linux/drivers/pwm/pwm-sun4i.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Driver for Allwinner sun4i Pulse Width Modulation Controller
   4 *
   5 * Copyright (C) 2014 Alexandre Belloni <alexandre.belloni@free-electrons.com>
   6 *
   7 * Limitations:
   8 * - When outputing the source clock directly, the PWM logic will be bypassed
   9 *   and the currently running period is not guaranteed to be completed
  10 */
  11
  12#include <linux/bitops.h>
  13#include <linux/clk.h>
  14#include <linux/delay.h>
  15#include <linux/err.h>
  16#include <linux/io.h>
  17#include <linux/jiffies.h>
  18#include <linux/module.h>
  19#include <linux/of.h>
  20#include <linux/of_device.h>
  21#include <linux/platform_device.h>
  22#include <linux/pwm.h>
  23#include <linux/reset.h>
  24#include <linux/slab.h>
  25#include <linux/spinlock.h>
  26#include <linux/time.h>
  27
  28#define PWM_CTRL_REG            0x0
  29
  30#define PWM_CH_PRD_BASE         0x4
  31#define PWM_CH_PRD_OFFSET       0x4
  32#define PWM_CH_PRD(ch)          (PWM_CH_PRD_BASE + PWM_CH_PRD_OFFSET * (ch))
  33
  34#define PWMCH_OFFSET            15
  35#define PWM_PRESCAL_MASK        GENMASK(3, 0)
  36#define PWM_PRESCAL_OFF         0
  37#define PWM_EN                  BIT(4)
  38#define PWM_ACT_STATE           BIT(5)
  39#define PWM_CLK_GATING          BIT(6)
  40#define PWM_MODE                BIT(7)
  41#define PWM_PULSE               BIT(8)
  42#define PWM_BYPASS              BIT(9)
  43
  44#define PWM_RDY_BASE            28
  45#define PWM_RDY_OFFSET          1
  46#define PWM_RDY(ch)             BIT(PWM_RDY_BASE + PWM_RDY_OFFSET * (ch))
  47
  48#define PWM_PRD(prd)            (((prd) - 1) << 16)
  49#define PWM_PRD_MASK            GENMASK(15, 0)
  50
  51#define PWM_DTY_MASK            GENMASK(15, 0)
  52
  53#define PWM_REG_PRD(reg)        ((((reg) >> 16) & PWM_PRD_MASK) + 1)
  54#define PWM_REG_DTY(reg)        ((reg) & PWM_DTY_MASK)
  55#define PWM_REG_PRESCAL(reg, chan)      (((reg) >> ((chan) * PWMCH_OFFSET)) & PWM_PRESCAL_MASK)
  56
  57#define BIT_CH(bit, chan)       ((bit) << ((chan) * PWMCH_OFFSET))
  58
  59static const u32 prescaler_table[] = {
  60        120,
  61        180,
  62        240,
  63        360,
  64        480,
  65        0,
  66        0,
  67        0,
  68        12000,
  69        24000,
  70        36000,
  71        48000,
  72        72000,
  73        0,
  74        0,
  75        0, /* Actually 1 but tested separately */
  76};
  77
  78struct sun4i_pwm_data {
  79        bool has_prescaler_bypass;
  80        bool has_direct_mod_clk_output;
  81        unsigned int npwm;
  82};
  83
  84struct sun4i_pwm_chip {
  85        struct pwm_chip chip;
  86        struct clk *bus_clk;
  87        struct clk *clk;
  88        struct reset_control *rst;
  89        void __iomem *base;
  90        spinlock_t ctrl_lock;
  91        const struct sun4i_pwm_data *data;
  92        unsigned long next_period[2];
  93};
  94
  95static inline struct sun4i_pwm_chip *to_sun4i_pwm_chip(struct pwm_chip *chip)
  96{
  97        return container_of(chip, struct sun4i_pwm_chip, chip);
  98}
  99
 100static inline u32 sun4i_pwm_readl(struct sun4i_pwm_chip *chip,
 101                                  unsigned long offset)
 102{
 103        return readl(chip->base + offset);
 104}
 105
 106static inline void sun4i_pwm_writel(struct sun4i_pwm_chip *chip,
 107                                    u32 val, unsigned long offset)
 108{
 109        writel(val, chip->base + offset);
 110}
 111
 112static void sun4i_pwm_get_state(struct pwm_chip *chip,
 113                                struct pwm_device *pwm,
 114                                struct pwm_state *state)
 115{
 116        struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
 117        u64 clk_rate, tmp;
 118        u32 val;
 119        unsigned int prescaler;
 120
 121        clk_rate = clk_get_rate(sun4i_pwm->clk);
 122
 123        val = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
 124
 125        /*
 126         * PWM chapter in H6 manual has a diagram which explains that if bypass
 127         * bit is set, no other setting has any meaning. Even more, experiment
 128         * proved that also enable bit is ignored in this case.
 129         */
 130        if ((val & BIT_CH(PWM_BYPASS, pwm->hwpwm)) &&
 131            sun4i_pwm->data->has_direct_mod_clk_output) {
 132                state->period = DIV_ROUND_UP_ULL(NSEC_PER_SEC, clk_rate);
 133                state->duty_cycle = DIV_ROUND_UP_ULL(state->period, 2);
 134                state->polarity = PWM_POLARITY_NORMAL;
 135                state->enabled = true;
 136                return;
 137        }
 138
 139        if ((PWM_REG_PRESCAL(val, pwm->hwpwm) == PWM_PRESCAL_MASK) &&
 140            sun4i_pwm->data->has_prescaler_bypass)
 141                prescaler = 1;
 142        else
 143                prescaler = prescaler_table[PWM_REG_PRESCAL(val, pwm->hwpwm)];
 144
 145        if (prescaler == 0)
 146                return;
 147
 148        if (val & BIT_CH(PWM_ACT_STATE, pwm->hwpwm))
 149                state->polarity = PWM_POLARITY_NORMAL;
 150        else
 151                state->polarity = PWM_POLARITY_INVERSED;
 152
 153        if ((val & BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm)) ==
 154            BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm))
 155                state->enabled = true;
 156        else
 157                state->enabled = false;
 158
 159        val = sun4i_pwm_readl(sun4i_pwm, PWM_CH_PRD(pwm->hwpwm));
 160
 161        tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_DTY(val);
 162        state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
 163
 164        tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_PRD(val);
 165        state->period = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
 166}
 167
 168static int sun4i_pwm_calculate(struct sun4i_pwm_chip *sun4i_pwm,
 169                               const struct pwm_state *state,
 170                               u32 *dty, u32 *prd, unsigned int *prsclr,
 171                               bool *bypass)
 172{
 173        u64 clk_rate, div = 0;
 174        unsigned int prescaler = 0;
 175
 176        clk_rate = clk_get_rate(sun4i_pwm->clk);
 177
 178        *bypass = sun4i_pwm->data->has_direct_mod_clk_output &&
 179                  state->enabled &&
 180                  (state->period * clk_rate >= NSEC_PER_SEC) &&
 181                  (state->period * clk_rate < 2 * NSEC_PER_SEC) &&
 182                  (state->duty_cycle * clk_rate * 2 >= NSEC_PER_SEC);
 183
 184        /* Skip calculation of other parameters if we bypass them */
 185        if (*bypass)
 186                return 0;
 187
 188        if (sun4i_pwm->data->has_prescaler_bypass) {
 189                /* First, test without any prescaler when available */
 190                prescaler = PWM_PRESCAL_MASK;
 191                /*
 192                 * When not using any prescaler, the clock period in nanoseconds
 193                 * is not an integer so round it half up instead of
 194                 * truncating to get less surprising values.
 195                 */
 196                div = clk_rate * state->period + NSEC_PER_SEC / 2;
 197                do_div(div, NSEC_PER_SEC);
 198                if (div - 1 > PWM_PRD_MASK)
 199                        prescaler = 0;
 200        }
 201
 202        if (prescaler == 0) {
 203                /* Go up from the first divider */
 204                for (prescaler = 0; prescaler < PWM_PRESCAL_MASK; prescaler++) {
 205                        unsigned int pval = prescaler_table[prescaler];
 206
 207                        if (!pval)
 208                                continue;
 209
 210                        div = clk_rate;
 211                        do_div(div, pval);
 212                        div = div * state->period;
 213                        do_div(div, NSEC_PER_SEC);
 214                        if (div - 1 <= PWM_PRD_MASK)
 215                                break;
 216                }
 217
 218                if (div - 1 > PWM_PRD_MASK)
 219                        return -EINVAL;
 220        }
 221
 222        *prd = div;
 223        div *= state->duty_cycle;
 224        do_div(div, state->period);
 225        *dty = div;
 226        *prsclr = prescaler;
 227
 228        return 0;
 229}
 230
 231static int sun4i_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
 232                           const struct pwm_state *state)
 233{
 234        struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
 235        struct pwm_state cstate;
 236        u32 ctrl, duty = 0, period = 0, val;
 237        int ret;
 238        unsigned int delay_us, prescaler = 0;
 239        unsigned long now;
 240        bool bypass;
 241
 242        pwm_get_state(pwm, &cstate);
 243
 244        if (!cstate.enabled) {
 245                ret = clk_prepare_enable(sun4i_pwm->clk);
 246                if (ret) {
 247                        dev_err(chip->dev, "failed to enable PWM clock\n");
 248                        return ret;
 249                }
 250        }
 251
 252        ret = sun4i_pwm_calculate(sun4i_pwm, state, &duty, &period, &prescaler,
 253                                  &bypass);
 254        if (ret) {
 255                dev_err(chip->dev, "period exceeds the maximum value\n");
 256                if (!cstate.enabled)
 257                        clk_disable_unprepare(sun4i_pwm->clk);
 258                return ret;
 259        }
 260
 261        spin_lock(&sun4i_pwm->ctrl_lock);
 262        ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
 263
 264        if (sun4i_pwm->data->has_direct_mod_clk_output) {
 265                if (bypass) {
 266                        ctrl |= BIT_CH(PWM_BYPASS, pwm->hwpwm);
 267                        /* We can skip other parameter */
 268                        sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
 269                        spin_unlock(&sun4i_pwm->ctrl_lock);
 270                        return 0;
 271                }
 272
 273                ctrl &= ~BIT_CH(PWM_BYPASS, pwm->hwpwm);
 274        }
 275
 276        if (PWM_REG_PRESCAL(ctrl, pwm->hwpwm) != prescaler) {
 277                /* Prescaler changed, the clock has to be gated */
 278                ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
 279                sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
 280
 281                ctrl &= ~BIT_CH(PWM_PRESCAL_MASK, pwm->hwpwm);
 282                ctrl |= BIT_CH(prescaler, pwm->hwpwm);
 283        }
 284
 285        val = (duty & PWM_DTY_MASK) | PWM_PRD(period);
 286        sun4i_pwm_writel(sun4i_pwm, val, PWM_CH_PRD(pwm->hwpwm));
 287        sun4i_pwm->next_period[pwm->hwpwm] = jiffies +
 288                nsecs_to_jiffies(cstate.period + 1000);
 289
 290        if (state->polarity != PWM_POLARITY_NORMAL)
 291                ctrl &= ~BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
 292        else
 293                ctrl |= BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
 294
 295        ctrl |= BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
 296
 297        if (state->enabled) {
 298                ctrl |= BIT_CH(PWM_EN, pwm->hwpwm);
 299        } else {
 300                ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm);
 301                ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
 302        }
 303
 304        sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
 305
 306        spin_unlock(&sun4i_pwm->ctrl_lock);
 307
 308        if (state->enabled)
 309                return 0;
 310
 311        /* We need a full period to elapse before disabling the channel. */
 312        now = jiffies;
 313        if (time_before(now, sun4i_pwm->next_period[pwm->hwpwm])) {
 314                delay_us = jiffies_to_usecs(sun4i_pwm->next_period[pwm->hwpwm] -
 315                                           now);
 316                if ((delay_us / 500) > MAX_UDELAY_MS)
 317                        msleep(delay_us / 1000 + 1);
 318                else
 319                        usleep_range(delay_us, delay_us * 2);
 320        }
 321
 322        spin_lock(&sun4i_pwm->ctrl_lock);
 323        ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
 324        ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
 325        ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm);
 326        sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
 327        spin_unlock(&sun4i_pwm->ctrl_lock);
 328
 329        clk_disable_unprepare(sun4i_pwm->clk);
 330
 331        return 0;
 332}
 333
 334static const struct pwm_ops sun4i_pwm_ops = {
 335        .apply = sun4i_pwm_apply,
 336        .get_state = sun4i_pwm_get_state,
 337        .owner = THIS_MODULE,
 338};
 339
 340static const struct sun4i_pwm_data sun4i_pwm_dual_nobypass = {
 341        .has_prescaler_bypass = false,
 342        .npwm = 2,
 343};
 344
 345static const struct sun4i_pwm_data sun4i_pwm_dual_bypass = {
 346        .has_prescaler_bypass = true,
 347        .npwm = 2,
 348};
 349
 350static const struct sun4i_pwm_data sun4i_pwm_single_bypass = {
 351        .has_prescaler_bypass = true,
 352        .npwm = 1,
 353};
 354
 355static const struct sun4i_pwm_data sun50i_a64_pwm_data = {
 356        .has_prescaler_bypass = true,
 357        .has_direct_mod_clk_output = true,
 358        .npwm = 1,
 359};
 360
 361static const struct sun4i_pwm_data sun50i_h6_pwm_data = {
 362        .has_prescaler_bypass = true,
 363        .has_direct_mod_clk_output = true,
 364        .npwm = 2,
 365};
 366
 367static const struct of_device_id sun4i_pwm_dt_ids[] = {
 368        {
 369                .compatible = "allwinner,sun4i-a10-pwm",
 370                .data = &sun4i_pwm_dual_nobypass,
 371        }, {
 372                .compatible = "allwinner,sun5i-a10s-pwm",
 373                .data = &sun4i_pwm_dual_bypass,
 374        }, {
 375                .compatible = "allwinner,sun5i-a13-pwm",
 376                .data = &sun4i_pwm_single_bypass,
 377        }, {
 378                .compatible = "allwinner,sun7i-a20-pwm",
 379                .data = &sun4i_pwm_dual_bypass,
 380        }, {
 381                .compatible = "allwinner,sun8i-h3-pwm",
 382                .data = &sun4i_pwm_single_bypass,
 383        }, {
 384                .compatible = "allwinner,sun50i-a64-pwm",
 385                .data = &sun50i_a64_pwm_data,
 386        }, {
 387                .compatible = "allwinner,sun50i-h6-pwm",
 388                .data = &sun50i_h6_pwm_data,
 389        }, {
 390                /* sentinel */
 391        },
 392};
 393MODULE_DEVICE_TABLE(of, sun4i_pwm_dt_ids);
 394
 395static int sun4i_pwm_probe(struct platform_device *pdev)
 396{
 397        struct sun4i_pwm_chip *pwm;
 398        struct resource *res;
 399        int ret;
 400
 401        pwm = devm_kzalloc(&pdev->dev, sizeof(*pwm), GFP_KERNEL);
 402        if (!pwm)
 403                return -ENOMEM;
 404
 405        pwm->data = of_device_get_match_data(&pdev->dev);
 406        if (!pwm->data)
 407                return -ENODEV;
 408
 409        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 410        pwm->base = devm_ioremap_resource(&pdev->dev, res);
 411        if (IS_ERR(pwm->base))
 412                return PTR_ERR(pwm->base);
 413
 414        /*
 415         * All hardware variants need a source clock that is divided and
 416         * then feeds the counter that defines the output wave form. In the
 417         * device tree this clock is either unnamed or called "mod".
 418         * Some variants (e.g. H6) need another clock to access the
 419         * hardware registers; this is called "bus".
 420         * So we request "mod" first (and ignore the corner case that a
 421         * parent provides a "mod" clock while the right one would be the
 422         * unnamed one of the PWM device) and if this is not found we fall
 423         * back to the first clock of the PWM.
 424         */
 425        pwm->clk = devm_clk_get_optional(&pdev->dev, "mod");
 426        if (IS_ERR(pwm->clk)) {
 427                if (PTR_ERR(pwm->clk) != -EPROBE_DEFER)
 428                        dev_err(&pdev->dev, "get mod clock failed %pe\n",
 429                                pwm->clk);
 430                return PTR_ERR(pwm->clk);
 431        }
 432
 433        if (!pwm->clk) {
 434                pwm->clk = devm_clk_get(&pdev->dev, NULL);
 435                if (IS_ERR(pwm->clk)) {
 436                        if (PTR_ERR(pwm->clk) != -EPROBE_DEFER)
 437                                dev_err(&pdev->dev, "get unnamed clock failed %pe\n",
 438                                        pwm->clk);
 439                        return PTR_ERR(pwm->clk);
 440                }
 441        }
 442
 443        pwm->bus_clk = devm_clk_get_optional(&pdev->dev, "bus");
 444        if (IS_ERR(pwm->bus_clk)) {
 445                if (PTR_ERR(pwm->bus_clk) != -EPROBE_DEFER)
 446                        dev_err(&pdev->dev, "get bus clock failed %pe\n",
 447                                pwm->bus_clk);
 448                return PTR_ERR(pwm->bus_clk);
 449        }
 450
 451        pwm->rst = devm_reset_control_get_optional_shared(&pdev->dev, NULL);
 452        if (IS_ERR(pwm->rst)) {
 453                if (PTR_ERR(pwm->rst) != -EPROBE_DEFER)
 454                        dev_err(&pdev->dev, "get reset failed %pe\n",
 455                                pwm->rst);
 456                return PTR_ERR(pwm->rst);
 457        }
 458
 459        /* Deassert reset */
 460        ret = reset_control_deassert(pwm->rst);
 461        if (ret) {
 462                dev_err(&pdev->dev, "cannot deassert reset control: %pe\n",
 463                        ERR_PTR(ret));
 464                return ret;
 465        }
 466
 467        /*
 468         * We're keeping the bus clock on for the sake of simplicity.
 469         * Actually it only needs to be on for hardware register accesses.
 470         */
 471        ret = clk_prepare_enable(pwm->bus_clk);
 472        if (ret) {
 473                dev_err(&pdev->dev, "cannot prepare and enable bus_clk %pe\n",
 474                        ERR_PTR(ret));
 475                goto err_bus;
 476        }
 477
 478        pwm->chip.dev = &pdev->dev;
 479        pwm->chip.ops = &sun4i_pwm_ops;
 480        pwm->chip.base = -1;
 481        pwm->chip.npwm = pwm->data->npwm;
 482        pwm->chip.of_xlate = of_pwm_xlate_with_flags;
 483        pwm->chip.of_pwm_n_cells = 3;
 484
 485        spin_lock_init(&pwm->ctrl_lock);
 486
 487        ret = pwmchip_add(&pwm->chip);
 488        if (ret < 0) {
 489                dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret);
 490                goto err_pwm_add;
 491        }
 492
 493        platform_set_drvdata(pdev, pwm);
 494
 495        return 0;
 496
 497err_pwm_add:
 498        clk_disable_unprepare(pwm->bus_clk);
 499err_bus:
 500        reset_control_assert(pwm->rst);
 501
 502        return ret;
 503}
 504
 505static int sun4i_pwm_remove(struct platform_device *pdev)
 506{
 507        struct sun4i_pwm_chip *pwm = platform_get_drvdata(pdev);
 508        int ret;
 509
 510        ret = pwmchip_remove(&pwm->chip);
 511        if (ret)
 512                return ret;
 513
 514        clk_disable_unprepare(pwm->bus_clk);
 515        reset_control_assert(pwm->rst);
 516
 517        return 0;
 518}
 519
 520static struct platform_driver sun4i_pwm_driver = {
 521        .driver = {
 522                .name = "sun4i-pwm",
 523                .of_match_table = sun4i_pwm_dt_ids,
 524        },
 525        .probe = sun4i_pwm_probe,
 526        .remove = sun4i_pwm_remove,
 527};
 528module_platform_driver(sun4i_pwm_driver);
 529
 530MODULE_ALIAS("platform:sun4i-pwm");
 531MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>");
 532MODULE_DESCRIPTION("Allwinner sun4i PWM driver");
 533MODULE_LICENSE("GPL v2");
 534