linux/drivers/nvdimm/pmem.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Persistent Memory Driver
   4 *
   5 * Copyright (c) 2014-2015, Intel Corporation.
   6 * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
   7 * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
   8 */
   9
  10#include <linux/blkdev.h>
  11#include <linux/hdreg.h>
  12#include <linux/init.h>
  13#include <linux/platform_device.h>
  14#include <linux/set_memory.h>
  15#include <linux/module.h>
  16#include <linux/moduleparam.h>
  17#include <linux/badblocks.h>
  18#include <linux/memremap.h>
  19#include <linux/vmalloc.h>
  20#include <linux/blk-mq.h>
  21#include <linux/pfn_t.h>
  22#include <linux/slab.h>
  23#include <linux/uio.h>
  24#include <linux/dax.h>
  25#include <linux/nd.h>
  26#include <linux/backing-dev.h>
  27#include <linux/mm.h>
  28#include <asm/cacheflush.h>
  29#include "pmem.h"
  30#include "pfn.h"
  31#include "nd.h"
  32
  33static struct device *to_dev(struct pmem_device *pmem)
  34{
  35        /*
  36         * nvdimm bus services need a 'dev' parameter, and we record the device
  37         * at init in bb.dev.
  38         */
  39        return pmem->bb.dev;
  40}
  41
  42static struct nd_region *to_region(struct pmem_device *pmem)
  43{
  44        return to_nd_region(to_dev(pmem)->parent);
  45}
  46
  47static void hwpoison_clear(struct pmem_device *pmem,
  48                phys_addr_t phys, unsigned int len)
  49{
  50        unsigned long pfn_start, pfn_end, pfn;
  51
  52        /* only pmem in the linear map supports HWPoison */
  53        if (is_vmalloc_addr(pmem->virt_addr))
  54                return;
  55
  56        pfn_start = PHYS_PFN(phys);
  57        pfn_end = pfn_start + PHYS_PFN(len);
  58        for (pfn = pfn_start; pfn < pfn_end; pfn++) {
  59                struct page *page = pfn_to_page(pfn);
  60
  61                /*
  62                 * Note, no need to hold a get_dev_pagemap() reference
  63                 * here since we're in the driver I/O path and
  64                 * outstanding I/O requests pin the dev_pagemap.
  65                 */
  66                if (test_and_clear_pmem_poison(page))
  67                        clear_mce_nospec(pfn);
  68        }
  69}
  70
  71static blk_status_t pmem_clear_poison(struct pmem_device *pmem,
  72                phys_addr_t offset, unsigned int len)
  73{
  74        struct device *dev = to_dev(pmem);
  75        sector_t sector;
  76        long cleared;
  77        blk_status_t rc = BLK_STS_OK;
  78
  79        sector = (offset - pmem->data_offset) / 512;
  80
  81        cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
  82        if (cleared < len)
  83                rc = BLK_STS_IOERR;
  84        if (cleared > 0 && cleared / 512) {
  85                hwpoison_clear(pmem, pmem->phys_addr + offset, cleared);
  86                cleared /= 512;
  87                dev_dbg(dev, "%#llx clear %ld sector%s\n",
  88                                (unsigned long long) sector, cleared,
  89                                cleared > 1 ? "s" : "");
  90                badblocks_clear(&pmem->bb, sector, cleared);
  91                if (pmem->bb_state)
  92                        sysfs_notify_dirent(pmem->bb_state);
  93        }
  94
  95        arch_invalidate_pmem(pmem->virt_addr + offset, len);
  96
  97        return rc;
  98}
  99
 100static void write_pmem(void *pmem_addr, struct page *page,
 101                unsigned int off, unsigned int len)
 102{
 103        unsigned int chunk;
 104        void *mem;
 105
 106        while (len) {
 107                mem = kmap_atomic(page);
 108                chunk = min_t(unsigned int, len, PAGE_SIZE - off);
 109                memcpy_flushcache(pmem_addr, mem + off, chunk);
 110                kunmap_atomic(mem);
 111                len -= chunk;
 112                off = 0;
 113                page++;
 114                pmem_addr += chunk;
 115        }
 116}
 117
 118static blk_status_t read_pmem(struct page *page, unsigned int off,
 119                void *pmem_addr, unsigned int len)
 120{
 121        unsigned int chunk;
 122        unsigned long rem;
 123        void *mem;
 124
 125        while (len) {
 126                mem = kmap_atomic(page);
 127                chunk = min_t(unsigned int, len, PAGE_SIZE - off);
 128                rem = memcpy_mcsafe(mem + off, pmem_addr, chunk);
 129                kunmap_atomic(mem);
 130                if (rem)
 131                        return BLK_STS_IOERR;
 132                len -= chunk;
 133                off = 0;
 134                page++;
 135                pmem_addr += chunk;
 136        }
 137        return BLK_STS_OK;
 138}
 139
 140static blk_status_t pmem_do_read(struct pmem_device *pmem,
 141                        struct page *page, unsigned int page_off,
 142                        sector_t sector, unsigned int len)
 143{
 144        blk_status_t rc;
 145        phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
 146        void *pmem_addr = pmem->virt_addr + pmem_off;
 147
 148        if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
 149                return BLK_STS_IOERR;
 150
 151        rc = read_pmem(page, page_off, pmem_addr, len);
 152        flush_dcache_page(page);
 153        return rc;
 154}
 155
 156static blk_status_t pmem_do_write(struct pmem_device *pmem,
 157                        struct page *page, unsigned int page_off,
 158                        sector_t sector, unsigned int len)
 159{
 160        blk_status_t rc = BLK_STS_OK;
 161        bool bad_pmem = false;
 162        phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
 163        void *pmem_addr = pmem->virt_addr + pmem_off;
 164
 165        if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
 166                bad_pmem = true;
 167
 168        /*
 169         * Note that we write the data both before and after
 170         * clearing poison.  The write before clear poison
 171         * handles situations where the latest written data is
 172         * preserved and the clear poison operation simply marks
 173         * the address range as valid without changing the data.
 174         * In this case application software can assume that an
 175         * interrupted write will either return the new good
 176         * data or an error.
 177         *
 178         * However, if pmem_clear_poison() leaves the data in an
 179         * indeterminate state we need to perform the write
 180         * after clear poison.
 181         */
 182        flush_dcache_page(page);
 183        write_pmem(pmem_addr, page, page_off, len);
 184        if (unlikely(bad_pmem)) {
 185                rc = pmem_clear_poison(pmem, pmem_off, len);
 186                write_pmem(pmem_addr, page, page_off, len);
 187        }
 188
 189        return rc;
 190}
 191
 192static blk_qc_t pmem_submit_bio(struct bio *bio)
 193{
 194        int ret = 0;
 195        blk_status_t rc = 0;
 196        bool do_acct;
 197        unsigned long start;
 198        struct bio_vec bvec;
 199        struct bvec_iter iter;
 200        struct pmem_device *pmem = bio->bi_disk->private_data;
 201        struct nd_region *nd_region = to_region(pmem);
 202
 203        if (bio->bi_opf & REQ_PREFLUSH)
 204                ret = nvdimm_flush(nd_region, bio);
 205
 206        do_acct = blk_queue_io_stat(bio->bi_disk->queue);
 207        if (do_acct)
 208                start = bio_start_io_acct(bio);
 209        bio_for_each_segment(bvec, bio, iter) {
 210                if (op_is_write(bio_op(bio)))
 211                        rc = pmem_do_write(pmem, bvec.bv_page, bvec.bv_offset,
 212                                iter.bi_sector, bvec.bv_len);
 213                else
 214                        rc = pmem_do_read(pmem, bvec.bv_page, bvec.bv_offset,
 215                                iter.bi_sector, bvec.bv_len);
 216                if (rc) {
 217                        bio->bi_status = rc;
 218                        break;
 219                }
 220        }
 221        if (do_acct)
 222                bio_end_io_acct(bio, start);
 223
 224        if (bio->bi_opf & REQ_FUA)
 225                ret = nvdimm_flush(nd_region, bio);
 226
 227        if (ret)
 228                bio->bi_status = errno_to_blk_status(ret);
 229
 230        bio_endio(bio);
 231        return BLK_QC_T_NONE;
 232}
 233
 234static int pmem_rw_page(struct block_device *bdev, sector_t sector,
 235                       struct page *page, unsigned int op)
 236{
 237        struct pmem_device *pmem = bdev->bd_disk->private_data;
 238        blk_status_t rc;
 239
 240        if (op_is_write(op))
 241                rc = pmem_do_write(pmem, page, 0, sector, thp_size(page));
 242        else
 243                rc = pmem_do_read(pmem, page, 0, sector, thp_size(page));
 244        /*
 245         * The ->rw_page interface is subtle and tricky.  The core
 246         * retries on any error, so we can only invoke page_endio() in
 247         * the successful completion case.  Otherwise, we'll see crashes
 248         * caused by double completion.
 249         */
 250        if (rc == 0)
 251                page_endio(page, op_is_write(op), 0);
 252
 253        return blk_status_to_errno(rc);
 254}
 255
 256/* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
 257__weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
 258                long nr_pages, void **kaddr, pfn_t *pfn)
 259{
 260        resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
 261
 262        if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512,
 263                                        PFN_PHYS(nr_pages))))
 264                return -EIO;
 265
 266        if (kaddr)
 267                *kaddr = pmem->virt_addr + offset;
 268        if (pfn)
 269                *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
 270
 271        /*
 272         * If badblocks are present, limit known good range to the
 273         * requested range.
 274         */
 275        if (unlikely(pmem->bb.count))
 276                return nr_pages;
 277        return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
 278}
 279
 280static const struct block_device_operations pmem_fops = {
 281        .owner =                THIS_MODULE,
 282        .submit_bio =           pmem_submit_bio,
 283        .rw_page =              pmem_rw_page,
 284        .revalidate_disk =      nvdimm_revalidate_disk,
 285};
 286
 287static int pmem_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
 288                                    size_t nr_pages)
 289{
 290        struct pmem_device *pmem = dax_get_private(dax_dev);
 291
 292        return blk_status_to_errno(pmem_do_write(pmem, ZERO_PAGE(0), 0,
 293                                   PFN_PHYS(pgoff) >> SECTOR_SHIFT,
 294                                   PAGE_SIZE));
 295}
 296
 297static long pmem_dax_direct_access(struct dax_device *dax_dev,
 298                pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
 299{
 300        struct pmem_device *pmem = dax_get_private(dax_dev);
 301
 302        return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn);
 303}
 304
 305/*
 306 * Use the 'no check' versions of copy_from_iter_flushcache() and
 307 * copy_to_iter_mcsafe() to bypass HARDENED_USERCOPY overhead. Bounds
 308 * checking, both file offset and device offset, is handled by
 309 * dax_iomap_actor()
 310 */
 311static size_t pmem_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
 312                void *addr, size_t bytes, struct iov_iter *i)
 313{
 314        return _copy_from_iter_flushcache(addr, bytes, i);
 315}
 316
 317static size_t pmem_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
 318                void *addr, size_t bytes, struct iov_iter *i)
 319{
 320        return _copy_to_iter_mcsafe(addr, bytes, i);
 321}
 322
 323static const struct dax_operations pmem_dax_ops = {
 324        .direct_access = pmem_dax_direct_access,
 325        .dax_supported = generic_fsdax_supported,
 326        .copy_from_iter = pmem_copy_from_iter,
 327        .copy_to_iter = pmem_copy_to_iter,
 328        .zero_page_range = pmem_dax_zero_page_range,
 329};
 330
 331static const struct attribute_group *pmem_attribute_groups[] = {
 332        &dax_attribute_group,
 333        NULL,
 334};
 335
 336static void pmem_pagemap_cleanup(struct dev_pagemap *pgmap)
 337{
 338        struct request_queue *q =
 339                container_of(pgmap->ref, struct request_queue, q_usage_counter);
 340
 341        blk_cleanup_queue(q);
 342}
 343
 344static void pmem_release_queue(void *pgmap)
 345{
 346        pmem_pagemap_cleanup(pgmap);
 347}
 348
 349static void pmem_pagemap_kill(struct dev_pagemap *pgmap)
 350{
 351        struct request_queue *q =
 352                container_of(pgmap->ref, struct request_queue, q_usage_counter);
 353
 354        blk_freeze_queue_start(q);
 355}
 356
 357static void pmem_release_disk(void *__pmem)
 358{
 359        struct pmem_device *pmem = __pmem;
 360
 361        kill_dax(pmem->dax_dev);
 362        put_dax(pmem->dax_dev);
 363        del_gendisk(pmem->disk);
 364        put_disk(pmem->disk);
 365}
 366
 367static const struct dev_pagemap_ops fsdax_pagemap_ops = {
 368        .kill                   = pmem_pagemap_kill,
 369        .cleanup                = pmem_pagemap_cleanup,
 370};
 371
 372static int pmem_attach_disk(struct device *dev,
 373                struct nd_namespace_common *ndns)
 374{
 375        struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
 376        struct nd_region *nd_region = to_nd_region(dev->parent);
 377        int nid = dev_to_node(dev), fua;
 378        struct resource *res = &nsio->res;
 379        struct resource bb_res;
 380        struct nd_pfn *nd_pfn = NULL;
 381        struct dax_device *dax_dev;
 382        struct nd_pfn_sb *pfn_sb;
 383        struct pmem_device *pmem;
 384        struct request_queue *q;
 385        struct device *gendev;
 386        struct gendisk *disk;
 387        void *addr;
 388        int rc;
 389        unsigned long flags = 0UL;
 390
 391        pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
 392        if (!pmem)
 393                return -ENOMEM;
 394
 395        rc = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
 396        if (rc)
 397                return rc;
 398
 399        /* while nsio_rw_bytes is active, parse a pfn info block if present */
 400        if (is_nd_pfn(dev)) {
 401                nd_pfn = to_nd_pfn(dev);
 402                rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap);
 403                if (rc)
 404                        return rc;
 405        }
 406
 407        /* we're attaching a block device, disable raw namespace access */
 408        devm_namespace_disable(dev, ndns);
 409
 410        dev_set_drvdata(dev, pmem);
 411        pmem->phys_addr = res->start;
 412        pmem->size = resource_size(res);
 413        fua = nvdimm_has_flush(nd_region);
 414        if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
 415                dev_warn(dev, "unable to guarantee persistence of writes\n");
 416                fua = 0;
 417        }
 418
 419        if (!devm_request_mem_region(dev, res->start, resource_size(res),
 420                                dev_name(&ndns->dev))) {
 421                dev_warn(dev, "could not reserve region %pR\n", res);
 422                return -EBUSY;
 423        }
 424
 425        q = blk_alloc_queue(dev_to_node(dev));
 426        if (!q)
 427                return -ENOMEM;
 428
 429        pmem->pfn_flags = PFN_DEV;
 430        pmem->pgmap.ref = &q->q_usage_counter;
 431        if (is_nd_pfn(dev)) {
 432                pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
 433                pmem->pgmap.ops = &fsdax_pagemap_ops;
 434                addr = devm_memremap_pages(dev, &pmem->pgmap);
 435                pfn_sb = nd_pfn->pfn_sb;
 436                pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
 437                pmem->pfn_pad = resource_size(res) -
 438                        resource_size(&pmem->pgmap.res);
 439                pmem->pfn_flags |= PFN_MAP;
 440                memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res));
 441                bb_res.start += pmem->data_offset;
 442        } else if (pmem_should_map_pages(dev)) {
 443                memcpy(&pmem->pgmap.res, &nsio->res, sizeof(pmem->pgmap.res));
 444                pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
 445                pmem->pgmap.ops = &fsdax_pagemap_ops;
 446                addr = devm_memremap_pages(dev, &pmem->pgmap);
 447                pmem->pfn_flags |= PFN_MAP;
 448                memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res));
 449        } else {
 450                if (devm_add_action_or_reset(dev, pmem_release_queue,
 451                                        &pmem->pgmap))
 452                        return -ENOMEM;
 453                addr = devm_memremap(dev, pmem->phys_addr,
 454                                pmem->size, ARCH_MEMREMAP_PMEM);
 455                memcpy(&bb_res, &nsio->res, sizeof(bb_res));
 456        }
 457
 458        if (IS_ERR(addr))
 459                return PTR_ERR(addr);
 460        pmem->virt_addr = addr;
 461
 462        blk_queue_write_cache(q, true, fua);
 463        blk_queue_physical_block_size(q, PAGE_SIZE);
 464        blk_queue_logical_block_size(q, pmem_sector_size(ndns));
 465        blk_queue_max_hw_sectors(q, UINT_MAX);
 466        blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
 467        if (pmem->pfn_flags & PFN_MAP)
 468                blk_queue_flag_set(QUEUE_FLAG_DAX, q);
 469
 470        disk = alloc_disk_node(0, nid);
 471        if (!disk)
 472                return -ENOMEM;
 473        pmem->disk = disk;
 474
 475        disk->fops              = &pmem_fops;
 476        disk->queue             = q;
 477        disk->flags             = GENHD_FL_EXT_DEVT;
 478        disk->private_data      = pmem;
 479        disk->queue->backing_dev_info->capabilities |= BDI_CAP_SYNCHRONOUS_IO;
 480        nvdimm_namespace_disk_name(ndns, disk->disk_name);
 481        set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
 482                        / 512);
 483        if (devm_init_badblocks(dev, &pmem->bb))
 484                return -ENOMEM;
 485        nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_res);
 486        disk->bb = &pmem->bb;
 487
 488        if (is_nvdimm_sync(nd_region))
 489                flags = DAXDEV_F_SYNC;
 490        dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops, flags);
 491        if (IS_ERR(dax_dev)) {
 492                put_disk(disk);
 493                return PTR_ERR(dax_dev);
 494        }
 495        dax_write_cache(dax_dev, nvdimm_has_cache(nd_region));
 496        pmem->dax_dev = dax_dev;
 497        gendev = disk_to_dev(disk);
 498        gendev->groups = pmem_attribute_groups;
 499
 500        device_add_disk(dev, disk, NULL);
 501        if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
 502                return -ENOMEM;
 503
 504        revalidate_disk(disk);
 505
 506        pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
 507                                          "badblocks");
 508        if (!pmem->bb_state)
 509                dev_warn(dev, "'badblocks' notification disabled\n");
 510
 511        return 0;
 512}
 513
 514static int nd_pmem_probe(struct device *dev)
 515{
 516        int ret;
 517        struct nd_namespace_common *ndns;
 518
 519        ndns = nvdimm_namespace_common_probe(dev);
 520        if (IS_ERR(ndns))
 521                return PTR_ERR(ndns);
 522
 523        if (is_nd_btt(dev))
 524                return nvdimm_namespace_attach_btt(ndns);
 525
 526        if (is_nd_pfn(dev))
 527                return pmem_attach_disk(dev, ndns);
 528
 529        ret = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
 530        if (ret)
 531                return ret;
 532
 533        ret = nd_btt_probe(dev, ndns);
 534        if (ret == 0)
 535                return -ENXIO;
 536
 537        /*
 538         * We have two failure conditions here, there is no
 539         * info reserver block or we found a valid info reserve block
 540         * but failed to initialize the pfn superblock.
 541         *
 542         * For the first case consider namespace as a raw pmem namespace
 543         * and attach a disk.
 544         *
 545         * For the latter, consider this a success and advance the namespace
 546         * seed.
 547         */
 548        ret = nd_pfn_probe(dev, ndns);
 549        if (ret == 0)
 550                return -ENXIO;
 551        else if (ret == -EOPNOTSUPP)
 552                return ret;
 553
 554        ret = nd_dax_probe(dev, ndns);
 555        if (ret == 0)
 556                return -ENXIO;
 557        else if (ret == -EOPNOTSUPP)
 558                return ret;
 559
 560        /* probe complete, attach handles namespace enabling */
 561        devm_namespace_disable(dev, ndns);
 562
 563        return pmem_attach_disk(dev, ndns);
 564}
 565
 566static int nd_pmem_remove(struct device *dev)
 567{
 568        struct pmem_device *pmem = dev_get_drvdata(dev);
 569
 570        if (is_nd_btt(dev))
 571                nvdimm_namespace_detach_btt(to_nd_btt(dev));
 572        else {
 573                /*
 574                 * Note, this assumes nd_device_lock() context to not
 575                 * race nd_pmem_notify()
 576                 */
 577                sysfs_put(pmem->bb_state);
 578                pmem->bb_state = NULL;
 579        }
 580        nvdimm_flush(to_nd_region(dev->parent), NULL);
 581
 582        return 0;
 583}
 584
 585static void nd_pmem_shutdown(struct device *dev)
 586{
 587        nvdimm_flush(to_nd_region(dev->parent), NULL);
 588}
 589
 590static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
 591{
 592        struct nd_region *nd_region;
 593        resource_size_t offset = 0, end_trunc = 0;
 594        struct nd_namespace_common *ndns;
 595        struct nd_namespace_io *nsio;
 596        struct resource res;
 597        struct badblocks *bb;
 598        struct kernfs_node *bb_state;
 599
 600        if (event != NVDIMM_REVALIDATE_POISON)
 601                return;
 602
 603        if (is_nd_btt(dev)) {
 604                struct nd_btt *nd_btt = to_nd_btt(dev);
 605
 606                ndns = nd_btt->ndns;
 607                nd_region = to_nd_region(ndns->dev.parent);
 608                nsio = to_nd_namespace_io(&ndns->dev);
 609                bb = &nsio->bb;
 610                bb_state = NULL;
 611        } else {
 612                struct pmem_device *pmem = dev_get_drvdata(dev);
 613
 614                nd_region = to_region(pmem);
 615                bb = &pmem->bb;
 616                bb_state = pmem->bb_state;
 617
 618                if (is_nd_pfn(dev)) {
 619                        struct nd_pfn *nd_pfn = to_nd_pfn(dev);
 620                        struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
 621
 622                        ndns = nd_pfn->ndns;
 623                        offset = pmem->data_offset +
 624                                        __le32_to_cpu(pfn_sb->start_pad);
 625                        end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
 626                } else {
 627                        ndns = to_ndns(dev);
 628                }
 629
 630                nsio = to_nd_namespace_io(&ndns->dev);
 631        }
 632
 633        res.start = nsio->res.start + offset;
 634        res.end = nsio->res.end - end_trunc;
 635        nvdimm_badblocks_populate(nd_region, bb, &res);
 636        if (bb_state)
 637                sysfs_notify_dirent(bb_state);
 638}
 639
 640MODULE_ALIAS("pmem");
 641MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
 642MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
 643static struct nd_device_driver nd_pmem_driver = {
 644        .probe = nd_pmem_probe,
 645        .remove = nd_pmem_remove,
 646        .notify = nd_pmem_notify,
 647        .shutdown = nd_pmem_shutdown,
 648        .drv = {
 649                .name = "nd_pmem",
 650        },
 651        .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
 652};
 653
 654module_nd_driver(nd_pmem_driver);
 655
 656MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
 657MODULE_LICENSE("GPL v2");
 658