&card->card_lock, flags);
2298        if ((txq_length = port->txqe - port->txqs) < 0) {
2299                /*
2300                 * This is the case where the next free has wrapped but the
2301                 * last used hasn't
2302                 */
2303                txq_length = txq_length + FST_TXQ_DEPTH;
2304        }
2305        spin_unlock_irqrestore(&card->card_lock, flags);
2306        if (txq_length > fst_txq_high) {
2307                /*
2308                 * We have got enough buffers in the pipeline.  Ask the network
2309                 * layer to stop sending frames down
2310                 */
2311                netif_stop_queue(dev);
2312                port->start = 1;        /* I'm using this to signal stop sent up */
2313        }
2314
2315        if (txq_length == FST_TXQ_DEPTH - 1) {
2316                /*
2317                 * This shouldn't have happened but such is life
2318                 */
2319                dev_kfree_skb(skb);
2320                dev->stats.tx_errors++;
2321                dbg(DBG_ASS, "Tx queue overflow card %d port %d\n",
2322                    card->card_no, port->index);
2323                return NETDEV_TX_OK;
2324        }
2325
2326        /*
2327         * queue the buffer
2328         */
2329        spin_lock_irqsave(&card->card_lock, flags);
2330        port->txq[port->txqe] = skb;
2331        port->txqe++;
2332        if (port->txqe == FST_TXQ_DEPTH)
2333                port->txqe = 0;
2334        spin_unlock_irqrestore(&card->card_lock, flags);
2335
2336        /* Scehdule the bottom half which now does transmit processing */
2337        fst_q_work_item(&fst_work_txq, card->card_no);
2338        tasklet_schedule(&fst_tx_task);
2339
2340        return NETDEV_TX_OK;
2341}
2342
2343/*
2344 *      Card setup having checked hardware resources.
2345 *      Should be pretty bizarre if we get an error here (kernel memory
2346 *      exhaustion is one possibility). If we do see a problem we report it
2347 *      via a printk and leave the corresponding interface and all that follow
2348 *      disabled.
2349 */
2350static char *type_strings[] = {
2351        "no hardware",          /* Should never be seen */
2352        "FarSync T2P",
2353        "FarSync T4P",
2354        "FarSync T1U",
2355        "FarSync T2U",
2356        "FarSync T4U",
2357        "FarSync TE1"
2358};
2359
2360static int
2361fst_init_card(struct fst_card_info *card)
2362{
2363        int i;
2364        int err;
2365
2366        /* We're working on a number of ports based on the card ID. If the
2367         * firmware detects something different later (should never happen)
2368         * we'll have to revise it in some way then.
2369         */
2370        for (i = 0; i < card->nports; i++) {
2371                err = register_hdlc_device(card->ports[i].dev);
2372                if (err < 0) {
2373                        pr_err("Cannot register HDLC device for port %d (errno %d)\n",
2374                                i, -err);
2375                        while (i--)
2376                                unregister_hdlc_device(card->ports[i].dev);
2377                        return err;
2378                }
2379        }
2380
2381        pr_info("%s-%s: %s IRQ%d, %d ports\n",
2382                port_to_dev(&card->ports[0])->name,
2383                port_to_dev(&card->ports[card->nports - 1])->name,
2384                type_strings[card->type], card->irq, card->nports);
2385        return 0;
2386}
2387
2388static const struct net_device_ops fst_ops = {
2389        .ndo_open       = fst_open,
2390        .ndo_stop       = fst_close,
2391        .ndo_start_xmit = hdlc_start_xmit,
2392        .ndo_do_ioctl   = fst_ioctl,
2393        .ndo_tx_timeout = fst_tx_timeout,
2394};
2395
2396/*
2397 *      Initialise card when detected.
2398 *      Returns 0 to indicate success, or errno otherwise.
2399 */
2400static int
2401fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2402{
2403        static int no_of_cards_added = 0;
2404        struct fst_card_info *card;
2405        int err = 0;
2406        int i;
2407
2408        printk_once(KERN_INFO
2409                    pr_fmt("FarSync WAN driver " FST_USER_VERSION
2410                           " (c) 2001-2004 FarSite Communications Ltd.\n"));
2411#if FST_DEBUG
2412        dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask);
2413#endif
2414        /*
2415         * We are going to be clever and allow certain cards not to be
2416         * configured.  An exclude list can be provided in /etc/modules.conf
2417         */
2418        if (fst_excluded_cards != 0) {
2419                /*
2420                 * There are cards to exclude
2421                 *
2422                 */
2423                for (i = 0; i < fst_excluded_cards; i++) {
2424                        if ((pdev->devfn) >> 3 == fst_excluded_list[i]) {
2425                                pr_info("FarSync PCI device %d not assigned\n",
2426                                        (pdev->devfn) >> 3);
2427                                return -EBUSY;
2428                        }
2429                }
2430        }
2431
2432        /* Allocate driver private data */
2433        card = kzalloc(sizeof(struct fst_card_info), GFP_KERNEL);
2434        if (card == NULL)
2435                return -ENOMEM;
2436
2437        /* Try to enable the device */
2438        if ((err = pci_enable_device(pdev)) != 0) {
2439                pr_err("Failed to enable card. Err %d\n", -err);
2440                goto enable_fail;
2441        }
2442
2443        if ((err = pci_request_regions(pdev, "FarSync")) !=0) {
2444                pr_err("Failed to allocate regions. Err %d\n", -err);
2445                goto regions_fail;
2446        }
2447
2448        /* Get virtual addresses of memory regions */
2449        card->pci_conf = pci_resource_start(pdev, 1);
2450        card->phys_mem = pci_resource_start(pdev, 2);
2451        card->phys_ctlmem = pci_resource_start(pdev, 3);
2452        if ((card->mem = ioremap(card->phys_mem, FST_MEMSIZE)) == NULL) {
2453                pr_err("Physical memory remap failed\n");
2454                err = -ENODEV;
2455                goto ioremap_physmem_fail;
2456        }
2457        if ((card->ctlmem = ioremap(card->phys_ctlmem, 0x10)) == NULL) {
2458                pr_err("Control memory remap failed\n");
2459                err = -ENODEV;
2460                goto ioremap_ctlmem_fail;
2461        }
2462        dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem);
2463
2464        /* Register the interrupt handler */
2465        if (request_irq(pdev->irq, fst_intr, IRQF_SHARED, FST_DEV_NAME, card)) {
2466                pr_err("Unable to register interrupt %d\n", card->irq);
2467                err = -ENODEV;
2468                goto irq_fail;
2469        }
2470
2471        /* Record info we need */
2472        card->irq = pdev->irq;
2473        card->type = ent->driver_data;
2474        card->family = ((ent->driver_data == FST_TYPE_T2P) ||
2475                        (ent->driver_data == FST_TYPE_T4P))
2476            ? FST_FAMILY_TXP : FST_FAMILY_TXU;
2477        if ((ent->driver_data == FST_TYPE_T1U) ||
2478            (ent->driver_data == FST_TYPE_TE1))
2479                card->nports = 1;
2480        else
2481                card->nports = ((ent->driver_data == FST_TYPE_T2P) ||
2482                                (ent->driver_data == FST_TYPE_T2U)) ? 2 : 4;
2483
2484        card->state = FST_UNINIT;
2485        spin_lock_init ( &card->card_lock );
2486
2487        for ( i = 0 ; i < card->nports ; i++ ) {
2488                struct net_device *dev = alloc_hdlcdev(&card->ports[i]);
2489                hdlc_device *hdlc;
2490                if (!dev) {
2491                        while (i--)
2492                                free_netdev(card->ports[i].dev);
2493                        pr_err("FarSync: out of memory\n");
2494                        err = -ENOMEM;
2495                        goto hdlcdev_fail;
2496                }
2497                card->ports[i].dev    = dev;
2498                card->ports[i].card   = card;
2499                card->ports[i].index  = i;
2500                card->ports[i].run    = 0;
2501
2502                hdlc = dev_to_hdlc(dev);
2503
2504                /* Fill in the net device info */
2505                /* Since this is a PCI setup this is purely
2506                 * informational. Give them the buffer addresses
2507                 * and basic card I/O.
2508                 */
2509                dev->mem_start   = card->phys_mem
2510                                 + BUF_OFFSET ( txBuffer[i][0][0]);
2511                dev->mem_end     = card->phys_mem
2512                                 + BUF_OFFSET ( txBuffer[i][NUM_TX_BUFFER - 1][LEN_RX_BUFFER - 1]);
2513                dev->base_addr   = card->pci_conf;
2514                dev->irq         = card->irq;
2515
2516                dev->netdev_ops = &fst_ops;
2517                dev->tx_queue_len = FST_TX_QUEUE_LEN;
2518                dev->watchdog_timeo = FST_TX_TIMEOUT;
2519                hdlc->attach = fst_attach;
2520                hdlc->xmit   = fst_start_xmit;
2521        }
2522
2523        card->device = pdev;
2524
2525        dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type,
2526            card->nports, card->irq);
2527        dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n",
2528            card->pci_conf, card->phys_mem, card->phys_ctlmem);
2529
2530        /* Reset the card's processor */
2531        fst_cpureset(card);
2532        card->state = FST_RESET;
2533
2534        /* Initialise DMA (if required) */
2535        fst_init_dma(card);
2536
2537        /* Record driver data for later use */
2538        pci_set_drvdata(pdev, card);
2539
2540        /* Remainder of card setup */
2541        if (no_of_cards_added >= FST_MAX_CARDS) {
2542                pr_err("FarSync: too many cards\n");
2543                err = -ENOMEM;
2544                goto card_array_fail;
2545        }
2546        fst_card_array[no_of_cards_added] = card;
2547        card->card_no = no_of_cards_added++;    /* Record instance and bump it */
2548        err = fst_init_card(card);
2549        if (err)
2550                goto init_card_fail;
2551        if (card->family == FST_FAMILY_TXU) {
2552                /*
2553                 * Allocate a dma buffer for transmit and receives
2554                 */
2555                card->rx_dma_handle_host =
2556                    dma_alloc_coherent(&card->device->dev, FST_MAX_MTU,
2557                                       &card->rx_dma_handle_card, GFP_KERNEL);
2558                if (card->rx_dma_handle_host == NULL) {
2559                        pr_err("Could not allocate rx dma buffer\n");
2560                        err = -ENOMEM;
2561                        goto rx_dma_fail;
2562                }
2563                card->tx_dma_handle_host =
2564                    dma_alloc_coherent(&card->device->dev, FST_MAX_MTU,
2565                                       &card->tx_dma_handle_card, GFP_KERNEL);
2566                if (card->tx_dma_handle_host == NULL) {
2567                        pr_err("Could not allocate tx dma buffer\n");
2568                        err = -ENOMEM;
2569                        goto tx_dma_fail;
2570                }
2571        }
2572        return 0;               /* Success */
2573
2574tx_dma_fail:
2575        dma_free_coherent(&card->device->dev, FST_MAX_MTU,
2576                          card->rx_dma_handle_host, card->rx_dma_handle_card);
2577rx_dma_fail:
2578        fst_disable_intr(card);
2579        for (i = 0 ; i < card->nports ; i++)
2580                unregister_hdlc_device(card->ports[i].dev);
2581init_card_fail:
2582        fst_card_array[card->card_no] = NULL;
2583card_array_fail:
2584        for (i = 0 ; i < card->nports ; i++)
2585                free_netdev(card->ports[i].dev);
2586hdlcdev_fail:
2587        free_irq(card->irq, card);
2588irq_fail:
2589        iounmap(card->ctlmem);
2590ioremap_ctlmem_fail:
2591        iounmap(card->mem);
2592ioremap_physmem_fail:
2593        pci_release_regions(pdev);
2594regions_fail:
2595        pci_disable_device(pdev);
2596enable_fail:
2597        kfree(card);
2598        return err;
2599}
2600
2601/*
2602 *      Cleanup and close down a card
2603 */
2604static void
2605fst_remove_one(struct pci_dev *pdev)
2606{
2607        struct fst_card_info *card;
2608        int i;
2609
2610        card = pci_get_drvdata(pdev);
2611
2612        for (i = 0; i < card->nports; i++) {
2613                struct net_device *dev = port_to_dev(&card->ports[i]);
2614                unregister_hdlc_device(dev);
2615        }
2616
2617        fst_disable_intr(card);
2618        free_irq(card->irq, card);
2619
2620        iounmap(card->ctlmem);
2621        iounmap(card->mem);
2622        pci_release_regions(pdev);
2623        if (card->family == FST_FAMILY_TXU) {
2624                /*
2625                 * Free dma buffers
2626                 */
2627                dma_free_coherent(&card->device->dev, FST_MAX_MTU,
2628                                  card->rx_dma_handle_host,
2629                                  card->rx_dma_handle_card);
2630                dma_free_coherent(&card->device->dev, FST_MAX_MTU,
2631                                  card->tx_dma_handle_host,
2632                                  card->tx_dma_handle_card);
2633        }
2634        fst_card_array[card->card_no] = NULL;
2635}
2636
2637static struct pci_driver fst_driver = {
2638        .name           = FST_NAME,
2639        .id_table       = fst_pci_dev_id,
2640        .probe          = fst_add_one,
2641        .remove         = fst_remove_one,
2642};
2643
2644static int __init
2645fst_init(void)
2646{
2647        int i;
2648
2649        for (i = 0; i < FST_MAX_CARDS; i++)
2650                fst_card_array[i] = NULL;
2651        spin_lock_init(&fst_work_q_lock);
2652        return pci_register_driver(&fst_driver);
2653}
2654
2655static void __exit
2656fst_cleanup_module(void)
2657{
2658        pr_info("FarSync WAN driver unloading\n");
2659        pci_unregister_driver(&fst_driver);
2660}
2661
2662module_init(fst_init);
2663module_exit(fst_cleanup_module);
2664