linux/drivers/spi/spi-dw-dma.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Special handling for DW DMA core
   4 *
   5 * Copyright (c) 2009, 2014 Intel Corporation.
   6 */
   7
   8#include <linux/completion.h>
   9#include <linux/dma-mapping.h>
  10#include <linux/dmaengine.h>
  11#include <linux/irqreturn.h>
  12#include <linux/jiffies.h>
  13#include <linux/pci.h>
  14#include <linux/platform_data/dma-dw.h>
  15#include <linux/spi/spi.h>
  16#include <linux/types.h>
  17
  18#include "spi-dw.h"
  19
  20#define WAIT_RETRIES    5
  21#define RX_BUSY         0
  22#define RX_BURST_LEVEL  16
  23#define TX_BUSY         1
  24#define TX_BURST_LEVEL  16
  25
  26static bool dw_spi_dma_chan_filter(struct dma_chan *chan, void *param)
  27{
  28        struct dw_dma_slave *s = param;
  29
  30        if (s->dma_dev != chan->device->dev)
  31                return false;
  32
  33        chan->private = s;
  34        return true;
  35}
  36
  37static void dw_spi_dma_maxburst_init(struct dw_spi *dws)
  38{
  39        struct dma_slave_caps caps;
  40        u32 max_burst, def_burst;
  41        int ret;
  42
  43        def_burst = dws->fifo_len / 2;
  44
  45        ret = dma_get_slave_caps(dws->rxchan, &caps);
  46        if (!ret && caps.max_burst)
  47                max_burst = caps.max_burst;
  48        else
  49                max_burst = RX_BURST_LEVEL;
  50
  51        dws->rxburst = min(max_burst, def_burst);
  52
  53        ret = dma_get_slave_caps(dws->txchan, &caps);
  54        if (!ret && caps.max_burst)
  55                max_burst = caps.max_burst;
  56        else
  57                max_burst = TX_BURST_LEVEL;
  58
  59        dws->txburst = min(max_burst, def_burst);
  60}
  61
  62static int dw_spi_dma_init_mfld(struct device *dev, struct dw_spi *dws)
  63{
  64        struct dw_dma_slave dma_tx = { .dst_id = 1 }, *tx = &dma_tx;
  65        struct dw_dma_slave dma_rx = { .src_id = 0 }, *rx = &dma_rx;
  66        struct pci_dev *dma_dev;
  67        dma_cap_mask_t mask;
  68
  69        /*
  70         * Get pci device for DMA controller, currently it could only
  71         * be the DMA controller of Medfield
  72         */
  73        dma_dev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL);
  74        if (!dma_dev)
  75                return -ENODEV;
  76
  77        dma_cap_zero(mask);
  78        dma_cap_set(DMA_SLAVE, mask);
  79
  80        /* 1. Init rx channel */
  81        rx->dma_dev = &dma_dev->dev;
  82        dws->rxchan = dma_request_channel(mask, dw_spi_dma_chan_filter, rx);
  83        if (!dws->rxchan)
  84                goto err_exit;
  85
  86        /* 2. Init tx channel */
  87        tx->dma_dev = &dma_dev->dev;
  88        dws->txchan = dma_request_channel(mask, dw_spi_dma_chan_filter, tx);
  89        if (!dws->txchan)
  90                goto free_rxchan;
  91
  92        dws->master->dma_rx = dws->rxchan;
  93        dws->master->dma_tx = dws->txchan;
  94
  95        init_completion(&dws->dma_completion);
  96
  97        dw_spi_dma_maxburst_init(dws);
  98
  99        return 0;
 100
 101free_rxchan:
 102        dma_release_channel(dws->rxchan);
 103        dws->rxchan = NULL;
 104err_exit:
 105        return -EBUSY;
 106}
 107
 108static int dw_spi_dma_init_generic(struct device *dev, struct dw_spi *dws)
 109{
 110        dws->rxchan = dma_request_slave_channel(dev, "rx");
 111        if (!dws->rxchan)
 112                return -ENODEV;
 113
 114        dws->txchan = dma_request_slave_channel(dev, "tx");
 115        if (!dws->txchan) {
 116                dma_release_channel(dws->rxchan);
 117                dws->rxchan = NULL;
 118                return -ENODEV;
 119        }
 120
 121        dws->master->dma_rx = dws->rxchan;
 122        dws->master->dma_tx = dws->txchan;
 123
 124        init_completion(&dws->dma_completion);
 125
 126        dw_spi_dma_maxburst_init(dws);
 127
 128        return 0;
 129}
 130
 131static void dw_spi_dma_exit(struct dw_spi *dws)
 132{
 133        if (dws->txchan) {
 134                dmaengine_terminate_sync(dws->txchan);
 135                dma_release_channel(dws->txchan);
 136        }
 137
 138        if (dws->rxchan) {
 139                dmaengine_terminate_sync(dws->rxchan);
 140                dma_release_channel(dws->rxchan);
 141        }
 142
 143        dw_writel(dws, DW_SPI_DMACR, 0);
 144}
 145
 146static irqreturn_t dw_spi_dma_transfer_handler(struct dw_spi *dws)
 147{
 148        u16 irq_status = dw_readl(dws, DW_SPI_ISR);
 149
 150        if (!irq_status)
 151                return IRQ_NONE;
 152
 153        dw_readl(dws, DW_SPI_ICR);
 154        spi_reset_chip(dws);
 155
 156        dev_err(&dws->master->dev, "%s: FIFO overrun/underrun\n", __func__);
 157        dws->master->cur_msg->status = -EIO;
 158        complete(&dws->dma_completion);
 159        return IRQ_HANDLED;
 160}
 161
 162static bool dw_spi_can_dma(struct spi_controller *master,
 163                           struct spi_device *spi, struct spi_transfer *xfer)
 164{
 165        struct dw_spi *dws = spi_controller_get_devdata(master);
 166
 167        return xfer->len > dws->fifo_len;
 168}
 169
 170static enum dma_slave_buswidth dw_spi_dma_convert_width(u8 n_bytes)
 171{
 172        if (n_bytes == 1)
 173                return DMA_SLAVE_BUSWIDTH_1_BYTE;
 174        else if (n_bytes == 2)
 175                return DMA_SLAVE_BUSWIDTH_2_BYTES;
 176
 177        return DMA_SLAVE_BUSWIDTH_UNDEFINED;
 178}
 179
 180static int dw_spi_dma_wait(struct dw_spi *dws, struct spi_transfer *xfer)
 181{
 182        unsigned long long ms;
 183
 184        ms = xfer->len * MSEC_PER_SEC * BITS_PER_BYTE;
 185        do_div(ms, xfer->effective_speed_hz);
 186        ms += ms + 200;
 187
 188        if (ms > UINT_MAX)
 189                ms = UINT_MAX;
 190
 191        ms = wait_for_completion_timeout(&dws->dma_completion,
 192                                         msecs_to_jiffies(ms));
 193
 194        if (ms == 0) {
 195                dev_err(&dws->master->cur_msg->spi->dev,
 196                        "DMA transaction timed out\n");
 197                return -ETIMEDOUT;
 198        }
 199
 200        return 0;
 201}
 202
 203static inline bool dw_spi_dma_tx_busy(struct dw_spi *dws)
 204{
 205        return !(dw_readl(dws, DW_SPI_SR) & SR_TF_EMPT);
 206}
 207
 208static int dw_spi_dma_wait_tx_done(struct dw_spi *dws,
 209                                   struct spi_transfer *xfer)
 210{
 211        int retry = WAIT_RETRIES;
 212        struct spi_delay delay;
 213        u32 nents;
 214
 215        nents = dw_readl(dws, DW_SPI_TXFLR);
 216        delay.unit = SPI_DELAY_UNIT_SCK;
 217        delay.value = nents * dws->n_bytes * BITS_PER_BYTE;
 218
 219        while (dw_spi_dma_tx_busy(dws) && retry--)
 220                spi_delay_exec(&delay, xfer);
 221
 222        if (retry < 0) {
 223                dev_err(&dws->master->dev, "Tx hanged up\n");
 224                return -EIO;
 225        }
 226
 227        return 0;
 228}
 229
 230/*
 231 * dws->dma_chan_busy is set before the dma transfer starts, callback for tx
 232 * channel will clear a corresponding bit.
 233 */
 234static void dw_spi_dma_tx_done(void *arg)
 235{
 236        struct dw_spi *dws = arg;
 237
 238        clear_bit(TX_BUSY, &dws->dma_chan_busy);
 239        if (test_bit(RX_BUSY, &dws->dma_chan_busy))
 240                return;
 241
 242        dw_writel(dws, DW_SPI_DMACR, 0);
 243        complete(&dws->dma_completion);
 244}
 245
 246static struct dma_async_tx_descriptor *
 247dw_spi_dma_prepare_tx(struct dw_spi *dws, struct spi_transfer *xfer)
 248{
 249        struct dma_slave_config txconf;
 250        struct dma_async_tx_descriptor *txdesc;
 251
 252        if (!xfer->tx_buf)
 253                return NULL;
 254
 255        memset(&txconf, 0, sizeof(txconf));
 256        txconf.direction = DMA_MEM_TO_DEV;
 257        txconf.dst_addr = dws->dma_addr;
 258        txconf.dst_maxburst = dws->txburst;
 259        txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 260        txconf.dst_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
 261        txconf.device_fc = false;
 262
 263        dmaengine_slave_config(dws->txchan, &txconf);
 264
 265        txdesc = dmaengine_prep_slave_sg(dws->txchan,
 266                                xfer->tx_sg.sgl,
 267                                xfer->tx_sg.nents,
 268                                DMA_MEM_TO_DEV,
 269                                DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 270        if (!txdesc)
 271                return NULL;
 272
 273        txdesc->callback = dw_spi_dma_tx_done;
 274        txdesc->callback_param = dws;
 275
 276        return txdesc;
 277}
 278
 279static inline bool dw_spi_dma_rx_busy(struct dw_spi *dws)
 280{
 281        return !!(dw_readl(dws, DW_SPI_SR) & SR_RF_NOT_EMPT);
 282}
 283
 284static int dw_spi_dma_wait_rx_done(struct dw_spi *dws)
 285{
 286        int retry = WAIT_RETRIES;
 287        struct spi_delay delay;
 288        unsigned long ns, us;
 289        u32 nents;
 290
 291        /*
 292         * It's unlikely that DMA engine is still doing the data fetching, but
 293         * if it's let's give it some reasonable time. The timeout calculation
 294         * is based on the synchronous APB/SSI reference clock rate, on a
 295         * number of data entries left in the Rx FIFO, times a number of clock
 296         * periods normally needed for a single APB read/write transaction
 297         * without PREADY signal utilized (which is true for the DW APB SSI
 298         * controller).
 299         */
 300        nents = dw_readl(dws, DW_SPI_RXFLR);
 301        ns = 4U * NSEC_PER_SEC / dws->max_freq * nents;
 302        if (ns <= NSEC_PER_USEC) {
 303                delay.unit = SPI_DELAY_UNIT_NSECS;
 304                delay.value = ns;
 305        } else {
 306                us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
 307                delay.unit = SPI_DELAY_UNIT_USECS;
 308                delay.value = clamp_val(us, 0, USHRT_MAX);
 309        }
 310
 311        while (dw_spi_dma_rx_busy(dws) && retry--)
 312                spi_delay_exec(&delay, NULL);
 313
 314        if (retry < 0) {
 315                dev_err(&dws->master->dev, "Rx hanged up\n");
 316                return -EIO;
 317        }
 318
 319        return 0;
 320}
 321
 322/*
 323 * dws->dma_chan_busy is set before the dma transfer starts, callback for rx
 324 * channel will clear a corresponding bit.
 325 */
 326static void dw_spi_dma_rx_done(void *arg)
 327{
 328        struct dw_spi *dws = arg;
 329
 330        clear_bit(RX_BUSY, &dws->dma_chan_busy);
 331        if (test_bit(TX_BUSY, &dws->dma_chan_busy))
 332                return;
 333
 334        dw_writel(dws, DW_SPI_DMACR, 0);
 335        complete(&dws->dma_completion);
 336}
 337
 338static struct dma_async_tx_descriptor *dw_spi_dma_prepare_rx(struct dw_spi *dws,
 339                struct spi_transfer *xfer)
 340{
 341        struct dma_slave_config rxconf;
 342        struct dma_async_tx_descriptor *rxdesc;
 343
 344        if (!xfer->rx_buf)
 345                return NULL;
 346
 347        memset(&rxconf, 0, sizeof(rxconf));
 348        rxconf.direction = DMA_DEV_TO_MEM;
 349        rxconf.src_addr = dws->dma_addr;
 350        rxconf.src_maxburst = dws->rxburst;
 351        rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 352        rxconf.src_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
 353        rxconf.device_fc = false;
 354
 355        dmaengine_slave_config(dws->rxchan, &rxconf);
 356
 357        rxdesc = dmaengine_prep_slave_sg(dws->rxchan,
 358                                xfer->rx_sg.sgl,
 359                                xfer->rx_sg.nents,
 360                                DMA_DEV_TO_MEM,
 361                                DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 362        if (!rxdesc)
 363                return NULL;
 364
 365        rxdesc->callback = dw_spi_dma_rx_done;
 366        rxdesc->callback_param = dws;
 367
 368        return rxdesc;
 369}
 370
 371static int dw_spi_dma_setup(struct dw_spi *dws, struct spi_transfer *xfer)
 372{
 373        u16 imr = 0, dma_ctrl = 0;
 374
 375        /*
 376         * Having a Rx DMA channel serviced with higher priority than a Tx DMA
 377         * channel might not be enough to provide a well balanced DMA-based
 378         * SPI transfer interface. There might still be moments when the Tx DMA
 379         * channel is occasionally handled faster than the Rx DMA channel.
 380         * That in its turn will eventually cause the SPI Rx FIFO overflow if
 381         * SPI bus speed is high enough to fill the SPI Rx FIFO in before it's
 382         * cleared by the Rx DMA channel. In order to fix the problem the Tx
 383         * DMA activity is intentionally slowed down by limiting the SPI Tx
 384         * FIFO depth with a value twice bigger than the Tx burst length
 385         * calculated earlier by the dw_spi_dma_maxburst_init() method.
 386         */
 387        dw_writel(dws, DW_SPI_DMARDLR, dws->rxburst - 1);
 388        dw_writel(dws, DW_SPI_DMATDLR, dws->txburst);
 389
 390        if (xfer->tx_buf)
 391                dma_ctrl |= SPI_DMA_TDMAE;
 392        if (xfer->rx_buf)
 393                dma_ctrl |= SPI_DMA_RDMAE;
 394        dw_writel(dws, DW_SPI_DMACR, dma_ctrl);
 395
 396        /* Set the interrupt mask */
 397        if (xfer->tx_buf)
 398                imr |= SPI_INT_TXOI;
 399        if (xfer->rx_buf)
 400                imr |= SPI_INT_RXUI | SPI_INT_RXOI;
 401        spi_umask_intr(dws, imr);
 402
 403        reinit_completion(&dws->dma_completion);
 404
 405        dws->transfer_handler = dw_spi_dma_transfer_handler;
 406
 407        return 0;
 408}
 409
 410static int dw_spi_dma_transfer(struct dw_spi *dws, struct spi_transfer *xfer)
 411{
 412        struct dma_async_tx_descriptor *txdesc, *rxdesc;
 413        int ret;
 414
 415        /* Prepare the TX dma transfer */
 416        txdesc = dw_spi_dma_prepare_tx(dws, xfer);
 417
 418        /* Prepare the RX dma transfer */
 419        rxdesc = dw_spi_dma_prepare_rx(dws, xfer);
 420
 421        /* rx must be started before tx due to spi instinct */
 422        if (rxdesc) {
 423                set_bit(RX_BUSY, &dws->dma_chan_busy);
 424                dmaengine_submit(rxdesc);
 425                dma_async_issue_pending(dws->rxchan);
 426        }
 427
 428        if (txdesc) {
 429                set_bit(TX_BUSY, &dws->dma_chan_busy);
 430                dmaengine_submit(txdesc);
 431                dma_async_issue_pending(dws->txchan);
 432        }
 433
 434        ret = dw_spi_dma_wait(dws, xfer);
 435        if (ret)
 436                return ret;
 437
 438        if (txdesc && dws->master->cur_msg->status == -EINPROGRESS) {
 439                ret = dw_spi_dma_wait_tx_done(dws, xfer);
 440                if (ret)
 441                        return ret;
 442        }
 443
 444        if (rxdesc && dws->master->cur_msg->status == -EINPROGRESS)
 445                ret = dw_spi_dma_wait_rx_done(dws);
 446
 447        return ret;
 448}
 449
 450static void dw_spi_dma_stop(struct dw_spi *dws)
 451{
 452        if (test_bit(TX_BUSY, &dws->dma_chan_busy)) {
 453                dmaengine_terminate_sync(dws->txchan);
 454                clear_bit(TX_BUSY, &dws->dma_chan_busy);
 455        }
 456        if (test_bit(RX_BUSY, &dws->dma_chan_busy)) {
 457                dmaengine_terminate_sync(dws->rxchan);
 458                clear_bit(RX_BUSY, &dws->dma_chan_busy);
 459        }
 460
 461        dw_writel(dws, DW_SPI_DMACR, 0);
 462}
 463
 464static const struct dw_spi_dma_ops dw_spi_dma_mfld_ops = {
 465        .dma_init       = dw_spi_dma_init_mfld,
 466        .dma_exit       = dw_spi_dma_exit,
 467        .dma_setup      = dw_spi_dma_setup,
 468        .can_dma        = dw_spi_can_dma,
 469        .dma_transfer   = dw_spi_dma_transfer,
 470        .dma_stop       = dw_spi_dma_stop,
 471};
 472
 473void dw_spi_dma_setup_mfld(struct dw_spi *dws)
 474{
 475        dws->dma_ops = &dw_spi_dma_mfld_ops;
 476}
 477EXPORT_SYMBOL_GPL(dw_spi_dma_setup_mfld);
 478
 479static const struct dw_spi_dma_ops dw_spi_dma_generic_ops = {
 480        .dma_init       = dw_spi_dma_init_generic,
 481        .dma_exit       = dw_spi_dma_exit,
 482        .dma_setup      = dw_spi_dma_setup,
 483        .can_dma        = dw_spi_can_dma,
 484        .dma_transfer   = dw_spi_dma_transfer,
 485        .dma_stop       = dw_spi_dma_stop,
 486};
 487
 488void dw_spi_dma_setup_generic(struct dw_spi *dws)
 489{
 490        dws->dma_ops = &dw_spi_dma_generic_ops;
 491}
 492EXPORT_SYMBOL_GPL(dw_spi_dma_setup_generic);
 493