linux/drivers/nvme/host/rdma.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * NVMe over Fabrics RDMA host code.
   4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
   5 */
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7#include <linux/module.h>
   8#include <linux/init.h>
   9#include <linux/slab.h>
  10#include <rdma/mr_pool.h>
  11#include <linux/err.h>
  12#include <linux/string.h>
  13#include <linux/atomic.h>
  14#include <linux/blk-mq.h>
  15#include <linux/blk-mq-rdma.h>
  16#include <linux/types.h>
  17#include <linux/list.h>
  18#include <linux/mutex.h>
  19#include <linux/scatterlist.h>
  20#include <linux/nvme.h>
  21#include <asm/unaligned.h>
  22
  23#include <rdma/ib_verbs.h>
  24#include <rdma/rdma_cm.h>
  25#include <linux/nvme-rdma.h>
  26
  27#include "nvme.h"
  28#include "fabrics.h"
  29
  30
  31#define NVME_RDMA_CONNECT_TIMEOUT_MS    3000            /* 3 second */
  32
  33#define NVME_RDMA_MAX_SEGMENTS          256
  34
  35#define NVME_RDMA_MAX_INLINE_SEGMENTS   4
  36
  37#define NVME_RDMA_DATA_SGL_SIZE \
  38        (sizeof(struct scatterlist) * NVME_INLINE_SG_CNT)
  39#define NVME_RDMA_METADATA_SGL_SIZE \
  40        (sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT)
  41
  42struct nvme_rdma_device {
  43        struct ib_device        *dev;
  44        struct ib_pd            *pd;
  45        struct kref             ref;
  46        struct list_head        entry;
  47        unsigned int            num_inline_segments;
  48};
  49
  50struct nvme_rdma_qe {
  51        struct ib_cqe           cqe;
  52        void                    *data;
  53        u64                     dma;
  54};
  55
  56struct nvme_rdma_sgl {
  57        int                     nents;
  58        struct sg_table         sg_table;
  59};
  60
  61struct nvme_rdma_queue;
  62struct nvme_rdma_request {
  63        struct nvme_request     req;
  64        struct ib_mr            *mr;
  65        struct nvme_rdma_qe     sqe;
  66        union nvme_result       result;
  67        __le16                  status;
  68        refcount_t              ref;
  69        struct ib_sge           sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
  70        u32                     num_sge;
  71        struct ib_reg_wr        reg_wr;
  72        struct ib_cqe           reg_cqe;
  73        struct nvme_rdma_queue  *queue;
  74        struct nvme_rdma_sgl    data_sgl;
  75        struct nvme_rdma_sgl    *metadata_sgl;
  76        bool                    use_sig_mr;
  77};
  78
  79enum nvme_rdma_queue_flags {
  80        NVME_RDMA_Q_ALLOCATED           = 0,
  81        NVME_RDMA_Q_LIVE                = 1,
  82        NVME_RDMA_Q_TR_READY            = 2,
  83};
  84
  85struct nvme_rdma_queue {
  86        struct nvme_rdma_qe     *rsp_ring;
  87        int                     queue_size;
  88        size_t                  cmnd_capsule_len;
  89        struct nvme_rdma_ctrl   *ctrl;
  90        struct nvme_rdma_device *device;
  91        struct ib_cq            *ib_cq;
  92        struct ib_qp            *qp;
  93
  94        unsigned long           flags;
  95        struct rdma_cm_id       *cm_id;
  96        int                     cm_error;
  97        struct completion       cm_done;
  98        bool                    pi_support;
  99        int                     cq_size;
 100};
 101
 102struct nvme_rdma_ctrl {
 103        /* read only in the hot path */
 104        struct nvme_rdma_queue  *queues;
 105
 106        /* other member variables */
 107        struct blk_mq_tag_set   tag_set;
 108        struct work_struct      err_work;
 109
 110        struct nvme_rdma_qe     async_event_sqe;
 111
 112        struct delayed_work     reconnect_work;
 113
 114        struct list_head        list;
 115
 116        struct blk_mq_tag_set   admin_tag_set;
 117        struct nvme_rdma_device *device;
 118
 119        u32                     max_fr_pages;
 120
 121        struct sockaddr_storage addr;
 122        struct sockaddr_storage src_addr;
 123
 124        struct nvme_ctrl        ctrl;
 125        struct mutex            teardown_lock;
 126        bool                    use_inline_data;
 127        u32                     io_queues[HCTX_MAX_TYPES];
 128};
 129
 130static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
 131{
 132        return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
 133}
 134
 135static LIST_HEAD(device_list);
 136static DEFINE_MUTEX(device_list_mutex);
 137
 138static LIST_HEAD(nvme_rdma_ctrl_list);
 139static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
 140
 141/*
 142 * Disabling this option makes small I/O goes faster, but is fundamentally
 143 * unsafe.  With it turned off we will have to register a global rkey that
 144 * allows read and write access to all physical memory.
 145 */
 146static bool register_always = true;
 147module_param(register_always, bool, 0444);
 148MODULE_PARM_DESC(register_always,
 149         "Use memory registration even for contiguous memory regions");
 150
 151static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
 152                struct rdma_cm_event *event);
 153static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
 154static void nvme_rdma_complete_rq(struct request *rq);
 155
 156static const struct blk_mq_ops nvme_rdma_mq_ops;
 157static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
 158
 159static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
 160{
 161        return queue - queue->ctrl->queues;
 162}
 163
 164static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
 165{
 166        return nvme_rdma_queue_idx(queue) >
 167                queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
 168                queue->ctrl->io_queues[HCTX_TYPE_READ];
 169}
 170
 171static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
 172{
 173        return queue->cmnd_capsule_len - sizeof(struct nvme_command);
 174}
 175
 176static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
 177                size_t capsule_size, enum dma_data_direction dir)
 178{
 179        ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
 180        kfree(qe->data);
 181}
 182
 183static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
 184                size_t capsule_size, enum dma_data_direction dir)
 185{
 186        qe->data = kzalloc(capsule_size, GFP_KERNEL);
 187        if (!qe->data)
 188                return -ENOMEM;
 189
 190        qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
 191        if (ib_dma_mapping_error(ibdev, qe->dma)) {
 192                kfree(qe->data);
 193                qe->data = NULL;
 194                return -ENOMEM;
 195        }
 196
 197        return 0;
 198}
 199
 200static void nvme_rdma_free_ring(struct ib_device *ibdev,
 201                struct nvme_rdma_qe *ring, size_t ib_queue_size,
 202                size_t capsule_size, enum dma_data_direction dir)
 203{
 204        int i;
 205
 206        for (i = 0; i < ib_queue_size; i++)
 207                nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
 208        kfree(ring);
 209}
 210
 211static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
 212                size_t ib_queue_size, size_t capsule_size,
 213                enum dma_data_direction dir)
 214{
 215        struct nvme_rdma_qe *ring;
 216        int i;
 217
 218        ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
 219        if (!ring)
 220                return NULL;
 221
 222        /*
 223         * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
 224         * lifetime. It's safe, since any chage in the underlying RDMA device
 225         * will issue error recovery and queue re-creation.
 226         */
 227        for (i = 0; i < ib_queue_size; i++) {
 228                if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
 229                        goto out_free_ring;
 230        }
 231
 232        return ring;
 233
 234out_free_ring:
 235        nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
 236        return NULL;
 237}
 238
 239static void nvme_rdma_qp_event(struct ib_event *event, void *context)
 240{
 241        pr_debug("QP event %s (%d)\n",
 242                 ib_event_msg(event->event), event->event);
 243
 244}
 245
 246static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
 247{
 248        int ret;
 249
 250        ret = wait_for_completion_interruptible_timeout(&queue->cm_done,
 251                        msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
 252        if (ret < 0)
 253                return ret;
 254        if (ret == 0)
 255                return -ETIMEDOUT;
 256        WARN_ON_ONCE(queue->cm_error > 0);
 257        return queue->cm_error;
 258}
 259
 260static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
 261{
 262        struct nvme_rdma_device *dev = queue->device;
 263        struct ib_qp_init_attr init_attr;
 264        int ret;
 265
 266        memset(&init_attr, 0, sizeof(init_attr));
 267        init_attr.event_handler = nvme_rdma_qp_event;
 268        /* +1 for drain */
 269        init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
 270        /* +1 for drain */
 271        init_attr.cap.max_recv_wr = queue->queue_size + 1;
 272        init_attr.cap.max_recv_sge = 1;
 273        init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
 274        init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
 275        init_attr.qp_type = IB_QPT_RC;
 276        init_attr.send_cq = queue->ib_cq;
 277        init_attr.recv_cq = queue->ib_cq;
 278        if (queue->pi_support)
 279                init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
 280        init_attr.qp_context = queue;
 281
 282        ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
 283
 284        queue->qp = queue->cm_id->qp;
 285        return ret;
 286}
 287
 288static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
 289                struct request *rq, unsigned int hctx_idx)
 290{
 291        struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
 292
 293        kfree(req->sqe.data);
 294}
 295
 296static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
 297                struct request *rq, unsigned int hctx_idx,
 298                unsigned int numa_node)
 299{
 300        struct nvme_rdma_ctrl *ctrl = set->driver_data;
 301        struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
 302        int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
 303        struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
 304
 305        nvme_req(rq)->ctrl = &ctrl->ctrl;
 306        req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
 307        if (!req->sqe.data)
 308                return -ENOMEM;
 309
 310        /* metadata nvme_rdma_sgl struct is located after command's data SGL */
 311        if (queue->pi_support)
 312                req->metadata_sgl = (void *)nvme_req(rq) +
 313                        sizeof(struct nvme_rdma_request) +
 314                        NVME_RDMA_DATA_SGL_SIZE;
 315
 316        req->queue = queue;
 317
 318        return 0;
 319}
 320
 321static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
 322                unsigned int hctx_idx)
 323{
 324        struct nvme_rdma_ctrl *ctrl = data;
 325        struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
 326
 327        BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
 328
 329        hctx->driver_data = queue;
 330        return 0;
 331}
 332
 333static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
 334                unsigned int hctx_idx)
 335{
 336        struct nvme_rdma_ctrl *ctrl = data;
 337        struct nvme_rdma_queue *queue = &ctrl->queues[0];
 338
 339        BUG_ON(hctx_idx != 0);
 340
 341        hctx->driver_data = queue;
 342        return 0;
 343}
 344
 345static void nvme_rdma_free_dev(struct kref *ref)
 346{
 347        struct nvme_rdma_device *ndev =
 348                container_of(ref, struct nvme_rdma_device, ref);
 349
 350        mutex_lock(&device_list_mutex);
 351        list_del(&ndev->entry);
 352        mutex_unlock(&device_list_mutex);
 353
 354        ib_dealloc_pd(ndev->pd);
 355        kfree(ndev);
 356}
 357
 358static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
 359{
 360        kref_put(&dev->ref, nvme_rdma_free_dev);
 361}
 362
 363static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
 364{
 365        return kref_get_unless_zero(&dev->ref);
 366}
 367
 368static struct nvme_rdma_device *
 369nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
 370{
 371        struct nvme_rdma_device *ndev;
 372
 373        mutex_lock(&device_list_mutex);
 374        list_for_each_entry(ndev, &device_list, entry) {
 375                if (ndev->dev->node_guid == cm_id->device->node_guid &&
 376                    nvme_rdma_dev_get(ndev))
 377                        goto out_unlock;
 378        }
 379
 380        ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
 381        if (!ndev)
 382                goto out_err;
 383
 384        ndev->dev = cm_id->device;
 385        kref_init(&ndev->ref);
 386
 387        ndev->pd = ib_alloc_pd(ndev->dev,
 388                register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
 389        if (IS_ERR(ndev->pd))
 390                goto out_free_dev;
 391
 392        if (!(ndev->dev->attrs.device_cap_flags &
 393              IB_DEVICE_MEM_MGT_EXTENSIONS)) {
 394                dev_err(&ndev->dev->dev,
 395                        "Memory registrations not supported.\n");
 396                goto out_free_pd;
 397        }
 398
 399        ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
 400                                        ndev->dev->attrs.max_send_sge - 1);
 401        list_add(&ndev->entry, &device_list);
 402out_unlock:
 403        mutex_unlock(&device_list_mutex);
 404        return ndev;
 405
 406out_free_pd:
 407        ib_dealloc_pd(ndev->pd);
 408out_free_dev:
 409        kfree(ndev);
 410out_err:
 411        mutex_unlock(&device_list_mutex);
 412        return NULL;
 413}
 414
 415static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue)
 416{
 417        if (nvme_rdma_poll_queue(queue))
 418                ib_free_cq(queue->ib_cq);
 419        else
 420                ib_cq_pool_put(queue->ib_cq, queue->cq_size);
 421}
 422
 423static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
 424{
 425        struct nvme_rdma_device *dev;
 426        struct ib_device *ibdev;
 427
 428        if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
 429                return;
 430
 431        dev = queue->device;
 432        ibdev = dev->dev;
 433
 434        if (queue->pi_support)
 435                ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs);
 436        ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
 437
 438        /*
 439         * The cm_id object might have been destroyed during RDMA connection
 440         * establishment error flow to avoid getting other cma events, thus
 441         * the destruction of the QP shouldn't use rdma_cm API.
 442         */
 443        ib_destroy_qp(queue->qp);
 444        nvme_rdma_free_cq(queue);
 445
 446        nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
 447                        sizeof(struct nvme_completion), DMA_FROM_DEVICE);
 448
 449        nvme_rdma_dev_put(dev);
 450}
 451
 452static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support)
 453{
 454        u32 max_page_list_len;
 455
 456        if (pi_support)
 457                max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len;
 458        else
 459                max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len;
 460
 461        return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1);
 462}
 463
 464static int nvme_rdma_create_cq(struct ib_device *ibdev,
 465                struct nvme_rdma_queue *queue)
 466{
 467        int ret, comp_vector, idx = nvme_rdma_queue_idx(queue);
 468        enum ib_poll_context poll_ctx;
 469
 470        /*
 471         * Spread I/O queues completion vectors according their queue index.
 472         * Admin queues can always go on completion vector 0.
 473         */
 474        comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors;
 475
 476        /* Polling queues need direct cq polling context */
 477        if (nvme_rdma_poll_queue(queue)) {
 478                poll_ctx = IB_POLL_DIRECT;
 479                queue->ib_cq = ib_alloc_cq(ibdev, queue, queue->cq_size,
 480                                           comp_vector, poll_ctx);
 481        } else {
 482                poll_ctx = IB_POLL_SOFTIRQ;
 483                queue->ib_cq = ib_cq_pool_get(ibdev, queue->cq_size,
 484                                              comp_vector, poll_ctx);
 485        }
 486
 487        if (IS_ERR(queue->ib_cq)) {
 488                ret = PTR_ERR(queue->ib_cq);
 489                return ret;
 490        }
 491
 492        return 0;
 493}
 494
 495static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
 496{
 497        struct ib_device *ibdev;
 498        const int send_wr_factor = 3;                   /* MR, SEND, INV */
 499        const int cq_factor = send_wr_factor + 1;       /* + RECV */
 500        int ret, pages_per_mr;
 501
 502        queue->device = nvme_rdma_find_get_device(queue->cm_id);
 503        if (!queue->device) {
 504                dev_err(queue->cm_id->device->dev.parent,
 505                        "no client data found!\n");
 506                return -ECONNREFUSED;
 507        }
 508        ibdev = queue->device->dev;
 509
 510        /* +1 for ib_stop_cq */
 511        queue->cq_size = cq_factor * queue->queue_size + 1;
 512
 513        ret = nvme_rdma_create_cq(ibdev, queue);
 514        if (ret)
 515                goto out_put_dev;
 516
 517        ret = nvme_rdma_create_qp(queue, send_wr_factor);
 518        if (ret)
 519                goto out_destroy_ib_cq;
 520
 521        queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
 522                        sizeof(struct nvme_completion), DMA_FROM_DEVICE);
 523        if (!queue->rsp_ring) {
 524                ret = -ENOMEM;
 525                goto out_destroy_qp;
 526        }
 527
 528        /*
 529         * Currently we don't use SG_GAPS MR's so if the first entry is
 530         * misaligned we'll end up using two entries for a single data page,
 531         * so one additional entry is required.
 532         */
 533        pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1;
 534        ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
 535                              queue->queue_size,
 536                              IB_MR_TYPE_MEM_REG,
 537                              pages_per_mr, 0);
 538        if (ret) {
 539                dev_err(queue->ctrl->ctrl.device,
 540                        "failed to initialize MR pool sized %d for QID %d\n",
 541                        queue->queue_size, nvme_rdma_queue_idx(queue));
 542                goto out_destroy_ring;
 543        }
 544
 545        if (queue->pi_support) {
 546                ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs,
 547                                      queue->queue_size, IB_MR_TYPE_INTEGRITY,
 548                                      pages_per_mr, pages_per_mr);
 549                if (ret) {
 550                        dev_err(queue->ctrl->ctrl.device,
 551                                "failed to initialize PI MR pool sized %d for QID %d\n",
 552                                queue->queue_size, nvme_rdma_queue_idx(queue));
 553                        goto out_destroy_mr_pool;
 554                }
 555        }
 556
 557        set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
 558
 559        return 0;
 560
 561out_destroy_mr_pool:
 562        ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
 563out_destroy_ring:
 564        nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
 565                            sizeof(struct nvme_completion), DMA_FROM_DEVICE);
 566out_destroy_qp:
 567        rdma_destroy_qp(queue->cm_id);
 568out_destroy_ib_cq:
 569        nvme_rdma_free_cq(queue);
 570out_put_dev:
 571        nvme_rdma_dev_put(queue->device);
 572        return ret;
 573}
 574
 575static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
 576                int idx, size_t queue_size)
 577{
 578        struct nvme_rdma_queue *queue;
 579        struct sockaddr *src_addr = NULL;
 580        int ret;
 581
 582        queue = &ctrl->queues[idx];
 583        queue->ctrl = ctrl;
 584        if (idx && ctrl->ctrl.max_integrity_segments)
 585                queue->pi_support = true;
 586        else
 587                queue->pi_support = false;
 588        init_completion(&queue->cm_done);
 589
 590        if (idx > 0)
 591                queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
 592        else
 593                queue->cmnd_capsule_len = sizeof(struct nvme_command);
 594
 595        queue->queue_size = queue_size;
 596
 597        queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
 598                        RDMA_PS_TCP, IB_QPT_RC);
 599        if (IS_ERR(queue->cm_id)) {
 600                dev_info(ctrl->ctrl.device,
 601                        "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
 602                return PTR_ERR(queue->cm_id);
 603        }
 604
 605        if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
 606                src_addr = (struct sockaddr *)&ctrl->src_addr;
 607
 608        queue->cm_error = -ETIMEDOUT;
 609        ret = rdma_resolve_addr(queue->cm_id, src_addr,
 610                        (struct sockaddr *)&ctrl->addr,
 611                        NVME_RDMA_CONNECT_TIMEOUT_MS);
 612        if (ret) {
 613                dev_info(ctrl->ctrl.device,
 614                        "rdma_resolve_addr failed (%d).\n", ret);
 615                goto out_destroy_cm_id;
 616        }
 617
 618        ret = nvme_rdma_wait_for_cm(queue);
 619        if (ret) {
 620                dev_info(ctrl->ctrl.device,
 621                        "rdma connection establishment failed (%d)\n", ret);
 622                goto out_destroy_cm_id;
 623        }
 624
 625        set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
 626
 627        return 0;
 628
 629out_destroy_cm_id:
 630        rdma_destroy_id(queue->cm_id);
 631        nvme_rdma_destroy_queue_ib(queue);
 632        return ret;
 633}
 634
 635static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
 636{
 637        rdma_disconnect(queue->cm_id);
 638        ib_drain_qp(queue->qp);
 639}
 640
 641static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
 642{
 643        if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
 644                return;
 645        __nvme_rdma_stop_queue(queue);
 646}
 647
 648static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
 649{
 650        if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
 651                return;
 652
 653        nvme_rdma_destroy_queue_ib(queue);
 654        rdma_destroy_id(queue->cm_id);
 655}
 656
 657static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
 658{
 659        int i;
 660
 661        for (i = 1; i < ctrl->ctrl.queue_count; i++)
 662                nvme_rdma_free_queue(&ctrl->queues[i]);
 663}
 664
 665static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
 666{
 667        int i;
 668
 669        for (i = 1; i < ctrl->ctrl.queue_count; i++)
 670                nvme_rdma_stop_queue(&ctrl->queues[i]);
 671}
 672
 673static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
 674{
 675        struct nvme_rdma_queue *queue = &ctrl->queues[idx];
 676        bool poll = nvme_rdma_poll_queue(queue);
 677        int ret;
 678
 679        if (idx)
 680                ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll);
 681        else
 682                ret = nvmf_connect_admin_queue(&ctrl->ctrl);
 683
 684        if (!ret) {
 685                set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
 686        } else {
 687                if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
 688                        __nvme_rdma_stop_queue(queue);
 689                dev_info(ctrl->ctrl.device,
 690                        "failed to connect queue: %d ret=%d\n", idx, ret);
 691        }
 692        return ret;
 693}
 694
 695static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
 696{
 697        int i, ret = 0;
 698
 699        for (i = 1; i < ctrl->ctrl.queue_count; i++) {
 700                ret = nvme_rdma_start_queue(ctrl, i);
 701                if (ret)
 702                        goto out_stop_queues;
 703        }
 704
 705        return 0;
 706
 707out_stop_queues:
 708        for (i--; i >= 1; i--)
 709                nvme_rdma_stop_queue(&ctrl->queues[i]);
 710        return ret;
 711}
 712
 713static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
 714{
 715        struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
 716        struct ib_device *ibdev = ctrl->device->dev;
 717        unsigned int nr_io_queues, nr_default_queues;
 718        unsigned int nr_read_queues, nr_poll_queues;
 719        int i, ret;
 720
 721        nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors,
 722                                min(opts->nr_io_queues, num_online_cpus()));
 723        nr_default_queues =  min_t(unsigned int, ibdev->num_comp_vectors,
 724                                min(opts->nr_write_queues, num_online_cpus()));
 725        nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus());
 726        nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues;
 727
 728        ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
 729        if (ret)
 730                return ret;
 731
 732        ctrl->ctrl.queue_count = nr_io_queues + 1;
 733        if (ctrl->ctrl.queue_count < 2)
 734                return 0;
 735
 736        dev_info(ctrl->ctrl.device,
 737                "creating %d I/O queues.\n", nr_io_queues);
 738
 739        if (opts->nr_write_queues && nr_read_queues < nr_io_queues) {
 740                /*
 741                 * separate read/write queues
 742                 * hand out dedicated default queues only after we have
 743                 * sufficient read queues.
 744                 */
 745                ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues;
 746                nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
 747                ctrl->io_queues[HCTX_TYPE_DEFAULT] =
 748                        min(nr_default_queues, nr_io_queues);
 749                nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
 750        } else {
 751                /*
 752                 * shared read/write queues
 753                 * either no write queues were requested, or we don't have
 754                 * sufficient queue count to have dedicated default queues.
 755                 */
 756                ctrl->io_queues[HCTX_TYPE_DEFAULT] =
 757                        min(nr_read_queues, nr_io_queues);
 758                nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
 759        }
 760
 761        if (opts->nr_poll_queues && nr_io_queues) {
 762                /* map dedicated poll queues only if we have queues left */
 763                ctrl->io_queues[HCTX_TYPE_POLL] =
 764                        min(nr_poll_queues, nr_io_queues);
 765        }
 766
 767        for (i = 1; i < ctrl->ctrl.queue_count; i++) {
 768                ret = nvme_rdma_alloc_queue(ctrl, i,
 769                                ctrl->ctrl.sqsize + 1);
 770                if (ret)
 771                        goto out_free_queues;
 772        }
 773
 774        return 0;
 775
 776out_free_queues:
 777        for (i--; i >= 1; i--)
 778                nvme_rdma_free_queue(&ctrl->queues[i]);
 779
 780        return ret;
 781}
 782
 783static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
 784                bool admin)
 785{
 786        struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
 787        struct blk_mq_tag_set *set;
 788        int ret;
 789
 790        if (admin) {
 791                set = &ctrl->admin_tag_set;
 792                memset(set, 0, sizeof(*set));
 793                set->ops = &nvme_rdma_admin_mq_ops;
 794                set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
 795                set->reserved_tags = 2; /* connect + keep-alive */
 796                set->numa_node = nctrl->numa_node;
 797                set->cmd_size = sizeof(struct nvme_rdma_request) +
 798                                NVME_RDMA_DATA_SGL_SIZE;
 799                set->driver_data = ctrl;
 800                set->nr_hw_queues = 1;
 801                set->timeout = ADMIN_TIMEOUT;
 802                set->flags = BLK_MQ_F_NO_SCHED;
 803        } else {
 804                set = &ctrl->tag_set;
 805                memset(set, 0, sizeof(*set));
 806                set->ops = &nvme_rdma_mq_ops;
 807                set->queue_depth = nctrl->sqsize + 1;
 808                set->reserved_tags = 1; /* fabric connect */
 809                set->numa_node = nctrl->numa_node;
 810                set->flags = BLK_MQ_F_SHOULD_MERGE;
 811                set->cmd_size = sizeof(struct nvme_rdma_request) +
 812                                NVME_RDMA_DATA_SGL_SIZE;
 813                if (nctrl->max_integrity_segments)
 814                        set->cmd_size += sizeof(struct nvme_rdma_sgl) +
 815                                         NVME_RDMA_METADATA_SGL_SIZE;
 816                set->driver_data = ctrl;
 817                set->nr_hw_queues = nctrl->queue_count - 1;
 818                set->timeout = NVME_IO_TIMEOUT;
 819                set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
 820        }
 821
 822        ret = blk_mq_alloc_tag_set(set);
 823        if (ret)
 824                return ERR_PTR(ret);
 825
 826        return set;
 827}
 828
 829static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
 830                bool remove)
 831{
 832        if (remove) {
 833                blk_cleanup_queue(ctrl->ctrl.admin_q);
 834                blk_cleanup_queue(ctrl->ctrl.fabrics_q);
 835                blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
 836        }
 837        if (ctrl->async_event_sqe.data) {
 838                cancel_work_sync(&ctrl->ctrl.async_event_work);
 839                nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
 840                                sizeof(struct nvme_command), DMA_TO_DEVICE);
 841                ctrl->async_event_sqe.data = NULL;
 842        }
 843        nvme_rdma_free_queue(&ctrl->queues[0]);
 844}
 845
 846static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
 847                bool new)
 848{
 849        bool pi_capable = false;
 850        int error;
 851
 852        error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
 853        if (error)
 854                return error;
 855
 856        ctrl->device = ctrl->queues[0].device;
 857        ctrl->ctrl.numa_node = dev_to_node(ctrl->device->dev->dma_device);
 858
 859        /* T10-PI support */
 860        if (ctrl->device->dev->attrs.device_cap_flags &
 861            IB_DEVICE_INTEGRITY_HANDOVER)
 862                pi_capable = true;
 863
 864        ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev,
 865                                                        pi_capable);
 866
 867        /*
 868         * Bind the async event SQE DMA mapping to the admin queue lifetime.
 869         * It's safe, since any chage in the underlying RDMA device will issue
 870         * error recovery and queue re-creation.
 871         */
 872        error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
 873                        sizeof(struct nvme_command), DMA_TO_DEVICE);
 874        if (error)
 875                goto out_free_queue;
 876
 877        if (new) {
 878                ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
 879                if (IS_ERR(ctrl->ctrl.admin_tagset)) {
 880                        error = PTR_ERR(ctrl->ctrl.admin_tagset);
 881                        goto out_free_async_qe;
 882                }
 883
 884                ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
 885                if (IS_ERR(ctrl->ctrl.fabrics_q)) {
 886                        error = PTR_ERR(ctrl->ctrl.fabrics_q);
 887                        goto out_free_tagset;
 888                }
 889
 890                ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
 891                if (IS_ERR(ctrl->ctrl.admin_q)) {
 892                        error = PTR_ERR(ctrl->ctrl.admin_q);
 893                        goto out_cleanup_fabrics_q;
 894                }
 895        }
 896
 897        error = nvme_rdma_start_queue(ctrl, 0);
 898        if (error)
 899                goto out_cleanup_queue;
 900
 901        error = nvme_enable_ctrl(&ctrl->ctrl);
 902        if (error)
 903                goto out_stop_queue;
 904
 905        ctrl->ctrl.max_segments = ctrl->max_fr_pages;
 906        ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
 907        if (pi_capable)
 908                ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages;
 909        else
 910                ctrl->ctrl.max_integrity_segments = 0;
 911
 912        blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
 913
 914        error = nvme_init_identify(&ctrl->ctrl);
 915        if (error)
 916                goto out_stop_queue;
 917
 918        return 0;
 919
 920out_stop_queue:
 921        nvme_rdma_stop_queue(&ctrl->queues[0]);
 922out_cleanup_queue:
 923        if (new)
 924                blk_cleanup_queue(ctrl->ctrl.admin_q);
 925out_cleanup_fabrics_q:
 926        if (new)
 927                blk_cleanup_queue(ctrl->ctrl.fabrics_q);
 928out_free_tagset:
 929        if (new)
 930                blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
 931out_free_async_qe:
 932        if (ctrl->async_event_sqe.data) {
 933                nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
 934                        sizeof(struct nvme_command), DMA_TO_DEVICE);
 935                ctrl->async_event_sqe.data = NULL;
 936        }
 937out_free_queue:
 938        nvme_rdma_free_queue(&ctrl->queues[0]);
 939        return error;
 940}
 941
 942static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
 943                bool remove)
 944{
 945        if (remove) {
 946                blk_cleanup_queue(ctrl->ctrl.connect_q);
 947                blk_mq_free_tag_set(ctrl->ctrl.tagset);
 948        }
 949        nvme_rdma_free_io_queues(ctrl);
 950}
 951
 952static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
 953{
 954        int ret;
 955
 956        ret = nvme_rdma_alloc_io_queues(ctrl);
 957        if (ret)
 958                return ret;
 959
 960        if (new) {
 961                ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
 962                if (IS_ERR(ctrl->ctrl.tagset)) {
 963                        ret = PTR_ERR(ctrl->ctrl.tagset);
 964                        goto out_free_io_queues;
 965                }
 966
 967                ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
 968                if (IS_ERR(ctrl->ctrl.connect_q)) {
 969                        ret = PTR_ERR(ctrl->ctrl.connect_q);
 970                        goto out_free_tag_set;
 971                }
 972        }
 973
 974        ret = nvme_rdma_start_io_queues(ctrl);
 975        if (ret)
 976                goto out_cleanup_connect_q;
 977
 978        if (!new) {
 979                nvme_start_queues(&ctrl->ctrl);
 980                if (!nvme_wait_freeze_timeout(&ctrl->ctrl, NVME_IO_TIMEOUT)) {
 981                        /*
 982                         * If we timed out waiting for freeze we are likely to
 983                         * be stuck.  Fail the controller initialization just
 984                         * to be safe.
 985                         */
 986                        ret = -ENODEV;
 987                        goto out_wait_freeze_timed_out;
 988                }
 989                blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset,
 990                        ctrl->ctrl.queue_count - 1);
 991                nvme_unfreeze(&ctrl->ctrl);
 992        }
 993
 994        return 0;
 995
 996out_wait_freeze_timed_out:
 997        nvme_stop_queues(&ctrl->ctrl);
 998        nvme_rdma_stop_io_queues(ctrl);
 999out_cleanup_connect_q:
1000        if (new)
1001                blk_cleanup_queue(ctrl->ctrl.connect_q);
1002out_free_tag_set:
1003        if (new)
1004                blk_mq_free_tag_set(ctrl->ctrl.tagset);
1005out_free_io_queues:
1006        nvme_rdma_free_io_queues(ctrl);
1007        return ret;
1008}
1009
1010static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
1011                bool remove)
1012{
1013        mutex_lock(&ctrl->teardown_lock);
1014        blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1015        nvme_rdma_stop_queue(&ctrl->queues[0]);
1016        if (ctrl->ctrl.admin_tagset) {
1017                blk_mq_tagset_busy_iter(ctrl->ctrl.admin_tagset,
1018                        nvme_cancel_request, &ctrl->ctrl);
1019                blk_mq_tagset_wait_completed_request(ctrl->ctrl.admin_tagset);
1020        }
1021        if (remove)
1022                blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1023        nvme_rdma_destroy_admin_queue(ctrl, remove);
1024        mutex_unlock(&ctrl->teardown_lock);
1025}
1026
1027static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
1028                bool remove)
1029{
1030        mutex_lock(&ctrl->teardown_lock);
1031        if (ctrl->ctrl.queue_count > 1) {
1032                nvme_start_freeze(&ctrl->ctrl);
1033                nvme_stop_queues(&ctrl->ctrl);
1034                nvme_rdma_stop_io_queues(ctrl);
1035                if (ctrl->ctrl.tagset) {
1036                        blk_mq_tagset_busy_iter(ctrl->ctrl.tagset,
1037                                nvme_cancel_request, &ctrl->ctrl);
1038                        blk_mq_tagset_wait_completed_request(ctrl->ctrl.tagset);
1039                }
1040                if (remove)
1041                        nvme_start_queues(&ctrl->ctrl);
1042                nvme_rdma_destroy_io_queues(ctrl, remove);
1043        }
1044        mutex_unlock(&ctrl->teardown_lock);
1045}
1046
1047static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
1048{
1049        struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1050
1051        if (list_empty(&ctrl->list))
1052                goto free_ctrl;
1053
1054        mutex_lock(&nvme_rdma_ctrl_mutex);
1055        list_del(&ctrl->list);
1056        mutex_unlock(&nvme_rdma_ctrl_mutex);
1057
1058        nvmf_free_options(nctrl->opts);
1059free_ctrl:
1060        kfree(ctrl->queues);
1061        kfree(ctrl);
1062}
1063
1064static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
1065{
1066        /* If we are resetting/deleting then do nothing */
1067        if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
1068                WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
1069                        ctrl->ctrl.state == NVME_CTRL_LIVE);
1070                return;
1071        }
1072
1073        if (nvmf_should_reconnect(&ctrl->ctrl)) {
1074                dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
1075                        ctrl->ctrl.opts->reconnect_delay);
1076                queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
1077                                ctrl->ctrl.opts->reconnect_delay * HZ);
1078        } else {
1079                nvme_delete_ctrl(&ctrl->ctrl);
1080        }
1081}
1082
1083static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
1084{
1085        int ret = -EINVAL;
1086        bool changed;
1087
1088        ret = nvme_rdma_configure_admin_queue(ctrl, new);
1089        if (ret)
1090                return ret;
1091
1092        if (ctrl->ctrl.icdoff) {
1093                dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1094                goto destroy_admin;
1095        }
1096
1097        if (!(ctrl->ctrl.sgls & (1 << 2))) {
1098                dev_err(ctrl->ctrl.device,
1099                        "Mandatory keyed sgls are not supported!\n");
1100                goto destroy_admin;
1101        }
1102
1103        if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
1104                dev_warn(ctrl->ctrl.device,
1105                        "queue_size %zu > ctrl sqsize %u, clamping down\n",
1106                        ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
1107        }
1108
1109        if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1110                dev_warn(ctrl->ctrl.device,
1111                        "sqsize %u > ctrl maxcmd %u, clamping down\n",
1112                        ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1113                ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1114        }
1115
1116        if (ctrl->ctrl.sgls & (1 << 20))
1117                ctrl->use_inline_data = true;
1118
1119        if (ctrl->ctrl.queue_count > 1) {
1120                ret = nvme_rdma_configure_io_queues(ctrl, new);
1121                if (ret)
1122                        goto destroy_admin;
1123        }
1124
1125        changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1126        if (!changed) {
1127                /*
1128                 * state change failure is ok if we started ctrl delete,
1129                 * unless we're during creation of a new controller to
1130                 * avoid races with teardown flow.
1131                 */
1132                WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1133                             ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1134                WARN_ON_ONCE(new);
1135                ret = -EINVAL;
1136                goto destroy_io;
1137        }
1138
1139        nvme_start_ctrl(&ctrl->ctrl);
1140        return 0;
1141
1142destroy_io:
1143        if (ctrl->ctrl.queue_count > 1)
1144                nvme_rdma_destroy_io_queues(ctrl, new);
1145destroy_admin:
1146        nvme_rdma_stop_queue(&ctrl->queues[0]);
1147        nvme_rdma_destroy_admin_queue(ctrl, new);
1148        return ret;
1149}
1150
1151static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1152{
1153        struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1154                        struct nvme_rdma_ctrl, reconnect_work);
1155
1156        ++ctrl->ctrl.nr_reconnects;
1157
1158        if (nvme_rdma_setup_ctrl(ctrl, false))
1159                goto requeue;
1160
1161        dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1162                        ctrl->ctrl.nr_reconnects);
1163
1164        ctrl->ctrl.nr_reconnects = 0;
1165
1166        return;
1167
1168requeue:
1169        dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1170                        ctrl->ctrl.nr_reconnects);
1171        nvme_rdma_reconnect_or_remove(ctrl);
1172}
1173
1174static void nvme_rdma_error_recovery_work(struct work_struct *work)
1175{
1176        struct nvme_rdma_ctrl *ctrl = container_of(work,
1177                        struct nvme_rdma_ctrl, err_work);
1178
1179        nvme_stop_keep_alive(&ctrl->ctrl);
1180        nvme_rdma_teardown_io_queues(ctrl, false);
1181        nvme_start_queues(&ctrl->ctrl);
1182        nvme_rdma_teardown_admin_queue(ctrl, false);
1183        blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1184
1185        if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1186                /* state change failure is ok if we started ctrl delete */
1187                WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1188                             ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1189                return;
1190        }
1191
1192        nvme_rdma_reconnect_or_remove(ctrl);
1193}
1194
1195static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1196{
1197        if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1198                return;
1199
1200        dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1201        queue_work(nvme_reset_wq, &ctrl->err_work);
1202}
1203
1204static void nvme_rdma_end_request(struct nvme_rdma_request *req)
1205{
1206        struct request *rq = blk_mq_rq_from_pdu(req);
1207
1208        if (!refcount_dec_and_test(&req->ref))
1209                return;
1210        if (!nvme_try_complete_req(rq, req->status, req->result))
1211                nvme_rdma_complete_rq(rq);
1212}
1213
1214static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1215                const char *op)
1216{
1217        struct nvme_rdma_queue *queue = wc->qp->qp_context;
1218        struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1219
1220        if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1221                dev_info(ctrl->ctrl.device,
1222                             "%s for CQE 0x%p failed with status %s (%d)\n",
1223                             op, wc->wr_cqe,
1224                             ib_wc_status_msg(wc->status), wc->status);
1225        nvme_rdma_error_recovery(ctrl);
1226}
1227
1228static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1229{
1230        if (unlikely(wc->status != IB_WC_SUCCESS))
1231                nvme_rdma_wr_error(cq, wc, "MEMREG");
1232}
1233
1234static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1235{
1236        struct nvme_rdma_request *req =
1237                container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1238
1239        if (unlikely(wc->status != IB_WC_SUCCESS))
1240                nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1241        else
1242                nvme_rdma_end_request(req);
1243}
1244
1245static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1246                struct nvme_rdma_request *req)
1247{
1248        struct ib_send_wr wr = {
1249                .opcode             = IB_WR_LOCAL_INV,
1250                .next               = NULL,
1251                .num_sge            = 0,
1252                .send_flags         = IB_SEND_SIGNALED,
1253                .ex.invalidate_rkey = req->mr->rkey,
1254        };
1255
1256        req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1257        wr.wr_cqe = &req->reg_cqe;
1258
1259        return ib_post_send(queue->qp, &wr, NULL);
1260}
1261
1262static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1263                struct request *rq)
1264{
1265        struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1266        struct nvme_rdma_device *dev = queue->device;
1267        struct ib_device *ibdev = dev->dev;
1268        struct list_head *pool = &queue->qp->rdma_mrs;
1269
1270        if (!blk_rq_nr_phys_segments(rq))
1271                return;
1272
1273        if (blk_integrity_rq(rq)) {
1274                ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1275                                req->metadata_sgl->nents, rq_dma_dir(rq));
1276                sg_free_table_chained(&req->metadata_sgl->sg_table,
1277                                      NVME_INLINE_METADATA_SG_CNT);
1278        }
1279
1280        if (req->use_sig_mr)
1281                pool = &queue->qp->sig_mrs;
1282
1283        if (req->mr) {
1284                ib_mr_pool_put(queue->qp, pool, req->mr);
1285                req->mr = NULL;
1286        }
1287
1288        ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1289                        rq_dma_dir(rq));
1290        sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1291}
1292
1293static int nvme_rdma_set_sg_null(struct nvme_command *c)
1294{
1295        struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1296
1297        sg->addr = 0;
1298        put_unaligned_le24(0, sg->length);
1299        put_unaligned_le32(0, sg->key);
1300        sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1301        return 0;
1302}
1303
1304static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1305                struct nvme_rdma_request *req, struct nvme_command *c,
1306                int count)
1307{
1308        struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1309        struct scatterlist *sgl = req->data_sgl.sg_table.sgl;
1310        struct ib_sge *sge = &req->sge[1];
1311        u32 len = 0;
1312        int i;
1313
1314        for (i = 0; i < count; i++, sgl++, sge++) {
1315                sge->addr = sg_dma_address(sgl);
1316                sge->length = sg_dma_len(sgl);
1317                sge->lkey = queue->device->pd->local_dma_lkey;
1318                len += sge->length;
1319        }
1320
1321        sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1322        sg->length = cpu_to_le32(len);
1323        sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1324
1325        req->num_sge += count;
1326        return 0;
1327}
1328
1329static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1330                struct nvme_rdma_request *req, struct nvme_command *c)
1331{
1332        struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1333
1334        sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl));
1335        put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length);
1336        put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1337        sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1338        return 0;
1339}
1340
1341static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1342                struct nvme_rdma_request *req, struct nvme_command *c,
1343                int count)
1344{
1345        struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1346        int nr;
1347
1348        req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1349        if (WARN_ON_ONCE(!req->mr))
1350                return -EAGAIN;
1351
1352        /*
1353         * Align the MR to a 4K page size to match the ctrl page size and
1354         * the block virtual boundary.
1355         */
1356        nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL,
1357                          SZ_4K);
1358        if (unlikely(nr < count)) {
1359                ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1360                req->mr = NULL;
1361                if (nr < 0)
1362                        return nr;
1363                return -EINVAL;
1364        }
1365
1366        ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1367
1368        req->reg_cqe.done = nvme_rdma_memreg_done;
1369        memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1370        req->reg_wr.wr.opcode = IB_WR_REG_MR;
1371        req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1372        req->reg_wr.wr.num_sge = 0;
1373        req->reg_wr.mr = req->mr;
1374        req->reg_wr.key = req->mr->rkey;
1375        req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1376                             IB_ACCESS_REMOTE_READ |
1377                             IB_ACCESS_REMOTE_WRITE;
1378
1379        sg->addr = cpu_to_le64(req->mr->iova);
1380        put_unaligned_le24(req->mr->length, sg->length);
1381        put_unaligned_le32(req->mr->rkey, sg->key);
1382        sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1383                        NVME_SGL_FMT_INVALIDATE;
1384
1385        return 0;
1386}
1387
1388static void nvme_rdma_set_sig_domain(struct blk_integrity *bi,
1389                struct nvme_command *cmd, struct ib_sig_domain *domain,
1390                u16 control, u8 pi_type)
1391{
1392        domain->sig_type = IB_SIG_TYPE_T10_DIF;
1393        domain->sig.dif.bg_type = IB_T10DIF_CRC;
1394        domain->sig.dif.pi_interval = 1 << bi->interval_exp;
1395        domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
1396        if (control & NVME_RW_PRINFO_PRCHK_REF)
1397                domain->sig.dif.ref_remap = true;
1398
1399        domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
1400        domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
1401        domain->sig.dif.app_escape = true;
1402        if (pi_type == NVME_NS_DPS_PI_TYPE3)
1403                domain->sig.dif.ref_escape = true;
1404}
1405
1406static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi,
1407                struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs,
1408                u8 pi_type)
1409{
1410        u16 control = le16_to_cpu(cmd->rw.control);
1411
1412        memset(sig_attrs, 0, sizeof(*sig_attrs));
1413        if (control & NVME_RW_PRINFO_PRACT) {
1414                /* for WRITE_INSERT/READ_STRIP no memory domain */
1415                sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE;
1416                nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1417                                         pi_type);
1418                /* Clear the PRACT bit since HCA will generate/verify the PI */
1419                control &= ~NVME_RW_PRINFO_PRACT;
1420                cmd->rw.control = cpu_to_le16(control);
1421        } else {
1422                /* for WRITE_PASS/READ_PASS both wire/memory domains exist */
1423                nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1424                                         pi_type);
1425                nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
1426                                         pi_type);
1427        }
1428}
1429
1430static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask)
1431{
1432        *mask = 0;
1433        if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF)
1434                *mask |= IB_SIG_CHECK_REFTAG;
1435        if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD)
1436                *mask |= IB_SIG_CHECK_GUARD;
1437}
1438
1439static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc)
1440{
1441        if (unlikely(wc->status != IB_WC_SUCCESS))
1442                nvme_rdma_wr_error(cq, wc, "SIG");
1443}
1444
1445static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue,
1446                struct nvme_rdma_request *req, struct nvme_command *c,
1447                int count, int pi_count)
1448{
1449        struct nvme_rdma_sgl *sgl = &req->data_sgl;
1450        struct ib_reg_wr *wr = &req->reg_wr;
1451        struct request *rq = blk_mq_rq_from_pdu(req);
1452        struct nvme_ns *ns = rq->q->queuedata;
1453        struct bio *bio = rq->bio;
1454        struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1455        int nr;
1456
1457        req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs);
1458        if (WARN_ON_ONCE(!req->mr))
1459                return -EAGAIN;
1460
1461        nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL,
1462                             req->metadata_sgl->sg_table.sgl, pi_count, NULL,
1463                             SZ_4K);
1464        if (unlikely(nr))
1465                goto mr_put;
1466
1467        nvme_rdma_set_sig_attrs(blk_get_integrity(bio->bi_disk), c,
1468                                req->mr->sig_attrs, ns->pi_type);
1469        nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask);
1470
1471        ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1472
1473        req->reg_cqe.done = nvme_rdma_sig_done;
1474        memset(wr, 0, sizeof(*wr));
1475        wr->wr.opcode = IB_WR_REG_MR_INTEGRITY;
1476        wr->wr.wr_cqe = &req->reg_cqe;
1477        wr->wr.num_sge = 0;
1478        wr->wr.send_flags = 0;
1479        wr->mr = req->mr;
1480        wr->key = req->mr->rkey;
1481        wr->access = IB_ACCESS_LOCAL_WRITE |
1482                     IB_ACCESS_REMOTE_READ |
1483                     IB_ACCESS_REMOTE_WRITE;
1484
1485        sg->addr = cpu_to_le64(req->mr->iova);
1486        put_unaligned_le24(req->mr->length, sg->length);
1487        put_unaligned_le32(req->mr->rkey, sg->key);
1488        sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1489
1490        return 0;
1491
1492mr_put:
1493        ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr);
1494        req->mr = NULL;
1495        if (nr < 0)
1496                return nr;
1497        return -EINVAL;
1498}
1499
1500static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1501                struct request *rq, struct nvme_command *c)
1502{
1503        struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1504        struct nvme_rdma_device *dev = queue->device;
1505        struct ib_device *ibdev = dev->dev;
1506        int pi_count = 0;
1507        int count, ret;
1508
1509        req->num_sge = 1;
1510        refcount_set(&req->ref, 2); /* send and recv completions */
1511
1512        c->common.flags |= NVME_CMD_SGL_METABUF;
1513
1514        if (!blk_rq_nr_phys_segments(rq))
1515                return nvme_rdma_set_sg_null(c);
1516
1517        req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1);
1518        ret = sg_alloc_table_chained(&req->data_sgl.sg_table,
1519                        blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl,
1520                        NVME_INLINE_SG_CNT);
1521        if (ret)
1522                return -ENOMEM;
1523
1524        req->data_sgl.nents = blk_rq_map_sg(rq->q, rq,
1525                                            req->data_sgl.sg_table.sgl);
1526
1527        count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl,
1528                              req->data_sgl.nents, rq_dma_dir(rq));
1529        if (unlikely(count <= 0)) {
1530                ret = -EIO;
1531                goto out_free_table;
1532        }
1533
1534        if (blk_integrity_rq(rq)) {
1535                req->metadata_sgl->sg_table.sgl =
1536                        (struct scatterlist *)(req->metadata_sgl + 1);
1537                ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table,
1538                                blk_rq_count_integrity_sg(rq->q, rq->bio),
1539                                req->metadata_sgl->sg_table.sgl,
1540                                NVME_INLINE_METADATA_SG_CNT);
1541                if (unlikely(ret)) {
1542                        ret = -ENOMEM;
1543                        goto out_unmap_sg;
1544                }
1545
1546                req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq->q,
1547                                rq->bio, req->metadata_sgl->sg_table.sgl);
1548                pi_count = ib_dma_map_sg(ibdev,
1549                                         req->metadata_sgl->sg_table.sgl,
1550                                         req->metadata_sgl->nents,
1551                                         rq_dma_dir(rq));
1552                if (unlikely(pi_count <= 0)) {
1553                        ret = -EIO;
1554                        goto out_free_pi_table;
1555                }
1556        }
1557
1558        if (req->use_sig_mr) {
1559                ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count);
1560                goto out;
1561        }
1562
1563        if (count <= dev->num_inline_segments) {
1564                if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1565                    queue->ctrl->use_inline_data &&
1566                    blk_rq_payload_bytes(rq) <=
1567                                nvme_rdma_inline_data_size(queue)) {
1568                        ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1569                        goto out;
1570                }
1571
1572                if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1573                        ret = nvme_rdma_map_sg_single(queue, req, c);
1574                        goto out;
1575                }
1576        }
1577
1578        ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1579out:
1580        if (unlikely(ret))
1581                goto out_unmap_pi_sg;
1582
1583        return 0;
1584
1585out_unmap_pi_sg:
1586        if (blk_integrity_rq(rq))
1587                ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1588                                req->metadata_sgl->nents, rq_dma_dir(rq));
1589out_free_pi_table:
1590        if (blk_integrity_rq(rq))
1591                sg_free_table_chained(&req->metadata_sgl->sg_table,
1592                                      NVME_INLINE_METADATA_SG_CNT);
1593out_unmap_sg:
1594        ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1595                        rq_dma_dir(rq));
1596out_free_table:
1597        sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1598        return ret;
1599}
1600
1601static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1602{
1603        struct nvme_rdma_qe *qe =
1604                container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1605        struct nvme_rdma_request *req =
1606                container_of(qe, struct nvme_rdma_request, sqe);
1607
1608        if (unlikely(wc->status != IB_WC_SUCCESS))
1609                nvme_rdma_wr_error(cq, wc, "SEND");
1610        else
1611                nvme_rdma_end_request(req);
1612}
1613
1614static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1615                struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1616                struct ib_send_wr *first)
1617{
1618        struct ib_send_wr wr;
1619        int ret;
1620
1621        sge->addr   = qe->dma;
1622        sge->length = sizeof(struct nvme_command);
1623        sge->lkey   = queue->device->pd->local_dma_lkey;
1624
1625        wr.next       = NULL;
1626        wr.wr_cqe     = &qe->cqe;
1627        wr.sg_list    = sge;
1628        wr.num_sge    = num_sge;
1629        wr.opcode     = IB_WR_SEND;
1630        wr.send_flags = IB_SEND_SIGNALED;
1631
1632        if (first)
1633                first->next = &wr;
1634        else
1635                first = &wr;
1636
1637        ret = ib_post_send(queue->qp, first, NULL);
1638        if (unlikely(ret)) {
1639                dev_err(queue->ctrl->ctrl.device,
1640                             "%s failed with error code %d\n", __func__, ret);
1641        }
1642        return ret;
1643}
1644
1645static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1646                struct nvme_rdma_qe *qe)
1647{
1648        struct ib_recv_wr wr;
1649        struct ib_sge list;
1650        int ret;
1651
1652        list.addr   = qe->dma;
1653        list.length = sizeof(struct nvme_completion);
1654        list.lkey   = queue->device->pd->local_dma_lkey;
1655
1656        qe->cqe.done = nvme_rdma_recv_done;
1657
1658        wr.next     = NULL;
1659        wr.wr_cqe   = &qe->cqe;
1660        wr.sg_list  = &list;
1661        wr.num_sge  = 1;
1662
1663        ret = ib_post_recv(queue->qp, &wr, NULL);
1664        if (unlikely(ret)) {
1665                dev_err(queue->ctrl->ctrl.device,
1666                        "%s failed with error code %d\n", __func__, ret);
1667        }
1668        return ret;
1669}
1670
1671static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1672{
1673        u32 queue_idx = nvme_rdma_queue_idx(queue);
1674
1675        if (queue_idx == 0)
1676                return queue->ctrl->admin_tag_set.tags[queue_idx];
1677        return queue->ctrl->tag_set.tags[queue_idx - 1];
1678}
1679
1680static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1681{
1682        if (unlikely(wc->status != IB_WC_SUCCESS))
1683                nvme_rdma_wr_error(cq, wc, "ASYNC");
1684}
1685
1686static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1687{
1688        struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1689        struct nvme_rdma_queue *queue = &ctrl->queues[0];
1690        struct ib_device *dev = queue->device->dev;
1691        struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1692        struct nvme_command *cmd = sqe->data;
1693        struct ib_sge sge;
1694        int ret;
1695
1696        ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1697
1698        memset(cmd, 0, sizeof(*cmd));
1699        cmd->common.opcode = nvme_admin_async_event;
1700        cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1701        cmd->common.flags |= NVME_CMD_SGL_METABUF;
1702        nvme_rdma_set_sg_null(cmd);
1703
1704        sqe->cqe.done = nvme_rdma_async_done;
1705
1706        ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1707                        DMA_TO_DEVICE);
1708
1709        ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1710        WARN_ON_ONCE(ret);
1711}
1712
1713static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1714                struct nvme_completion *cqe, struct ib_wc *wc)
1715{
1716        struct request *rq;
1717        struct nvme_rdma_request *req;
1718
1719        rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1720        if (!rq) {
1721                dev_err(queue->ctrl->ctrl.device,
1722                        "tag 0x%x on QP %#x not found\n",
1723                        cqe->command_id, queue->qp->qp_num);
1724                nvme_rdma_error_recovery(queue->ctrl);
1725                return;
1726        }
1727        req = blk_mq_rq_to_pdu(rq);
1728
1729        req->status = cqe->status;
1730        req->result = cqe->result;
1731
1732        if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1733                if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
1734                        dev_err(queue->ctrl->ctrl.device,
1735                                "Bogus remote invalidation for rkey %#x\n",
1736                                req->mr->rkey);
1737                        nvme_rdma_error_recovery(queue->ctrl);
1738                }
1739        } else if (req->mr) {
1740                int ret;
1741
1742                ret = nvme_rdma_inv_rkey(queue, req);
1743                if (unlikely(ret < 0)) {
1744                        dev_err(queue->ctrl->ctrl.device,
1745                                "Queueing INV WR for rkey %#x failed (%d)\n",
1746                                req->mr->rkey, ret);
1747                        nvme_rdma_error_recovery(queue->ctrl);
1748                }
1749                /* the local invalidation completion will end the request */
1750                return;
1751        }
1752
1753        nvme_rdma_end_request(req);
1754}
1755
1756static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1757{
1758        struct nvme_rdma_qe *qe =
1759                container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1760        struct nvme_rdma_queue *queue = wc->qp->qp_context;
1761        struct ib_device *ibdev = queue->device->dev;
1762        struct nvme_completion *cqe = qe->data;
1763        const size_t len = sizeof(struct nvme_completion);
1764
1765        if (unlikely(wc->status != IB_WC_SUCCESS)) {
1766                nvme_rdma_wr_error(cq, wc, "RECV");
1767                return;
1768        }
1769
1770        ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1771        /*
1772         * AEN requests are special as they don't time out and can
1773         * survive any kind of queue freeze and often don't respond to
1774         * aborts.  We don't even bother to allocate a struct request
1775         * for them but rather special case them here.
1776         */
1777        if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue),
1778                                     cqe->command_id)))
1779                nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1780                                &cqe->result);
1781        else
1782                nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1783        ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1784
1785        nvme_rdma_post_recv(queue, qe);
1786}
1787
1788static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1789{
1790        int ret, i;
1791
1792        for (i = 0; i < queue->queue_size; i++) {
1793                ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1794                if (ret)
1795                        goto out_destroy_queue_ib;
1796        }
1797
1798        return 0;
1799
1800out_destroy_queue_ib:
1801        nvme_rdma_destroy_queue_ib(queue);
1802        return ret;
1803}
1804
1805static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1806                struct rdma_cm_event *ev)
1807{
1808        struct rdma_cm_id *cm_id = queue->cm_id;
1809        int status = ev->status;
1810        const char *rej_msg;
1811        const struct nvme_rdma_cm_rej *rej_data;
1812        u8 rej_data_len;
1813
1814        rej_msg = rdma_reject_msg(cm_id, status);
1815        rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1816
1817        if (rej_data && rej_data_len >= sizeof(u16)) {
1818                u16 sts = le16_to_cpu(rej_data->sts);
1819
1820                dev_err(queue->ctrl->ctrl.device,
1821                      "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1822                      status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1823        } else {
1824                dev_err(queue->ctrl->ctrl.device,
1825                        "Connect rejected: status %d (%s).\n", status, rej_msg);
1826        }
1827
1828        return -ECONNRESET;
1829}
1830
1831static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1832{
1833        struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
1834        int ret;
1835
1836        ret = nvme_rdma_create_queue_ib(queue);
1837        if (ret)
1838                return ret;
1839
1840        if (ctrl->opts->tos >= 0)
1841                rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
1842        ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1843        if (ret) {
1844                dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
1845                        queue->cm_error);
1846                goto out_destroy_queue;
1847        }
1848
1849        return 0;
1850
1851out_destroy_queue:
1852        nvme_rdma_destroy_queue_ib(queue);
1853        return ret;
1854}
1855
1856static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1857{
1858        struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1859        struct rdma_conn_param param = { };
1860        struct nvme_rdma_cm_req priv = { };
1861        int ret;
1862
1863        param.qp_num = queue->qp->qp_num;
1864        param.flow_control = 1;
1865
1866        param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1867        /* maximum retry count */
1868        param.retry_count = 7;
1869        param.rnr_retry_count = 7;
1870        param.private_data = &priv;
1871        param.private_data_len = sizeof(priv);
1872
1873        priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1874        priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1875        /*
1876         * set the admin queue depth to the minimum size
1877         * specified by the Fabrics standard.
1878         */
1879        if (priv.qid == 0) {
1880                priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1881                priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1882        } else {
1883                /*
1884                 * current interpretation of the fabrics spec
1885                 * is at minimum you make hrqsize sqsize+1, or a
1886                 * 1's based representation of sqsize.
1887                 */
1888                priv.hrqsize = cpu_to_le16(queue->queue_size);
1889                priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1890        }
1891
1892        ret = rdma_connect(queue->cm_id, &param);
1893        if (ret) {
1894                dev_err(ctrl->ctrl.device,
1895                        "rdma_connect failed (%d).\n", ret);
1896                goto out_destroy_queue_ib;
1897        }
1898
1899        return 0;
1900
1901out_destroy_queue_ib:
1902        nvme_rdma_destroy_queue_ib(queue);
1903        return ret;
1904}
1905
1906static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1907                struct rdma_cm_event *ev)
1908{
1909        struct nvme_rdma_queue *queue = cm_id->context;
1910        int cm_error = 0;
1911
1912        dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1913                rdma_event_msg(ev->event), ev->event,
1914                ev->status, cm_id);
1915
1916        switch (ev->event) {
1917        case RDMA_CM_EVENT_ADDR_RESOLVED:
1918                cm_error = nvme_rdma_addr_resolved(queue);
1919                break;
1920        case RDMA_CM_EVENT_ROUTE_RESOLVED:
1921                cm_error = nvme_rdma_route_resolved(queue);
1922                break;
1923        case RDMA_CM_EVENT_ESTABLISHED:
1924                queue->cm_error = nvme_rdma_conn_established(queue);
1925                /* complete cm_done regardless of success/failure */
1926                complete(&queue->cm_done);
1927                return 0;
1928        case RDMA_CM_EVENT_REJECTED:
1929                nvme_rdma_destroy_queue_ib(queue);
1930                cm_error = nvme_rdma_conn_rejected(queue, ev);
1931                break;
1932        case RDMA_CM_EVENT_ROUTE_ERROR:
1933        case RDMA_CM_EVENT_CONNECT_ERROR:
1934        case RDMA_CM_EVENT_UNREACHABLE:
1935                nvme_rdma_destroy_queue_ib(queue);
1936                fallthrough;
1937        case RDMA_CM_EVENT_ADDR_ERROR:
1938                dev_dbg(queue->ctrl->ctrl.device,
1939                        "CM error event %d\n", ev->event);
1940                cm_error = -ECONNRESET;
1941                break;
1942        case RDMA_CM_EVENT_DISCONNECTED:
1943        case RDMA_CM_EVENT_ADDR_CHANGE:
1944        case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1945                dev_dbg(queue->ctrl->ctrl.device,
1946                        "disconnect received - connection closed\n");
1947                nvme_rdma_error_recovery(queue->ctrl);
1948                break;
1949        case RDMA_CM_EVENT_DEVICE_REMOVAL:
1950                /* device removal is handled via the ib_client API */
1951                break;
1952        default:
1953                dev_err(queue->ctrl->ctrl.device,
1954                        "Unexpected RDMA CM event (%d)\n", ev->event);
1955                nvme_rdma_error_recovery(queue->ctrl);
1956                break;
1957        }
1958
1959        if (cm_error) {
1960                queue->cm_error = cm_error;
1961                complete(&queue->cm_done);
1962        }
1963
1964        return 0;
1965}
1966
1967static void nvme_rdma_complete_timed_out(struct request *rq)
1968{
1969        struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1970        struct nvme_rdma_queue *queue = req->queue;
1971        struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1972
1973        /* fence other contexts that may complete the command */
1974        mutex_lock(&ctrl->teardown_lock);
1975        nvme_rdma_stop_queue(queue);
1976        if (!blk_mq_request_completed(rq)) {
1977                nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD;
1978                blk_mq_complete_request(rq);
1979        }
1980        mutex_unlock(&ctrl->teardown_lock);
1981}
1982
1983static enum blk_eh_timer_return
1984nvme_rdma_timeout(struct request *rq, bool reserved)
1985{
1986        struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1987        struct nvme_rdma_queue *queue = req->queue;
1988        struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1989
1990        dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
1991                 rq->tag, nvme_rdma_queue_idx(queue));
1992
1993        if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
1994                /*
1995                 * If we are resetting, connecting or deleting we should
1996                 * complete immediately because we may block controller
1997                 * teardown or setup sequence
1998                 * - ctrl disable/shutdown fabrics requests
1999                 * - connect requests
2000                 * - initialization admin requests
2001                 * - I/O requests that entered after unquiescing and
2002                 *   the controller stopped responding
2003                 *
2004                 * All other requests should be cancelled by the error
2005                 * recovery work, so it's fine that we fail it here.
2006                 */
2007                nvme_rdma_complete_timed_out(rq);
2008                return BLK_EH_DONE;
2009        }
2010
2011        /*
2012         * LIVE state should trigger the normal error recovery which will
2013         * handle completing this request.
2014         */
2015        nvme_rdma_error_recovery(ctrl);
2016        return BLK_EH_RESET_TIMER;
2017}
2018
2019static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
2020                const struct blk_mq_queue_data *bd)
2021{
2022        struct nvme_ns *ns = hctx->queue->queuedata;
2023        struct nvme_rdma_queue *queue = hctx->driver_data;
2024        struct request *rq = bd->rq;
2025        struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2026        struct nvme_rdma_qe *sqe = &req->sqe;
2027        struct nvme_command *c = sqe->data;
2028        struct ib_device *dev;
2029        bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
2030        blk_status_t ret;
2031        int err;
2032
2033        WARN_ON_ONCE(rq->tag < 0);
2034
2035        if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2036                return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2037
2038        dev = queue->device->dev;
2039
2040        req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
2041                                         sizeof(struct nvme_command),
2042                                         DMA_TO_DEVICE);
2043        err = ib_dma_mapping_error(dev, req->sqe.dma);
2044        if (unlikely(err))
2045                return BLK_STS_RESOURCE;
2046
2047        ib_dma_sync_single_for_cpu(dev, sqe->dma,
2048                        sizeof(struct nvme_command), DMA_TO_DEVICE);
2049
2050        ret = nvme_setup_cmd(ns, rq, c);
2051        if (ret)
2052                goto unmap_qe;
2053
2054        blk_mq_start_request(rq);
2055
2056        if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2057            queue->pi_support &&
2058            (c->common.opcode == nvme_cmd_write ||
2059             c->common.opcode == nvme_cmd_read) &&
2060            nvme_ns_has_pi(ns))
2061                req->use_sig_mr = true;
2062        else
2063                req->use_sig_mr = false;
2064
2065        err = nvme_rdma_map_data(queue, rq, c);
2066        if (unlikely(err < 0)) {
2067                dev_err(queue->ctrl->ctrl.device,
2068                             "Failed to map data (%d)\n", err);
2069                goto err;
2070        }
2071
2072        sqe->cqe.done = nvme_rdma_send_done;
2073
2074        ib_dma_sync_single_for_device(dev, sqe->dma,
2075                        sizeof(struct nvme_command), DMA_TO_DEVICE);
2076
2077        err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
2078                        req->mr ? &req->reg_wr.wr : NULL);
2079        if (unlikely(err))
2080                goto err_unmap;
2081
2082        return BLK_STS_OK;
2083
2084err_unmap:
2085        nvme_rdma_unmap_data(queue, rq);
2086err:
2087        if (err == -ENOMEM || err == -EAGAIN)
2088                ret = BLK_STS_RESOURCE;
2089        else
2090                ret = BLK_STS_IOERR;
2091        nvme_cleanup_cmd(rq);
2092unmap_qe:
2093        ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
2094                            DMA_TO_DEVICE);
2095        return ret;
2096}
2097
2098static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx)
2099{
2100        struct nvme_rdma_queue *queue = hctx->driver_data;
2101
2102        return ib_process_cq_direct(queue->ib_cq, -1);
2103}
2104
2105static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req)
2106{
2107        struct request *rq = blk_mq_rq_from_pdu(req);
2108        struct ib_mr_status mr_status;
2109        int ret;
2110
2111        ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
2112        if (ret) {
2113                pr_err("ib_check_mr_status failed, ret %d\n", ret);
2114                nvme_req(rq)->status = NVME_SC_INVALID_PI;
2115                return;
2116        }
2117
2118        if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
2119                switch (mr_status.sig_err.err_type) {
2120                case IB_SIG_BAD_GUARD:
2121                        nvme_req(rq)->status = NVME_SC_GUARD_CHECK;
2122                        break;
2123                case IB_SIG_BAD_REFTAG:
2124                        nvme_req(rq)->status = NVME_SC_REFTAG_CHECK;
2125                        break;
2126                case IB_SIG_BAD_APPTAG:
2127                        nvme_req(rq)->status = NVME_SC_APPTAG_CHECK;
2128                        break;
2129                }
2130                pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
2131                       mr_status.sig_err.err_type, mr_status.sig_err.expected,
2132                       mr_status.sig_err.actual);
2133        }
2134}
2135
2136static void nvme_rdma_complete_rq(struct request *rq)
2137{
2138        struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2139        struct nvme_rdma_queue *queue = req->queue;
2140        struct ib_device *ibdev = queue->device->dev;
2141
2142        if (req->use_sig_mr)
2143                nvme_rdma_check_pi_status(req);
2144
2145        nvme_rdma_unmap_data(queue, rq);
2146        ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
2147                            DMA_TO_DEVICE);
2148        nvme_complete_rq(rq);
2149}
2150
2151static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
2152{
2153        struct nvme_rdma_ctrl *ctrl = set->driver_data;
2154        struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2155
2156        if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2157                /* separate read/write queues */
2158                set->map[HCTX_TYPE_DEFAULT].nr_queues =
2159                        ctrl->io_queues[HCTX_TYPE_DEFAULT];
2160                set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2161                set->map[HCTX_TYPE_READ].nr_queues =
2162                        ctrl->io_queues[HCTX_TYPE_READ];
2163                set->map[HCTX_TYPE_READ].queue_offset =
2164                        ctrl->io_queues[HCTX_TYPE_DEFAULT];
2165        } else {
2166                /* shared read/write queues */
2167                set->map[HCTX_TYPE_DEFAULT].nr_queues =
2168                        ctrl->io_queues[HCTX_TYPE_DEFAULT];
2169                set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2170                set->map[HCTX_TYPE_READ].nr_queues =
2171                        ctrl->io_queues[HCTX_TYPE_DEFAULT];
2172                set->map[HCTX_TYPE_READ].queue_offset = 0;
2173        }
2174        blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT],
2175                        ctrl->device->dev, 0);
2176        blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ],
2177                        ctrl->device->dev, 0);
2178
2179        if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2180                /* map dedicated poll queues only if we have queues left */
2181                set->map[HCTX_TYPE_POLL].nr_queues =
2182                                ctrl->io_queues[HCTX_TYPE_POLL];
2183                set->map[HCTX_TYPE_POLL].queue_offset =
2184                        ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2185                        ctrl->io_queues[HCTX_TYPE_READ];
2186                blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2187        }
2188
2189        dev_info(ctrl->ctrl.device,
2190                "mapped %d/%d/%d default/read/poll queues.\n",
2191                ctrl->io_queues[HCTX_TYPE_DEFAULT],
2192                ctrl->io_queues[HCTX_TYPE_READ],
2193                ctrl->io_queues[HCTX_TYPE_POLL]);
2194
2195        return 0;
2196}
2197
2198static const struct blk_mq_ops nvme_rdma_mq_ops = {
2199        .queue_rq       = nvme_rdma_queue_rq,
2200        .complete       = nvme_rdma_complete_rq,
2201        .init_request   = nvme_rdma_init_request,
2202        .exit_request   = nvme_rdma_exit_request,
2203        .init_hctx      = nvme_rdma_init_hctx,
2204        .timeout        = nvme_rdma_timeout,
2205        .map_queues     = nvme_rdma_map_queues,
2206        .poll           = nvme_rdma_poll,
2207};
2208
2209static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
2210        .queue_rq       = nvme_rdma_queue_rq,
2211        .complete       = nvme_rdma_complete_rq,
2212        .init_request   = nvme_rdma_init_request,
2213        .exit_request   = nvme_rdma_exit_request,
2214        .init_hctx      = nvme_rdma_init_admin_hctx,
2215        .timeout        = nvme_rdma_timeout,
2216};
2217
2218static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
2219{
2220        cancel_work_sync(&ctrl->err_work);
2221        cancel_delayed_work_sync(&ctrl->reconnect_work);
2222
2223        nvme_rdma_teardown_io_queues(ctrl, shutdown);
2224        blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2225        if (shutdown)
2226                nvme_shutdown_ctrl(&ctrl->ctrl);
2227        else
2228                nvme_disable_ctrl(&ctrl->ctrl);
2229        nvme_rdma_teardown_admin_queue(ctrl, shutdown);
2230}
2231
2232static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
2233{
2234        nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
2235}
2236
2237static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
2238{
2239        struct nvme_rdma_ctrl *ctrl =
2240                container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
2241
2242        nvme_stop_ctrl(&ctrl->ctrl);
2243        nvme_rdma_shutdown_ctrl(ctrl, false);
2244
2245        if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2246                /* state change failure should never happen */
2247                WARN_ON_ONCE(1);
2248                return;
2249        }
2250
2251        if (nvme_rdma_setup_ctrl(ctrl, false))
2252                goto out_fail;
2253
2254        return;
2255
2256out_fail:
2257        ++ctrl->ctrl.nr_reconnects;
2258        nvme_rdma_reconnect_or_remove(ctrl);
2259}
2260
2261static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
2262        .name                   = "rdma",
2263        .module                 = THIS_MODULE,
2264        .flags                  = NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED,
2265        .reg_read32             = nvmf_reg_read32,
2266        .reg_read64             = nvmf_reg_read64,
2267        .reg_write32            = nvmf_reg_write32,
2268        .free_ctrl              = nvme_rdma_free_ctrl,
2269        .submit_async_event     = nvme_rdma_submit_async_event,
2270        .delete_ctrl            = nvme_rdma_delete_ctrl,
2271        .get_address            = nvmf_get_address,
2272};
2273
2274/*
2275 * Fails a connection request if it matches an existing controller
2276 * (association) with the same tuple:
2277 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
2278 *
2279 * if local address is not specified in the request, it will match an
2280 * existing controller with all the other parameters the same and no
2281 * local port address specified as well.
2282 *
2283 * The ports don't need to be compared as they are intrinsically
2284 * already matched by the port pointers supplied.
2285 */
2286static bool
2287nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
2288{
2289        struct nvme_rdma_ctrl *ctrl;
2290        bool found = false;
2291
2292        mutex_lock(&nvme_rdma_ctrl_mutex);
2293        list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2294                found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2295                if (found)
2296                        break;
2297        }
2298        mutex_unlock(&nvme_rdma_ctrl_mutex);
2299
2300        return found;
2301}
2302
2303static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
2304                struct nvmf_ctrl_options *opts)
2305{
2306        struct nvme_rdma_ctrl *ctrl;
2307        int ret;
2308        bool changed;
2309
2310        ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2311        if (!ctrl)
2312                return ERR_PTR(-ENOMEM);
2313        ctrl->ctrl.opts = opts;
2314        INIT_LIST_HEAD(&ctrl->list);
2315        mutex_init(&ctrl->teardown_lock);
2316
2317        if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2318                opts->trsvcid =
2319                        kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
2320                if (!opts->trsvcid) {
2321                        ret = -ENOMEM;
2322                        goto out_free_ctrl;
2323                }
2324                opts->mask |= NVMF_OPT_TRSVCID;
2325        }
2326
2327        ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2328                        opts->traddr, opts->trsvcid, &ctrl->addr);
2329        if (ret) {
2330                pr_err("malformed address passed: %s:%s\n",
2331                        opts->traddr, opts->trsvcid);
2332                goto out_free_ctrl;
2333        }
2334
2335        if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2336                ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2337                        opts->host_traddr, NULL, &ctrl->src_addr);
2338                if (ret) {
2339                        pr_err("malformed src address passed: %s\n",
2340                               opts->host_traddr);
2341                        goto out_free_ctrl;
2342                }
2343        }
2344
2345        if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
2346                ret = -EALREADY;
2347                goto out_free_ctrl;
2348        }
2349
2350        INIT_DELAYED_WORK(&ctrl->reconnect_work,
2351                        nvme_rdma_reconnect_ctrl_work);
2352        INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
2353        INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
2354
2355        ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2356                                opts->nr_poll_queues + 1;
2357        ctrl->ctrl.sqsize = opts->queue_size - 1;
2358        ctrl->ctrl.kato = opts->kato;
2359
2360        ret = -ENOMEM;
2361        ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2362                                GFP_KERNEL);
2363        if (!ctrl->queues)
2364                goto out_free_ctrl;
2365
2366        ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2367                                0 /* no quirks, we're perfect! */);
2368        if (ret)
2369                goto out_kfree_queues;
2370
2371        changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2372        WARN_ON_ONCE(!changed);
2373
2374        ret = nvme_rdma_setup_ctrl(ctrl, true);
2375        if (ret)
2376                goto out_uninit_ctrl;
2377
2378        dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2379                ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2380
2381        mutex_lock(&nvme_rdma_ctrl_mutex);
2382        list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2383        mutex_unlock(&nvme_rdma_ctrl_mutex);
2384
2385        return &ctrl->ctrl;
2386
2387out_uninit_ctrl:
2388        nvme_uninit_ctrl(&ctrl->ctrl);
2389        nvme_put_ctrl(&ctrl->ctrl);
2390        if (ret > 0)
2391                ret = -EIO;
2392        return ERR_PTR(ret);
2393out_kfree_queues:
2394        kfree(ctrl->queues);
2395out_free_ctrl:
2396        kfree(ctrl);
2397        return ERR_PTR(ret);
2398}
2399
2400static struct nvmf_transport_ops nvme_rdma_transport = {
2401        .name           = "rdma",
2402        .module         = THIS_MODULE,
2403        .required_opts  = NVMF_OPT_TRADDR,
2404        .allowed_opts   = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2405                          NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2406                          NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2407                          NVMF_OPT_TOS,
2408        .create_ctrl    = nvme_rdma_create_ctrl,
2409};
2410
2411static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2412{
2413        struct nvme_rdma_ctrl *ctrl;
2414        struct nvme_rdma_device *ndev;
2415        bool found = false;
2416
2417        mutex_lock(&device_list_mutex);
2418        list_for_each_entry(ndev, &device_list, entry) {
2419                if (ndev->dev == ib_device) {
2420                        found = true;
2421                        break;
2422                }
2423        }
2424        mutex_unlock(&device_list_mutex);
2425
2426        if (!found)
2427                return;
2428
2429        /* Delete all controllers using this device */
2430        mutex_lock(&nvme_rdma_ctrl_mutex);
2431        list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2432                if (ctrl->device->dev != ib_device)
2433                        continue;
2434                nvme_delete_ctrl(&ctrl->ctrl);
2435        }
2436        mutex_unlock(&nvme_rdma_ctrl_mutex);
2437
2438        flush_workqueue(nvme_delete_wq);
2439}
2440
2441static struct ib_client nvme_rdma_ib_client = {
2442        .name   = "nvme_rdma",
2443        .remove = nvme_rdma_remove_one
2444};
2445
2446static int __init nvme_rdma_init_module(void)
2447{
2448        int ret;
2449
2450        ret = ib_register_client(&nvme_rdma_ib_client);
2451        if (ret)
2452                return ret;
2453
2454        ret = nvmf_register_transport(&nvme_rdma_transport);
2455        if (ret)
2456                goto err_unreg_client;
2457
2458        return 0;
2459
2460err_unreg_client:
2461        ib_unregister_client(&nvme_rdma_ib_client);
2462        return ret;
2463}
2464
2465static void __exit nvme_rdma_cleanup_module(void)
2466{
2467        struct nvme_rdma_ctrl *ctrl;
2468
2469        nvmf_unregister_transport(&nvme_rdma_transport);
2470        ib_unregister_client(&nvme_rdma_ib_client);
2471
2472        mutex_lock(&nvme_rdma_ctrl_mutex);
2473        list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2474                nvme_delete_ctrl(&ctrl->ctrl);
2475        mutex_unlock(&nvme_rdma_ctrl_mutex);
2476        flush_workqueue(nvme_delete_wq);
2477}
2478
2479module_init(nvme_rdma_init_module);
2480module_exit(nvme_rdma_cleanup_module);
2481
2482MODULE_LICENSE("GPL v2");
2483