linux/drivers/net/wireless/ath/ath10k/pci.c
<<
>>
Prefs
   1// SPDX-License-Identifier: ISC
   2/*
   3 * Copyright (c) 2005-2011 Atheros Communications Inc.
   4 * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
   5 */
   6
   7#include <linux/pci.h>
   8#include <linux/module.h>
   9#include <linux/interrupt.h>
  10#include <linux/spinlock.h>
  11#include <linux/bitops.h>
  12
  13#include "core.h"
  14#include "debug.h"
  15#include "coredump.h"
  16
  17#include "targaddrs.h"
  18#include "bmi.h"
  19
  20#include "hif.h"
  21#include "htc.h"
  22
  23#include "ce.h"
  24#include "pci.h"
  25
  26enum ath10k_pci_reset_mode {
  27        ATH10K_PCI_RESET_AUTO = 0,
  28        ATH10K_PCI_RESET_WARM_ONLY = 1,
  29};
  30
  31static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
  32static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
  33
  34module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
  35MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
  36
  37module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
  38MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
  39
  40/* how long wait to wait for target to initialise, in ms */
  41#define ATH10K_PCI_TARGET_WAIT 3000
  42#define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
  43
  44/* Maximum number of bytes that can be handled atomically by
  45 * diag read and write.
  46 */
  47#define ATH10K_DIAG_TRANSFER_LIMIT      0x5000
  48
  49#define QCA99X0_PCIE_BAR0_START_REG    0x81030
  50#define QCA99X0_CPU_MEM_ADDR_REG       0x4d00c
  51#define QCA99X0_CPU_MEM_DATA_REG       0x4d010
  52
  53static const struct pci_device_id ath10k_pci_id_table[] = {
  54        /* PCI-E QCA988X V2 (Ubiquiti branded) */
  55        { PCI_VDEVICE(UBIQUITI, QCA988X_2_0_DEVICE_ID_UBNT) },
  56
  57        { PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
  58        { PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */
  59        { PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
  60        { PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */
  61        { PCI_VDEVICE(ATHEROS, QCA9888_2_0_DEVICE_ID) }, /* PCI-E QCA9888 V2 */
  62        { PCI_VDEVICE(ATHEROS, QCA9984_1_0_DEVICE_ID) }, /* PCI-E QCA9984 V1 */
  63        { PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */
  64        { PCI_VDEVICE(ATHEROS, QCA9887_1_0_DEVICE_ID) }, /* PCI-E QCA9887 */
  65        {0}
  66};
  67
  68static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
  69        /* QCA988X pre 2.0 chips are not supported because they need some nasty
  70         * hacks. ath10k doesn't have them and these devices crash horribly
  71         * because of that.
  72         */
  73        { QCA988X_2_0_DEVICE_ID_UBNT, QCA988X_HW_2_0_CHIP_ID_REV },
  74        { QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
  75
  76        { QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
  77        { QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
  78        { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
  79        { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
  80        { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
  81
  82        { QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
  83        { QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
  84        { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
  85        { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
  86        { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
  87
  88        { QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV },
  89
  90        { QCA9984_1_0_DEVICE_ID, QCA9984_HW_1_0_CHIP_ID_REV },
  91
  92        { QCA9888_2_0_DEVICE_ID, QCA9888_HW_2_0_CHIP_ID_REV },
  93
  94        { QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV },
  95        { QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV },
  96
  97        { QCA9887_1_0_DEVICE_ID, QCA9887_HW_1_0_CHIP_ID_REV },
  98};
  99
 100static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
 101static int ath10k_pci_cold_reset(struct ath10k *ar);
 102static int ath10k_pci_safe_chip_reset(struct ath10k *ar);
 103static int ath10k_pci_init_irq(struct ath10k *ar);
 104static int ath10k_pci_deinit_irq(struct ath10k *ar);
 105static int ath10k_pci_request_irq(struct ath10k *ar);
 106static void ath10k_pci_free_irq(struct ath10k *ar);
 107static int ath10k_pci_bmi_wait(struct ath10k *ar,
 108                               struct ath10k_ce_pipe *tx_pipe,
 109                               struct ath10k_ce_pipe *rx_pipe,
 110                               struct bmi_xfer *xfer);
 111static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar);
 112static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
 113static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
 114static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
 115static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
 116static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
 117static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state);
 118
 119static const struct ce_attr pci_host_ce_config_wlan[] = {
 120        /* CE0: host->target HTC control and raw streams */
 121        {
 122                .flags = CE_ATTR_FLAGS,
 123                .src_nentries = 16,
 124                .src_sz_max = 256,
 125                .dest_nentries = 0,
 126                .send_cb = ath10k_pci_htc_tx_cb,
 127        },
 128
 129        /* CE1: target->host HTT + HTC control */
 130        {
 131                .flags = CE_ATTR_FLAGS,
 132                .src_nentries = 0,
 133                .src_sz_max = 2048,
 134                .dest_nentries = 512,
 135                .recv_cb = ath10k_pci_htt_htc_rx_cb,
 136        },
 137
 138        /* CE2: target->host WMI */
 139        {
 140                .flags = CE_ATTR_FLAGS,
 141                .src_nentries = 0,
 142                .src_sz_max = 2048,
 143                .dest_nentries = 128,
 144                .recv_cb = ath10k_pci_htc_rx_cb,
 145        },
 146
 147        /* CE3: host->target WMI */
 148        {
 149                .flags = CE_ATTR_FLAGS,
 150                .src_nentries = 32,
 151                .src_sz_max = 2048,
 152                .dest_nentries = 0,
 153                .send_cb = ath10k_pci_htc_tx_cb,
 154        },
 155
 156        /* CE4: host->target HTT */
 157        {
 158                .flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
 159                .src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
 160                .src_sz_max = 256,
 161                .dest_nentries = 0,
 162                .send_cb = ath10k_pci_htt_tx_cb,
 163        },
 164
 165        /* CE5: target->host HTT (HIF->HTT) */
 166        {
 167                .flags = CE_ATTR_FLAGS,
 168                .src_nentries = 0,
 169                .src_sz_max = 512,
 170                .dest_nentries = 512,
 171                .recv_cb = ath10k_pci_htt_rx_cb,
 172        },
 173
 174        /* CE6: target autonomous hif_memcpy */
 175        {
 176                .flags = CE_ATTR_FLAGS,
 177                .src_nentries = 0,
 178                .src_sz_max = 0,
 179                .dest_nentries = 0,
 180        },
 181
 182        /* CE7: ce_diag, the Diagnostic Window */
 183        {
 184                .flags = CE_ATTR_FLAGS | CE_ATTR_POLL,
 185                .src_nentries = 2,
 186                .src_sz_max = DIAG_TRANSFER_LIMIT,
 187                .dest_nentries = 2,
 188        },
 189
 190        /* CE8: target->host pktlog */
 191        {
 192                .flags = CE_ATTR_FLAGS,
 193                .src_nentries = 0,
 194                .src_sz_max = 2048,
 195                .dest_nentries = 128,
 196                .recv_cb = ath10k_pci_pktlog_rx_cb,
 197        },
 198
 199        /* CE9 target autonomous qcache memcpy */
 200        {
 201                .flags = CE_ATTR_FLAGS,
 202                .src_nentries = 0,
 203                .src_sz_max = 0,
 204                .dest_nentries = 0,
 205        },
 206
 207        /* CE10: target autonomous hif memcpy */
 208        {
 209                .flags = CE_ATTR_FLAGS,
 210                .src_nentries = 0,
 211                .src_sz_max = 0,
 212                .dest_nentries = 0,
 213        },
 214
 215        /* CE11: target autonomous hif memcpy */
 216        {
 217                .flags = CE_ATTR_FLAGS,
 218                .src_nentries = 0,
 219                .src_sz_max = 0,
 220                .dest_nentries = 0,
 221        },
 222};
 223
 224/* Target firmware's Copy Engine configuration. */
 225static const struct ce_pipe_config pci_target_ce_config_wlan[] = {
 226        /* CE0: host->target HTC control and raw streams */
 227        {
 228                .pipenum = __cpu_to_le32(0),
 229                .pipedir = __cpu_to_le32(PIPEDIR_OUT),
 230                .nentries = __cpu_to_le32(32),
 231                .nbytes_max = __cpu_to_le32(256),
 232                .flags = __cpu_to_le32(CE_ATTR_FLAGS),
 233                .reserved = __cpu_to_le32(0),
 234        },
 235
 236        /* CE1: target->host HTT + HTC control */
 237        {
 238                .pipenum = __cpu_to_le32(1),
 239                .pipedir = __cpu_to_le32(PIPEDIR_IN),
 240                .nentries = __cpu_to_le32(32),
 241                .nbytes_max = __cpu_to_le32(2048),
 242                .flags = __cpu_to_le32(CE_ATTR_FLAGS),
 243                .reserved = __cpu_to_le32(0),
 244        },
 245
 246        /* CE2: target->host WMI */
 247        {
 248                .pipenum = __cpu_to_le32(2),
 249                .pipedir = __cpu_to_le32(PIPEDIR_IN),
 250                .nentries = __cpu_to_le32(64),
 251                .nbytes_max = __cpu_to_le32(2048),
 252                .flags = __cpu_to_le32(CE_ATTR_FLAGS),
 253                .reserved = __cpu_to_le32(0),
 254        },
 255
 256        /* CE3: host->target WMI */
 257        {
 258                .pipenum = __cpu_to_le32(3),
 259                .pipedir = __cpu_to_le32(PIPEDIR_OUT),
 260                .nentries = __cpu_to_le32(32),
 261                .nbytes_max = __cpu_to_le32(2048),
 262                .flags = __cpu_to_le32(CE_ATTR_FLAGS),
 263                .reserved = __cpu_to_le32(0),
 264        },
 265
 266        /* CE4: host->target HTT */
 267        {
 268                .pipenum = __cpu_to_le32(4),
 269                .pipedir = __cpu_to_le32(PIPEDIR_OUT),
 270                .nentries = __cpu_to_le32(256),
 271                .nbytes_max = __cpu_to_le32(256),
 272                .flags = __cpu_to_le32(CE_ATTR_FLAGS),
 273                .reserved = __cpu_to_le32(0),
 274        },
 275
 276        /* NB: 50% of src nentries, since tx has 2 frags */
 277
 278        /* CE5: target->host HTT (HIF->HTT) */
 279        {
 280                .pipenum = __cpu_to_le32(5),
 281                .pipedir = __cpu_to_le32(PIPEDIR_IN),
 282                .nentries = __cpu_to_le32(32),
 283                .nbytes_max = __cpu_to_le32(512),
 284                .flags = __cpu_to_le32(CE_ATTR_FLAGS),
 285                .reserved = __cpu_to_le32(0),
 286        },
 287
 288        /* CE6: Reserved for target autonomous hif_memcpy */
 289        {
 290                .pipenum = __cpu_to_le32(6),
 291                .pipedir = __cpu_to_le32(PIPEDIR_INOUT),
 292                .nentries = __cpu_to_le32(32),
 293                .nbytes_max = __cpu_to_le32(4096),
 294                .flags = __cpu_to_le32(CE_ATTR_FLAGS),
 295                .reserved = __cpu_to_le32(0),
 296        },
 297
 298        /* CE7 used only by Host */
 299        {
 300                .pipenum = __cpu_to_le32(7),
 301                .pipedir = __cpu_to_le32(PIPEDIR_INOUT),
 302                .nentries = __cpu_to_le32(0),
 303                .nbytes_max = __cpu_to_le32(0),
 304                .flags = __cpu_to_le32(0),
 305                .reserved = __cpu_to_le32(0),
 306        },
 307
 308        /* CE8 target->host packtlog */
 309        {
 310                .pipenum = __cpu_to_le32(8),
 311                .pipedir = __cpu_to_le32(PIPEDIR_IN),
 312                .nentries = __cpu_to_le32(64),
 313                .nbytes_max = __cpu_to_le32(2048),
 314                .flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
 315                .reserved = __cpu_to_le32(0),
 316        },
 317
 318        /* CE9 target autonomous qcache memcpy */
 319        {
 320                .pipenum = __cpu_to_le32(9),
 321                .pipedir = __cpu_to_le32(PIPEDIR_INOUT),
 322                .nentries = __cpu_to_le32(32),
 323                .nbytes_max = __cpu_to_le32(2048),
 324                .flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
 325                .reserved = __cpu_to_le32(0),
 326        },
 327
 328        /* It not necessary to send target wlan configuration for CE10 & CE11
 329         * as these CEs are not actively used in target.
 330         */
 331};
 332
 333/*
 334 * Map from service/endpoint to Copy Engine.
 335 * This table is derived from the CE_PCI TABLE, above.
 336 * It is passed to the Target at startup for use by firmware.
 337 */
 338static const struct ce_service_to_pipe pci_target_service_to_ce_map_wlan[] = {
 339        {
 340                __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
 341                __cpu_to_le32(PIPEDIR_OUT),     /* out = UL = host -> target */
 342                __cpu_to_le32(3),
 343        },
 344        {
 345                __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
 346                __cpu_to_le32(PIPEDIR_IN),      /* in = DL = target -> host */
 347                __cpu_to_le32(2),
 348        },
 349        {
 350                __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
 351                __cpu_to_le32(PIPEDIR_OUT),     /* out = UL = host -> target */
 352                __cpu_to_le32(3),
 353        },
 354        {
 355                __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
 356                __cpu_to_le32(PIPEDIR_IN),      /* in = DL = target -> host */
 357                __cpu_to_le32(2),
 358        },
 359        {
 360                __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
 361                __cpu_to_le32(PIPEDIR_OUT),     /* out = UL = host -> target */
 362                __cpu_to_le32(3),
 363        },
 364        {
 365                __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
 366                __cpu_to_le32(PIPEDIR_IN),      /* in = DL = target -> host */
 367                __cpu_to_le32(2),
 368        },
 369        {
 370                __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
 371                __cpu_to_le32(PIPEDIR_OUT),     /* out = UL = host -> target */
 372                __cpu_to_le32(3),
 373        },
 374        {
 375                __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
 376                __cpu_to_le32(PIPEDIR_IN),      /* in = DL = target -> host */
 377                __cpu_to_le32(2),
 378        },
 379        {
 380                __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
 381                __cpu_to_le32(PIPEDIR_OUT),     /* out = UL = host -> target */
 382                __cpu_to_le32(3),
 383        },
 384        {
 385                __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
 386                __cpu_to_le32(PIPEDIR_IN),      /* in = DL = target -> host */
 387                __cpu_to_le32(2),
 388        },
 389        {
 390                __cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
 391                __cpu_to_le32(PIPEDIR_OUT),     /* out = UL = host -> target */
 392                __cpu_to_le32(0),
 393        },
 394        {
 395                __cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
 396                __cpu_to_le32(PIPEDIR_IN),      /* in = DL = target -> host */
 397                __cpu_to_le32(1),
 398        },
 399        { /* not used */
 400                __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
 401                __cpu_to_le32(PIPEDIR_OUT),     /* out = UL = host -> target */
 402                __cpu_to_le32(0),
 403        },
 404        { /* not used */
 405                __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
 406                __cpu_to_le32(PIPEDIR_IN),      /* in = DL = target -> host */
 407                __cpu_to_le32(1),
 408        },
 409        {
 410                __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
 411                __cpu_to_le32(PIPEDIR_OUT),     /* out = UL = host -> target */
 412                __cpu_to_le32(4),
 413        },
 414        {
 415                __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
 416                __cpu_to_le32(PIPEDIR_IN),      /* in = DL = target -> host */
 417                __cpu_to_le32(5),
 418        },
 419
 420        /* (Additions here) */
 421
 422        { /* must be last */
 423                __cpu_to_le32(0),
 424                __cpu_to_le32(0),
 425                __cpu_to_le32(0),
 426        },
 427};
 428
 429static bool ath10k_pci_is_awake(struct ath10k *ar)
 430{
 431        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 432        u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
 433                           RTC_STATE_ADDRESS);
 434
 435        return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
 436}
 437
 438static void __ath10k_pci_wake(struct ath10k *ar)
 439{
 440        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 441
 442        lockdep_assert_held(&ar_pci->ps_lock);
 443
 444        ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n",
 445                   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
 446
 447        iowrite32(PCIE_SOC_WAKE_V_MASK,
 448                  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
 449                  PCIE_SOC_WAKE_ADDRESS);
 450}
 451
 452static void __ath10k_pci_sleep(struct ath10k *ar)
 453{
 454        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 455
 456        lockdep_assert_held(&ar_pci->ps_lock);
 457
 458        ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n",
 459                   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
 460
 461        iowrite32(PCIE_SOC_WAKE_RESET,
 462                  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
 463                  PCIE_SOC_WAKE_ADDRESS);
 464        ar_pci->ps_awake = false;
 465}
 466
 467static int ath10k_pci_wake_wait(struct ath10k *ar)
 468{
 469        int tot_delay = 0;
 470        int curr_delay = 5;
 471
 472        while (tot_delay < PCIE_WAKE_TIMEOUT) {
 473                if (ath10k_pci_is_awake(ar)) {
 474                        if (tot_delay > PCIE_WAKE_LATE_US)
 475                                ath10k_warn(ar, "device wakeup took %d ms which is unusually long, otherwise it works normally.\n",
 476                                            tot_delay / 1000);
 477                        return 0;
 478                }
 479
 480                udelay(curr_delay);
 481                tot_delay += curr_delay;
 482
 483                if (curr_delay < 50)
 484                        curr_delay += 5;
 485        }
 486
 487        return -ETIMEDOUT;
 488}
 489
 490static int ath10k_pci_force_wake(struct ath10k *ar)
 491{
 492        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 493        unsigned long flags;
 494        int ret = 0;
 495
 496        if (ar_pci->pci_ps)
 497                return ret;
 498
 499        spin_lock_irqsave(&ar_pci->ps_lock, flags);
 500
 501        if (!ar_pci->ps_awake) {
 502                iowrite32(PCIE_SOC_WAKE_V_MASK,
 503                          ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
 504                          PCIE_SOC_WAKE_ADDRESS);
 505
 506                ret = ath10k_pci_wake_wait(ar);
 507                if (ret == 0)
 508                        ar_pci->ps_awake = true;
 509        }
 510
 511        spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
 512
 513        return ret;
 514}
 515
 516static void ath10k_pci_force_sleep(struct ath10k *ar)
 517{
 518        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 519        unsigned long flags;
 520
 521        spin_lock_irqsave(&ar_pci->ps_lock, flags);
 522
 523        iowrite32(PCIE_SOC_WAKE_RESET,
 524                  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
 525                  PCIE_SOC_WAKE_ADDRESS);
 526        ar_pci->ps_awake = false;
 527
 528        spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
 529}
 530
 531static int ath10k_pci_wake(struct ath10k *ar)
 532{
 533        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 534        unsigned long flags;
 535        int ret = 0;
 536
 537        if (ar_pci->pci_ps == 0)
 538                return ret;
 539
 540        spin_lock_irqsave(&ar_pci->ps_lock, flags);
 541
 542        ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n",
 543                   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
 544
 545        /* This function can be called very frequently. To avoid excessive
 546         * CPU stalls for MMIO reads use a cache var to hold the device state.
 547         */
 548        if (!ar_pci->ps_awake) {
 549                __ath10k_pci_wake(ar);
 550
 551                ret = ath10k_pci_wake_wait(ar);
 552                if (ret == 0)
 553                        ar_pci->ps_awake = true;
 554        }
 555
 556        if (ret == 0) {
 557                ar_pci->ps_wake_refcount++;
 558                WARN_ON(ar_pci->ps_wake_refcount == 0);
 559        }
 560
 561        spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
 562
 563        return ret;
 564}
 565
 566static void ath10k_pci_sleep(struct ath10k *ar)
 567{
 568        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 569        unsigned long flags;
 570
 571        if (ar_pci->pci_ps == 0)
 572                return;
 573
 574        spin_lock_irqsave(&ar_pci->ps_lock, flags);
 575
 576        ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n",
 577                   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
 578
 579        if (WARN_ON(ar_pci->ps_wake_refcount == 0))
 580                goto skip;
 581
 582        ar_pci->ps_wake_refcount--;
 583
 584        mod_timer(&ar_pci->ps_timer, jiffies +
 585                  msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC));
 586
 587skip:
 588        spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
 589}
 590
 591static void ath10k_pci_ps_timer(struct timer_list *t)
 592{
 593        struct ath10k_pci *ar_pci = from_timer(ar_pci, t, ps_timer);
 594        struct ath10k *ar = ar_pci->ar;
 595        unsigned long flags;
 596
 597        spin_lock_irqsave(&ar_pci->ps_lock, flags);
 598
 599        ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n",
 600                   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
 601
 602        if (ar_pci->ps_wake_refcount > 0)
 603                goto skip;
 604
 605        __ath10k_pci_sleep(ar);
 606
 607skip:
 608        spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
 609}
 610
 611static void ath10k_pci_sleep_sync(struct ath10k *ar)
 612{
 613        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 614        unsigned long flags;
 615
 616        if (ar_pci->pci_ps == 0) {
 617                ath10k_pci_force_sleep(ar);
 618                return;
 619        }
 620
 621        del_timer_sync(&ar_pci->ps_timer);
 622
 623        spin_lock_irqsave(&ar_pci->ps_lock, flags);
 624        WARN_ON(ar_pci->ps_wake_refcount > 0);
 625        __ath10k_pci_sleep(ar);
 626        spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
 627}
 628
 629static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value)
 630{
 631        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 632        int ret;
 633
 634        if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) {
 635                ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
 636                            offset, offset + sizeof(value), ar_pci->mem_len);
 637                return;
 638        }
 639
 640        ret = ath10k_pci_wake(ar);
 641        if (ret) {
 642                ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n",
 643                            value, offset, ret);
 644                return;
 645        }
 646
 647        iowrite32(value, ar_pci->mem + offset);
 648        ath10k_pci_sleep(ar);
 649}
 650
 651static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset)
 652{
 653        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 654        u32 val;
 655        int ret;
 656
 657        if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) {
 658                ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
 659                            offset, offset + sizeof(val), ar_pci->mem_len);
 660                return 0;
 661        }
 662
 663        ret = ath10k_pci_wake(ar);
 664        if (ret) {
 665                ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n",
 666                            offset, ret);
 667                return 0xffffffff;
 668        }
 669
 670        val = ioread32(ar_pci->mem + offset);
 671        ath10k_pci_sleep(ar);
 672
 673        return val;
 674}
 675
 676inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value)
 677{
 678        struct ath10k_ce *ce = ath10k_ce_priv(ar);
 679
 680        ce->bus_ops->write32(ar, offset, value);
 681}
 682
 683inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
 684{
 685        struct ath10k_ce *ce = ath10k_ce_priv(ar);
 686
 687        return ce->bus_ops->read32(ar, offset);
 688}
 689
 690u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr)
 691{
 692        return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
 693}
 694
 695void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val)
 696{
 697        ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val);
 698}
 699
 700u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr)
 701{
 702        return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr);
 703}
 704
 705void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val)
 706{
 707        ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val);
 708}
 709
 710bool ath10k_pci_irq_pending(struct ath10k *ar)
 711{
 712        u32 cause;
 713
 714        /* Check if the shared legacy irq is for us */
 715        cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
 716                                  PCIE_INTR_CAUSE_ADDRESS);
 717        if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
 718                return true;
 719
 720        return false;
 721}
 722
 723void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
 724{
 725        /* IMPORTANT: INTR_CLR register has to be set after
 726         * INTR_ENABLE is set to 0, otherwise interrupt can not be
 727         * really cleared.
 728         */
 729        ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
 730                           0);
 731        ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
 732                           PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
 733
 734        /* IMPORTANT: this extra read transaction is required to
 735         * flush the posted write buffer.
 736         */
 737        (void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
 738                                PCIE_INTR_ENABLE_ADDRESS);
 739}
 740
 741void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
 742{
 743        ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
 744                           PCIE_INTR_ENABLE_ADDRESS,
 745                           PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
 746
 747        /* IMPORTANT: this extra read transaction is required to
 748         * flush the posted write buffer.
 749         */
 750        (void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
 751                                PCIE_INTR_ENABLE_ADDRESS);
 752}
 753
 754static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
 755{
 756        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 757
 758        if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_MSI)
 759                return "msi";
 760
 761        return "legacy";
 762}
 763
 764static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
 765{
 766        struct ath10k *ar = pipe->hif_ce_state;
 767        struct ath10k_ce *ce = ath10k_ce_priv(ar);
 768        struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
 769        struct sk_buff *skb;
 770        dma_addr_t paddr;
 771        int ret;
 772
 773        skb = dev_alloc_skb(pipe->buf_sz);
 774        if (!skb)
 775                return -ENOMEM;
 776
 777        WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
 778
 779        paddr = dma_map_single(ar->dev, skb->data,
 780                               skb->len + skb_tailroom(skb),
 781                               DMA_FROM_DEVICE);
 782        if (unlikely(dma_mapping_error(ar->dev, paddr))) {
 783                ath10k_warn(ar, "failed to dma map pci rx buf\n");
 784                dev_kfree_skb_any(skb);
 785                return -EIO;
 786        }
 787
 788        ATH10K_SKB_RXCB(skb)->paddr = paddr;
 789
 790        spin_lock_bh(&ce->ce_lock);
 791        ret = ce_pipe->ops->ce_rx_post_buf(ce_pipe, skb, paddr);
 792        spin_unlock_bh(&ce->ce_lock);
 793        if (ret) {
 794                dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
 795                                 DMA_FROM_DEVICE);
 796                dev_kfree_skb_any(skb);
 797                return ret;
 798        }
 799
 800        return 0;
 801}
 802
 803static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
 804{
 805        struct ath10k *ar = pipe->hif_ce_state;
 806        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 807        struct ath10k_ce *ce = ath10k_ce_priv(ar);
 808        struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
 809        int ret, num;
 810
 811        if (pipe->buf_sz == 0)
 812                return;
 813
 814        if (!ce_pipe->dest_ring)
 815                return;
 816
 817        spin_lock_bh(&ce->ce_lock);
 818        num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
 819        spin_unlock_bh(&ce->ce_lock);
 820
 821        while (num >= 0) {
 822                ret = __ath10k_pci_rx_post_buf(pipe);
 823                if (ret) {
 824                        if (ret == -ENOSPC)
 825                                break;
 826                        ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
 827                        mod_timer(&ar_pci->rx_post_retry, jiffies +
 828                                  ATH10K_PCI_RX_POST_RETRY_MS);
 829                        break;
 830                }
 831                num--;
 832        }
 833}
 834
 835void ath10k_pci_rx_post(struct ath10k *ar)
 836{
 837        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 838        int i;
 839
 840        for (i = 0; i < CE_COUNT; i++)
 841                ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
 842}
 843
 844void ath10k_pci_rx_replenish_retry(struct timer_list *t)
 845{
 846        struct ath10k_pci *ar_pci = from_timer(ar_pci, t, rx_post_retry);
 847        struct ath10k *ar = ar_pci->ar;
 848
 849        ath10k_pci_rx_post(ar);
 850}
 851
 852static u32 ath10k_pci_qca988x_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
 853{
 854        u32 val = 0, region = addr & 0xfffff;
 855
 856        val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
 857                                 & 0x7ff) << 21;
 858        val |= 0x100000 | region;
 859        return val;
 860}
 861
 862/* Refactor from ath10k_pci_qca988x_targ_cpu_to_ce_addr.
 863 * Support to access target space below 1M for qca6174 and qca9377.
 864 * If target space is below 1M, the bit[20] of converted CE addr is 0.
 865 * Otherwise bit[20] of converted CE addr is 1.
 866 */
 867static u32 ath10k_pci_qca6174_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
 868{
 869        u32 val = 0, region = addr & 0xfffff;
 870
 871        val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
 872                                 & 0x7ff) << 21;
 873        val |= ((addr >= 0x100000) ? 0x100000 : 0) | region;
 874        return val;
 875}
 876
 877static u32 ath10k_pci_qca99x0_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
 878{
 879        u32 val = 0, region = addr & 0xfffff;
 880
 881        val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
 882        val |= 0x100000 | region;
 883        return val;
 884}
 885
 886static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
 887{
 888        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 889
 890        if (WARN_ON_ONCE(!ar_pci->targ_cpu_to_ce_addr))
 891                return -ENOTSUPP;
 892
 893        return ar_pci->targ_cpu_to_ce_addr(ar, addr);
 894}
 895
 896/*
 897 * Diagnostic read/write access is provided for startup/config/debug usage.
 898 * Caller must guarantee proper alignment, when applicable, and single user
 899 * at any moment.
 900 */
 901static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
 902                                    int nbytes)
 903{
 904        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 905        int ret = 0;
 906        u32 *buf;
 907        unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
 908        struct ath10k_ce_pipe *ce_diag;
 909        /* Host buffer address in CE space */
 910        u32 ce_data;
 911        dma_addr_t ce_data_base = 0;
 912        void *data_buf;
 913        int i;
 914
 915        mutex_lock(&ar_pci->ce_diag_mutex);
 916        ce_diag = ar_pci->ce_diag;
 917
 918        /*
 919         * Allocate a temporary bounce buffer to hold caller's data
 920         * to be DMA'ed from Target. This guarantees
 921         *   1) 4-byte alignment
 922         *   2) Buffer in DMA-able space
 923         */
 924        alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
 925
 926        data_buf = dma_alloc_coherent(ar->dev, alloc_nbytes, &ce_data_base,
 927                                      GFP_ATOMIC);
 928        if (!data_buf) {
 929                ret = -ENOMEM;
 930                goto done;
 931        }
 932
 933        /* The address supplied by the caller is in the
 934         * Target CPU virtual address space.
 935         *
 936         * In order to use this address with the diagnostic CE,
 937         * convert it from Target CPU virtual address space
 938         * to CE address space
 939         */
 940        address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
 941
 942        remaining_bytes = nbytes;
 943        ce_data = ce_data_base;
 944        while (remaining_bytes) {
 945                nbytes = min_t(unsigned int, remaining_bytes,
 946                               DIAG_TRANSFER_LIMIT);
 947
 948                ret = ath10k_ce_rx_post_buf(ce_diag, &ce_data, ce_data);
 949                if (ret != 0)
 950                        goto done;
 951
 952                /* Request CE to send from Target(!) address to Host buffer */
 953                ret = ath10k_ce_send(ce_diag, NULL, (u32)address, nbytes, 0, 0);
 954                if (ret)
 955                        goto done;
 956
 957                i = 0;
 958                while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) {
 959                        udelay(DIAG_ACCESS_CE_WAIT_US);
 960                        i += DIAG_ACCESS_CE_WAIT_US;
 961
 962                        if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
 963                                ret = -EBUSY;
 964                                goto done;
 965                        }
 966                }
 967
 968                i = 0;
 969                while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf,
 970                                                     &completed_nbytes) != 0) {
 971                        udelay(DIAG_ACCESS_CE_WAIT_US);
 972                        i += DIAG_ACCESS_CE_WAIT_US;
 973
 974                        if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
 975                                ret = -EBUSY;
 976                                goto done;
 977                        }
 978                }
 979
 980                if (nbytes != completed_nbytes) {
 981                        ret = -EIO;
 982                        goto done;
 983                }
 984
 985                if (*buf != ce_data) {
 986                        ret = -EIO;
 987                        goto done;
 988                }
 989
 990                remaining_bytes -= nbytes;
 991                memcpy(data, data_buf, nbytes);
 992
 993                address += nbytes;
 994                data += nbytes;
 995        }
 996
 997done:
 998
 999        if (data_buf)
1000                dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
1001                                  ce_data_base);
1002
1003        mutex_unlock(&ar_pci->ce_diag_mutex);
1004
1005        return ret;
1006}
1007
1008static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
1009{
1010        __le32 val = 0;
1011        int ret;
1012
1013        ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
1014        *value = __le32_to_cpu(val);
1015
1016        return ret;
1017}
1018
1019static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
1020                                     u32 src, u32 len)
1021{
1022        u32 host_addr, addr;
1023        int ret;
1024
1025        host_addr = host_interest_item_address(src);
1026
1027        ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
1028        if (ret != 0) {
1029                ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
1030                            src, ret);
1031                return ret;
1032        }
1033
1034        ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
1035        if (ret != 0) {
1036                ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
1037                            addr, len, ret);
1038                return ret;
1039        }
1040
1041        return 0;
1042}
1043
1044#define ath10k_pci_diag_read_hi(ar, dest, src, len)             \
1045        __ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
1046
1047int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
1048                              const void *data, int nbytes)
1049{
1050        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1051        int ret = 0;
1052        u32 *buf;
1053        unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
1054        struct ath10k_ce_pipe *ce_diag;
1055        void *data_buf;
1056        dma_addr_t ce_data_base = 0;
1057        int i;
1058
1059        mutex_lock(&ar_pci->ce_diag_mutex);
1060        ce_diag = ar_pci->ce_diag;
1061
1062        /*
1063         * Allocate a temporary bounce buffer to hold caller's data
1064         * to be DMA'ed to Target. This guarantees
1065         *   1) 4-byte alignment
1066         *   2) Buffer in DMA-able space
1067         */
1068        alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
1069
1070        data_buf = dma_alloc_coherent(ar->dev, alloc_nbytes, &ce_data_base,
1071                                      GFP_ATOMIC);
1072        if (!data_buf) {
1073                ret = -ENOMEM;
1074                goto done;
1075        }
1076
1077        /*
1078         * The address supplied by the caller is in the
1079         * Target CPU virtual address space.
1080         *
1081         * In order to use this address with the diagnostic CE,
1082         * convert it from
1083         *    Target CPU virtual address space
1084         * to
1085         *    CE address space
1086         */
1087        address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
1088
1089        remaining_bytes = nbytes;
1090        while (remaining_bytes) {
1091                /* FIXME: check cast */
1092                nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
1093
1094                /* Copy caller's data to allocated DMA buf */
1095                memcpy(data_buf, data, nbytes);
1096
1097                /* Set up to receive directly into Target(!) address */
1098                ret = ath10k_ce_rx_post_buf(ce_diag, &address, address);
1099                if (ret != 0)
1100                        goto done;
1101
1102                /*
1103                 * Request CE to send caller-supplied data that
1104                 * was copied to bounce buffer to Target(!) address.
1105                 */
1106                ret = ath10k_ce_send(ce_diag, NULL, ce_data_base, nbytes, 0, 0);
1107                if (ret != 0)
1108                        goto done;
1109
1110                i = 0;
1111                while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) {
1112                        udelay(DIAG_ACCESS_CE_WAIT_US);
1113                        i += DIAG_ACCESS_CE_WAIT_US;
1114
1115                        if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1116                                ret = -EBUSY;
1117                                goto done;
1118                        }
1119                }
1120
1121                i = 0;
1122                while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf,
1123                                                     &completed_nbytes) != 0) {
1124                        udelay(DIAG_ACCESS_CE_WAIT_US);
1125                        i += DIAG_ACCESS_CE_WAIT_US;
1126
1127                        if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1128                                ret = -EBUSY;
1129                                goto done;
1130                        }
1131                }
1132
1133                if (nbytes != completed_nbytes) {
1134                        ret = -EIO;
1135                        goto done;
1136                }
1137
1138                if (*buf != address) {
1139                        ret = -EIO;
1140                        goto done;
1141                }
1142
1143                remaining_bytes -= nbytes;
1144                address += nbytes;
1145                data += nbytes;
1146        }
1147
1148done:
1149        if (data_buf) {
1150                dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
1151                                  ce_data_base);
1152        }
1153
1154        if (ret != 0)
1155                ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
1156                            address, ret);
1157
1158        mutex_unlock(&ar_pci->ce_diag_mutex);
1159
1160        return ret;
1161}
1162
1163static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
1164{
1165        __le32 val = __cpu_to_le32(value);
1166
1167        return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
1168}
1169
1170/* Called by lower (CE) layer when a send to Target completes. */
1171static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
1172{
1173        struct ath10k *ar = ce_state->ar;
1174        struct sk_buff_head list;
1175        struct sk_buff *skb;
1176
1177        __skb_queue_head_init(&list);
1178        while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1179                /* no need to call tx completion for NULL pointers */
1180                if (skb == NULL)
1181                        continue;
1182
1183                __skb_queue_tail(&list, skb);
1184        }
1185
1186        while ((skb = __skb_dequeue(&list)))
1187                ath10k_htc_tx_completion_handler(ar, skb);
1188}
1189
1190static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state,
1191                                     void (*callback)(struct ath10k *ar,
1192                                                      struct sk_buff *skb))
1193{
1194        struct ath10k *ar = ce_state->ar;
1195        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1196        struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1197        struct sk_buff *skb;
1198        struct sk_buff_head list;
1199        void *transfer_context;
1200        unsigned int nbytes, max_nbytes;
1201
1202        __skb_queue_head_init(&list);
1203        while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
1204                                             &nbytes) == 0) {
1205                skb = transfer_context;
1206                max_nbytes = skb->len + skb_tailroom(skb);
1207                dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1208                                 max_nbytes, DMA_FROM_DEVICE);
1209
1210                if (unlikely(max_nbytes < nbytes)) {
1211                        ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1212                                    nbytes, max_nbytes);
1213                        dev_kfree_skb_any(skb);
1214                        continue;
1215                }
1216
1217                skb_put(skb, nbytes);
1218                __skb_queue_tail(&list, skb);
1219        }
1220
1221        while ((skb = __skb_dequeue(&list))) {
1222                ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1223                           ce_state->id, skb->len);
1224                ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1225                                skb->data, skb->len);
1226
1227                callback(ar, skb);
1228        }
1229
1230        ath10k_pci_rx_post_pipe(pipe_info);
1231}
1232
1233static void ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe *ce_state,
1234                                         void (*callback)(struct ath10k *ar,
1235                                                          struct sk_buff *skb))
1236{
1237        struct ath10k *ar = ce_state->ar;
1238        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1239        struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1240        struct ath10k_ce_pipe *ce_pipe = pipe_info->ce_hdl;
1241        struct sk_buff *skb;
1242        struct sk_buff_head list;
1243        void *transfer_context;
1244        unsigned int nbytes, max_nbytes, nentries;
1245        int orig_len;
1246
1247        /* No need to aquire ce_lock for CE5, since this is the only place CE5
1248         * is processed other than init and deinit. Before releasing CE5
1249         * buffers, interrupts are disabled. Thus CE5 access is serialized.
1250         */
1251        __skb_queue_head_init(&list);
1252        while (ath10k_ce_completed_recv_next_nolock(ce_state, &transfer_context,
1253                                                    &nbytes) == 0) {
1254                skb = transfer_context;
1255                max_nbytes = skb->len + skb_tailroom(skb);
1256
1257                if (unlikely(max_nbytes < nbytes)) {
1258                        ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1259                                    nbytes, max_nbytes);
1260                        continue;
1261                }
1262
1263                dma_sync_single_for_cpu(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1264                                        max_nbytes, DMA_FROM_DEVICE);
1265                skb_put(skb, nbytes);
1266                __skb_queue_tail(&list, skb);
1267        }
1268
1269        nentries = skb_queue_len(&list);
1270        while ((skb = __skb_dequeue(&list))) {
1271                ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1272                           ce_state->id, skb->len);
1273                ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1274                                skb->data, skb->len);
1275
1276                orig_len = skb->len;
1277                callback(ar, skb);
1278                skb_push(skb, orig_len - skb->len);
1279                skb_reset_tail_pointer(skb);
1280                skb_trim(skb, 0);
1281
1282                /*let device gain the buffer again*/
1283                dma_sync_single_for_device(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1284                                           skb->len + skb_tailroom(skb),
1285                                           DMA_FROM_DEVICE);
1286        }
1287        ath10k_ce_rx_update_write_idx(ce_pipe, nentries);
1288}
1289
1290/* Called by lower (CE) layer when data is received from the Target. */
1291static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1292{
1293        ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1294}
1295
1296static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1297{
1298        /* CE4 polling needs to be done whenever CE pipe which transports
1299         * HTT Rx (target->host) is processed.
1300         */
1301        ath10k_ce_per_engine_service(ce_state->ar, 4);
1302
1303        ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1304}
1305
1306/* Called by lower (CE) layer when data is received from the Target.
1307 * Only 10.4 firmware uses separate CE to transfer pktlog data.
1308 */
1309static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state)
1310{
1311        ath10k_pci_process_rx_cb(ce_state,
1312                                 ath10k_htt_rx_pktlog_completion_handler);
1313}
1314
1315/* Called by lower (CE) layer when a send to HTT Target completes. */
1316static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
1317{
1318        struct ath10k *ar = ce_state->ar;
1319        struct sk_buff *skb;
1320
1321        while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1322                /* no need to call tx completion for NULL pointers */
1323                if (!skb)
1324                        continue;
1325
1326                dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
1327                                 skb->len, DMA_TO_DEVICE);
1328                ath10k_htt_hif_tx_complete(ar, skb);
1329        }
1330}
1331
1332static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
1333{
1334        skb_pull(skb, sizeof(struct ath10k_htc_hdr));
1335        ath10k_htt_t2h_msg_handler(ar, skb);
1336}
1337
1338/* Called by lower (CE) layer when HTT data is received from the Target. */
1339static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
1340{
1341        /* CE4 polling needs to be done whenever CE pipe which transports
1342         * HTT Rx (target->host) is processed.
1343         */
1344        ath10k_ce_per_engine_service(ce_state->ar, 4);
1345
1346        ath10k_pci_process_htt_rx_cb(ce_state, ath10k_pci_htt_rx_deliver);
1347}
1348
1349int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1350                         struct ath10k_hif_sg_item *items, int n_items)
1351{
1352        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1353        struct ath10k_ce *ce = ath10k_ce_priv(ar);
1354        struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
1355        struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
1356        struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
1357        unsigned int nentries_mask;
1358        unsigned int sw_index;
1359        unsigned int write_index;
1360        int err, i = 0;
1361
1362        spin_lock_bh(&ce->ce_lock);
1363
1364        nentries_mask = src_ring->nentries_mask;
1365        sw_index = src_ring->sw_index;
1366        write_index = src_ring->write_index;
1367
1368        if (unlikely(CE_RING_DELTA(nentries_mask,
1369                                   write_index, sw_index - 1) < n_items)) {
1370                err = -ENOBUFS;
1371                goto err;
1372        }
1373
1374        for (i = 0; i < n_items - 1; i++) {
1375                ath10k_dbg(ar, ATH10K_DBG_PCI,
1376                           "pci tx item %d paddr %pad len %d n_items %d\n",
1377                           i, &items[i].paddr, items[i].len, n_items);
1378                ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1379                                items[i].vaddr, items[i].len);
1380
1381                err = ath10k_ce_send_nolock(ce_pipe,
1382                                            items[i].transfer_context,
1383                                            items[i].paddr,
1384                                            items[i].len,
1385                                            items[i].transfer_id,
1386                                            CE_SEND_FLAG_GATHER);
1387                if (err)
1388                        goto err;
1389        }
1390
1391        /* `i` is equal to `n_items -1` after for() */
1392
1393        ath10k_dbg(ar, ATH10K_DBG_PCI,
1394                   "pci tx item %d paddr %pad len %d n_items %d\n",
1395                   i, &items[i].paddr, items[i].len, n_items);
1396        ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1397                        items[i].vaddr, items[i].len);
1398
1399        err = ath10k_ce_send_nolock(ce_pipe,
1400                                    items[i].transfer_context,
1401                                    items[i].paddr,
1402                                    items[i].len,
1403                                    items[i].transfer_id,
1404                                    0);
1405        if (err)
1406                goto err;
1407
1408        spin_unlock_bh(&ce->ce_lock);
1409        return 0;
1410
1411err:
1412        for (; i > 0; i--)
1413                __ath10k_ce_send_revert(ce_pipe);
1414
1415        spin_unlock_bh(&ce->ce_lock);
1416        return err;
1417}
1418
1419int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1420                             size_t buf_len)
1421{
1422        return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
1423}
1424
1425u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
1426{
1427        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1428
1429        ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
1430
1431        return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
1432}
1433
1434static void ath10k_pci_dump_registers(struct ath10k *ar,
1435                                      struct ath10k_fw_crash_data *crash_data)
1436{
1437        __le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
1438        int i, ret;
1439
1440        lockdep_assert_held(&ar->dump_mutex);
1441
1442        ret = ath10k_pci_diag_read_hi(ar, &reg_dump_values[0],
1443                                      hi_failure_state,
1444                                      REG_DUMP_COUNT_QCA988X * sizeof(__le32));
1445        if (ret) {
1446                ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
1447                return;
1448        }
1449
1450        BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
1451
1452        ath10k_err(ar, "firmware register dump:\n");
1453        for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1454                ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1455                           i,
1456                           __le32_to_cpu(reg_dump_values[i]),
1457                           __le32_to_cpu(reg_dump_values[i + 1]),
1458                           __le32_to_cpu(reg_dump_values[i + 2]),
1459                           __le32_to_cpu(reg_dump_values[i + 3]));
1460
1461        if (!crash_data)
1462                return;
1463
1464        for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1465                crash_data->registers[i] = reg_dump_values[i];
1466}
1467
1468static int ath10k_pci_dump_memory_section(struct ath10k *ar,
1469                                          const struct ath10k_mem_region *mem_region,
1470                                          u8 *buf, size_t buf_len)
1471{
1472        const struct ath10k_mem_section *cur_section, *next_section;
1473        unsigned int count, section_size, skip_size;
1474        int ret, i, j;
1475
1476        if (!mem_region || !buf)
1477                return 0;
1478
1479        cur_section = &mem_region->section_table.sections[0];
1480
1481        if (mem_region->start > cur_section->start) {
1482                ath10k_warn(ar, "incorrect memdump region 0x%x with section start address 0x%x.\n",
1483                            mem_region->start, cur_section->start);
1484                return 0;
1485        }
1486
1487        skip_size = cur_section->start - mem_region->start;
1488
1489        /* fill the gap between the first register section and register
1490         * start address
1491         */
1492        for (i = 0; i < skip_size; i++) {
1493                *buf = ATH10K_MAGIC_NOT_COPIED;
1494                buf++;
1495        }
1496
1497        count = 0;
1498
1499        for (i = 0; cur_section != NULL; i++) {
1500                section_size = cur_section->end - cur_section->start;
1501
1502                if (section_size <= 0) {
1503                        ath10k_warn(ar, "incorrect ramdump format with start address 0x%x and stop address 0x%x\n",
1504                                    cur_section->start,
1505                                    cur_section->end);
1506                        break;
1507                }
1508
1509                if ((i + 1) == mem_region->section_table.size) {
1510                        /* last section */
1511                        next_section = NULL;
1512                        skip_size = 0;
1513                } else {
1514                        next_section = cur_section + 1;
1515
1516                        if (cur_section->end > next_section->start) {
1517                                ath10k_warn(ar, "next ramdump section 0x%x is smaller than current end address 0x%x\n",
1518                                            next_section->start,
1519                                            cur_section->end);
1520                                break;
1521                        }
1522
1523                        skip_size = next_section->start - cur_section->end;
1524                }
1525
1526                if (buf_len < (skip_size + section_size)) {
1527                        ath10k_warn(ar, "ramdump buffer is too small: %zu\n", buf_len);
1528                        break;
1529                }
1530
1531                buf_len -= skip_size + section_size;
1532
1533                /* read section to dest memory */
1534                ret = ath10k_pci_diag_read_mem(ar, cur_section->start,
1535                                               buf, section_size);
1536                if (ret) {
1537                        ath10k_warn(ar, "failed to read ramdump from section 0x%x: %d\n",
1538                                    cur_section->start, ret);
1539                        break;
1540                }
1541
1542                buf += section_size;
1543                count += section_size;
1544
1545                /* fill in the gap between this section and the next */
1546                for (j = 0; j < skip_size; j++) {
1547                        *buf = ATH10K_MAGIC_NOT_COPIED;
1548                        buf++;
1549                }
1550
1551                count += skip_size;
1552
1553                if (!next_section)
1554                        /* this was the last section */
1555                        break;
1556
1557                cur_section = next_section;
1558        }
1559
1560        return count;
1561}
1562
1563static int ath10k_pci_set_ram_config(struct ath10k *ar, u32 config)
1564{
1565        u32 val;
1566
1567        ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1568                           FW_RAM_CONFIG_ADDRESS, config);
1569
1570        val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1571                                FW_RAM_CONFIG_ADDRESS);
1572        if (val != config) {
1573                ath10k_warn(ar, "failed to set RAM config from 0x%x to 0x%x\n",
1574                            val, config);
1575                return -EIO;
1576        }
1577
1578        return 0;
1579}
1580
1581/* Always returns the length */
1582static int ath10k_pci_dump_memory_sram(struct ath10k *ar,
1583                                       const struct ath10k_mem_region *region,
1584                                       u8 *buf)
1585{
1586        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1587        u32 base_addr, i;
1588
1589        base_addr = ioread32(ar_pci->mem + QCA99X0_PCIE_BAR0_START_REG);
1590        base_addr += region->start;
1591
1592        for (i = 0; i < region->len; i += 4) {
1593                iowrite32(base_addr + i, ar_pci->mem + QCA99X0_CPU_MEM_ADDR_REG);
1594                *(u32 *)(buf + i) = ioread32(ar_pci->mem + QCA99X0_CPU_MEM_DATA_REG);
1595        }
1596
1597        return region->len;
1598}
1599
1600/* if an error happened returns < 0, otherwise the length */
1601static int ath10k_pci_dump_memory_reg(struct ath10k *ar,
1602                                      const struct ath10k_mem_region *region,
1603                                      u8 *buf)
1604{
1605        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1606        u32 i;
1607        int ret;
1608
1609        mutex_lock(&ar->conf_mutex);
1610        if (ar->state != ATH10K_STATE_ON) {
1611                ath10k_warn(ar, "Skipping pci_dump_memory_reg invalid state\n");
1612                ret = -EIO;
1613                goto done;
1614        }
1615
1616        for (i = 0; i < region->len; i += 4)
1617                *(u32 *)(buf + i) = ioread32(ar_pci->mem + region->start + i);
1618
1619        ret = region->len;
1620done:
1621        mutex_unlock(&ar->conf_mutex);
1622        return ret;
1623}
1624
1625/* if an error happened returns < 0, otherwise the length */
1626static int ath10k_pci_dump_memory_generic(struct ath10k *ar,
1627                                          const struct ath10k_mem_region *current_region,
1628                                          u8 *buf)
1629{
1630        int ret;
1631
1632        if (current_region->section_table.size > 0)
1633                /* Copy each section individually. */
1634                return ath10k_pci_dump_memory_section(ar,
1635                                                      current_region,
1636                                                      buf,
1637                                                      current_region->len);
1638
1639        /* No individiual memory sections defined so we can
1640         * copy the entire memory region.
1641         */
1642        ret = ath10k_pci_diag_read_mem(ar,
1643                                       current_region->start,
1644                                       buf,
1645                                       current_region->len);
1646        if (ret) {
1647                ath10k_warn(ar, "failed to copy ramdump region %s: %d\n",
1648                            current_region->name, ret);
1649                return ret;
1650        }
1651
1652        return current_region->len;
1653}
1654
1655static void ath10k_pci_dump_memory(struct ath10k *ar,
1656                                   struct ath10k_fw_crash_data *crash_data)
1657{
1658        const struct ath10k_hw_mem_layout *mem_layout;
1659        const struct ath10k_mem_region *current_region;
1660        struct ath10k_dump_ram_data_hdr *hdr;
1661        u32 count, shift;
1662        size_t buf_len;
1663        int ret, i;
1664        u8 *buf;
1665
1666        lockdep_assert_held(&ar->dump_mutex);
1667
1668        if (!crash_data)
1669                return;
1670
1671        mem_layout = ath10k_coredump_get_mem_layout(ar);
1672        if (!mem_layout)
1673                return;
1674
1675        current_region = &mem_layout->region_table.regions[0];
1676
1677        buf = crash_data->ramdump_buf;
1678        buf_len = crash_data->ramdump_buf_len;
1679
1680        memset(buf, 0, buf_len);
1681
1682        for (i = 0; i < mem_layout->region_table.size; i++) {
1683                count = 0;
1684
1685                if (current_region->len > buf_len) {
1686                        ath10k_warn(ar, "memory region %s size %d is larger that remaining ramdump buffer size %zu\n",
1687                                    current_region->name,
1688                                    current_region->len,
1689                                    buf_len);
1690                        break;
1691                }
1692
1693                /* To get IRAM dump, the host driver needs to switch target
1694                 * ram config from DRAM to IRAM.
1695                 */
1696                if (current_region->type == ATH10K_MEM_REGION_TYPE_IRAM1 ||
1697                    current_region->type == ATH10K_MEM_REGION_TYPE_IRAM2) {
1698                        shift = current_region->start >> 20;
1699
1700                        ret = ath10k_pci_set_ram_config(ar, shift);
1701                        if (ret) {
1702                                ath10k_warn(ar, "failed to switch ram config to IRAM for section %s: %d\n",
1703                                            current_region->name, ret);
1704                                break;
1705                        }
1706                }
1707
1708                /* Reserve space for the header. */
1709                hdr = (void *)buf;
1710                buf += sizeof(*hdr);
1711                buf_len -= sizeof(*hdr);
1712
1713                switch (current_region->type) {
1714                case ATH10K_MEM_REGION_TYPE_IOSRAM:
1715                        count = ath10k_pci_dump_memory_sram(ar, current_region, buf);
1716                        break;
1717                case ATH10K_MEM_REGION_TYPE_IOREG:
1718                        ret = ath10k_pci_dump_memory_reg(ar, current_region, buf);
1719                        if (ret < 0)
1720                                break;
1721
1722                        count = ret;
1723                        break;
1724                default:
1725                        ret = ath10k_pci_dump_memory_generic(ar, current_region, buf);
1726                        if (ret < 0)
1727                                break;
1728
1729                        count = ret;
1730                        break;
1731                }
1732
1733                hdr->region_type = cpu_to_le32(current_region->type);
1734                hdr->start = cpu_to_le32(current_region->start);
1735                hdr->length = cpu_to_le32(count);
1736
1737                if (count == 0)
1738                        /* Note: the header remains, just with zero length. */
1739                        break;
1740
1741                buf += count;
1742                buf_len -= count;
1743
1744                current_region++;
1745        }
1746}
1747
1748static void ath10k_pci_fw_dump_work(struct work_struct *work)
1749{
1750        struct ath10k_pci *ar_pci = container_of(work, struct ath10k_pci,
1751                                                 dump_work);
1752        struct ath10k_fw_crash_data *crash_data;
1753        struct ath10k *ar = ar_pci->ar;
1754        char guid[UUID_STRING_LEN + 1];
1755
1756        mutex_lock(&ar->dump_mutex);
1757
1758        spin_lock_bh(&ar->data_lock);
1759        ar->stats.fw_crash_counter++;
1760        spin_unlock_bh(&ar->data_lock);
1761
1762        crash_data = ath10k_coredump_new(ar);
1763
1764        if (crash_data)
1765                scnprintf(guid, sizeof(guid), "%pUl", &crash_data->guid);
1766        else
1767                scnprintf(guid, sizeof(guid), "n/a");
1768
1769        ath10k_err(ar, "firmware crashed! (guid %s)\n", guid);
1770        ath10k_print_driver_info(ar);
1771        ath10k_pci_dump_registers(ar, crash_data);
1772        ath10k_ce_dump_registers(ar, crash_data);
1773        ath10k_pci_dump_memory(ar, crash_data);
1774
1775        mutex_unlock(&ar->dump_mutex);
1776
1777        queue_work(ar->workqueue, &ar->restart_work);
1778}
1779
1780static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
1781{
1782        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1783
1784        queue_work(ar->workqueue, &ar_pci->dump_work);
1785}
1786
1787void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1788                                        int force)
1789{
1790        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1791
1792        ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1793
1794        if (!force) {
1795                int resources;
1796                /*
1797                 * Decide whether to actually poll for completions, or just
1798                 * wait for a later chance.
1799                 * If there seem to be plenty of resources left, then just wait
1800                 * since checking involves reading a CE register, which is a
1801                 * relatively expensive operation.
1802                 */
1803                resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1804
1805                /*
1806                 * If at least 50% of the total resources are still available,
1807                 * don't bother checking again yet.
1808                 */
1809                if (resources > (ar_pci->attr[pipe].src_nentries >> 1))
1810                        return;
1811        }
1812        ath10k_ce_per_engine_service(ar, pipe);
1813}
1814
1815static void ath10k_pci_rx_retry_sync(struct ath10k *ar)
1816{
1817        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1818
1819        del_timer_sync(&ar_pci->rx_post_retry);
1820}
1821
1822int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id,
1823                                       u8 *ul_pipe, u8 *dl_pipe)
1824{
1825        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1826        const struct ce_service_to_pipe *entry;
1827        bool ul_set = false, dl_set = false;
1828        int i;
1829
1830        ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1831
1832        for (i = 0; i < ARRAY_SIZE(pci_target_service_to_ce_map_wlan); i++) {
1833                entry = &ar_pci->serv_to_pipe[i];
1834
1835                if (__le32_to_cpu(entry->service_id) != service_id)
1836                        continue;
1837
1838                switch (__le32_to_cpu(entry->pipedir)) {
1839                case PIPEDIR_NONE:
1840                        break;
1841                case PIPEDIR_IN:
1842                        WARN_ON(dl_set);
1843                        *dl_pipe = __le32_to_cpu(entry->pipenum);
1844                        dl_set = true;
1845                        break;
1846                case PIPEDIR_OUT:
1847                        WARN_ON(ul_set);
1848                        *ul_pipe = __le32_to_cpu(entry->pipenum);
1849                        ul_set = true;
1850                        break;
1851                case PIPEDIR_INOUT:
1852                        WARN_ON(dl_set);
1853                        WARN_ON(ul_set);
1854                        *dl_pipe = __le32_to_cpu(entry->pipenum);
1855                        *ul_pipe = __le32_to_cpu(entry->pipenum);
1856                        dl_set = true;
1857                        ul_set = true;
1858                        break;
1859                }
1860        }
1861
1862        if (!ul_set || !dl_set)
1863                return -ENOENT;
1864
1865        return 0;
1866}
1867
1868void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1869                                     u8 *ul_pipe, u8 *dl_pipe)
1870{
1871        ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1872
1873        (void)ath10k_pci_hif_map_service_to_pipe(ar,
1874                                                 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1875                                                 ul_pipe, dl_pipe);
1876}
1877
1878void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1879{
1880        u32 val;
1881
1882        switch (ar->hw_rev) {
1883        case ATH10K_HW_QCA988X:
1884        case ATH10K_HW_QCA9887:
1885        case ATH10K_HW_QCA6174:
1886        case ATH10K_HW_QCA9377:
1887                val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1888                                        CORE_CTRL_ADDRESS);
1889                val &= ~CORE_CTRL_PCIE_REG_31_MASK;
1890                ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1891                                   CORE_CTRL_ADDRESS, val);
1892                break;
1893        case ATH10K_HW_QCA99X0:
1894        case ATH10K_HW_QCA9984:
1895        case ATH10K_HW_QCA9888:
1896        case ATH10K_HW_QCA4019:
1897                /* TODO: Find appropriate register configuration for QCA99X0
1898                 *  to mask irq/MSI.
1899                 */
1900                break;
1901        case ATH10K_HW_WCN3990:
1902                break;
1903        }
1904}
1905
1906static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
1907{
1908        u32 val;
1909
1910        switch (ar->hw_rev) {
1911        case ATH10K_HW_QCA988X:
1912        case ATH10K_HW_QCA9887:
1913        case ATH10K_HW_QCA6174:
1914        case ATH10K_HW_QCA9377:
1915                val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1916                                        CORE_CTRL_ADDRESS);
1917                val |= CORE_CTRL_PCIE_REG_31_MASK;
1918                ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1919                                   CORE_CTRL_ADDRESS, val);
1920                break;
1921        case ATH10K_HW_QCA99X0:
1922        case ATH10K_HW_QCA9984:
1923        case ATH10K_HW_QCA9888:
1924        case ATH10K_HW_QCA4019:
1925                /* TODO: Find appropriate register configuration for QCA99X0
1926                 *  to unmask irq/MSI.
1927                 */
1928                break;
1929        case ATH10K_HW_WCN3990:
1930                break;
1931        }
1932}
1933
1934static void ath10k_pci_irq_disable(struct ath10k *ar)
1935{
1936        ath10k_ce_disable_interrupts(ar);
1937        ath10k_pci_disable_and_clear_legacy_irq(ar);
1938        ath10k_pci_irq_msi_fw_mask(ar);
1939}
1940
1941static void ath10k_pci_irq_sync(struct ath10k *ar)
1942{
1943        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1944
1945        synchronize_irq(ar_pci->pdev->irq);
1946}
1947
1948static void ath10k_pci_irq_enable(struct ath10k *ar)
1949{
1950        ath10k_ce_enable_interrupts(ar);
1951        ath10k_pci_enable_legacy_irq(ar);
1952        ath10k_pci_irq_msi_fw_unmask(ar);
1953}
1954
1955static int ath10k_pci_hif_start(struct ath10k *ar)
1956{
1957        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1958
1959        ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
1960
1961        napi_enable(&ar->napi);
1962
1963        ath10k_pci_irq_enable(ar);
1964        ath10k_pci_rx_post(ar);
1965
1966        pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
1967                                   ar_pci->link_ctl);
1968
1969        return 0;
1970}
1971
1972static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1973{
1974        struct ath10k *ar;
1975        struct ath10k_ce_pipe *ce_pipe;
1976        struct ath10k_ce_ring *ce_ring;
1977        struct sk_buff *skb;
1978        int i;
1979
1980        ar = pci_pipe->hif_ce_state;
1981        ce_pipe = pci_pipe->ce_hdl;
1982        ce_ring = ce_pipe->dest_ring;
1983
1984        if (!ce_ring)
1985                return;
1986
1987        if (!pci_pipe->buf_sz)
1988                return;
1989
1990        for (i = 0; i < ce_ring->nentries; i++) {
1991                skb = ce_ring->per_transfer_context[i];
1992                if (!skb)
1993                        continue;
1994
1995                ce_ring->per_transfer_context[i] = NULL;
1996
1997                dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1998                                 skb->len + skb_tailroom(skb),
1999                                 DMA_FROM_DEVICE);
2000                dev_kfree_skb_any(skb);
2001        }
2002}
2003
2004static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
2005{
2006        struct ath10k *ar;
2007        struct ath10k_ce_pipe *ce_pipe;
2008        struct ath10k_ce_ring *ce_ring;
2009        struct sk_buff *skb;
2010        int i;
2011
2012        ar = pci_pipe->hif_ce_state;
2013        ce_pipe = pci_pipe->ce_hdl;
2014        ce_ring = ce_pipe->src_ring;
2015
2016        if (!ce_ring)
2017                return;
2018
2019        if (!pci_pipe->buf_sz)
2020                return;
2021
2022        for (i = 0; i < ce_ring->nentries; i++) {
2023                skb = ce_ring->per_transfer_context[i];
2024                if (!skb)
2025                        continue;
2026
2027                ce_ring->per_transfer_context[i] = NULL;
2028
2029                ath10k_htc_tx_completion_handler(ar, skb);
2030        }
2031}
2032
2033/*
2034 * Cleanup residual buffers for device shutdown:
2035 *    buffers that were enqueued for receive
2036 *    buffers that were to be sent
2037 * Note: Buffers that had completed but which were
2038 * not yet processed are on a completion queue. They
2039 * are handled when the completion thread shuts down.
2040 */
2041static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
2042{
2043        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2044        int pipe_num;
2045
2046        for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
2047                struct ath10k_pci_pipe *pipe_info;
2048
2049                pipe_info = &ar_pci->pipe_info[pipe_num];
2050                ath10k_pci_rx_pipe_cleanup(pipe_info);
2051                ath10k_pci_tx_pipe_cleanup(pipe_info);
2052        }
2053}
2054
2055void ath10k_pci_ce_deinit(struct ath10k *ar)
2056{
2057        int i;
2058
2059        for (i = 0; i < CE_COUNT; i++)
2060                ath10k_ce_deinit_pipe(ar, i);
2061}
2062
2063void ath10k_pci_flush(struct ath10k *ar)
2064{
2065        ath10k_pci_rx_retry_sync(ar);
2066        ath10k_pci_buffer_cleanup(ar);
2067}
2068
2069static void ath10k_pci_hif_stop(struct ath10k *ar)
2070{
2071        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2072        unsigned long flags;
2073
2074        ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
2075
2076        ath10k_pci_irq_disable(ar);
2077        ath10k_pci_irq_sync(ar);
2078        napi_synchronize(&ar->napi);
2079        napi_disable(&ar->napi);
2080        cancel_work_sync(&ar_pci->dump_work);
2081
2082        /* Most likely the device has HTT Rx ring configured. The only way to
2083         * prevent the device from accessing (and possible corrupting) host
2084         * memory is to reset the chip now.
2085         *
2086         * There's also no known way of masking MSI interrupts on the device.
2087         * For ranged MSI the CE-related interrupts can be masked. However
2088         * regardless how many MSI interrupts are assigned the first one
2089         * is always used for firmware indications (crashes) and cannot be
2090         * masked. To prevent the device from asserting the interrupt reset it
2091         * before proceeding with cleanup.
2092         */
2093        ath10k_pci_safe_chip_reset(ar);
2094
2095        ath10k_pci_flush(ar);
2096
2097        spin_lock_irqsave(&ar_pci->ps_lock, flags);
2098        WARN_ON(ar_pci->ps_wake_refcount > 0);
2099        spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
2100}
2101
2102int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
2103                                    void *req, u32 req_len,
2104                                    void *resp, u32 *resp_len)
2105{
2106        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2107        struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
2108        struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
2109        struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
2110        struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
2111        dma_addr_t req_paddr = 0;
2112        dma_addr_t resp_paddr = 0;
2113        struct bmi_xfer xfer = {};
2114        void *treq, *tresp = NULL;
2115        int ret = 0;
2116
2117        might_sleep();
2118
2119        if (resp && !resp_len)
2120                return -EINVAL;
2121
2122        if (resp && resp_len && *resp_len == 0)
2123                return -EINVAL;
2124
2125        treq = kmemdup(req, req_len, GFP_KERNEL);
2126        if (!treq)
2127                return -ENOMEM;
2128
2129        req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
2130        ret = dma_mapping_error(ar->dev, req_paddr);
2131        if (ret) {
2132                ret = -EIO;
2133                goto err_dma;
2134        }
2135
2136        if (resp && resp_len) {
2137                tresp = kzalloc(*resp_len, GFP_KERNEL);
2138                if (!tresp) {
2139                        ret = -ENOMEM;
2140                        goto err_req;
2141                }
2142
2143                resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
2144                                            DMA_FROM_DEVICE);
2145                ret = dma_mapping_error(ar->dev, resp_paddr);
2146                if (ret) {
2147                        ret = -EIO;
2148                        goto err_req;
2149                }
2150
2151                xfer.wait_for_resp = true;
2152                xfer.resp_len = 0;
2153
2154                ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
2155        }
2156
2157        ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
2158        if (ret)
2159                goto err_resp;
2160
2161        ret = ath10k_pci_bmi_wait(ar, ce_tx, ce_rx, &xfer);
2162        if (ret) {
2163                dma_addr_t unused_buffer;
2164                unsigned int unused_nbytes;
2165                unsigned int unused_id;
2166
2167                ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
2168                                           &unused_nbytes, &unused_id);
2169        } else {
2170                /* non-zero means we did not time out */
2171                ret = 0;
2172        }
2173
2174err_resp:
2175        if (resp) {
2176                dma_addr_t unused_buffer;
2177
2178                ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
2179                dma_unmap_single(ar->dev, resp_paddr,
2180                                 *resp_len, DMA_FROM_DEVICE);
2181        }
2182err_req:
2183        dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
2184
2185        if (ret == 0 && resp_len) {
2186                *resp_len = min(*resp_len, xfer.resp_len);
2187                memcpy(resp, tresp, xfer.resp_len);
2188        }
2189err_dma:
2190        kfree(treq);
2191        kfree(tresp);
2192
2193        return ret;
2194}
2195
2196static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
2197{
2198        struct bmi_xfer *xfer;
2199
2200        if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer))
2201                return;
2202
2203        xfer->tx_done = true;
2204}
2205
2206static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
2207{
2208        struct ath10k *ar = ce_state->ar;
2209        struct bmi_xfer *xfer;
2210        unsigned int nbytes;
2211
2212        if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer,
2213                                          &nbytes))
2214                return;
2215
2216        if (WARN_ON_ONCE(!xfer))
2217                return;
2218
2219        if (!xfer->wait_for_resp) {
2220                ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
2221                return;
2222        }
2223
2224        xfer->resp_len = nbytes;
2225        xfer->rx_done = true;
2226}
2227
2228static int ath10k_pci_bmi_wait(struct ath10k *ar,
2229                               struct ath10k_ce_pipe *tx_pipe,
2230                               struct ath10k_ce_pipe *rx_pipe,
2231                               struct bmi_xfer *xfer)
2232{
2233        unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
2234        unsigned long started = jiffies;
2235        unsigned long dur;
2236        int ret;
2237
2238        while (time_before_eq(jiffies, timeout)) {
2239                ath10k_pci_bmi_send_done(tx_pipe);
2240                ath10k_pci_bmi_recv_data(rx_pipe);
2241
2242                if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp)) {
2243                        ret = 0;
2244                        goto out;
2245                }
2246
2247                schedule();
2248        }
2249
2250        ret = -ETIMEDOUT;
2251
2252out:
2253        dur = jiffies - started;
2254        if (dur > HZ)
2255                ath10k_dbg(ar, ATH10K_DBG_BMI,
2256                           "bmi cmd took %lu jiffies hz %d ret %d\n",
2257                           dur, HZ, ret);
2258        return ret;
2259}
2260
2261/*
2262 * Send an interrupt to the device to wake up the Target CPU
2263 * so it has an opportunity to notice any changed state.
2264 */
2265static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
2266{
2267        u32 addr, val;
2268
2269        addr = SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS;
2270        val = ath10k_pci_read32(ar, addr);
2271        val |= CORE_CTRL_CPU_INTR_MASK;
2272        ath10k_pci_write32(ar, addr, val);
2273
2274        return 0;
2275}
2276
2277static int ath10k_pci_get_num_banks(struct ath10k *ar)
2278{
2279        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2280
2281        switch (ar_pci->pdev->device) {
2282        case QCA988X_2_0_DEVICE_ID_UBNT:
2283        case QCA988X_2_0_DEVICE_ID:
2284        case QCA99X0_2_0_DEVICE_ID:
2285        case QCA9888_2_0_DEVICE_ID:
2286        case QCA9984_1_0_DEVICE_ID:
2287        case QCA9887_1_0_DEVICE_ID:
2288                return 1;
2289        case QCA6164_2_1_DEVICE_ID:
2290        case QCA6174_2_1_DEVICE_ID:
2291                switch (MS(ar->bus_param.chip_id, SOC_CHIP_ID_REV)) {
2292                case QCA6174_HW_1_0_CHIP_ID_REV:
2293                case QCA6174_HW_1_1_CHIP_ID_REV:
2294                case QCA6174_HW_2_1_CHIP_ID_REV:
2295                case QCA6174_HW_2_2_CHIP_ID_REV:
2296                        return 3;
2297                case QCA6174_HW_1_3_CHIP_ID_REV:
2298                        return 2;
2299                case QCA6174_HW_3_0_CHIP_ID_REV:
2300                case QCA6174_HW_3_1_CHIP_ID_REV:
2301                case QCA6174_HW_3_2_CHIP_ID_REV:
2302                        return 9;
2303                }
2304                break;
2305        case QCA9377_1_0_DEVICE_ID:
2306                return 9;
2307        }
2308
2309        ath10k_warn(ar, "unknown number of banks, assuming 1\n");
2310        return 1;
2311}
2312
2313static int ath10k_bus_get_num_banks(struct ath10k *ar)
2314{
2315        struct ath10k_ce *ce = ath10k_ce_priv(ar);
2316
2317        return ce->bus_ops->get_num_banks(ar);
2318}
2319
2320int ath10k_pci_init_config(struct ath10k *ar)
2321{
2322        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2323        u32 interconnect_targ_addr;
2324        u32 pcie_state_targ_addr = 0;
2325        u32 pipe_cfg_targ_addr = 0;
2326        u32 svc_to_pipe_map = 0;
2327        u32 pcie_config_flags = 0;
2328        u32 ealloc_value;
2329        u32 ealloc_targ_addr;
2330        u32 flag2_value;
2331        u32 flag2_targ_addr;
2332        int ret = 0;
2333
2334        /* Download to Target the CE Config and the service-to-CE map */
2335        interconnect_targ_addr =
2336                host_interest_item_address(HI_ITEM(hi_interconnect_state));
2337
2338        /* Supply Target-side CE configuration */
2339        ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
2340                                     &pcie_state_targ_addr);
2341        if (ret != 0) {
2342                ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
2343                return ret;
2344        }
2345
2346        if (pcie_state_targ_addr == 0) {
2347                ret = -EIO;
2348                ath10k_err(ar, "Invalid pcie state addr\n");
2349                return ret;
2350        }
2351
2352        ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2353                                          offsetof(struct pcie_state,
2354                                                   pipe_cfg_addr)),
2355                                     &pipe_cfg_targ_addr);
2356        if (ret != 0) {
2357                ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
2358                return ret;
2359        }
2360
2361        if (pipe_cfg_targ_addr == 0) {
2362                ret = -EIO;
2363                ath10k_err(ar, "Invalid pipe cfg addr\n");
2364                return ret;
2365        }
2366
2367        ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
2368                                        ar_pci->pipe_config,
2369                                        sizeof(struct ce_pipe_config) *
2370                                        NUM_TARGET_CE_CONFIG_WLAN);
2371
2372        if (ret != 0) {
2373                ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
2374                return ret;
2375        }
2376
2377        ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2378                                          offsetof(struct pcie_state,
2379                                                   svc_to_pipe_map)),
2380                                     &svc_to_pipe_map);
2381        if (ret != 0) {
2382                ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
2383                return ret;
2384        }
2385
2386        if (svc_to_pipe_map == 0) {
2387                ret = -EIO;
2388                ath10k_err(ar, "Invalid svc_to_pipe map\n");
2389                return ret;
2390        }
2391
2392        ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
2393                                        ar_pci->serv_to_pipe,
2394                                        sizeof(pci_target_service_to_ce_map_wlan));
2395        if (ret != 0) {
2396                ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
2397                return ret;
2398        }
2399
2400        ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2401                                          offsetof(struct pcie_state,
2402                                                   config_flags)),
2403                                     &pcie_config_flags);
2404        if (ret != 0) {
2405                ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
2406                return ret;
2407        }
2408
2409        pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
2410
2411        ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
2412                                           offsetof(struct pcie_state,
2413                                                    config_flags)),
2414                                      pcie_config_flags);
2415        if (ret != 0) {
2416                ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
2417                return ret;
2418        }
2419
2420        /* configure early allocation */
2421        ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
2422
2423        ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
2424        if (ret != 0) {
2425                ath10k_err(ar, "Failed to get early alloc val: %d\n", ret);
2426                return ret;
2427        }
2428
2429        /* first bank is switched to IRAM */
2430        ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
2431                         HI_EARLY_ALLOC_MAGIC_MASK);
2432        ealloc_value |= ((ath10k_bus_get_num_banks(ar) <<
2433                          HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
2434                         HI_EARLY_ALLOC_IRAM_BANKS_MASK);
2435
2436        ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
2437        if (ret != 0) {
2438                ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
2439                return ret;
2440        }
2441
2442        /* Tell Target to proceed with initialization */
2443        flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
2444
2445        ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
2446        if (ret != 0) {
2447                ath10k_err(ar, "Failed to get option val: %d\n", ret);
2448                return ret;
2449        }
2450
2451        flag2_value |= HI_OPTION_EARLY_CFG_DONE;
2452
2453        ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
2454        if (ret != 0) {
2455                ath10k_err(ar, "Failed to set option val: %d\n", ret);
2456                return ret;
2457        }
2458
2459        return 0;
2460}
2461
2462static void ath10k_pci_override_ce_config(struct ath10k *ar)
2463{
2464        struct ce_attr *attr;
2465        struct ce_pipe_config *config;
2466        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2467
2468        /* For QCA6174 we're overriding the Copy Engine 5 configuration,
2469         * since it is currently used for other feature.
2470         */
2471
2472        /* Override Host's Copy Engine 5 configuration */
2473        attr = &ar_pci->attr[5];
2474        attr->src_sz_max = 0;
2475        attr->dest_nentries = 0;
2476
2477        /* Override Target firmware's Copy Engine configuration */
2478        config = &ar_pci->pipe_config[5];
2479        config->pipedir = __cpu_to_le32(PIPEDIR_OUT);
2480        config->nbytes_max = __cpu_to_le32(2048);
2481
2482        /* Map from service/endpoint to Copy Engine */
2483        ar_pci->serv_to_pipe[15].pipenum = __cpu_to_le32(1);
2484}
2485
2486int ath10k_pci_alloc_pipes(struct ath10k *ar)
2487{
2488        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2489        struct ath10k_pci_pipe *pipe;
2490        struct ath10k_ce *ce = ath10k_ce_priv(ar);
2491        int i, ret;
2492
2493        for (i = 0; i < CE_COUNT; i++) {
2494                pipe = &ar_pci->pipe_info[i];
2495                pipe->ce_hdl = &ce->ce_states[i];
2496                pipe->pipe_num = i;
2497                pipe->hif_ce_state = ar;
2498
2499                ret = ath10k_ce_alloc_pipe(ar, i, &ar_pci->attr[i]);
2500                if (ret) {
2501                        ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
2502                                   i, ret);
2503                        return ret;
2504                }
2505
2506                /* Last CE is Diagnostic Window */
2507                if (i == CE_DIAG_PIPE) {
2508                        ar_pci->ce_diag = pipe->ce_hdl;
2509                        continue;
2510                }
2511
2512                pipe->buf_sz = (size_t)(ar_pci->attr[i].src_sz_max);
2513        }
2514
2515        return 0;
2516}
2517
2518void ath10k_pci_free_pipes(struct ath10k *ar)
2519{
2520        int i;
2521
2522        for (i = 0; i < CE_COUNT; i++)
2523                ath10k_ce_free_pipe(ar, i);
2524}
2525
2526int ath10k_pci_init_pipes(struct ath10k *ar)
2527{
2528        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2529        int i, ret;
2530
2531        for (i = 0; i < CE_COUNT; i++) {
2532                ret = ath10k_ce_init_pipe(ar, i, &ar_pci->attr[i]);
2533                if (ret) {
2534                        ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
2535                                   i, ret);
2536                        return ret;
2537                }
2538        }
2539
2540        return 0;
2541}
2542
2543static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
2544{
2545        return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
2546               FW_IND_EVENT_PENDING;
2547}
2548
2549static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
2550{
2551        u32 val;
2552
2553        val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2554        val &= ~FW_IND_EVENT_PENDING;
2555        ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
2556}
2557
2558static bool ath10k_pci_has_device_gone(struct ath10k *ar)
2559{
2560        u32 val;
2561
2562        val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2563        return (val == 0xffffffff);
2564}
2565
2566/* this function effectively clears target memory controller assert line */
2567static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
2568{
2569        u32 val;
2570
2571        val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2572        ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2573                               val | SOC_RESET_CONTROL_SI0_RST_MASK);
2574        val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2575
2576        msleep(10);
2577
2578        val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2579        ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2580                               val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
2581        val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2582
2583        msleep(10);
2584}
2585
2586static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
2587{
2588        u32 val;
2589
2590        ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
2591
2592        val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2593        ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2594                               val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
2595}
2596
2597static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
2598{
2599        u32 val;
2600
2601        val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2602
2603        ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2604                               val | SOC_RESET_CONTROL_CE_RST_MASK);
2605        msleep(10);
2606        ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2607                               val & ~SOC_RESET_CONTROL_CE_RST_MASK);
2608}
2609
2610static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
2611{
2612        u32 val;
2613
2614        val = ath10k_pci_soc_read32(ar, SOC_LF_TIMER_CONTROL0_ADDRESS);
2615        ath10k_pci_soc_write32(ar, SOC_LF_TIMER_CONTROL0_ADDRESS,
2616                               val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
2617}
2618
2619static int ath10k_pci_warm_reset(struct ath10k *ar)
2620{
2621        int ret;
2622
2623        ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
2624
2625        spin_lock_bh(&ar->data_lock);
2626        ar->stats.fw_warm_reset_counter++;
2627        spin_unlock_bh(&ar->data_lock);
2628
2629        ath10k_pci_irq_disable(ar);
2630
2631        /* Make sure the target CPU is not doing anything dangerous, e.g. if it
2632         * were to access copy engine while host performs copy engine reset
2633         * then it is possible for the device to confuse pci-e controller to
2634         * the point of bringing host system to a complete stop (i.e. hang).
2635         */
2636        ath10k_pci_warm_reset_si0(ar);
2637        ath10k_pci_warm_reset_cpu(ar);
2638        ath10k_pci_init_pipes(ar);
2639        ath10k_pci_wait_for_target_init(ar);
2640
2641        ath10k_pci_warm_reset_clear_lf(ar);
2642        ath10k_pci_warm_reset_ce(ar);
2643        ath10k_pci_warm_reset_cpu(ar);
2644        ath10k_pci_init_pipes(ar);
2645
2646        ret = ath10k_pci_wait_for_target_init(ar);
2647        if (ret) {
2648                ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
2649                return ret;
2650        }
2651
2652        ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
2653
2654        return 0;
2655}
2656
2657static int ath10k_pci_qca99x0_soft_chip_reset(struct ath10k *ar)
2658{
2659        ath10k_pci_irq_disable(ar);
2660        return ath10k_pci_qca99x0_chip_reset(ar);
2661}
2662
2663static int ath10k_pci_safe_chip_reset(struct ath10k *ar)
2664{
2665        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2666
2667        if (!ar_pci->pci_soft_reset)
2668                return -ENOTSUPP;
2669
2670        return ar_pci->pci_soft_reset(ar);
2671}
2672
2673static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
2674{
2675        int i, ret;
2676        u32 val;
2677
2678        ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
2679
2680        /* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
2681         * It is thus preferred to use warm reset which is safer but may not be
2682         * able to recover the device from all possible fail scenarios.
2683         *
2684         * Warm reset doesn't always work on first try so attempt it a few
2685         * times before giving up.
2686         */
2687        for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
2688                ret = ath10k_pci_warm_reset(ar);
2689                if (ret) {
2690                        ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
2691                                    i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
2692                                    ret);
2693                        continue;
2694                }
2695
2696                /* FIXME: Sometimes copy engine doesn't recover after warm
2697                 * reset. In most cases this needs cold reset. In some of these
2698                 * cases the device is in such a state that a cold reset may
2699                 * lock up the host.
2700                 *
2701                 * Reading any host interest register via copy engine is
2702                 * sufficient to verify if device is capable of booting
2703                 * firmware blob.
2704                 */
2705                ret = ath10k_pci_init_pipes(ar);
2706                if (ret) {
2707                        ath10k_warn(ar, "failed to init copy engine: %d\n",
2708                                    ret);
2709                        continue;
2710                }
2711
2712                ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
2713                                             &val);
2714                if (ret) {
2715                        ath10k_warn(ar, "failed to poke copy engine: %d\n",
2716                                    ret);
2717                        continue;
2718                }
2719
2720                ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
2721                return 0;
2722        }
2723
2724        if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
2725                ath10k_warn(ar, "refusing cold reset as requested\n");
2726                return -EPERM;
2727        }
2728
2729        ret = ath10k_pci_cold_reset(ar);
2730        if (ret) {
2731                ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2732                return ret;
2733        }
2734
2735        ret = ath10k_pci_wait_for_target_init(ar);
2736        if (ret) {
2737                ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2738                            ret);
2739                return ret;
2740        }
2741
2742        ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
2743
2744        return 0;
2745}
2746
2747static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
2748{
2749        int ret;
2750
2751        ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
2752
2753        /* FIXME: QCA6174 requires cold + warm reset to work. */
2754
2755        ret = ath10k_pci_cold_reset(ar);
2756        if (ret) {
2757                ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2758                return ret;
2759        }
2760
2761        ret = ath10k_pci_wait_for_target_init(ar);
2762        if (ret) {
2763                ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2764                            ret);
2765                return ret;
2766        }
2767
2768        ret = ath10k_pci_warm_reset(ar);
2769        if (ret) {
2770                ath10k_warn(ar, "failed to warm reset: %d\n", ret);
2771                return ret;
2772        }
2773
2774        ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
2775
2776        return 0;
2777}
2778
2779static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar)
2780{
2781        int ret;
2782
2783        ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n");
2784
2785        ret = ath10k_pci_cold_reset(ar);
2786        if (ret) {
2787                ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2788                return ret;
2789        }
2790
2791        ret = ath10k_pci_wait_for_target_init(ar);
2792        if (ret) {
2793                ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2794                            ret);
2795                return ret;
2796        }
2797
2798        ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n");
2799
2800        return 0;
2801}
2802
2803static int ath10k_pci_chip_reset(struct ath10k *ar)
2804{
2805        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2806
2807        if (WARN_ON(!ar_pci->pci_hard_reset))
2808                return -ENOTSUPP;
2809
2810        return ar_pci->pci_hard_reset(ar);
2811}
2812
2813static int ath10k_pci_hif_power_up(struct ath10k *ar,
2814                                   enum ath10k_firmware_mode fw_mode)
2815{
2816        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2817        int ret;
2818
2819        ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
2820
2821        pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2822                                  &ar_pci->link_ctl);
2823        pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2824                                   ar_pci->link_ctl & ~PCI_EXP_LNKCTL_ASPMC);
2825
2826        /*
2827         * Bring the target up cleanly.
2828         *
2829         * The target may be in an undefined state with an AUX-powered Target
2830         * and a Host in WoW mode. If the Host crashes, loses power, or is
2831         * restarted (without unloading the driver) then the Target is left
2832         * (aux) powered and running. On a subsequent driver load, the Target
2833         * is in an unexpected state. We try to catch that here in order to
2834         * reset the Target and retry the probe.
2835         */
2836        ret = ath10k_pci_chip_reset(ar);
2837        if (ret) {
2838                if (ath10k_pci_has_fw_crashed(ar)) {
2839                        ath10k_warn(ar, "firmware crashed during chip reset\n");
2840                        ath10k_pci_fw_crashed_clear(ar);
2841                        ath10k_pci_fw_crashed_dump(ar);
2842                }
2843
2844                ath10k_err(ar, "failed to reset chip: %d\n", ret);
2845                goto err_sleep;
2846        }
2847
2848        ret = ath10k_pci_init_pipes(ar);
2849        if (ret) {
2850                ath10k_err(ar, "failed to initialize CE: %d\n", ret);
2851                goto err_sleep;
2852        }
2853
2854        ret = ath10k_pci_init_config(ar);
2855        if (ret) {
2856                ath10k_err(ar, "failed to setup init config: %d\n", ret);
2857                goto err_ce;
2858        }
2859
2860        ret = ath10k_pci_wake_target_cpu(ar);
2861        if (ret) {
2862                ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
2863                goto err_ce;
2864        }
2865
2866        return 0;
2867
2868err_ce:
2869        ath10k_pci_ce_deinit(ar);
2870
2871err_sleep:
2872        return ret;
2873}
2874
2875void ath10k_pci_hif_power_down(struct ath10k *ar)
2876{
2877        ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
2878
2879        /* Currently hif_power_up performs effectively a reset and hif_stop
2880         * resets the chip as well so there's no point in resetting here.
2881         */
2882}
2883
2884static int ath10k_pci_hif_suspend(struct ath10k *ar)
2885{
2886        /* Nothing to do; the important stuff is in the driver suspend. */
2887        return 0;
2888}
2889
2890static int ath10k_pci_suspend(struct ath10k *ar)
2891{
2892        /* The grace timer can still be counting down and ar->ps_awake be true.
2893         * It is known that the device may be asleep after resuming regardless
2894         * of the SoC powersave state before suspending. Hence make sure the
2895         * device is asleep before proceeding.
2896         */
2897        ath10k_pci_sleep_sync(ar);
2898
2899        return 0;
2900}
2901
2902static int ath10k_pci_hif_resume(struct ath10k *ar)
2903{
2904        /* Nothing to do; the important stuff is in the driver resume. */
2905        return 0;
2906}
2907
2908static int ath10k_pci_resume(struct ath10k *ar)
2909{
2910        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2911        struct pci_dev *pdev = ar_pci->pdev;
2912        u32 val;
2913        int ret = 0;
2914
2915        ret = ath10k_pci_force_wake(ar);
2916        if (ret) {
2917                ath10k_err(ar, "failed to wake up target: %d\n", ret);
2918                return ret;
2919        }
2920
2921        /* Suspend/Resume resets the PCI configuration space, so we have to
2922         * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
2923         * from interfering with C3 CPU state. pci_restore_state won't help
2924         * here since it only restores the first 64 bytes pci config header.
2925         */
2926        pci_read_config_dword(pdev, 0x40, &val);
2927        if ((val & 0x0000ff00) != 0)
2928                pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2929
2930        return ret;
2931}
2932
2933static bool ath10k_pci_validate_cal(void *data, size_t size)
2934{
2935        __le16 *cal_words = data;
2936        u16 checksum = 0;
2937        size_t i;
2938
2939        if (size % 2 != 0)
2940                return false;
2941
2942        for (i = 0; i < size / 2; i++)
2943                checksum ^= le16_to_cpu(cal_words[i]);
2944
2945        return checksum == 0xffff;
2946}
2947
2948static void ath10k_pci_enable_eeprom(struct ath10k *ar)
2949{
2950        /* Enable SI clock */
2951        ath10k_pci_soc_write32(ar, CLOCK_CONTROL_OFFSET, 0x0);
2952
2953        /* Configure GPIOs for I2C operation */
2954        ath10k_pci_write32(ar,
2955                           GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2956                           4 * QCA9887_1_0_I2C_SDA_GPIO_PIN,
2957                           SM(QCA9887_1_0_I2C_SDA_PIN_CONFIG,
2958                              GPIO_PIN0_CONFIG) |
2959                           SM(1, GPIO_PIN0_PAD_PULL));
2960
2961        ath10k_pci_write32(ar,
2962                           GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2963                           4 * QCA9887_1_0_SI_CLK_GPIO_PIN,
2964                           SM(QCA9887_1_0_SI_CLK_PIN_CONFIG, GPIO_PIN0_CONFIG) |
2965                           SM(1, GPIO_PIN0_PAD_PULL));
2966
2967        ath10k_pci_write32(ar,
2968                           GPIO_BASE_ADDRESS +
2969                           QCA9887_1_0_GPIO_ENABLE_W1TS_LOW_ADDRESS,
2970                           1u << QCA9887_1_0_SI_CLK_GPIO_PIN);
2971
2972        /* In Swift ASIC - EEPROM clock will be (110MHz/512) = 214KHz */
2973        ath10k_pci_write32(ar,
2974                           SI_BASE_ADDRESS + SI_CONFIG_OFFSET,
2975                           SM(1, SI_CONFIG_ERR_INT) |
2976                           SM(1, SI_CONFIG_BIDIR_OD_DATA) |
2977                           SM(1, SI_CONFIG_I2C) |
2978                           SM(1, SI_CONFIG_POS_SAMPLE) |
2979                           SM(1, SI_CONFIG_INACTIVE_DATA) |
2980                           SM(1, SI_CONFIG_INACTIVE_CLK) |
2981                           SM(8, SI_CONFIG_DIVIDER));
2982}
2983
2984static int ath10k_pci_read_eeprom(struct ath10k *ar, u16 addr, u8 *out)
2985{
2986        u32 reg;
2987        int wait_limit;
2988
2989        /* set device select byte and for the read operation */
2990        reg = QCA9887_EEPROM_SELECT_READ |
2991              SM(addr, QCA9887_EEPROM_ADDR_LO) |
2992              SM(addr >> 8, QCA9887_EEPROM_ADDR_HI);
2993        ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_TX_DATA0_OFFSET, reg);
2994
2995        /* write transmit data, transfer length, and START bit */
2996        ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET,
2997                           SM(1, SI_CS_START) | SM(1, SI_CS_RX_CNT) |
2998                           SM(4, SI_CS_TX_CNT));
2999
3000        /* wait max 1 sec */
3001        wait_limit = 100000;
3002
3003        /* wait for SI_CS_DONE_INT */
3004        do {
3005                reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET);
3006                if (MS(reg, SI_CS_DONE_INT))
3007                        break;
3008
3009                wait_limit--;
3010                udelay(10);
3011        } while (wait_limit > 0);
3012
3013        if (!MS(reg, SI_CS_DONE_INT)) {
3014                ath10k_err(ar, "timeout while reading device EEPROM at %04x\n",
3015                           addr);
3016                return -ETIMEDOUT;
3017        }
3018
3019        /* clear SI_CS_DONE_INT */
3020        ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, reg);
3021
3022        if (MS(reg, SI_CS_DONE_ERR)) {
3023                ath10k_err(ar, "failed to read device EEPROM at %04x\n", addr);
3024                return -EIO;
3025        }
3026
3027        /* extract receive data */
3028        reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_RX_DATA0_OFFSET);
3029        *out = reg;
3030
3031        return 0;
3032}
3033
3034static int ath10k_pci_hif_fetch_cal_eeprom(struct ath10k *ar, void **data,
3035                                           size_t *data_len)
3036{
3037        u8 *caldata = NULL;
3038        size_t calsize, i;
3039        int ret;
3040
3041        if (!QCA_REV_9887(ar))
3042                return -EOPNOTSUPP;
3043
3044        calsize = ar->hw_params.cal_data_len;
3045        caldata = kmalloc(calsize, GFP_KERNEL);
3046        if (!caldata)
3047                return -ENOMEM;
3048
3049        ath10k_pci_enable_eeprom(ar);
3050
3051        for (i = 0; i < calsize; i++) {
3052                ret = ath10k_pci_read_eeprom(ar, i, &caldata[i]);
3053                if (ret)
3054                        goto err_free;
3055        }
3056
3057        if (!ath10k_pci_validate_cal(caldata, calsize))
3058                goto err_free;
3059
3060        *data = caldata;
3061        *data_len = calsize;
3062
3063        return 0;
3064
3065err_free:
3066        kfree(caldata);
3067
3068        return -EINVAL;
3069}
3070
3071static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
3072        .tx_sg                  = ath10k_pci_hif_tx_sg,
3073        .diag_read              = ath10k_pci_hif_diag_read,
3074        .diag_write             = ath10k_pci_diag_write_mem,
3075        .exchange_bmi_msg       = ath10k_pci_hif_exchange_bmi_msg,
3076        .start                  = ath10k_pci_hif_start,
3077        .stop                   = ath10k_pci_hif_stop,
3078        .map_service_to_pipe    = ath10k_pci_hif_map_service_to_pipe,
3079        .get_default_pipe       = ath10k_pci_hif_get_default_pipe,
3080        .send_complete_check    = ath10k_pci_hif_send_complete_check,
3081        .get_free_queue_number  = ath10k_pci_hif_get_free_queue_number,
3082        .power_up               = ath10k_pci_hif_power_up,
3083        .power_down             = ath10k_pci_hif_power_down,
3084        .read32                 = ath10k_pci_read32,
3085        .write32                = ath10k_pci_write32,
3086        .suspend                = ath10k_pci_hif_suspend,
3087        .resume                 = ath10k_pci_hif_resume,
3088        .fetch_cal_eeprom       = ath10k_pci_hif_fetch_cal_eeprom,
3089};
3090
3091/*
3092 * Top-level interrupt handler for all PCI interrupts from a Target.
3093 * When a block of MSI interrupts is allocated, this top-level handler
3094 * is not used; instead, we directly call the correct sub-handler.
3095 */
3096static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
3097{
3098        struct ath10k *ar = arg;
3099        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3100        int ret;
3101
3102        if (ath10k_pci_has_device_gone(ar))
3103                return IRQ_NONE;
3104
3105        ret = ath10k_pci_force_wake(ar);
3106        if (ret) {
3107                ath10k_warn(ar, "failed to wake device up on irq: %d\n", ret);
3108                return IRQ_NONE;
3109        }
3110
3111        if ((ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) &&
3112            !ath10k_pci_irq_pending(ar))
3113                return IRQ_NONE;
3114
3115        ath10k_pci_disable_and_clear_legacy_irq(ar);
3116        ath10k_pci_irq_msi_fw_mask(ar);
3117        napi_schedule(&ar->napi);
3118
3119        return IRQ_HANDLED;
3120}
3121
3122static int ath10k_pci_napi_poll(struct napi_struct *ctx, int budget)
3123{
3124        struct ath10k *ar = container_of(ctx, struct ath10k, napi);
3125        int done = 0;
3126
3127        if (ath10k_pci_has_fw_crashed(ar)) {
3128                ath10k_pci_fw_crashed_clear(ar);
3129                ath10k_pci_fw_crashed_dump(ar);
3130                napi_complete(ctx);
3131                return done;
3132        }
3133
3134        ath10k_ce_per_engine_service_any(ar);
3135
3136        done = ath10k_htt_txrx_compl_task(ar, budget);
3137
3138        if (done < budget) {
3139                napi_complete_done(ctx, done);
3140                /* In case of MSI, it is possible that interrupts are received
3141                 * while NAPI poll is inprogress. So pending interrupts that are
3142                 * received after processing all copy engine pipes by NAPI poll
3143                 * will not be handled again. This is causing failure to
3144                 * complete boot sequence in x86 platform. So before enabling
3145                 * interrupts safer to check for pending interrupts for
3146                 * immediate servicing.
3147                 */
3148                if (ath10k_ce_interrupt_summary(ar)) {
3149                        napi_reschedule(ctx);
3150                        goto out;
3151                }
3152                ath10k_pci_enable_legacy_irq(ar);
3153                ath10k_pci_irq_msi_fw_unmask(ar);
3154        }
3155
3156out:
3157        return done;
3158}
3159
3160static int ath10k_pci_request_irq_msi(struct ath10k *ar)
3161{
3162        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3163        int ret;
3164
3165        ret = request_irq(ar_pci->pdev->irq,
3166                          ath10k_pci_interrupt_handler,
3167                          IRQF_SHARED, "ath10k_pci", ar);
3168        if (ret) {
3169                ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
3170                            ar_pci->pdev->irq, ret);
3171                return ret;
3172        }
3173
3174        return 0;
3175}
3176
3177static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
3178{
3179        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3180        int ret;
3181
3182        ret = request_irq(ar_pci->pdev->irq,
3183                          ath10k_pci_interrupt_handler,
3184                          IRQF_SHARED, "ath10k_pci", ar);
3185        if (ret) {
3186                ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
3187                            ar_pci->pdev->irq, ret);
3188                return ret;
3189        }
3190
3191        return 0;
3192}
3193
3194static int ath10k_pci_request_irq(struct ath10k *ar)
3195{
3196        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3197
3198        switch (ar_pci->oper_irq_mode) {
3199        case ATH10K_PCI_IRQ_LEGACY:
3200                return ath10k_pci_request_irq_legacy(ar);
3201        case ATH10K_PCI_IRQ_MSI:
3202                return ath10k_pci_request_irq_msi(ar);
3203        default:
3204                return -EINVAL;
3205        }
3206}
3207
3208static void ath10k_pci_free_irq(struct ath10k *ar)
3209{
3210        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3211
3212        free_irq(ar_pci->pdev->irq, ar);
3213}
3214
3215void ath10k_pci_init_napi(struct ath10k *ar)
3216{
3217        netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_pci_napi_poll,
3218                       ATH10K_NAPI_BUDGET);
3219}
3220
3221static int ath10k_pci_init_irq(struct ath10k *ar)
3222{
3223        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3224        int ret;
3225
3226        ath10k_pci_init_napi(ar);
3227
3228        if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
3229                ath10k_info(ar, "limiting irq mode to: %d\n",
3230                            ath10k_pci_irq_mode);
3231
3232        /* Try MSI */
3233        if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
3234                ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_MSI;
3235                ret = pci_enable_msi(ar_pci->pdev);
3236                if (ret == 0)
3237                        return 0;
3238
3239                /* fall-through */
3240        }
3241
3242        /* Try legacy irq
3243         *
3244         * A potential race occurs here: The CORE_BASE write
3245         * depends on target correctly decoding AXI address but
3246         * host won't know when target writes BAR to CORE_CTRL.
3247         * This write might get lost if target has NOT written BAR.
3248         * For now, fix the race by repeating the write in below
3249         * synchronization checking.
3250         */
3251        ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_LEGACY;
3252
3253        ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3254                           PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
3255
3256        return 0;
3257}
3258
3259static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
3260{
3261        ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3262                           0);
3263}
3264
3265static int ath10k_pci_deinit_irq(struct ath10k *ar)
3266{
3267        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3268
3269        switch (ar_pci->oper_irq_mode) {
3270        case ATH10K_PCI_IRQ_LEGACY:
3271                ath10k_pci_deinit_irq_legacy(ar);
3272                break;
3273        default:
3274                pci_disable_msi(ar_pci->pdev);
3275                break;
3276        }
3277
3278        return 0;
3279}
3280
3281int ath10k_pci_wait_for_target_init(struct ath10k *ar)
3282{
3283        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3284        unsigned long timeout;
3285        u32 val;
3286
3287        ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
3288
3289        timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
3290
3291        do {
3292                val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
3293
3294                ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
3295                           val);
3296
3297                /* target should never return this */
3298                if (val == 0xffffffff)
3299                        continue;
3300
3301                /* the device has crashed so don't bother trying anymore */
3302                if (val & FW_IND_EVENT_PENDING)
3303                        break;
3304
3305                if (val & FW_IND_INITIALIZED)
3306                        break;
3307
3308                if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY)
3309                        /* Fix potential race by repeating CORE_BASE writes */
3310                        ath10k_pci_enable_legacy_irq(ar);
3311
3312                mdelay(10);
3313        } while (time_before(jiffies, timeout));
3314
3315        ath10k_pci_disable_and_clear_legacy_irq(ar);
3316        ath10k_pci_irq_msi_fw_mask(ar);
3317
3318        if (val == 0xffffffff) {
3319                ath10k_err(ar, "failed to read device register, device is gone\n");
3320                return -EIO;
3321        }
3322
3323        if (val & FW_IND_EVENT_PENDING) {
3324                ath10k_warn(ar, "device has crashed during init\n");
3325                return -ECOMM;
3326        }
3327
3328        if (!(val & FW_IND_INITIALIZED)) {
3329                ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
3330                           val);
3331                return -ETIMEDOUT;
3332        }
3333
3334        ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
3335        return 0;
3336}
3337
3338static int ath10k_pci_cold_reset(struct ath10k *ar)
3339{
3340        u32 val;
3341
3342        ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
3343
3344        spin_lock_bh(&ar->data_lock);
3345
3346        ar->stats.fw_cold_reset_counter++;
3347
3348        spin_unlock_bh(&ar->data_lock);
3349
3350        /* Put Target, including PCIe, into RESET. */
3351        val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
3352        val |= 1;
3353        ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3354
3355        /* After writing into SOC_GLOBAL_RESET to put device into
3356         * reset and pulling out of reset pcie may not be stable
3357         * for any immediate pcie register access and cause bus error,
3358         * add delay before any pcie access request to fix this issue.
3359         */
3360        msleep(20);
3361
3362        /* Pull Target, including PCIe, out of RESET. */
3363        val &= ~1;
3364        ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3365
3366        msleep(20);
3367
3368        ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
3369
3370        return 0;
3371}
3372
3373static int ath10k_pci_claim(struct ath10k *ar)
3374{
3375        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3376        struct pci_dev *pdev = ar_pci->pdev;
3377        int ret;
3378
3379        pci_set_drvdata(pdev, ar);
3380
3381        ret = pci_enable_device(pdev);
3382        if (ret) {
3383                ath10k_err(ar, "failed to enable pci device: %d\n", ret);
3384                return ret;
3385        }
3386
3387        ret = pci_request_region(pdev, BAR_NUM, "ath");
3388        if (ret) {
3389                ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
3390                           ret);
3391                goto err_device;
3392        }
3393
3394        /* Target expects 32 bit DMA. Enforce it. */
3395        ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3396        if (ret) {
3397                ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
3398                goto err_region;
3399        }
3400
3401        ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3402        if (ret) {
3403                ath10k_err(ar, "failed to set consistent dma mask to 32-bit: %d\n",
3404                           ret);
3405                goto err_region;
3406        }
3407
3408        pci_set_master(pdev);
3409
3410        /* Arrange for access to Target SoC registers. */
3411        ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM);
3412        ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
3413        if (!ar_pci->mem) {
3414                ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
3415                ret = -EIO;
3416                goto err_master;
3417        }
3418
3419        ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%pK\n", ar_pci->mem);
3420        return 0;
3421
3422err_master:
3423        pci_clear_master(pdev);
3424
3425err_region:
3426        pci_release_region(pdev, BAR_NUM);
3427
3428err_device:
3429        pci_disable_device(pdev);
3430
3431        return ret;
3432}
3433
3434static void ath10k_pci_release(struct ath10k *ar)
3435{
3436        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3437        struct pci_dev *pdev = ar_pci->pdev;
3438
3439        pci_iounmap(pdev, ar_pci->mem);
3440        pci_release_region(pdev, BAR_NUM);
3441        pci_clear_master(pdev);
3442        pci_disable_device(pdev);
3443}
3444
3445static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
3446{
3447        const struct ath10k_pci_supp_chip *supp_chip;
3448        int i;
3449        u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
3450
3451        for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
3452                supp_chip = &ath10k_pci_supp_chips[i];
3453
3454                if (supp_chip->dev_id == dev_id &&
3455                    supp_chip->rev_id == rev_id)
3456                        return true;
3457        }
3458
3459        return false;
3460}
3461
3462int ath10k_pci_setup_resource(struct ath10k *ar)
3463{
3464        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3465        struct ath10k_ce *ce = ath10k_ce_priv(ar);
3466        int ret;
3467
3468        spin_lock_init(&ce->ce_lock);
3469        spin_lock_init(&ar_pci->ps_lock);
3470        mutex_init(&ar_pci->ce_diag_mutex);
3471
3472        INIT_WORK(&ar_pci->dump_work, ath10k_pci_fw_dump_work);
3473
3474        timer_setup(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry, 0);
3475
3476        ar_pci->attr = kmemdup(pci_host_ce_config_wlan,
3477                               sizeof(pci_host_ce_config_wlan),
3478                               GFP_KERNEL);
3479        if (!ar_pci->attr)
3480                return -ENOMEM;
3481
3482        ar_pci->pipe_config = kmemdup(pci_target_ce_config_wlan,
3483                                      sizeof(pci_target_ce_config_wlan),
3484                                      GFP_KERNEL);
3485        if (!ar_pci->pipe_config) {
3486                ret = -ENOMEM;
3487                goto err_free_attr;
3488        }
3489
3490        ar_pci->serv_to_pipe = kmemdup(pci_target_service_to_ce_map_wlan,
3491                                       sizeof(pci_target_service_to_ce_map_wlan),
3492                                       GFP_KERNEL);
3493        if (!ar_pci->serv_to_pipe) {
3494                ret = -ENOMEM;
3495                goto err_free_pipe_config;
3496        }
3497
3498        if (QCA_REV_6174(ar) || QCA_REV_9377(ar))
3499                ath10k_pci_override_ce_config(ar);
3500
3501        ret = ath10k_pci_alloc_pipes(ar);
3502        if (ret) {
3503                ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
3504                           ret);
3505                goto err_free_serv_to_pipe;
3506        }
3507
3508        return 0;
3509
3510err_free_serv_to_pipe:
3511        kfree(ar_pci->serv_to_pipe);
3512err_free_pipe_config:
3513        kfree(ar_pci->pipe_config);
3514err_free_attr:
3515        kfree(ar_pci->attr);
3516        return ret;
3517}
3518
3519void ath10k_pci_release_resource(struct ath10k *ar)
3520{
3521        struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3522
3523        ath10k_pci_rx_retry_sync(ar);
3524        netif_napi_del(&ar->napi);
3525        ath10k_pci_ce_deinit(ar);
3526        ath10k_pci_free_pipes(ar);
3527        kfree(ar_pci->attr);
3528        kfree(ar_pci->pipe_config);
3529        kfree(ar_pci->serv_to_pipe);
3530}
3531
3532static const struct ath10k_bus_ops ath10k_pci_bus_ops = {
3533        .read32         = ath10k_bus_pci_read32,
3534        .write32        = ath10k_bus_pci_write32,
3535        .get_num_banks  = ath10k_pci_get_num_banks,
3536};
3537
3538static int ath10k_pci_probe(struct pci_dev *pdev,
3539                            const struct pci_device_id *pci_dev)
3540{
3541        int ret = 0;
3542        struct ath10k *ar;
3543        struct ath10k_pci *ar_pci;
3544        enum ath10k_hw_rev hw_rev;
3545        struct ath10k_bus_params bus_params = {};
3546        bool pci_ps, is_qca988x = false;
3547        int (*pci_soft_reset)(struct ath10k *ar);
3548        int (*pci_hard_reset)(struct ath10k *ar);
3549        u32 (*targ_cpu_to_ce_addr)(struct ath10k *ar, u32 addr);
3550
3551        switch (pci_dev->device) {
3552        case QCA988X_2_0_DEVICE_ID_UBNT:
3553        case QCA988X_2_0_DEVICE_ID:
3554                hw_rev = ATH10K_HW_QCA988X;
3555                pci_ps = false;
3556                is_qca988x = true;
3557                pci_soft_reset = ath10k_pci_warm_reset;
3558                pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3559                targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3560                break;
3561        case QCA9887_1_0_DEVICE_ID:
3562                hw_rev = ATH10K_HW_QCA9887;
3563                pci_ps = false;
3564                pci_soft_reset = ath10k_pci_warm_reset;
3565                pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3566                targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3567                break;
3568        case QCA6164_2_1_DEVICE_ID:
3569        case QCA6174_2_1_DEVICE_ID:
3570                hw_rev = ATH10K_HW_QCA6174;
3571                pci_ps = true;
3572                pci_soft_reset = ath10k_pci_warm_reset;
3573                pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3574                targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
3575                break;
3576        case QCA99X0_2_0_DEVICE_ID:
3577                hw_rev = ATH10K_HW_QCA99X0;
3578                pci_ps = false;
3579                pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3580                pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3581                targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3582                break;
3583        case QCA9984_1_0_DEVICE_ID:
3584                hw_rev = ATH10K_HW_QCA9984;
3585                pci_ps = false;
3586                pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3587                pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3588                targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3589                break;
3590        case QCA9888_2_0_DEVICE_ID:
3591                hw_rev = ATH10K_HW_QCA9888;
3592                pci_ps = false;
3593                pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3594                pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3595                targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3596                break;
3597        case QCA9377_1_0_DEVICE_ID:
3598                hw_rev = ATH10K_HW_QCA9377;
3599                pci_ps = true;
3600                pci_soft_reset = ath10k_pci_warm_reset;
3601                pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3602                targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
3603                break;
3604        default:
3605                WARN_ON(1);
3606                return -ENOTSUPP;
3607        }
3608
3609        ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
3610                                hw_rev, &ath10k_pci_hif_ops);
3611        if (!ar) {
3612                dev_err(&pdev->dev, "failed to allocate core\n");
3613                return -ENOMEM;
3614        }
3615
3616        ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n",
3617                   pdev->vendor, pdev->device,
3618                   pdev->subsystem_vendor, pdev->subsystem_device);
3619
3620        ar_pci = ath10k_pci_priv(ar);
3621        ar_pci->pdev = pdev;
3622        ar_pci->dev = &pdev->dev;
3623        ar_pci->ar = ar;
3624        ar->dev_id = pci_dev->device;
3625        ar_pci->pci_ps = pci_ps;
3626        ar_pci->ce.bus_ops = &ath10k_pci_bus_ops;
3627        ar_pci->pci_soft_reset = pci_soft_reset;
3628        ar_pci->pci_hard_reset = pci_hard_reset;
3629        ar_pci->targ_cpu_to_ce_addr = targ_cpu_to_ce_addr;
3630        ar->ce_priv = &ar_pci->ce;
3631
3632        ar->id.vendor = pdev->vendor;
3633        ar->id.device = pdev->device;
3634        ar->id.subsystem_vendor = pdev->subsystem_vendor;
3635        ar->id.subsystem_device = pdev->subsystem_device;
3636
3637        timer_setup(&ar_pci->ps_timer, ath10k_pci_ps_timer, 0);
3638
3639        ret = ath10k_pci_setup_resource(ar);
3640        if (ret) {
3641                ath10k_err(ar, "failed to setup resource: %d\n", ret);
3642                goto err_core_destroy;
3643        }
3644
3645        ret = ath10k_pci_claim(ar);
3646        if (ret) {
3647                ath10k_err(ar, "failed to claim device: %d\n", ret);
3648                goto err_free_pipes;
3649        }
3650
3651        ret = ath10k_pci_force_wake(ar);
3652        if (ret) {
3653                ath10k_warn(ar, "failed to wake up device : %d\n", ret);
3654                goto err_sleep;
3655        }
3656
3657        ath10k_pci_ce_deinit(ar);
3658        ath10k_pci_irq_disable(ar);
3659
3660        ret = ath10k_pci_init_irq(ar);
3661        if (ret) {
3662                ath10k_err(ar, "failed to init irqs: %d\n", ret);
3663                goto err_sleep;
3664        }
3665
3666        ath10k_info(ar, "pci irq %s oper_irq_mode %d irq_mode %d reset_mode %d\n",
3667                    ath10k_pci_get_irq_method(ar), ar_pci->oper_irq_mode,
3668                    ath10k_pci_irq_mode, ath10k_pci_reset_mode);
3669
3670        ret = ath10k_pci_request_irq(ar);
3671        if (ret) {
3672                ath10k_warn(ar, "failed to request irqs: %d\n", ret);
3673                goto err_deinit_irq;
3674        }
3675
3676        bus_params.dev_type = ATH10K_DEV_TYPE_LL;
3677        bus_params.link_can_suspend = true;
3678        /* Read CHIP_ID before reset to catch QCA9880-AR1A v1 devices that
3679         * fall off the bus during chip_reset. These chips have the same pci
3680         * device id as the QCA9880 BR4A or 2R4E. So that's why the check.
3681         */
3682        if (is_qca988x) {
3683                bus_params.chip_id =
3684                        ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3685                if (bus_params.chip_id != 0xffffffff) {
3686                        if (!ath10k_pci_chip_is_supported(pdev->device,
3687                                                          bus_params.chip_id))
3688                                goto err_unsupported;
3689                }
3690        }
3691
3692        ret = ath10k_pci_chip_reset(ar);
3693        if (ret) {
3694                ath10k_err(ar, "failed to reset chip: %d\n", ret);
3695                goto err_free_irq;
3696        }
3697
3698        bus_params.chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3699        if (bus_params.chip_id == 0xffffffff)
3700                goto err_unsupported;
3701
3702        if (!ath10k_pci_chip_is_supported(pdev->device, bus_params.chip_id))
3703                goto err_free_irq;
3704
3705        ret = ath10k_core_register(ar, &bus_params);
3706        if (ret) {
3707                ath10k_err(ar, "failed to register driver core: %d\n", ret);
3708                goto err_free_irq;
3709        }
3710
3711        return 0;
3712
3713err_unsupported:
3714        ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
3715                   pdev->device, bus_params.chip_id);
3716
3717err_free_irq:
3718        ath10k_pci_free_irq(ar);
3719
3720err_deinit_irq:
3721        ath10k_pci_release_resource(ar);
3722
3723err_sleep:
3724        ath10k_pci_sleep_sync(ar);
3725        ath10k_pci_release(ar);
3726
3727err_free_pipes:
3728        ath10k_pci_free_pipes(ar);
3729
3730err_core_destroy:
3731        ath10k_core_destroy(ar);
3732
3733        return ret;
3734}
3735
3736static void ath10k_pci_remove(struct pci_dev *pdev)
3737{
3738        struct ath10k *ar = pci_get_drvdata(pdev);
3739
3740        ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
3741
3742        if (!ar)
3743                return;
3744
3745        ath10k_core_unregister(ar);
3746        ath10k_pci_free_irq(ar);
3747        ath10k_pci_deinit_irq(ar);
3748        ath10k_pci_release_resource(ar);
3749        ath10k_pci_sleep_sync(ar);
3750        ath10k_pci_release(ar);
3751        ath10k_core_destroy(ar);
3752}
3753
3754MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
3755
3756static __maybe_unused int ath10k_pci_pm_suspend(struct device *dev)
3757{
3758        struct ath10k *ar = dev_get_drvdata(dev);
3759        int ret;
3760
3761        ret = ath10k_pci_suspend(ar);
3762        if (ret)
3763                ath10k_warn(ar, "failed to suspend hif: %d\n", ret);
3764
3765        return ret;
3766}
3767
3768static __maybe_unused int ath10k_pci_pm_resume(struct device *dev)
3769{
3770        struct ath10k *ar = dev_get_drvdata(dev);
3771        int ret;
3772
3773        ret = ath10k_pci_resume(ar);
3774        if (ret)
3775                ath10k_warn(ar, "failed to resume hif: %d\n", ret);
3776
3777        return ret;
3778}
3779
3780static SIMPLE_DEV_PM_OPS(ath10k_pci_pm_ops,
3781                         ath10k_pci_pm_suspend,
3782                         ath10k_pci_pm_resume);
3783
3784static struct pci_driver ath10k_pci_driver = {
3785        .name = "ath10k_pci",
3786        .id_table = ath10k_pci_id_table,
3787        .probe = ath10k_pci_probe,
3788        .remove = ath10k_pci_remove,
3789#ifdef CONFIG_PM
3790        .driver.pm = &ath10k_pci_pm_ops,
3791#endif
3792};
3793
3794static int __init ath10k_pci_init(void)
3795{
3796        int ret;
3797
3798        ret = pci_register_driver(&ath10k_pci_driver);
3799        if (ret)
3800                printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
3801                       ret);
3802
3803        ret = ath10k_ahb_init();
3804        if (ret)
3805                printk(KERN_ERR "ahb init failed: %d\n", ret);
3806
3807        return ret;
3808}
3809module_init(ath10k_pci_init);
3810
3811static void __exit ath10k_pci_exit(void)
3812{
3813        pci_unregister_driver(&ath10k_pci_driver);
3814        ath10k_ahb_exit();
3815}
3816
3817module_exit(ath10k_pci_exit);
3818
3819MODULE_AUTHOR("Qualcomm Atheros");
3820MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN PCIe/AHB devices");
3821MODULE_LICENSE("Dual BSD/GPL");
3822
3823/* QCA988x 2.0 firmware files */
3824MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
3825MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
3826MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3827MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3828MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
3829MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3830
3831/* QCA9887 1.0 firmware files */
3832MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3833MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" QCA9887_HW_1_0_BOARD_DATA_FILE);
3834MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3835
3836/* QCA6174 2.1 firmware files */
3837MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE);
3838MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE);
3839MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE);
3840MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3841
3842/* QCA6174 3.1 firmware files */
3843MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3844MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3845MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3846MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE);
3847MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3848
3849/* QCA9377 1.0 firmware files */
3850MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3851MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3852MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE);
3853