linux/drivers/tty/serial/amba-pl011.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 *  Driver for AMBA serial ports
   4 *
   5 *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
   6 *
   7 *  Copyright 1999 ARM Limited
   8 *  Copyright (C) 2000 Deep Blue Solutions Ltd.
   9 *  Copyright (C) 2010 ST-Ericsson SA
  10 *
  11 * This is a generic driver for ARM AMBA-type serial ports.  They
  12 * have a lot of 16550-like features, but are not register compatible.
  13 * Note that although they do have CTS, DCD and DSR inputs, they do
  14 * not have an RI input, nor do they have DTR or RTS outputs.  If
  15 * required, these have to be supplied via some other means (eg, GPIO)
  16 * and hooked into this driver.
  17 */
  18
  19#include <linux/module.h>
  20#include <linux/ioport.h>
  21#include <linux/init.h>
  22#include <linux/console.h>
  23#include <linux/sysrq.h>
  24#include <linux/device.h>
  25#include <linux/tty.h>
  26#include <linux/tty_flip.h>
  27#include <linux/serial_core.h>
  28#include <linux/serial.h>
  29#include <linux/amba/bus.h>
  30#include <linux/amba/serial.h>
  31#include <linux/clk.h>
  32#include <linux/slab.h>
  33#include <linux/dmaengine.h>
  34#include <linux/dma-mapping.h>
  35#include <linux/scatterlist.h>
  36#include <linux/delay.h>
  37#include <linux/types.h>
  38#include <linux/of.h>
  39#include <linux/of_device.h>
  40#include <linux/pinctrl/consumer.h>
  41#include <linux/sizes.h>
  42#include <linux/io.h>
  43#include <linux/acpi.h>
  44
  45#include "amba-pl011.h"
  46
  47#define UART_NR                 14
  48
  49#define SERIAL_AMBA_MAJOR       204
  50#define SERIAL_AMBA_MINOR       64
  51#define SERIAL_AMBA_NR          UART_NR
  52
  53#define AMBA_ISR_PASS_LIMIT     256
  54
  55#define UART_DR_ERROR           (UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
  56#define UART_DUMMY_DR_RX        (1 << 16)
  57
  58static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
  59        [REG_DR] = UART01x_DR,
  60        [REG_FR] = UART01x_FR,
  61        [REG_LCRH_RX] = UART011_LCRH,
  62        [REG_LCRH_TX] = UART011_LCRH,
  63        [REG_IBRD] = UART011_IBRD,
  64        [REG_FBRD] = UART011_FBRD,
  65        [REG_CR] = UART011_CR,
  66        [REG_IFLS] = UART011_IFLS,
  67        [REG_IMSC] = UART011_IMSC,
  68        [REG_RIS] = UART011_RIS,
  69        [REG_MIS] = UART011_MIS,
  70        [REG_ICR] = UART011_ICR,
  71        [REG_DMACR] = UART011_DMACR,
  72};
  73
  74/* There is by now at least one vendor with differing details, so handle it */
  75struct vendor_data {
  76        const u16               *reg_offset;
  77        unsigned int            ifls;
  78        unsigned int            fr_busy;
  79        unsigned int            fr_dsr;
  80        unsigned int            fr_cts;
  81        unsigned int            fr_ri;
  82        unsigned int            inv_fr;
  83        bool                    access_32b;
  84        bool                    oversampling;
  85        bool                    dma_threshold;
  86        bool                    cts_event_workaround;
  87        bool                    always_enabled;
  88        bool                    fixed_options;
  89
  90        unsigned int (*get_fifosize)(struct amba_device *dev);
  91};
  92
  93static unsigned int get_fifosize_arm(struct amba_device *dev)
  94{
  95        return amba_rev(dev) < 3 ? 16 : 32;
  96}
  97
  98static struct vendor_data vendor_arm = {
  99        .reg_offset             = pl011_std_offsets,
 100        .ifls                   = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
 101        .fr_busy                = UART01x_FR_BUSY,
 102        .fr_dsr                 = UART01x_FR_DSR,
 103        .fr_cts                 = UART01x_FR_CTS,
 104        .fr_ri                  = UART011_FR_RI,
 105        .oversampling           = false,
 106        .dma_threshold          = false,
 107        .cts_event_workaround   = false,
 108        .always_enabled         = false,
 109        .fixed_options          = false,
 110        .get_fifosize           = get_fifosize_arm,
 111};
 112
 113static const struct vendor_data vendor_sbsa = {
 114        .reg_offset             = pl011_std_offsets,
 115        .fr_busy                = UART01x_FR_BUSY,
 116        .fr_dsr                 = UART01x_FR_DSR,
 117        .fr_cts                 = UART01x_FR_CTS,
 118        .fr_ri                  = UART011_FR_RI,
 119        .access_32b             = true,
 120        .oversampling           = false,
 121        .dma_threshold          = false,
 122        .cts_event_workaround   = false,
 123        .always_enabled         = true,
 124        .fixed_options          = true,
 125};
 126
 127#ifdef CONFIG_ACPI_SPCR_TABLE
 128static const struct vendor_data vendor_qdt_qdf2400_e44 = {
 129        .reg_offset             = pl011_std_offsets,
 130        .fr_busy                = UART011_FR_TXFE,
 131        .fr_dsr                 = UART01x_FR_DSR,
 132        .fr_cts                 = UART01x_FR_CTS,
 133        .fr_ri                  = UART011_FR_RI,
 134        .inv_fr                 = UART011_FR_TXFE,
 135        .access_32b             = true,
 136        .oversampling           = false,
 137        .dma_threshold          = false,
 138        .cts_event_workaround   = false,
 139        .always_enabled         = true,
 140        .fixed_options          = true,
 141};
 142#endif
 143
 144static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
 145        [REG_DR] = UART01x_DR,
 146        [REG_ST_DMAWM] = ST_UART011_DMAWM,
 147        [REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
 148        [REG_FR] = UART01x_FR,
 149        [REG_LCRH_RX] = ST_UART011_LCRH_RX,
 150        [REG_LCRH_TX] = ST_UART011_LCRH_TX,
 151        [REG_IBRD] = UART011_IBRD,
 152        [REG_FBRD] = UART011_FBRD,
 153        [REG_CR] = UART011_CR,
 154        [REG_IFLS] = UART011_IFLS,
 155        [REG_IMSC] = UART011_IMSC,
 156        [REG_RIS] = UART011_RIS,
 157        [REG_MIS] = UART011_MIS,
 158        [REG_ICR] = UART011_ICR,
 159        [REG_DMACR] = UART011_DMACR,
 160        [REG_ST_XFCR] = ST_UART011_XFCR,
 161        [REG_ST_XON1] = ST_UART011_XON1,
 162        [REG_ST_XON2] = ST_UART011_XON2,
 163        [REG_ST_XOFF1] = ST_UART011_XOFF1,
 164        [REG_ST_XOFF2] = ST_UART011_XOFF2,
 165        [REG_ST_ITCR] = ST_UART011_ITCR,
 166        [REG_ST_ITIP] = ST_UART011_ITIP,
 167        [REG_ST_ABCR] = ST_UART011_ABCR,
 168        [REG_ST_ABIMSC] = ST_UART011_ABIMSC,
 169};
 170
 171static unsigned int get_fifosize_st(struct amba_device *dev)
 172{
 173        return 64;
 174}
 175
 176static struct vendor_data vendor_st = {
 177        .reg_offset             = pl011_st_offsets,
 178        .ifls                   = UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
 179        .fr_busy                = UART01x_FR_BUSY,
 180        .fr_dsr                 = UART01x_FR_DSR,
 181        .fr_cts                 = UART01x_FR_CTS,
 182        .fr_ri                  = UART011_FR_RI,
 183        .oversampling           = true,
 184        .dma_threshold          = true,
 185        .cts_event_workaround   = true,
 186        .always_enabled         = false,
 187        .fixed_options          = false,
 188        .get_fifosize           = get_fifosize_st,
 189};
 190
 191static const u16 pl011_zte_offsets[REG_ARRAY_SIZE] = {
 192        [REG_DR] = ZX_UART011_DR,
 193        [REG_FR] = ZX_UART011_FR,
 194        [REG_LCRH_RX] = ZX_UART011_LCRH,
 195        [REG_LCRH_TX] = ZX_UART011_LCRH,
 196        [REG_IBRD] = ZX_UART011_IBRD,
 197        [REG_FBRD] = ZX_UART011_FBRD,
 198        [REG_CR] = ZX_UART011_CR,
 199        [REG_IFLS] = ZX_UART011_IFLS,
 200        [REG_IMSC] = ZX_UART011_IMSC,
 201        [REG_RIS] = ZX_UART011_RIS,
 202        [REG_MIS] = ZX_UART011_MIS,
 203        [REG_ICR] = ZX_UART011_ICR,
 204        [REG_DMACR] = ZX_UART011_DMACR,
 205};
 206
 207static unsigned int get_fifosize_zte(struct amba_device *dev)
 208{
 209        return 16;
 210}
 211
 212static struct vendor_data vendor_zte = {
 213        .reg_offset             = pl011_zte_offsets,
 214        .access_32b             = true,
 215        .ifls                   = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
 216        .fr_busy                = ZX_UART01x_FR_BUSY,
 217        .fr_dsr                 = ZX_UART01x_FR_DSR,
 218        .fr_cts                 = ZX_UART01x_FR_CTS,
 219        .fr_ri                  = ZX_UART011_FR_RI,
 220        .get_fifosize           = get_fifosize_zte,
 221};
 222
 223/* Deals with DMA transactions */
 224
 225struct pl011_sgbuf {
 226        struct scatterlist sg;
 227        char *buf;
 228};
 229
 230struct pl011_dmarx_data {
 231        struct dma_chan         *chan;
 232        struct completion       complete;
 233        bool                    use_buf_b;
 234        struct pl011_sgbuf      sgbuf_a;
 235        struct pl011_sgbuf      sgbuf_b;
 236        dma_cookie_t            cookie;
 237        bool                    running;
 238        struct timer_list       timer;
 239        unsigned int last_residue;
 240        unsigned long last_jiffies;
 241        bool auto_poll_rate;
 242        unsigned int poll_rate;
 243        unsigned int poll_timeout;
 244};
 245
 246struct pl011_dmatx_data {
 247        struct dma_chan         *chan;
 248        struct scatterlist      sg;
 249        char                    *buf;
 250        bool                    queued;
 251};
 252
 253/*
 254 * We wrap our port structure around the generic uart_port.
 255 */
 256struct uart_amba_port {
 257        struct uart_port        port;
 258        const u16               *reg_offset;
 259        struct clk              *clk;
 260        const struct vendor_data *vendor;
 261        unsigned int            dmacr;          /* dma control reg */
 262        unsigned int            im;             /* interrupt mask */
 263        unsigned int            old_status;
 264        unsigned int            fifosize;       /* vendor-specific */
 265        unsigned int            old_cr;         /* state during shutdown */
 266        unsigned int            fixed_baud;     /* vendor-set fixed baud rate */
 267        char                    type[12];
 268#ifdef CONFIG_DMA_ENGINE
 269        /* DMA stuff */
 270        bool                    using_tx_dma;
 271        bool                    using_rx_dma;
 272        struct pl011_dmarx_data dmarx;
 273        struct pl011_dmatx_data dmatx;
 274        bool                    dma_probed;
 275#endif
 276};
 277
 278static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
 279        unsigned int reg)
 280{
 281        return uap->reg_offset[reg];
 282}
 283
 284static unsigned int pl011_read(const struct uart_amba_port *uap,
 285        unsigned int reg)
 286{
 287        void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
 288
 289        return (uap->port.iotype == UPIO_MEM32) ?
 290                readl_relaxed(addr) : readw_relaxed(addr);
 291}
 292
 293static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
 294        unsigned int reg)
 295{
 296        void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
 297
 298        if (uap->port.iotype == UPIO_MEM32)
 299                writel_relaxed(val, addr);
 300        else
 301                writew_relaxed(val, addr);
 302}
 303
 304/*
 305 * Reads up to 256 characters from the FIFO or until it's empty and
 306 * inserts them into the TTY layer. Returns the number of characters
 307 * read from the FIFO.
 308 */
 309static int pl011_fifo_to_tty(struct uart_amba_port *uap)
 310{
 311        u16 status;
 312        unsigned int ch, flag, fifotaken;
 313
 314        for (fifotaken = 0; fifotaken != 256; fifotaken++) {
 315                status = pl011_read(uap, REG_FR);
 316                if (status & UART01x_FR_RXFE)
 317                        break;
 318
 319                /* Take chars from the FIFO and update status */
 320                ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
 321                flag = TTY_NORMAL;
 322                uap->port.icount.rx++;
 323
 324                if (unlikely(ch & UART_DR_ERROR)) {
 325                        if (ch & UART011_DR_BE) {
 326                                ch &= ~(UART011_DR_FE | UART011_DR_PE);
 327                                uap->port.icount.brk++;
 328                                if (uart_handle_break(&uap->port))
 329                                        continue;
 330                        } else if (ch & UART011_DR_PE)
 331                                uap->port.icount.parity++;
 332                        else if (ch & UART011_DR_FE)
 333                                uap->port.icount.frame++;
 334                        if (ch & UART011_DR_OE)
 335                                uap->port.icount.overrun++;
 336
 337                        ch &= uap->port.read_status_mask;
 338
 339                        if (ch & UART011_DR_BE)
 340                                flag = TTY_BREAK;
 341                        else if (ch & UART011_DR_PE)
 342                                flag = TTY_PARITY;
 343                        else if (ch & UART011_DR_FE)
 344                                flag = TTY_FRAME;
 345                }
 346
 347                if (uart_handle_sysrq_char(&uap->port, ch & 255))
 348                        continue;
 349
 350                uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
 351        }
 352
 353        return fifotaken;
 354}
 355
 356
 357/*
 358 * All the DMA operation mode stuff goes inside this ifdef.
 359 * This assumes that you have a generic DMA device interface,
 360 * no custom DMA interfaces are supported.
 361 */
 362#ifdef CONFIG_DMA_ENGINE
 363
 364#define PL011_DMA_BUFFER_SIZE PAGE_SIZE
 365
 366static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
 367        enum dma_data_direction dir)
 368{
 369        dma_addr_t dma_addr;
 370
 371        sg->buf = dma_alloc_coherent(chan->device->dev,
 372                PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
 373        if (!sg->buf)
 374                return -ENOMEM;
 375
 376        sg_init_table(&sg->sg, 1);
 377        sg_set_page(&sg->sg, phys_to_page(dma_addr),
 378                PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
 379        sg_dma_address(&sg->sg) = dma_addr;
 380        sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
 381
 382        return 0;
 383}
 384
 385static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
 386        enum dma_data_direction dir)
 387{
 388        if (sg->buf) {
 389                dma_free_coherent(chan->device->dev,
 390                        PL011_DMA_BUFFER_SIZE, sg->buf,
 391                        sg_dma_address(&sg->sg));
 392        }
 393}
 394
 395static void pl011_dma_probe(struct uart_amba_port *uap)
 396{
 397        /* DMA is the sole user of the platform data right now */
 398        struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
 399        struct device *dev = uap->port.dev;
 400        struct dma_slave_config tx_conf = {
 401                .dst_addr = uap->port.mapbase +
 402                                 pl011_reg_to_offset(uap, REG_DR),
 403                .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 404                .direction = DMA_MEM_TO_DEV,
 405                .dst_maxburst = uap->fifosize >> 1,
 406                .device_fc = false,
 407        };
 408        struct dma_chan *chan;
 409        dma_cap_mask_t mask;
 410
 411        uap->dma_probed = true;
 412        chan = dma_request_chan(dev, "tx");
 413        if (IS_ERR(chan)) {
 414                if (PTR_ERR(chan) == -EPROBE_DEFER) {
 415                        uap->dma_probed = false;
 416                        return;
 417                }
 418
 419                /* We need platform data */
 420                if (!plat || !plat->dma_filter) {
 421                        dev_info(uap->port.dev, "no DMA platform data\n");
 422                        return;
 423                }
 424
 425                /* Try to acquire a generic DMA engine slave TX channel */
 426                dma_cap_zero(mask);
 427                dma_cap_set(DMA_SLAVE, mask);
 428
 429                chan = dma_request_channel(mask, plat->dma_filter,
 430                                                plat->dma_tx_param);
 431                if (!chan) {
 432                        dev_err(uap->port.dev, "no TX DMA channel!\n");
 433                        return;
 434                }
 435        }
 436
 437        dmaengine_slave_config(chan, &tx_conf);
 438        uap->dmatx.chan = chan;
 439
 440        dev_info(uap->port.dev, "DMA channel TX %s\n",
 441                 dma_chan_name(uap->dmatx.chan));
 442
 443        /* Optionally make use of an RX channel as well */
 444        chan = dma_request_slave_channel(dev, "rx");
 445
 446        if (!chan && plat && plat->dma_rx_param) {
 447                chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
 448
 449                if (!chan) {
 450                        dev_err(uap->port.dev, "no RX DMA channel!\n");
 451                        return;
 452                }
 453        }
 454
 455        if (chan) {
 456                struct dma_slave_config rx_conf = {
 457                        .src_addr = uap->port.mapbase +
 458                                pl011_reg_to_offset(uap, REG_DR),
 459                        .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 460                        .direction = DMA_DEV_TO_MEM,
 461                        .src_maxburst = uap->fifosize >> 2,
 462                        .device_fc = false,
 463                };
 464                struct dma_slave_caps caps;
 465
 466                /*
 467                 * Some DMA controllers provide information on their capabilities.
 468                 * If the controller does, check for suitable residue processing
 469                 * otherwise assime all is well.
 470                 */
 471                if (0 == dma_get_slave_caps(chan, &caps)) {
 472                        if (caps.residue_granularity ==
 473                                        DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
 474                                dma_release_channel(chan);
 475                                dev_info(uap->port.dev,
 476                                        "RX DMA disabled - no residue processing\n");
 477                                return;
 478                        }
 479                }
 480                dmaengine_slave_config(chan, &rx_conf);
 481                uap->dmarx.chan = chan;
 482
 483                uap->dmarx.auto_poll_rate = false;
 484                if (plat && plat->dma_rx_poll_enable) {
 485                        /* Set poll rate if specified. */
 486                        if (plat->dma_rx_poll_rate) {
 487                                uap->dmarx.auto_poll_rate = false;
 488                                uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
 489                        } else {
 490                                /*
 491                                 * 100 ms defaults to poll rate if not
 492                                 * specified. This will be adjusted with
 493                                 * the baud rate at set_termios.
 494                                 */
 495                                uap->dmarx.auto_poll_rate = true;
 496                                uap->dmarx.poll_rate =  100;
 497                        }
 498                        /* 3 secs defaults poll_timeout if not specified. */
 499                        if (plat->dma_rx_poll_timeout)
 500                                uap->dmarx.poll_timeout =
 501                                        plat->dma_rx_poll_timeout;
 502                        else
 503                                uap->dmarx.poll_timeout = 3000;
 504                } else if (!plat && dev->of_node) {
 505                        uap->dmarx.auto_poll_rate = of_property_read_bool(
 506                                                dev->of_node, "auto-poll");
 507                        if (uap->dmarx.auto_poll_rate) {
 508                                u32 x;
 509
 510                                if (0 == of_property_read_u32(dev->of_node,
 511                                                "poll-rate-ms", &x))
 512                                        uap->dmarx.poll_rate = x;
 513                                else
 514                                        uap->dmarx.poll_rate = 100;
 515                                if (0 == of_property_read_u32(dev->of_node,
 516                                                "poll-timeout-ms", &x))
 517                                        uap->dmarx.poll_timeout = x;
 518                                else
 519                                        uap->dmarx.poll_timeout = 3000;
 520                        }
 521                }
 522                dev_info(uap->port.dev, "DMA channel RX %s\n",
 523                         dma_chan_name(uap->dmarx.chan));
 524        }
 525}
 526
 527static void pl011_dma_remove(struct uart_amba_port *uap)
 528{
 529        if (uap->dmatx.chan)
 530                dma_release_channel(uap->dmatx.chan);
 531        if (uap->dmarx.chan)
 532                dma_release_channel(uap->dmarx.chan);
 533}
 534
 535/* Forward declare these for the refill routine */
 536static int pl011_dma_tx_refill(struct uart_amba_port *uap);
 537static void pl011_start_tx_pio(struct uart_amba_port *uap);
 538
 539/*
 540 * The current DMA TX buffer has been sent.
 541 * Try to queue up another DMA buffer.
 542 */
 543static void pl011_dma_tx_callback(void *data)
 544{
 545        struct uart_amba_port *uap = data;
 546        struct pl011_dmatx_data *dmatx = &uap->dmatx;
 547        unsigned long flags;
 548        u16 dmacr;
 549
 550        spin_lock_irqsave(&uap->port.lock, flags);
 551        if (uap->dmatx.queued)
 552                dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
 553                             DMA_TO_DEVICE);
 554
 555        dmacr = uap->dmacr;
 556        uap->dmacr = dmacr & ~UART011_TXDMAE;
 557        pl011_write(uap->dmacr, uap, REG_DMACR);
 558
 559        /*
 560         * If TX DMA was disabled, it means that we've stopped the DMA for
 561         * some reason (eg, XOFF received, or we want to send an X-char.)
 562         *
 563         * Note: we need to be careful here of a potential race between DMA
 564         * and the rest of the driver - if the driver disables TX DMA while
 565         * a TX buffer completing, we must update the tx queued status to
 566         * get further refills (hence we check dmacr).
 567         */
 568        if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
 569            uart_circ_empty(&uap->port.state->xmit)) {
 570                uap->dmatx.queued = false;
 571                spin_unlock_irqrestore(&uap->port.lock, flags);
 572                return;
 573        }
 574
 575        if (pl011_dma_tx_refill(uap) <= 0)
 576                /*
 577                 * We didn't queue a DMA buffer for some reason, but we
 578                 * have data pending to be sent.  Re-enable the TX IRQ.
 579                 */
 580                pl011_start_tx_pio(uap);
 581
 582        spin_unlock_irqrestore(&uap->port.lock, flags);
 583}
 584
 585/*
 586 * Try to refill the TX DMA buffer.
 587 * Locking: called with port lock held and IRQs disabled.
 588 * Returns:
 589 *   1 if we queued up a TX DMA buffer.
 590 *   0 if we didn't want to handle this by DMA
 591 *  <0 on error
 592 */
 593static int pl011_dma_tx_refill(struct uart_amba_port *uap)
 594{
 595        struct pl011_dmatx_data *dmatx = &uap->dmatx;
 596        struct dma_chan *chan = dmatx->chan;
 597        struct dma_device *dma_dev = chan->device;
 598        struct dma_async_tx_descriptor *desc;
 599        struct circ_buf *xmit = &uap->port.state->xmit;
 600        unsigned int count;
 601
 602        /*
 603         * Try to avoid the overhead involved in using DMA if the
 604         * transaction fits in the first half of the FIFO, by using
 605         * the standard interrupt handling.  This ensures that we
 606         * issue a uart_write_wakeup() at the appropriate time.
 607         */
 608        count = uart_circ_chars_pending(xmit);
 609        if (count < (uap->fifosize >> 1)) {
 610                uap->dmatx.queued = false;
 611                return 0;
 612        }
 613
 614        /*
 615         * Bodge: don't send the last character by DMA, as this
 616         * will prevent XON from notifying us to restart DMA.
 617         */
 618        count -= 1;
 619
 620        /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
 621        if (count > PL011_DMA_BUFFER_SIZE)
 622                count = PL011_DMA_BUFFER_SIZE;
 623
 624        if (xmit->tail < xmit->head)
 625                memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
 626        else {
 627                size_t first = UART_XMIT_SIZE - xmit->tail;
 628                size_t second;
 629
 630                if (first > count)
 631                        first = count;
 632                second = count - first;
 633
 634                memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
 635                if (second)
 636                        memcpy(&dmatx->buf[first], &xmit->buf[0], second);
 637        }
 638
 639        dmatx->sg.length = count;
 640
 641        if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
 642                uap->dmatx.queued = false;
 643                dev_dbg(uap->port.dev, "unable to map TX DMA\n");
 644                return -EBUSY;
 645        }
 646
 647        desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
 648                                             DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 649        if (!desc) {
 650                dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
 651                uap->dmatx.queued = false;
 652                /*
 653                 * If DMA cannot be used right now, we complete this
 654                 * transaction via IRQ and let the TTY layer retry.
 655                 */
 656                dev_dbg(uap->port.dev, "TX DMA busy\n");
 657                return -EBUSY;
 658        }
 659
 660        /* Some data to go along to the callback */
 661        desc->callback = pl011_dma_tx_callback;
 662        desc->callback_param = uap;
 663
 664        /* All errors should happen at prepare time */
 665        dmaengine_submit(desc);
 666
 667        /* Fire the DMA transaction */
 668        dma_dev->device_issue_pending(chan);
 669
 670        uap->dmacr |= UART011_TXDMAE;
 671        pl011_write(uap->dmacr, uap, REG_DMACR);
 672        uap->dmatx.queued = true;
 673
 674        /*
 675         * Now we know that DMA will fire, so advance the ring buffer
 676         * with the stuff we just dispatched.
 677         */
 678        xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
 679        uap->port.icount.tx += count;
 680
 681        if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 682                uart_write_wakeup(&uap->port);
 683
 684        return 1;
 685}
 686
 687/*
 688 * We received a transmit interrupt without a pending X-char but with
 689 * pending characters.
 690 * Locking: called with port lock held and IRQs disabled.
 691 * Returns:
 692 *   false if we want to use PIO to transmit
 693 *   true if we queued a DMA buffer
 694 */
 695static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
 696{
 697        if (!uap->using_tx_dma)
 698                return false;
 699
 700        /*
 701         * If we already have a TX buffer queued, but received a
 702         * TX interrupt, it will be because we've just sent an X-char.
 703         * Ensure the TX DMA is enabled and the TX IRQ is disabled.
 704         */
 705        if (uap->dmatx.queued) {
 706                uap->dmacr |= UART011_TXDMAE;
 707                pl011_write(uap->dmacr, uap, REG_DMACR);
 708                uap->im &= ~UART011_TXIM;
 709                pl011_write(uap->im, uap, REG_IMSC);
 710                return true;
 711        }
 712
 713        /*
 714         * We don't have a TX buffer queued, so try to queue one.
 715         * If we successfully queued a buffer, mask the TX IRQ.
 716         */
 717        if (pl011_dma_tx_refill(uap) > 0) {
 718                uap->im &= ~UART011_TXIM;
 719                pl011_write(uap->im, uap, REG_IMSC);
 720                return true;
 721        }
 722        return false;
 723}
 724
 725/*
 726 * Stop the DMA transmit (eg, due to received XOFF).
 727 * Locking: called with port lock held and IRQs disabled.
 728 */
 729static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
 730{
 731        if (uap->dmatx.queued) {
 732                uap->dmacr &= ~UART011_TXDMAE;
 733                pl011_write(uap->dmacr, uap, REG_DMACR);
 734        }
 735}
 736
 737/*
 738 * Try to start a DMA transmit, or in the case of an XON/OFF
 739 * character queued for send, try to get that character out ASAP.
 740 * Locking: called with port lock held and IRQs disabled.
 741 * Returns:
 742 *   false if we want the TX IRQ to be enabled
 743 *   true if we have a buffer queued
 744 */
 745static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
 746{
 747        u16 dmacr;
 748
 749        if (!uap->using_tx_dma)
 750                return false;
 751
 752        if (!uap->port.x_char) {
 753                /* no X-char, try to push chars out in DMA mode */
 754                bool ret = true;
 755
 756                if (!uap->dmatx.queued) {
 757                        if (pl011_dma_tx_refill(uap) > 0) {
 758                                uap->im &= ~UART011_TXIM;
 759                                pl011_write(uap->im, uap, REG_IMSC);
 760                        } else
 761                                ret = false;
 762                } else if (!(uap->dmacr & UART011_TXDMAE)) {
 763                        uap->dmacr |= UART011_TXDMAE;
 764                        pl011_write(uap->dmacr, uap, REG_DMACR);
 765                }
 766                return ret;
 767        }
 768
 769        /*
 770         * We have an X-char to send.  Disable DMA to prevent it loading
 771         * the TX fifo, and then see if we can stuff it into the FIFO.
 772         */
 773        dmacr = uap->dmacr;
 774        uap->dmacr &= ~UART011_TXDMAE;
 775        pl011_write(uap->dmacr, uap, REG_DMACR);
 776
 777        if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
 778                /*
 779                 * No space in the FIFO, so enable the transmit interrupt
 780                 * so we know when there is space.  Note that once we've
 781                 * loaded the character, we should just re-enable DMA.
 782                 */
 783                return false;
 784        }
 785
 786        pl011_write(uap->port.x_char, uap, REG_DR);
 787        uap->port.icount.tx++;
 788        uap->port.x_char = 0;
 789
 790        /* Success - restore the DMA state */
 791        uap->dmacr = dmacr;
 792        pl011_write(dmacr, uap, REG_DMACR);
 793
 794        return true;
 795}
 796
 797/*
 798 * Flush the transmit buffer.
 799 * Locking: called with port lock held and IRQs disabled.
 800 */
 801static void pl011_dma_flush_buffer(struct uart_port *port)
 802__releases(&uap->port.lock)
 803__acquires(&uap->port.lock)
 804{
 805        struct uart_amba_port *uap =
 806            container_of(port, struct uart_amba_port, port);
 807
 808        if (!uap->using_tx_dma)
 809                return;
 810
 811        dmaengine_terminate_async(uap->dmatx.chan);
 812
 813        if (uap->dmatx.queued) {
 814                dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
 815                             DMA_TO_DEVICE);
 816                uap->dmatx.queued = false;
 817                uap->dmacr &= ~UART011_TXDMAE;
 818                pl011_write(uap->dmacr, uap, REG_DMACR);
 819        }
 820}
 821
 822static void pl011_dma_rx_callback(void *data);
 823
 824static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
 825{
 826        struct dma_chan *rxchan = uap->dmarx.chan;
 827        struct pl011_dmarx_data *dmarx = &uap->dmarx;
 828        struct dma_async_tx_descriptor *desc;
 829        struct pl011_sgbuf *sgbuf;
 830
 831        if (!rxchan)
 832                return -EIO;
 833
 834        /* Start the RX DMA job */
 835        sgbuf = uap->dmarx.use_buf_b ?
 836                &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
 837        desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
 838                                        DMA_DEV_TO_MEM,
 839                                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 840        /*
 841         * If the DMA engine is busy and cannot prepare a
 842         * channel, no big deal, the driver will fall back
 843         * to interrupt mode as a result of this error code.
 844         */
 845        if (!desc) {
 846                uap->dmarx.running = false;
 847                dmaengine_terminate_all(rxchan);
 848                return -EBUSY;
 849        }
 850
 851        /* Some data to go along to the callback */
 852        desc->callback = pl011_dma_rx_callback;
 853        desc->callback_param = uap;
 854        dmarx->cookie = dmaengine_submit(desc);
 855        dma_async_issue_pending(rxchan);
 856
 857        uap->dmacr |= UART011_RXDMAE;
 858        pl011_write(uap->dmacr, uap, REG_DMACR);
 859        uap->dmarx.running = true;
 860
 861        uap->im &= ~UART011_RXIM;
 862        pl011_write(uap->im, uap, REG_IMSC);
 863
 864        return 0;
 865}
 866
 867/*
 868 * This is called when either the DMA job is complete, or
 869 * the FIFO timeout interrupt occurred. This must be called
 870 * with the port spinlock uap->port.lock held.
 871 */
 872static void pl011_dma_rx_chars(struct uart_amba_port *uap,
 873                               u32 pending, bool use_buf_b,
 874                               bool readfifo)
 875{
 876        struct tty_port *port = &uap->port.state->port;
 877        struct pl011_sgbuf *sgbuf = use_buf_b ?
 878                &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
 879        int dma_count = 0;
 880        u32 fifotaken = 0; /* only used for vdbg() */
 881
 882        struct pl011_dmarx_data *dmarx = &uap->dmarx;
 883        int dmataken = 0;
 884
 885        if (uap->dmarx.poll_rate) {
 886                /* The data can be taken by polling */
 887                dmataken = sgbuf->sg.length - dmarx->last_residue;
 888                /* Recalculate the pending size */
 889                if (pending >= dmataken)
 890                        pending -= dmataken;
 891        }
 892
 893        /* Pick the remain data from the DMA */
 894        if (pending) {
 895
 896                /*
 897                 * First take all chars in the DMA pipe, then look in the FIFO.
 898                 * Note that tty_insert_flip_buf() tries to take as many chars
 899                 * as it can.
 900                 */
 901                dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
 902                                pending);
 903
 904                uap->port.icount.rx += dma_count;
 905                if (dma_count < pending)
 906                        dev_warn(uap->port.dev,
 907                                 "couldn't insert all characters (TTY is full?)\n");
 908        }
 909
 910        /* Reset the last_residue for Rx DMA poll */
 911        if (uap->dmarx.poll_rate)
 912                dmarx->last_residue = sgbuf->sg.length;
 913
 914        /*
 915         * Only continue with trying to read the FIFO if all DMA chars have
 916         * been taken first.
 917         */
 918        if (dma_count == pending && readfifo) {
 919                /* Clear any error flags */
 920                pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
 921                            UART011_FEIS, uap, REG_ICR);
 922
 923                /*
 924                 * If we read all the DMA'd characters, and we had an
 925                 * incomplete buffer, that could be due to an rx error, or
 926                 * maybe we just timed out. Read any pending chars and check
 927                 * the error status.
 928                 *
 929                 * Error conditions will only occur in the FIFO, these will
 930                 * trigger an immediate interrupt and stop the DMA job, so we
 931                 * will always find the error in the FIFO, never in the DMA
 932                 * buffer.
 933                 */
 934                fifotaken = pl011_fifo_to_tty(uap);
 935        }
 936
 937        spin_unlock(&uap->port.lock);
 938        dev_vdbg(uap->port.dev,
 939                 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
 940                 dma_count, fifotaken);
 941        tty_flip_buffer_push(port);
 942        spin_lock(&uap->port.lock);
 943}
 944
 945static void pl011_dma_rx_irq(struct uart_amba_port *uap)
 946{
 947        struct pl011_dmarx_data *dmarx = &uap->dmarx;
 948        struct dma_chan *rxchan = dmarx->chan;
 949        struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
 950                &dmarx->sgbuf_b : &dmarx->sgbuf_a;
 951        size_t pending;
 952        struct dma_tx_state state;
 953        enum dma_status dmastat;
 954
 955        /*
 956         * Pause the transfer so we can trust the current counter,
 957         * do this before we pause the PL011 block, else we may
 958         * overflow the FIFO.
 959         */
 960        if (dmaengine_pause(rxchan))
 961                dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 962        dmastat = rxchan->device->device_tx_status(rxchan,
 963                                                   dmarx->cookie, &state);
 964        if (dmastat != DMA_PAUSED)
 965                dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 966
 967        /* Disable RX DMA - incoming data will wait in the FIFO */
 968        uap->dmacr &= ~UART011_RXDMAE;
 969        pl011_write(uap->dmacr, uap, REG_DMACR);
 970        uap->dmarx.running = false;
 971
 972        pending = sgbuf->sg.length - state.residue;
 973        BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
 974        /* Then we terminate the transfer - we now know our residue */
 975        dmaengine_terminate_all(rxchan);
 976
 977        /*
 978         * This will take the chars we have so far and insert
 979         * into the framework.
 980         */
 981        pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
 982
 983        /* Switch buffer & re-trigger DMA job */
 984        dmarx->use_buf_b = !dmarx->use_buf_b;
 985        if (pl011_dma_rx_trigger_dma(uap)) {
 986                dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
 987                        "fall back to interrupt mode\n");
 988                uap->im |= UART011_RXIM;
 989                pl011_write(uap->im, uap, REG_IMSC);
 990        }
 991}
 992
 993static void pl011_dma_rx_callback(void *data)
 994{
 995        struct uart_amba_port *uap = data;
 996        struct pl011_dmarx_data *dmarx = &uap->dmarx;
 997        struct dma_chan *rxchan = dmarx->chan;
 998        bool lastbuf = dmarx->use_buf_b;
 999        struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
1000                &dmarx->sgbuf_b : &dmarx->sgbuf_a;
1001        size_t pending;
1002        struct dma_tx_state state;
1003        int ret;
1004
1005        /*
1006         * This completion interrupt occurs typically when the
1007         * RX buffer is totally stuffed but no timeout has yet
1008         * occurred. When that happens, we just want the RX
1009         * routine to flush out the secondary DMA buffer while
1010         * we immediately trigger the next DMA job.
1011         */
1012        spin_lock_irq(&uap->port.lock);
1013        /*
1014         * Rx data can be taken by the UART interrupts during
1015         * the DMA irq handler. So we check the residue here.
1016         */
1017        rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1018        pending = sgbuf->sg.length - state.residue;
1019        BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1020        /* Then we terminate the transfer - we now know our residue */
1021        dmaengine_terminate_all(rxchan);
1022
1023        uap->dmarx.running = false;
1024        dmarx->use_buf_b = !lastbuf;
1025        ret = pl011_dma_rx_trigger_dma(uap);
1026
1027        pl011_dma_rx_chars(uap, pending, lastbuf, false);
1028        spin_unlock_irq(&uap->port.lock);
1029        /*
1030         * Do this check after we picked the DMA chars so we don't
1031         * get some IRQ immediately from RX.
1032         */
1033        if (ret) {
1034                dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1035                        "fall back to interrupt mode\n");
1036                uap->im |= UART011_RXIM;
1037                pl011_write(uap->im, uap, REG_IMSC);
1038        }
1039}
1040
1041/*
1042 * Stop accepting received characters, when we're shutting down or
1043 * suspending this port.
1044 * Locking: called with port lock held and IRQs disabled.
1045 */
1046static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1047{
1048        /* FIXME.  Just disable the DMA enable */
1049        uap->dmacr &= ~UART011_RXDMAE;
1050        pl011_write(uap->dmacr, uap, REG_DMACR);
1051}
1052
1053/*
1054 * Timer handler for Rx DMA polling.
1055 * Every polling, It checks the residue in the dma buffer and transfer
1056 * data to the tty. Also, last_residue is updated for the next polling.
1057 */
1058static void pl011_dma_rx_poll(struct timer_list *t)
1059{
1060        struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer);
1061        struct tty_port *port = &uap->port.state->port;
1062        struct pl011_dmarx_data *dmarx = &uap->dmarx;
1063        struct dma_chan *rxchan = uap->dmarx.chan;
1064        unsigned long flags = 0;
1065        unsigned int dmataken = 0;
1066        unsigned int size = 0;
1067        struct pl011_sgbuf *sgbuf;
1068        int dma_count;
1069        struct dma_tx_state state;
1070
1071        sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
1072        rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1073        if (likely(state.residue < dmarx->last_residue)) {
1074                dmataken = sgbuf->sg.length - dmarx->last_residue;
1075                size = dmarx->last_residue - state.residue;
1076                dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
1077                                size);
1078                if (dma_count == size)
1079                        dmarx->last_residue =  state.residue;
1080                dmarx->last_jiffies = jiffies;
1081        }
1082        tty_flip_buffer_push(port);
1083
1084        /*
1085         * If no data is received in poll_timeout, the driver will fall back
1086         * to interrupt mode. We will retrigger DMA at the first interrupt.
1087         */
1088        if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1089                        > uap->dmarx.poll_timeout) {
1090
1091                spin_lock_irqsave(&uap->port.lock, flags);
1092                pl011_dma_rx_stop(uap);
1093                uap->im |= UART011_RXIM;
1094                pl011_write(uap->im, uap, REG_IMSC);
1095                spin_unlock_irqrestore(&uap->port.lock, flags);
1096
1097                uap->dmarx.running = false;
1098                dmaengine_terminate_all(rxchan);
1099                del_timer(&uap->dmarx.timer);
1100        } else {
1101                mod_timer(&uap->dmarx.timer,
1102                        jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1103        }
1104}
1105
1106static void pl011_dma_startup(struct uart_amba_port *uap)
1107{
1108        int ret;
1109
1110        if (!uap->dma_probed)
1111                pl011_dma_probe(uap);
1112
1113        if (!uap->dmatx.chan)
1114                return;
1115
1116        uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1117        if (!uap->dmatx.buf) {
1118                dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1119                uap->port.fifosize = uap->fifosize;
1120                return;
1121        }
1122
1123        sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
1124
1125        /* The DMA buffer is now the FIFO the TTY subsystem can use */
1126        uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1127        uap->using_tx_dma = true;
1128
1129        if (!uap->dmarx.chan)
1130                goto skip_rx;
1131
1132        /* Allocate and map DMA RX buffers */
1133        ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1134                               DMA_FROM_DEVICE);
1135        if (ret) {
1136                dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1137                        "RX buffer A", ret);
1138                goto skip_rx;
1139        }
1140
1141        ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1142                               DMA_FROM_DEVICE);
1143        if (ret) {
1144                dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1145                        "RX buffer B", ret);
1146                pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1147                                 DMA_FROM_DEVICE);
1148                goto skip_rx;
1149        }
1150
1151        uap->using_rx_dma = true;
1152
1153skip_rx:
1154        /* Turn on DMA error (RX/TX will be enabled on demand) */
1155        uap->dmacr |= UART011_DMAONERR;
1156        pl011_write(uap->dmacr, uap, REG_DMACR);
1157
1158        /*
1159         * ST Micro variants has some specific dma burst threshold
1160         * compensation. Set this to 16 bytes, so burst will only
1161         * be issued above/below 16 bytes.
1162         */
1163        if (uap->vendor->dma_threshold)
1164                pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1165                            uap, REG_ST_DMAWM);
1166
1167        if (uap->using_rx_dma) {
1168                if (pl011_dma_rx_trigger_dma(uap))
1169                        dev_dbg(uap->port.dev, "could not trigger initial "
1170                                "RX DMA job, fall back to interrupt mode\n");
1171                if (uap->dmarx.poll_rate) {
1172                        timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0);
1173                        mod_timer(&uap->dmarx.timer,
1174                                jiffies +
1175                                msecs_to_jiffies(uap->dmarx.poll_rate));
1176                        uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1177                        uap->dmarx.last_jiffies = jiffies;
1178                }
1179        }
1180}
1181
1182static void pl011_dma_shutdown(struct uart_amba_port *uap)
1183{
1184        if (!(uap->using_tx_dma || uap->using_rx_dma))
1185                return;
1186
1187        /* Disable RX and TX DMA */
1188        while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1189                cpu_relax();
1190
1191        spin_lock_irq(&uap->port.lock);
1192        uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1193        pl011_write(uap->dmacr, uap, REG_DMACR);
1194        spin_unlock_irq(&uap->port.lock);
1195
1196        if (uap->using_tx_dma) {
1197                /* In theory, this should already be done by pl011_dma_flush_buffer */
1198                dmaengine_terminate_all(uap->dmatx.chan);
1199                if (uap->dmatx.queued) {
1200                        dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1201                                     DMA_TO_DEVICE);
1202                        uap->dmatx.queued = false;
1203                }
1204
1205                kfree(uap->dmatx.buf);
1206                uap->using_tx_dma = false;
1207        }
1208
1209        if (uap->using_rx_dma) {
1210                dmaengine_terminate_all(uap->dmarx.chan);
1211                /* Clean up the RX DMA */
1212                pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1213                pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1214                if (uap->dmarx.poll_rate)
1215                        del_timer_sync(&uap->dmarx.timer);
1216                uap->using_rx_dma = false;
1217        }
1218}
1219
1220static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1221{
1222        return uap->using_rx_dma;
1223}
1224
1225static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1226{
1227        return uap->using_rx_dma && uap->dmarx.running;
1228}
1229
1230#else
1231/* Blank functions if the DMA engine is not available */
1232static inline void pl011_dma_remove(struct uart_amba_port *uap)
1233{
1234}
1235
1236static inline void pl011_dma_startup(struct uart_amba_port *uap)
1237{
1238}
1239
1240static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1241{
1242}
1243
1244static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1245{
1246        return false;
1247}
1248
1249static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1250{
1251}
1252
1253static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1254{
1255        return false;
1256}
1257
1258static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1259{
1260}
1261
1262static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1263{
1264}
1265
1266static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1267{
1268        return -EIO;
1269}
1270
1271static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1272{
1273        return false;
1274}
1275
1276static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1277{
1278        return false;
1279}
1280
1281#define pl011_dma_flush_buffer  NULL
1282#endif
1283
1284static void pl011_stop_tx(struct uart_port *port)
1285{
1286        struct uart_amba_port *uap =
1287            container_of(port, struct uart_amba_port, port);
1288
1289        uap->im &= ~UART011_TXIM;
1290        pl011_write(uap->im, uap, REG_IMSC);
1291        pl011_dma_tx_stop(uap);
1292}
1293
1294static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1295
1296/* Start TX with programmed I/O only (no DMA) */
1297static void pl011_start_tx_pio(struct uart_amba_port *uap)
1298{
1299        if (pl011_tx_chars(uap, false)) {
1300                uap->im |= UART011_TXIM;
1301                pl011_write(uap->im, uap, REG_IMSC);
1302        }
1303}
1304
1305static void pl011_start_tx(struct uart_port *port)
1306{
1307        struct uart_amba_port *uap =
1308            container_of(port, struct uart_amba_port, port);
1309
1310        if (!pl011_dma_tx_start(uap))
1311                pl011_start_tx_pio(uap);
1312}
1313
1314static void pl011_stop_rx(struct uart_port *port)
1315{
1316        struct uart_amba_port *uap =
1317            container_of(port, struct uart_amba_port, port);
1318
1319        uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1320                     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1321        pl011_write(uap->im, uap, REG_IMSC);
1322
1323        pl011_dma_rx_stop(uap);
1324}
1325
1326static void pl011_enable_ms(struct uart_port *port)
1327{
1328        struct uart_amba_port *uap =
1329            container_of(port, struct uart_amba_port, port);
1330
1331        uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1332        pl011_write(uap->im, uap, REG_IMSC);
1333}
1334
1335static void pl011_rx_chars(struct uart_amba_port *uap)
1336__releases(&uap->port.lock)
1337__acquires(&uap->port.lock)
1338{
1339        pl011_fifo_to_tty(uap);
1340
1341        spin_unlock(&uap->port.lock);
1342        tty_flip_buffer_push(&uap->port.state->port);
1343        /*
1344         * If we were temporarily out of DMA mode for a while,
1345         * attempt to switch back to DMA mode again.
1346         */
1347        if (pl011_dma_rx_available(uap)) {
1348                if (pl011_dma_rx_trigger_dma(uap)) {
1349                        dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1350                                "fall back to interrupt mode again\n");
1351                        uap->im |= UART011_RXIM;
1352                        pl011_write(uap->im, uap, REG_IMSC);
1353                } else {
1354#ifdef CONFIG_DMA_ENGINE
1355                        /* Start Rx DMA poll */
1356                        if (uap->dmarx.poll_rate) {
1357                                uap->dmarx.last_jiffies = jiffies;
1358                                uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1359                                mod_timer(&uap->dmarx.timer,
1360                                        jiffies +
1361                                        msecs_to_jiffies(uap->dmarx.poll_rate));
1362                        }
1363#endif
1364                }
1365        }
1366        spin_lock(&uap->port.lock);
1367}
1368
1369static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1370                          bool from_irq)
1371{
1372        if (unlikely(!from_irq) &&
1373            pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1374                return false; /* unable to transmit character */
1375
1376        pl011_write(c, uap, REG_DR);
1377        uap->port.icount.tx++;
1378
1379        return true;
1380}
1381
1382/* Returns true if tx interrupts have to be (kept) enabled  */
1383static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1384{
1385        struct circ_buf *xmit = &uap->port.state->xmit;
1386        int count = uap->fifosize >> 1;
1387
1388        if (uap->port.x_char) {
1389                if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1390                        return true;
1391                uap->port.x_char = 0;
1392                --count;
1393        }
1394        if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1395                pl011_stop_tx(&uap->port);
1396                return false;
1397        }
1398
1399        /* If we are using DMA mode, try to send some characters. */
1400        if (pl011_dma_tx_irq(uap))
1401                return true;
1402
1403        do {
1404                if (likely(from_irq) && count-- == 0)
1405                        break;
1406
1407                if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1408                        break;
1409
1410                xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1411        } while (!uart_circ_empty(xmit));
1412
1413        if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1414                uart_write_wakeup(&uap->port);
1415
1416        if (uart_circ_empty(xmit)) {
1417                pl011_stop_tx(&uap->port);
1418                return false;
1419        }
1420        return true;
1421}
1422
1423static void pl011_modem_status(struct uart_amba_port *uap)
1424{
1425        unsigned int status, delta;
1426
1427        status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1428
1429        delta = status ^ uap->old_status;
1430        uap->old_status = status;
1431
1432        if (!delta)
1433                return;
1434
1435        if (delta & UART01x_FR_DCD)
1436                uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1437
1438        if (delta & uap->vendor->fr_dsr)
1439                uap->port.icount.dsr++;
1440
1441        if (delta & uap->vendor->fr_cts)
1442                uart_handle_cts_change(&uap->port,
1443                                       status & uap->vendor->fr_cts);
1444
1445        wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1446}
1447
1448static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1449{
1450        if (!uap->vendor->cts_event_workaround)
1451                return;
1452
1453        /* workaround to make sure that all bits are unlocked.. */
1454        pl011_write(0x00, uap, REG_ICR);
1455
1456        /*
1457         * WA: introduce 26ns(1 uart clk) delay before W1C;
1458         * single apb access will incur 2 pclk(133.12Mhz) delay,
1459         * so add 2 dummy reads
1460         */
1461        pl011_read(uap, REG_ICR);
1462        pl011_read(uap, REG_ICR);
1463}
1464
1465static irqreturn_t pl011_int(int irq, void *dev_id)
1466{
1467        struct uart_amba_port *uap = dev_id;
1468        unsigned long flags;
1469        unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1470        int handled = 0;
1471
1472        spin_lock_irqsave(&uap->port.lock, flags);
1473        status = pl011_read(uap, REG_RIS) & uap->im;
1474        if (status) {
1475                do {
1476                        check_apply_cts_event_workaround(uap);
1477
1478                        pl011_write(status & ~(UART011_TXIS|UART011_RTIS|
1479                                               UART011_RXIS),
1480                                    uap, REG_ICR);
1481
1482                        if (status & (UART011_RTIS|UART011_RXIS)) {
1483                                if (pl011_dma_rx_running(uap))
1484                                        pl011_dma_rx_irq(uap);
1485                                else
1486                                        pl011_rx_chars(uap);
1487                        }
1488                        if (status & (UART011_DSRMIS|UART011_DCDMIS|
1489                                      UART011_CTSMIS|UART011_RIMIS))
1490                                pl011_modem_status(uap);
1491                        if (status & UART011_TXIS)
1492                                pl011_tx_chars(uap, true);
1493
1494                        if (pass_counter-- == 0)
1495                                break;
1496
1497                        status = pl011_read(uap, REG_RIS) & uap->im;
1498                } while (status != 0);
1499                handled = 1;
1500        }
1501
1502        spin_unlock_irqrestore(&uap->port.lock, flags);
1503
1504        return IRQ_RETVAL(handled);
1505}
1506
1507static unsigned int pl011_tx_empty(struct uart_port *port)
1508{
1509        struct uart_amba_port *uap =
1510            container_of(port, struct uart_amba_port, port);
1511
1512        /* Allow feature register bits to be inverted to work around errata */
1513        unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1514
1515        return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1516                                                        0 : TIOCSER_TEMT;
1517}
1518
1519static unsigned int pl011_get_mctrl(struct uart_port *port)
1520{
1521        struct uart_amba_port *uap =
1522            container_of(port, struct uart_amba_port, port);
1523        unsigned int result = 0;
1524        unsigned int status = pl011_read(uap, REG_FR);
1525
1526#define TIOCMBIT(uartbit, tiocmbit)     \
1527        if (status & uartbit)           \
1528                result |= tiocmbit
1529
1530        TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1531        TIOCMBIT(uap->vendor->fr_dsr, TIOCM_DSR);
1532        TIOCMBIT(uap->vendor->fr_cts, TIOCM_CTS);
1533        TIOCMBIT(uap->vendor->fr_ri, TIOCM_RNG);
1534#undef TIOCMBIT
1535        return result;
1536}
1537
1538static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1539{
1540        struct uart_amba_port *uap =
1541            container_of(port, struct uart_amba_port, port);
1542        unsigned int cr;
1543
1544        cr = pl011_read(uap, REG_CR);
1545
1546#define TIOCMBIT(tiocmbit, uartbit)             \
1547        if (mctrl & tiocmbit)           \
1548                cr |= uartbit;          \
1549        else                            \
1550                cr &= ~uartbit
1551
1552        TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1553        TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1554        TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1555        TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1556        TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1557
1558        if (port->status & UPSTAT_AUTORTS) {
1559                /* We need to disable auto-RTS if we want to turn RTS off */
1560                TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1561        }
1562#undef TIOCMBIT
1563
1564        pl011_write(cr, uap, REG_CR);
1565}
1566
1567static void pl011_break_ctl(struct uart_port *port, int break_state)
1568{
1569        struct uart_amba_port *uap =
1570            container_of(port, struct uart_amba_port, port);
1571        unsigned long flags;
1572        unsigned int lcr_h;
1573
1574        spin_lock_irqsave(&uap->port.lock, flags);
1575        lcr_h = pl011_read(uap, REG_LCRH_TX);
1576        if (break_state == -1)
1577                lcr_h |= UART01x_LCRH_BRK;
1578        else
1579                lcr_h &= ~UART01x_LCRH_BRK;
1580        pl011_write(lcr_h, uap, REG_LCRH_TX);
1581        spin_unlock_irqrestore(&uap->port.lock, flags);
1582}
1583
1584#ifdef CONFIG_CONSOLE_POLL
1585
1586static void pl011_quiesce_irqs(struct uart_port *port)
1587{
1588        struct uart_amba_port *uap =
1589            container_of(port, struct uart_amba_port, port);
1590
1591        pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1592        /*
1593         * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1594         * we simply mask it. start_tx() will unmask it.
1595         *
1596         * Note we can race with start_tx(), and if the race happens, the
1597         * polling user might get another interrupt just after we clear it.
1598         * But it should be OK and can happen even w/o the race, e.g.
1599         * controller immediately got some new data and raised the IRQ.
1600         *
1601         * And whoever uses polling routines assumes that it manages the device
1602         * (including tx queue), so we're also fine with start_tx()'s caller
1603         * side.
1604         */
1605        pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1606                    REG_IMSC);
1607}
1608
1609static int pl011_get_poll_char(struct uart_port *port)
1610{
1611        struct uart_amba_port *uap =
1612            container_of(port, struct uart_amba_port, port);
1613        unsigned int status;
1614
1615        /*
1616         * The caller might need IRQs lowered, e.g. if used with KDB NMI
1617         * debugger.
1618         */
1619        pl011_quiesce_irqs(port);
1620
1621        status = pl011_read(uap, REG_FR);
1622        if (status & UART01x_FR_RXFE)
1623                return NO_POLL_CHAR;
1624
1625        return pl011_read(uap, REG_DR);
1626}
1627
1628static void pl011_put_poll_char(struct uart_port *port,
1629                         unsigned char ch)
1630{
1631        struct uart_amba_port *uap =
1632            container_of(port, struct uart_amba_port, port);
1633
1634        while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1635                cpu_relax();
1636
1637        pl011_write(ch, uap, REG_DR);
1638}
1639
1640#endif /* CONFIG_CONSOLE_POLL */
1641
1642static int pl011_hwinit(struct uart_port *port)
1643{
1644        struct uart_amba_port *uap =
1645            container_of(port, struct uart_amba_port, port);
1646        int retval;
1647
1648        /* Optionaly enable pins to be muxed in and configured */
1649        pinctrl_pm_select_default_state(port->dev);
1650
1651        /*
1652         * Try to enable the clock producer.
1653         */
1654        retval = clk_prepare_enable(uap->clk);
1655        if (retval)
1656                return retval;
1657
1658        uap->port.uartclk = clk_get_rate(uap->clk);
1659
1660        /* Clear pending error and receive interrupts */
1661        pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1662                    UART011_FEIS | UART011_RTIS | UART011_RXIS,
1663                    uap, REG_ICR);
1664
1665        /*
1666         * Save interrupts enable mask, and enable RX interrupts in case if
1667         * the interrupt is used for NMI entry.
1668         */
1669        uap->im = pl011_read(uap, REG_IMSC);
1670        pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1671
1672        if (dev_get_platdata(uap->port.dev)) {
1673                struct amba_pl011_data *plat;
1674
1675                plat = dev_get_platdata(uap->port.dev);
1676                if (plat->init)
1677                        plat->init();
1678        }
1679        return 0;
1680}
1681
1682static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1683{
1684        return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1685               pl011_reg_to_offset(uap, REG_LCRH_TX);
1686}
1687
1688static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1689{
1690        pl011_write(lcr_h, uap, REG_LCRH_RX);
1691        if (pl011_split_lcrh(uap)) {
1692                int i;
1693                /*
1694                 * Wait 10 PCLKs before writing LCRH_TX register,
1695                 * to get this delay write read only register 10 times
1696                 */
1697                for (i = 0; i < 10; ++i)
1698                        pl011_write(0xff, uap, REG_MIS);
1699                pl011_write(lcr_h, uap, REG_LCRH_TX);
1700        }
1701}
1702
1703static int pl011_allocate_irq(struct uart_amba_port *uap)
1704{
1705        pl011_write(uap->im, uap, REG_IMSC);
1706
1707        return request_irq(uap->port.irq, pl011_int, IRQF_SHARED, "uart-pl011", uap);
1708}
1709
1710/*
1711 * Enable interrupts, only timeouts when using DMA
1712 * if initial RX DMA job failed, start in interrupt mode
1713 * as well.
1714 */
1715static void pl011_enable_interrupts(struct uart_amba_port *uap)
1716{
1717        unsigned int i;
1718
1719        spin_lock_irq(&uap->port.lock);
1720
1721        /* Clear out any spuriously appearing RX interrupts */
1722        pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1723
1724        /*
1725         * RXIS is asserted only when the RX FIFO transitions from below
1726         * to above the trigger threshold.  If the RX FIFO is already
1727         * full to the threshold this can't happen and RXIS will now be
1728         * stuck off.  Drain the RX FIFO explicitly to fix this:
1729         */
1730        for (i = 0; i < uap->fifosize * 2; ++i) {
1731                if (pl011_read(uap, REG_FR) & UART01x_FR_RXFE)
1732                        break;
1733
1734                pl011_read(uap, REG_DR);
1735        }
1736
1737        uap->im = UART011_RTIM;
1738        if (!pl011_dma_rx_running(uap))
1739                uap->im |= UART011_RXIM;
1740        pl011_write(uap->im, uap, REG_IMSC);
1741        spin_unlock_irq(&uap->port.lock);
1742}
1743
1744static int pl011_startup(struct uart_port *port)
1745{
1746        struct uart_amba_port *uap =
1747            container_of(port, struct uart_amba_port, port);
1748        unsigned int cr;
1749        int retval;
1750
1751        retval = pl011_hwinit(port);
1752        if (retval)
1753                goto clk_dis;
1754
1755        retval = pl011_allocate_irq(uap);
1756        if (retval)
1757                goto clk_dis;
1758
1759        pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1760
1761        spin_lock_irq(&uap->port.lock);
1762
1763        /* restore RTS and DTR */
1764        cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1765        cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1766        pl011_write(cr, uap, REG_CR);
1767
1768        spin_unlock_irq(&uap->port.lock);
1769
1770        /*
1771         * initialise the old status of the modem signals
1772         */
1773        uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1774
1775        /* Startup DMA */
1776        pl011_dma_startup(uap);
1777
1778        pl011_enable_interrupts(uap);
1779
1780        return 0;
1781
1782 clk_dis:
1783        clk_disable_unprepare(uap->clk);
1784        return retval;
1785}
1786
1787static int sbsa_uart_startup(struct uart_port *port)
1788{
1789        struct uart_amba_port *uap =
1790                container_of(port, struct uart_amba_port, port);
1791        int retval;
1792
1793        retval = pl011_hwinit(port);
1794        if (retval)
1795                return retval;
1796
1797        retval = pl011_allocate_irq(uap);
1798        if (retval)
1799                return retval;
1800
1801        /* The SBSA UART does not support any modem status lines. */
1802        uap->old_status = 0;
1803
1804        pl011_enable_interrupts(uap);
1805
1806        return 0;
1807}
1808
1809static void pl011_shutdown_channel(struct uart_amba_port *uap,
1810                                        unsigned int lcrh)
1811{
1812      unsigned long val;
1813
1814      val = pl011_read(uap, lcrh);
1815      val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1816      pl011_write(val, uap, lcrh);
1817}
1818
1819/*
1820 * disable the port. It should not disable RTS and DTR.
1821 * Also RTS and DTR state should be preserved to restore
1822 * it during startup().
1823 */
1824static void pl011_disable_uart(struct uart_amba_port *uap)
1825{
1826        unsigned int cr;
1827
1828        uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
1829        spin_lock_irq(&uap->port.lock);
1830        cr = pl011_read(uap, REG_CR);
1831        uap->old_cr = cr;
1832        cr &= UART011_CR_RTS | UART011_CR_DTR;
1833        cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1834        pl011_write(cr, uap, REG_CR);
1835        spin_unlock_irq(&uap->port.lock);
1836
1837        /*
1838         * disable break condition and fifos
1839         */
1840        pl011_shutdown_channel(uap, REG_LCRH_RX);
1841        if (pl011_split_lcrh(uap))
1842                pl011_shutdown_channel(uap, REG_LCRH_TX);
1843}
1844
1845static void pl011_disable_interrupts(struct uart_amba_port *uap)
1846{
1847        spin_lock_irq(&uap->port.lock);
1848
1849        /* mask all interrupts and clear all pending ones */
1850        uap->im = 0;
1851        pl011_write(uap->im, uap, REG_IMSC);
1852        pl011_write(0xffff, uap, REG_ICR);
1853
1854        spin_unlock_irq(&uap->port.lock);
1855}
1856
1857static void pl011_shutdown(struct uart_port *port)
1858{
1859        struct uart_amba_port *uap =
1860                container_of(port, struct uart_amba_port, port);
1861
1862        pl011_disable_interrupts(uap);
1863
1864        pl011_dma_shutdown(uap);
1865
1866        free_irq(uap->port.irq, uap);
1867
1868        pl011_disable_uart(uap);
1869
1870        /*
1871         * Shut down the clock producer
1872         */
1873        clk_disable_unprepare(uap->clk);
1874        /* Optionally let pins go into sleep states */
1875        pinctrl_pm_select_sleep_state(port->dev);
1876
1877        if (dev_get_platdata(uap->port.dev)) {
1878                struct amba_pl011_data *plat;
1879
1880                plat = dev_get_platdata(uap->port.dev);
1881                if (plat->exit)
1882                        plat->exit();
1883        }
1884
1885        if (uap->port.ops->flush_buffer)
1886                uap->port.ops->flush_buffer(port);
1887}
1888
1889static void sbsa_uart_shutdown(struct uart_port *port)
1890{
1891        struct uart_amba_port *uap =
1892                container_of(port, struct uart_amba_port, port);
1893
1894        pl011_disable_interrupts(uap);
1895
1896        free_irq(uap->port.irq, uap);
1897
1898        if (uap->port.ops->flush_buffer)
1899                uap->port.ops->flush_buffer(port);
1900}
1901
1902static void
1903pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
1904{
1905        port->read_status_mask = UART011_DR_OE | 255;
1906        if (termios->c_iflag & INPCK)
1907                port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1908        if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
1909                port->read_status_mask |= UART011_DR_BE;
1910
1911        /*
1912         * Characters to ignore
1913         */
1914        port->ignore_status_mask = 0;
1915        if (termios->c_iflag & IGNPAR)
1916                port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1917        if (termios->c_iflag & IGNBRK) {
1918                port->ignore_status_mask |= UART011_DR_BE;
1919                /*
1920                 * If we're ignoring parity and break indicators,
1921                 * ignore overruns too (for real raw support).
1922                 */
1923                if (termios->c_iflag & IGNPAR)
1924                        port->ignore_status_mask |= UART011_DR_OE;
1925        }
1926
1927        /*
1928         * Ignore all characters if CREAD is not set.
1929         */
1930        if ((termios->c_cflag & CREAD) == 0)
1931                port->ignore_status_mask |= UART_DUMMY_DR_RX;
1932}
1933
1934static void
1935pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1936                     struct ktermios *old)
1937{
1938        struct uart_amba_port *uap =
1939            container_of(port, struct uart_amba_port, port);
1940        unsigned int lcr_h, old_cr;
1941        unsigned long flags;
1942        unsigned int baud, quot, clkdiv;
1943
1944        if (uap->vendor->oversampling)
1945                clkdiv = 8;
1946        else
1947                clkdiv = 16;
1948
1949        /*
1950         * Ask the core to calculate the divisor for us.
1951         */
1952        baud = uart_get_baud_rate(port, termios, old, 0,
1953                                  port->uartclk / clkdiv);
1954#ifdef CONFIG_DMA_ENGINE
1955        /*
1956         * Adjust RX DMA polling rate with baud rate if not specified.
1957         */
1958        if (uap->dmarx.auto_poll_rate)
1959                uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
1960#endif
1961
1962        if (baud > port->uartclk/16)
1963                quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1964        else
1965                quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1966
1967        switch (termios->c_cflag & CSIZE) {
1968        case CS5:
1969                lcr_h = UART01x_LCRH_WLEN_5;
1970                break;
1971        case CS6:
1972                lcr_h = UART01x_LCRH_WLEN_6;
1973                break;
1974        case CS7:
1975                lcr_h = UART01x_LCRH_WLEN_7;
1976                break;
1977        default: // CS8
1978                lcr_h = UART01x_LCRH_WLEN_8;
1979                break;
1980        }
1981        if (termios->c_cflag & CSTOPB)
1982                lcr_h |= UART01x_LCRH_STP2;
1983        if (termios->c_cflag & PARENB) {
1984                lcr_h |= UART01x_LCRH_PEN;
1985                if (!(termios->c_cflag & PARODD))
1986                        lcr_h |= UART01x_LCRH_EPS;
1987                if (termios->c_cflag & CMSPAR)
1988                        lcr_h |= UART011_LCRH_SPS;
1989        }
1990        if (uap->fifosize > 1)
1991                lcr_h |= UART01x_LCRH_FEN;
1992
1993        spin_lock_irqsave(&port->lock, flags);
1994
1995        /*
1996         * Update the per-port timeout.
1997         */
1998        uart_update_timeout(port, termios->c_cflag, baud);
1999
2000        pl011_setup_status_masks(port, termios);
2001
2002        if (UART_ENABLE_MS(port, termios->c_cflag))
2003                pl011_enable_ms(port);
2004
2005        /* first, disable everything */
2006        old_cr = pl011_read(uap, REG_CR);
2007        pl011_write(0, uap, REG_CR);
2008
2009        if (termios->c_cflag & CRTSCTS) {
2010                if (old_cr & UART011_CR_RTS)
2011                        old_cr |= UART011_CR_RTSEN;
2012
2013                old_cr |= UART011_CR_CTSEN;
2014                port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
2015        } else {
2016                old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2017                port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
2018        }
2019
2020        if (uap->vendor->oversampling) {
2021                if (baud > port->uartclk / 16)
2022                        old_cr |= ST_UART011_CR_OVSFACT;
2023                else
2024                        old_cr &= ~ST_UART011_CR_OVSFACT;
2025        }
2026
2027        /*
2028         * Workaround for the ST Micro oversampling variants to
2029         * increase the bitrate slightly, by lowering the divisor,
2030         * to avoid delayed sampling of start bit at high speeds,
2031         * else we see data corruption.
2032         */
2033        if (uap->vendor->oversampling) {
2034                if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
2035                        quot -= 1;
2036                else if ((baud > 3250000) && (quot > 2))
2037                        quot -= 2;
2038        }
2039        /* Set baud rate */
2040        pl011_write(quot & 0x3f, uap, REG_FBRD);
2041        pl011_write(quot >> 6, uap, REG_IBRD);
2042
2043        /*
2044         * ----------v----------v----------v----------v-----
2045         * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2046         * REG_FBRD & REG_IBRD.
2047         * ----------^----------^----------^----------^-----
2048         */
2049        pl011_write_lcr_h(uap, lcr_h);
2050        pl011_write(old_cr, uap, REG_CR);
2051
2052        spin_unlock_irqrestore(&port->lock, flags);
2053}
2054
2055static void
2056sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2057                      struct ktermios *old)
2058{
2059        struct uart_amba_port *uap =
2060            container_of(port, struct uart_amba_port, port);
2061        unsigned long flags;
2062
2063        tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2064
2065        /* The SBSA UART only supports 8n1 without hardware flow control. */
2066        termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2067        termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2068        termios->c_cflag |= CS8 | CLOCAL;
2069
2070        spin_lock_irqsave(&port->lock, flags);
2071        uart_update_timeout(port, CS8, uap->fixed_baud);
2072        pl011_setup_status_masks(port, termios);
2073        spin_unlock_irqrestore(&port->lock, flags);
2074}
2075
2076static const char *pl011_type(struct uart_port *port)
2077{
2078        struct uart_amba_port *uap =
2079            container_of(port, struct uart_amba_port, port);
2080        return uap->port.type == PORT_AMBA ? uap->type : NULL;
2081}
2082
2083/*
2084 * Release the memory region(s) being used by 'port'
2085 */
2086static void pl011_release_port(struct uart_port *port)
2087{
2088        release_mem_region(port->mapbase, SZ_4K);
2089}
2090
2091/*
2092 * Request the memory region(s) being used by 'port'
2093 */
2094static int pl011_request_port(struct uart_port *port)
2095{
2096        return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
2097                        != NULL ? 0 : -EBUSY;
2098}
2099
2100/*
2101 * Configure/autoconfigure the port.
2102 */
2103static void pl011_config_port(struct uart_port *port, int flags)
2104{
2105        if (flags & UART_CONFIG_TYPE) {
2106                port->type = PORT_AMBA;
2107                pl011_request_port(port);
2108        }
2109}
2110
2111/*
2112 * verify the new serial_struct (for TIOCSSERIAL).
2113 */
2114static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2115{
2116        int ret = 0;
2117        if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2118                ret = -EINVAL;
2119        if (ser->irq < 0 || ser->irq >= nr_irqs)
2120                ret = -EINVAL;
2121        if (ser->baud_base < 9600)
2122                ret = -EINVAL;
2123        return ret;
2124}
2125
2126static const struct uart_ops amba_pl011_pops = {
2127        .tx_empty       = pl011_tx_empty,
2128        .set_mctrl      = pl011_set_mctrl,
2129        .get_mctrl      = pl011_get_mctrl,
2130        .stop_tx        = pl011_stop_tx,
2131        .start_tx       = pl011_start_tx,
2132        .stop_rx        = pl011_stop_rx,
2133        .enable_ms      = pl011_enable_ms,
2134        .break_ctl      = pl011_break_ctl,
2135        .startup        = pl011_startup,
2136        .shutdown       = pl011_shutdown,
2137        .flush_buffer   = pl011_dma_flush_buffer,
2138        .set_termios    = pl011_set_termios,
2139        .type           = pl011_type,
2140        .release_port   = pl011_release_port,
2141        .request_port   = pl011_request_port,
2142        .config_port    = pl011_config_port,
2143        .verify_port    = pl011_verify_port,
2144#ifdef CONFIG_CONSOLE_POLL
2145        .poll_init     = pl011_hwinit,
2146        .poll_get_char = pl011_get_poll_char,
2147        .poll_put_char = pl011_put_poll_char,
2148#endif
2149};
2150
2151static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2152{
2153}
2154
2155static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2156{
2157        return 0;
2158}
2159
2160static const struct uart_ops sbsa_uart_pops = {
2161        .tx_empty       = pl011_tx_empty,
2162        .set_mctrl      = sbsa_uart_set_mctrl,
2163        .get_mctrl      = sbsa_uart_get_mctrl,
2164        .stop_tx        = pl011_stop_tx,
2165        .start_tx       = pl011_start_tx,
2166        .stop_rx        = pl011_stop_rx,
2167        .startup        = sbsa_uart_startup,
2168        .shutdown       = sbsa_uart_shutdown,
2169        .set_termios    = sbsa_uart_set_termios,
2170        .type           = pl011_type,
2171        .release_port   = pl011_release_port,
2172        .request_port   = pl011_request_port,
2173        .config_port    = pl011_config_port,
2174        .verify_port    = pl011_verify_port,
2175#ifdef CONFIG_CONSOLE_POLL
2176        .poll_init     = pl011_hwinit,
2177        .poll_get_char = pl011_get_poll_char,
2178        .poll_put_char = pl011_put_poll_char,
2179#endif
2180};
2181
2182static struct uart_amba_port *amba_ports[UART_NR];
2183
2184#ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2185
2186static void pl011_console_putchar(struct uart_port *port, int ch)
2187{
2188        struct uart_amba_port *uap =
2189            container_of(port, struct uart_amba_port, port);
2190
2191        while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2192                cpu_relax();
2193        pl011_write(ch, uap, REG_DR);
2194}
2195
2196static void
2197pl011_console_write(struct console *co, const char *s, unsigned int count)
2198{
2199        struct uart_amba_port *uap = amba_ports[co->index];
2200        unsigned int old_cr = 0, new_cr;
2201        unsigned long flags;
2202        int locked = 1;
2203
2204        clk_enable(uap->clk);
2205
2206        local_irq_save(flags);
2207        if (uap->port.sysrq)
2208                locked = 0;
2209        else if (oops_in_progress)
2210                locked = spin_trylock(&uap->port.lock);
2211        else
2212                spin_lock(&uap->port.lock);
2213
2214        /*
2215         *      First save the CR then disable the interrupts
2216         */
2217        if (!uap->vendor->always_enabled) {
2218                old_cr = pl011_read(uap, REG_CR);
2219                new_cr = old_cr & ~UART011_CR_CTSEN;
2220                new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2221                pl011_write(new_cr, uap, REG_CR);
2222        }
2223
2224        uart_console_write(&uap->port, s, count, pl011_console_putchar);
2225
2226        /*
2227         *      Finally, wait for transmitter to become empty and restore the
2228         *      TCR. Allow feature register bits to be inverted to work around
2229         *      errata.
2230         */
2231        while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2232                                                & uap->vendor->fr_busy)
2233                cpu_relax();
2234        if (!uap->vendor->always_enabled)
2235                pl011_write(old_cr, uap, REG_CR);
2236
2237        if (locked)
2238                spin_unlock(&uap->port.lock);
2239        local_irq_restore(flags);
2240
2241        clk_disable(uap->clk);
2242}
2243
2244static void pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2245                                      int *parity, int *bits)
2246{
2247        if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) {
2248                unsigned int lcr_h, ibrd, fbrd;
2249
2250                lcr_h = pl011_read(uap, REG_LCRH_TX);
2251
2252                *parity = 'n';
2253                if (lcr_h & UART01x_LCRH_PEN) {
2254                        if (lcr_h & UART01x_LCRH_EPS)
2255                                *parity = 'e';
2256                        else
2257                                *parity = 'o';
2258                }
2259
2260                if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2261                        *bits = 7;
2262                else
2263                        *bits = 8;
2264
2265                ibrd = pl011_read(uap, REG_IBRD);
2266                fbrd = pl011_read(uap, REG_FBRD);
2267
2268                *baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2269
2270                if (uap->vendor->oversampling) {
2271                        if (pl011_read(uap, REG_CR)
2272                                  & ST_UART011_CR_OVSFACT)
2273                                *baud *= 2;
2274                }
2275        }
2276}
2277
2278static int pl011_console_setup(struct console *co, char *options)
2279{
2280        struct uart_amba_port *uap;
2281        int baud = 38400;
2282        int bits = 8;
2283        int parity = 'n';
2284        int flow = 'n';
2285        int ret;
2286
2287        /*
2288         * Check whether an invalid uart number has been specified, and
2289         * if so, search for the first available port that does have
2290         * console support.
2291         */
2292        if (co->index >= UART_NR)
2293                co->index = 0;
2294        uap = amba_ports[co->index];
2295        if (!uap)
2296                return -ENODEV;
2297
2298        /* Allow pins to be muxed in and configured */
2299        pinctrl_pm_select_default_state(uap->port.dev);
2300
2301        ret = clk_prepare(uap->clk);
2302        if (ret)
2303                return ret;
2304
2305        if (dev_get_platdata(uap->port.dev)) {
2306                struct amba_pl011_data *plat;
2307
2308                plat = dev_get_platdata(uap->port.dev);
2309                if (plat->init)
2310                        plat->init();
2311        }
2312
2313        uap->port.uartclk = clk_get_rate(uap->clk);
2314
2315        if (uap->vendor->fixed_options) {
2316                baud = uap->fixed_baud;
2317        } else {
2318                if (options)
2319                        uart_parse_options(options,
2320                                           &baud, &parity, &bits, &flow);
2321                else
2322                        pl011_console_get_options(uap, &baud, &parity, &bits);
2323        }
2324
2325        return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2326}
2327
2328/**
2329 *      pl011_console_match - non-standard console matching
2330 *      @co:      registering console
2331 *      @name:    name from console command line
2332 *      @idx:     index from console command line
2333 *      @options: ptr to option string from console command line
2334 *
2335 *      Only attempts to match console command lines of the form:
2336 *          console=pl011,mmio|mmio32,<addr>[,<options>]
2337 *          console=pl011,0x<addr>[,<options>]
2338 *      This form is used to register an initial earlycon boot console and
2339 *      replace it with the amba_console at pl011 driver init.
2340 *
2341 *      Performs console setup for a match (as required by interface)
2342 *      If no <options> are specified, then assume the h/w is already setup.
2343 *
2344 *      Returns 0 if console matches; otherwise non-zero to use default matching
2345 */
2346static int pl011_console_match(struct console *co, char *name, int idx,
2347                               char *options)
2348{
2349        unsigned char iotype;
2350        resource_size_t addr;
2351        int i;
2352
2353        /*
2354         * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2355         * have a distinct console name, so make sure we check for that.
2356         * The actual implementation of the erratum occurs in the probe
2357         * function.
2358         */
2359        if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2360                return -ENODEV;
2361
2362        if (uart_parse_earlycon(options, &iotype, &addr, &options))
2363                return -ENODEV;
2364
2365        if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2366                return -ENODEV;
2367
2368        /* try to match the port specified on the command line */
2369        for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2370                struct uart_port *port;
2371
2372                if (!amba_ports[i])
2373                        continue;
2374
2375                port = &amba_ports[i]->port;
2376
2377                if (port->mapbase != addr)
2378                        continue;
2379
2380                co->index = i;
2381                port->cons = co;
2382                return pl011_console_setup(co, options);
2383        }
2384
2385        return -ENODEV;
2386}
2387
2388static struct uart_driver amba_reg;
2389static struct console amba_console = {
2390        .name           = "ttyAMA",
2391        .write          = pl011_console_write,
2392        .device         = uart_console_device,
2393        .setup          = pl011_console_setup,
2394        .match          = pl011_console_match,
2395        .flags          = CON_PRINTBUFFER | CON_ANYTIME,
2396        .index          = -1,
2397        .data           = &amba_reg,
2398};
2399
2400#define AMBA_CONSOLE    (&amba_console)
2401
2402static void qdf2400_e44_putc(struct uart_port *port, int c)
2403{
2404        while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2405                cpu_relax();
2406        writel(c, port->membase + UART01x_DR);
2407        while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2408                cpu_relax();
2409}
2410
2411static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned n)
2412{
2413        struct earlycon_device *dev = con->data;
2414
2415        uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2416}
2417
2418static void pl011_putc(struct uart_port *port, int c)
2419{
2420        while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2421                cpu_relax();
2422        if (port->iotype == UPIO_MEM32)
2423                writel(c, port->membase + UART01x_DR);
2424        else
2425                writeb(c, port->membase + UART01x_DR);
2426        while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2427                cpu_relax();
2428}
2429
2430static void pl011_early_write(struct console *con, const char *s, unsigned n)
2431{
2432        struct earlycon_device *dev = con->data;
2433
2434        uart_console_write(&dev->port, s, n, pl011_putc);
2435}
2436
2437#ifdef CONFIG_CONSOLE_POLL
2438static int pl011_getc(struct uart_port *port)
2439{
2440        if (readl(port->membase + UART01x_FR) & UART01x_FR_RXFE)
2441                return NO_POLL_CHAR;
2442
2443        if (port->iotype == UPIO_MEM32)
2444                return readl(port->membase + UART01x_DR);
2445        else
2446                return readb(port->membase + UART01x_DR);
2447}
2448
2449static int pl011_early_read(struct console *con, char *s, unsigned int n)
2450{
2451        struct earlycon_device *dev = con->data;
2452        int ch, num_read = 0;
2453
2454        while (num_read < n) {
2455                ch = pl011_getc(&dev->port);
2456                if (ch == NO_POLL_CHAR)
2457                        break;
2458
2459                s[num_read++] = ch;
2460        }
2461
2462        return num_read;
2463}
2464#else
2465#define pl011_early_read NULL
2466#endif
2467
2468/*
2469 * On non-ACPI systems, earlycon is enabled by specifying
2470 * "earlycon=pl011,<address>" on the kernel command line.
2471 *
2472 * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2473 * by specifying only "earlycon" on the command line.  Because it requires
2474 * SPCR, the console starts after ACPI is parsed, which is later than a
2475 * traditional early console.
2476 *
2477 * To get the traditional early console that starts before ACPI is parsed,
2478 * specify the full "earlycon=pl011,<address>" option.
2479 */
2480static int __init pl011_early_console_setup(struct earlycon_device *device,
2481                                            const char *opt)
2482{
2483        if (!device->port.membase)
2484                return -ENODEV;
2485
2486        device->con->write = pl011_early_write;
2487        device->con->read = pl011_early_read;
2488
2489        return 0;
2490}
2491OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2492OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2493
2494/*
2495 * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2496 * Erratum 44, traditional earlycon can be enabled by specifying
2497 * "earlycon=qdf2400_e44,<address>".  Any options are ignored.
2498 *
2499 * Alternatively, you can just specify "earlycon", and the early console
2500 * will be enabled with the information from the SPCR table.  In this
2501 * case, the SPCR code will detect the need for the E44 work-around,
2502 * and set the console name to "qdf2400_e44".
2503 */
2504static int __init
2505qdf2400_e44_early_console_setup(struct earlycon_device *device,
2506                                const char *opt)
2507{
2508        if (!device->port.membase)
2509                return -ENODEV;
2510
2511        device->con->write = qdf2400_e44_early_write;
2512        return 0;
2513}
2514EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2515
2516#else
2517#define AMBA_CONSOLE    NULL
2518#endif
2519
2520static struct uart_driver amba_reg = {
2521        .owner                  = THIS_MODULE,
2522        .driver_name            = "ttyAMA",
2523        .dev_name               = "ttyAMA",
2524        .major                  = SERIAL_AMBA_MAJOR,
2525        .minor                  = SERIAL_AMBA_MINOR,
2526        .nr                     = UART_NR,
2527        .cons                   = AMBA_CONSOLE,
2528};
2529
2530static int pl011_probe_dt_alias(int index, struct device *dev)
2531{
2532        struct device_node *np;
2533        static bool seen_dev_with_alias = false;
2534        static bool seen_dev_without_alias = false;
2535        int ret = index;
2536
2537        if (!IS_ENABLED(CONFIG_OF))
2538                return ret;
2539
2540        np = dev->of_node;
2541        if (!np)
2542                return ret;
2543
2544        ret = of_alias_get_id(np, "serial");
2545        if (ret < 0) {
2546                seen_dev_without_alias = true;
2547                ret = index;
2548        } else {
2549                seen_dev_with_alias = true;
2550                if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2551                        dev_warn(dev, "requested serial port %d  not available.\n", ret);
2552                        ret = index;
2553                }
2554        }
2555
2556        if (seen_dev_with_alias && seen_dev_without_alias)
2557                dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2558
2559        return ret;
2560}
2561
2562/* unregisters the driver also if no more ports are left */
2563static void pl011_unregister_port(struct uart_amba_port *uap)
2564{
2565        int i;
2566        bool busy = false;
2567
2568        for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2569                if (amba_ports[i] == uap)
2570                        amba_ports[i] = NULL;
2571                else if (amba_ports[i])
2572                        busy = true;
2573        }
2574        pl011_dma_remove(uap);
2575        if (!busy)
2576                uart_unregister_driver(&amba_reg);
2577}
2578
2579static int pl011_find_free_port(void)
2580{
2581        int i;
2582
2583        for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2584                if (amba_ports[i] == NULL)
2585                        return i;
2586
2587        return -EBUSY;
2588}
2589
2590static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2591                            struct resource *mmiobase, int index)
2592{
2593        void __iomem *base;
2594
2595        base = devm_ioremap_resource(dev, mmiobase);
2596        if (IS_ERR(base))
2597                return PTR_ERR(base);
2598
2599        index = pl011_probe_dt_alias(index, dev);
2600
2601        uap->old_cr = 0;
2602        uap->port.dev = dev;
2603        uap->port.mapbase = mmiobase->start;
2604        uap->port.membase = base;
2605        uap->port.fifosize = uap->fifosize;
2606        uap->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_AMBA_PL011_CONSOLE);
2607        uap->port.flags = UPF_BOOT_AUTOCONF;
2608        uap->port.line = index;
2609
2610        amba_ports[index] = uap;
2611
2612        return 0;
2613}
2614
2615static int pl011_register_port(struct uart_amba_port *uap)
2616{
2617        int ret, i;
2618
2619        /* Ensure interrupts from this UART are masked and cleared */
2620        pl011_write(0, uap, REG_IMSC);
2621        pl011_write(0xffff, uap, REG_ICR);
2622
2623        if (!amba_reg.state) {
2624                ret = uart_register_driver(&amba_reg);
2625                if (ret < 0) {
2626                        dev_err(uap->port.dev,
2627                                "Failed to register AMBA-PL011 driver\n");
2628                        for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2629                                if (amba_ports[i] == uap)
2630                                        amba_ports[i] = NULL;
2631                        return ret;
2632                }
2633        }
2634
2635        ret = uart_add_one_port(&amba_reg, &uap->port);
2636        if (ret)
2637                pl011_unregister_port(uap);
2638
2639        return ret;
2640}
2641
2642static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2643{
2644        struct uart_amba_port *uap;
2645        struct vendor_data *vendor = id->data;
2646        int portnr, ret;
2647
2648        portnr = pl011_find_free_port();
2649        if (portnr < 0)
2650                return portnr;
2651
2652        uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2653                           GFP_KERNEL);
2654        if (!uap)
2655                return -ENOMEM;
2656
2657        uap->clk = devm_clk_get(&dev->dev, NULL);
2658        if (IS_ERR(uap->clk))
2659                return PTR_ERR(uap->clk);
2660
2661        uap->reg_offset = vendor->reg_offset;
2662        uap->vendor = vendor;
2663        uap->fifosize = vendor->get_fifosize(dev);
2664        uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2665        uap->port.irq = dev->irq[0];
2666        uap->port.ops = &amba_pl011_pops;
2667
2668        snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2669
2670        ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2671        if (ret)
2672                return ret;
2673
2674        amba_set_drvdata(dev, uap);
2675
2676        return pl011_register_port(uap);
2677}
2678
2679static int pl011_remove(struct amba_device *dev)
2680{
2681        struct uart_amba_port *uap = amba_get_drvdata(dev);
2682
2683        uart_remove_one_port(&amba_reg, &uap->port);
2684        pl011_unregister_port(uap);
2685        return 0;
2686}
2687
2688#ifdef CONFIG_PM_SLEEP
2689static int pl011_suspend(struct device *dev)
2690{
2691        struct uart_amba_port *uap = dev_get_drvdata(dev);
2692
2693        if (!uap)
2694                return -EINVAL;
2695
2696        return uart_suspend_port(&amba_reg, &uap->port);
2697}
2698
2699static int pl011_resume(struct device *dev)
2700{
2701        struct uart_amba_port *uap = dev_get_drvdata(dev);
2702
2703        if (!uap)
2704                return -EINVAL;
2705
2706        return uart_resume_port(&amba_reg, &uap->port);
2707}
2708#endif
2709
2710static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2711
2712static int sbsa_uart_probe(struct platform_device *pdev)
2713{
2714        struct uart_amba_port *uap;
2715        struct resource *r;
2716        int portnr, ret;
2717        int baudrate;
2718
2719        /*
2720         * Check the mandatory baud rate parameter in the DT node early
2721         * so that we can easily exit with the error.
2722         */
2723        if (pdev->dev.of_node) {
2724                struct device_node *np = pdev->dev.of_node;
2725
2726                ret = of_property_read_u32(np, "current-speed", &baudrate);
2727                if (ret)
2728                        return ret;
2729        } else {
2730                baudrate = 115200;
2731        }
2732
2733        portnr = pl011_find_free_port();
2734        if (portnr < 0)
2735                return portnr;
2736
2737        uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2738                           GFP_KERNEL);
2739        if (!uap)
2740                return -ENOMEM;
2741
2742        ret = platform_get_irq(pdev, 0);
2743        if (ret < 0)
2744                return ret;
2745        uap->port.irq   = ret;
2746
2747#ifdef CONFIG_ACPI_SPCR_TABLE
2748        if (qdf2400_e44_present) {
2749                dev_info(&pdev->dev, "working around QDF2400 SoC erratum 44\n");
2750                uap->vendor = &vendor_qdt_qdf2400_e44;
2751        } else
2752#endif
2753                uap->vendor = &vendor_sbsa;
2754
2755        uap->reg_offset = uap->vendor->reg_offset;
2756        uap->fifosize   = 32;
2757        uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2758        uap->port.ops   = &sbsa_uart_pops;
2759        uap->fixed_baud = baudrate;
2760
2761        snprintf(uap->type, sizeof(uap->type), "SBSA");
2762
2763        r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2764
2765        ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2766        if (ret)
2767                return ret;
2768
2769        platform_set_drvdata(pdev, uap);
2770
2771        return pl011_register_port(uap);
2772}
2773
2774static int sbsa_uart_remove(struct platform_device *pdev)
2775{
2776        struct uart_amba_port *uap = platform_get_drvdata(pdev);
2777
2778        uart_remove_one_port(&amba_reg, &uap->port);
2779        pl011_unregister_port(uap);
2780        return 0;
2781}
2782
2783static const struct of_device_id sbsa_uart_of_match[] = {
2784        { .compatible = "arm,sbsa-uart", },
2785        {},
2786};
2787MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2788
2789static const struct acpi_device_id sbsa_uart_acpi_match[] = {
2790        { "ARMH0011", 0 },
2791        {},
2792};
2793MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2794
2795static struct platform_driver arm_sbsa_uart_platform_driver = {
2796        .probe          = sbsa_uart_probe,
2797        .remove         = sbsa_uart_remove,
2798        .driver = {
2799                .name   = "sbsa-uart",
2800                .pm     = &pl011_dev_pm_ops,
2801                .of_match_table = of_match_ptr(sbsa_uart_of_match),
2802                .acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2803                .suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2804        },
2805};
2806
2807static const struct amba_id pl011_ids[] = {
2808        {
2809                .id     = 0x00041011,
2810                .mask   = 0x000fffff,
2811                .data   = &vendor_arm,
2812        },
2813        {
2814                .id     = 0x00380802,
2815                .mask   = 0x00ffffff,
2816                .data   = &vendor_st,
2817        },
2818        {
2819                .id     = AMBA_LINUX_ID(0x00, 0x1, 0xffe),
2820                .mask   = 0x00ffffff,
2821                .data   = &vendor_zte,
2822        },
2823        { 0, 0 },
2824};
2825
2826MODULE_DEVICE_TABLE(amba, pl011_ids);
2827
2828static struct amba_driver pl011_driver = {
2829        .drv = {
2830                .name   = "uart-pl011",
2831                .pm     = &pl011_dev_pm_ops,
2832                .suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2833        },
2834        .id_table       = pl011_ids,
2835        .probe          = pl011_probe,
2836        .remove         = pl011_remove,
2837};
2838
2839static int __init pl011_init(void)
2840{
2841        printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2842
2843        if (platform_driver_register(&arm_sbsa_uart_platform_driver))
2844                pr_warn("could not register SBSA UART platform driver\n");
2845        return amba_driver_register(&pl011_driver);
2846}
2847
2848static void __exit pl011_exit(void)
2849{
2850        platform_driver_unregister(&arm_sbsa_uart_platform_driver);
2851        amba_driver_unregister(&pl011_driver);
2852}
2853
2854/*
2855 * While this can be a module, if builtin it's most likely the console
2856 * So let's leave module_exit but move module_init to an earlier place
2857 */
2858arch_initcall(pl011_init);
2859module_exit(pl011_exit);
2860
2861MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2862MODULE_DESCRIPTION("ARM AMBA serial port driver");
2863MODULE_LICENSE("GPL");
2864