linux/drivers/scsi/libfc/fc_exch.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright(c) 2007 Intel Corporation. All rights reserved.
   4 * Copyright(c) 2008 Red Hat, Inc.  All rights reserved.
   5 * Copyright(c) 2008 Mike Christie
   6 *
   7 * Maintained at www.Open-FCoE.org
   8 */
   9
  10/*
  11 * Fibre Channel exchange and sequence handling.
  12 */
  13
  14#include <linux/timer.h>
  15#include <linux/slab.h>
  16#include <linux/err.h>
  17#include <linux/export.h>
  18#include <linux/log2.h>
  19
  20#include <scsi/fc/fc_fc2.h>
  21
  22#include <scsi/libfc.h>
  23#include <scsi/fc_encode.h>
  24
  25#include "fc_libfc.h"
  26
  27u16     fc_cpu_mask;            /* cpu mask for possible cpus */
  28EXPORT_SYMBOL(fc_cpu_mask);
  29static u16      fc_cpu_order;   /* 2's power to represent total possible cpus */
  30static struct kmem_cache *fc_em_cachep;        /* cache for exchanges */
  31static struct workqueue_struct *fc_exch_workqueue;
  32
  33/*
  34 * Structure and function definitions for managing Fibre Channel Exchanges
  35 * and Sequences.
  36 *
  37 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
  38 *
  39 * fc_exch_mgr holds the exchange state for an N port
  40 *
  41 * fc_exch holds state for one exchange and links to its active sequence.
  42 *
  43 * fc_seq holds the state for an individual sequence.
  44 */
  45
  46/**
  47 * struct fc_exch_pool - Per cpu exchange pool
  48 * @next_index:   Next possible free exchange index
  49 * @total_exches: Total allocated exchanges
  50 * @lock:         Exch pool lock
  51 * @ex_list:      List of exchanges
  52 * @left:         Cache of free slot in exch array
  53 * @right:        Cache of free slot in exch array
  54 *
  55 * This structure manages per cpu exchanges in array of exchange pointers.
  56 * This array is allocated followed by struct fc_exch_pool memory for
  57 * assigned range of exchanges to per cpu pool.
  58 */
  59struct fc_exch_pool {
  60        spinlock_t       lock;
  61        struct list_head ex_list;
  62        u16              next_index;
  63        u16              total_exches;
  64
  65        u16              left;
  66        u16              right;
  67} ____cacheline_aligned_in_smp;
  68
  69/**
  70 * struct fc_exch_mgr - The Exchange Manager (EM).
  71 * @class:          Default class for new sequences
  72 * @kref:           Reference counter
  73 * @min_xid:        Minimum exchange ID
  74 * @max_xid:        Maximum exchange ID
  75 * @ep_pool:        Reserved exchange pointers
  76 * @pool_max_index: Max exch array index in exch pool
  77 * @pool:           Per cpu exch pool
  78 * @lport:          Local exchange port
  79 * @stats:          Statistics structure
  80 *
  81 * This structure is the center for creating exchanges and sequences.
  82 * It manages the allocation of exchange IDs.
  83 */
  84struct fc_exch_mgr {
  85        struct fc_exch_pool __percpu *pool;
  86        mempool_t       *ep_pool;
  87        struct fc_lport *lport;
  88        enum fc_class   class;
  89        struct kref     kref;
  90        u16             min_xid;
  91        u16             max_xid;
  92        u16             pool_max_index;
  93
  94        struct {
  95                atomic_t no_free_exch;
  96                atomic_t no_free_exch_xid;
  97                atomic_t xid_not_found;
  98                atomic_t xid_busy;
  99                atomic_t seq_not_found;
 100                atomic_t non_bls_resp;
 101        } stats;
 102};
 103
 104/**
 105 * struct fc_exch_mgr_anchor - primary structure for list of EMs
 106 * @ema_list: Exchange Manager Anchor list
 107 * @mp:       Exchange Manager associated with this anchor
 108 * @match:    Routine to determine if this anchor's EM should be used
 109 *
 110 * When walking the list of anchors the match routine will be called
 111 * for each anchor to determine if that EM should be used. The last
 112 * anchor in the list will always match to handle any exchanges not
 113 * handled by other EMs. The non-default EMs would be added to the
 114 * anchor list by HW that provides offloads.
 115 */
 116struct fc_exch_mgr_anchor {
 117        struct list_head ema_list;
 118        struct fc_exch_mgr *mp;
 119        bool (*match)(struct fc_frame *);
 120};
 121
 122static void fc_exch_rrq(struct fc_exch *);
 123static void fc_seq_ls_acc(struct fc_frame *);
 124static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
 125                          enum fc_els_rjt_explan);
 126static void fc_exch_els_rec(struct fc_frame *);
 127static void fc_exch_els_rrq(struct fc_frame *);
 128
 129/*
 130 * Internal implementation notes.
 131 *
 132 * The exchange manager is one by default in libfc but LLD may choose
 133 * to have one per CPU. The sequence manager is one per exchange manager
 134 * and currently never separated.
 135 *
 136 * Section 9.8 in FC-FS-2 specifies:  "The SEQ_ID is a one-byte field
 137 * assigned by the Sequence Initiator that shall be unique for a specific
 138 * D_ID and S_ID pair while the Sequence is open."   Note that it isn't
 139 * qualified by exchange ID, which one might think it would be.
 140 * In practice this limits the number of open sequences and exchanges to 256
 141 * per session.  For most targets we could treat this limit as per exchange.
 142 *
 143 * The exchange and its sequence are freed when the last sequence is received.
 144 * It's possible for the remote port to leave an exchange open without
 145 * sending any sequences.
 146 *
 147 * Notes on reference counts:
 148 *
 149 * Exchanges are reference counted and exchange gets freed when the reference
 150 * count becomes zero.
 151 *
 152 * Timeouts:
 153 * Sequences are timed out for E_D_TOV and R_A_TOV.
 154 *
 155 * Sequence event handling:
 156 *
 157 * The following events may occur on initiator sequences:
 158 *
 159 *      Send.
 160 *          For now, the whole thing is sent.
 161 *      Receive ACK
 162 *          This applies only to class F.
 163 *          The sequence is marked complete.
 164 *      ULP completion.
 165 *          The upper layer calls fc_exch_done() when done
 166 *          with exchange and sequence tuple.
 167 *      RX-inferred completion.
 168 *          When we receive the next sequence on the same exchange, we can
 169 *          retire the previous sequence ID.  (XXX not implemented).
 170 *      Timeout.
 171 *          R_A_TOV frees the sequence ID.  If we're waiting for ACK,
 172 *          E_D_TOV causes abort and calls upper layer response handler
 173 *          with FC_EX_TIMEOUT error.
 174 *      Receive RJT
 175 *          XXX defer.
 176 *      Send ABTS
 177 *          On timeout.
 178 *
 179 * The following events may occur on recipient sequences:
 180 *
 181 *      Receive
 182 *          Allocate sequence for first frame received.
 183 *          Hold during receive handler.
 184 *          Release when final frame received.
 185 *          Keep status of last N of these for the ELS RES command.  XXX TBD.
 186 *      Receive ABTS
 187 *          Deallocate sequence
 188 *      Send RJT
 189 *          Deallocate
 190 *
 191 * For now, we neglect conditions where only part of a sequence was
 192 * received or transmitted, or where out-of-order receipt is detected.
 193 */
 194
 195/*
 196 * Locking notes:
 197 *
 198 * The EM code run in a per-CPU worker thread.
 199 *
 200 * To protect against concurrency between a worker thread code and timers,
 201 * sequence allocation and deallocation must be locked.
 202 *  - exchange refcnt can be done atomicly without locks.
 203 *  - sequence allocation must be locked by exch lock.
 204 *  - If the EM pool lock and ex_lock must be taken at the same time, then the
 205 *    EM pool lock must be taken before the ex_lock.
 206 */
 207
 208/*
 209 * opcode names for debugging.
 210 */
 211static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
 212
 213/**
 214 * fc_exch_name_lookup() - Lookup name by opcode
 215 * @op:        Opcode to be looked up
 216 * @table:     Opcode/name table
 217 * @max_index: Index not to be exceeded
 218 *
 219 * This routine is used to determine a human-readable string identifying
 220 * a R_CTL opcode.
 221 */
 222static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
 223                                              unsigned int max_index)
 224{
 225        const char *name = NULL;
 226
 227        if (op < max_index)
 228                name = table[op];
 229        if (!name)
 230                name = "unknown";
 231        return name;
 232}
 233
 234/**
 235 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
 236 * @op: The opcode to be looked up
 237 */
 238static const char *fc_exch_rctl_name(unsigned int op)
 239{
 240        return fc_exch_name_lookup(op, fc_exch_rctl_names,
 241                                   ARRAY_SIZE(fc_exch_rctl_names));
 242}
 243
 244/**
 245 * fc_exch_hold() - Increment an exchange's reference count
 246 * @ep: Echange to be held
 247 */
 248static inline void fc_exch_hold(struct fc_exch *ep)
 249{
 250        atomic_inc(&ep->ex_refcnt);
 251}
 252
 253/**
 254 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
 255 *                       and determine SOF and EOF.
 256 * @ep:    The exchange to that will use the header
 257 * @fp:    The frame whose header is to be modified
 258 * @f_ctl: F_CTL bits that will be used for the frame header
 259 *
 260 * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
 261 * fh_seq_id, fh_seq_cnt and the SOF and EOF.
 262 */
 263static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
 264                              u32 f_ctl)
 265{
 266        struct fc_frame_header *fh = fc_frame_header_get(fp);
 267        u16 fill;
 268
 269        fr_sof(fp) = ep->class;
 270        if (ep->seq.cnt)
 271                fr_sof(fp) = fc_sof_normal(ep->class);
 272
 273        if (f_ctl & FC_FC_END_SEQ) {
 274                fr_eof(fp) = FC_EOF_T;
 275                if (fc_sof_needs_ack(ep->class))
 276                        fr_eof(fp) = FC_EOF_N;
 277                /*
 278                 * From F_CTL.
 279                 * The number of fill bytes to make the length a 4-byte
 280                 * multiple is the low order 2-bits of the f_ctl.
 281                 * The fill itself will have been cleared by the frame
 282                 * allocation.
 283                 * After this, the length will be even, as expected by
 284                 * the transport.
 285                 */
 286                fill = fr_len(fp) & 3;
 287                if (fill) {
 288                        fill = 4 - fill;
 289                        /* TODO, this may be a problem with fragmented skb */
 290                        skb_put(fp_skb(fp), fill);
 291                        hton24(fh->fh_f_ctl, f_ctl | fill);
 292                }
 293        } else {
 294                WARN_ON(fr_len(fp) % 4 != 0);   /* no pad to non last frame */
 295                fr_eof(fp) = FC_EOF_N;
 296        }
 297
 298        /* Initialize remaining fh fields from fc_fill_fc_hdr */
 299        fh->fh_ox_id = htons(ep->oxid);
 300        fh->fh_rx_id = htons(ep->rxid);
 301        fh->fh_seq_id = ep->seq.id;
 302        fh->fh_seq_cnt = htons(ep->seq.cnt);
 303}
 304
 305/**
 306 * fc_exch_release() - Decrement an exchange's reference count
 307 * @ep: Exchange to be released
 308 *
 309 * If the reference count reaches zero and the exchange is complete,
 310 * it is freed.
 311 */
 312static void fc_exch_release(struct fc_exch *ep)
 313{
 314        struct fc_exch_mgr *mp;
 315
 316        if (atomic_dec_and_test(&ep->ex_refcnt)) {
 317                mp = ep->em;
 318                if (ep->destructor)
 319                        ep->destructor(&ep->seq, ep->arg);
 320                WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
 321                mempool_free(ep, mp->ep_pool);
 322        }
 323}
 324
 325/**
 326 * fc_exch_timer_cancel() - cancel exch timer
 327 * @ep:         The exchange whose timer to be canceled
 328 */
 329static inline void fc_exch_timer_cancel(struct fc_exch *ep)
 330{
 331        if (cancel_delayed_work(&ep->timeout_work)) {
 332                FC_EXCH_DBG(ep, "Exchange timer canceled\n");
 333                atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
 334        }
 335}
 336
 337/**
 338 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
 339 *                              the exchange lock held
 340 * @ep:         The exchange whose timer will start
 341 * @timer_msec: The timeout period
 342 *
 343 * Used for upper level protocols to time out the exchange.
 344 * The timer is cancelled when it fires or when the exchange completes.
 345 */
 346static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
 347                                            unsigned int timer_msec)
 348{
 349        if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
 350                return;
 351
 352        FC_EXCH_DBG(ep, "Exchange timer armed : %d msecs\n", timer_msec);
 353
 354        fc_exch_hold(ep);               /* hold for timer */
 355        if (!queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
 356                                msecs_to_jiffies(timer_msec))) {
 357                FC_EXCH_DBG(ep, "Exchange already queued\n");
 358                fc_exch_release(ep);
 359        }
 360}
 361
 362/**
 363 * fc_exch_timer_set() - Lock the exchange and set the timer
 364 * @ep:         The exchange whose timer will start
 365 * @timer_msec: The timeout period
 366 */
 367static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
 368{
 369        spin_lock_bh(&ep->ex_lock);
 370        fc_exch_timer_set_locked(ep, timer_msec);
 371        spin_unlock_bh(&ep->ex_lock);
 372}
 373
 374/**
 375 * fc_exch_done_locked() - Complete an exchange with the exchange lock held
 376 * @ep: The exchange that is complete
 377 *
 378 * Note: May sleep if invoked from outside a response handler.
 379 */
 380static int fc_exch_done_locked(struct fc_exch *ep)
 381{
 382        int rc = 1;
 383
 384        /*
 385         * We must check for completion in case there are two threads
 386         * tyring to complete this. But the rrq code will reuse the
 387         * ep, and in that case we only clear the resp and set it as
 388         * complete, so it can be reused by the timer to send the rrq.
 389         */
 390        if (ep->state & FC_EX_DONE)
 391                return rc;
 392        ep->esb_stat |= ESB_ST_COMPLETE;
 393
 394        if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
 395                ep->state |= FC_EX_DONE;
 396                fc_exch_timer_cancel(ep);
 397                rc = 0;
 398        }
 399        return rc;
 400}
 401
 402static struct fc_exch fc_quarantine_exch;
 403
 404/**
 405 * fc_exch_ptr_get() - Return an exchange from an exchange pool
 406 * @pool:  Exchange Pool to get an exchange from
 407 * @index: Index of the exchange within the pool
 408 *
 409 * Use the index to get an exchange from within an exchange pool. exches
 410 * will point to an array of exchange pointers. The index will select
 411 * the exchange within the array.
 412 */
 413static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
 414                                              u16 index)
 415{
 416        struct fc_exch **exches = (struct fc_exch **)(pool + 1);
 417        return exches[index];
 418}
 419
 420/**
 421 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
 422 * @pool:  The pool to assign the exchange to
 423 * @index: The index in the pool where the exchange will be assigned
 424 * @ep:    The exchange to assign to the pool
 425 */
 426static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
 427                                   struct fc_exch *ep)
 428{
 429        ((struct fc_exch **)(pool + 1))[index] = ep;
 430}
 431
 432/**
 433 * fc_exch_delete() - Delete an exchange
 434 * @ep: The exchange to be deleted
 435 */
 436static void fc_exch_delete(struct fc_exch *ep)
 437{
 438        struct fc_exch_pool *pool;
 439        u16 index;
 440
 441        pool = ep->pool;
 442        spin_lock_bh(&pool->lock);
 443        WARN_ON(pool->total_exches <= 0);
 444        pool->total_exches--;
 445
 446        /* update cache of free slot */
 447        index = (ep->xid - ep->em->min_xid) >> fc_cpu_order;
 448        if (!(ep->state & FC_EX_QUARANTINE)) {
 449                if (pool->left == FC_XID_UNKNOWN)
 450                        pool->left = index;
 451                else if (pool->right == FC_XID_UNKNOWN)
 452                        pool->right = index;
 453                else
 454                        pool->next_index = index;
 455                fc_exch_ptr_set(pool, index, NULL);
 456        } else {
 457                fc_exch_ptr_set(pool, index, &fc_quarantine_exch);
 458        }
 459        list_del(&ep->ex_list);
 460        spin_unlock_bh(&pool->lock);
 461        fc_exch_release(ep);    /* drop hold for exch in mp */
 462}
 463
 464static int fc_seq_send_locked(struct fc_lport *lport, struct fc_seq *sp,
 465                              struct fc_frame *fp)
 466{
 467        struct fc_exch *ep;
 468        struct fc_frame_header *fh = fc_frame_header_get(fp);
 469        int error = -ENXIO;
 470        u32 f_ctl;
 471        u8 fh_type = fh->fh_type;
 472
 473        ep = fc_seq_exch(sp);
 474
 475        if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL)) {
 476                fc_frame_free(fp);
 477                goto out;
 478        }
 479
 480        WARN_ON(!(ep->esb_stat & ESB_ST_SEQ_INIT));
 481
 482        f_ctl = ntoh24(fh->fh_f_ctl);
 483        fc_exch_setup_hdr(ep, fp, f_ctl);
 484        fr_encaps(fp) = ep->encaps;
 485
 486        /*
 487         * update sequence count if this frame is carrying
 488         * multiple FC frames when sequence offload is enabled
 489         * by LLD.
 490         */
 491        if (fr_max_payload(fp))
 492                sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
 493                                        fr_max_payload(fp));
 494        else
 495                sp->cnt++;
 496
 497        /*
 498         * Send the frame.
 499         */
 500        error = lport->tt.frame_send(lport, fp);
 501
 502        if (fh_type == FC_TYPE_BLS)
 503                goto out;
 504
 505        /*
 506         * Update the exchange and sequence flags,
 507         * assuming all frames for the sequence have been sent.
 508         * We can only be called to send once for each sequence.
 509         */
 510        ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ;   /* not first seq */
 511        if (f_ctl & FC_FC_SEQ_INIT)
 512                ep->esb_stat &= ~ESB_ST_SEQ_INIT;
 513out:
 514        return error;
 515}
 516
 517/**
 518 * fc_seq_send() - Send a frame using existing sequence/exchange pair
 519 * @lport: The local port that the exchange will be sent on
 520 * @sp:    The sequence to be sent
 521 * @fp:    The frame to be sent on the exchange
 522 *
 523 * Note: The frame will be freed either by a direct call to fc_frame_free(fp)
 524 * or indirectly by calling libfc_function_template.frame_send().
 525 */
 526int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp, struct fc_frame *fp)
 527{
 528        struct fc_exch *ep;
 529        int error;
 530        ep = fc_seq_exch(sp);
 531        spin_lock_bh(&ep->ex_lock);
 532        error = fc_seq_send_locked(lport, sp, fp);
 533        spin_unlock_bh(&ep->ex_lock);
 534        return error;
 535}
 536EXPORT_SYMBOL(fc_seq_send);
 537
 538/**
 539 * fc_seq_alloc() - Allocate a sequence for a given exchange
 540 * @ep:     The exchange to allocate a new sequence for
 541 * @seq_id: The sequence ID to be used
 542 *
 543 * We don't support multiple originated sequences on the same exchange.
 544 * By implication, any previously originated sequence on this exchange
 545 * is complete, and we reallocate the same sequence.
 546 */
 547static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
 548{
 549        struct fc_seq *sp;
 550
 551        sp = &ep->seq;
 552        sp->ssb_stat = 0;
 553        sp->cnt = 0;
 554        sp->id = seq_id;
 555        return sp;
 556}
 557
 558/**
 559 * fc_seq_start_next_locked() - Allocate a new sequence on the same
 560 *                              exchange as the supplied sequence
 561 * @sp: The sequence/exchange to get a new sequence for
 562 */
 563static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
 564{
 565        struct fc_exch *ep = fc_seq_exch(sp);
 566
 567        sp = fc_seq_alloc(ep, ep->seq_id++);
 568        FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
 569                    ep->f_ctl, sp->id);
 570        return sp;
 571}
 572
 573/**
 574 * fc_seq_start_next() - Lock the exchange and get a new sequence
 575 *                       for a given sequence/exchange pair
 576 * @sp: The sequence/exchange to get a new exchange for
 577 */
 578struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
 579{
 580        struct fc_exch *ep = fc_seq_exch(sp);
 581
 582        spin_lock_bh(&ep->ex_lock);
 583        sp = fc_seq_start_next_locked(sp);
 584        spin_unlock_bh(&ep->ex_lock);
 585
 586        return sp;
 587}
 588EXPORT_SYMBOL(fc_seq_start_next);
 589
 590/*
 591 * Set the response handler for the exchange associated with a sequence.
 592 *
 593 * Note: May sleep if invoked from outside a response handler.
 594 */
 595void fc_seq_set_resp(struct fc_seq *sp,
 596                     void (*resp)(struct fc_seq *, struct fc_frame *, void *),
 597                     void *arg)
 598{
 599        struct fc_exch *ep = fc_seq_exch(sp);
 600        DEFINE_WAIT(wait);
 601
 602        spin_lock_bh(&ep->ex_lock);
 603        while (ep->resp_active && ep->resp_task != current) {
 604                prepare_to_wait(&ep->resp_wq, &wait, TASK_UNINTERRUPTIBLE);
 605                spin_unlock_bh(&ep->ex_lock);
 606
 607                schedule();
 608
 609                spin_lock_bh(&ep->ex_lock);
 610        }
 611        finish_wait(&ep->resp_wq, &wait);
 612        ep->resp = resp;
 613        ep->arg = arg;
 614        spin_unlock_bh(&ep->ex_lock);
 615}
 616EXPORT_SYMBOL(fc_seq_set_resp);
 617
 618/**
 619 * fc_exch_abort_locked() - Abort an exchange
 620 * @ep: The exchange to be aborted
 621 * @timer_msec: The period of time to wait before aborting
 622 *
 623 * Abort an exchange and sequence. Generally called because of a
 624 * exchange timeout or an abort from the upper layer.
 625 *
 626 * A timer_msec can be specified for abort timeout, if non-zero
 627 * timer_msec value is specified then exchange resp handler
 628 * will be called with timeout error if no response to abort.
 629 *
 630 * Locking notes:  Called with exch lock held
 631 *
 632 * Return value: 0 on success else error code
 633 */
 634static int fc_exch_abort_locked(struct fc_exch *ep,
 635                                unsigned int timer_msec)
 636{
 637        struct fc_seq *sp;
 638        struct fc_frame *fp;
 639        int error;
 640
 641        FC_EXCH_DBG(ep, "exch: abort, time %d msecs\n", timer_msec);
 642        if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
 643            ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP)) {
 644                FC_EXCH_DBG(ep, "exch: already completed esb %x state %x\n",
 645                            ep->esb_stat, ep->state);
 646                return -ENXIO;
 647        }
 648
 649        /*
 650         * Send the abort on a new sequence if possible.
 651         */
 652        sp = fc_seq_start_next_locked(&ep->seq);
 653        if (!sp)
 654                return -ENOMEM;
 655
 656        if (timer_msec)
 657                fc_exch_timer_set_locked(ep, timer_msec);
 658
 659        if (ep->sid) {
 660                /*
 661                 * Send an abort for the sequence that timed out.
 662                 */
 663                fp = fc_frame_alloc(ep->lp, 0);
 664                if (fp) {
 665                        ep->esb_stat |= ESB_ST_SEQ_INIT;
 666                        fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
 667                                       FC_TYPE_BLS, FC_FC_END_SEQ |
 668                                       FC_FC_SEQ_INIT, 0);
 669                        error = fc_seq_send_locked(ep->lp, sp, fp);
 670                } else {
 671                        error = -ENOBUFS;
 672                }
 673        } else {
 674                /*
 675                 * If not logged into the fabric, don't send ABTS but leave
 676                 * sequence active until next timeout.
 677                 */
 678                error = 0;
 679        }
 680        ep->esb_stat |= ESB_ST_ABNORMAL;
 681        return error;
 682}
 683
 684/**
 685 * fc_seq_exch_abort() - Abort an exchange and sequence
 686 * @req_sp:     The sequence to be aborted
 687 * @timer_msec: The period of time to wait before aborting
 688 *
 689 * Generally called because of a timeout or an abort from the upper layer.
 690 *
 691 * Return value: 0 on success else error code
 692 */
 693int fc_seq_exch_abort(const struct fc_seq *req_sp, unsigned int timer_msec)
 694{
 695        struct fc_exch *ep;
 696        int error;
 697
 698        ep = fc_seq_exch(req_sp);
 699        spin_lock_bh(&ep->ex_lock);
 700        error = fc_exch_abort_locked(ep, timer_msec);
 701        spin_unlock_bh(&ep->ex_lock);
 702        return error;
 703}
 704
 705/**
 706 * fc_invoke_resp() - invoke ep->resp()
 707 * @ep:    The exchange to be operated on
 708 * @fp:    The frame pointer to pass through to ->resp()
 709 * @sp:    The sequence pointer to pass through to ->resp()
 710 *
 711 * Notes:
 712 * It is assumed that after initialization finished (this means the
 713 * first unlock of ex_lock after fc_exch_alloc()) ep->resp and ep->arg are
 714 * modified only via fc_seq_set_resp(). This guarantees that none of these
 715 * two variables changes if ep->resp_active > 0.
 716 *
 717 * If an fc_seq_set_resp() call is busy modifying ep->resp and ep->arg when
 718 * this function is invoked, the first spin_lock_bh() call in this function
 719 * will wait until fc_seq_set_resp() has finished modifying these variables.
 720 *
 721 * Since fc_exch_done() invokes fc_seq_set_resp() it is guaranteed that that
 722 * ep->resp() won't be invoked after fc_exch_done() has returned.
 723 *
 724 * The response handler itself may invoke fc_exch_done(), which will clear the
 725 * ep->resp pointer.
 726 *
 727 * Return value:
 728 * Returns true if and only if ep->resp has been invoked.
 729 */
 730static bool fc_invoke_resp(struct fc_exch *ep, struct fc_seq *sp,
 731                           struct fc_frame *fp)
 732{
 733        void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
 734        void *arg;
 735        bool res = false;
 736
 737        spin_lock_bh(&ep->ex_lock);
 738        ep->resp_active++;
 739        if (ep->resp_task != current)
 740                ep->resp_task = !ep->resp_task ? current : NULL;
 741        resp = ep->resp;
 742        arg = ep->arg;
 743        spin_unlock_bh(&ep->ex_lock);
 744
 745        if (resp) {
 746                resp(sp, fp, arg);
 747                res = true;
 748        }
 749
 750        spin_lock_bh(&ep->ex_lock);
 751        if (--ep->resp_active == 0)
 752                ep->resp_task = NULL;
 753        spin_unlock_bh(&ep->ex_lock);
 754
 755        if (ep->resp_active == 0)
 756                wake_up(&ep->resp_wq);
 757
 758        return res;
 759}
 760
 761/**
 762 * fc_exch_timeout() - Handle exchange timer expiration
 763 * @work: The work_struct identifying the exchange that timed out
 764 */
 765static void fc_exch_timeout(struct work_struct *work)
 766{
 767        struct fc_exch *ep = container_of(work, struct fc_exch,
 768                                          timeout_work.work);
 769        struct fc_seq *sp = &ep->seq;
 770        u32 e_stat;
 771        int rc = 1;
 772
 773        FC_EXCH_DBG(ep, "Exchange timed out state %x\n", ep->state);
 774
 775        spin_lock_bh(&ep->ex_lock);
 776        if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
 777                goto unlock;
 778
 779        e_stat = ep->esb_stat;
 780        if (e_stat & ESB_ST_COMPLETE) {
 781                ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
 782                spin_unlock_bh(&ep->ex_lock);
 783                if (e_stat & ESB_ST_REC_QUAL)
 784                        fc_exch_rrq(ep);
 785                goto done;
 786        } else {
 787                if (e_stat & ESB_ST_ABNORMAL)
 788                        rc = fc_exch_done_locked(ep);
 789                spin_unlock_bh(&ep->ex_lock);
 790                if (!rc)
 791                        fc_exch_delete(ep);
 792                fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_TIMEOUT));
 793                fc_seq_set_resp(sp, NULL, ep->arg);
 794                fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
 795                goto done;
 796        }
 797unlock:
 798        spin_unlock_bh(&ep->ex_lock);
 799done:
 800        /*
 801         * This release matches the hold taken when the timer was set.
 802         */
 803        fc_exch_release(ep);
 804}
 805
 806/**
 807 * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
 808 * @lport: The local port that the exchange is for
 809 * @mp:    The exchange manager that will allocate the exchange
 810 *
 811 * Returns pointer to allocated fc_exch with exch lock held.
 812 */
 813static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
 814                                        struct fc_exch_mgr *mp)
 815{
 816        struct fc_exch *ep;
 817        unsigned int cpu;
 818        u16 index;
 819        struct fc_exch_pool *pool;
 820
 821        /* allocate memory for exchange */
 822        ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
 823        if (!ep) {
 824                atomic_inc(&mp->stats.no_free_exch);
 825                goto out;
 826        }
 827        memset(ep, 0, sizeof(*ep));
 828
 829        cpu = get_cpu();
 830        pool = per_cpu_ptr(mp->pool, cpu);
 831        spin_lock_bh(&pool->lock);
 832        put_cpu();
 833
 834        /* peek cache of free slot */
 835        if (pool->left != FC_XID_UNKNOWN) {
 836                if (!WARN_ON(fc_exch_ptr_get(pool, pool->left))) {
 837                        index = pool->left;
 838                        pool->left = FC_XID_UNKNOWN;
 839                        goto hit;
 840                }
 841        }
 842        if (pool->right != FC_XID_UNKNOWN) {
 843                if (!WARN_ON(fc_exch_ptr_get(pool, pool->right))) {
 844                        index = pool->right;
 845                        pool->right = FC_XID_UNKNOWN;
 846                        goto hit;
 847                }
 848        }
 849
 850        index = pool->next_index;
 851        /* allocate new exch from pool */
 852        while (fc_exch_ptr_get(pool, index)) {
 853                index = index == mp->pool_max_index ? 0 : index + 1;
 854                if (index == pool->next_index)
 855                        goto err;
 856        }
 857        pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
 858hit:
 859        fc_exch_hold(ep);       /* hold for exch in mp */
 860        spin_lock_init(&ep->ex_lock);
 861        /*
 862         * Hold exch lock for caller to prevent fc_exch_reset()
 863         * from releasing exch  while fc_exch_alloc() caller is
 864         * still working on exch.
 865         */
 866        spin_lock_bh(&ep->ex_lock);
 867
 868        fc_exch_ptr_set(pool, index, ep);
 869        list_add_tail(&ep->ex_list, &pool->ex_list);
 870        fc_seq_alloc(ep, ep->seq_id++);
 871        pool->total_exches++;
 872        spin_unlock_bh(&pool->lock);
 873
 874        /*
 875         *  update exchange
 876         */
 877        ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
 878        ep->em = mp;
 879        ep->pool = pool;
 880        ep->lp = lport;
 881        ep->f_ctl = FC_FC_FIRST_SEQ;    /* next seq is first seq */
 882        ep->rxid = FC_XID_UNKNOWN;
 883        ep->class = mp->class;
 884        ep->resp_active = 0;
 885        init_waitqueue_head(&ep->resp_wq);
 886        INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
 887out:
 888        return ep;
 889err:
 890        spin_unlock_bh(&pool->lock);
 891        atomic_inc(&mp->stats.no_free_exch_xid);
 892        mempool_free(ep, mp->ep_pool);
 893        return NULL;
 894}
 895
 896/**
 897 * fc_exch_alloc() - Allocate an exchange from an EM on a
 898 *                   local port's list of EMs.
 899 * @lport: The local port that will own the exchange
 900 * @fp:    The FC frame that the exchange will be for
 901 *
 902 * This function walks the list of exchange manager(EM)
 903 * anchors to select an EM for a new exchange allocation. The
 904 * EM is selected when a NULL match function pointer is encountered
 905 * or when a call to a match function returns true.
 906 */
 907static struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
 908                                     struct fc_frame *fp)
 909{
 910        struct fc_exch_mgr_anchor *ema;
 911        struct fc_exch *ep;
 912
 913        list_for_each_entry(ema, &lport->ema_list, ema_list) {
 914                if (!ema->match || ema->match(fp)) {
 915                        ep = fc_exch_em_alloc(lport, ema->mp);
 916                        if (ep)
 917                                return ep;
 918                }
 919        }
 920        return NULL;
 921}
 922
 923/**
 924 * fc_exch_find() - Lookup and hold an exchange
 925 * @mp:  The exchange manager to lookup the exchange from
 926 * @xid: The XID of the exchange to look up
 927 */
 928static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
 929{
 930        struct fc_lport *lport = mp->lport;
 931        struct fc_exch_pool *pool;
 932        struct fc_exch *ep = NULL;
 933        u16 cpu = xid & fc_cpu_mask;
 934
 935        if (xid == FC_XID_UNKNOWN)
 936                return NULL;
 937
 938        if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
 939                pr_err("host%u: lport %6.6x: xid %d invalid CPU %d\n:",
 940                       lport->host->host_no, lport->port_id, xid, cpu);
 941                return NULL;
 942        }
 943
 944        if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
 945                pool = per_cpu_ptr(mp->pool, cpu);
 946                spin_lock_bh(&pool->lock);
 947                ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
 948                if (ep == &fc_quarantine_exch) {
 949                        FC_LPORT_DBG(lport, "xid %x quarantined\n", xid);
 950                        ep = NULL;
 951                }
 952                if (ep) {
 953                        WARN_ON(ep->xid != xid);
 954                        fc_exch_hold(ep);
 955                }
 956                spin_unlock_bh(&pool->lock);
 957        }
 958        return ep;
 959}
 960
 961
 962/**
 963 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
 964 *                  the memory allocated for the related objects may be freed.
 965 * @sp: The sequence that has completed
 966 *
 967 * Note: May sleep if invoked from outside a response handler.
 968 */
 969void fc_exch_done(struct fc_seq *sp)
 970{
 971        struct fc_exch *ep = fc_seq_exch(sp);
 972        int rc;
 973
 974        spin_lock_bh(&ep->ex_lock);
 975        rc = fc_exch_done_locked(ep);
 976        spin_unlock_bh(&ep->ex_lock);
 977
 978        fc_seq_set_resp(sp, NULL, ep->arg);
 979        if (!rc)
 980                fc_exch_delete(ep);
 981}
 982EXPORT_SYMBOL(fc_exch_done);
 983
 984/**
 985 * fc_exch_resp() - Allocate a new exchange for a response frame
 986 * @lport: The local port that the exchange was for
 987 * @mp:    The exchange manager to allocate the exchange from
 988 * @fp:    The response frame
 989 *
 990 * Sets the responder ID in the frame header.
 991 */
 992static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
 993                                    struct fc_exch_mgr *mp,
 994                                    struct fc_frame *fp)
 995{
 996        struct fc_exch *ep;
 997        struct fc_frame_header *fh;
 998
 999        ep = fc_exch_alloc(lport, fp);
1000        if (ep) {
1001                ep->class = fc_frame_class(fp);
1002
1003                /*
1004                 * Set EX_CTX indicating we're responding on this exchange.
1005                 */
1006                ep->f_ctl |= FC_FC_EX_CTX;      /* we're responding */
1007                ep->f_ctl &= ~FC_FC_FIRST_SEQ;  /* not new */
1008                fh = fc_frame_header_get(fp);
1009                ep->sid = ntoh24(fh->fh_d_id);
1010                ep->did = ntoh24(fh->fh_s_id);
1011                ep->oid = ep->did;
1012
1013                /*
1014                 * Allocated exchange has placed the XID in the
1015                 * originator field. Move it to the responder field,
1016                 * and set the originator XID from the frame.
1017                 */
1018                ep->rxid = ep->xid;
1019                ep->oxid = ntohs(fh->fh_ox_id);
1020                ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
1021                if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
1022                        ep->esb_stat &= ~ESB_ST_SEQ_INIT;
1023
1024                fc_exch_hold(ep);       /* hold for caller */
1025                spin_unlock_bh(&ep->ex_lock);   /* lock from fc_exch_alloc */
1026        }
1027        return ep;
1028}
1029
1030/**
1031 * fc_seq_lookup_recip() - Find a sequence where the other end
1032 *                         originated the sequence
1033 * @lport: The local port that the frame was sent to
1034 * @mp:    The Exchange Manager to lookup the exchange from
1035 * @fp:    The frame associated with the sequence we're looking for
1036 *
1037 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
1038 * on the ep that should be released by the caller.
1039 */
1040static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
1041                                                 struct fc_exch_mgr *mp,
1042                                                 struct fc_frame *fp)
1043{
1044        struct fc_frame_header *fh = fc_frame_header_get(fp);
1045        struct fc_exch *ep = NULL;
1046        struct fc_seq *sp = NULL;
1047        enum fc_pf_rjt_reason reject = FC_RJT_NONE;
1048        u32 f_ctl;
1049        u16 xid;
1050
1051        f_ctl = ntoh24(fh->fh_f_ctl);
1052        WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
1053
1054        /*
1055         * Lookup or create the exchange if we will be creating the sequence.
1056         */
1057        if (f_ctl & FC_FC_EX_CTX) {
1058                xid = ntohs(fh->fh_ox_id);      /* we originated exch */
1059                ep = fc_exch_find(mp, xid);
1060                if (!ep) {
1061                        atomic_inc(&mp->stats.xid_not_found);
1062                        reject = FC_RJT_OX_ID;
1063                        goto out;
1064                }
1065                if (ep->rxid == FC_XID_UNKNOWN)
1066                        ep->rxid = ntohs(fh->fh_rx_id);
1067                else if (ep->rxid != ntohs(fh->fh_rx_id)) {
1068                        reject = FC_RJT_OX_ID;
1069                        goto rel;
1070                }
1071        } else {
1072                xid = ntohs(fh->fh_rx_id);      /* we are the responder */
1073
1074                /*
1075                 * Special case for MDS issuing an ELS TEST with a
1076                 * bad rxid of 0.
1077                 * XXX take this out once we do the proper reject.
1078                 */
1079                if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
1080                    fc_frame_payload_op(fp) == ELS_TEST) {
1081                        fh->fh_rx_id = htons(FC_XID_UNKNOWN);
1082                        xid = FC_XID_UNKNOWN;
1083                }
1084
1085                /*
1086                 * new sequence - find the exchange
1087                 */
1088                ep = fc_exch_find(mp, xid);
1089                if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
1090                        if (ep) {
1091                                atomic_inc(&mp->stats.xid_busy);
1092                                reject = FC_RJT_RX_ID;
1093                                goto rel;
1094                        }
1095                        ep = fc_exch_resp(lport, mp, fp);
1096                        if (!ep) {
1097                                reject = FC_RJT_EXCH_EST;       /* XXX */
1098                                goto out;
1099                        }
1100                        xid = ep->xid;  /* get our XID */
1101                } else if (!ep) {
1102                        atomic_inc(&mp->stats.xid_not_found);
1103                        reject = FC_RJT_RX_ID;  /* XID not found */
1104                        goto out;
1105                }
1106        }
1107
1108        spin_lock_bh(&ep->ex_lock);
1109        /*
1110         * At this point, we have the exchange held.
1111         * Find or create the sequence.
1112         */
1113        if (fc_sof_is_init(fr_sof(fp))) {
1114                sp = &ep->seq;
1115                sp->ssb_stat |= SSB_ST_RESP;
1116                sp->id = fh->fh_seq_id;
1117        } else {
1118                sp = &ep->seq;
1119                if (sp->id != fh->fh_seq_id) {
1120                        atomic_inc(&mp->stats.seq_not_found);
1121                        if (f_ctl & FC_FC_END_SEQ) {
1122                                /*
1123                                 * Update sequence_id based on incoming last
1124                                 * frame of sequence exchange. This is needed
1125                                 * for FC target where DDP has been used
1126                                 * on target where, stack is indicated only
1127                                 * about last frame's (payload _header) header.
1128                                 * Whereas "seq_id" which is part of
1129                                 * frame_header is allocated by initiator
1130                                 * which is totally different from "seq_id"
1131                                 * allocated when XFER_RDY was sent by target.
1132                                 * To avoid false -ve which results into not
1133                                 * sending RSP, hence write request on other
1134                                 * end never finishes.
1135                                 */
1136                                sp->ssb_stat |= SSB_ST_RESP;
1137                                sp->id = fh->fh_seq_id;
1138                        } else {
1139                                spin_unlock_bh(&ep->ex_lock);
1140
1141                                /* sequence/exch should exist */
1142                                reject = FC_RJT_SEQ_ID;
1143                                goto rel;
1144                        }
1145                }
1146        }
1147        WARN_ON(ep != fc_seq_exch(sp));
1148
1149        if (f_ctl & FC_FC_SEQ_INIT)
1150                ep->esb_stat |= ESB_ST_SEQ_INIT;
1151        spin_unlock_bh(&ep->ex_lock);
1152
1153        fr_seq(fp) = sp;
1154out:
1155        return reject;
1156rel:
1157        fc_exch_done(&ep->seq);
1158        fc_exch_release(ep);    /* hold from fc_exch_find/fc_exch_resp */
1159        return reject;
1160}
1161
1162/**
1163 * fc_seq_lookup_orig() - Find a sequence where this end
1164 *                        originated the sequence
1165 * @mp:    The Exchange Manager to lookup the exchange from
1166 * @fp:    The frame associated with the sequence we're looking for
1167 *
1168 * Does not hold the sequence for the caller.
1169 */
1170static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
1171                                         struct fc_frame *fp)
1172{
1173        struct fc_frame_header *fh = fc_frame_header_get(fp);
1174        struct fc_exch *ep;
1175        struct fc_seq *sp = NULL;
1176        u32 f_ctl;
1177        u16 xid;
1178
1179        f_ctl = ntoh24(fh->fh_f_ctl);
1180        WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
1181        xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
1182        ep = fc_exch_find(mp, xid);
1183        if (!ep)
1184                return NULL;
1185        if (ep->seq.id == fh->fh_seq_id) {
1186                /*
1187                 * Save the RX_ID if we didn't previously know it.
1188                 */
1189                sp = &ep->seq;
1190                if ((f_ctl & FC_FC_EX_CTX) != 0 &&
1191                    ep->rxid == FC_XID_UNKNOWN) {
1192                        ep->rxid = ntohs(fh->fh_rx_id);
1193                }
1194        }
1195        fc_exch_release(ep);
1196        return sp;
1197}
1198
1199/**
1200 * fc_exch_set_addr() - Set the source and destination IDs for an exchange
1201 * @ep:      The exchange to set the addresses for
1202 * @orig_id: The originator's ID
1203 * @resp_id: The responder's ID
1204 *
1205 * Note this must be done before the first sequence of the exchange is sent.
1206 */
1207static void fc_exch_set_addr(struct fc_exch *ep,
1208                             u32 orig_id, u32 resp_id)
1209{
1210        ep->oid = orig_id;
1211        if (ep->esb_stat & ESB_ST_RESP) {
1212                ep->sid = resp_id;
1213                ep->did = orig_id;
1214        } else {
1215                ep->sid = orig_id;
1216                ep->did = resp_id;
1217        }
1218}
1219
1220/**
1221 * fc_seq_els_rsp_send() - Send an ELS response using information from
1222 *                         the existing sequence/exchange.
1223 * @fp:       The received frame
1224 * @els_cmd:  The ELS command to be sent
1225 * @els_data: The ELS data to be sent
1226 *
1227 * The received frame is not freed.
1228 */
1229void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
1230                         struct fc_seq_els_data *els_data)
1231{
1232        switch (els_cmd) {
1233        case ELS_LS_RJT:
1234                fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
1235                break;
1236        case ELS_LS_ACC:
1237                fc_seq_ls_acc(fp);
1238                break;
1239        case ELS_RRQ:
1240                fc_exch_els_rrq(fp);
1241                break;
1242        case ELS_REC:
1243                fc_exch_els_rec(fp);
1244                break;
1245        default:
1246                FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
1247        }
1248}
1249EXPORT_SYMBOL_GPL(fc_seq_els_rsp_send);
1250
1251/**
1252 * fc_seq_send_last() - Send a sequence that is the last in the exchange
1253 * @sp:      The sequence that is to be sent
1254 * @fp:      The frame that will be sent on the sequence
1255 * @rctl:    The R_CTL information to be sent
1256 * @fh_type: The frame header type
1257 */
1258static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1259                             enum fc_rctl rctl, enum fc_fh_type fh_type)
1260{
1261        u32 f_ctl;
1262        struct fc_exch *ep = fc_seq_exch(sp);
1263
1264        f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1265        f_ctl |= ep->f_ctl;
1266        fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1267        fc_seq_send_locked(ep->lp, sp, fp);
1268}
1269
1270/**
1271 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1272 * @sp:    The sequence to send the ACK on
1273 * @rx_fp: The received frame that is being acknoledged
1274 *
1275 * Send ACK_1 (or equiv.) indicating we received something.
1276 */
1277static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1278{
1279        struct fc_frame *fp;
1280        struct fc_frame_header *rx_fh;
1281        struct fc_frame_header *fh;
1282        struct fc_exch *ep = fc_seq_exch(sp);
1283        struct fc_lport *lport = ep->lp;
1284        unsigned int f_ctl;
1285
1286        /*
1287         * Don't send ACKs for class 3.
1288         */
1289        if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1290                fp = fc_frame_alloc(lport, 0);
1291                if (!fp) {
1292                        FC_EXCH_DBG(ep, "Drop ACK request, out of memory\n");
1293                        return;
1294                }
1295
1296                fh = fc_frame_header_get(fp);
1297                fh->fh_r_ctl = FC_RCTL_ACK_1;
1298                fh->fh_type = FC_TYPE_BLS;
1299
1300                /*
1301                 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1302                 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1303                 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1304                 * Last ACK uses bits 7-6 (continue sequence),
1305                 * bits 5-4 are meaningful (what kind of ACK to use).
1306                 */
1307                rx_fh = fc_frame_header_get(rx_fp);
1308                f_ctl = ntoh24(rx_fh->fh_f_ctl);
1309                f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1310                        FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1311                        FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1312                        FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1313                f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1314                hton24(fh->fh_f_ctl, f_ctl);
1315
1316                fc_exch_setup_hdr(ep, fp, f_ctl);
1317                fh->fh_seq_id = rx_fh->fh_seq_id;
1318                fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1319                fh->fh_parm_offset = htonl(1);  /* ack single frame */
1320
1321                fr_sof(fp) = fr_sof(rx_fp);
1322                if (f_ctl & FC_FC_END_SEQ)
1323                        fr_eof(fp) = FC_EOF_T;
1324                else
1325                        fr_eof(fp) = FC_EOF_N;
1326
1327                lport->tt.frame_send(lport, fp);
1328        }
1329}
1330
1331/**
1332 * fc_exch_send_ba_rjt() - Send BLS Reject
1333 * @rx_fp:  The frame being rejected
1334 * @reason: The reason the frame is being rejected
1335 * @explan: The explanation for the rejection
1336 *
1337 * This is for rejecting BA_ABTS only.
1338 */
1339static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1340                                enum fc_ba_rjt_reason reason,
1341                                enum fc_ba_rjt_explan explan)
1342{
1343        struct fc_frame *fp;
1344        struct fc_frame_header *rx_fh;
1345        struct fc_frame_header *fh;
1346        struct fc_ba_rjt *rp;
1347        struct fc_seq *sp;
1348        struct fc_lport *lport;
1349        unsigned int f_ctl;
1350
1351        lport = fr_dev(rx_fp);
1352        sp = fr_seq(rx_fp);
1353        fp = fc_frame_alloc(lport, sizeof(*rp));
1354        if (!fp) {
1355                FC_EXCH_DBG(fc_seq_exch(sp),
1356                             "Drop BA_RJT request, out of memory\n");
1357                return;
1358        }
1359        fh = fc_frame_header_get(fp);
1360        rx_fh = fc_frame_header_get(rx_fp);
1361
1362        memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1363
1364        rp = fc_frame_payload_get(fp, sizeof(*rp));
1365        rp->br_reason = reason;
1366        rp->br_explan = explan;
1367
1368        /*
1369         * seq_id, cs_ctl, df_ctl and param/offset are zero.
1370         */
1371        memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1372        memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1373        fh->fh_ox_id = rx_fh->fh_ox_id;
1374        fh->fh_rx_id = rx_fh->fh_rx_id;
1375        fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1376        fh->fh_r_ctl = FC_RCTL_BA_RJT;
1377        fh->fh_type = FC_TYPE_BLS;
1378
1379        /*
1380         * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1381         * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1382         * Bits 9-8 are meaningful (retransmitted or unidirectional).
1383         * Last ACK uses bits 7-6 (continue sequence),
1384         * bits 5-4 are meaningful (what kind of ACK to use).
1385         * Always set LAST_SEQ, END_SEQ.
1386         */
1387        f_ctl = ntoh24(rx_fh->fh_f_ctl);
1388        f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1389                FC_FC_END_CONN | FC_FC_SEQ_INIT |
1390                FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1391        f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1392        f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1393        f_ctl &= ~FC_FC_FIRST_SEQ;
1394        hton24(fh->fh_f_ctl, f_ctl);
1395
1396        fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1397        fr_eof(fp) = FC_EOF_T;
1398        if (fc_sof_needs_ack(fr_sof(fp)))
1399                fr_eof(fp) = FC_EOF_N;
1400
1401        lport->tt.frame_send(lport, fp);
1402}
1403
1404/**
1405 * fc_exch_recv_abts() - Handle an incoming ABTS
1406 * @ep:    The exchange the abort was on
1407 * @rx_fp: The ABTS frame
1408 *
1409 * This would be for target mode usually, but could be due to lost
1410 * FCP transfer ready, confirm or RRQ. We always handle this as an
1411 * exchange abort, ignoring the parameter.
1412 */
1413static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1414{
1415        struct fc_frame *fp;
1416        struct fc_ba_acc *ap;
1417        struct fc_frame_header *fh;
1418        struct fc_seq *sp;
1419
1420        if (!ep)
1421                goto reject;
1422
1423        FC_EXCH_DBG(ep, "exch: ABTS received\n");
1424        fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1425        if (!fp) {
1426                FC_EXCH_DBG(ep, "Drop ABTS request, out of memory\n");
1427                goto free;
1428        }
1429
1430        spin_lock_bh(&ep->ex_lock);
1431        if (ep->esb_stat & ESB_ST_COMPLETE) {
1432                spin_unlock_bh(&ep->ex_lock);
1433                FC_EXCH_DBG(ep, "exch: ABTS rejected, exchange complete\n");
1434                fc_frame_free(fp);
1435                goto reject;
1436        }
1437        if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
1438                ep->esb_stat |= ESB_ST_REC_QUAL;
1439                fc_exch_hold(ep);               /* hold for REC_QUAL */
1440        }
1441        fc_exch_timer_set_locked(ep, ep->r_a_tov);
1442        fh = fc_frame_header_get(fp);
1443        ap = fc_frame_payload_get(fp, sizeof(*ap));
1444        memset(ap, 0, sizeof(*ap));
1445        sp = &ep->seq;
1446        ap->ba_high_seq_cnt = htons(0xffff);
1447        if (sp->ssb_stat & SSB_ST_RESP) {
1448                ap->ba_seq_id = sp->id;
1449                ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1450                ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1451                ap->ba_low_seq_cnt = htons(sp->cnt);
1452        }
1453        sp = fc_seq_start_next_locked(sp);
1454        fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1455        ep->esb_stat |= ESB_ST_ABNORMAL;
1456        spin_unlock_bh(&ep->ex_lock);
1457
1458free:
1459        fc_frame_free(rx_fp);
1460        return;
1461
1462reject:
1463        fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1464        goto free;
1465}
1466
1467/**
1468 * fc_seq_assign() - Assign exchange and sequence for incoming request
1469 * @lport: The local port that received the request
1470 * @fp:    The request frame
1471 *
1472 * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1473 * A reference will be held on the exchange/sequence for the caller, which
1474 * must call fc_seq_release().
1475 */
1476struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
1477{
1478        struct fc_exch_mgr_anchor *ema;
1479
1480        WARN_ON(lport != fr_dev(fp));
1481        WARN_ON(fr_seq(fp));
1482        fr_seq(fp) = NULL;
1483
1484        list_for_each_entry(ema, &lport->ema_list, ema_list)
1485                if ((!ema->match || ema->match(fp)) &&
1486                    fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE)
1487                        break;
1488        return fr_seq(fp);
1489}
1490EXPORT_SYMBOL(fc_seq_assign);
1491
1492/**
1493 * fc_seq_release() - Release the hold
1494 * @sp:    The sequence.
1495 */
1496void fc_seq_release(struct fc_seq *sp)
1497{
1498        fc_exch_release(fc_seq_exch(sp));
1499}
1500EXPORT_SYMBOL(fc_seq_release);
1501
1502/**
1503 * fc_exch_recv_req() - Handler for an incoming request
1504 * @lport: The local port that received the request
1505 * @mp:    The EM that the exchange is on
1506 * @fp:    The request frame
1507 *
1508 * This is used when the other end is originating the exchange
1509 * and the sequence.
1510 */
1511static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1512                             struct fc_frame *fp)
1513{
1514        struct fc_frame_header *fh = fc_frame_header_get(fp);
1515        struct fc_seq *sp = NULL;
1516        struct fc_exch *ep = NULL;
1517        enum fc_pf_rjt_reason reject;
1518
1519        /* We can have the wrong fc_lport at this point with NPIV, which is a
1520         * problem now that we know a new exchange needs to be allocated
1521         */
1522        lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1523        if (!lport) {
1524                fc_frame_free(fp);
1525                return;
1526        }
1527        fr_dev(fp) = lport;
1528
1529        BUG_ON(fr_seq(fp));             /* XXX remove later */
1530
1531        /*
1532         * If the RX_ID is 0xffff, don't allocate an exchange.
1533         * The upper-level protocol may request one later, if needed.
1534         */
1535        if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
1536                return fc_lport_recv(lport, fp);
1537
1538        reject = fc_seq_lookup_recip(lport, mp, fp);
1539        if (reject == FC_RJT_NONE) {
1540                sp = fr_seq(fp);        /* sequence will be held */
1541                ep = fc_seq_exch(sp);
1542                fc_seq_send_ack(sp, fp);
1543                ep->encaps = fr_encaps(fp);
1544
1545                /*
1546                 * Call the receive function.
1547                 *
1548                 * The receive function may allocate a new sequence
1549                 * over the old one, so we shouldn't change the
1550                 * sequence after this.
1551                 *
1552                 * The frame will be freed by the receive function.
1553                 * If new exch resp handler is valid then call that
1554                 * first.
1555                 */
1556                if (!fc_invoke_resp(ep, sp, fp))
1557                        fc_lport_recv(lport, fp);
1558                fc_exch_release(ep);    /* release from lookup */
1559        } else {
1560                FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1561                             reject);
1562                fc_frame_free(fp);
1563        }
1564}
1565
1566/**
1567 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1568 *                           end is the originator of the sequence that is a
1569 *                           response to our initial exchange
1570 * @mp: The EM that the exchange is on
1571 * @fp: The response frame
1572 */
1573static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1574{
1575        struct fc_frame_header *fh = fc_frame_header_get(fp);
1576        struct fc_seq *sp;
1577        struct fc_exch *ep;
1578        enum fc_sof sof;
1579        u32 f_ctl;
1580        int rc;
1581
1582        ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1583        if (!ep) {
1584                atomic_inc(&mp->stats.xid_not_found);
1585                goto out;
1586        }
1587        if (ep->esb_stat & ESB_ST_COMPLETE) {
1588                atomic_inc(&mp->stats.xid_not_found);
1589                goto rel;
1590        }
1591        if (ep->rxid == FC_XID_UNKNOWN)
1592                ep->rxid = ntohs(fh->fh_rx_id);
1593        if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1594                atomic_inc(&mp->stats.xid_not_found);
1595                goto rel;
1596        }
1597        if (ep->did != ntoh24(fh->fh_s_id) &&
1598            ep->did != FC_FID_FLOGI) {
1599                atomic_inc(&mp->stats.xid_not_found);
1600                goto rel;
1601        }
1602        sof = fr_sof(fp);
1603        sp = &ep->seq;
1604        if (fc_sof_is_init(sof)) {
1605                sp->ssb_stat |= SSB_ST_RESP;
1606                sp->id = fh->fh_seq_id;
1607        }
1608
1609        f_ctl = ntoh24(fh->fh_f_ctl);
1610        fr_seq(fp) = sp;
1611
1612        spin_lock_bh(&ep->ex_lock);
1613        if (f_ctl & FC_FC_SEQ_INIT)
1614                ep->esb_stat |= ESB_ST_SEQ_INIT;
1615        spin_unlock_bh(&ep->ex_lock);
1616
1617        if (fc_sof_needs_ack(sof))
1618                fc_seq_send_ack(sp, fp);
1619
1620        if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1621            (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1622            (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1623                spin_lock_bh(&ep->ex_lock);
1624                rc = fc_exch_done_locked(ep);
1625                WARN_ON(fc_seq_exch(sp) != ep);
1626                spin_unlock_bh(&ep->ex_lock);
1627                if (!rc)
1628                        fc_exch_delete(ep);
1629        }
1630
1631        /*
1632         * Call the receive function.
1633         * The sequence is held (has a refcnt) for us,
1634         * but not for the receive function.
1635         *
1636         * The receive function may allocate a new sequence
1637         * over the old one, so we shouldn't change the
1638         * sequence after this.
1639         *
1640         * The frame will be freed by the receive function.
1641         * If new exch resp handler is valid then call that
1642         * first.
1643         */
1644        if (!fc_invoke_resp(ep, sp, fp))
1645                fc_frame_free(fp);
1646
1647        fc_exch_release(ep);
1648        return;
1649rel:
1650        fc_exch_release(ep);
1651out:
1652        fc_frame_free(fp);
1653}
1654
1655/**
1656 * fc_exch_recv_resp() - Handler for a sequence where other end is
1657 *                       responding to our sequence
1658 * @mp: The EM that the exchange is on
1659 * @fp: The response frame
1660 */
1661static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1662{
1663        struct fc_seq *sp;
1664
1665        sp = fc_seq_lookup_orig(mp, fp);        /* doesn't hold sequence */
1666
1667        if (!sp)
1668                atomic_inc(&mp->stats.xid_not_found);
1669        else
1670                atomic_inc(&mp->stats.non_bls_resp);
1671
1672        fc_frame_free(fp);
1673}
1674
1675/**
1676 * fc_exch_abts_resp() - Handler for a response to an ABT
1677 * @ep: The exchange that the frame is on
1678 * @fp: The response frame
1679 *
1680 * This response would be to an ABTS cancelling an exchange or sequence.
1681 * The response can be either BA_ACC or BA_RJT
1682 */
1683static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1684{
1685        struct fc_frame_header *fh;
1686        struct fc_ba_acc *ap;
1687        struct fc_seq *sp;
1688        u16 low;
1689        u16 high;
1690        int rc = 1, has_rec = 0;
1691
1692        fh = fc_frame_header_get(fp);
1693        FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1694                    fc_exch_rctl_name(fh->fh_r_ctl));
1695
1696        if (cancel_delayed_work_sync(&ep->timeout_work)) {
1697                FC_EXCH_DBG(ep, "Exchange timer canceled due to ABTS response\n");
1698                fc_exch_release(ep);    /* release from pending timer hold */
1699        }
1700
1701        spin_lock_bh(&ep->ex_lock);
1702        switch (fh->fh_r_ctl) {
1703        case FC_RCTL_BA_ACC:
1704                ap = fc_frame_payload_get(fp, sizeof(*ap));
1705                if (!ap)
1706                        break;
1707
1708                /*
1709                 * Decide whether to establish a Recovery Qualifier.
1710                 * We do this if there is a non-empty SEQ_CNT range and
1711                 * SEQ_ID is the same as the one we aborted.
1712                 */
1713                low = ntohs(ap->ba_low_seq_cnt);
1714                high = ntohs(ap->ba_high_seq_cnt);
1715                if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1716                    (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1717                     ap->ba_seq_id == ep->seq_id) && low != high) {
1718                        ep->esb_stat |= ESB_ST_REC_QUAL;
1719                        fc_exch_hold(ep);  /* hold for recovery qualifier */
1720                        has_rec = 1;
1721                }
1722                break;
1723        case FC_RCTL_BA_RJT:
1724                break;
1725        default:
1726                break;
1727        }
1728
1729        /* do we need to do some other checks here. Can we reuse more of
1730         * fc_exch_recv_seq_resp
1731         */
1732        sp = &ep->seq;
1733        /*
1734         * do we want to check END_SEQ as well as LAST_SEQ here?
1735         */
1736        if (ep->fh_type != FC_TYPE_FCP &&
1737            ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1738                rc = fc_exch_done_locked(ep);
1739        spin_unlock_bh(&ep->ex_lock);
1740
1741        fc_exch_hold(ep);
1742        if (!rc)
1743                fc_exch_delete(ep);
1744        if (!fc_invoke_resp(ep, sp, fp))
1745                fc_frame_free(fp);
1746        if (has_rec)
1747                fc_exch_timer_set(ep, ep->r_a_tov);
1748        fc_exch_release(ep);
1749}
1750
1751/**
1752 * fc_exch_recv_bls() - Handler for a BLS sequence
1753 * @mp: The EM that the exchange is on
1754 * @fp: The request frame
1755 *
1756 * The BLS frame is always a sequence initiated by the remote side.
1757 * We may be either the originator or recipient of the exchange.
1758 */
1759static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1760{
1761        struct fc_frame_header *fh;
1762        struct fc_exch *ep;
1763        u32 f_ctl;
1764
1765        fh = fc_frame_header_get(fp);
1766        f_ctl = ntoh24(fh->fh_f_ctl);
1767        fr_seq(fp) = NULL;
1768
1769        ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1770                          ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1771        if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1772                spin_lock_bh(&ep->ex_lock);
1773                ep->esb_stat |= ESB_ST_SEQ_INIT;
1774                spin_unlock_bh(&ep->ex_lock);
1775        }
1776        if (f_ctl & FC_FC_SEQ_CTX) {
1777                /*
1778                 * A response to a sequence we initiated.
1779                 * This should only be ACKs for class 2 or F.
1780                 */
1781                switch (fh->fh_r_ctl) {
1782                case FC_RCTL_ACK_1:
1783                case FC_RCTL_ACK_0:
1784                        break;
1785                default:
1786                        if (ep)
1787                                FC_EXCH_DBG(ep, "BLS rctl %x - %s received\n",
1788                                            fh->fh_r_ctl,
1789                                            fc_exch_rctl_name(fh->fh_r_ctl));
1790                        break;
1791                }
1792                fc_frame_free(fp);
1793        } else {
1794                switch (fh->fh_r_ctl) {
1795                case FC_RCTL_BA_RJT:
1796                case FC_RCTL_BA_ACC:
1797                        if (ep)
1798                                fc_exch_abts_resp(ep, fp);
1799                        else
1800                                fc_frame_free(fp);
1801                        break;
1802                case FC_RCTL_BA_ABTS:
1803                        if (ep)
1804                                fc_exch_recv_abts(ep, fp);
1805                        else
1806                                fc_frame_free(fp);
1807                        break;
1808                default:                        /* ignore junk */
1809                        fc_frame_free(fp);
1810                        break;
1811                }
1812        }
1813        if (ep)
1814                fc_exch_release(ep);    /* release hold taken by fc_exch_find */
1815}
1816
1817/**
1818 * fc_seq_ls_acc() - Accept sequence with LS_ACC
1819 * @rx_fp: The received frame, not freed here.
1820 *
1821 * If this fails due to allocation or transmit congestion, assume the
1822 * originator will repeat the sequence.
1823 */
1824static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1825{
1826        struct fc_lport *lport;
1827        struct fc_els_ls_acc *acc;
1828        struct fc_frame *fp;
1829        struct fc_seq *sp;
1830
1831        lport = fr_dev(rx_fp);
1832        sp = fr_seq(rx_fp);
1833        fp = fc_frame_alloc(lport, sizeof(*acc));
1834        if (!fp) {
1835                FC_EXCH_DBG(fc_seq_exch(sp),
1836                            "exch: drop LS_ACC, out of memory\n");
1837                return;
1838        }
1839        acc = fc_frame_payload_get(fp, sizeof(*acc));
1840        memset(acc, 0, sizeof(*acc));
1841        acc->la_cmd = ELS_LS_ACC;
1842        fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1843        lport->tt.frame_send(lport, fp);
1844}
1845
1846/**
1847 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1848 * @rx_fp: The received frame, not freed here.
1849 * @reason: The reason the sequence is being rejected
1850 * @explan: The explanation for the rejection
1851 *
1852 * If this fails due to allocation or transmit congestion, assume the
1853 * originator will repeat the sequence.
1854 */
1855static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1856                          enum fc_els_rjt_explan explan)
1857{
1858        struct fc_lport *lport;
1859        struct fc_els_ls_rjt *rjt;
1860        struct fc_frame *fp;
1861        struct fc_seq *sp;
1862
1863        lport = fr_dev(rx_fp);
1864        sp = fr_seq(rx_fp);
1865        fp = fc_frame_alloc(lport, sizeof(*rjt));
1866        if (!fp) {
1867                FC_EXCH_DBG(fc_seq_exch(sp),
1868                            "exch: drop LS_ACC, out of memory\n");
1869                return;
1870        }
1871        rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1872        memset(rjt, 0, sizeof(*rjt));
1873        rjt->er_cmd = ELS_LS_RJT;
1874        rjt->er_reason = reason;
1875        rjt->er_explan = explan;
1876        fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1877        lport->tt.frame_send(lport, fp);
1878}
1879
1880/**
1881 * fc_exch_reset() - Reset an exchange
1882 * @ep: The exchange to be reset
1883 *
1884 * Note: May sleep if invoked from outside a response handler.
1885 */
1886static void fc_exch_reset(struct fc_exch *ep)
1887{
1888        struct fc_seq *sp;
1889        int rc = 1;
1890
1891        spin_lock_bh(&ep->ex_lock);
1892        ep->state |= FC_EX_RST_CLEANUP;
1893        fc_exch_timer_cancel(ep);
1894        if (ep->esb_stat & ESB_ST_REC_QUAL)
1895                atomic_dec(&ep->ex_refcnt);     /* drop hold for rec_qual */
1896        ep->esb_stat &= ~ESB_ST_REC_QUAL;
1897        sp = &ep->seq;
1898        rc = fc_exch_done_locked(ep);
1899        spin_unlock_bh(&ep->ex_lock);
1900
1901        fc_exch_hold(ep);
1902
1903        if (!rc)
1904                fc_exch_delete(ep);
1905
1906        fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_CLOSED));
1907        fc_seq_set_resp(sp, NULL, ep->arg);
1908        fc_exch_release(ep);
1909}
1910
1911/**
1912 * fc_exch_pool_reset() - Reset a per cpu exchange pool
1913 * @lport: The local port that the exchange pool is on
1914 * @pool:  The exchange pool to be reset
1915 * @sid:   The source ID
1916 * @did:   The destination ID
1917 *
1918 * Resets a per cpu exches pool, releasing all of its sequences
1919 * and exchanges. If sid is non-zero then reset only exchanges
1920 * we sourced from the local port's FID. If did is non-zero then
1921 * only reset exchanges destined for the local port's FID.
1922 */
1923static void fc_exch_pool_reset(struct fc_lport *lport,
1924                               struct fc_exch_pool *pool,
1925                               u32 sid, u32 did)
1926{
1927        struct fc_exch *ep;
1928        struct fc_exch *next;
1929
1930        spin_lock_bh(&pool->lock);
1931restart:
1932        list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1933                if ((lport == ep->lp) &&
1934                    (sid == 0 || sid == ep->sid) &&
1935                    (did == 0 || did == ep->did)) {
1936                        fc_exch_hold(ep);
1937                        spin_unlock_bh(&pool->lock);
1938
1939                        fc_exch_reset(ep);
1940
1941                        fc_exch_release(ep);
1942                        spin_lock_bh(&pool->lock);
1943
1944                        /*
1945                         * must restart loop incase while lock
1946                         * was down multiple eps were released.
1947                         */
1948                        goto restart;
1949                }
1950        }
1951        pool->next_index = 0;
1952        pool->left = FC_XID_UNKNOWN;
1953        pool->right = FC_XID_UNKNOWN;
1954        spin_unlock_bh(&pool->lock);
1955}
1956
1957/**
1958 * fc_exch_mgr_reset() - Reset all EMs of a local port
1959 * @lport: The local port whose EMs are to be reset
1960 * @sid:   The source ID
1961 * @did:   The destination ID
1962 *
1963 * Reset all EMs associated with a given local port. Release all
1964 * sequences and exchanges. If sid is non-zero then reset only the
1965 * exchanges sent from the local port's FID. If did is non-zero then
1966 * reset only exchanges destined for the local port's FID.
1967 */
1968void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1969{
1970        struct fc_exch_mgr_anchor *ema;
1971        unsigned int cpu;
1972
1973        list_for_each_entry(ema, &lport->ema_list, ema_list) {
1974                for_each_possible_cpu(cpu)
1975                        fc_exch_pool_reset(lport,
1976                                           per_cpu_ptr(ema->mp->pool, cpu),
1977                                           sid, did);
1978        }
1979}
1980EXPORT_SYMBOL(fc_exch_mgr_reset);
1981
1982/**
1983 * fc_exch_lookup() - find an exchange
1984 * @lport: The local port
1985 * @xid: The exchange ID
1986 *
1987 * Returns exchange pointer with hold for caller, or NULL if not found.
1988 */
1989static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
1990{
1991        struct fc_exch_mgr_anchor *ema;
1992
1993        list_for_each_entry(ema, &lport->ema_list, ema_list)
1994                if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
1995                        return fc_exch_find(ema->mp, xid);
1996        return NULL;
1997}
1998
1999/**
2000 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
2001 * @rfp: The REC frame, not freed here.
2002 *
2003 * Note that the requesting port may be different than the S_ID in the request.
2004 */
2005static void fc_exch_els_rec(struct fc_frame *rfp)
2006{
2007        struct fc_lport *lport;
2008        struct fc_frame *fp;
2009        struct fc_exch *ep;
2010        struct fc_els_rec *rp;
2011        struct fc_els_rec_acc *acc;
2012        enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
2013        enum fc_els_rjt_explan explan;
2014        u32 sid;
2015        u16 xid, rxid, oxid;
2016
2017        lport = fr_dev(rfp);
2018        rp = fc_frame_payload_get(rfp, sizeof(*rp));
2019        explan = ELS_EXPL_INV_LEN;
2020        if (!rp)
2021                goto reject;
2022        sid = ntoh24(rp->rec_s_id);
2023        rxid = ntohs(rp->rec_rx_id);
2024        oxid = ntohs(rp->rec_ox_id);
2025
2026        explan = ELS_EXPL_OXID_RXID;
2027        if (sid == fc_host_port_id(lport->host))
2028                xid = oxid;
2029        else
2030                xid = rxid;
2031        if (xid == FC_XID_UNKNOWN) {
2032                FC_LPORT_DBG(lport,
2033                             "REC request from %x: invalid rxid %x oxid %x\n",
2034                             sid, rxid, oxid);
2035                goto reject;
2036        }
2037        ep = fc_exch_lookup(lport, xid);
2038        if (!ep) {
2039                FC_LPORT_DBG(lport,
2040                             "REC request from %x: rxid %x oxid %x not found\n",
2041                             sid, rxid, oxid);
2042                goto reject;
2043        }
2044        FC_EXCH_DBG(ep, "REC request from %x: rxid %x oxid %x\n",
2045                    sid, rxid, oxid);
2046        if (ep->oid != sid || oxid != ep->oxid)
2047                goto rel;
2048        if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
2049                goto rel;
2050        fp = fc_frame_alloc(lport, sizeof(*acc));
2051        if (!fp) {
2052                FC_EXCH_DBG(ep, "Drop REC request, out of memory\n");
2053                goto out;
2054        }
2055
2056        acc = fc_frame_payload_get(fp, sizeof(*acc));
2057        memset(acc, 0, sizeof(*acc));
2058        acc->reca_cmd = ELS_LS_ACC;
2059        acc->reca_ox_id = rp->rec_ox_id;
2060        memcpy(acc->reca_ofid, rp->rec_s_id, 3);
2061        acc->reca_rx_id = htons(ep->rxid);
2062        if (ep->sid == ep->oid)
2063                hton24(acc->reca_rfid, ep->did);
2064        else
2065                hton24(acc->reca_rfid, ep->sid);
2066        acc->reca_fc4value = htonl(ep->seq.rec_data);
2067        acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
2068                                                 ESB_ST_SEQ_INIT |
2069                                                 ESB_ST_COMPLETE));
2070        fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
2071        lport->tt.frame_send(lport, fp);
2072out:
2073        fc_exch_release(ep);
2074        return;
2075
2076rel:
2077        fc_exch_release(ep);
2078reject:
2079        fc_seq_ls_rjt(rfp, reason, explan);
2080}
2081
2082/**
2083 * fc_exch_rrq_resp() - Handler for RRQ responses
2084 * @sp:  The sequence that the RRQ is on
2085 * @fp:  The RRQ frame
2086 * @arg: The exchange that the RRQ is on
2087 *
2088 * TODO: fix error handler.
2089 */
2090static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
2091{
2092        struct fc_exch *aborted_ep = arg;
2093        unsigned int op;
2094
2095        if (IS_ERR(fp)) {
2096                int err = PTR_ERR(fp);
2097
2098                if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
2099                        goto cleanup;
2100                FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
2101                            "frame error %d\n", err);
2102                return;
2103        }
2104
2105        op = fc_frame_payload_op(fp);
2106        fc_frame_free(fp);
2107
2108        switch (op) {
2109        case ELS_LS_RJT:
2110                FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ\n");
2111                fallthrough;
2112        case ELS_LS_ACC:
2113                goto cleanup;
2114        default:
2115                FC_EXCH_DBG(aborted_ep, "unexpected response op %x for RRQ\n",
2116                            op);
2117                return;
2118        }
2119
2120cleanup:
2121        fc_exch_done(&aborted_ep->seq);
2122        /* drop hold for rec qual */
2123        fc_exch_release(aborted_ep);
2124}
2125
2126
2127/**
2128 * fc_exch_seq_send() - Send a frame using a new exchange and sequence
2129 * @lport:      The local port to send the frame on
2130 * @fp:         The frame to be sent
2131 * @resp:       The response handler for this request
2132 * @destructor: The destructor for the exchange
2133 * @arg:        The argument to be passed to the response handler
2134 * @timer_msec: The timeout period for the exchange
2135 *
2136 * The exchange response handler is set in this routine to resp()
2137 * function pointer. It can be called in two scenarios: if a timeout
2138 * occurs or if a response frame is received for the exchange. The
2139 * fc_frame pointer in response handler will also indicate timeout
2140 * as error using IS_ERR related macros.
2141 *
2142 * The exchange destructor handler is also set in this routine.
2143 * The destructor handler is invoked by EM layer when exchange
2144 * is about to free, this can be used by caller to free its
2145 * resources along with exchange free.
2146 *
2147 * The arg is passed back to resp and destructor handler.
2148 *
2149 * The timeout value (in msec) for an exchange is set if non zero
2150 * timer_msec argument is specified. The timer is canceled when
2151 * it fires or when the exchange is done. The exchange timeout handler
2152 * is registered by EM layer.
2153 *
2154 * The frame pointer with some of the header's fields must be
2155 * filled before calling this routine, those fields are:
2156 *
2157 * - routing control
2158 * - FC port did
2159 * - FC port sid
2160 * - FC header type
2161 * - frame control
2162 * - parameter or relative offset
2163 */
2164struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
2165                                struct fc_frame *fp,
2166                                void (*resp)(struct fc_seq *,
2167                                             struct fc_frame *fp,
2168                                             void *arg),
2169                                void (*destructor)(struct fc_seq *, void *),
2170                                void *arg, u32 timer_msec)
2171{
2172        struct fc_exch *ep;
2173        struct fc_seq *sp = NULL;
2174        struct fc_frame_header *fh;
2175        struct fc_fcp_pkt *fsp = NULL;
2176        int rc = 1;
2177
2178        ep = fc_exch_alloc(lport, fp);
2179        if (!ep) {
2180                fc_frame_free(fp);
2181                return NULL;
2182        }
2183        ep->esb_stat |= ESB_ST_SEQ_INIT;
2184        fh = fc_frame_header_get(fp);
2185        fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
2186        ep->resp = resp;
2187        ep->destructor = destructor;
2188        ep->arg = arg;
2189        ep->r_a_tov = lport->r_a_tov;
2190        ep->lp = lport;
2191        sp = &ep->seq;
2192
2193        ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
2194        ep->f_ctl = ntoh24(fh->fh_f_ctl);
2195        fc_exch_setup_hdr(ep, fp, ep->f_ctl);
2196        sp->cnt++;
2197
2198        if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD) {
2199                fsp = fr_fsp(fp);
2200                fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
2201        }
2202
2203        if (unlikely(lport->tt.frame_send(lport, fp)))
2204                goto err;
2205
2206        if (timer_msec)
2207                fc_exch_timer_set_locked(ep, timer_msec);
2208        ep->f_ctl &= ~FC_FC_FIRST_SEQ;  /* not first seq */
2209
2210        if (ep->f_ctl & FC_FC_SEQ_INIT)
2211                ep->esb_stat &= ~ESB_ST_SEQ_INIT;
2212        spin_unlock_bh(&ep->ex_lock);
2213        return sp;
2214err:
2215        if (fsp)
2216                fc_fcp_ddp_done(fsp);
2217        rc = fc_exch_done_locked(ep);
2218        spin_unlock_bh(&ep->ex_lock);
2219        if (!rc)
2220                fc_exch_delete(ep);
2221        return NULL;
2222}
2223EXPORT_SYMBOL(fc_exch_seq_send);
2224
2225/**
2226 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
2227 * @ep: The exchange to send the RRQ on
2228 *
2229 * This tells the remote port to stop blocking the use of
2230 * the exchange and the seq_cnt range.
2231 */
2232static void fc_exch_rrq(struct fc_exch *ep)
2233{
2234        struct fc_lport *lport;
2235        struct fc_els_rrq *rrq;
2236        struct fc_frame *fp;
2237        u32 did;
2238
2239        lport = ep->lp;
2240
2241        fp = fc_frame_alloc(lport, sizeof(*rrq));
2242        if (!fp)
2243                goto retry;
2244
2245        rrq = fc_frame_payload_get(fp, sizeof(*rrq));
2246        memset(rrq, 0, sizeof(*rrq));
2247        rrq->rrq_cmd = ELS_RRQ;
2248        hton24(rrq->rrq_s_id, ep->sid);
2249        rrq->rrq_ox_id = htons(ep->oxid);
2250        rrq->rrq_rx_id = htons(ep->rxid);
2251
2252        did = ep->did;
2253        if (ep->esb_stat & ESB_ST_RESP)
2254                did = ep->sid;
2255
2256        fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
2257                       lport->port_id, FC_TYPE_ELS,
2258                       FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
2259
2260        if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
2261                             lport->e_d_tov))
2262                return;
2263
2264retry:
2265        FC_EXCH_DBG(ep, "exch: RRQ send failed\n");
2266        spin_lock_bh(&ep->ex_lock);
2267        if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
2268                spin_unlock_bh(&ep->ex_lock);
2269                /* drop hold for rec qual */
2270                fc_exch_release(ep);
2271                return;
2272        }
2273        ep->esb_stat |= ESB_ST_REC_QUAL;
2274        fc_exch_timer_set_locked(ep, ep->r_a_tov);
2275        spin_unlock_bh(&ep->ex_lock);
2276}
2277
2278/**
2279 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
2280 * @fp: The RRQ frame, not freed here.
2281 */
2282static void fc_exch_els_rrq(struct fc_frame *fp)
2283{
2284        struct fc_lport *lport;
2285        struct fc_exch *ep = NULL;      /* request or subject exchange */
2286        struct fc_els_rrq *rp;
2287        u32 sid;
2288        u16 xid;
2289        enum fc_els_rjt_explan explan;
2290
2291        lport = fr_dev(fp);
2292        rp = fc_frame_payload_get(fp, sizeof(*rp));
2293        explan = ELS_EXPL_INV_LEN;
2294        if (!rp)
2295                goto reject;
2296
2297        /*
2298         * lookup subject exchange.
2299         */
2300        sid = ntoh24(rp->rrq_s_id);             /* subject source */
2301        xid = fc_host_port_id(lport->host) == sid ?
2302                        ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
2303        ep = fc_exch_lookup(lport, xid);
2304        explan = ELS_EXPL_OXID_RXID;
2305        if (!ep)
2306                goto reject;
2307        spin_lock_bh(&ep->ex_lock);
2308        FC_EXCH_DBG(ep, "RRQ request from %x: xid %x rxid %x oxid %x\n",
2309                    sid, xid, ntohs(rp->rrq_rx_id), ntohs(rp->rrq_ox_id));
2310        if (ep->oxid != ntohs(rp->rrq_ox_id))
2311                goto unlock_reject;
2312        if (ep->rxid != ntohs(rp->rrq_rx_id) &&
2313            ep->rxid != FC_XID_UNKNOWN)
2314                goto unlock_reject;
2315        explan = ELS_EXPL_SID;
2316        if (ep->sid != sid)
2317                goto unlock_reject;
2318
2319        /*
2320         * Clear Recovery Qualifier state, and cancel timer if complete.
2321         */
2322        if (ep->esb_stat & ESB_ST_REC_QUAL) {
2323                ep->esb_stat &= ~ESB_ST_REC_QUAL;
2324                atomic_dec(&ep->ex_refcnt);     /* drop hold for rec qual */
2325        }
2326        if (ep->esb_stat & ESB_ST_COMPLETE)
2327                fc_exch_timer_cancel(ep);
2328
2329        spin_unlock_bh(&ep->ex_lock);
2330
2331        /*
2332         * Send LS_ACC.
2333         */
2334        fc_seq_ls_acc(fp);
2335        goto out;
2336
2337unlock_reject:
2338        spin_unlock_bh(&ep->ex_lock);
2339reject:
2340        fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
2341out:
2342        if (ep)
2343                fc_exch_release(ep);    /* drop hold from fc_exch_find */
2344}
2345
2346/**
2347 * fc_exch_update_stats() - update exches stats to lport
2348 * @lport: The local port to update exchange manager stats
2349 */
2350void fc_exch_update_stats(struct fc_lport *lport)
2351{
2352        struct fc_host_statistics *st;
2353        struct fc_exch_mgr_anchor *ema;
2354        struct fc_exch_mgr *mp;
2355
2356        st = &lport->host_stats;
2357
2358        list_for_each_entry(ema, &lport->ema_list, ema_list) {
2359                mp = ema->mp;
2360                st->fc_no_free_exch += atomic_read(&mp->stats.no_free_exch);
2361                st->fc_no_free_exch_xid +=
2362                                atomic_read(&mp->stats.no_free_exch_xid);
2363                st->fc_xid_not_found += atomic_read(&mp->stats.xid_not_found);
2364                st->fc_xid_busy += atomic_read(&mp->stats.xid_busy);
2365                st->fc_seq_not_found += atomic_read(&mp->stats.seq_not_found);
2366                st->fc_non_bls_resp += atomic_read(&mp->stats.non_bls_resp);
2367        }
2368}
2369EXPORT_SYMBOL(fc_exch_update_stats);
2370
2371/**
2372 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2373 * @lport: The local port to add the exchange manager to
2374 * @mp:    The exchange manager to be added to the local port
2375 * @match: The match routine that indicates when this EM should be used
2376 */
2377struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2378                                           struct fc_exch_mgr *mp,
2379                                           bool (*match)(struct fc_frame *))
2380{
2381        struct fc_exch_mgr_anchor *ema;
2382
2383        ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2384        if (!ema)
2385                return ema;
2386
2387        ema->mp = mp;
2388        ema->match = match;
2389        /* add EM anchor to EM anchors list */
2390        list_add_tail(&ema->ema_list, &lport->ema_list);
2391        kref_get(&mp->kref);
2392        return ema;
2393}
2394EXPORT_SYMBOL(fc_exch_mgr_add);
2395
2396/**
2397 * fc_exch_mgr_destroy() - Destroy an exchange manager
2398 * @kref: The reference to the EM to be destroyed
2399 */
2400static void fc_exch_mgr_destroy(struct kref *kref)
2401{
2402        struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2403
2404        mempool_destroy(mp->ep_pool);
2405        free_percpu(mp->pool);
2406        kfree(mp);
2407}
2408
2409/**
2410 * fc_exch_mgr_del() - Delete an EM from a local port's list
2411 * @ema: The exchange manager anchor identifying the EM to be deleted
2412 */
2413void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2414{
2415        /* remove EM anchor from EM anchors list */
2416        list_del(&ema->ema_list);
2417        kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2418        kfree(ema);
2419}
2420EXPORT_SYMBOL(fc_exch_mgr_del);
2421
2422/**
2423 * fc_exch_mgr_list_clone() - Share all exchange manager objects
2424 * @src: Source lport to clone exchange managers from
2425 * @dst: New lport that takes references to all the exchange managers
2426 */
2427int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2428{
2429        struct fc_exch_mgr_anchor *ema, *tmp;
2430
2431        list_for_each_entry(ema, &src->ema_list, ema_list) {
2432                if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2433                        goto err;
2434        }
2435        return 0;
2436err:
2437        list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2438                fc_exch_mgr_del(ema);
2439        return -ENOMEM;
2440}
2441EXPORT_SYMBOL(fc_exch_mgr_list_clone);
2442
2443/**
2444 * fc_exch_mgr_alloc() - Allocate an exchange manager
2445 * @lport:   The local port that the new EM will be associated with
2446 * @class:   The default FC class for new exchanges
2447 * @min_xid: The minimum XID for exchanges from the new EM
2448 * @max_xid: The maximum XID for exchanges from the new EM
2449 * @match:   The match routine for the new EM
2450 */
2451struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2452                                      enum fc_class class,
2453                                      u16 min_xid, u16 max_xid,
2454                                      bool (*match)(struct fc_frame *))
2455{
2456        struct fc_exch_mgr *mp;
2457        u16 pool_exch_range;
2458        size_t pool_size;
2459        unsigned int cpu;
2460        struct fc_exch_pool *pool;
2461
2462        if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2463            (min_xid & fc_cpu_mask) != 0) {
2464                FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2465                             min_xid, max_xid);
2466                return NULL;
2467        }
2468
2469        /*
2470         * allocate memory for EM
2471         */
2472        mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2473        if (!mp)
2474                return NULL;
2475
2476        mp->class = class;
2477        mp->lport = lport;
2478        /* adjust em exch xid range for offload */
2479        mp->min_xid = min_xid;
2480
2481       /* reduce range so per cpu pool fits into PCPU_MIN_UNIT_SIZE pool */
2482        pool_exch_range = (PCPU_MIN_UNIT_SIZE - sizeof(*pool)) /
2483                sizeof(struct fc_exch *);
2484        if ((max_xid - min_xid + 1) / (fc_cpu_mask + 1) > pool_exch_range) {
2485                mp->max_xid = pool_exch_range * (fc_cpu_mask + 1) +
2486                        min_xid - 1;
2487        } else {
2488                mp->max_xid = max_xid;
2489                pool_exch_range = (mp->max_xid - mp->min_xid + 1) /
2490                        (fc_cpu_mask + 1);
2491        }
2492
2493        mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2494        if (!mp->ep_pool)
2495                goto free_mp;
2496
2497        /*
2498         * Setup per cpu exch pool with entire exchange id range equally
2499         * divided across all cpus. The exch pointers array memory is
2500         * allocated for exch range per pool.
2501         */
2502        mp->pool_max_index = pool_exch_range - 1;
2503
2504        /*
2505         * Allocate and initialize per cpu exch pool
2506         */
2507        pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2508        mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2509        if (!mp->pool)
2510                goto free_mempool;
2511        for_each_possible_cpu(cpu) {
2512                pool = per_cpu_ptr(mp->pool, cpu);
2513                pool->next_index = 0;
2514                pool->left = FC_XID_UNKNOWN;
2515                pool->right = FC_XID_UNKNOWN;
2516                spin_lock_init(&pool->lock);
2517                INIT_LIST_HEAD(&pool->ex_list);
2518        }
2519
2520        kref_init(&mp->kref);
2521        if (!fc_exch_mgr_add(lport, mp, match)) {
2522                free_percpu(mp->pool);
2523                goto free_mempool;
2524        }
2525
2526        /*
2527         * Above kref_init() sets mp->kref to 1 and then
2528         * call to fc_exch_mgr_add incremented mp->kref again,
2529         * so adjust that extra increment.
2530         */
2531        kref_put(&mp->kref, fc_exch_mgr_destroy);
2532        return mp;
2533
2534free_mempool:
2535        mempool_destroy(mp->ep_pool);
2536free_mp:
2537        kfree(mp);
2538        return NULL;
2539}
2540EXPORT_SYMBOL(fc_exch_mgr_alloc);
2541
2542/**
2543 * fc_exch_mgr_free() - Free all exchange managers on a local port
2544 * @lport: The local port whose EMs are to be freed
2545 */
2546void fc_exch_mgr_free(struct fc_lport *lport)
2547{
2548        struct fc_exch_mgr_anchor *ema, *next;
2549
2550        flush_workqueue(fc_exch_workqueue);
2551        list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2552                fc_exch_mgr_del(ema);
2553}
2554EXPORT_SYMBOL(fc_exch_mgr_free);
2555
2556/**
2557 * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending
2558 * upon 'xid'.
2559 * @f_ctl: f_ctl
2560 * @lport: The local port the frame was received on
2561 * @fh: The received frame header
2562 */
2563static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl,
2564                                              struct fc_lport *lport,
2565                                              struct fc_frame_header *fh)
2566{
2567        struct fc_exch_mgr_anchor *ema;
2568        u16 xid;
2569
2570        if (f_ctl & FC_FC_EX_CTX)
2571                xid = ntohs(fh->fh_ox_id);
2572        else {
2573                xid = ntohs(fh->fh_rx_id);
2574                if (xid == FC_XID_UNKNOWN)
2575                        return list_entry(lport->ema_list.prev,
2576                                          typeof(*ema), ema_list);
2577        }
2578
2579        list_for_each_entry(ema, &lport->ema_list, ema_list) {
2580                if ((xid >= ema->mp->min_xid) &&
2581                    (xid <= ema->mp->max_xid))
2582                        return ema;
2583        }
2584        return NULL;
2585}
2586/**
2587 * fc_exch_recv() - Handler for received frames
2588 * @lport: The local port the frame was received on
2589 * @fp: The received frame
2590 */
2591void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2592{
2593        struct fc_frame_header *fh = fc_frame_header_get(fp);
2594        struct fc_exch_mgr_anchor *ema;
2595        u32 f_ctl;
2596
2597        /* lport lock ? */
2598        if (!lport || lport->state == LPORT_ST_DISABLED) {
2599                FC_LIBFC_DBG("Receiving frames for an lport that "
2600                             "has not been initialized correctly\n");
2601                fc_frame_free(fp);
2602                return;
2603        }
2604
2605        f_ctl = ntoh24(fh->fh_f_ctl);
2606        ema = fc_find_ema(f_ctl, lport, fh);
2607        if (!ema) {
2608                FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor,"
2609                                    "fc_ctl <0x%x>, xid <0x%x>\n",
2610                                     f_ctl,
2611                                     (f_ctl & FC_FC_EX_CTX) ?
2612                                     ntohs(fh->fh_ox_id) :
2613                                     ntohs(fh->fh_rx_id));
2614                fc_frame_free(fp);
2615                return;
2616        }
2617
2618        /*
2619         * If frame is marked invalid, just drop it.
2620         */
2621        switch (fr_eof(fp)) {
2622        case FC_EOF_T:
2623                if (f_ctl & FC_FC_END_SEQ)
2624                        skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2625                fallthrough;
2626        case FC_EOF_N:
2627                if (fh->fh_type == FC_TYPE_BLS)
2628                        fc_exch_recv_bls(ema->mp, fp);
2629                else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2630                         FC_FC_EX_CTX)
2631                        fc_exch_recv_seq_resp(ema->mp, fp);
2632                else if (f_ctl & FC_FC_SEQ_CTX)
2633                        fc_exch_recv_resp(ema->mp, fp);
2634                else    /* no EX_CTX and no SEQ_CTX */
2635                        fc_exch_recv_req(lport, ema->mp, fp);
2636                break;
2637        default:
2638                FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2639                             fr_eof(fp));
2640                fc_frame_free(fp);
2641        }
2642}
2643EXPORT_SYMBOL(fc_exch_recv);
2644
2645/**
2646 * fc_exch_init() - Initialize the exchange layer for a local port
2647 * @lport: The local port to initialize the exchange layer for
2648 */
2649int fc_exch_init(struct fc_lport *lport)
2650{
2651        if (!lport->tt.exch_mgr_reset)
2652                lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2653
2654        return 0;
2655}
2656EXPORT_SYMBOL(fc_exch_init);
2657
2658/**
2659 * fc_setup_exch_mgr() - Setup an exchange manager
2660 */
2661int fc_setup_exch_mgr(void)
2662{
2663        fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2664                                         0, SLAB_HWCACHE_ALIGN, NULL);
2665        if (!fc_em_cachep)
2666                return -ENOMEM;
2667
2668        /*
2669         * Initialize fc_cpu_mask and fc_cpu_order. The
2670         * fc_cpu_mask is set for nr_cpu_ids rounded up
2671         * to order of 2's * power and order is stored
2672         * in fc_cpu_order as this is later required in
2673         * mapping between an exch id and exch array index
2674         * in per cpu exch pool.
2675         *
2676         * This round up is required to align fc_cpu_mask
2677         * to exchange id's lower bits such that all incoming
2678         * frames of an exchange gets delivered to the same
2679         * cpu on which exchange originated by simple bitwise
2680         * AND operation between fc_cpu_mask and exchange id.
2681         */
2682        fc_cpu_order = ilog2(roundup_pow_of_two(nr_cpu_ids));
2683        fc_cpu_mask = (1 << fc_cpu_order) - 1;
2684
2685        fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2686        if (!fc_exch_workqueue)
2687                goto err;
2688        return 0;
2689err:
2690        kmem_cache_destroy(fc_em_cachep);
2691        return -ENOMEM;
2692}
2693
2694/**
2695 * fc_destroy_exch_mgr() - Destroy an exchange manager
2696 */
2697void fc_destroy_exch_mgr(void)
2698{
2699        destroy_workqueue(fc_exch_workqueue);
2700        kmem_cache_destroy(fc_em_cachep);
2701}
2702