linux/drivers/perf/arm_spe_pmu.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Perf support for the Statistical Profiling Extension, introduced as
   4 * part of ARMv8.2.
   5 *
   6 * Copyright (C) 2016 ARM Limited
   7 *
   8 * Author: Will Deacon <will.deacon@arm.com>
   9 */
  10
  11#define PMUNAME                                 "arm_spe"
  12#define DRVNAME                                 PMUNAME "_pmu"
  13#define pr_fmt(fmt)                             DRVNAME ": " fmt
  14
  15#include <linux/bitops.h>
  16#include <linux/bug.h>
  17#include <linux/capability.h>
  18#include <linux/cpuhotplug.h>
  19#include <linux/cpumask.h>
  20#include <linux/device.h>
  21#include <linux/errno.h>
  22#include <linux/interrupt.h>
  23#include <linux/irq.h>
  24#include <linux/kernel.h>
  25#include <linux/list.h>
  26#include <linux/module.h>
  27#include <linux/of_address.h>
  28#include <linux/of_device.h>
  29#include <linux/perf_event.h>
  30#include <linux/perf/arm_pmu.h>
  31#include <linux/platform_device.h>
  32#include <linux/printk.h>
  33#include <linux/slab.h>
  34#include <linux/smp.h>
  35#include <linux/vmalloc.h>
  36
  37#include <asm/barrier.h>
  38#include <asm/cpufeature.h>
  39#include <asm/mmu.h>
  40#include <asm/sysreg.h>
  41
  42#define ARM_SPE_BUF_PAD_BYTE                    0
  43
  44struct arm_spe_pmu_buf {
  45        int                                     nr_pages;
  46        bool                                    snapshot;
  47        void                                    *base;
  48};
  49
  50struct arm_spe_pmu {
  51        struct pmu                              pmu;
  52        struct platform_device                  *pdev;
  53        cpumask_t                               supported_cpus;
  54        struct hlist_node                       hotplug_node;
  55
  56        int                                     irq; /* PPI */
  57
  58        u16                                     min_period;
  59        u16                                     counter_sz;
  60
  61#define SPE_PMU_FEAT_FILT_EVT                   (1UL << 0)
  62#define SPE_PMU_FEAT_FILT_TYP                   (1UL << 1)
  63#define SPE_PMU_FEAT_FILT_LAT                   (1UL << 2)
  64#define SPE_PMU_FEAT_ARCH_INST                  (1UL << 3)
  65#define SPE_PMU_FEAT_LDS                        (1UL << 4)
  66#define SPE_PMU_FEAT_ERND                       (1UL << 5)
  67#define SPE_PMU_FEAT_DEV_PROBED                 (1UL << 63)
  68        u64                                     features;
  69
  70        u16                                     max_record_sz;
  71        u16                                     align;
  72        struct perf_output_handle __percpu      *handle;
  73};
  74
  75#define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu))
  76
  77/* Convert a free-running index from perf into an SPE buffer offset */
  78#define PERF_IDX2OFF(idx, buf)  ((idx) % ((buf)->nr_pages << PAGE_SHIFT))
  79
  80/* Keep track of our dynamic hotplug state */
  81static enum cpuhp_state arm_spe_pmu_online;
  82
  83enum arm_spe_pmu_buf_fault_action {
  84        SPE_PMU_BUF_FAULT_ACT_SPURIOUS,
  85        SPE_PMU_BUF_FAULT_ACT_FATAL,
  86        SPE_PMU_BUF_FAULT_ACT_OK,
  87};
  88
  89/* This sysfs gunk was really good fun to write. */
  90enum arm_spe_pmu_capabilities {
  91        SPE_PMU_CAP_ARCH_INST = 0,
  92        SPE_PMU_CAP_ERND,
  93        SPE_PMU_CAP_FEAT_MAX,
  94        SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX,
  95        SPE_PMU_CAP_MIN_IVAL,
  96};
  97
  98static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = {
  99        [SPE_PMU_CAP_ARCH_INST] = SPE_PMU_FEAT_ARCH_INST,
 100        [SPE_PMU_CAP_ERND]      = SPE_PMU_FEAT_ERND,
 101};
 102
 103static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap)
 104{
 105        if (cap < SPE_PMU_CAP_FEAT_MAX)
 106                return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]);
 107
 108        switch (cap) {
 109        case SPE_PMU_CAP_CNT_SZ:
 110                return spe_pmu->counter_sz;
 111        case SPE_PMU_CAP_MIN_IVAL:
 112                return spe_pmu->min_period;
 113        default:
 114                WARN(1, "unknown cap %d\n", cap);
 115        }
 116
 117        return 0;
 118}
 119
 120static ssize_t arm_spe_pmu_cap_show(struct device *dev,
 121                                    struct device_attribute *attr,
 122                                    char *buf)
 123{
 124        struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
 125        struct dev_ext_attribute *ea =
 126                container_of(attr, struct dev_ext_attribute, attr);
 127        int cap = (long)ea->var;
 128
 129        return snprintf(buf, PAGE_SIZE, "%u\n",
 130                arm_spe_pmu_cap_get(spe_pmu, cap));
 131}
 132
 133#define SPE_EXT_ATTR_ENTRY(_name, _func, _var)                          \
 134        &((struct dev_ext_attribute[]) {                                \
 135                { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var }   \
 136        })[0].attr.attr
 137
 138#define SPE_CAP_EXT_ATTR_ENTRY(_name, _var)                             \
 139        SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var)
 140
 141static struct attribute *arm_spe_pmu_cap_attr[] = {
 142        SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST),
 143        SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND),
 144        SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ),
 145        SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL),
 146        NULL,
 147};
 148
 149static struct attribute_group arm_spe_pmu_cap_group = {
 150        .name   = "caps",
 151        .attrs  = arm_spe_pmu_cap_attr,
 152};
 153
 154/* User ABI */
 155#define ATTR_CFG_FLD_ts_enable_CFG              config  /* PMSCR_EL1.TS */
 156#define ATTR_CFG_FLD_ts_enable_LO               0
 157#define ATTR_CFG_FLD_ts_enable_HI               0
 158#define ATTR_CFG_FLD_pa_enable_CFG              config  /* PMSCR_EL1.PA */
 159#define ATTR_CFG_FLD_pa_enable_LO               1
 160#define ATTR_CFG_FLD_pa_enable_HI               1
 161#define ATTR_CFG_FLD_pct_enable_CFG             config  /* PMSCR_EL1.PCT */
 162#define ATTR_CFG_FLD_pct_enable_LO              2
 163#define ATTR_CFG_FLD_pct_enable_HI              2
 164#define ATTR_CFG_FLD_jitter_CFG                 config  /* PMSIRR_EL1.RND */
 165#define ATTR_CFG_FLD_jitter_LO                  16
 166#define ATTR_CFG_FLD_jitter_HI                  16
 167#define ATTR_CFG_FLD_branch_filter_CFG          config  /* PMSFCR_EL1.B */
 168#define ATTR_CFG_FLD_branch_filter_LO           32
 169#define ATTR_CFG_FLD_branch_filter_HI           32
 170#define ATTR_CFG_FLD_load_filter_CFG            config  /* PMSFCR_EL1.LD */
 171#define ATTR_CFG_FLD_load_filter_LO             33
 172#define ATTR_CFG_FLD_load_filter_HI             33
 173#define ATTR_CFG_FLD_store_filter_CFG           config  /* PMSFCR_EL1.ST */
 174#define ATTR_CFG_FLD_store_filter_LO            34
 175#define ATTR_CFG_FLD_store_filter_HI            34
 176
 177#define ATTR_CFG_FLD_event_filter_CFG           config1 /* PMSEVFR_EL1 */
 178#define ATTR_CFG_FLD_event_filter_LO            0
 179#define ATTR_CFG_FLD_event_filter_HI            63
 180
 181#define ATTR_CFG_FLD_min_latency_CFG            config2 /* PMSLATFR_EL1.MINLAT */
 182#define ATTR_CFG_FLD_min_latency_LO             0
 183#define ATTR_CFG_FLD_min_latency_HI             11
 184
 185/* Why does everything I do descend into this? */
 186#define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)                              \
 187        (lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi
 188
 189#define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi)                               \
 190        __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)
 191
 192#define GEN_PMU_FORMAT_ATTR(name)                                       \
 193        PMU_FORMAT_ATTR(name,                                           \
 194        _GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG,                 \
 195                             ATTR_CFG_FLD_##name##_LO,                  \
 196                             ATTR_CFG_FLD_##name##_HI))
 197
 198#define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi)                            \
 199        ((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0))
 200
 201#define ATTR_CFG_GET_FLD(attr, name)                                    \
 202        _ATTR_CFG_GET_FLD(attr,                                         \
 203                          ATTR_CFG_FLD_##name##_CFG,                    \
 204                          ATTR_CFG_FLD_##name##_LO,                     \
 205                          ATTR_CFG_FLD_##name##_HI)
 206
 207GEN_PMU_FORMAT_ATTR(ts_enable);
 208GEN_PMU_FORMAT_ATTR(pa_enable);
 209GEN_PMU_FORMAT_ATTR(pct_enable);
 210GEN_PMU_FORMAT_ATTR(jitter);
 211GEN_PMU_FORMAT_ATTR(branch_filter);
 212GEN_PMU_FORMAT_ATTR(load_filter);
 213GEN_PMU_FORMAT_ATTR(store_filter);
 214GEN_PMU_FORMAT_ATTR(event_filter);
 215GEN_PMU_FORMAT_ATTR(min_latency);
 216
 217static struct attribute *arm_spe_pmu_formats_attr[] = {
 218        &format_attr_ts_enable.attr,
 219        &format_attr_pa_enable.attr,
 220        &format_attr_pct_enable.attr,
 221        &format_attr_jitter.attr,
 222        &format_attr_branch_filter.attr,
 223        &format_attr_load_filter.attr,
 224        &format_attr_store_filter.attr,
 225        &format_attr_event_filter.attr,
 226        &format_attr_min_latency.attr,
 227        NULL,
 228};
 229
 230static struct attribute_group arm_spe_pmu_format_group = {
 231        .name   = "format",
 232        .attrs  = arm_spe_pmu_formats_attr,
 233};
 234
 235static ssize_t arm_spe_pmu_get_attr_cpumask(struct device *dev,
 236                                            struct device_attribute *attr,
 237                                            char *buf)
 238{
 239        struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
 240
 241        return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus);
 242}
 243static DEVICE_ATTR(cpumask, S_IRUGO, arm_spe_pmu_get_attr_cpumask, NULL);
 244
 245static struct attribute *arm_spe_pmu_attrs[] = {
 246        &dev_attr_cpumask.attr,
 247        NULL,
 248};
 249
 250static struct attribute_group arm_spe_pmu_group = {
 251        .attrs  = arm_spe_pmu_attrs,
 252};
 253
 254static const struct attribute_group *arm_spe_pmu_attr_groups[] = {
 255        &arm_spe_pmu_group,
 256        &arm_spe_pmu_cap_group,
 257        &arm_spe_pmu_format_group,
 258        NULL,
 259};
 260
 261/* Convert between user ABI and register values */
 262static u64 arm_spe_event_to_pmscr(struct perf_event *event)
 263{
 264        struct perf_event_attr *attr = &event->attr;
 265        u64 reg = 0;
 266
 267        reg |= ATTR_CFG_GET_FLD(attr, ts_enable) << SYS_PMSCR_EL1_TS_SHIFT;
 268        reg |= ATTR_CFG_GET_FLD(attr, pa_enable) << SYS_PMSCR_EL1_PA_SHIFT;
 269        reg |= ATTR_CFG_GET_FLD(attr, pct_enable) << SYS_PMSCR_EL1_PCT_SHIFT;
 270
 271        if (!attr->exclude_user)
 272                reg |= BIT(SYS_PMSCR_EL1_E0SPE_SHIFT);
 273
 274        if (!attr->exclude_kernel)
 275                reg |= BIT(SYS_PMSCR_EL1_E1SPE_SHIFT);
 276
 277        if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && perfmon_capable())
 278                reg |= BIT(SYS_PMSCR_EL1_CX_SHIFT);
 279
 280        return reg;
 281}
 282
 283static void arm_spe_event_sanitise_period(struct perf_event *event)
 284{
 285        struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
 286        u64 period = event->hw.sample_period;
 287        u64 max_period = SYS_PMSIRR_EL1_INTERVAL_MASK
 288                         << SYS_PMSIRR_EL1_INTERVAL_SHIFT;
 289
 290        if (period < spe_pmu->min_period)
 291                period = spe_pmu->min_period;
 292        else if (period > max_period)
 293                period = max_period;
 294        else
 295                period &= max_period;
 296
 297        event->hw.sample_period = period;
 298}
 299
 300static u64 arm_spe_event_to_pmsirr(struct perf_event *event)
 301{
 302        struct perf_event_attr *attr = &event->attr;
 303        u64 reg = 0;
 304
 305        arm_spe_event_sanitise_period(event);
 306
 307        reg |= ATTR_CFG_GET_FLD(attr, jitter) << SYS_PMSIRR_EL1_RND_SHIFT;
 308        reg |= event->hw.sample_period;
 309
 310        return reg;
 311}
 312
 313static u64 arm_spe_event_to_pmsfcr(struct perf_event *event)
 314{
 315        struct perf_event_attr *attr = &event->attr;
 316        u64 reg = 0;
 317
 318        reg |= ATTR_CFG_GET_FLD(attr, load_filter) << SYS_PMSFCR_EL1_LD_SHIFT;
 319        reg |= ATTR_CFG_GET_FLD(attr, store_filter) << SYS_PMSFCR_EL1_ST_SHIFT;
 320        reg |= ATTR_CFG_GET_FLD(attr, branch_filter) << SYS_PMSFCR_EL1_B_SHIFT;
 321
 322        if (reg)
 323                reg |= BIT(SYS_PMSFCR_EL1_FT_SHIFT);
 324
 325        if (ATTR_CFG_GET_FLD(attr, event_filter))
 326                reg |= BIT(SYS_PMSFCR_EL1_FE_SHIFT);
 327
 328        if (ATTR_CFG_GET_FLD(attr, min_latency))
 329                reg |= BIT(SYS_PMSFCR_EL1_FL_SHIFT);
 330
 331        return reg;
 332}
 333
 334static u64 arm_spe_event_to_pmsevfr(struct perf_event *event)
 335{
 336        struct perf_event_attr *attr = &event->attr;
 337        return ATTR_CFG_GET_FLD(attr, event_filter);
 338}
 339
 340static u64 arm_spe_event_to_pmslatfr(struct perf_event *event)
 341{
 342        struct perf_event_attr *attr = &event->attr;
 343        return ATTR_CFG_GET_FLD(attr, min_latency)
 344               << SYS_PMSLATFR_EL1_MINLAT_SHIFT;
 345}
 346
 347static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len)
 348{
 349        struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
 350        u64 head = PERF_IDX2OFF(handle->head, buf);
 351
 352        memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len);
 353        if (!buf->snapshot)
 354                perf_aux_output_skip(handle, len);
 355}
 356
 357static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle)
 358{
 359        struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
 360        struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
 361        u64 head = PERF_IDX2OFF(handle->head, buf);
 362        u64 limit = buf->nr_pages * PAGE_SIZE;
 363
 364        /*
 365         * The trace format isn't parseable in reverse, so clamp
 366         * the limit to half of the buffer size in snapshot mode
 367         * so that the worst case is half a buffer of records, as
 368         * opposed to a single record.
 369         */
 370        if (head < limit >> 1)
 371                limit >>= 1;
 372
 373        /*
 374         * If we're within max_record_sz of the limit, we must
 375         * pad, move the head index and recompute the limit.
 376         */
 377        if (limit - head < spe_pmu->max_record_sz) {
 378                arm_spe_pmu_pad_buf(handle, limit - head);
 379                handle->head = PERF_IDX2OFF(limit, buf);
 380                limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head;
 381        }
 382
 383        return limit;
 384}
 385
 386static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle)
 387{
 388        struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
 389        struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
 390        const u64 bufsize = buf->nr_pages * PAGE_SIZE;
 391        u64 limit = bufsize;
 392        u64 head, tail, wakeup;
 393
 394        /*
 395         * The head can be misaligned for two reasons:
 396         *
 397         * 1. The hardware left PMBPTR pointing to the first byte after
 398         *    a record when generating a buffer management event.
 399         *
 400         * 2. We used perf_aux_output_skip to consume handle->size bytes
 401         *    and CIRC_SPACE was used to compute the size, which always
 402         *    leaves one entry free.
 403         *
 404         * Deal with this by padding to the next alignment boundary and
 405         * moving the head index. If we run out of buffer space, we'll
 406         * reduce handle->size to zero and end up reporting truncation.
 407         */
 408        head = PERF_IDX2OFF(handle->head, buf);
 409        if (!IS_ALIGNED(head, spe_pmu->align)) {
 410                unsigned long delta = roundup(head, spe_pmu->align) - head;
 411
 412                delta = min(delta, handle->size);
 413                arm_spe_pmu_pad_buf(handle, delta);
 414                head = PERF_IDX2OFF(handle->head, buf);
 415        }
 416
 417        /* If we've run out of free space, then nothing more to do */
 418        if (!handle->size)
 419                goto no_space;
 420
 421        /* Compute the tail and wakeup indices now that we've aligned head */
 422        tail = PERF_IDX2OFF(handle->head + handle->size, buf);
 423        wakeup = PERF_IDX2OFF(handle->wakeup, buf);
 424
 425        /*
 426         * Avoid clobbering unconsumed data. We know we have space, so
 427         * if we see head == tail we know that the buffer is empty. If
 428         * head > tail, then there's nothing to clobber prior to
 429         * wrapping.
 430         */
 431        if (head < tail)
 432                limit = round_down(tail, PAGE_SIZE);
 433
 434        /*
 435         * Wakeup may be arbitrarily far into the future. If it's not in
 436         * the current generation, either we'll wrap before hitting it,
 437         * or it's in the past and has been handled already.
 438         *
 439         * If there's a wakeup before we wrap, arrange to be woken up by
 440         * the page boundary following it. Keep the tail boundary if
 441         * that's lower.
 442         */
 443        if (handle->wakeup < (handle->head + handle->size) && head <= wakeup)
 444                limit = min(limit, round_up(wakeup, PAGE_SIZE));
 445
 446        if (limit > head)
 447                return limit;
 448
 449        arm_spe_pmu_pad_buf(handle, handle->size);
 450no_space:
 451        perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
 452        perf_aux_output_end(handle, 0);
 453        return 0;
 454}
 455
 456static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle)
 457{
 458        struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
 459        struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
 460        u64 limit = __arm_spe_pmu_next_off(handle);
 461        u64 head = PERF_IDX2OFF(handle->head, buf);
 462
 463        /*
 464         * If the head has come too close to the end of the buffer,
 465         * then pad to the end and recompute the limit.
 466         */
 467        if (limit && (limit - head < spe_pmu->max_record_sz)) {
 468                arm_spe_pmu_pad_buf(handle, limit - head);
 469                limit = __arm_spe_pmu_next_off(handle);
 470        }
 471
 472        return limit;
 473}
 474
 475static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle,
 476                                          struct perf_event *event)
 477{
 478        u64 base, limit;
 479        struct arm_spe_pmu_buf *buf;
 480
 481        /* Start a new aux session */
 482        buf = perf_aux_output_begin(handle, event);
 483        if (!buf) {
 484                event->hw.state |= PERF_HES_STOPPED;
 485                /*
 486                 * We still need to clear the limit pointer, since the
 487                 * profiler might only be disabled by virtue of a fault.
 488                 */
 489                limit = 0;
 490                goto out_write_limit;
 491        }
 492
 493        limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle)
 494                              : arm_spe_pmu_next_off(handle);
 495        if (limit)
 496                limit |= BIT(SYS_PMBLIMITR_EL1_E_SHIFT);
 497
 498        limit += (u64)buf->base;
 499        base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf);
 500        write_sysreg_s(base, SYS_PMBPTR_EL1);
 501
 502out_write_limit:
 503        write_sysreg_s(limit, SYS_PMBLIMITR_EL1);
 504}
 505
 506static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle)
 507{
 508        struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
 509        u64 offset, size;
 510
 511        offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base;
 512        size = offset - PERF_IDX2OFF(handle->head, buf);
 513
 514        if (buf->snapshot)
 515                handle->head = offset;
 516
 517        perf_aux_output_end(handle, size);
 518}
 519
 520static void arm_spe_pmu_disable_and_drain_local(void)
 521{
 522        /* Disable profiling at EL0 and EL1 */
 523        write_sysreg_s(0, SYS_PMSCR_EL1);
 524        isb();
 525
 526        /* Drain any buffered data */
 527        psb_csync();
 528        dsb(nsh);
 529
 530        /* Disable the profiling buffer */
 531        write_sysreg_s(0, SYS_PMBLIMITR_EL1);
 532        isb();
 533}
 534
 535/* IRQ handling */
 536static enum arm_spe_pmu_buf_fault_action
 537arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle)
 538{
 539        const char *err_str;
 540        u64 pmbsr;
 541        enum arm_spe_pmu_buf_fault_action ret;
 542
 543        /*
 544         * Ensure new profiling data is visible to the CPU and any external
 545         * aborts have been resolved.
 546         */
 547        psb_csync();
 548        dsb(nsh);
 549
 550        /* Ensure hardware updates to PMBPTR_EL1 are visible */
 551        isb();
 552
 553        /* Service required? */
 554        pmbsr = read_sysreg_s(SYS_PMBSR_EL1);
 555        if (!(pmbsr & BIT(SYS_PMBSR_EL1_S_SHIFT)))
 556                return SPE_PMU_BUF_FAULT_ACT_SPURIOUS;
 557
 558        /*
 559         * If we've lost data, disable profiling and also set the PARTIAL
 560         * flag to indicate that the last record is corrupted.
 561         */
 562        if (pmbsr & BIT(SYS_PMBSR_EL1_DL_SHIFT))
 563                perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED |
 564                                             PERF_AUX_FLAG_PARTIAL);
 565
 566        /* Report collisions to userspace so that it can up the period */
 567        if (pmbsr & BIT(SYS_PMBSR_EL1_COLL_SHIFT))
 568                perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION);
 569
 570        /* We only expect buffer management events */
 571        switch (pmbsr & (SYS_PMBSR_EL1_EC_MASK << SYS_PMBSR_EL1_EC_SHIFT)) {
 572        case SYS_PMBSR_EL1_EC_BUF:
 573                /* Handled below */
 574                break;
 575        case SYS_PMBSR_EL1_EC_FAULT_S1:
 576        case SYS_PMBSR_EL1_EC_FAULT_S2:
 577                err_str = "Unexpected buffer fault";
 578                goto out_err;
 579        default:
 580                err_str = "Unknown error code";
 581                goto out_err;
 582        }
 583
 584        /* Buffer management event */
 585        switch (pmbsr &
 586                (SYS_PMBSR_EL1_BUF_BSC_MASK << SYS_PMBSR_EL1_BUF_BSC_SHIFT)) {
 587        case SYS_PMBSR_EL1_BUF_BSC_FULL:
 588                ret = SPE_PMU_BUF_FAULT_ACT_OK;
 589                goto out_stop;
 590        default:
 591                err_str = "Unknown buffer status code";
 592        }
 593
 594out_err:
 595        pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n",
 596                           err_str, smp_processor_id(), pmbsr,
 597                           read_sysreg_s(SYS_PMBPTR_EL1),
 598                           read_sysreg_s(SYS_PMBLIMITR_EL1));
 599        ret = SPE_PMU_BUF_FAULT_ACT_FATAL;
 600
 601out_stop:
 602        arm_spe_perf_aux_output_end(handle);
 603        return ret;
 604}
 605
 606static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev)
 607{
 608        struct perf_output_handle *handle = dev;
 609        struct perf_event *event = handle->event;
 610        enum arm_spe_pmu_buf_fault_action act;
 611
 612        if (!perf_get_aux(handle))
 613                return IRQ_NONE;
 614
 615        act = arm_spe_pmu_buf_get_fault_act(handle);
 616        if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
 617                return IRQ_NONE;
 618
 619        /*
 620         * Ensure perf callbacks have completed, which may disable the
 621         * profiling buffer in response to a TRUNCATION flag.
 622         */
 623        irq_work_run();
 624
 625        switch (act) {
 626        case SPE_PMU_BUF_FAULT_ACT_FATAL:
 627                /*
 628                 * If a fatal exception occurred then leaving the profiling
 629                 * buffer enabled is a recipe waiting to happen. Since
 630                 * fatal faults don't always imply truncation, make sure
 631                 * that the profiling buffer is disabled explicitly before
 632                 * clearing the syndrome register.
 633                 */
 634                arm_spe_pmu_disable_and_drain_local();
 635                break;
 636        case SPE_PMU_BUF_FAULT_ACT_OK:
 637                /*
 638                 * We handled the fault (the buffer was full), so resume
 639                 * profiling as long as we didn't detect truncation.
 640                 * PMBPTR might be misaligned, but we'll burn that bridge
 641                 * when we get to it.
 642                 */
 643                if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) {
 644                        arm_spe_perf_aux_output_begin(handle, event);
 645                        isb();
 646                }
 647                break;
 648        case SPE_PMU_BUF_FAULT_ACT_SPURIOUS:
 649                /* We've seen you before, but GCC has the memory of a sieve. */
 650                break;
 651        }
 652
 653        /* The buffer pointers are now sane, so resume profiling. */
 654        write_sysreg_s(0, SYS_PMBSR_EL1);
 655        return IRQ_HANDLED;
 656}
 657
 658/* Perf callbacks */
 659static int arm_spe_pmu_event_init(struct perf_event *event)
 660{
 661        u64 reg;
 662        struct perf_event_attr *attr = &event->attr;
 663        struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
 664
 665        /* This is, of course, deeply driver-specific */
 666        if (attr->type != event->pmu->type)
 667                return -ENOENT;
 668
 669        if (event->cpu >= 0 &&
 670            !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus))
 671                return -ENOENT;
 672
 673        if (arm_spe_event_to_pmsevfr(event) & SYS_PMSEVFR_EL1_RES0)
 674                return -EOPNOTSUPP;
 675
 676        if (attr->exclude_idle)
 677                return -EOPNOTSUPP;
 678
 679        /*
 680         * Feedback-directed frequency throttling doesn't work when we
 681         * have a buffer of samples. We'd need to manually count the
 682         * samples in the buffer when it fills up and adjust the event
 683         * count to reflect that. Instead, just force the user to specify
 684         * a sample period.
 685         */
 686        if (attr->freq)
 687                return -EINVAL;
 688
 689        reg = arm_spe_event_to_pmsfcr(event);
 690        if ((reg & BIT(SYS_PMSFCR_EL1_FE_SHIFT)) &&
 691            !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT))
 692                return -EOPNOTSUPP;
 693
 694        if ((reg & BIT(SYS_PMSFCR_EL1_FT_SHIFT)) &&
 695            !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP))
 696                return -EOPNOTSUPP;
 697
 698        if ((reg & BIT(SYS_PMSFCR_EL1_FL_SHIFT)) &&
 699            !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT))
 700                return -EOPNOTSUPP;
 701
 702        reg = arm_spe_event_to_pmscr(event);
 703        if (!perfmon_capable() &&
 704            (reg & (BIT(SYS_PMSCR_EL1_PA_SHIFT) |
 705                    BIT(SYS_PMSCR_EL1_CX_SHIFT) |
 706                    BIT(SYS_PMSCR_EL1_PCT_SHIFT))))
 707                return -EACCES;
 708
 709        return 0;
 710}
 711
 712static void arm_spe_pmu_start(struct perf_event *event, int flags)
 713{
 714        u64 reg;
 715        struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
 716        struct hw_perf_event *hwc = &event->hw;
 717        struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
 718
 719        hwc->state = 0;
 720        arm_spe_perf_aux_output_begin(handle, event);
 721        if (hwc->state)
 722                return;
 723
 724        reg = arm_spe_event_to_pmsfcr(event);
 725        write_sysreg_s(reg, SYS_PMSFCR_EL1);
 726
 727        reg = arm_spe_event_to_pmsevfr(event);
 728        write_sysreg_s(reg, SYS_PMSEVFR_EL1);
 729
 730        reg = arm_spe_event_to_pmslatfr(event);
 731        write_sysreg_s(reg, SYS_PMSLATFR_EL1);
 732
 733        if (flags & PERF_EF_RELOAD) {
 734                reg = arm_spe_event_to_pmsirr(event);
 735                write_sysreg_s(reg, SYS_PMSIRR_EL1);
 736                isb();
 737                reg = local64_read(&hwc->period_left);
 738                write_sysreg_s(reg, SYS_PMSICR_EL1);
 739        }
 740
 741        reg = arm_spe_event_to_pmscr(event);
 742        isb();
 743        write_sysreg_s(reg, SYS_PMSCR_EL1);
 744}
 745
 746static void arm_spe_pmu_stop(struct perf_event *event, int flags)
 747{
 748        struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
 749        struct hw_perf_event *hwc = &event->hw;
 750        struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
 751
 752        /* If we're already stopped, then nothing to do */
 753        if (hwc->state & PERF_HES_STOPPED)
 754                return;
 755
 756        /* Stop all trace generation */
 757        arm_spe_pmu_disable_and_drain_local();
 758
 759        if (flags & PERF_EF_UPDATE) {
 760                /*
 761                 * If there's a fault pending then ensure we contain it
 762                 * to this buffer, since we might be on the context-switch
 763                 * path.
 764                 */
 765                if (perf_get_aux(handle)) {
 766                        enum arm_spe_pmu_buf_fault_action act;
 767
 768                        act = arm_spe_pmu_buf_get_fault_act(handle);
 769                        if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
 770                                arm_spe_perf_aux_output_end(handle);
 771                        else
 772                                write_sysreg_s(0, SYS_PMBSR_EL1);
 773                }
 774
 775                /*
 776                 * This may also contain ECOUNT, but nobody else should
 777                 * be looking at period_left, since we forbid frequency
 778                 * based sampling.
 779                 */
 780                local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1));
 781                hwc->state |= PERF_HES_UPTODATE;
 782        }
 783
 784        hwc->state |= PERF_HES_STOPPED;
 785}
 786
 787static int arm_spe_pmu_add(struct perf_event *event, int flags)
 788{
 789        int ret = 0;
 790        struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
 791        struct hw_perf_event *hwc = &event->hw;
 792        int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu;
 793
 794        if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
 795                return -ENOENT;
 796
 797        hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
 798
 799        if (flags & PERF_EF_START) {
 800                arm_spe_pmu_start(event, PERF_EF_RELOAD);
 801                if (hwc->state & PERF_HES_STOPPED)
 802                        ret = -EINVAL;
 803        }
 804
 805        return ret;
 806}
 807
 808static void arm_spe_pmu_del(struct perf_event *event, int flags)
 809{
 810        arm_spe_pmu_stop(event, PERF_EF_UPDATE);
 811}
 812
 813static void arm_spe_pmu_read(struct perf_event *event)
 814{
 815}
 816
 817static void *arm_spe_pmu_setup_aux(struct perf_event *event, void **pages,
 818                                   int nr_pages, bool snapshot)
 819{
 820        int i, cpu = event->cpu;
 821        struct page **pglist;
 822        struct arm_spe_pmu_buf *buf;
 823
 824        /* We need at least two pages for this to work. */
 825        if (nr_pages < 2)
 826                return NULL;
 827
 828        /*
 829         * We require an even number of pages for snapshot mode, so that
 830         * we can effectively treat the buffer as consisting of two equal
 831         * parts and give userspace a fighting chance of getting some
 832         * useful data out of it.
 833         */
 834        if (snapshot && (nr_pages & 1))
 835                return NULL;
 836
 837        if (cpu == -1)
 838                cpu = raw_smp_processor_id();
 839
 840        buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu));
 841        if (!buf)
 842                return NULL;
 843
 844        pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL);
 845        if (!pglist)
 846                goto out_free_buf;
 847
 848        for (i = 0; i < nr_pages; ++i)
 849                pglist[i] = virt_to_page(pages[i]);
 850
 851        buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL);
 852        if (!buf->base)
 853                goto out_free_pglist;
 854
 855        buf->nr_pages   = nr_pages;
 856        buf->snapshot   = snapshot;
 857
 858        kfree(pglist);
 859        return buf;
 860
 861out_free_pglist:
 862        kfree(pglist);
 863out_free_buf:
 864        kfree(buf);
 865        return NULL;
 866}
 867
 868static void arm_spe_pmu_free_aux(void *aux)
 869{
 870        struct arm_spe_pmu_buf *buf = aux;
 871
 872        vunmap(buf->base);
 873        kfree(buf);
 874}
 875
 876/* Initialisation and teardown functions */
 877static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu)
 878{
 879        static atomic_t pmu_idx = ATOMIC_INIT(-1);
 880
 881        int idx;
 882        char *name;
 883        struct device *dev = &spe_pmu->pdev->dev;
 884
 885        spe_pmu->pmu = (struct pmu) {
 886                .module = THIS_MODULE,
 887                .capabilities   = PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE,
 888                .attr_groups    = arm_spe_pmu_attr_groups,
 889                /*
 890                 * We hitch a ride on the software context here, so that
 891                 * we can support per-task profiling (which is not possible
 892                 * with the invalid context as it doesn't get sched callbacks).
 893                 * This requires that userspace either uses a dummy event for
 894                 * perf_event_open, since the aux buffer is not setup until
 895                 * a subsequent mmap, or creates the profiling event in a
 896                 * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it
 897                 * once the buffer has been created.
 898                 */
 899                .task_ctx_nr    = perf_sw_context,
 900                .event_init     = arm_spe_pmu_event_init,
 901                .add            = arm_spe_pmu_add,
 902                .del            = arm_spe_pmu_del,
 903                .start          = arm_spe_pmu_start,
 904                .stop           = arm_spe_pmu_stop,
 905                .read           = arm_spe_pmu_read,
 906                .setup_aux      = arm_spe_pmu_setup_aux,
 907                .free_aux       = arm_spe_pmu_free_aux,
 908        };
 909
 910        idx = atomic_inc_return(&pmu_idx);
 911        name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx);
 912        if (!name) {
 913                dev_err(dev, "failed to allocate name for pmu %d\n", idx);
 914                return -ENOMEM;
 915        }
 916
 917        return perf_pmu_register(&spe_pmu->pmu, name, -1);
 918}
 919
 920static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu)
 921{
 922        perf_pmu_unregister(&spe_pmu->pmu);
 923}
 924
 925static void __arm_spe_pmu_dev_probe(void *info)
 926{
 927        int fld;
 928        u64 reg;
 929        struct arm_spe_pmu *spe_pmu = info;
 930        struct device *dev = &spe_pmu->pdev->dev;
 931
 932        fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1),
 933                                                   ID_AA64DFR0_PMSVER_SHIFT);
 934        if (!fld) {
 935                dev_err(dev,
 936                        "unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n",
 937                        fld, smp_processor_id());
 938                return;
 939        }
 940
 941        /* Read PMBIDR first to determine whether or not we have access */
 942        reg = read_sysreg_s(SYS_PMBIDR_EL1);
 943        if (reg & BIT(SYS_PMBIDR_EL1_P_SHIFT)) {
 944                dev_err(dev,
 945                        "profiling buffer owned by higher exception level\n");
 946                return;
 947        }
 948
 949        /* Minimum alignment. If it's out-of-range, then fail the probe */
 950        fld = reg >> SYS_PMBIDR_EL1_ALIGN_SHIFT & SYS_PMBIDR_EL1_ALIGN_MASK;
 951        spe_pmu->align = 1 << fld;
 952        if (spe_pmu->align > SZ_2K) {
 953                dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n",
 954                        fld, smp_processor_id());
 955                return;
 956        }
 957
 958        /* It's now safe to read PMSIDR and figure out what we've got */
 959        reg = read_sysreg_s(SYS_PMSIDR_EL1);
 960        if (reg & BIT(SYS_PMSIDR_EL1_FE_SHIFT))
 961                spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT;
 962
 963        if (reg & BIT(SYS_PMSIDR_EL1_FT_SHIFT))
 964                spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP;
 965
 966        if (reg & BIT(SYS_PMSIDR_EL1_FL_SHIFT))
 967                spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT;
 968
 969        if (reg & BIT(SYS_PMSIDR_EL1_ARCHINST_SHIFT))
 970                spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST;
 971
 972        if (reg & BIT(SYS_PMSIDR_EL1_LDS_SHIFT))
 973                spe_pmu->features |= SPE_PMU_FEAT_LDS;
 974
 975        if (reg & BIT(SYS_PMSIDR_EL1_ERND_SHIFT))
 976                spe_pmu->features |= SPE_PMU_FEAT_ERND;
 977
 978        /* This field has a spaced out encoding, so just use a look-up */
 979        fld = reg >> SYS_PMSIDR_EL1_INTERVAL_SHIFT & SYS_PMSIDR_EL1_INTERVAL_MASK;
 980        switch (fld) {
 981        case 0:
 982                spe_pmu->min_period = 256;
 983                break;
 984        case 2:
 985                spe_pmu->min_period = 512;
 986                break;
 987        case 3:
 988                spe_pmu->min_period = 768;
 989                break;
 990        case 4:
 991                spe_pmu->min_period = 1024;
 992                break;
 993        case 5:
 994                spe_pmu->min_period = 1536;
 995                break;
 996        case 6:
 997                spe_pmu->min_period = 2048;
 998                break;
 999        case 7:
1000                spe_pmu->min_period = 3072;
1001                break;
1002        default:
1003                dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n",
1004                         fld);
1005                fallthrough;
1006        case 8:
1007                spe_pmu->min_period = 4096;
1008        }
1009
1010        /* Maximum record size. If it's out-of-range, then fail the probe */
1011        fld = reg >> SYS_PMSIDR_EL1_MAXSIZE_SHIFT & SYS_PMSIDR_EL1_MAXSIZE_MASK;
1012        spe_pmu->max_record_sz = 1 << fld;
1013        if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) {
1014                dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n",
1015                        fld, smp_processor_id());
1016                return;
1017        }
1018
1019        fld = reg >> SYS_PMSIDR_EL1_COUNTSIZE_SHIFT & SYS_PMSIDR_EL1_COUNTSIZE_MASK;
1020        switch (fld) {
1021        default:
1022                dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n",
1023                         fld);
1024                fallthrough;
1025        case 2:
1026                spe_pmu->counter_sz = 12;
1027        }
1028
1029        dev_info(dev,
1030                 "probed for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n",
1031                 cpumask_pr_args(&spe_pmu->supported_cpus),
1032                 spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features);
1033
1034        spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED;
1035        return;
1036}
1037
1038static void __arm_spe_pmu_reset_local(void)
1039{
1040        /*
1041         * This is probably overkill, as we have no idea where we're
1042         * draining any buffered data to...
1043         */
1044        arm_spe_pmu_disable_and_drain_local();
1045
1046        /* Reset the buffer base pointer */
1047        write_sysreg_s(0, SYS_PMBPTR_EL1);
1048        isb();
1049
1050        /* Clear any pending management interrupts */
1051        write_sysreg_s(0, SYS_PMBSR_EL1);
1052        isb();
1053}
1054
1055static void __arm_spe_pmu_setup_one(void *info)
1056{
1057        struct arm_spe_pmu *spe_pmu = info;
1058
1059        __arm_spe_pmu_reset_local();
1060        enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE);
1061}
1062
1063static void __arm_spe_pmu_stop_one(void *info)
1064{
1065        struct arm_spe_pmu *spe_pmu = info;
1066
1067        disable_percpu_irq(spe_pmu->irq);
1068        __arm_spe_pmu_reset_local();
1069}
1070
1071static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node)
1072{
1073        struct arm_spe_pmu *spe_pmu;
1074
1075        spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1076        if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1077                return 0;
1078
1079        __arm_spe_pmu_setup_one(spe_pmu);
1080        return 0;
1081}
1082
1083static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1084{
1085        struct arm_spe_pmu *spe_pmu;
1086
1087        spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1088        if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1089                return 0;
1090
1091        __arm_spe_pmu_stop_one(spe_pmu);
1092        return 0;
1093}
1094
1095static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu)
1096{
1097        int ret;
1098        cpumask_t *mask = &spe_pmu->supported_cpus;
1099
1100        /* Make sure we probe the hardware on a relevant CPU */
1101        ret = smp_call_function_any(mask,  __arm_spe_pmu_dev_probe, spe_pmu, 1);
1102        if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED))
1103                return -ENXIO;
1104
1105        /* Request our PPIs (note that the IRQ is still disabled) */
1106        ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME,
1107                                 spe_pmu->handle);
1108        if (ret)
1109                return ret;
1110
1111        /*
1112         * Register our hotplug notifier now so we don't miss any events.
1113         * This will enable the IRQ for any supported CPUs that are already
1114         * up.
1115         */
1116        ret = cpuhp_state_add_instance(arm_spe_pmu_online,
1117                                       &spe_pmu->hotplug_node);
1118        if (ret)
1119                free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1120
1121        return ret;
1122}
1123
1124static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu)
1125{
1126        cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node);
1127        free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1128}
1129
1130/* Driver and device probing */
1131static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu)
1132{
1133        struct platform_device *pdev = spe_pmu->pdev;
1134        int irq = platform_get_irq(pdev, 0);
1135
1136        if (irq < 0)
1137                return -ENXIO;
1138
1139        if (!irq_is_percpu(irq)) {
1140                dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq);
1141                return -EINVAL;
1142        }
1143
1144        if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) {
1145                dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq);
1146                return -EINVAL;
1147        }
1148
1149        spe_pmu->irq = irq;
1150        return 0;
1151}
1152
1153static const struct of_device_id arm_spe_pmu_of_match[] = {
1154        { .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 },
1155        { /* Sentinel */ },
1156};
1157MODULE_DEVICE_TABLE(of, arm_spe_pmu_of_match);
1158
1159static const struct platform_device_id arm_spe_match[] = {
1160        { ARMV8_SPE_PDEV_NAME, 0},
1161        { }
1162};
1163MODULE_DEVICE_TABLE(platform, arm_spe_match);
1164
1165static int arm_spe_pmu_device_probe(struct platform_device *pdev)
1166{
1167        int ret;
1168        struct arm_spe_pmu *spe_pmu;
1169        struct device *dev = &pdev->dev;
1170
1171        /*
1172         * If kernelspace is unmapped when running at EL0, then the SPE
1173         * buffer will fault and prematurely terminate the AUX session.
1174         */
1175        if (arm64_kernel_unmapped_at_el0()) {
1176                dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n");
1177                return -EPERM;
1178        }
1179
1180        spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL);
1181        if (!spe_pmu) {
1182                dev_err(dev, "failed to allocate spe_pmu\n");
1183                return -ENOMEM;
1184        }
1185
1186        spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle));
1187        if (!spe_pmu->handle)
1188                return -ENOMEM;
1189
1190        spe_pmu->pdev = pdev;
1191        platform_set_drvdata(pdev, spe_pmu);
1192
1193        ret = arm_spe_pmu_irq_probe(spe_pmu);
1194        if (ret)
1195                goto out_free_handle;
1196
1197        ret = arm_spe_pmu_dev_init(spe_pmu);
1198        if (ret)
1199                goto out_free_handle;
1200
1201        ret = arm_spe_pmu_perf_init(spe_pmu);
1202        if (ret)
1203                goto out_teardown_dev;
1204
1205        return 0;
1206
1207out_teardown_dev:
1208        arm_spe_pmu_dev_teardown(spe_pmu);
1209out_free_handle:
1210        free_percpu(spe_pmu->handle);
1211        return ret;
1212}
1213
1214static int arm_spe_pmu_device_remove(struct platform_device *pdev)
1215{
1216        struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
1217
1218        arm_spe_pmu_perf_destroy(spe_pmu);
1219        arm_spe_pmu_dev_teardown(spe_pmu);
1220        free_percpu(spe_pmu->handle);
1221        return 0;
1222}
1223
1224static struct platform_driver arm_spe_pmu_driver = {
1225        .id_table = arm_spe_match,
1226        .driver = {
1227                .name           = DRVNAME,
1228                .of_match_table = of_match_ptr(arm_spe_pmu_of_match),
1229                .suppress_bind_attrs = true,
1230        },
1231        .probe  = arm_spe_pmu_device_probe,
1232        .remove = arm_spe_pmu_device_remove,
1233};
1234
1235static int __init arm_spe_pmu_init(void)
1236{
1237        int ret;
1238
1239        ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME,
1240                                      arm_spe_pmu_cpu_startup,
1241                                      arm_spe_pmu_cpu_teardown);
1242        if (ret < 0)
1243                return ret;
1244        arm_spe_pmu_online = ret;
1245
1246        ret = platform_driver_register(&arm_spe_pmu_driver);
1247        if (ret)
1248                cpuhp_remove_multi_state(arm_spe_pmu_online);
1249
1250        return ret;
1251}
1252
1253static void __exit arm_spe_pmu_exit(void)
1254{
1255        platform_driver_unregister(&arm_spe_pmu_driver);
1256        cpuhp_remove_multi_state(arm_spe_pmu_online);
1257}
1258
1259module_init(arm_spe_pmu_init);
1260module_exit(arm_spe_pmu_exit);
1261
1262MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension");
1263MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1264MODULE_LICENSE("GPL v2");
1265