linux/drivers/staging/comedi/drivers/s626.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * comedi/drivers/s626.c
   4 * Sensoray s626 Comedi driver
   5 *
   6 * COMEDI - Linux Control and Measurement Device Interface
   7 * Copyright (C) 2000 David A. Schleef <ds@schleef.org>
   8 *
   9 * Based on Sensoray Model 626 Linux driver Version 0.2
  10 * Copyright (C) 2002-2004 Sensoray Co., Inc.
  11 */
  12
  13/*
  14 * Driver: s626
  15 * Description: Sensoray 626 driver
  16 * Devices: [Sensoray] 626 (s626)
  17 * Authors: Gianluca Palli <gpalli@deis.unibo.it>,
  18 * Updated: Fri, 15 Feb 2008 10:28:42 +0000
  19 * Status: experimental
  20
  21 * Configuration options: not applicable, uses PCI auto config
  22
  23 * INSN_CONFIG instructions:
  24 *   analog input:
  25 *    none
  26 *
  27 *   analog output:
  28 *    none
  29 *
  30 *   digital channel:
  31 *    s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels
  32 *    supported configuration options:
  33 *    INSN_CONFIG_DIO_QUERY
  34 *    COMEDI_INPUT
  35 *    COMEDI_OUTPUT
  36 *
  37 *   encoder:
  38 *    Every channel must be configured before reading.
  39 *
  40 *   Example code
  41 *
  42 *    insn.insn=INSN_CONFIG;   //configuration instruction
  43 *    insn.n=1;                //number of operation (must be 1)
  44 *    insn.data=&initialvalue; //initial value loaded into encoder
  45 *                             //during configuration
  46 *    insn.subdev=5;           //encoder subdevice
  47 *    insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel
  48 *                                                         //to configure
  49 *
  50 *    comedi_do_insn(cf,&insn); //executing configuration
  51 */
  52
  53#include <linux/module.h>
  54#include <linux/delay.h>
  55#include <linux/interrupt.h>
  56#include <linux/kernel.h>
  57#include <linux/types.h>
  58
  59#include "../comedi_pci.h"
  60
  61#include "s626.h"
  62
  63struct s626_buffer_dma {
  64        dma_addr_t physical_base;
  65        void *logical_base;
  66};
  67
  68/**
  69 * struct s626_private - Working data for s626 driver.
  70 * @ai_cmd_running: non-zero if ai_cmd is running.
  71 * @ai_sample_timer: time between samples in units of the timer.
  72 * @ai_convert_count: conversion counter.
  73 * @ai_convert_timer: time between conversion in units of the timer.
  74 * @counter_int_enabs: counter interrupt enable mask for MISC2 register.
  75 * @adc_items: number of items in ADC poll list.
  76 * @rps_buf: DMA buffer used to hold ADC (RPS1) program.
  77 * @ana_buf:  DMA buffer used to receive ADC data and hold DAC data.
  78 * @dac_wbuf: pointer to logical adrs of DMA buffer used to hold DAC data.
  79 * @dacpol: image of DAC polarity register.
  80 * @trim_setpoint: images of TrimDAC setpoints.
  81 * @i2c_adrs: I2C device address for onboard EEPROM (board rev dependent)
  82 */
  83struct s626_private {
  84        u8 ai_cmd_running;
  85        unsigned int ai_sample_timer;
  86        int ai_convert_count;
  87        unsigned int ai_convert_timer;
  88        u16 counter_int_enabs;
  89        u8 adc_items;
  90        struct s626_buffer_dma rps_buf;
  91        struct s626_buffer_dma ana_buf;
  92        u32 *dac_wbuf;
  93        u16 dacpol;
  94        u8 trim_setpoint[12];
  95        u32 i2c_adrs;
  96};
  97
  98/* Counter overflow/index event flag masks for RDMISC2. */
  99#define S626_INDXMASK(C) (1 << (((C) > 2) ? ((C) * 2 - 1) : ((C) * 2 +  4)))
 100#define S626_OVERMASK(C) (1 << (((C) > 2) ? ((C) * 2 + 5) : ((C) * 2 + 10)))
 101
 102/*
 103 * Enable/disable a function or test status bit(s) that are accessed
 104 * through Main Control Registers 1 or 2.
 105 */
 106static void s626_mc_enable(struct comedi_device *dev,
 107                           unsigned int cmd, unsigned int reg)
 108{
 109        unsigned int val = (cmd << 16) | cmd;
 110
 111        writel(val, dev->mmio + reg);
 112}
 113
 114static void s626_mc_disable(struct comedi_device *dev,
 115                            unsigned int cmd, unsigned int reg)
 116{
 117        writel(cmd << 16, dev->mmio + reg);
 118}
 119
 120static bool s626_mc_test(struct comedi_device *dev,
 121                         unsigned int cmd, unsigned int reg)
 122{
 123        unsigned int val;
 124
 125        val = readl(dev->mmio + reg);
 126
 127        return (val & cmd) ? true : false;
 128}
 129
 130#define S626_BUGFIX_STREG(REGADRS)   ((REGADRS) - 4)
 131
 132/* Write a time slot control record to TSL2. */
 133#define S626_VECTPORT(VECTNUM)          (S626_P_TSL2 + ((VECTNUM) << 2))
 134
 135static const struct comedi_lrange s626_range_table = {
 136        2, {
 137                BIP_RANGE(5),
 138                BIP_RANGE(10)
 139        }
 140};
 141
 142/*
 143 * Execute a DEBI transfer.  This must be called from within a critical section.
 144 */
 145static void s626_debi_transfer(struct comedi_device *dev)
 146{
 147        static const int timeout = 10000;
 148        int i;
 149
 150        /* Initiate upload of shadow RAM to DEBI control register */
 151        s626_mc_enable(dev, S626_MC2_UPLD_DEBI, S626_P_MC2);
 152
 153        /*
 154         * Wait for completion of upload from shadow RAM to
 155         * DEBI control register.
 156         */
 157        for (i = 0; i < timeout; i++) {
 158                if (s626_mc_test(dev, S626_MC2_UPLD_DEBI, S626_P_MC2))
 159                        break;
 160                udelay(1);
 161        }
 162        if (i == timeout)
 163                dev_err(dev->class_dev,
 164                        "Timeout while uploading to DEBI control register\n");
 165
 166        /* Wait until DEBI transfer is done */
 167        for (i = 0; i < timeout; i++) {
 168                if (!(readl(dev->mmio + S626_P_PSR) & S626_PSR_DEBI_S))
 169                        break;
 170                udelay(1);
 171        }
 172        if (i == timeout)
 173                dev_err(dev->class_dev, "DEBI transfer timeout\n");
 174}
 175
 176/*
 177 * Read a value from a gate array register.
 178 */
 179static u16 s626_debi_read(struct comedi_device *dev, u16 addr)
 180{
 181        /* Set up DEBI control register value in shadow RAM */
 182        writel(S626_DEBI_CMD_RDWORD | addr, dev->mmio + S626_P_DEBICMD);
 183
 184        /*  Execute the DEBI transfer. */
 185        s626_debi_transfer(dev);
 186
 187        return readl(dev->mmio + S626_P_DEBIAD);
 188}
 189
 190/*
 191 * Write a value to a gate array register.
 192 */
 193static void s626_debi_write(struct comedi_device *dev, u16 addr,
 194                            u16 wdata)
 195{
 196        /* Set up DEBI control register value in shadow RAM */
 197        writel(S626_DEBI_CMD_WRWORD | addr, dev->mmio + S626_P_DEBICMD);
 198        writel(wdata, dev->mmio + S626_P_DEBIAD);
 199
 200        /*  Execute the DEBI transfer. */
 201        s626_debi_transfer(dev);
 202}
 203
 204/*
 205 * Replace the specified bits in a gate array register.  Imports: mask
 206 * specifies bits that are to be preserved, wdata is new value to be
 207 * or'd with the masked original.
 208 */
 209static void s626_debi_replace(struct comedi_device *dev, unsigned int addr,
 210                              unsigned int mask, unsigned int wdata)
 211{
 212        unsigned int val;
 213
 214        addr &= 0xffff;
 215        writel(S626_DEBI_CMD_RDWORD | addr, dev->mmio + S626_P_DEBICMD);
 216        s626_debi_transfer(dev);
 217
 218        writel(S626_DEBI_CMD_WRWORD | addr, dev->mmio + S626_P_DEBICMD);
 219        val = readl(dev->mmio + S626_P_DEBIAD);
 220        val &= mask;
 221        val |= wdata;
 222        writel(val & 0xffff, dev->mmio + S626_P_DEBIAD);
 223        s626_debi_transfer(dev);
 224}
 225
 226/* **************  EEPROM ACCESS FUNCTIONS  ************** */
 227
 228static int s626_i2c_handshake_eoc(struct comedi_device *dev,
 229                                  struct comedi_subdevice *s,
 230                                  struct comedi_insn *insn,
 231                                  unsigned long context)
 232{
 233        bool status;
 234
 235        status = s626_mc_test(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
 236        if (status)
 237                return 0;
 238        return -EBUSY;
 239}
 240
 241static int s626_i2c_handshake(struct comedi_device *dev, u32 val)
 242{
 243        unsigned int ctrl;
 244        int ret;
 245
 246        /* Write I2C command to I2C Transfer Control shadow register */
 247        writel(val, dev->mmio + S626_P_I2CCTRL);
 248
 249        /*
 250         * Upload I2C shadow registers into working registers and
 251         * wait for upload confirmation.
 252         */
 253        s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
 254        ret = comedi_timeout(dev, NULL, NULL, s626_i2c_handshake_eoc, 0);
 255        if (ret)
 256                return ret;
 257
 258        /* Wait until I2C bus transfer is finished or an error occurs */
 259        do {
 260                ctrl = readl(dev->mmio + S626_P_I2CCTRL);
 261        } while ((ctrl & (S626_I2C_BUSY | S626_I2C_ERR)) == S626_I2C_BUSY);
 262
 263        /* Return non-zero if I2C error occurred */
 264        return ctrl & S626_I2C_ERR;
 265}
 266
 267/* Read u8 from EEPROM. */
 268static u8 s626_i2c_read(struct comedi_device *dev, u8 addr)
 269{
 270        struct s626_private *devpriv = dev->private;
 271
 272        /*
 273         * Send EEPROM target address:
 274         *  Byte2 = I2C command: write to I2C EEPROM device.
 275         *  Byte1 = EEPROM internal target address.
 276         *  Byte0 = Not sent.
 277         */
 278        if (s626_i2c_handshake(dev, S626_I2C_B2(S626_I2C_ATTRSTART,
 279                                                devpriv->i2c_adrs) |
 280                                    S626_I2C_B1(S626_I2C_ATTRSTOP, addr) |
 281                                    S626_I2C_B0(S626_I2C_ATTRNOP, 0)))
 282                /* Abort function and declare error if handshake failed. */
 283                return 0;
 284
 285        /*
 286         * Execute EEPROM read:
 287         *  Byte2 = I2C command: read from I2C EEPROM device.
 288         *  Byte1 receives uint8_t from EEPROM.
 289         *  Byte0 = Not sent.
 290         */
 291        if (s626_i2c_handshake(dev, S626_I2C_B2(S626_I2C_ATTRSTART,
 292                                                (devpriv->i2c_adrs | 1)) |
 293                                    S626_I2C_B1(S626_I2C_ATTRSTOP, 0) |
 294                                    S626_I2C_B0(S626_I2C_ATTRNOP, 0)))
 295                /* Abort function and declare error if handshake failed. */
 296                return 0;
 297
 298        return (readl(dev->mmio + S626_P_I2CCTRL) >> 16) & 0xff;
 299}
 300
 301/* ***********  DAC FUNCTIONS *********** */
 302
 303/* TrimDac LogicalChan-to-PhysicalChan mapping table. */
 304static const u8 s626_trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 };
 305
 306/* TrimDac LogicalChan-to-EepromAdrs mapping table. */
 307static const u8 s626_trimadrs[] = {
 308        0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63
 309};
 310
 311enum {
 312        s626_send_dac_wait_not_mc1_a2out,
 313        s626_send_dac_wait_ssr_af2_out,
 314        s626_send_dac_wait_fb_buffer2_msb_00,
 315        s626_send_dac_wait_fb_buffer2_msb_ff
 316};
 317
 318static int s626_send_dac_eoc(struct comedi_device *dev,
 319                             struct comedi_subdevice *s,
 320                             struct comedi_insn *insn,
 321                             unsigned long context)
 322{
 323        unsigned int status;
 324
 325        switch (context) {
 326        case s626_send_dac_wait_not_mc1_a2out:
 327                status = readl(dev->mmio + S626_P_MC1);
 328                if (!(status & S626_MC1_A2OUT))
 329                        return 0;
 330                break;
 331        case s626_send_dac_wait_ssr_af2_out:
 332                status = readl(dev->mmio + S626_P_SSR);
 333                if (status & S626_SSR_AF2_OUT)
 334                        return 0;
 335                break;
 336        case s626_send_dac_wait_fb_buffer2_msb_00:
 337                status = readl(dev->mmio + S626_P_FB_BUFFER2);
 338                if (!(status & 0xff000000))
 339                        return 0;
 340                break;
 341        case s626_send_dac_wait_fb_buffer2_msb_ff:
 342                status = readl(dev->mmio + S626_P_FB_BUFFER2);
 343                if (status & 0xff000000)
 344                        return 0;
 345                break;
 346        default:
 347                return -EINVAL;
 348        }
 349        return -EBUSY;
 350}
 351
 352/*
 353 * Private helper function: Transmit serial data to DAC via Audio
 354 * channel 2.  Assumes: (1) TSL2 slot records initialized, and (2)
 355 * dacpol contains valid target image.
 356 */
 357static int s626_send_dac(struct comedi_device *dev, u32 val)
 358{
 359        struct s626_private *devpriv = dev->private;
 360        int ret;
 361
 362        /* START THE SERIAL CLOCK RUNNING ------------- */
 363
 364        /*
 365         * Assert DAC polarity control and enable gating of DAC serial clock
 366         * and audio bit stream signals.  At this point in time we must be
 367         * assured of being in time slot 0.  If we are not in slot 0, the
 368         * serial clock and audio stream signals will be disabled; this is
 369         * because the following s626_debi_write statement (which enables
 370         * signals to be passed through the gate array) would execute before
 371         * the trailing edge of WS1/WS3 (which turns off the signals), thus
 372         * causing the signals to be inactive during the DAC write.
 373         */
 374        s626_debi_write(dev, S626_LP_DACPOL, devpriv->dacpol);
 375
 376        /* TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- */
 377
 378        /* Copy DAC setpoint value to DAC's output DMA buffer. */
 379        /* writel(val, dev->mmio + (uint32_t)devpriv->dac_wbuf); */
 380        *devpriv->dac_wbuf = val;
 381
 382        /*
 383         * Enable the output DMA transfer. This will cause the DMAC to copy
 384         * the DAC's data value to A2's output FIFO. The DMA transfer will
 385         * then immediately terminate because the protection address is
 386         * reached upon transfer of the first DWORD value.
 387         */
 388        s626_mc_enable(dev, S626_MC1_A2OUT, S626_P_MC1);
 389
 390        /* While the DMA transfer is executing ... */
 391
 392        /*
 393         * Reset Audio2 output FIFO's underflow flag (along with any
 394         * other FIFO underflow/overflow flags). When set, this flag
 395         * will indicate that we have emerged from slot 0.
 396         */
 397        writel(S626_ISR_AFOU, dev->mmio + S626_P_ISR);
 398
 399        /*
 400         * Wait for the DMA transfer to finish so that there will be data
 401         * available in the FIFO when time slot 1 tries to transfer a DWORD
 402         * from the FIFO to the output buffer register.  We test for DMA
 403         * Done by polling the DMAC enable flag; this flag is automatically
 404         * cleared when the transfer has finished.
 405         */
 406        ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
 407                             s626_send_dac_wait_not_mc1_a2out);
 408        if (ret) {
 409                dev_err(dev->class_dev, "DMA transfer timeout\n");
 410                return ret;
 411        }
 412
 413        /* START THE OUTPUT STREAM TO THE TARGET DAC -------------------- */
 414
 415        /*
 416         * FIFO data is now available, so we enable execution of time slots
 417         * 1 and higher by clearing the EOS flag in slot 0.  Note that SD3
 418         * will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
 419         * detection.
 420         */
 421        writel(S626_XSD2 | S626_RSD3 | S626_SIB_A2,
 422               dev->mmio + S626_VECTPORT(0));
 423
 424        /*
 425         * Wait for slot 1 to execute to ensure that the Packet will be
 426         * transmitted.  This is detected by polling the Audio2 output FIFO
 427         * underflow flag, which will be set when slot 1 execution has
 428         * finished transferring the DAC's data DWORD from the output FIFO
 429         * to the output buffer register.
 430         */
 431        ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
 432                             s626_send_dac_wait_ssr_af2_out);
 433        if (ret) {
 434                dev_err(dev->class_dev,
 435                        "TSL timeout waiting for slot 1 to execute\n");
 436                return ret;
 437        }
 438
 439        /*
 440         * Set up to trap execution at slot 0 when the TSL sequencer cycles
 441         * back to slot 0 after executing the EOS in slot 5.  Also,
 442         * simultaneously shift out and in the 0x00 that is ALWAYS the value
 443         * stored in the last byte to be shifted out of the FIFO's DWORD
 444         * buffer register.
 445         */
 446        writel(S626_XSD2 | S626_XFIFO_2 | S626_RSD2 | S626_SIB_A2 | S626_EOS,
 447               dev->mmio + S626_VECTPORT(0));
 448
 449        /* WAIT FOR THE TRANSACTION TO FINISH ----------------------- */
 450
 451        /*
 452         * Wait for the TSL to finish executing all time slots before
 453         * exiting this function.  We must do this so that the next DAC
 454         * write doesn't start, thereby enabling clock/chip select signals:
 455         *
 456         * 1. Before the TSL sequence cycles back to slot 0, which disables
 457         *    the clock/cs signal gating and traps slot // list execution.
 458         *    we have not yet finished slot 5 then the clock/cs signals are
 459         *    still gated and we have not finished transmitting the stream.
 460         *
 461         * 2. While slots 2-5 are executing due to a late slot 0 trap.  In
 462         *    this case, the slot sequence is currently repeating, but with
 463         *    clock/cs signals disabled.  We must wait for slot 0 to trap
 464         *    execution before setting up the next DAC setpoint DMA transfer
 465         *    and enabling the clock/cs signals.  To detect the end of slot 5,
 466         *    we test for the FB_BUFFER2 MSB contents to be equal to 0xFF.  If
 467         *    the TSL has not yet finished executing slot 5 ...
 468         */
 469        if (readl(dev->mmio + S626_P_FB_BUFFER2) & 0xff000000) {
 470                /*
 471                 * The trap was set on time and we are still executing somewhere
 472                 * in slots 2-5, so we now wait for slot 0 to execute and trap
 473                 * TSL execution.  This is detected when FB_BUFFER2 MSB changes
 474                 * from 0xFF to 0x00, which slot 0 causes to happen by shifting
 475                 * out/in on SD2 the 0x00 that is always referenced by slot 5.
 476                 */
 477                ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
 478                                     s626_send_dac_wait_fb_buffer2_msb_00);
 479                if (ret) {
 480                        dev_err(dev->class_dev,
 481                                "TSL timeout waiting for slot 0 to execute\n");
 482                        return ret;
 483                }
 484        }
 485        /*
 486         * Either (1) we were too late setting the slot 0 trap; the TSL
 487         * sequencer restarted slot 0 before we could set the EOS trap flag,
 488         * or (2) we were not late and execution is now trapped at slot 0.
 489         * In either case, we must now change slot 0 so that it will store
 490         * value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes.
 491         * In order to do this, we reprogram slot 0 so that it will shift in
 492         * SD3, which is driven only by a pull-up resistor.
 493         */
 494        writel(S626_RSD3 | S626_SIB_A2 | S626_EOS,
 495               dev->mmio + S626_VECTPORT(0));
 496
 497        /*
 498         * Wait for slot 0 to execute, at which time the TSL is setup for
 499         * the next DAC write.  This is detected when FB_BUFFER2 MSB changes
 500         * from 0x00 to 0xFF.
 501         */
 502        ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
 503                             s626_send_dac_wait_fb_buffer2_msb_ff);
 504        if (ret) {
 505                dev_err(dev->class_dev,
 506                        "TSL timeout waiting for slot 0 to execute\n");
 507                return ret;
 508        }
 509        return 0;
 510}
 511
 512/*
 513 * Private helper function: Write setpoint to an application DAC channel.
 514 */
 515static int s626_set_dac(struct comedi_device *dev,
 516                        u16 chan, int16_t dacdata)
 517{
 518        struct s626_private *devpriv = dev->private;
 519        u16 signmask;
 520        u32 ws_image;
 521        u32 val;
 522
 523        /*
 524         * Adjust DAC data polarity and set up Polarity Control Register image.
 525         */
 526        signmask = 1 << chan;
 527        if (dacdata < 0) {
 528                dacdata = -dacdata;
 529                devpriv->dacpol |= signmask;
 530        } else {
 531                devpriv->dacpol &= ~signmask;
 532        }
 533
 534        /* Limit DAC setpoint value to valid range. */
 535        if ((u16)dacdata > 0x1FFF)
 536                dacdata = 0x1FFF;
 537
 538        /*
 539         * Set up TSL2 records (aka "vectors") for DAC update.  Vectors V2
 540         * and V3 transmit the setpoint to the target DAC.  V4 and V5 send
 541         * data to a non-existent TrimDac channel just to keep the clock
 542         * running after sending data to the target DAC.  This is necessary
 543         * to eliminate the clock glitch that would otherwise occur at the
 544         * end of the target DAC's serial data stream.  When the sequence
 545         * restarts at V0 (after executing V5), the gate array automatically
 546         * disables gating for the DAC clock and all DAC chip selects.
 547         */
 548
 549        /* Choose DAC chip select to be asserted */
 550        ws_image = (chan & 2) ? S626_WS1 : S626_WS2;
 551        /* Slot 2: Transmit high data byte to target DAC */
 552        writel(S626_XSD2 | S626_XFIFO_1 | ws_image,
 553               dev->mmio + S626_VECTPORT(2));
 554        /* Slot 3: Transmit low data byte to target DAC */
 555        writel(S626_XSD2 | S626_XFIFO_0 | ws_image,
 556               dev->mmio + S626_VECTPORT(3));
 557        /* Slot 4: Transmit to non-existent TrimDac channel to keep clock */
 558        writel(S626_XSD2 | S626_XFIFO_3 | S626_WS3,
 559               dev->mmio + S626_VECTPORT(4));
 560        /* Slot 5: running after writing target DAC's low data byte */
 561        writel(S626_XSD2 | S626_XFIFO_2 | S626_WS3 | S626_EOS,
 562               dev->mmio + S626_VECTPORT(5));
 563
 564        /*
 565         * Construct and transmit target DAC's serial packet:
 566         * (A10D DDDD), (DDDD DDDD), (0x0F), (0x00) where A is chan<0>,
 567         * and D<12:0> is the DAC setpoint.  Append a WORD value (that writes
 568         * to a  non-existent TrimDac channel) that serves to keep the clock
 569         * running after the packet has been sent to the target DAC.
 570         */
 571        val = 0x0F000000;       /* Continue clock after target DAC data
 572                                 * (write to non-existent trimdac).
 573                                 */
 574        val |= 0x00004000;      /* Address the two main dual-DAC devices
 575                                 * (TSL's chip select enables target device).
 576                                 */
 577        val |= ((u32)(chan & 1) << 15); /* Address the DAC channel
 578                                         * within the device.
 579                                         */
 580        val |= (u32)dacdata;    /* Include DAC setpoint data. */
 581        return s626_send_dac(dev, val);
 582}
 583
 584static int s626_write_trim_dac(struct comedi_device *dev,
 585                               u8 logical_chan, u8 dac_data)
 586{
 587        struct s626_private *devpriv = dev->private;
 588        u32 chan;
 589
 590        /*
 591         * Save the new setpoint in case the application needs to read it back
 592         * later.
 593         */
 594        devpriv->trim_setpoint[logical_chan] = dac_data;
 595
 596        /* Map logical channel number to physical channel number. */
 597        chan = s626_trimchan[logical_chan];
 598
 599        /*
 600         * Set up TSL2 records for TrimDac write operation.  All slots shift
 601         * 0xFF in from pulled-up SD3 so that the end of the slot sequence
 602         * can be detected.
 603         */
 604
 605        /* Slot 2: Send high uint8_t to target TrimDac */
 606        writel(S626_XSD2 | S626_XFIFO_1 | S626_WS3,
 607               dev->mmio + S626_VECTPORT(2));
 608        /* Slot 3: Send low uint8_t to target TrimDac */
 609        writel(S626_XSD2 | S626_XFIFO_0 | S626_WS3,
 610               dev->mmio + S626_VECTPORT(3));
 611        /* Slot 4: Send NOP high uint8_t to DAC0 to keep clock running */
 612        writel(S626_XSD2 | S626_XFIFO_3 | S626_WS1,
 613               dev->mmio + S626_VECTPORT(4));
 614        /* Slot 5: Send NOP low  uint8_t to DAC0 */
 615        writel(S626_XSD2 | S626_XFIFO_2 | S626_WS1 | S626_EOS,
 616               dev->mmio + S626_VECTPORT(5));
 617
 618        /*
 619         * Construct and transmit target DAC's serial packet:
 620         * (0000 AAAA), (DDDD DDDD), (0x00), (0x00) where A<3:0> is the
 621         * DAC channel's address, and D<7:0> is the DAC setpoint.  Append a
 622         * WORD value (that writes a channel 0 NOP command to a non-existent
 623         * main DAC channel) that serves to keep the clock running after the
 624         * packet has been sent to the target DAC.
 625         */
 626
 627        /*
 628         * Address the DAC channel within the trimdac device.
 629         * Include DAC setpoint data.
 630         */
 631        return s626_send_dac(dev, (chan << 8) | dac_data);
 632}
 633
 634static int s626_load_trim_dacs(struct comedi_device *dev)
 635{
 636        u8 i;
 637        int ret;
 638
 639        /* Copy TrimDac setpoint values from EEPROM to TrimDacs. */
 640        for (i = 0; i < ARRAY_SIZE(s626_trimchan); i++) {
 641                ret = s626_write_trim_dac(dev, i,
 642                                          s626_i2c_read(dev, s626_trimadrs[i]));
 643                if (ret)
 644                        return ret;
 645        }
 646        return 0;
 647}
 648
 649/* ******  COUNTER FUNCTIONS  ******* */
 650
 651/*
 652 * All counter functions address a specific counter by means of the
 653 * "Counter" argument, which is a logical counter number.  The Counter
 654 * argument may have any of the following legal values: 0=0A, 1=1A,
 655 * 2=2A, 3=0B, 4=1B, 5=2B.
 656 */
 657
 658/*
 659 * Return/set a counter pair's latch trigger source.  0: On read
 660 * access, 1: A index latches A, 2: B index latches B, 3: A overflow
 661 * latches B.
 662 */
 663static void s626_set_latch_source(struct comedi_device *dev,
 664                                  unsigned int chan, u16 value)
 665{
 666        s626_debi_replace(dev, S626_LP_CRB(chan),
 667                          ~(S626_CRBMSK_INTCTRL | S626_CRBMSK_LATCHSRC),
 668                          S626_SET_CRB_LATCHSRC(value));
 669}
 670
 671/*
 672 * Write value into counter preload register.
 673 */
 674static void s626_preload(struct comedi_device *dev,
 675                         unsigned int chan, u32 value)
 676{
 677        s626_debi_write(dev, S626_LP_CNTR(chan), value);
 678        s626_debi_write(dev, S626_LP_CNTR(chan) + 2, value >> 16);
 679}
 680
 681/* ******  PRIVATE COUNTER FUNCTIONS ****** */
 682
 683/*
 684 * Reset a counter's index and overflow event capture flags.
 685 */
 686static void s626_reset_cap_flags(struct comedi_device *dev,
 687                                 unsigned int chan)
 688{
 689        u16 set;
 690
 691        set = S626_SET_CRB_INTRESETCMD(1);
 692        if (chan < 3)
 693                set |= S626_SET_CRB_INTRESET_A(1);
 694        else
 695                set |= S626_SET_CRB_INTRESET_B(1);
 696
 697        s626_debi_replace(dev, S626_LP_CRB(chan), ~S626_CRBMSK_INTCTRL, set);
 698}
 699
 700/*
 701 * Set the operating mode for the specified counter.  The setup
 702 * parameter is treated as a COUNTER_SETUP data type.  The following
 703 * parameters are programmable (all other parms are ignored): ClkMult,
 704 * ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc.
 705 */
 706static void s626_set_mode_a(struct comedi_device *dev,
 707                            unsigned int chan, u16 setup,
 708                            u16 disable_int_src)
 709{
 710        struct s626_private *devpriv = dev->private;
 711        u16 cra;
 712        u16 crb;
 713        unsigned int cntsrc, clkmult, clkpol;
 714
 715        /* Initialize CRA and CRB images. */
 716        /* Preload trigger is passed through. */
 717        cra = S626_SET_CRA_LOADSRC_A(S626_GET_STD_LOADSRC(setup));
 718        /* IndexSrc is passed through. */
 719        cra |= S626_SET_CRA_INDXSRC_A(S626_GET_STD_INDXSRC(setup));
 720
 721        /* Reset any pending CounterA event captures. */
 722        crb = S626_SET_CRB_INTRESETCMD(1) | S626_SET_CRB_INTRESET_A(1);
 723        /* Clock enable is passed through. */
 724        crb |= S626_SET_CRB_CLKENAB_A(S626_GET_STD_CLKENAB(setup));
 725
 726        /* Force IntSrc to Disabled if disable_int_src is asserted. */
 727        if (!disable_int_src)
 728                cra |= S626_SET_CRA_INTSRC_A(S626_GET_STD_INTSRC(setup));
 729
 730        /* Populate all mode-dependent attributes of CRA & CRB images. */
 731        clkpol = S626_GET_STD_CLKPOL(setup);
 732        switch (S626_GET_STD_ENCMODE(setup)) {
 733        case S626_ENCMODE_EXTENDER: /* Extender Mode: */
 734                /* Force to Timer mode (Extender valid only for B counters). */
 735                /* Fall through to case S626_ENCMODE_TIMER: */
 736        case S626_ENCMODE_TIMER:        /* Timer Mode: */
 737                /* CntSrcA<1> selects system clock */
 738                cntsrc = S626_CNTSRC_SYSCLK;
 739                /* Count direction (CntSrcA<0>) obtained from ClkPol. */
 740                cntsrc |= clkpol;
 741                /* ClkPolA behaves as always-on clock enable. */
 742                clkpol = 1;
 743                /* ClkMult must be 1x. */
 744                clkmult = S626_CLKMULT_1X;
 745                break;
 746        default:                /* Counter Mode: */
 747                /* Select ENC_C and ENC_D as clock/direction inputs. */
 748                cntsrc = S626_CNTSRC_ENCODER;
 749                /* Clock polarity is passed through. */
 750                /* Force multiplier to x1 if not legal, else pass through. */
 751                clkmult = S626_GET_STD_CLKMULT(setup);
 752                if (clkmult == S626_CLKMULT_SPECIAL)
 753                        clkmult = S626_CLKMULT_1X;
 754                break;
 755        }
 756        cra |= S626_SET_CRA_CNTSRC_A(cntsrc) | S626_SET_CRA_CLKPOL_A(clkpol) |
 757               S626_SET_CRA_CLKMULT_A(clkmult);
 758
 759        /*
 760         * Force positive index polarity if IndxSrc is software-driven only,
 761         * otherwise pass it through.
 762         */
 763        if (S626_GET_STD_INDXSRC(setup) != S626_INDXSRC_SOFT)
 764                cra |= S626_SET_CRA_INDXPOL_A(S626_GET_STD_INDXPOL(setup));
 765
 766        /*
 767         * If IntSrc has been forced to Disabled, update the MISC2 interrupt
 768         * enable mask to indicate the counter interrupt is disabled.
 769         */
 770        if (disable_int_src)
 771                devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) |
 772                                                S626_INDXMASK(chan));
 773
 774        /*
 775         * While retaining CounterB and LatchSrc configurations, program the
 776         * new counter operating mode.
 777         */
 778        s626_debi_replace(dev, S626_LP_CRA(chan),
 779                          S626_CRAMSK_INDXSRC_B | S626_CRAMSK_CNTSRC_B, cra);
 780        s626_debi_replace(dev, S626_LP_CRB(chan),
 781                          ~(S626_CRBMSK_INTCTRL | S626_CRBMSK_CLKENAB_A), crb);
 782}
 783
 784static void s626_set_mode_b(struct comedi_device *dev,
 785                            unsigned int chan, u16 setup,
 786                            u16 disable_int_src)
 787{
 788        struct s626_private *devpriv = dev->private;
 789        u16 cra;
 790        u16 crb;
 791        unsigned int cntsrc, clkmult, clkpol;
 792
 793        /* Initialize CRA and CRB images. */
 794        /* IndexSrc is passed through. */
 795        cra = S626_SET_CRA_INDXSRC_B(S626_GET_STD_INDXSRC(setup));
 796
 797        /* Reset event captures and disable interrupts. */
 798        crb = S626_SET_CRB_INTRESETCMD(1) | S626_SET_CRB_INTRESET_B(1);
 799        /* Clock enable is passed through. */
 800        crb |= S626_SET_CRB_CLKENAB_B(S626_GET_STD_CLKENAB(setup));
 801        /* Preload trigger source is passed through. */
 802        crb |= S626_SET_CRB_LOADSRC_B(S626_GET_STD_LOADSRC(setup));
 803
 804        /* Force IntSrc to Disabled if disable_int_src is asserted. */
 805        if (!disable_int_src)
 806                crb |= S626_SET_CRB_INTSRC_B(S626_GET_STD_INTSRC(setup));
 807
 808        /* Populate all mode-dependent attributes of CRA & CRB images. */
 809        clkpol = S626_GET_STD_CLKPOL(setup);
 810        switch (S626_GET_STD_ENCMODE(setup)) {
 811        case S626_ENCMODE_TIMER:        /* Timer Mode: */
 812                /* CntSrcB<1> selects system clock */
 813                cntsrc = S626_CNTSRC_SYSCLK;
 814                /* with direction (CntSrcB<0>) obtained from ClkPol. */
 815                cntsrc |= clkpol;
 816                /* ClkPolB behaves as always-on clock enable. */
 817                clkpol = 1;
 818                /* ClkMultB must be 1x. */
 819                clkmult = S626_CLKMULT_1X;
 820                break;
 821        case S626_ENCMODE_EXTENDER:     /* Extender Mode: */
 822                /* CntSrcB source is OverflowA (same as "timer") */
 823                cntsrc = S626_CNTSRC_SYSCLK;
 824                /* with direction obtained from ClkPol. */
 825                cntsrc |= clkpol;
 826                /* ClkPolB controls IndexB -- always set to active. */
 827                clkpol = 1;
 828                /* ClkMultB selects OverflowA as the clock source. */
 829                clkmult = S626_CLKMULT_SPECIAL;
 830                break;
 831        default:                /* Counter Mode: */
 832                /* Select ENC_C and ENC_D as clock/direction inputs. */
 833                cntsrc = S626_CNTSRC_ENCODER;
 834                /* ClkPol is passed through. */
 835                /* Force ClkMult to x1 if not legal, otherwise pass through. */
 836                clkmult = S626_GET_STD_CLKMULT(setup);
 837                if (clkmult == S626_CLKMULT_SPECIAL)
 838                        clkmult = S626_CLKMULT_1X;
 839                break;
 840        }
 841        cra |= S626_SET_CRA_CNTSRC_B(cntsrc);
 842        crb |= S626_SET_CRB_CLKPOL_B(clkpol) | S626_SET_CRB_CLKMULT_B(clkmult);
 843
 844        /*
 845         * Force positive index polarity if IndxSrc is software-driven only,
 846         * otherwise pass it through.
 847         */
 848        if (S626_GET_STD_INDXSRC(setup) != S626_INDXSRC_SOFT)
 849                crb |= S626_SET_CRB_INDXPOL_B(S626_GET_STD_INDXPOL(setup));
 850
 851        /*
 852         * If IntSrc has been forced to Disabled, update the MISC2 interrupt
 853         * enable mask to indicate the counter interrupt is disabled.
 854         */
 855        if (disable_int_src)
 856                devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) |
 857                                                S626_INDXMASK(chan));
 858
 859        /*
 860         * While retaining CounterA and LatchSrc configurations, program the
 861         * new counter operating mode.
 862         */
 863        s626_debi_replace(dev, S626_LP_CRA(chan),
 864                          ~(S626_CRAMSK_INDXSRC_B | S626_CRAMSK_CNTSRC_B), cra);
 865        s626_debi_replace(dev, S626_LP_CRB(chan),
 866                          S626_CRBMSK_CLKENAB_A | S626_CRBMSK_LATCHSRC, crb);
 867}
 868
 869static void s626_set_mode(struct comedi_device *dev,
 870                          unsigned int chan,
 871                          u16 setup, u16 disable_int_src)
 872{
 873        if (chan < 3)
 874                s626_set_mode_a(dev, chan, setup, disable_int_src);
 875        else
 876                s626_set_mode_b(dev, chan, setup, disable_int_src);
 877}
 878
 879/*
 880 * Return/set a counter's enable.  enab: 0=always enabled, 1=enabled by index.
 881 */
 882static void s626_set_enable(struct comedi_device *dev,
 883                            unsigned int chan, u16 enab)
 884{
 885        unsigned int mask = S626_CRBMSK_INTCTRL;
 886        unsigned int set;
 887
 888        if (chan < 3) {
 889                mask |= S626_CRBMSK_CLKENAB_A;
 890                set = S626_SET_CRB_CLKENAB_A(enab);
 891        } else {
 892                mask |= S626_CRBMSK_CLKENAB_B;
 893                set = S626_SET_CRB_CLKENAB_B(enab);
 894        }
 895        s626_debi_replace(dev, S626_LP_CRB(chan), ~mask, set);
 896}
 897
 898/*
 899 * Return/set the event that will trigger transfer of the preload
 900 * register into the counter.  0=ThisCntr_Index, 1=ThisCntr_Overflow,
 901 * 2=OverflowA (B counters only), 3=disabled.
 902 */
 903static void s626_set_load_trig(struct comedi_device *dev,
 904                               unsigned int chan, u16 trig)
 905{
 906        u16 reg;
 907        u16 mask;
 908        u16 set;
 909
 910        if (chan < 3) {
 911                reg = S626_LP_CRA(chan);
 912                mask = S626_CRAMSK_LOADSRC_A;
 913                set = S626_SET_CRA_LOADSRC_A(trig);
 914        } else {
 915                reg = S626_LP_CRB(chan);
 916                mask = S626_CRBMSK_LOADSRC_B | S626_CRBMSK_INTCTRL;
 917                set = S626_SET_CRB_LOADSRC_B(trig);
 918        }
 919        s626_debi_replace(dev, reg, ~mask, set);
 920}
 921
 922/*
 923 * Return/set counter interrupt source and clear any captured
 924 * index/overflow events.  int_source: 0=Disabled, 1=OverflowOnly,
 925 * 2=IndexOnly, 3=IndexAndOverflow.
 926 */
 927static void s626_set_int_src(struct comedi_device *dev,
 928                             unsigned int chan, u16 int_source)
 929{
 930        struct s626_private *devpriv = dev->private;
 931        u16 cra_reg = S626_LP_CRA(chan);
 932        u16 crb_reg = S626_LP_CRB(chan);
 933
 934        if (chan < 3) {
 935                /* Reset any pending counter overflow or index captures */
 936                s626_debi_replace(dev, crb_reg, ~S626_CRBMSK_INTCTRL,
 937                                  S626_SET_CRB_INTRESETCMD(1) |
 938                                  S626_SET_CRB_INTRESET_A(1));
 939
 940                /* Program counter interrupt source */
 941                s626_debi_replace(dev, cra_reg, ~S626_CRAMSK_INTSRC_A,
 942                                  S626_SET_CRA_INTSRC_A(int_source));
 943        } else {
 944                u16 crb;
 945
 946                /* Cache writeable CRB register image */
 947                crb = s626_debi_read(dev, crb_reg);
 948                crb &= ~S626_CRBMSK_INTCTRL;
 949
 950                /* Reset any pending counter overflow or index captures */
 951                s626_debi_write(dev, crb_reg,
 952                                crb | S626_SET_CRB_INTRESETCMD(1) |
 953                                S626_SET_CRB_INTRESET_B(1));
 954
 955                /* Program counter interrupt source */
 956                s626_debi_write(dev, crb_reg,
 957                                (crb & ~S626_CRBMSK_INTSRC_B) |
 958                                S626_SET_CRB_INTSRC_B(int_source));
 959        }
 960
 961        /* Update MISC2 interrupt enable mask. */
 962        devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) |
 963                                        S626_INDXMASK(chan));
 964        switch (int_source) {
 965        case 0:
 966        default:
 967                break;
 968        case 1:
 969                devpriv->counter_int_enabs |= S626_OVERMASK(chan);
 970                break;
 971        case 2:
 972                devpriv->counter_int_enabs |= S626_INDXMASK(chan);
 973                break;
 974        case 3:
 975                devpriv->counter_int_enabs |= (S626_OVERMASK(chan) |
 976                                               S626_INDXMASK(chan));
 977                break;
 978        }
 979}
 980
 981/*
 982 * Generate an index pulse.
 983 */
 984static void s626_pulse_index(struct comedi_device *dev,
 985                             unsigned int chan)
 986{
 987        if (chan < 3) {
 988                u16 cra;
 989
 990                cra = s626_debi_read(dev, S626_LP_CRA(chan));
 991
 992                /* Pulse index */
 993                s626_debi_write(dev, S626_LP_CRA(chan),
 994                                (cra ^ S626_CRAMSK_INDXPOL_A));
 995                s626_debi_write(dev, S626_LP_CRA(chan), cra);
 996        } else {
 997                u16 crb;
 998
 999                crb = s626_debi_read(dev, S626_LP_CRB(chan));
1000                crb &= ~S626_CRBMSK_INTCTRL;
1001
1002                /* Pulse index */
1003                s626_debi_write(dev, S626_LP_CRB(chan),
1004                                (crb ^ S626_CRBMSK_INDXPOL_B));
1005                s626_debi_write(dev, S626_LP_CRB(chan), crb);
1006        }
1007}
1008
1009static unsigned int s626_ai_reg_to_uint(unsigned int data)
1010{
1011        return ((data >> 18) & 0x3fff) ^ 0x2000;
1012}
1013
1014static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan)
1015{
1016        unsigned int group = chan / 16;
1017        unsigned int mask = 1 << (chan - (16 * group));
1018        unsigned int status;
1019
1020        /* set channel to capture positive edge */
1021        status = s626_debi_read(dev, S626_LP_RDEDGSEL(group));
1022        s626_debi_write(dev, S626_LP_WREDGSEL(group), mask | status);
1023
1024        /* enable interrupt on selected channel */
1025        status = s626_debi_read(dev, S626_LP_RDINTSEL(group));
1026        s626_debi_write(dev, S626_LP_WRINTSEL(group), mask | status);
1027
1028        /* enable edge capture write command */
1029        s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_EDCAP);
1030
1031        /* enable edge capture on selected channel */
1032        status = s626_debi_read(dev, S626_LP_RDCAPSEL(group));
1033        s626_debi_write(dev, S626_LP_WRCAPSEL(group), mask | status);
1034
1035        return 0;
1036}
1037
1038static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int group,
1039                              unsigned int mask)
1040{
1041        /* disable edge capture write command */
1042        s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
1043
1044        /* enable edge capture on selected channel */
1045        s626_debi_write(dev, S626_LP_WRCAPSEL(group), mask);
1046
1047        return 0;
1048}
1049
1050static int s626_dio_clear_irq(struct comedi_device *dev)
1051{
1052        unsigned int group;
1053
1054        /* disable edge capture write command */
1055        s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
1056
1057        /* clear all dio pending events and interrupt */
1058        for (group = 0; group < S626_DIO_BANKS; group++)
1059                s626_debi_write(dev, S626_LP_WRCAPSEL(group), 0xffff);
1060
1061        return 0;
1062}
1063
1064static void s626_handle_dio_interrupt(struct comedi_device *dev,
1065                                      u16 irqbit, u8 group)
1066{
1067        struct s626_private *devpriv = dev->private;
1068        struct comedi_subdevice *s = dev->read_subdev;
1069        struct comedi_cmd *cmd = &s->async->cmd;
1070
1071        s626_dio_reset_irq(dev, group, irqbit);
1072
1073        if (devpriv->ai_cmd_running) {
1074                /* check if interrupt is an ai acquisition start trigger */
1075                if ((irqbit >> (cmd->start_arg - (16 * group))) == 1 &&
1076                    cmd->start_src == TRIG_EXT) {
1077                        /* Start executing the RPS program */
1078                        s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
1079
1080                        if (cmd->scan_begin_src == TRIG_EXT)
1081                                s626_dio_set_irq(dev, cmd->scan_begin_arg);
1082                }
1083                if ((irqbit >> (cmd->scan_begin_arg - (16 * group))) == 1 &&
1084                    cmd->scan_begin_src == TRIG_EXT) {
1085                        /* Trigger ADC scan loop start */
1086                        s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
1087
1088                        if (cmd->convert_src == TRIG_EXT) {
1089                                devpriv->ai_convert_count = cmd->chanlist_len;
1090
1091                                s626_dio_set_irq(dev, cmd->convert_arg);
1092                        }
1093
1094                        if (cmd->convert_src == TRIG_TIMER) {
1095                                devpriv->ai_convert_count = cmd->chanlist_len;
1096                                s626_set_enable(dev, 5, S626_CLKENAB_ALWAYS);
1097                        }
1098                }
1099                if ((irqbit >> (cmd->convert_arg - (16 * group))) == 1 &&
1100                    cmd->convert_src == TRIG_EXT) {
1101                        /* Trigger ADC scan loop start */
1102                        s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
1103
1104                        devpriv->ai_convert_count--;
1105                        if (devpriv->ai_convert_count > 0)
1106                                s626_dio_set_irq(dev, cmd->convert_arg);
1107                }
1108        }
1109}
1110
1111static void s626_check_dio_interrupts(struct comedi_device *dev)
1112{
1113        u16 irqbit;
1114        u8 group;
1115
1116        for (group = 0; group < S626_DIO_BANKS; group++) {
1117                /* read interrupt type */
1118                irqbit = s626_debi_read(dev, S626_LP_RDCAPFLG(group));
1119
1120                /* check if interrupt is generated from dio channels */
1121                if (irqbit) {
1122                        s626_handle_dio_interrupt(dev, irqbit, group);
1123                        return;
1124                }
1125        }
1126}
1127
1128static void s626_check_counter_interrupts(struct comedi_device *dev)
1129{
1130        struct s626_private *devpriv = dev->private;
1131        struct comedi_subdevice *s = dev->read_subdev;
1132        struct comedi_async *async = s->async;
1133        struct comedi_cmd *cmd = &async->cmd;
1134        u16 irqbit;
1135
1136        /* read interrupt type */
1137        irqbit = s626_debi_read(dev, S626_LP_RDMISC2);
1138
1139        /* check interrupt on counters */
1140        if (irqbit & S626_IRQ_COINT1A) {
1141                /* clear interrupt capture flag */
1142                s626_reset_cap_flags(dev, 0);
1143        }
1144        if (irqbit & S626_IRQ_COINT2A) {
1145                /* clear interrupt capture flag */
1146                s626_reset_cap_flags(dev, 1);
1147        }
1148        if (irqbit & S626_IRQ_COINT3A) {
1149                /* clear interrupt capture flag */
1150                s626_reset_cap_flags(dev, 2);
1151        }
1152        if (irqbit & S626_IRQ_COINT1B) {
1153                /* clear interrupt capture flag */
1154                s626_reset_cap_flags(dev, 3);
1155        }
1156        if (irqbit & S626_IRQ_COINT2B) {
1157                /* clear interrupt capture flag */
1158                s626_reset_cap_flags(dev, 4);
1159
1160                if (devpriv->ai_convert_count > 0) {
1161                        devpriv->ai_convert_count--;
1162                        if (devpriv->ai_convert_count == 0)
1163                                s626_set_enable(dev, 4, S626_CLKENAB_INDEX);
1164
1165                        if (cmd->convert_src == TRIG_TIMER) {
1166                                /* Trigger ADC scan loop start */
1167                                s626_mc_enable(dev, S626_MC2_ADC_RPS,
1168                                               S626_P_MC2);
1169                        }
1170                }
1171        }
1172        if (irqbit & S626_IRQ_COINT3B) {
1173                /* clear interrupt capture flag */
1174                s626_reset_cap_flags(dev, 5);
1175
1176                if (cmd->scan_begin_src == TRIG_TIMER) {
1177                        /* Trigger ADC scan loop start */
1178                        s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
1179                }
1180
1181                if (cmd->convert_src == TRIG_TIMER) {
1182                        devpriv->ai_convert_count = cmd->chanlist_len;
1183                        s626_set_enable(dev, 4, S626_CLKENAB_ALWAYS);
1184                }
1185        }
1186}
1187
1188static bool s626_handle_eos_interrupt(struct comedi_device *dev)
1189{
1190        struct s626_private *devpriv = dev->private;
1191        struct comedi_subdevice *s = dev->read_subdev;
1192        struct comedi_async *async = s->async;
1193        struct comedi_cmd *cmd = &async->cmd;
1194        /*
1195         * Init ptr to DMA buffer that holds new ADC data.  We skip the
1196         * first uint16_t in the buffer because it contains junk data
1197         * from the final ADC of the previous poll list scan.
1198         */
1199        u32 *readaddr = (u32 *)devpriv->ana_buf.logical_base + 1;
1200        int i;
1201
1202        /* get the data and hand it over to comedi */
1203        for (i = 0; i < cmd->chanlist_len; i++) {
1204                unsigned short tempdata;
1205
1206                /*
1207                 * Convert ADC data to 16-bit integer values and copy
1208                 * to application buffer.
1209                 */
1210                tempdata = s626_ai_reg_to_uint(*readaddr);
1211                readaddr++;
1212
1213                comedi_buf_write_samples(s, &tempdata, 1);
1214        }
1215
1216        if (cmd->stop_src == TRIG_COUNT && async->scans_done >= cmd->stop_arg)
1217                async->events |= COMEDI_CB_EOA;
1218
1219        if (async->events & COMEDI_CB_CANCEL_MASK)
1220                devpriv->ai_cmd_running = 0;
1221
1222        if (devpriv->ai_cmd_running && cmd->scan_begin_src == TRIG_EXT)
1223                s626_dio_set_irq(dev, cmd->scan_begin_arg);
1224
1225        comedi_handle_events(dev, s);
1226
1227        return !devpriv->ai_cmd_running;
1228}
1229
1230static irqreturn_t s626_irq_handler(int irq, void *d)
1231{
1232        struct comedi_device *dev = d;
1233        unsigned long flags;
1234        u32 irqtype, irqstatus;
1235
1236        if (!dev->attached)
1237                return IRQ_NONE;
1238        /* lock to avoid race with comedi_poll */
1239        spin_lock_irqsave(&dev->spinlock, flags);
1240
1241        /* save interrupt enable register state */
1242        irqstatus = readl(dev->mmio + S626_P_IER);
1243
1244        /* read interrupt type */
1245        irqtype = readl(dev->mmio + S626_P_ISR);
1246
1247        /* disable master interrupt */
1248        writel(0, dev->mmio + S626_P_IER);
1249
1250        /* clear interrupt */
1251        writel(irqtype, dev->mmio + S626_P_ISR);
1252
1253        switch (irqtype) {
1254        case S626_IRQ_RPS1:     /* end_of_scan occurs */
1255                if (s626_handle_eos_interrupt(dev))
1256                        irqstatus = 0;
1257                break;
1258        case S626_IRQ_GPIO3:    /* check dio and counter interrupt */
1259                /* s626_dio_clear_irq(dev); */
1260                s626_check_dio_interrupts(dev);
1261                s626_check_counter_interrupts(dev);
1262                break;
1263        }
1264
1265        /* enable interrupt */
1266        writel(irqstatus, dev->mmio + S626_P_IER);
1267
1268        spin_unlock_irqrestore(&dev->spinlock, flags);
1269        return IRQ_HANDLED;
1270}
1271
1272/*
1273 * This function builds the RPS program for hardware driven acquisition.
1274 */
1275static void s626_reset_adc(struct comedi_device *dev, u8 *ppl)
1276{
1277        struct s626_private *devpriv = dev->private;
1278        struct comedi_subdevice *s = dev->read_subdev;
1279        struct comedi_cmd *cmd = &s->async->cmd;
1280        u32 *rps;
1281        u32 jmp_adrs;
1282        u16 i;
1283        u16 n;
1284        u32 local_ppl;
1285
1286        /* Stop RPS program in case it is currently running */
1287        s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1);
1288
1289        /* Set starting logical address to write RPS commands. */
1290        rps = (u32 *)devpriv->rps_buf.logical_base;
1291
1292        /* Initialize RPS instruction pointer */
1293        writel((u32)devpriv->rps_buf.physical_base,
1294               dev->mmio + S626_P_RPSADDR1);
1295
1296        /* Construct RPS program in rps_buf DMA buffer */
1297        if (cmd->scan_begin_src != TRIG_FOLLOW) {
1298                /* Wait for Start trigger. */
1299                *rps++ = S626_RPS_PAUSE | S626_RPS_SIGADC;
1300                *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_SIGADC;
1301        }
1302
1303        /*
1304         * SAA7146 BUG WORKAROUND Do a dummy DEBI Write.  This is necessary
1305         * because the first RPS DEBI Write following a non-RPS DEBI write
1306         * seems to always fail.  If we don't do this dummy write, the ADC
1307         * gain might not be set to the value required for the first slot in
1308         * the poll list; the ADC gain would instead remain unchanged from
1309         * the previously programmed value.
1310         */
1311        /* Write DEBI Write command and address to shadow RAM. */
1312        *rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
1313        *rps++ = S626_DEBI_CMD_WRWORD | S626_LP_GSEL;
1314        *rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
1315        /* Write DEBI immediate data  to shadow RAM: */
1316        *rps++ = S626_GSEL_BIPOLAR5V;   /* arbitrary immediate data  value. */
1317        *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
1318        /* Reset "shadow RAM  uploaded" flag. */
1319        /* Invoke shadow RAM upload. */
1320        *rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
1321        /* Wait for shadow upload to finish. */
1322        *rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
1323
1324        /*
1325         * Digitize all slots in the poll list. This is implemented as a
1326         * for loop to limit the slot count to 16 in case the application
1327         * forgot to set the S626_EOPL flag in the final slot.
1328         */
1329        for (devpriv->adc_items = 0; devpriv->adc_items < 16;
1330             devpriv->adc_items++) {
1331                /*
1332                 * Convert application's poll list item to private board class
1333                 * format.  Each app poll list item is an uint8_t with form
1334                 * (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 =
1335                 * +-10V, 1 = +-5V, and EOPL = End of Poll List marker.
1336                 */
1337                local_ppl = (*ppl << 8) | (*ppl & 0x10 ? S626_GSEL_BIPOLAR5V :
1338                                           S626_GSEL_BIPOLAR10V);
1339
1340                /* Switch ADC analog gain. */
1341                /* Write DEBI command and address to shadow RAM. */
1342                *rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
1343                *rps++ = S626_DEBI_CMD_WRWORD | S626_LP_GSEL;
1344                /* Write DEBI immediate data to shadow RAM. */
1345                *rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
1346                *rps++ = local_ppl;
1347                /* Reset "shadow RAM uploaded" flag. */
1348                *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
1349                /* Invoke shadow RAM upload. */
1350                *rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
1351                /* Wait for shadow upload to finish. */
1352                *rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
1353                /* Select ADC analog input channel. */
1354                *rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
1355                /* Write DEBI command and address to shadow RAM. */
1356                *rps++ = S626_DEBI_CMD_WRWORD | S626_LP_ISEL;
1357                *rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
1358                /* Write DEBI immediate data to shadow RAM. */
1359                *rps++ = local_ppl;
1360                /* Reset "shadow RAM uploaded" flag. */
1361                *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
1362                /* Invoke shadow RAM upload. */
1363                *rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
1364                /* Wait for shadow upload to finish. */
1365                *rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
1366
1367                /*
1368                 * Delay at least 10 microseconds for analog input settling.
1369                 * Instead of padding with NOPs, we use S626_RPS_JUMP
1370                 * instructions here; this allows us to produce a longer delay
1371                 * than is possible with NOPs because each S626_RPS_JUMP
1372                 * flushes the RPS' instruction prefetch pipeline.
1373                 */
1374                jmp_adrs =
1375                        (u32)devpriv->rps_buf.physical_base +
1376                        (u32)((unsigned long)rps -
1377                              (unsigned long)devpriv->rps_buf.logical_base);
1378                for (i = 0; i < (10 * S626_RPSCLK_PER_US / 2); i++) {
1379                        jmp_adrs += 8;  /* Repeat to implement time delay: */
1380                        /* Jump to next RPS instruction. */
1381                        *rps++ = S626_RPS_JUMP;
1382                        *rps++ = jmp_adrs;
1383                }
1384
1385                if (cmd->convert_src != TRIG_NOW) {
1386                        /* Wait for Start trigger. */
1387                        *rps++ = S626_RPS_PAUSE | S626_RPS_SIGADC;
1388                        *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_SIGADC;
1389                }
1390                /* Start ADC by pulsing GPIO1. */
1391                /* Begin ADC Start pulse. */
1392                *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
1393                *rps++ = S626_GPIO_BASE | S626_GPIO1_LO;
1394                *rps++ = S626_RPS_NOP;
1395                /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1396                /* End ADC Start pulse. */
1397                *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
1398                *rps++ = S626_GPIO_BASE | S626_GPIO1_HI;
1399                /*
1400                 * Wait for ADC to complete (GPIO2 is asserted high when ADC not
1401                 * busy) and for data from previous conversion to shift into FB
1402                 * BUFFER 1 register.
1403                 */
1404                /* Wait for ADC done. */
1405                *rps++ = S626_RPS_PAUSE | S626_RPS_GPIO2;
1406
1407                /* Transfer ADC data from FB BUFFER 1 register to DMA buffer. */
1408                *rps++ = S626_RPS_STREG |
1409                         (S626_BUGFIX_STREG(S626_P_FB_BUFFER1) >> 2);
1410                *rps++ = (u32)devpriv->ana_buf.physical_base +
1411                         (devpriv->adc_items << 2);
1412
1413                /*
1414                 * If this slot's EndOfPollList flag is set, all channels have
1415                 * now been processed.
1416                 */
1417                if (*ppl++ & S626_EOPL) {
1418                        devpriv->adc_items++; /* Adjust poll list item count. */
1419                        break;  /* Exit poll list processing loop. */
1420                }
1421        }
1422
1423        /*
1424         * VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US.  Allow the
1425         * ADC to stabilize for 2 microseconds before starting the final
1426         * (dummy) conversion.  This delay is necessary to allow sufficient
1427         * time between last conversion finished and the start of the dummy
1428         * conversion.  Without this delay, the last conversion's data value
1429         * is sometimes set to the previous conversion's data value.
1430         */
1431        for (n = 0; n < (2 * S626_RPSCLK_PER_US); n++)
1432                *rps++ = S626_RPS_NOP;
1433
1434        /*
1435         * Start a dummy conversion to cause the data from the last
1436         * conversion of interest to be shifted in.
1437         */
1438        /* Begin ADC Start pulse. */
1439        *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
1440        *rps++ = S626_GPIO_BASE | S626_GPIO1_LO;
1441        *rps++ = S626_RPS_NOP;
1442        /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1443        *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2); /* End ADC Start pulse. */
1444        *rps++ = S626_GPIO_BASE | S626_GPIO1_HI;
1445
1446        /*
1447         * Wait for the data from the last conversion of interest to arrive
1448         * in FB BUFFER 1 register.
1449         */
1450        *rps++ = S626_RPS_PAUSE | S626_RPS_GPIO2;       /* Wait for ADC done. */
1451
1452        /* Transfer final ADC data from FB BUFFER 1 register to DMA buffer. */
1453        *rps++ = S626_RPS_STREG | (S626_BUGFIX_STREG(S626_P_FB_BUFFER1) >> 2);
1454        *rps++ = (u32)devpriv->ana_buf.physical_base +
1455                 (devpriv->adc_items << 2);
1456
1457        /* Indicate ADC scan loop is finished. */
1458        /* Signal ReadADC() that scan is done. */
1459        /* *rps++= S626_RPS_CLRSIGNAL | S626_RPS_SIGADC; */
1460
1461        /* invoke interrupt */
1462        if (devpriv->ai_cmd_running == 1)
1463                *rps++ = S626_RPS_IRQ;
1464
1465        /* Restart RPS program at its beginning. */
1466        *rps++ = S626_RPS_JUMP; /* Branch to start of RPS program. */
1467        *rps++ = (u32)devpriv->rps_buf.physical_base;
1468
1469        /* End of RPS program build */
1470}
1471
1472static int s626_ai_eoc(struct comedi_device *dev,
1473                       struct comedi_subdevice *s,
1474                       struct comedi_insn *insn,
1475                       unsigned long context)
1476{
1477        unsigned int status;
1478
1479        status = readl(dev->mmio + S626_P_PSR);
1480        if (status & S626_PSR_GPIO2)
1481                return 0;
1482        return -EBUSY;
1483}
1484
1485static int s626_ai_insn_read(struct comedi_device *dev,
1486                             struct comedi_subdevice *s,
1487                             struct comedi_insn *insn,
1488                             unsigned int *data)
1489{
1490        u16 chan = CR_CHAN(insn->chanspec);
1491        u16 range = CR_RANGE(insn->chanspec);
1492        u16 adc_spec = 0;
1493        u32 gpio_image;
1494        u32 tmp;
1495        int ret;
1496        int n;
1497
1498        /*
1499         * Convert application's ADC specification into form
1500         *  appropriate for register programming.
1501         */
1502        if (range == 0)
1503                adc_spec = (chan << 8) | (S626_GSEL_BIPOLAR5V);
1504        else
1505                adc_spec = (chan << 8) | (S626_GSEL_BIPOLAR10V);
1506
1507        /* Switch ADC analog gain. */
1508        s626_debi_write(dev, S626_LP_GSEL, adc_spec);   /* Set gain. */
1509
1510        /* Select ADC analog input channel. */
1511        s626_debi_write(dev, S626_LP_ISEL, adc_spec);   /* Select channel. */
1512
1513        for (n = 0; n < insn->n; n++) {
1514                /* Delay 10 microseconds for analog input settling. */
1515                usleep_range(10, 20);
1516
1517                /* Start ADC by pulsing GPIO1 low */
1518                gpio_image = readl(dev->mmio + S626_P_GPIO);
1519                /* Assert ADC Start command */
1520                writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1521                /* and stretch it out */
1522                writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1523                writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1524                /* Negate ADC Start command */
1525                writel(gpio_image | S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1526
1527                /*
1528                 * Wait for ADC to complete (GPIO2 is asserted high when
1529                 * ADC not busy) and for data from previous conversion to
1530                 * shift into FB BUFFER 1 register.
1531                 */
1532
1533                /* Wait for ADC done */
1534                ret = comedi_timeout(dev, s, insn, s626_ai_eoc, 0);
1535                if (ret)
1536                        return ret;
1537
1538                /* Fetch ADC data */
1539                if (n != 0) {
1540                        tmp = readl(dev->mmio + S626_P_FB_BUFFER1);
1541                        data[n - 1] = s626_ai_reg_to_uint(tmp);
1542                }
1543
1544                /*
1545                 * Allow the ADC to stabilize for 4 microseconds before
1546                 * starting the next (final) conversion.  This delay is
1547                 * necessary to allow sufficient time between last
1548                 * conversion finished and the start of the next
1549                 * conversion.  Without this delay, the last conversion's
1550                 * data value is sometimes set to the previous
1551                 * conversion's data value.
1552                 */
1553                udelay(4);
1554        }
1555
1556        /*
1557         * Start a dummy conversion to cause the data from the
1558         * previous conversion to be shifted in.
1559         */
1560        gpio_image = readl(dev->mmio + S626_P_GPIO);
1561        /* Assert ADC Start command */
1562        writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1563        /* and stretch it out */
1564        writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1565        writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1566        /* Negate ADC Start command */
1567        writel(gpio_image | S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1568
1569        /* Wait for the data to arrive in FB BUFFER 1 register. */
1570
1571        /* Wait for ADC done */
1572        ret = comedi_timeout(dev, s, insn, s626_ai_eoc, 0);
1573        if (ret)
1574                return ret;
1575
1576        /* Fetch ADC data from audio interface's input shift register. */
1577
1578        /* Fetch ADC data */
1579        if (n != 0) {
1580                tmp = readl(dev->mmio + S626_P_FB_BUFFER1);
1581                data[n - 1] = s626_ai_reg_to_uint(tmp);
1582        }
1583
1584        return n;
1585}
1586
1587static int s626_ai_load_polllist(u8 *ppl, struct comedi_cmd *cmd)
1588{
1589        int n;
1590
1591        for (n = 0; n < cmd->chanlist_len; n++) {
1592                if (CR_RANGE(cmd->chanlist[n]) == 0)
1593                        ppl[n] = CR_CHAN(cmd->chanlist[n]) | S626_RANGE_5V;
1594                else
1595                        ppl[n] = CR_CHAN(cmd->chanlist[n]) | S626_RANGE_10V;
1596        }
1597        if (n != 0)
1598                ppl[n - 1] |= S626_EOPL;
1599
1600        return n;
1601}
1602
1603static int s626_ai_inttrig(struct comedi_device *dev,
1604                           struct comedi_subdevice *s,
1605                           unsigned int trig_num)
1606{
1607        struct comedi_cmd *cmd = &s->async->cmd;
1608
1609        if (trig_num != cmd->start_arg)
1610                return -EINVAL;
1611
1612        /* Start executing the RPS program */
1613        s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
1614
1615        s->async->inttrig = NULL;
1616
1617        return 1;
1618}
1619
1620/*
1621 * This function doesn't require a particular form, this is just what
1622 * happens to be used in some of the drivers.  It should convert ns
1623 * nanoseconds to a counter value suitable for programming the device.
1624 * Also, it should adjust ns so that it cooresponds to the actual time
1625 * that the device will use.
1626 */
1627static int s626_ns_to_timer(unsigned int *nanosec, unsigned int flags)
1628{
1629        int divider, base;
1630
1631        base = 500;             /* 2MHz internal clock */
1632
1633        switch (flags & CMDF_ROUND_MASK) {
1634        case CMDF_ROUND_NEAREST:
1635        default:
1636                divider = DIV_ROUND_CLOSEST(*nanosec, base);
1637                break;
1638        case CMDF_ROUND_DOWN:
1639                divider = (*nanosec) / base;
1640                break;
1641        case CMDF_ROUND_UP:
1642                divider = DIV_ROUND_UP(*nanosec, base);
1643                break;
1644        }
1645
1646        *nanosec = base * divider;
1647        return divider - 1;
1648}
1649
1650static void s626_timer_load(struct comedi_device *dev,
1651                            unsigned int chan, int tick)
1652{
1653        u16 setup =
1654                /* Preload upon index. */
1655                S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
1656                /* Disable hardware index. */
1657                S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
1658                /* Operating mode is Timer. */
1659                S626_SET_STD_ENCMODE(S626_ENCMODE_TIMER) |
1660                /* Count direction is Down. */
1661                S626_SET_STD_CLKPOL(S626_CNTDIR_DOWN) |
1662                /* Clock multiplier is 1x. */
1663                S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
1664                /* Enabled by index */
1665                S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
1666        u16 value_latchsrc = S626_LATCHSRC_A_INDXA;
1667        /* uint16_t enab = S626_CLKENAB_ALWAYS; */
1668
1669        s626_set_mode(dev, chan, setup, false);
1670
1671        /* Set the preload register */
1672        s626_preload(dev, chan, tick);
1673
1674        /*
1675         * Software index pulse forces the preload register to load
1676         * into the counter
1677         */
1678        s626_set_load_trig(dev, chan, 0);
1679        s626_pulse_index(dev, chan);
1680
1681        /* set reload on counter overflow */
1682        s626_set_load_trig(dev, chan, 1);
1683
1684        /* set interrupt on overflow */
1685        s626_set_int_src(dev, chan, S626_INTSRC_OVER);
1686
1687        s626_set_latch_source(dev, chan, value_latchsrc);
1688        /* s626_set_enable(dev, chan, (uint16_t)(enab != 0)); */
1689}
1690
1691/* TO COMPLETE  */
1692static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
1693{
1694        struct s626_private *devpriv = dev->private;
1695        u8 ppl[16];
1696        struct comedi_cmd *cmd = &s->async->cmd;
1697        int tick;
1698
1699        if (devpriv->ai_cmd_running) {
1700                dev_err(dev->class_dev,
1701                        "%s: Another ai_cmd is running\n", __func__);
1702                return -EBUSY;
1703        }
1704        /* disable interrupt */
1705        writel(0, dev->mmio + S626_P_IER);
1706
1707        /* clear interrupt request */
1708        writel(S626_IRQ_RPS1 | S626_IRQ_GPIO3, dev->mmio + S626_P_ISR);
1709
1710        /* clear any pending interrupt */
1711        s626_dio_clear_irq(dev);
1712        /* s626_enc_clear_irq(dev); */
1713
1714        /* reset ai_cmd_running flag */
1715        devpriv->ai_cmd_running = 0;
1716
1717        s626_ai_load_polllist(ppl, cmd);
1718        devpriv->ai_cmd_running = 1;
1719        devpriv->ai_convert_count = 0;
1720
1721        switch (cmd->scan_begin_src) {
1722        case TRIG_FOLLOW:
1723                break;
1724        case TRIG_TIMER:
1725                /*
1726                 * set a counter to generate adc trigger at scan_begin_arg
1727                 * interval
1728                 */
1729                tick = s626_ns_to_timer(&cmd->scan_begin_arg, cmd->flags);
1730
1731                /* load timer value and enable interrupt */
1732                s626_timer_load(dev, 5, tick);
1733                s626_set_enable(dev, 5, S626_CLKENAB_ALWAYS);
1734                break;
1735        case TRIG_EXT:
1736                /* set the digital line and interrupt for scan trigger */
1737                if (cmd->start_src != TRIG_EXT)
1738                        s626_dio_set_irq(dev, cmd->scan_begin_arg);
1739                break;
1740        }
1741
1742        switch (cmd->convert_src) {
1743        case TRIG_NOW:
1744                break;
1745        case TRIG_TIMER:
1746                /*
1747                 * set a counter to generate adc trigger at convert_arg
1748                 * interval
1749                 */
1750                tick = s626_ns_to_timer(&cmd->convert_arg, cmd->flags);
1751
1752                /* load timer value and enable interrupt */
1753                s626_timer_load(dev, 4, tick);
1754                s626_set_enable(dev, 4, S626_CLKENAB_INDEX);
1755                break;
1756        case TRIG_EXT:
1757                /* set the digital line and interrupt for convert trigger */
1758                if (cmd->scan_begin_src != TRIG_EXT &&
1759                    cmd->start_src == TRIG_EXT)
1760                        s626_dio_set_irq(dev, cmd->convert_arg);
1761                break;
1762        }
1763
1764        s626_reset_adc(dev, ppl);
1765
1766        switch (cmd->start_src) {
1767        case TRIG_NOW:
1768                /* Trigger ADC scan loop start */
1769                /* s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2); */
1770
1771                /* Start executing the RPS program */
1772                s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
1773                s->async->inttrig = NULL;
1774                break;
1775        case TRIG_EXT:
1776                /* configure DIO channel for acquisition trigger */
1777                s626_dio_set_irq(dev, cmd->start_arg);
1778                s->async->inttrig = NULL;
1779                break;
1780        case TRIG_INT:
1781                s->async->inttrig = s626_ai_inttrig;
1782                break;
1783        }
1784
1785        /* enable interrupt */
1786        writel(S626_IRQ_GPIO3 | S626_IRQ_RPS1, dev->mmio + S626_P_IER);
1787
1788        return 0;
1789}
1790
1791static int s626_ai_cmdtest(struct comedi_device *dev,
1792                           struct comedi_subdevice *s, struct comedi_cmd *cmd)
1793{
1794        int err = 0;
1795        unsigned int arg;
1796
1797        /* Step 1 : check if triggers are trivially valid */
1798
1799        err |= comedi_check_trigger_src(&cmd->start_src,
1800                                        TRIG_NOW | TRIG_INT | TRIG_EXT);
1801        err |= comedi_check_trigger_src(&cmd->scan_begin_src,
1802                                        TRIG_TIMER | TRIG_EXT | TRIG_FOLLOW);
1803        err |= comedi_check_trigger_src(&cmd->convert_src,
1804                                        TRIG_TIMER | TRIG_EXT | TRIG_NOW);
1805        err |= comedi_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT);
1806        err |= comedi_check_trigger_src(&cmd->stop_src, TRIG_COUNT | TRIG_NONE);
1807
1808        if (err)
1809                return 1;
1810
1811        /* Step 2a : make sure trigger sources are unique */
1812
1813        err |= comedi_check_trigger_is_unique(cmd->start_src);
1814        err |= comedi_check_trigger_is_unique(cmd->scan_begin_src);
1815        err |= comedi_check_trigger_is_unique(cmd->convert_src);
1816        err |= comedi_check_trigger_is_unique(cmd->stop_src);
1817
1818        /* Step 2b : and mutually compatible */
1819
1820        if (err)
1821                return 2;
1822
1823        /* Step 3: check if arguments are trivially valid */
1824
1825        switch (cmd->start_src) {
1826        case TRIG_NOW:
1827        case TRIG_INT:
1828                err |= comedi_check_trigger_arg_is(&cmd->start_arg, 0);
1829                break;
1830        case TRIG_EXT:
1831                err |= comedi_check_trigger_arg_max(&cmd->start_arg, 39);
1832                break;
1833        }
1834
1835        if (cmd->scan_begin_src == TRIG_EXT)
1836                err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 39);
1837        if (cmd->convert_src == TRIG_EXT)
1838                err |= comedi_check_trigger_arg_max(&cmd->convert_arg, 39);
1839
1840#define S626_MAX_SPEED  200000  /* in nanoseconds */
1841#define S626_MIN_SPEED  2000000000      /* in nanoseconds */
1842
1843        if (cmd->scan_begin_src == TRIG_TIMER) {
1844                err |= comedi_check_trigger_arg_min(&cmd->scan_begin_arg,
1845                                                    S626_MAX_SPEED);
1846                err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg,
1847                                                    S626_MIN_SPEED);
1848        } else {
1849                /*
1850                 * external trigger
1851                 * should be level/edge, hi/lo specification here
1852                 * should specify multiple external triggers
1853                 * err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 9);
1854                 */
1855        }
1856        if (cmd->convert_src == TRIG_TIMER) {
1857                err |= comedi_check_trigger_arg_min(&cmd->convert_arg,
1858                                                    S626_MAX_SPEED);
1859                err |= comedi_check_trigger_arg_max(&cmd->convert_arg,
1860                                                    S626_MIN_SPEED);
1861        } else {
1862                /*
1863                 * external trigger - see above
1864                 * err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 9);
1865                 */
1866        }
1867
1868        err |= comedi_check_trigger_arg_is(&cmd->scan_end_arg,
1869                                           cmd->chanlist_len);
1870
1871        if (cmd->stop_src == TRIG_COUNT)
1872                err |= comedi_check_trigger_arg_min(&cmd->stop_arg, 1);
1873        else    /* TRIG_NONE */
1874                err |= comedi_check_trigger_arg_is(&cmd->stop_arg, 0);
1875
1876        if (err)
1877                return 3;
1878
1879        /* step 4: fix up any arguments */
1880
1881        if (cmd->scan_begin_src == TRIG_TIMER) {
1882                arg = cmd->scan_begin_arg;
1883                s626_ns_to_timer(&arg, cmd->flags);
1884                err |= comedi_check_trigger_arg_is(&cmd->scan_begin_arg, arg);
1885        }
1886
1887        if (cmd->convert_src == TRIG_TIMER) {
1888                arg = cmd->convert_arg;
1889                s626_ns_to_timer(&arg, cmd->flags);
1890                err |= comedi_check_trigger_arg_is(&cmd->convert_arg, arg);
1891
1892                if (cmd->scan_begin_src == TRIG_TIMER) {
1893                        arg = cmd->convert_arg * cmd->scan_end_arg;
1894                        err |= comedi_check_trigger_arg_min(
1895                                        &cmd->scan_begin_arg, arg);
1896                }
1897        }
1898
1899        if (err)
1900                return 4;
1901
1902        return 0;
1903}
1904
1905static int s626_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
1906{
1907        struct s626_private *devpriv = dev->private;
1908
1909        /* Stop RPS program in case it is currently running */
1910        s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1);
1911
1912        /* disable master interrupt */
1913        writel(0, dev->mmio + S626_P_IER);
1914
1915        devpriv->ai_cmd_running = 0;
1916
1917        return 0;
1918}
1919
1920static int s626_ao_insn_write(struct comedi_device *dev,
1921                              struct comedi_subdevice *s,
1922                              struct comedi_insn *insn,
1923                              unsigned int *data)
1924{
1925        unsigned int chan = CR_CHAN(insn->chanspec);
1926        int i;
1927
1928        for (i = 0; i < insn->n; i++) {
1929                s16 dacdata = (s16)data[i];
1930                int ret;
1931
1932                dacdata -= (0x1fff);
1933
1934                ret = s626_set_dac(dev, chan, dacdata);
1935                if (ret)
1936                        return ret;
1937
1938                s->readback[chan] = data[i];
1939        }
1940
1941        return insn->n;
1942}
1943
1944/* *************** DIGITAL I/O FUNCTIONS *************** */
1945
1946/*
1947 * All DIO functions address a group of DIO channels by means of
1948 * "group" argument.  group may be 0, 1 or 2, which correspond to DIO
1949 * ports A, B and C, respectively.
1950 */
1951
1952static void s626_dio_init(struct comedi_device *dev)
1953{
1954        u16 group;
1955
1956        /* Prepare to treat writes to WRCapSel as capture disables. */
1957        s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
1958
1959        /* For each group of sixteen channels ... */
1960        for (group = 0; group < S626_DIO_BANKS; group++) {
1961                /* Disable all interrupts */
1962                s626_debi_write(dev, S626_LP_WRINTSEL(group), 0);
1963                /* Disable all event captures */
1964                s626_debi_write(dev, S626_LP_WRCAPSEL(group), 0xffff);
1965                /* Init all DIOs to default edge polarity */
1966                s626_debi_write(dev, S626_LP_WREDGSEL(group), 0);
1967                /* Program all outputs to inactive state */
1968                s626_debi_write(dev, S626_LP_WRDOUT(group), 0);
1969        }
1970}
1971
1972static int s626_dio_insn_bits(struct comedi_device *dev,
1973                              struct comedi_subdevice *s,
1974                              struct comedi_insn *insn,
1975                              unsigned int *data)
1976{
1977        unsigned long group = (unsigned long)s->private;
1978
1979        if (comedi_dio_update_state(s, data))
1980                s626_debi_write(dev, S626_LP_WRDOUT(group), s->state);
1981
1982        data[1] = s626_debi_read(dev, S626_LP_RDDIN(group));
1983
1984        return insn->n;
1985}
1986
1987static int s626_dio_insn_config(struct comedi_device *dev,
1988                                struct comedi_subdevice *s,
1989                                struct comedi_insn *insn,
1990                                unsigned int *data)
1991{
1992        unsigned long group = (unsigned long)s->private;
1993        int ret;
1994
1995        ret = comedi_dio_insn_config(dev, s, insn, data, 0);
1996        if (ret)
1997                return ret;
1998
1999        s626_debi_write(dev, S626_LP_WRDOUT(group), s->io_bits);
2000
2001        return insn->n;
2002}
2003
2004/*
2005 * Now this function initializes the value of the counter (data[0])
2006 * and set the subdevice. To complete with trigger and interrupt
2007 * configuration.
2008 *
2009 * FIXME: data[0] is supposed to be an INSN_CONFIG_xxx constant indicating
2010 * what is being configured, but this function appears to be using data[0]
2011 * as a variable.
2012 */
2013static int s626_enc_insn_config(struct comedi_device *dev,
2014                                struct comedi_subdevice *s,
2015                                struct comedi_insn *insn, unsigned int *data)
2016{
2017        unsigned int chan = CR_CHAN(insn->chanspec);
2018        u16 setup =
2019                /* Preload upon index. */
2020                S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
2021                /* Disable hardware index. */
2022                S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
2023                /* Operating mode is Counter. */
2024                S626_SET_STD_ENCMODE(S626_ENCMODE_COUNTER) |
2025                /* Active high clock. */
2026                S626_SET_STD_CLKPOL(S626_CLKPOL_POS) |
2027                /* Clock multiplier is 1x. */
2028                S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
2029                /* Enabled by index */
2030                S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
2031        /* uint16_t disable_int_src = true; */
2032        /* uint32_t Preloadvalue;              //Counter initial value */
2033        u16 value_latchsrc = S626_LATCHSRC_AB_READ;
2034        u16 enab = S626_CLKENAB_ALWAYS;
2035
2036        /* (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]); */
2037
2038        s626_set_mode(dev, chan, setup, true);
2039        s626_preload(dev, chan, data[0]);
2040        s626_pulse_index(dev, chan);
2041        s626_set_latch_source(dev, chan, value_latchsrc);
2042        s626_set_enable(dev, chan, (enab != 0));
2043
2044        return insn->n;
2045}
2046
2047static int s626_enc_insn_read(struct comedi_device *dev,
2048                              struct comedi_subdevice *s,
2049                              struct comedi_insn *insn,
2050                              unsigned int *data)
2051{
2052        unsigned int chan = CR_CHAN(insn->chanspec);
2053        u16 cntr_latch_reg = S626_LP_CNTR(chan);
2054        int i;
2055
2056        for (i = 0; i < insn->n; i++) {
2057                unsigned int val;
2058
2059                /*
2060                 * Read the counter's output latch LSW/MSW.
2061                 * Latches on LSW read.
2062                 */
2063                val = s626_debi_read(dev, cntr_latch_reg);
2064                val |= (s626_debi_read(dev, cntr_latch_reg + 2) << 16);
2065                data[i] = val;
2066        }
2067
2068        return insn->n;
2069}
2070
2071static int s626_enc_insn_write(struct comedi_device *dev,
2072                               struct comedi_subdevice *s,
2073                               struct comedi_insn *insn, unsigned int *data)
2074{
2075        unsigned int chan = CR_CHAN(insn->chanspec);
2076
2077        /* Set the preload register */
2078        s626_preload(dev, chan, data[0]);
2079
2080        /*
2081         * Software index pulse forces the preload register to load
2082         * into the counter
2083         */
2084        s626_set_load_trig(dev, chan, 0);
2085        s626_pulse_index(dev, chan);
2086        s626_set_load_trig(dev, chan, 2);
2087
2088        return 1;
2089}
2090
2091static void s626_write_misc2(struct comedi_device *dev, u16 new_image)
2092{
2093        s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_WENABLE);
2094        s626_debi_write(dev, S626_LP_WRMISC2, new_image);
2095        s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_WDISABLE);
2096}
2097
2098static void s626_counters_init(struct comedi_device *dev)
2099{
2100        int chan;
2101        u16 setup =
2102                /* Preload upon index. */
2103                S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
2104                /* Disable hardware index. */
2105                S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
2106                /* Operating mode is counter. */
2107                S626_SET_STD_ENCMODE(S626_ENCMODE_COUNTER) |
2108                /* Active high clock. */
2109                S626_SET_STD_CLKPOL(S626_CLKPOL_POS) |
2110                /* Clock multiplier is 1x. */
2111                S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
2112                /* Enabled by index */
2113                S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
2114
2115        /*
2116         * Disable all counter interrupts and clear any captured counter events.
2117         */
2118        for (chan = 0; chan < S626_ENCODER_CHANNELS; chan++) {
2119                s626_set_mode(dev, chan, setup, true);
2120                s626_set_int_src(dev, chan, 0);
2121                s626_reset_cap_flags(dev, chan);
2122                s626_set_enable(dev, chan, S626_CLKENAB_ALWAYS);
2123        }
2124}
2125
2126static int s626_allocate_dma_buffers(struct comedi_device *dev)
2127{
2128        struct pci_dev *pcidev = comedi_to_pci_dev(dev);
2129        struct s626_private *devpriv = dev->private;
2130        void *addr;
2131        dma_addr_t appdma;
2132
2133        addr = dma_alloc_coherent(&pcidev->dev, S626_DMABUF_SIZE, &appdma,
2134                                  GFP_KERNEL);
2135        if (!addr)
2136                return -ENOMEM;
2137        devpriv->ana_buf.logical_base = addr;
2138        devpriv->ana_buf.physical_base = appdma;
2139
2140        addr = dma_alloc_coherent(&pcidev->dev, S626_DMABUF_SIZE, &appdma,
2141                                  GFP_KERNEL);
2142        if (!addr)
2143                return -ENOMEM;
2144        devpriv->rps_buf.logical_base = addr;
2145        devpriv->rps_buf.physical_base = appdma;
2146
2147        return 0;
2148}
2149
2150static void s626_free_dma_buffers(struct comedi_device *dev)
2151{
2152        struct pci_dev *pcidev = comedi_to_pci_dev(dev);
2153        struct s626_private *devpriv = dev->private;
2154
2155        if (!devpriv)
2156                return;
2157
2158        if (devpriv->rps_buf.logical_base)
2159                dma_free_coherent(&pcidev->dev, S626_DMABUF_SIZE,
2160                                  devpriv->rps_buf.logical_base,
2161                                  devpriv->rps_buf.physical_base);
2162        if (devpriv->ana_buf.logical_base)
2163                dma_free_coherent(&pcidev->dev, S626_DMABUF_SIZE,
2164                                  devpriv->ana_buf.logical_base,
2165                                  devpriv->ana_buf.physical_base);
2166}
2167
2168static int s626_initialize(struct comedi_device *dev)
2169{
2170        struct s626_private *devpriv = dev->private;
2171        dma_addr_t phys_buf;
2172        u16 chan;
2173        int i;
2174        int ret;
2175
2176        /* Enable DEBI and audio pins, enable I2C interface */
2177        s626_mc_enable(dev, S626_MC1_DEBI | S626_MC1_AUDIO | S626_MC1_I2C,
2178                       S626_P_MC1);
2179
2180        /*
2181         * Configure DEBI operating mode
2182         *
2183         *  Local bus is 16 bits wide
2184         *  Declare DEBI transfer timeout interval
2185         *  Set up byte lane steering
2186         *  Intel-compatible local bus (DEBI never times out)
2187         */
2188        writel(S626_DEBI_CFG_SLAVE16 |
2189               (S626_DEBI_TOUT << S626_DEBI_CFG_TOUT_BIT) | S626_DEBI_SWAP |
2190               S626_DEBI_CFG_INTEL, dev->mmio + S626_P_DEBICFG);
2191
2192        /* Disable MMU paging */
2193        writel(S626_DEBI_PAGE_DISABLE, dev->mmio + S626_P_DEBIPAGE);
2194
2195        /* Init GPIO so that ADC Start* is negated */
2196        writel(S626_GPIO_BASE | S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
2197
2198        /* I2C device address for onboard eeprom (revb) */
2199        devpriv->i2c_adrs = 0xA0;
2200
2201        /*
2202         * Issue an I2C ABORT command to halt any I2C
2203         * operation in progress and reset BUSY flag.
2204         */
2205        writel(S626_I2C_CLKSEL | S626_I2C_ABORT,
2206               dev->mmio + S626_P_I2CSTAT);
2207        s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
2208        ret = comedi_timeout(dev, NULL, NULL, s626_i2c_handshake_eoc, 0);
2209        if (ret)
2210                return ret;
2211
2212        /*
2213         * Per SAA7146 data sheet, write to STATUS
2214         * reg twice to reset all  I2C error flags.
2215         */
2216        for (i = 0; i < 2; i++) {
2217                writel(S626_I2C_CLKSEL, dev->mmio + S626_P_I2CSTAT);
2218                s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
2219                ret = comedi_timeout(dev, NULL,
2220                                     NULL, s626_i2c_handshake_eoc, 0);
2221                if (ret)
2222                        return ret;
2223        }
2224
2225        /*
2226         * Init audio interface functional attributes: set DAC/ADC
2227         * serial clock rates, invert DAC serial clock so that
2228         * DAC data setup times are satisfied, enable DAC serial
2229         * clock out.
2230         */
2231        writel(S626_ACON2_INIT, dev->mmio + S626_P_ACON2);
2232
2233        /*
2234         * Set up TSL1 slot list, which is used to control the
2235         * accumulation of ADC data: S626_RSD1 = shift data in on SD1.
2236         * S626_SIB_A1  = store data uint8_t at next available location
2237         * in FB BUFFER1 register.
2238         */
2239        writel(S626_RSD1 | S626_SIB_A1, dev->mmio + S626_P_TSL1);
2240        writel(S626_RSD1 | S626_SIB_A1 | S626_EOS,
2241               dev->mmio + S626_P_TSL1 + 4);
2242
2243        /* Enable TSL1 slot list so that it executes all the time */
2244        writel(S626_ACON1_ADCSTART, dev->mmio + S626_P_ACON1);
2245
2246        /*
2247         * Initialize RPS registers used for ADC
2248         */
2249
2250        /* Physical start of RPS program */
2251        writel((u32)devpriv->rps_buf.physical_base,
2252               dev->mmio + S626_P_RPSADDR1);
2253        /* RPS program performs no explicit mem writes */
2254        writel(0, dev->mmio + S626_P_RPSPAGE1);
2255        /* Disable RPS timeouts */
2256        writel(0, dev->mmio + S626_P_RPS1_TOUT);
2257
2258#if 0
2259        /*
2260         * SAA7146 BUG WORKAROUND
2261         *
2262         * Initialize SAA7146 ADC interface to a known state by
2263         * invoking ADCs until FB BUFFER 1 register shows that it
2264         * is correctly receiving ADC data. This is necessary
2265         * because the SAA7146 ADC interface does not start up in
2266         * a defined state after a PCI reset.
2267         */
2268        {
2269                struct comedi_subdevice *s = dev->read_subdev;
2270                u8 poll_list;
2271                u16 adc_data;
2272                u16 start_val;
2273                u16 index;
2274                unsigned int data[16];
2275
2276                /* Create a simple polling list for analog input channel 0 */
2277                poll_list = S626_EOPL;
2278                s626_reset_adc(dev, &poll_list);
2279
2280                /* Get initial ADC value */
2281                s626_ai_rinsn(dev, s, NULL, data);
2282                start_val = data[0];
2283
2284                /*
2285                 * VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED
2286                 * EXECUTION.
2287                 *
2288                 * Invoke ADCs until the new ADC value differs from the initial
2289                 * value or a timeout occurs.  The timeout protects against the
2290                 * possibility that the driver is restarting and the ADC data is
2291                 * a fixed value resulting from the applied ADC analog input
2292                 * being unusually quiet or at the rail.
2293                 */
2294                for (index = 0; index < 500; index++) {
2295                        s626_ai_rinsn(dev, s, NULL, data);
2296                        adc_data = data[0];
2297                        if (adc_data != start_val)
2298                                break;
2299                }
2300        }
2301#endif  /* SAA7146 BUG WORKAROUND */
2302
2303        /*
2304         * Initialize the DAC interface
2305         */
2306
2307        /*
2308         * Init Audio2's output DMAC attributes:
2309         *   burst length = 1 DWORD
2310         *   threshold = 1 DWORD.
2311         */
2312        writel(0, dev->mmio + S626_P_PCI_BT_A);
2313
2314        /*
2315         * Init Audio2's output DMA physical addresses.  The protection
2316         * address is set to 1 DWORD past the base address so that a
2317         * single DWORD will be transferred each time a DMA transfer is
2318         * enabled.
2319         */
2320        phys_buf = devpriv->ana_buf.physical_base +
2321                   (S626_DAC_WDMABUF_OS * sizeof(u32));
2322        writel((u32)phys_buf, dev->mmio + S626_P_BASEA2_OUT);
2323        writel((u32)(phys_buf + sizeof(u32)),
2324               dev->mmio + S626_P_PROTA2_OUT);
2325
2326        /*
2327         * Cache Audio2's output DMA buffer logical address.  This is
2328         * where DAC data is buffered for A2 output DMA transfers.
2329         */
2330        devpriv->dac_wbuf = (u32 *)devpriv->ana_buf.logical_base +
2331                            S626_DAC_WDMABUF_OS;
2332
2333        /*
2334         * Audio2's output channels does not use paging.  The
2335         * protection violation handling bit is set so that the
2336         * DMAC will automatically halt and its PCI address pointer
2337         * will be reset when the protection address is reached.
2338         */
2339        writel(8, dev->mmio + S626_P_PAGEA2_OUT);
2340
2341        /*
2342         * Initialize time slot list 2 (TSL2), which is used to control
2343         * the clock generation for and serialization of data to be sent
2344         * to the DAC devices.  Slot 0 is a NOP that is used to trap TSL
2345         * execution; this permits other slots to be safely modified
2346         * without first turning off the TSL sequencer (which is
2347         * apparently impossible to do).  Also, SD3 (which is driven by a
2348         * pull-up resistor) is shifted in and stored to the MSB of
2349         * FB_BUFFER2 to be used as evidence that the slot sequence has
2350         * not yet finished executing.
2351         */
2352
2353        /* Slot 0: Trap TSL execution, shift 0xFF into FB_BUFFER2 */
2354        writel(S626_XSD2 | S626_RSD3 | S626_SIB_A2 | S626_EOS,
2355               dev->mmio + S626_VECTPORT(0));
2356
2357        /*
2358         * Initialize slot 1, which is constant.  Slot 1 causes a
2359         * DWORD to be transferred from audio channel 2's output FIFO
2360         * to the FIFO's output buffer so that it can be serialized
2361         * and sent to the DAC during subsequent slots.  All remaining
2362         * slots are dynamically populated as required by the target
2363         * DAC device.
2364         */
2365
2366        /* Slot 1: Fetch DWORD from Audio2's output FIFO */
2367        writel(S626_LF_A2, dev->mmio + S626_VECTPORT(1));
2368
2369        /* Start DAC's audio interface (TSL2) running */
2370        writel(S626_ACON1_DACSTART, dev->mmio + S626_P_ACON1);
2371
2372        /*
2373         * Init Trim DACs to calibrated values.  Do it twice because the
2374         * SAA7146 audio channel does not always reset properly and
2375         * sometimes causes the first few TrimDAC writes to malfunction.
2376         */
2377        s626_load_trim_dacs(dev);
2378        ret = s626_load_trim_dacs(dev);
2379        if (ret)
2380                return ret;
2381
2382        /*
2383         * Manually init all gate array hardware in case this is a soft
2384         * reset (we have no way of determining whether this is a warm
2385         * or cold start).  This is necessary because the gate array will
2386         * reset only in response to a PCI hard reset; there is no soft
2387         * reset function.
2388         */
2389
2390        /*
2391         * Init all DAC outputs to 0V and init all DAC setpoint and
2392         * polarity images.
2393         */
2394        for (chan = 0; chan < S626_DAC_CHANNELS; chan++) {
2395                ret = s626_set_dac(dev, chan, 0);
2396                if (ret)
2397                        return ret;
2398        }
2399
2400        /* Init counters */
2401        s626_counters_init(dev);
2402
2403        /*
2404         * Without modifying the state of the Battery Backup enab, disable
2405         * the watchdog timer, set DIO channels 0-5 to operate in the
2406         * standard DIO (vs. counter overflow) mode, disable the battery
2407         * charger, and reset the watchdog interval selector to zero.
2408         */
2409        s626_write_misc2(dev, (s626_debi_read(dev, S626_LP_RDMISC2) &
2410                               S626_MISC2_BATT_ENABLE));
2411
2412        /* Initialize the digital I/O subsystem */
2413        s626_dio_init(dev);
2414
2415        return 0;
2416}
2417
2418static int s626_auto_attach(struct comedi_device *dev,
2419                            unsigned long context_unused)
2420{
2421        struct pci_dev *pcidev = comedi_to_pci_dev(dev);
2422        struct s626_private *devpriv;
2423        struct comedi_subdevice *s;
2424        int ret;
2425
2426        devpriv = comedi_alloc_devpriv(dev, sizeof(*devpriv));
2427        if (!devpriv)
2428                return -ENOMEM;
2429
2430        ret = comedi_pci_enable(dev);
2431        if (ret)
2432                return ret;
2433
2434        dev->mmio = pci_ioremap_bar(pcidev, 0);
2435        if (!dev->mmio)
2436                return -ENOMEM;
2437
2438        /* disable master interrupt */
2439        writel(0, dev->mmio + S626_P_IER);
2440
2441        /* soft reset */
2442        writel(S626_MC1_SOFT_RESET, dev->mmio + S626_P_MC1);
2443
2444        /* DMA FIXME DMA// */
2445
2446        ret = s626_allocate_dma_buffers(dev);
2447        if (ret)
2448                return ret;
2449
2450        if (pcidev->irq) {
2451                ret = request_irq(pcidev->irq, s626_irq_handler, IRQF_SHARED,
2452                                  dev->board_name, dev);
2453
2454                if (ret == 0)
2455                        dev->irq = pcidev->irq;
2456        }
2457
2458        ret = comedi_alloc_subdevices(dev, 6);
2459        if (ret)
2460                return ret;
2461
2462        s = &dev->subdevices[0];
2463        /* analog input subdevice */
2464        s->type         = COMEDI_SUBD_AI;
2465        s->subdev_flags = SDF_READABLE | SDF_DIFF;
2466        s->n_chan       = S626_ADC_CHANNELS;
2467        s->maxdata      = 0x3fff;
2468        s->range_table  = &s626_range_table;
2469        s->len_chanlist = S626_ADC_CHANNELS;
2470        s->insn_read    = s626_ai_insn_read;
2471        if (dev->irq) {
2472                dev->read_subdev = s;
2473                s->subdev_flags |= SDF_CMD_READ;
2474                s->do_cmd       = s626_ai_cmd;
2475                s->do_cmdtest   = s626_ai_cmdtest;
2476                s->cancel       = s626_ai_cancel;
2477        }
2478
2479        s = &dev->subdevices[1];
2480        /* analog output subdevice */
2481        s->type         = COMEDI_SUBD_AO;
2482        s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
2483        s->n_chan       = S626_DAC_CHANNELS;
2484        s->maxdata      = 0x3fff;
2485        s->range_table  = &range_bipolar10;
2486        s->insn_write   = s626_ao_insn_write;
2487
2488        ret = comedi_alloc_subdev_readback(s);
2489        if (ret)
2490                return ret;
2491
2492        s = &dev->subdevices[2];
2493        /* digital I/O subdevice */
2494        s->type         = COMEDI_SUBD_DIO;
2495        s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
2496        s->n_chan       = 16;
2497        s->maxdata      = 1;
2498        s->io_bits      = 0xffff;
2499        s->private      = (void *)0;    /* DIO group 0 */
2500        s->range_table  = &range_digital;
2501        s->insn_config  = s626_dio_insn_config;
2502        s->insn_bits    = s626_dio_insn_bits;
2503
2504        s = &dev->subdevices[3];
2505        /* digital I/O subdevice */
2506        s->type         = COMEDI_SUBD_DIO;
2507        s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
2508        s->n_chan       = 16;
2509        s->maxdata      = 1;
2510        s->io_bits      = 0xffff;
2511        s->private      = (void *)1;    /* DIO group 1 */
2512        s->range_table  = &range_digital;
2513        s->insn_config  = s626_dio_insn_config;
2514        s->insn_bits    = s626_dio_insn_bits;
2515
2516        s = &dev->subdevices[4];
2517        /* digital I/O subdevice */
2518        s->type         = COMEDI_SUBD_DIO;
2519        s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
2520        s->n_chan       = 16;
2521        s->maxdata      = 1;
2522        s->io_bits      = 0xffff;
2523        s->private      = (void *)2;    /* DIO group 2 */
2524        s->range_table  = &range_digital;
2525        s->insn_config  = s626_dio_insn_config;
2526        s->insn_bits    = s626_dio_insn_bits;
2527
2528        s = &dev->subdevices[5];
2529        /* encoder (counter) subdevice */
2530        s->type         = COMEDI_SUBD_COUNTER;
2531        s->subdev_flags = SDF_WRITABLE | SDF_READABLE | SDF_LSAMPL;
2532        s->n_chan       = S626_ENCODER_CHANNELS;
2533        s->maxdata      = 0xffffff;
2534        s->range_table  = &range_unknown;
2535        s->insn_config  = s626_enc_insn_config;
2536        s->insn_read    = s626_enc_insn_read;
2537        s->insn_write   = s626_enc_insn_write;
2538
2539        return s626_initialize(dev);
2540}
2541
2542static void s626_detach(struct comedi_device *dev)
2543{
2544        struct s626_private *devpriv = dev->private;
2545
2546        if (devpriv) {
2547                /* stop ai_command */
2548                devpriv->ai_cmd_running = 0;
2549
2550                if (dev->mmio) {
2551                        /* interrupt mask */
2552                        /* Disable master interrupt */
2553                        writel(0, dev->mmio + S626_P_IER);
2554                        /* Clear board's IRQ status flag */
2555                        writel(S626_IRQ_GPIO3 | S626_IRQ_RPS1,
2556                               dev->mmio + S626_P_ISR);
2557
2558                        /* Disable the watchdog timer and battery charger. */
2559                        s626_write_misc2(dev, 0);
2560
2561                        /* Close all interfaces on 7146 device */
2562                        writel(S626_MC1_SHUTDOWN, dev->mmio + S626_P_MC1);
2563                        writel(S626_ACON1_BASE, dev->mmio + S626_P_ACON1);
2564                }
2565        }
2566        comedi_pci_detach(dev);
2567        s626_free_dma_buffers(dev);
2568}
2569
2570static struct comedi_driver s626_driver = {
2571        .driver_name    = "s626",
2572        .module         = THIS_MODULE,
2573        .auto_attach    = s626_auto_attach,
2574        .detach         = s626_detach,
2575};
2576
2577static int s626_pci_probe(struct pci_dev *dev,
2578                          const struct pci_device_id *id)
2579{
2580        return comedi_pci_auto_config(dev, &s626_driver, id->driver_data);
2581}
2582
2583/*
2584 * For devices with vendor:device id == 0x1131:0x7146 you must specify
2585 * also subvendor:subdevice ids, because otherwise it will conflict with
2586 * Philips SAA7146 media/dvb based cards.
2587 */
2588static const struct pci_device_id s626_pci_table[] = {
2589        { PCI_DEVICE_SUB(PCI_VENDOR_ID_PHILIPS, PCI_DEVICE_ID_PHILIPS_SAA7146,
2590                         0x6000, 0x0272) },
2591        { 0 }
2592};
2593MODULE_DEVICE_TABLE(pci, s626_pci_table);
2594
2595static struct pci_driver s626_pci_driver = {
2596        .name           = "s626",
2597        .id_table       = s626_pci_table,
2598        .probe          = s626_pci_probe,
2599        .remove         = comedi_pci_auto_unconfig,
2600};
2601module_comedi_pci_driver(s626_driver, s626_pci_driver);
2602
2603MODULE_AUTHOR("Gianluca Palli <gpalli@deis.unibo.it>");
2604MODULE_DESCRIPTION("Sensoray 626 Comedi driver module");
2605MODULE_LICENSE("GPL");
2606