linux/drivers/net/wan/z85230.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *
   4 *      (c) Copyright 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
   5 *      (c) Copyright 2000, 2001 Red Hat Inc
   6 *
   7 *      Development of this driver was funded by Equiinet Ltd
   8 *                      http://www.equiinet.com
   9 *
  10 *      ChangeLog:
  11 *
  12 *      Asynchronous mode dropped for 2.2. For 2.5 we will attempt the
  13 *      unification of all the Z85x30 asynchronous drivers for real.
  14 *
  15 *      DMA now uses get_free_page as kmalloc buffers may span a 64K 
  16 *      boundary.
  17 *
  18 *      Modified for SMP safety and SMP locking by Alan Cox
  19 *                                      <alan@lxorguk.ukuu.org.uk>
  20 *
  21 *      Performance
  22 *
  23 *      Z85230:
  24 *      Non DMA you want a 486DX50 or better to do 64Kbits. 9600 baud
  25 *      X.25 is not unrealistic on all machines. DMA mode can in theory
  26 *      handle T1/E1 quite nicely. In practice the limit seems to be about
  27 *      512Kbit->1Mbit depending on motherboard.
  28 *
  29 *      Z85C30:
  30 *      64K will take DMA, 9600 baud X.25 should be ok.
  31 *
  32 *      Z8530:
  33 *      Synchronous mode without DMA is unlikely to pass about 2400 baud.
  34 */
  35
  36#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  37
  38#include <linux/module.h>
  39#include <linux/kernel.h>
  40#include <linux/mm.h>
  41#include <linux/net.h>
  42#include <linux/skbuff.h>
  43#include <linux/netdevice.h>
  44#include <linux/if_arp.h>
  45#include <linux/delay.h>
  46#include <linux/hdlc.h>
  47#include <linux/ioport.h>
  48#include <linux/init.h>
  49#include <linux/gfp.h>
  50#include <asm/dma.h>
  51#include <asm/io.h>
  52#define RT_LOCK
  53#define RT_UNLOCK
  54#include <linux/spinlock.h>
  55
  56#include "z85230.h"
  57
  58
  59/**
  60 *      z8530_read_port - Architecture specific interface function
  61 *      @p: port to read
  62 *
  63 *      Provided port access methods. The Comtrol SV11 requires no delays
  64 *      between accesses and uses PC I/O. Some drivers may need a 5uS delay
  65 *      
  66 *      In the longer term this should become an architecture specific
  67 *      section so that this can become a generic driver interface for all
  68 *      platforms. For now we only handle PC I/O ports with or without the
  69 *      dread 5uS sanity delay.
  70 *
  71 *      The caller must hold sufficient locks to avoid violating the horrible
  72 *      5uS delay rule.
  73 */
  74
  75static inline int z8530_read_port(unsigned long p)
  76{
  77        u8 r=inb(Z8530_PORT_OF(p));
  78        if(p&Z8530_PORT_SLEEP)  /* gcc should figure this out efficiently ! */
  79                udelay(5);
  80        return r;
  81}
  82
  83/**
  84 *      z8530_write_port - Architecture specific interface function
  85 *      @p: port to write
  86 *      @d: value to write
  87 *
  88 *      Write a value to a port with delays if need be. Note that the
  89 *      caller must hold locks to avoid read/writes from other contexts
  90 *      violating the 5uS rule
  91 *
  92 *      In the longer term this should become an architecture specific
  93 *      section so that this can become a generic driver interface for all
  94 *      platforms. For now we only handle PC I/O ports with or without the
  95 *      dread 5uS sanity delay.
  96 */
  97
  98
  99static inline void z8530_write_port(unsigned long p, u8 d)
 100{
 101        outb(d,Z8530_PORT_OF(p));
 102        if(p&Z8530_PORT_SLEEP)
 103                udelay(5);
 104}
 105
 106
 107
 108static void z8530_rx_done(struct z8530_channel *c);
 109static void z8530_tx_done(struct z8530_channel *c);
 110
 111
 112/**
 113 *      read_zsreg - Read a register from a Z85230 
 114 *      @c: Z8530 channel to read from (2 per chip)
 115 *      @reg: Register to read
 116 *      FIXME: Use a spinlock.
 117 *      
 118 *      Most of the Z8530 registers are indexed off the control registers.
 119 *      A read is done by writing to the control register and reading the
 120 *      register back.  The caller must hold the lock
 121 */
 122 
 123static inline u8 read_zsreg(struct z8530_channel *c, u8 reg)
 124{
 125        if(reg)
 126                z8530_write_port(c->ctrlio, reg);
 127        return z8530_read_port(c->ctrlio);
 128}
 129
 130/**
 131 *      read_zsdata - Read the data port of a Z8530 channel
 132 *      @c: The Z8530 channel to read the data port from
 133 *
 134 *      The data port provides fast access to some things. We still
 135 *      have all the 5uS delays to worry about.
 136 */
 137
 138static inline u8 read_zsdata(struct z8530_channel *c)
 139{
 140        u8 r;
 141        r=z8530_read_port(c->dataio);
 142        return r;
 143}
 144
 145/**
 146 *      write_zsreg - Write to a Z8530 channel register
 147 *      @c: The Z8530 channel
 148 *      @reg: Register number
 149 *      @val: Value to write
 150 *
 151 *      Write a value to an indexed register. The caller must hold the lock
 152 *      to honour the irritating delay rules. We know about register 0
 153 *      being fast to access.
 154 *
 155 *      Assumes c->lock is held.
 156 */
 157static inline void write_zsreg(struct z8530_channel *c, u8 reg, u8 val)
 158{
 159        if(reg)
 160                z8530_write_port(c->ctrlio, reg);
 161        z8530_write_port(c->ctrlio, val);
 162
 163}
 164
 165/**
 166 *      write_zsctrl - Write to a Z8530 control register
 167 *      @c: The Z8530 channel
 168 *      @val: Value to write
 169 *
 170 *      Write directly to the control register on the Z8530
 171 */
 172
 173static inline void write_zsctrl(struct z8530_channel *c, u8 val)
 174{
 175        z8530_write_port(c->ctrlio, val);
 176}
 177
 178/**
 179 *      write_zsdata - Write to a Z8530 control register
 180 *      @c: The Z8530 channel
 181 *      @val: Value to write
 182 *
 183 *      Write directly to the data register on the Z8530
 184 */
 185
 186
 187static inline void write_zsdata(struct z8530_channel *c, u8 val)
 188{
 189        z8530_write_port(c->dataio, val);
 190}
 191
 192/*
 193 *      Register loading parameters for a dead port
 194 */
 195 
 196u8 z8530_dead_port[]=
 197{
 198        255
 199};
 200
 201EXPORT_SYMBOL(z8530_dead_port);
 202
 203/*
 204 *      Register loading parameters for currently supported circuit types
 205 */
 206
 207
 208/*
 209 *      Data clocked by telco end. This is the correct data for the UK
 210 *      "kilostream" service, and most other similar services.
 211 */
 212 
 213u8 z8530_hdlc_kilostream[]=
 214{
 215        4,      SYNC_ENAB|SDLC|X1CLK,
 216        2,      0,      /* No vector */
 217        1,      0,
 218        3,      ENT_HM|RxCRC_ENAB|Rx8,
 219        5,      TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
 220        9,      0,              /* Disable interrupts */
 221        6,      0xFF,
 222        7,      FLAG,
 223        10,     ABUNDER|NRZ|CRCPS,/*MARKIDLE ??*/
 224        11,     TCTRxCP,
 225        14,     DISDPLL,
 226        15,     DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
 227        1,      EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
 228        9,      NV|MIE|NORESET,
 229        255
 230};
 231
 232EXPORT_SYMBOL(z8530_hdlc_kilostream);
 233
 234/*
 235 *      As above but for enhanced chips.
 236 */
 237 
 238u8 z8530_hdlc_kilostream_85230[]=
 239{
 240        4,      SYNC_ENAB|SDLC|X1CLK,
 241        2,      0,      /* No vector */
 242        1,      0,
 243        3,      ENT_HM|RxCRC_ENAB|Rx8,
 244        5,      TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
 245        9,      0,              /* Disable interrupts */
 246        6,      0xFF,
 247        7,      FLAG,
 248        10,     ABUNDER|NRZ|CRCPS,      /* MARKIDLE?? */
 249        11,     TCTRxCP,
 250        14,     DISDPLL,
 251        15,     DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
 252        1,      EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
 253        9,      NV|MIE|NORESET,
 254        23,     3,              /* Extended mode AUTO TX and EOM*/
 255        
 256        255
 257};
 258
 259EXPORT_SYMBOL(z8530_hdlc_kilostream_85230);
 260
 261/**
 262 *      z8530_flush_fifo - Flush on chip RX FIFO
 263 *      @c: Channel to flush
 264 *
 265 *      Flush the receive FIFO. There is no specific option for this, we 
 266 *      blindly read bytes and discard them. Reading when there is no data
 267 *      is harmless. The 8530 has a 4 byte FIFO, the 85230 has 8 bytes.
 268 *      
 269 *      All locking is handled for the caller. On return data may still be
 270 *      present if it arrived during the flush.
 271 */
 272 
 273static void z8530_flush_fifo(struct z8530_channel *c)
 274{
 275        read_zsreg(c, R1);
 276        read_zsreg(c, R1);
 277        read_zsreg(c, R1);
 278        read_zsreg(c, R1);
 279        if(c->dev->type==Z85230)
 280        {
 281                read_zsreg(c, R1);
 282                read_zsreg(c, R1);
 283                read_zsreg(c, R1);
 284                read_zsreg(c, R1);
 285        }
 286}       
 287
 288/**
 289 *      z8530_rtsdtr - Control the outgoing DTS/RTS line
 290 *      @c: The Z8530 channel to control;
 291 *      @set: 1 to set, 0 to clear
 292 *
 293 *      Sets or clears DTR/RTS on the requested line. All locking is handled
 294 *      by the caller. For now we assume all boards use the actual RTS/DTR
 295 *      on the chip. Apparently one or two don't. We'll scream about them
 296 *      later.
 297 */
 298
 299static void z8530_rtsdtr(struct z8530_channel *c, int set)
 300{
 301        if (set)
 302                c->regs[5] |= (RTS | DTR);
 303        else
 304                c->regs[5] &= ~(RTS | DTR);
 305        write_zsreg(c, R5, c->regs[5]);
 306}
 307
 308/**
 309 *      z8530_rx - Handle a PIO receive event
 310 *      @c: Z8530 channel to process
 311 *
 312 *      Receive handler for receiving in PIO mode. This is much like the 
 313 *      async one but not quite the same or as complex
 314 *
 315 *      Note: Its intended that this handler can easily be separated from
 316 *      the main code to run realtime. That'll be needed for some machines
 317 *      (eg to ever clock 64kbits on a sparc ;)).
 318 *
 319 *      The RT_LOCK macros don't do anything now. Keep the code covered
 320 *      by them as short as possible in all circumstances - clocks cost
 321 *      baud. The interrupt handler is assumed to be atomic w.r.t. to
 322 *      other code - this is true in the RT case too.
 323 *
 324 *      We only cover the sync cases for this. If you want 2Mbit async
 325 *      do it yourself but consider medical assistance first. This non DMA 
 326 *      synchronous mode is portable code. The DMA mode assumes PCI like 
 327 *      ISA DMA
 328 *
 329 *      Called with the device lock held
 330 */
 331 
 332static void z8530_rx(struct z8530_channel *c)
 333{
 334        u8 ch,stat;
 335
 336        while(1)
 337        {
 338                /* FIFO empty ? */
 339                if(!(read_zsreg(c, R0)&1))
 340                        break;
 341                ch=read_zsdata(c);
 342                stat=read_zsreg(c, R1);
 343        
 344                /*
 345                 *      Overrun ?
 346                 */
 347                if(c->count < c->max)
 348                {
 349                        *c->dptr++=ch;
 350                        c->count++;
 351                }
 352
 353                if(stat&END_FR)
 354                {
 355                
 356                        /*
 357                         *      Error ?
 358                         */
 359                        if(stat&(Rx_OVR|CRC_ERR))
 360                        {
 361                                /* Rewind the buffer and return */
 362                                if(c->skb)
 363                                        c->dptr=c->skb->data;
 364                                c->count=0;
 365                                if(stat&Rx_OVR)
 366                                {
 367                                        pr_warn("%s: overrun\n", c->dev->name);
 368                                        c->rx_overrun++;
 369                                }
 370                                if(stat&CRC_ERR)
 371                                {
 372                                        c->rx_crc_err++;
 373                                        /* printk("crc error\n"); */
 374                                }
 375                                /* Shove the frame upstream */
 376                        }
 377                        else
 378                        {
 379                                /*
 380                                 *      Drop the lock for RX processing, or
 381                                 *      there are deadlocks
 382                                 */
 383                                z8530_rx_done(c);
 384                                write_zsctrl(c, RES_Rx_CRC);
 385                        }
 386                }
 387        }
 388        /*
 389         *      Clear irq
 390         */
 391        write_zsctrl(c, ERR_RES);
 392        write_zsctrl(c, RES_H_IUS);
 393}
 394
 395
 396/**
 397 *      z8530_tx - Handle a PIO transmit event
 398 *      @c: Z8530 channel to process
 399 *
 400 *      Z8530 transmit interrupt handler for the PIO mode. The basic
 401 *      idea is to attempt to keep the FIFO fed. We fill as many bytes
 402 *      in as possible, its quite possible that we won't keep up with the
 403 *      data rate otherwise.
 404 */
 405 
 406static void z8530_tx(struct z8530_channel *c)
 407{
 408        while(c->txcount) {
 409                /* FIFO full ? */
 410                if(!(read_zsreg(c, R0)&4))
 411                        return;
 412                c->txcount--;
 413                /*
 414                 *      Shovel out the byte
 415                 */
 416                write_zsreg(c, R8, *c->tx_ptr++);
 417                write_zsctrl(c, RES_H_IUS);
 418                /* We are about to underflow */
 419                if(c->txcount==0)
 420                {
 421                        write_zsctrl(c, RES_EOM_L);
 422                        write_zsreg(c, R10, c->regs[10]&~ABUNDER);
 423                }
 424        }
 425
 426        
 427        /*
 428         *      End of frame TX - fire another one
 429         */
 430         
 431        write_zsctrl(c, RES_Tx_P);
 432
 433        z8530_tx_done(c);        
 434        write_zsctrl(c, RES_H_IUS);
 435}
 436
 437/**
 438 *      z8530_status - Handle a PIO status exception
 439 *      @chan: Z8530 channel to process
 440 *
 441 *      A status event occurred in PIO synchronous mode. There are several
 442 *      reasons the chip will bother us here. A transmit underrun means we
 443 *      failed to feed the chip fast enough and just broke a packet. A DCD
 444 *      change is a line up or down.
 445 */
 446
 447static void z8530_status(struct z8530_channel *chan)
 448{
 449        u8 status, altered;
 450
 451        status = read_zsreg(chan, R0);
 452        altered = chan->status ^ status;
 453
 454        chan->status = status;
 455
 456        if (status & TxEOM) {
 457/*              printk("%s: Tx underrun.\n", chan->dev->name); */
 458                chan->netdevice->stats.tx_fifo_errors++;
 459                write_zsctrl(chan, ERR_RES);
 460                z8530_tx_done(chan);
 461        }
 462
 463        if (altered & chan->dcdcheck)
 464        {
 465                if (status & chan->dcdcheck) {
 466                        pr_info("%s: DCD raised\n", chan->dev->name);
 467                        write_zsreg(chan, R3, chan->regs[3] | RxENABLE);
 468                        if (chan->netdevice)
 469                                netif_carrier_on(chan->netdevice);
 470                } else {
 471                        pr_info("%s: DCD lost\n", chan->dev->name);
 472                        write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE);
 473                        z8530_flush_fifo(chan);
 474                        if (chan->netdevice)
 475                                netif_carrier_off(chan->netdevice);
 476                }
 477
 478        }
 479        write_zsctrl(chan, RES_EXT_INT);
 480        write_zsctrl(chan, RES_H_IUS);
 481}
 482
 483struct z8530_irqhandler z8530_sync = {
 484        .rx = z8530_rx,
 485        .tx = z8530_tx,
 486        .status = z8530_status,
 487};
 488
 489EXPORT_SYMBOL(z8530_sync);
 490
 491/**
 492 *      z8530_dma_rx - Handle a DMA RX event
 493 *      @chan: Channel to handle
 494 *
 495 *      Non bus mastering DMA interfaces for the Z8x30 devices. This
 496 *      is really pretty PC specific. The DMA mode means that most receive
 497 *      events are handled by the DMA hardware. We get a kick here only if
 498 *      a frame ended.
 499 */
 500 
 501static void z8530_dma_rx(struct z8530_channel *chan)
 502{
 503        if(chan->rxdma_on)
 504        {
 505                /* Special condition check only */
 506                u8 status;
 507        
 508                read_zsreg(chan, R7);
 509                read_zsreg(chan, R6);
 510                
 511                status=read_zsreg(chan, R1);
 512        
 513                if(status&END_FR)
 514                {
 515                        z8530_rx_done(chan);    /* Fire up the next one */
 516                }               
 517                write_zsctrl(chan, ERR_RES);
 518                write_zsctrl(chan, RES_H_IUS);
 519        }
 520        else
 521        {
 522                /* DMA is off right now, drain the slow way */
 523                z8530_rx(chan);
 524        }       
 525}
 526
 527/**
 528 *      z8530_dma_tx - Handle a DMA TX event
 529 *      @chan:  The Z8530 channel to handle
 530 *
 531 *      We have received an interrupt while doing DMA transmissions. It
 532 *      shouldn't happen. Scream loudly if it does.
 533 */
 534 
 535static void z8530_dma_tx(struct z8530_channel *chan)
 536{
 537        if(!chan->dma_tx)
 538        {
 539                pr_warn("Hey who turned the DMA off?\n");
 540                z8530_tx(chan);
 541                return;
 542        }
 543        /* This shouldn't occur in DMA mode */
 544        pr_err("DMA tx - bogus event!\n");
 545        z8530_tx(chan);
 546}
 547
 548/**
 549 *      z8530_dma_status - Handle a DMA status exception
 550 *      @chan: Z8530 channel to process
 551 *      
 552 *      A status event occurred on the Z8530. We receive these for two reasons
 553 *      when in DMA mode. Firstly if we finished a packet transfer we get one
 554 *      and kick the next packet out. Secondly we may see a DCD change.
 555 *
 556 */
 557 
 558static void z8530_dma_status(struct z8530_channel *chan)
 559{
 560        u8 status, altered;
 561
 562        status=read_zsreg(chan, R0);
 563        altered=chan->status^status;
 564        
 565        chan->status=status;
 566
 567
 568        if(chan->dma_tx)
 569        {
 570                if(status&TxEOM)
 571                {
 572                        unsigned long flags;
 573        
 574                        flags=claim_dma_lock();
 575                        disable_dma(chan->txdma);
 576                        clear_dma_ff(chan->txdma);      
 577                        chan->txdma_on=0;
 578                        release_dma_lock(flags);
 579                        z8530_tx_done(chan);
 580                }
 581        }
 582
 583        if (altered & chan->dcdcheck)
 584        {
 585                if (status & chan->dcdcheck) {
 586                        pr_info("%s: DCD raised\n", chan->dev->name);
 587                        write_zsreg(chan, R3, chan->regs[3] | RxENABLE);
 588                        if (chan->netdevice)
 589                                netif_carrier_on(chan->netdevice);
 590                } else {
 591                        pr_info("%s: DCD lost\n", chan->dev->name);
 592                        write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE);
 593                        z8530_flush_fifo(chan);
 594                        if (chan->netdevice)
 595                                netif_carrier_off(chan->netdevice);
 596                }
 597        }
 598
 599        write_zsctrl(chan, RES_EXT_INT);
 600        write_zsctrl(chan, RES_H_IUS);
 601}
 602
 603static struct z8530_irqhandler z8530_dma_sync = {
 604        .rx = z8530_dma_rx,
 605        .tx = z8530_dma_tx,
 606        .status = z8530_dma_status,
 607};
 608
 609static struct z8530_irqhandler z8530_txdma_sync = {
 610        .rx = z8530_rx,
 611        .tx = z8530_dma_tx,
 612        .status = z8530_dma_status,
 613};
 614
 615/**
 616 *      z8530_rx_clear - Handle RX events from a stopped chip
 617 *      @c: Z8530 channel to shut up
 618 *
 619 *      Receive interrupt vectors for a Z8530 that is in 'parked' mode.
 620 *      For machines with PCI Z85x30 cards, or level triggered interrupts
 621 *      (eg the MacII) we must clear the interrupt cause or die.
 622 */
 623
 624
 625static void z8530_rx_clear(struct z8530_channel *c)
 626{
 627        /*
 628         *      Data and status bytes
 629         */
 630        u8 stat;
 631
 632        read_zsdata(c);
 633        stat=read_zsreg(c, R1);
 634        
 635        if(stat&END_FR)
 636                write_zsctrl(c, RES_Rx_CRC);
 637        /*
 638         *      Clear irq
 639         */
 640        write_zsctrl(c, ERR_RES);
 641        write_zsctrl(c, RES_H_IUS);
 642}
 643
 644/**
 645 *      z8530_tx_clear - Handle TX events from a stopped chip
 646 *      @c: Z8530 channel to shut up
 647 *
 648 *      Transmit interrupt vectors for a Z8530 that is in 'parked' mode.
 649 *      For machines with PCI Z85x30 cards, or level triggered interrupts
 650 *      (eg the MacII) we must clear the interrupt cause or die.
 651 */
 652
 653static void z8530_tx_clear(struct z8530_channel *c)
 654{
 655        write_zsctrl(c, RES_Tx_P);
 656        write_zsctrl(c, RES_H_IUS);
 657}
 658
 659/**
 660 *      z8530_status_clear - Handle status events from a stopped chip
 661 *      @chan: Z8530 channel to shut up
 662 *
 663 *      Status interrupt vectors for a Z8530 that is in 'parked' mode.
 664 *      For machines with PCI Z85x30 cards, or level triggered interrupts
 665 *      (eg the MacII) we must clear the interrupt cause or die.
 666 */
 667
 668static void z8530_status_clear(struct z8530_channel *chan)
 669{
 670        u8 status=read_zsreg(chan, R0);
 671        if(status&TxEOM)
 672                write_zsctrl(chan, ERR_RES);
 673        write_zsctrl(chan, RES_EXT_INT);
 674        write_zsctrl(chan, RES_H_IUS);
 675}
 676
 677struct z8530_irqhandler z8530_nop = {
 678        .rx = z8530_rx_clear,
 679        .tx = z8530_tx_clear,
 680        .status = z8530_status_clear,
 681};
 682
 683
 684EXPORT_SYMBOL(z8530_nop);
 685
 686/**
 687 *      z8530_interrupt - Handle an interrupt from a Z8530
 688 *      @irq:   Interrupt number
 689 *      @dev_id: The Z8530 device that is interrupting.
 690 *
 691 *      A Z85[2]30 device has stuck its hand in the air for attention.
 692 *      We scan both the channels on the chip for events and then call
 693 *      the channel specific call backs for each channel that has events.
 694 *      We have to use callback functions because the two channels can be
 695 *      in different modes.
 696 *
 697 *      Locking is done for the handlers. Note that locking is done
 698 *      at the chip level (the 5uS delay issue is per chip not per
 699 *      channel). c->lock for both channels points to dev->lock
 700 */
 701
 702irqreturn_t z8530_interrupt(int irq, void *dev_id)
 703{
 704        struct z8530_dev *dev=dev_id;
 705        u8 intr;
 706        static volatile int locker=0;
 707        int work=0;
 708        struct z8530_irqhandler *irqs;
 709        
 710        if(locker)
 711        {
 712                pr_err("IRQ re-enter\n");
 713                return IRQ_NONE;
 714        }
 715        locker=1;
 716
 717        spin_lock(&dev->lock);
 718
 719        while(++work<5000)
 720        {
 721
 722                intr = read_zsreg(&dev->chanA, R3);
 723                if(!(intr & (CHARxIP|CHATxIP|CHAEXT|CHBRxIP|CHBTxIP|CHBEXT)))
 724                        break;
 725        
 726                /* This holds the IRQ status. On the 8530 you must read it from chan 
 727                   A even though it applies to the whole chip */
 728                
 729                /* Now walk the chip and see what it is wanting - it may be
 730                   an IRQ for someone else remember */
 731                   
 732                irqs=dev->chanA.irqs;
 733
 734                if(intr & (CHARxIP|CHATxIP|CHAEXT))
 735                {
 736                        if(intr&CHARxIP)
 737                                irqs->rx(&dev->chanA);
 738                        if(intr&CHATxIP)
 739                                irqs->tx(&dev->chanA);
 740                        if(intr&CHAEXT)
 741                                irqs->status(&dev->chanA);
 742                }
 743
 744                irqs=dev->chanB.irqs;
 745
 746                if(intr & (CHBRxIP|CHBTxIP|CHBEXT))
 747                {
 748                        if(intr&CHBRxIP)
 749                                irqs->rx(&dev->chanB);
 750                        if(intr&CHBTxIP)
 751                                irqs->tx(&dev->chanB);
 752                        if(intr&CHBEXT)
 753                                irqs->status(&dev->chanB);
 754                }
 755        }
 756        spin_unlock(&dev->lock);
 757        if(work==5000)
 758                pr_err("%s: interrupt jammed - abort(0x%X)!\n",
 759                       dev->name, intr);
 760        /* Ok all done */
 761        locker=0;
 762        return IRQ_HANDLED;
 763}
 764
 765EXPORT_SYMBOL(z8530_interrupt);
 766
 767static const u8 reg_init[16]=
 768{
 769        0,0,0,0,
 770        0,0,0,0,
 771        0,0,0,0,
 772        0x55,0,0,0
 773};
 774
 775
 776/**
 777 *      z8530_sync_open - Open a Z8530 channel for PIO
 778 *      @dev:   The network interface we are using
 779 *      @c:     The Z8530 channel to open in synchronous PIO mode
 780 *
 781 *      Switch a Z8530 into synchronous mode without DMA assist. We
 782 *      raise the RTS/DTR and commence network operation.
 783 */
 784 
 785int z8530_sync_open(struct net_device *dev, struct z8530_channel *c)
 786{
 787        unsigned long flags;
 788
 789        spin_lock_irqsave(c->lock, flags);
 790
 791        c->sync = 1;
 792        c->mtu = dev->mtu+64;
 793        c->count = 0;
 794        c->skb = NULL;
 795        c->skb2 = NULL;
 796        c->irqs = &z8530_sync;
 797
 798        /* This loads the double buffer up */
 799        z8530_rx_done(c);       /* Load the frame ring */
 800        z8530_rx_done(c);       /* Load the backup frame */
 801        z8530_rtsdtr(c,1);
 802        c->dma_tx = 0;
 803        c->regs[R1]|=TxINT_ENAB;
 804        write_zsreg(c, R1, c->regs[R1]);
 805        write_zsreg(c, R3, c->regs[R3]|RxENABLE);
 806
 807        spin_unlock_irqrestore(c->lock, flags);
 808        return 0;
 809}
 810
 811
 812EXPORT_SYMBOL(z8530_sync_open);
 813
 814/**
 815 *      z8530_sync_close - Close a PIO Z8530 channel
 816 *      @dev: Network device to close
 817 *      @c: Z8530 channel to disassociate and move to idle
 818 *
 819 *      Close down a Z8530 interface and switch its interrupt handlers
 820 *      to discard future events.
 821 */
 822 
 823int z8530_sync_close(struct net_device *dev, struct z8530_channel *c)
 824{
 825        u8 chk;
 826        unsigned long flags;
 827        
 828        spin_lock_irqsave(c->lock, flags);
 829        c->irqs = &z8530_nop;
 830        c->max = 0;
 831        c->sync = 0;
 832        
 833        chk=read_zsreg(c,R0);
 834        write_zsreg(c, R3, c->regs[R3]);
 835        z8530_rtsdtr(c,0);
 836
 837        spin_unlock_irqrestore(c->lock, flags);
 838        return 0;
 839}
 840
 841EXPORT_SYMBOL(z8530_sync_close);
 842
 843/**
 844 *      z8530_sync_dma_open - Open a Z8530 for DMA I/O
 845 *      @dev: The network device to attach
 846 *      @c: The Z8530 channel to configure in sync DMA mode.
 847 *
 848 *      Set up a Z85x30 device for synchronous DMA in both directions. Two
 849 *      ISA DMA channels must be available for this to work. We assume ISA
 850 *      DMA driven I/O and PC limits on access.
 851 */
 852 
 853int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c)
 854{
 855        unsigned long cflags, dflags;
 856        
 857        c->sync = 1;
 858        c->mtu = dev->mtu+64;
 859        c->count = 0;
 860        c->skb = NULL;
 861        c->skb2 = NULL;
 862        /*
 863         *      Load the DMA interfaces up
 864         */
 865        c->rxdma_on = 0;
 866        c->txdma_on = 0;
 867        
 868        /*
 869         *      Allocate the DMA flip buffers. Limit by page size.
 870         *      Everyone runs 1500 mtu or less on wan links so this
 871         *      should be fine.
 872         */
 873         
 874        if(c->mtu  > PAGE_SIZE/2)
 875                return -EMSGSIZE;
 876         
 877        c->rx_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
 878        if(c->rx_buf[0]==NULL)
 879                return -ENOBUFS;
 880        c->rx_buf[1]=c->rx_buf[0]+PAGE_SIZE/2;
 881        
 882        c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
 883        if(c->tx_dma_buf[0]==NULL)
 884        {
 885                free_page((unsigned long)c->rx_buf[0]);
 886                c->rx_buf[0]=NULL;
 887                return -ENOBUFS;
 888        }
 889        c->tx_dma_buf[1]=c->tx_dma_buf[0]+PAGE_SIZE/2;
 890
 891        c->tx_dma_used=0;
 892        c->dma_tx = 1;
 893        c->dma_num=0;
 894        c->dma_ready=1;
 895        
 896        /*
 897         *      Enable DMA control mode
 898         */
 899
 900        spin_lock_irqsave(c->lock, cflags);
 901         
 902        /*
 903         *      TX DMA via DIR/REQ
 904         */
 905         
 906        c->regs[R14]|= DTRREQ;
 907        write_zsreg(c, R14, c->regs[R14]);     
 908
 909        c->regs[R1]&= ~TxINT_ENAB;
 910        write_zsreg(c, R1, c->regs[R1]);
 911        
 912        /*
 913         *      RX DMA via W/Req
 914         */      
 915
 916        c->regs[R1]|= WT_FN_RDYFN;
 917        c->regs[R1]|= WT_RDY_RT;
 918        c->regs[R1]|= INT_ERR_Rx;
 919        c->regs[R1]&= ~TxINT_ENAB;
 920        write_zsreg(c, R1, c->regs[R1]);
 921        c->regs[R1]|= WT_RDY_ENAB;
 922        write_zsreg(c, R1, c->regs[R1]);            
 923        
 924        /*
 925         *      DMA interrupts
 926         */
 927         
 928        /*
 929         *      Set up the DMA configuration
 930         */     
 931         
 932        dflags=claim_dma_lock();
 933         
 934        disable_dma(c->rxdma);
 935        clear_dma_ff(c->rxdma);
 936        set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
 937        set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[0]));
 938        set_dma_count(c->rxdma, c->mtu);
 939        enable_dma(c->rxdma);
 940
 941        disable_dma(c->txdma);
 942        clear_dma_ff(c->txdma);
 943        set_dma_mode(c->txdma, DMA_MODE_WRITE);
 944        disable_dma(c->txdma);
 945        
 946        release_dma_lock(dflags);
 947        
 948        /*
 949         *      Select the DMA interrupt handlers
 950         */
 951
 952        c->rxdma_on = 1;
 953        c->txdma_on = 1;
 954        c->tx_dma_used = 1;
 955         
 956        c->irqs = &z8530_dma_sync;
 957        z8530_rtsdtr(c,1);
 958        write_zsreg(c, R3, c->regs[R3]|RxENABLE);
 959
 960        spin_unlock_irqrestore(c->lock, cflags);
 961        
 962        return 0;
 963}
 964
 965EXPORT_SYMBOL(z8530_sync_dma_open);
 966
 967/**
 968 *      z8530_sync_dma_close - Close down DMA I/O
 969 *      @dev: Network device to detach
 970 *      @c: Z8530 channel to move into discard mode
 971 *
 972 *      Shut down a DMA mode synchronous interface. Halt the DMA, and
 973 *      free the buffers.
 974 */
 975 
 976int z8530_sync_dma_close(struct net_device *dev, struct z8530_channel *c)
 977{
 978        u8 chk;
 979        unsigned long flags;
 980        
 981        c->irqs = &z8530_nop;
 982        c->max = 0;
 983        c->sync = 0;
 984        
 985        /*
 986         *      Disable the PC DMA channels
 987         */
 988        
 989        flags=claim_dma_lock(); 
 990        disable_dma(c->rxdma);
 991        clear_dma_ff(c->rxdma);
 992        
 993        c->rxdma_on = 0;
 994        
 995        disable_dma(c->txdma);
 996        clear_dma_ff(c->txdma);
 997        release_dma_lock(flags);
 998        
 999        c->txdma_on = 0;
1000        c->tx_dma_used = 0;
1001
1002        spin_lock_irqsave(c->lock, flags);
1003
1004        /*
1005         *      Disable DMA control mode
1006         */
1007         
1008        c->regs[R1]&= ~WT_RDY_ENAB;
1009        write_zsreg(c, R1, c->regs[R1]);            
1010        c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
1011        c->regs[R1]|= INT_ALL_Rx;
1012        write_zsreg(c, R1, c->regs[R1]);
1013        c->regs[R14]&= ~DTRREQ;
1014        write_zsreg(c, R14, c->regs[R14]);   
1015        
1016        if(c->rx_buf[0])
1017        {
1018                free_page((unsigned long)c->rx_buf[0]);
1019                c->rx_buf[0]=NULL;
1020        }
1021        if(c->tx_dma_buf[0])
1022        {
1023                free_page((unsigned  long)c->tx_dma_buf[0]);
1024                c->tx_dma_buf[0]=NULL;
1025        }
1026        chk=read_zsreg(c,R0);
1027        write_zsreg(c, R3, c->regs[R3]);
1028        z8530_rtsdtr(c,0);
1029
1030        spin_unlock_irqrestore(c->lock, flags);
1031
1032        return 0;
1033}
1034
1035EXPORT_SYMBOL(z8530_sync_dma_close);
1036
1037/**
1038 *      z8530_sync_txdma_open - Open a Z8530 for TX driven DMA
1039 *      @dev: The network device to attach
1040 *      @c: The Z8530 channel to configure in sync DMA mode.
1041 *
1042 *      Set up a Z85x30 device for synchronous DMA transmission. One
1043 *      ISA DMA channel must be available for this to work. The receive
1044 *      side is run in PIO mode, but then it has the bigger FIFO.
1045 */
1046
1047int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c)
1048{
1049        unsigned long cflags, dflags;
1050
1051        printk("Opening sync interface for TX-DMA\n");
1052        c->sync = 1;
1053        c->mtu = dev->mtu+64;
1054        c->count = 0;
1055        c->skb = NULL;
1056        c->skb2 = NULL;
1057        
1058        /*
1059         *      Allocate the DMA flip buffers. Limit by page size.
1060         *      Everyone runs 1500 mtu or less on wan links so this
1061         *      should be fine.
1062         */
1063         
1064        if(c->mtu  > PAGE_SIZE/2)
1065                return -EMSGSIZE;
1066         
1067        c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
1068        if(c->tx_dma_buf[0]==NULL)
1069                return -ENOBUFS;
1070
1071        c->tx_dma_buf[1] = c->tx_dma_buf[0] + PAGE_SIZE/2;
1072
1073
1074        spin_lock_irqsave(c->lock, cflags);
1075
1076        /*
1077         *      Load the PIO receive ring
1078         */
1079
1080        z8530_rx_done(c);
1081        z8530_rx_done(c);
1082
1083        /*
1084         *      Load the DMA interfaces up
1085         */
1086
1087        c->rxdma_on = 0;
1088        c->txdma_on = 0;
1089        
1090        c->tx_dma_used=0;
1091        c->dma_num=0;
1092        c->dma_ready=1;
1093        c->dma_tx = 1;
1094
1095        /*
1096         *      Enable DMA control mode
1097         */
1098
1099        /*
1100         *      TX DMA via DIR/REQ
1101         */
1102        c->regs[R14]|= DTRREQ;
1103        write_zsreg(c, R14, c->regs[R14]);     
1104        
1105        c->regs[R1]&= ~TxINT_ENAB;
1106        write_zsreg(c, R1, c->regs[R1]);
1107        
1108        /*
1109         *      Set up the DMA configuration
1110         */     
1111         
1112        dflags = claim_dma_lock();
1113
1114        disable_dma(c->txdma);
1115        clear_dma_ff(c->txdma);
1116        set_dma_mode(c->txdma, DMA_MODE_WRITE);
1117        disable_dma(c->txdma);
1118
1119        release_dma_lock(dflags);
1120        
1121        /*
1122         *      Select the DMA interrupt handlers
1123         */
1124
1125        c->rxdma_on = 0;
1126        c->txdma_on = 1;
1127        c->tx_dma_used = 1;
1128         
1129        c->irqs = &z8530_txdma_sync;
1130        z8530_rtsdtr(c,1);
1131        write_zsreg(c, R3, c->regs[R3]|RxENABLE);
1132        spin_unlock_irqrestore(c->lock, cflags);
1133        
1134        return 0;
1135}
1136
1137EXPORT_SYMBOL(z8530_sync_txdma_open);
1138
1139/**
1140 *      z8530_sync_txdma_close - Close down a TX driven DMA channel
1141 *      @dev: Network device to detach
1142 *      @c: Z8530 channel to move into discard mode
1143 *
1144 *      Shut down a DMA/PIO split mode synchronous interface. Halt the DMA, 
1145 *      and  free the buffers.
1146 */
1147
1148int z8530_sync_txdma_close(struct net_device *dev, struct z8530_channel *c)
1149{
1150        unsigned long dflags, cflags;
1151        u8 chk;
1152
1153        
1154        spin_lock_irqsave(c->lock, cflags);
1155        
1156        c->irqs = &z8530_nop;
1157        c->max = 0;
1158        c->sync = 0;
1159        
1160        /*
1161         *      Disable the PC DMA channels
1162         */
1163         
1164        dflags = claim_dma_lock();
1165
1166        disable_dma(c->txdma);
1167        clear_dma_ff(c->txdma);
1168        c->txdma_on = 0;
1169        c->tx_dma_used = 0;
1170
1171        release_dma_lock(dflags);
1172
1173        /*
1174         *      Disable DMA control mode
1175         */
1176         
1177        c->regs[R1]&= ~WT_RDY_ENAB;
1178        write_zsreg(c, R1, c->regs[R1]);            
1179        c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
1180        c->regs[R1]|= INT_ALL_Rx;
1181        write_zsreg(c, R1, c->regs[R1]);
1182        c->regs[R14]&= ~DTRREQ;
1183        write_zsreg(c, R14, c->regs[R14]);   
1184        
1185        if(c->tx_dma_buf[0])
1186        {
1187                free_page((unsigned long)c->tx_dma_buf[0]);
1188                c->tx_dma_buf[0]=NULL;
1189        }
1190        chk=read_zsreg(c,R0);
1191        write_zsreg(c, R3, c->regs[R3]);
1192        z8530_rtsdtr(c,0);
1193
1194        spin_unlock_irqrestore(c->lock, cflags);
1195        return 0;
1196}
1197
1198
1199EXPORT_SYMBOL(z8530_sync_txdma_close);
1200
1201
1202/*
1203 *      Name strings for Z8530 chips. SGI claim to have a 130, Zilog deny
1204 *      it exists...
1205 */
1206 
1207static const char *z8530_type_name[]={
1208        "Z8530",
1209        "Z85C30",
1210        "Z85230"
1211};
1212
1213/**
1214 *      z8530_describe - Uniformly describe a Z8530 port
1215 *      @dev: Z8530 device to describe
1216 *      @mapping: string holding mapping type (eg "I/O" or "Mem")
1217 *      @io: the port value in question
1218 *
1219 *      Describe a Z8530 in a standard format. We must pass the I/O as
1220 *      the port offset isn't predictable. The main reason for this function
1221 *      is to try and get a common format of report.
1222 */
1223
1224void z8530_describe(struct z8530_dev *dev, char *mapping, unsigned long io)
1225{
1226        pr_info("%s: %s found at %s 0x%lX, IRQ %d\n",
1227                dev->name, 
1228                z8530_type_name[dev->type],
1229                mapping,
1230                Z8530_PORT_OF(io),
1231                dev->irq);
1232}
1233
1234EXPORT_SYMBOL(z8530_describe);
1235
1236/*
1237 *      Locked operation part of the z8530 init code
1238 */
1239 
1240static inline int do_z8530_init(struct z8530_dev *dev)
1241{
1242        /* NOP the interrupt handlers first - we might get a
1243           floating IRQ transition when we reset the chip */
1244        dev->chanA.irqs=&z8530_nop;
1245        dev->chanB.irqs=&z8530_nop;
1246        dev->chanA.dcdcheck=DCD;
1247        dev->chanB.dcdcheck=DCD;
1248
1249        /* Reset the chip */
1250        write_zsreg(&dev->chanA, R9, 0xC0);
1251        udelay(200);
1252        /* Now check its valid */
1253        write_zsreg(&dev->chanA, R12, 0xAA);
1254        if(read_zsreg(&dev->chanA, R12)!=0xAA)
1255                return -ENODEV;
1256        write_zsreg(&dev->chanA, R12, 0x55);
1257        if(read_zsreg(&dev->chanA, R12)!=0x55)
1258                return -ENODEV;
1259                
1260        dev->type=Z8530;
1261        
1262        /*
1263         *      See the application note.
1264         */
1265         
1266        write_zsreg(&dev->chanA, R15, 0x01);
1267        
1268        /*
1269         *      If we can set the low bit of R15 then
1270         *      the chip is enhanced.
1271         */
1272         
1273        if(read_zsreg(&dev->chanA, R15)==0x01)
1274        {
1275                /* This C30 versus 230 detect is from Klaus Kudielka's dmascc */
1276                /* Put a char in the fifo */
1277                write_zsreg(&dev->chanA, R8, 0);
1278                if(read_zsreg(&dev->chanA, R0)&Tx_BUF_EMP)
1279                        dev->type = Z85230;     /* Has a FIFO */
1280                else
1281                        dev->type = Z85C30;     /* Z85C30, 1 byte FIFO */
1282        }
1283                
1284        /*
1285         *      The code assumes R7' and friends are
1286         *      off. Use write_zsext() for these and keep
1287         *      this bit clear.
1288         */
1289         
1290        write_zsreg(&dev->chanA, R15, 0);
1291                
1292        /*
1293         *      At this point it looks like the chip is behaving
1294         */
1295         
1296        memcpy(dev->chanA.regs, reg_init, 16);
1297        memcpy(dev->chanB.regs, reg_init ,16);
1298        
1299        return 0;
1300}
1301
1302/**
1303 *      z8530_init - Initialise a Z8530 device
1304 *      @dev: Z8530 device to initialise.
1305 *
1306 *      Configure up a Z8530/Z85C30 or Z85230 chip. We check the device
1307 *      is present, identify the type and then program it to hopefully
1308 *      keep quite and behave. This matters a lot, a Z8530 in the wrong
1309 *      state will sometimes get into stupid modes generating 10Khz
1310 *      interrupt streams and the like.
1311 *
1312 *      We set the interrupt handler up to discard any events, in case
1313 *      we get them during reset or setp.
1314 *
1315 *      Return 0 for success, or a negative value indicating the problem
1316 *      in errno form.
1317 */
1318
1319int z8530_init(struct z8530_dev *dev)
1320{
1321        unsigned long flags;
1322        int ret;
1323
1324        /* Set up the chip level lock */
1325        spin_lock_init(&dev->lock);
1326        dev->chanA.lock = &dev->lock;
1327        dev->chanB.lock = &dev->lock;
1328
1329        spin_lock_irqsave(&dev->lock, flags);
1330        ret = do_z8530_init(dev);
1331        spin_unlock_irqrestore(&dev->lock, flags);
1332
1333        return ret;
1334}
1335
1336
1337EXPORT_SYMBOL(z8530_init);
1338
1339/**
1340 *      z8530_shutdown - Shutdown a Z8530 device
1341 *      @dev: The Z8530 chip to shutdown
1342 *
1343 *      We set the interrupt handlers to silence any interrupts. We then 
1344 *      reset the chip and wait 100uS to be sure the reset completed. Just
1345 *      in case the caller then tries to do stuff.
1346 *
1347 *      This is called without the lock held
1348 */
1349 
1350int z8530_shutdown(struct z8530_dev *dev)
1351{
1352        unsigned long flags;
1353        /* Reset the chip */
1354
1355        spin_lock_irqsave(&dev->lock, flags);
1356        dev->chanA.irqs=&z8530_nop;
1357        dev->chanB.irqs=&z8530_nop;
1358        write_zsreg(&dev->chanA, R9, 0xC0);
1359        /* We must lock the udelay, the chip is offlimits here */
1360        udelay(100);
1361        spin_unlock_irqrestore(&dev->lock, flags);
1362        return 0;
1363}
1364
1365EXPORT_SYMBOL(z8530_shutdown);
1366
1367/**
1368 *      z8530_channel_load - Load channel data
1369 *      @c: Z8530 channel to configure
1370 *      @rtable: table of register, value pairs
1371 *      FIXME: ioctl to allow user uploaded tables
1372 *
1373 *      Load a Z8530 channel up from the system data. We use +16 to 
1374 *      indicate the "prime" registers. The value 255 terminates the
1375 *      table.
1376 */
1377
1378int z8530_channel_load(struct z8530_channel *c, u8 *rtable)
1379{
1380        unsigned long flags;
1381
1382        spin_lock_irqsave(c->lock, flags);
1383
1384        while(*rtable!=255)
1385        {
1386                int reg=*rtable++;
1387                if(reg>0x0F)
1388                        write_zsreg(c, R15, c->regs[15]|1);
1389                write_zsreg(c, reg&0x0F, *rtable);
1390                if(reg>0x0F)
1391                        write_zsreg(c, R15, c->regs[15]&~1);
1392                c->regs[reg]=*rtable++;
1393        }
1394        c->rx_function=z8530_null_rx;
1395        c->skb=NULL;
1396        c->tx_skb=NULL;
1397        c->tx_next_skb=NULL;
1398        c->mtu=1500;
1399        c->max=0;
1400        c->count=0;
1401        c->status=read_zsreg(c, R0);
1402        c->sync=1;
1403        write_zsreg(c, R3, c->regs[R3]|RxENABLE);
1404
1405        spin_unlock_irqrestore(c->lock, flags);
1406        return 0;
1407}
1408
1409EXPORT_SYMBOL(z8530_channel_load);
1410
1411
1412/**
1413 *      z8530_tx_begin - Begin packet transmission
1414 *      @c: The Z8530 channel to kick
1415 *
1416 *      This is the speed sensitive side of transmission. If we are called
1417 *      and no buffer is being transmitted we commence the next buffer. If
1418 *      nothing is queued we idle the sync. 
1419 *
1420 *      Note: We are handling this code path in the interrupt path, keep it
1421 *      fast or bad things will happen.
1422 *
1423 *      Called with the lock held.
1424 */
1425
1426static void z8530_tx_begin(struct z8530_channel *c)
1427{
1428        unsigned long flags;
1429        if(c->tx_skb)
1430                return;
1431                
1432        c->tx_skb=c->tx_next_skb;
1433        c->tx_next_skb=NULL;
1434        c->tx_ptr=c->tx_next_ptr;
1435        
1436        if(c->tx_skb==NULL)
1437        {
1438                /* Idle on */
1439                if(c->dma_tx)
1440                {
1441                        flags=claim_dma_lock();
1442                        disable_dma(c->txdma);
1443                        /*
1444                         *      Check if we crapped out.
1445                         */
1446                        if (get_dma_residue(c->txdma))
1447                        {
1448                                c->netdevice->stats.tx_dropped++;
1449                                c->netdevice->stats.tx_fifo_errors++;
1450                        }
1451                        release_dma_lock(flags);
1452                }
1453                c->txcount=0;
1454        }
1455        else
1456        {
1457                c->txcount=c->tx_skb->len;
1458                
1459                
1460                if(c->dma_tx)
1461                {
1462                        /*
1463                         *      FIXME. DMA is broken for the original 8530,
1464                         *      on the older parts we need to set a flag and
1465                         *      wait for a further TX interrupt to fire this
1466                         *      stage off       
1467                         */
1468                         
1469                        flags=claim_dma_lock();
1470                        disable_dma(c->txdma);
1471
1472                        /*
1473                         *      These two are needed by the 8530/85C30
1474                         *      and must be issued when idling.
1475                         */
1476                         
1477                        if(c->dev->type!=Z85230)
1478                        {
1479                                write_zsctrl(c, RES_Tx_CRC);
1480                                write_zsctrl(c, RES_EOM_L);
1481                        }       
1482                        write_zsreg(c, R10, c->regs[10]&~ABUNDER);
1483                        clear_dma_ff(c->txdma);
1484                        set_dma_addr(c->txdma, virt_to_bus(c->tx_ptr));
1485                        set_dma_count(c->txdma, c->txcount);
1486                        enable_dma(c->txdma);
1487                        release_dma_lock(flags);
1488                        write_zsctrl(c, RES_EOM_L);
1489                        write_zsreg(c, R5, c->regs[R5]|TxENAB);
1490                }
1491                else
1492                {
1493
1494                        /* ABUNDER off */
1495                        write_zsreg(c, R10, c->regs[10]);
1496                        write_zsctrl(c, RES_Tx_CRC);
1497        
1498                        while(c->txcount && (read_zsreg(c,R0)&Tx_BUF_EMP))
1499                        {               
1500                                write_zsreg(c, R8, *c->tx_ptr++);
1501                                c->txcount--;
1502                        }
1503
1504                }
1505        }
1506        /*
1507         *      Since we emptied tx_skb we can ask for more
1508         */
1509        netif_wake_queue(c->netdevice);
1510}
1511
1512/**
1513 *      z8530_tx_done - TX complete callback
1514 *      @c: The channel that completed a transmit.
1515 *
1516 *      This is called when we complete a packet send. We wake the queue,
1517 *      start the next packet going and then free the buffer of the existing
1518 *      packet. This code is fairly timing sensitive.
1519 *
1520 *      Called with the register lock held.
1521 */
1522
1523static void z8530_tx_done(struct z8530_channel *c)
1524{
1525        struct sk_buff *skb;
1526
1527        /* Actually this can happen.*/
1528        if (c->tx_skb == NULL)
1529                return;
1530
1531        skb = c->tx_skb;
1532        c->tx_skb = NULL;
1533        z8530_tx_begin(c);
1534        c->netdevice->stats.tx_packets++;
1535        c->netdevice->stats.tx_bytes += skb->len;
1536        dev_consume_skb_irq(skb);
1537}
1538
1539/**
1540 *      z8530_null_rx - Discard a packet
1541 *      @c: The channel the packet arrived on
1542 *      @skb: The buffer
1543 *
1544 *      We point the receive handler at this function when idle. Instead
1545 *      of processing the frames we get to throw them away.
1546 */
1547 
1548void z8530_null_rx(struct z8530_channel *c, struct sk_buff *skb)
1549{
1550        dev_kfree_skb_any(skb);
1551}
1552
1553EXPORT_SYMBOL(z8530_null_rx);
1554
1555/**
1556 *      z8530_rx_done - Receive completion callback
1557 *      @c: The channel that completed a receive
1558 *
1559 *      A new packet is complete. Our goal here is to get back into receive
1560 *      mode as fast as possible. On the Z85230 we could change to using
1561 *      ESCC mode, but on the older chips we have no choice. We flip to the
1562 *      new buffer immediately in DMA mode so that the DMA of the next
1563 *      frame can occur while we are copying the previous buffer to an sk_buff
1564 *
1565 *      Called with the lock held
1566 */
1567 
1568static void z8530_rx_done(struct z8530_channel *c)
1569{
1570        struct sk_buff *skb;
1571        int ct;
1572        
1573        /*
1574         *      Is our receive engine in DMA mode
1575         */
1576         
1577        if(c->rxdma_on)
1578        {
1579                /*
1580                 *      Save the ready state and the buffer currently
1581                 *      being used as the DMA target
1582                 */
1583                 
1584                int ready=c->dma_ready;
1585                unsigned char *rxb=c->rx_buf[c->dma_num];
1586                unsigned long flags;
1587                
1588                /*
1589                 *      Complete this DMA. Necessary to find the length
1590                 */             
1591                 
1592                flags=claim_dma_lock();
1593                
1594                disable_dma(c->rxdma);
1595                clear_dma_ff(c->rxdma);
1596                c->rxdma_on=0;
1597                ct=c->mtu-get_dma_residue(c->rxdma);
1598                if(ct<0)
1599                        ct=2;   /* Shit happens.. */
1600                c->dma_ready=0;
1601                
1602                /*
1603                 *      Normal case: the other slot is free, start the next DMA
1604                 *      into it immediately.
1605                 */
1606                 
1607                if(ready)
1608                {
1609                        c->dma_num^=1;
1610                        set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
1611                        set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[c->dma_num]));
1612                        set_dma_count(c->rxdma, c->mtu);
1613                        c->rxdma_on = 1;
1614                        enable_dma(c->rxdma);
1615                        /* Stop any frames that we missed the head of 
1616                           from passing */
1617                        write_zsreg(c, R0, RES_Rx_CRC);
1618                }
1619                else
1620                        /* Can't occur as we dont reenable the DMA irq until
1621                           after the flip is done */
1622                        netdev_warn(c->netdevice, "DMA flip overrun!\n");
1623
1624                release_dma_lock(flags);
1625
1626                /*
1627                 *      Shove the old buffer into an sk_buff. We can't DMA
1628                 *      directly into one on a PC - it might be above the 16Mb
1629                 *      boundary. Optimisation - we could check to see if we
1630                 *      can avoid the copy. Optimisation 2 - make the memcpy
1631                 *      a copychecksum.
1632                 */
1633
1634                skb = dev_alloc_skb(ct);
1635                if (skb == NULL) {
1636                        c->netdevice->stats.rx_dropped++;
1637                        netdev_warn(c->netdevice, "Memory squeeze\n");
1638                } else {
1639                        skb_put(skb, ct);
1640                        skb_copy_to_linear_data(skb, rxb, ct);
1641                        c->netdevice->stats.rx_packets++;
1642                        c->netdevice->stats.rx_bytes += ct;
1643                }
1644                c->dma_ready = 1;
1645        } else {
1646                RT_LOCK;
1647                skb = c->skb;
1648
1649                /*
1650                 *      The game we play for non DMA is similar. We want to
1651                 *      get the controller set up for the next packet as fast
1652                 *      as possible. We potentially only have one byte + the
1653                 *      fifo length for this. Thus we want to flip to the new
1654                 *      buffer and then mess around copying and allocating
1655                 *      things. For the current case it doesn't matter but
1656                 *      if you build a system where the sync irq isn't blocked
1657                 *      by the kernel IRQ disable then you need only block the
1658                 *      sync IRQ for the RT_LOCK area.
1659                 *
1660                 */
1661                ct=c->count;
1662
1663                c->skb = c->skb2;
1664                c->count = 0;
1665                c->max = c->mtu;
1666                if (c->skb) {
1667                        c->dptr = c->skb->data;
1668                        c->max = c->mtu;
1669                } else {
1670                        c->count = 0;
1671                        c->max = 0;
1672                }
1673                RT_UNLOCK;
1674
1675                c->skb2 = dev_alloc_skb(c->mtu);
1676                if (c->skb2 == NULL)
1677                        netdev_warn(c->netdevice, "memory squeeze\n");
1678                else
1679                        skb_put(c->skb2, c->mtu);
1680                c->netdevice->stats.rx_packets++;
1681                c->netdevice->stats.rx_bytes += ct;
1682        }
1683        /*
1684         *      If we received a frame we must now process it.
1685         */
1686        if (skb) {
1687                skb_trim(skb, ct);
1688                c->rx_function(c, skb);
1689        } else {
1690                c->netdevice->stats.rx_dropped++;
1691                netdev_err(c->netdevice, "Lost a frame\n");
1692        }
1693}
1694
1695/**
1696 *      spans_boundary - Check a packet can be ISA DMA'd
1697 *      @skb: The buffer to check
1698 *
1699 *      Returns true if the buffer cross a DMA boundary on a PC. The poor
1700 *      thing can only DMA within a 64K block not across the edges of it.
1701 */
1702
1703static inline int spans_boundary(struct sk_buff *skb)
1704{
1705        unsigned long a=(unsigned long)skb->data;
1706        a^=(a+skb->len);
1707        if(a&0x00010000)        /* If the 64K bit is different.. */
1708                return 1;
1709        return 0;
1710}
1711
1712/**
1713 *      z8530_queue_xmit - Queue a packet
1714 *      @c: The channel to use
1715 *      @skb: The packet to kick down the channel
1716 *
1717 *      Queue a packet for transmission. Because we have rather
1718 *      hard to hit interrupt latencies for the Z85230 per packet 
1719 *      even in DMA mode we do the flip to DMA buffer if needed here
1720 *      not in the IRQ.
1721 *
1722 *      Called from the network code. The lock is not held at this 
1723 *      point.
1724 */
1725
1726netdev_tx_t z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb)
1727{
1728        unsigned long flags;
1729        
1730        netif_stop_queue(c->netdevice);
1731        if(c->tx_next_skb)
1732                return NETDEV_TX_BUSY;
1733
1734        
1735        /* PC SPECIFIC - DMA limits */
1736        
1737        /*
1738         *      If we will DMA the transmit and its gone over the ISA bus
1739         *      limit, then copy to the flip buffer
1740         */
1741         
1742        if(c->dma_tx && ((unsigned long)(virt_to_bus(skb->data+skb->len))>=16*1024*1024 || spans_boundary(skb)))
1743        {
1744                /* 
1745                 *      Send the flip buffer, and flip the flippy bit.
1746                 *      We don't care which is used when just so long as
1747                 *      we never use the same buffer twice in a row. Since
1748                 *      only one buffer can be going out at a time the other
1749                 *      has to be safe.
1750                 */
1751                c->tx_next_ptr=c->tx_dma_buf[c->tx_dma_used];
1752                c->tx_dma_used^=1;      /* Flip temp buffer */
1753                skb_copy_from_linear_data(skb, c->tx_next_ptr, skb->len);
1754        }
1755        else
1756                c->tx_next_ptr=skb->data;       
1757        RT_LOCK;
1758        c->tx_next_skb=skb;
1759        RT_UNLOCK;
1760        
1761        spin_lock_irqsave(c->lock, flags);
1762        z8530_tx_begin(c);
1763        spin_unlock_irqrestore(c->lock, flags);
1764        
1765        return NETDEV_TX_OK;
1766}
1767
1768EXPORT_SYMBOL(z8530_queue_xmit);
1769
1770/*
1771 *      Module support
1772 */
1773static const char banner[] __initconst =
1774        KERN_INFO "Generic Z85C30/Z85230 interface driver v0.02\n";
1775
1776static int __init z85230_init_driver(void)
1777{
1778        printk(banner);
1779        return 0;
1780}
1781module_init(z85230_init_driver);
1782
1783static void __exit z85230_cleanup_driver(void)
1784{
1785}
1786module_exit(z85230_cleanup_driver);
1787
1788MODULE_AUTHOR("Red Hat Inc.");
1789MODULE_DESCRIPTION("Z85x30 synchronous driver core");
1790MODULE_LICENSE("GPL");
1791