linux/drivers/usb/dwc2/hcd.c
<<
>>
Prefs
   1// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
   2/*
   3 * hcd.c - DesignWare HS OTG Controller host-mode routines
   4 *
   5 * Copyright (C) 2004-2013 Synopsys, Inc.
   6 *
   7 * Redistribution and use in source and binary forms, with or without
   8 * modification, are permitted provided that the following conditions
   9 * are met:
  10 * 1. Redistributions of source code must retain the above copyright
  11 *    notice, this list of conditions, and the following disclaimer,
  12 *    without modification.
  13 * 2. Redistributions in binary form must reproduce the above copyright
  14 *    notice, this list of conditions and the following disclaimer in the
  15 *    documentation and/or other materials provided with the distribution.
  16 * 3. The names of the above-listed copyright holders may not be used
  17 *    to endorse or promote products derived from this software without
  18 *    specific prior written permission.
  19 *
  20 * ALTERNATIVELY, this software may be distributed under the terms of the
  21 * GNU General Public License ("GPL") as published by the Free Software
  22 * Foundation; either version 2 of the License, or (at your option) any
  23 * later version.
  24 *
  25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
  26 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
  27 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
  29 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
  30 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
  31 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
  32 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
  34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  36 */
  37
  38/*
  39 * This file contains the core HCD code, and implements the Linux hc_driver
  40 * API
  41 */
  42#include <linux/kernel.h>
  43#include <linux/module.h>
  44#include <linux/spinlock.h>
  45#include <linux/interrupt.h>
  46#include <linux/platform_device.h>
  47#include <linux/dma-mapping.h>
  48#include <linux/delay.h>
  49#include <linux/io.h>
  50#include <linux/slab.h>
  51#include <linux/usb.h>
  52
  53#include <linux/usb/hcd.h>
  54#include <linux/usb/ch11.h>
  55
  56#include "core.h"
  57#include "hcd.h"
  58
  59static void dwc2_port_resume(struct dwc2_hsotg *hsotg);
  60
  61/*
  62 * =========================================================================
  63 *  Host Core Layer Functions
  64 * =========================================================================
  65 */
  66
  67/**
  68 * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
  69 * used in both device and host modes
  70 *
  71 * @hsotg: Programming view of the DWC_otg controller
  72 */
  73static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
  74{
  75        u32 intmsk;
  76
  77        /* Clear any pending OTG Interrupts */
  78        dwc2_writel(hsotg, 0xffffffff, GOTGINT);
  79
  80        /* Clear any pending interrupts */
  81        dwc2_writel(hsotg, 0xffffffff, GINTSTS);
  82
  83        /* Enable the interrupts in the GINTMSK */
  84        intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
  85
  86        if (!hsotg->params.host_dma)
  87                intmsk |= GINTSTS_RXFLVL;
  88        if (!hsotg->params.external_id_pin_ctl)
  89                intmsk |= GINTSTS_CONIDSTSCHNG;
  90
  91        intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
  92                  GINTSTS_SESSREQINT;
  93
  94        if (dwc2_is_device_mode(hsotg) && hsotg->params.lpm)
  95                intmsk |= GINTSTS_LPMTRANRCVD;
  96
  97        dwc2_writel(hsotg, intmsk, GINTMSK);
  98}
  99
 100static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
 101{
 102        u32 ahbcfg = dwc2_readl(hsotg, GAHBCFG);
 103
 104        switch (hsotg->hw_params.arch) {
 105        case GHWCFG2_EXT_DMA_ARCH:
 106                dev_err(hsotg->dev, "External DMA Mode not supported\n");
 107                return -EINVAL;
 108
 109        case GHWCFG2_INT_DMA_ARCH:
 110                dev_dbg(hsotg->dev, "Internal DMA Mode\n");
 111                if (hsotg->params.ahbcfg != -1) {
 112                        ahbcfg &= GAHBCFG_CTRL_MASK;
 113                        ahbcfg |= hsotg->params.ahbcfg &
 114                                  ~GAHBCFG_CTRL_MASK;
 115                }
 116                break;
 117
 118        case GHWCFG2_SLAVE_ONLY_ARCH:
 119        default:
 120                dev_dbg(hsotg->dev, "Slave Only Mode\n");
 121                break;
 122        }
 123
 124        if (hsotg->params.host_dma)
 125                ahbcfg |= GAHBCFG_DMA_EN;
 126        else
 127                hsotg->params.dma_desc_enable = false;
 128
 129        dwc2_writel(hsotg, ahbcfg, GAHBCFG);
 130
 131        return 0;
 132}
 133
 134static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
 135{
 136        u32 usbcfg;
 137
 138        usbcfg = dwc2_readl(hsotg, GUSBCFG);
 139        usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
 140
 141        switch (hsotg->hw_params.op_mode) {
 142        case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
 143                if (hsotg->params.otg_cap ==
 144                                DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
 145                        usbcfg |= GUSBCFG_HNPCAP;
 146                if (hsotg->params.otg_cap !=
 147                                DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
 148                        usbcfg |= GUSBCFG_SRPCAP;
 149                break;
 150
 151        case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
 152        case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
 153        case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
 154                if (hsotg->params.otg_cap !=
 155                                DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
 156                        usbcfg |= GUSBCFG_SRPCAP;
 157                break;
 158
 159        case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
 160        case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
 161        case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
 162        default:
 163                break;
 164        }
 165
 166        dwc2_writel(hsotg, usbcfg, GUSBCFG);
 167}
 168
 169static int dwc2_vbus_supply_init(struct dwc2_hsotg *hsotg)
 170{
 171        if (hsotg->vbus_supply)
 172                return regulator_enable(hsotg->vbus_supply);
 173
 174        return 0;
 175}
 176
 177static int dwc2_vbus_supply_exit(struct dwc2_hsotg *hsotg)
 178{
 179        if (hsotg->vbus_supply)
 180                return regulator_disable(hsotg->vbus_supply);
 181
 182        return 0;
 183}
 184
 185/**
 186 * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
 187 *
 188 * @hsotg: Programming view of DWC_otg controller
 189 */
 190static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
 191{
 192        u32 intmsk;
 193
 194        dev_dbg(hsotg->dev, "%s()\n", __func__);
 195
 196        /* Disable all interrupts */
 197        dwc2_writel(hsotg, 0, GINTMSK);
 198        dwc2_writel(hsotg, 0, HAINTMSK);
 199
 200        /* Enable the common interrupts */
 201        dwc2_enable_common_interrupts(hsotg);
 202
 203        /* Enable host mode interrupts without disturbing common interrupts */
 204        intmsk = dwc2_readl(hsotg, GINTMSK);
 205        intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
 206        dwc2_writel(hsotg, intmsk, GINTMSK);
 207}
 208
 209/**
 210 * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
 211 *
 212 * @hsotg: Programming view of DWC_otg controller
 213 */
 214static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
 215{
 216        u32 intmsk = dwc2_readl(hsotg, GINTMSK);
 217
 218        /* Disable host mode interrupts without disturbing common interrupts */
 219        intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
 220                    GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
 221        dwc2_writel(hsotg, intmsk, GINTMSK);
 222}
 223
 224/*
 225 * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
 226 * For system that have a total fifo depth that is smaller than the default
 227 * RX + TX fifo size.
 228 *
 229 * @hsotg: Programming view of DWC_otg controller
 230 */
 231static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
 232{
 233        struct dwc2_core_params *params = &hsotg->params;
 234        struct dwc2_hw_params *hw = &hsotg->hw_params;
 235        u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
 236
 237        total_fifo_size = hw->total_fifo_size;
 238        rxfsiz = params->host_rx_fifo_size;
 239        nptxfsiz = params->host_nperio_tx_fifo_size;
 240        ptxfsiz = params->host_perio_tx_fifo_size;
 241
 242        /*
 243         * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
 244         * allocation with support for high bandwidth endpoints. Synopsys
 245         * defines MPS(Max Packet size) for a periodic EP=1024, and for
 246         * non-periodic as 512.
 247         */
 248        if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
 249                /*
 250                 * For Buffer DMA mode/Scatter Gather DMA mode
 251                 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
 252                 * with n = number of host channel.
 253                 * 2 * ((1024/4) + 2) = 516
 254                 */
 255                rxfsiz = 516 + hw->host_channels;
 256
 257                /*
 258                 * min non-periodic tx fifo depth
 259                 * 2 * (largest non-periodic USB packet used / 4)
 260                 * 2 * (512/4) = 256
 261                 */
 262                nptxfsiz = 256;
 263
 264                /*
 265                 * min periodic tx fifo depth
 266                 * (largest packet size*MC)/4
 267                 * (1024 * 3)/4 = 768
 268                 */
 269                ptxfsiz = 768;
 270
 271                params->host_rx_fifo_size = rxfsiz;
 272                params->host_nperio_tx_fifo_size = nptxfsiz;
 273                params->host_perio_tx_fifo_size = ptxfsiz;
 274        }
 275
 276        /*
 277         * If the summation of RX, NPTX and PTX fifo sizes is still
 278         * bigger than the total_fifo_size, then we have a problem.
 279         *
 280         * We won't be able to allocate as many endpoints. Right now,
 281         * we're just printing an error message, but ideally this FIFO
 282         * allocation algorithm would be improved in the future.
 283         *
 284         * FIXME improve this FIFO allocation algorithm.
 285         */
 286        if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
 287                dev_err(hsotg->dev, "invalid fifo sizes\n");
 288}
 289
 290static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
 291{
 292        struct dwc2_core_params *params = &hsotg->params;
 293        u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
 294
 295        if (!params->enable_dynamic_fifo)
 296                return;
 297
 298        dwc2_calculate_dynamic_fifo(hsotg);
 299
 300        /* Rx FIFO */
 301        grxfsiz = dwc2_readl(hsotg, GRXFSIZ);
 302        dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
 303        grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
 304        grxfsiz |= params->host_rx_fifo_size <<
 305                   GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
 306        dwc2_writel(hsotg, grxfsiz, GRXFSIZ);
 307        dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
 308                dwc2_readl(hsotg, GRXFSIZ));
 309
 310        /* Non-periodic Tx FIFO */
 311        dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
 312                dwc2_readl(hsotg, GNPTXFSIZ));
 313        nptxfsiz = params->host_nperio_tx_fifo_size <<
 314                   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
 315        nptxfsiz |= params->host_rx_fifo_size <<
 316                    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
 317        dwc2_writel(hsotg, nptxfsiz, GNPTXFSIZ);
 318        dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
 319                dwc2_readl(hsotg, GNPTXFSIZ));
 320
 321        /* Periodic Tx FIFO */
 322        dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
 323                dwc2_readl(hsotg, HPTXFSIZ));
 324        hptxfsiz = params->host_perio_tx_fifo_size <<
 325                   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
 326        hptxfsiz |= (params->host_rx_fifo_size +
 327                     params->host_nperio_tx_fifo_size) <<
 328                    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
 329        dwc2_writel(hsotg, hptxfsiz, HPTXFSIZ);
 330        dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
 331                dwc2_readl(hsotg, HPTXFSIZ));
 332
 333        if (hsotg->params.en_multiple_tx_fifo &&
 334            hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_91a) {
 335                /*
 336                 * This feature was implemented in 2.91a version
 337                 * Global DFIFOCFG calculation for Host mode -
 338                 * include RxFIFO, NPTXFIFO and HPTXFIFO
 339                 */
 340                dfifocfg = dwc2_readl(hsotg, GDFIFOCFG);
 341                dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
 342                dfifocfg |= (params->host_rx_fifo_size +
 343                             params->host_nperio_tx_fifo_size +
 344                             params->host_perio_tx_fifo_size) <<
 345                            GDFIFOCFG_EPINFOBASE_SHIFT &
 346                            GDFIFOCFG_EPINFOBASE_MASK;
 347                dwc2_writel(hsotg, dfifocfg, GDFIFOCFG);
 348        }
 349}
 350
 351/**
 352 * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
 353 * the HFIR register according to PHY type and speed
 354 *
 355 * @hsotg: Programming view of DWC_otg controller
 356 *
 357 * NOTE: The caller can modify the value of the HFIR register only after the
 358 * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
 359 * has been set
 360 */
 361u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
 362{
 363        u32 usbcfg;
 364        u32 hprt0;
 365        int clock = 60; /* default value */
 366
 367        usbcfg = dwc2_readl(hsotg, GUSBCFG);
 368        hprt0 = dwc2_readl(hsotg, HPRT0);
 369
 370        if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
 371            !(usbcfg & GUSBCFG_PHYIF16))
 372                clock = 60;
 373        if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
 374            GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
 375                clock = 48;
 376        if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
 377            !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
 378                clock = 30;
 379        if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
 380            !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
 381                clock = 60;
 382        if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
 383            !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
 384                clock = 48;
 385        if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
 386            hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
 387                clock = 48;
 388        if ((usbcfg & GUSBCFG_PHYSEL) &&
 389            hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
 390                clock = 48;
 391
 392        if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
 393                /* High speed case */
 394                return 125 * clock - 1;
 395
 396        /* FS/LS case */
 397        return 1000 * clock - 1;
 398}
 399
 400/**
 401 * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
 402 * buffer
 403 *
 404 * @hsotg: Programming view of DWC_otg controller
 405 * @dest:    Destination buffer for the packet
 406 * @bytes:   Number of bytes to copy to the destination
 407 */
 408void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
 409{
 410        u32 *data_buf = (u32 *)dest;
 411        int word_count = (bytes + 3) / 4;
 412        int i;
 413
 414        /*
 415         * Todo: Account for the case where dest is not dword aligned. This
 416         * requires reading data from the FIFO into a u32 temp buffer, then
 417         * moving it into the data buffer.
 418         */
 419
 420        dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
 421
 422        for (i = 0; i < word_count; i++, data_buf++)
 423                *data_buf = dwc2_readl(hsotg, HCFIFO(0));
 424}
 425
 426/**
 427 * dwc2_dump_channel_info() - Prints the state of a host channel
 428 *
 429 * @hsotg: Programming view of DWC_otg controller
 430 * @chan:  Pointer to the channel to dump
 431 *
 432 * Must be called with interrupt disabled and spinlock held
 433 *
 434 * NOTE: This function will be removed once the peripheral controller code
 435 * is integrated and the driver is stable
 436 */
 437static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
 438                                   struct dwc2_host_chan *chan)
 439{
 440#ifdef VERBOSE_DEBUG
 441        int num_channels = hsotg->params.host_channels;
 442        struct dwc2_qh *qh;
 443        u32 hcchar;
 444        u32 hcsplt;
 445        u32 hctsiz;
 446        u32 hc_dma;
 447        int i;
 448
 449        if (!chan)
 450                return;
 451
 452        hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
 453        hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
 454        hctsiz = dwc2_readl(hsotg, HCTSIZ(chan->hc_num));
 455        hc_dma = dwc2_readl(hsotg, HCDMA(chan->hc_num));
 456
 457        dev_dbg(hsotg->dev, "  Assigned to channel %p:\n", chan);
 458        dev_dbg(hsotg->dev, "    hcchar 0x%08x, hcsplt 0x%08x\n",
 459                hcchar, hcsplt);
 460        dev_dbg(hsotg->dev, "    hctsiz 0x%08x, hc_dma 0x%08x\n",
 461                hctsiz, hc_dma);
 462        dev_dbg(hsotg->dev, "    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
 463                chan->dev_addr, chan->ep_num, chan->ep_is_in);
 464        dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
 465        dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
 466        dev_dbg(hsotg->dev, "    data_pid_start: %d\n", chan->data_pid_start);
 467        dev_dbg(hsotg->dev, "    xfer_started: %d\n", chan->xfer_started);
 468        dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
 469        dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
 470        dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
 471                (unsigned long)chan->xfer_dma);
 472        dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
 473        dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
 474        dev_dbg(hsotg->dev, "  NP inactive sched:\n");
 475        list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
 476                            qh_list_entry)
 477                dev_dbg(hsotg->dev, "    %p\n", qh);
 478        dev_dbg(hsotg->dev, "  NP waiting sched:\n");
 479        list_for_each_entry(qh, &hsotg->non_periodic_sched_waiting,
 480                            qh_list_entry)
 481                dev_dbg(hsotg->dev, "    %p\n", qh);
 482        dev_dbg(hsotg->dev, "  NP active sched:\n");
 483        list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
 484                            qh_list_entry)
 485                dev_dbg(hsotg->dev, "    %p\n", qh);
 486        dev_dbg(hsotg->dev, "  Channels:\n");
 487        for (i = 0; i < num_channels; i++) {
 488                struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
 489
 490                dev_dbg(hsotg->dev, "    %2d: %p\n", i, chan);
 491        }
 492#endif /* VERBOSE_DEBUG */
 493}
 494
 495static int _dwc2_hcd_start(struct usb_hcd *hcd);
 496
 497static void dwc2_host_start(struct dwc2_hsotg *hsotg)
 498{
 499        struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
 500
 501        hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
 502        _dwc2_hcd_start(hcd);
 503}
 504
 505static void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
 506{
 507        struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
 508
 509        hcd->self.is_b_host = 0;
 510}
 511
 512static void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
 513                               int *hub_addr, int *hub_port)
 514{
 515        struct urb *urb = context;
 516
 517        if (urb->dev->tt)
 518                *hub_addr = urb->dev->tt->hub->devnum;
 519        else
 520                *hub_addr = 0;
 521        *hub_port = urb->dev->ttport;
 522}
 523
 524/*
 525 * =========================================================================
 526 *  Low Level Host Channel Access Functions
 527 * =========================================================================
 528 */
 529
 530static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
 531                                      struct dwc2_host_chan *chan)
 532{
 533        u32 hcintmsk = HCINTMSK_CHHLTD;
 534
 535        switch (chan->ep_type) {
 536        case USB_ENDPOINT_XFER_CONTROL:
 537        case USB_ENDPOINT_XFER_BULK:
 538                dev_vdbg(hsotg->dev, "control/bulk\n");
 539                hcintmsk |= HCINTMSK_XFERCOMPL;
 540                hcintmsk |= HCINTMSK_STALL;
 541                hcintmsk |= HCINTMSK_XACTERR;
 542                hcintmsk |= HCINTMSK_DATATGLERR;
 543                if (chan->ep_is_in) {
 544                        hcintmsk |= HCINTMSK_BBLERR;
 545                } else {
 546                        hcintmsk |= HCINTMSK_NAK;
 547                        hcintmsk |= HCINTMSK_NYET;
 548                        if (chan->do_ping)
 549                                hcintmsk |= HCINTMSK_ACK;
 550                }
 551
 552                if (chan->do_split) {
 553                        hcintmsk |= HCINTMSK_NAK;
 554                        if (chan->complete_split)
 555                                hcintmsk |= HCINTMSK_NYET;
 556                        else
 557                                hcintmsk |= HCINTMSK_ACK;
 558                }
 559
 560                if (chan->error_state)
 561                        hcintmsk |= HCINTMSK_ACK;
 562                break;
 563
 564        case USB_ENDPOINT_XFER_INT:
 565                if (dbg_perio())
 566                        dev_vdbg(hsotg->dev, "intr\n");
 567                hcintmsk |= HCINTMSK_XFERCOMPL;
 568                hcintmsk |= HCINTMSK_NAK;
 569                hcintmsk |= HCINTMSK_STALL;
 570                hcintmsk |= HCINTMSK_XACTERR;
 571                hcintmsk |= HCINTMSK_DATATGLERR;
 572                hcintmsk |= HCINTMSK_FRMOVRUN;
 573
 574                if (chan->ep_is_in)
 575                        hcintmsk |= HCINTMSK_BBLERR;
 576                if (chan->error_state)
 577                        hcintmsk |= HCINTMSK_ACK;
 578                if (chan->do_split) {
 579                        if (chan->complete_split)
 580                                hcintmsk |= HCINTMSK_NYET;
 581                        else
 582                                hcintmsk |= HCINTMSK_ACK;
 583                }
 584                break;
 585
 586        case USB_ENDPOINT_XFER_ISOC:
 587                if (dbg_perio())
 588                        dev_vdbg(hsotg->dev, "isoc\n");
 589                hcintmsk |= HCINTMSK_XFERCOMPL;
 590                hcintmsk |= HCINTMSK_FRMOVRUN;
 591                hcintmsk |= HCINTMSK_ACK;
 592
 593                if (chan->ep_is_in) {
 594                        hcintmsk |= HCINTMSK_XACTERR;
 595                        hcintmsk |= HCINTMSK_BBLERR;
 596                }
 597                break;
 598        default:
 599                dev_err(hsotg->dev, "## Unknown EP type ##\n");
 600                break;
 601        }
 602
 603        dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
 604        if (dbg_hc(chan))
 605                dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
 606}
 607
 608static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
 609                                    struct dwc2_host_chan *chan)
 610{
 611        u32 hcintmsk = HCINTMSK_CHHLTD;
 612
 613        /*
 614         * For Descriptor DMA mode core halts the channel on AHB error.
 615         * Interrupt is not required.
 616         */
 617        if (!hsotg->params.dma_desc_enable) {
 618                if (dbg_hc(chan))
 619                        dev_vdbg(hsotg->dev, "desc DMA disabled\n");
 620                hcintmsk |= HCINTMSK_AHBERR;
 621        } else {
 622                if (dbg_hc(chan))
 623                        dev_vdbg(hsotg->dev, "desc DMA enabled\n");
 624                if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
 625                        hcintmsk |= HCINTMSK_XFERCOMPL;
 626        }
 627
 628        if (chan->error_state && !chan->do_split &&
 629            chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
 630                if (dbg_hc(chan))
 631                        dev_vdbg(hsotg->dev, "setting ACK\n");
 632                hcintmsk |= HCINTMSK_ACK;
 633                if (chan->ep_is_in) {
 634                        hcintmsk |= HCINTMSK_DATATGLERR;
 635                        if (chan->ep_type != USB_ENDPOINT_XFER_INT)
 636                                hcintmsk |= HCINTMSK_NAK;
 637                }
 638        }
 639
 640        dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
 641        if (dbg_hc(chan))
 642                dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
 643}
 644
 645static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
 646                                struct dwc2_host_chan *chan)
 647{
 648        u32 intmsk;
 649
 650        if (hsotg->params.host_dma) {
 651                if (dbg_hc(chan))
 652                        dev_vdbg(hsotg->dev, "DMA enabled\n");
 653                dwc2_hc_enable_dma_ints(hsotg, chan);
 654        } else {
 655                if (dbg_hc(chan))
 656                        dev_vdbg(hsotg->dev, "DMA disabled\n");
 657                dwc2_hc_enable_slave_ints(hsotg, chan);
 658        }
 659
 660        /* Enable the top level host channel interrupt */
 661        intmsk = dwc2_readl(hsotg, HAINTMSK);
 662        intmsk |= 1 << chan->hc_num;
 663        dwc2_writel(hsotg, intmsk, HAINTMSK);
 664        if (dbg_hc(chan))
 665                dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
 666
 667        /* Make sure host channel interrupts are enabled */
 668        intmsk = dwc2_readl(hsotg, GINTMSK);
 669        intmsk |= GINTSTS_HCHINT;
 670        dwc2_writel(hsotg, intmsk, GINTMSK);
 671        if (dbg_hc(chan))
 672                dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
 673}
 674
 675/**
 676 * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
 677 * a specific endpoint
 678 *
 679 * @hsotg: Programming view of DWC_otg controller
 680 * @chan:  Information needed to initialize the host channel
 681 *
 682 * The HCCHARn register is set up with the characteristics specified in chan.
 683 * Host channel interrupts that may need to be serviced while this transfer is
 684 * in progress are enabled.
 685 */
 686static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
 687{
 688        u8 hc_num = chan->hc_num;
 689        u32 hcintmsk;
 690        u32 hcchar;
 691        u32 hcsplt = 0;
 692
 693        if (dbg_hc(chan))
 694                dev_vdbg(hsotg->dev, "%s()\n", __func__);
 695
 696        /* Clear old interrupt conditions for this host channel */
 697        hcintmsk = 0xffffffff;
 698        hcintmsk &= ~HCINTMSK_RESERVED14_31;
 699        dwc2_writel(hsotg, hcintmsk, HCINT(hc_num));
 700
 701        /* Enable channel interrupts required for this transfer */
 702        dwc2_hc_enable_ints(hsotg, chan);
 703
 704        /*
 705         * Program the HCCHARn register with the endpoint characteristics for
 706         * the current transfer
 707         */
 708        hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
 709        hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
 710        if (chan->ep_is_in)
 711                hcchar |= HCCHAR_EPDIR;
 712        if (chan->speed == USB_SPEED_LOW)
 713                hcchar |= HCCHAR_LSPDDEV;
 714        hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
 715        hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
 716        dwc2_writel(hsotg, hcchar, HCCHAR(hc_num));
 717        if (dbg_hc(chan)) {
 718                dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
 719                         hc_num, hcchar);
 720
 721                dev_vdbg(hsotg->dev, "%s: Channel %d\n",
 722                         __func__, hc_num);
 723                dev_vdbg(hsotg->dev, "   Dev Addr: %d\n",
 724                         chan->dev_addr);
 725                dev_vdbg(hsotg->dev, "   Ep Num: %d\n",
 726                         chan->ep_num);
 727                dev_vdbg(hsotg->dev, "   Is In: %d\n",
 728                         chan->ep_is_in);
 729                dev_vdbg(hsotg->dev, "   Is Low Speed: %d\n",
 730                         chan->speed == USB_SPEED_LOW);
 731                dev_vdbg(hsotg->dev, "   Ep Type: %d\n",
 732                         chan->ep_type);
 733                dev_vdbg(hsotg->dev, "   Max Pkt: %d\n",
 734                         chan->max_packet);
 735        }
 736
 737        /* Program the HCSPLT register for SPLITs */
 738        if (chan->do_split) {
 739                if (dbg_hc(chan))
 740                        dev_vdbg(hsotg->dev,
 741                                 "Programming HC %d with split --> %s\n",
 742                                 hc_num,
 743                                 chan->complete_split ? "CSPLIT" : "SSPLIT");
 744                if (chan->complete_split)
 745                        hcsplt |= HCSPLT_COMPSPLT;
 746                hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
 747                          HCSPLT_XACTPOS_MASK;
 748                hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
 749                          HCSPLT_HUBADDR_MASK;
 750                hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
 751                          HCSPLT_PRTADDR_MASK;
 752                if (dbg_hc(chan)) {
 753                        dev_vdbg(hsotg->dev, "    comp split %d\n",
 754                                 chan->complete_split);
 755                        dev_vdbg(hsotg->dev, "    xact pos %d\n",
 756                                 chan->xact_pos);
 757                        dev_vdbg(hsotg->dev, "    hub addr %d\n",
 758                                 chan->hub_addr);
 759                        dev_vdbg(hsotg->dev, "    hub port %d\n",
 760                                 chan->hub_port);
 761                        dev_vdbg(hsotg->dev, "    is_in %d\n",
 762                                 chan->ep_is_in);
 763                        dev_vdbg(hsotg->dev, "    Max Pkt %d\n",
 764                                 chan->max_packet);
 765                        dev_vdbg(hsotg->dev, "    xferlen %d\n",
 766                                 chan->xfer_len);
 767                }
 768        }
 769
 770        dwc2_writel(hsotg, hcsplt, HCSPLT(hc_num));
 771}
 772
 773/**
 774 * dwc2_hc_halt() - Attempts to halt a host channel
 775 *
 776 * @hsotg:       Controller register interface
 777 * @chan:        Host channel to halt
 778 * @halt_status: Reason for halting the channel
 779 *
 780 * This function should only be called in Slave mode or to abort a transfer in
 781 * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
 782 * controller halts the channel when the transfer is complete or a condition
 783 * occurs that requires application intervention.
 784 *
 785 * In slave mode, checks for a free request queue entry, then sets the Channel
 786 * Enable and Channel Disable bits of the Host Channel Characteristics
 787 * register of the specified channel to intiate the halt. If there is no free
 788 * request queue entry, sets only the Channel Disable bit of the HCCHARn
 789 * register to flush requests for this channel. In the latter case, sets a
 790 * flag to indicate that the host channel needs to be halted when a request
 791 * queue slot is open.
 792 *
 793 * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
 794 * HCCHARn register. The controller ensures there is space in the request
 795 * queue before submitting the halt request.
 796 *
 797 * Some time may elapse before the core flushes any posted requests for this
 798 * host channel and halts. The Channel Halted interrupt handler completes the
 799 * deactivation of the host channel.
 800 */
 801void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
 802                  enum dwc2_halt_status halt_status)
 803{
 804        u32 nptxsts, hptxsts, hcchar;
 805
 806        if (dbg_hc(chan))
 807                dev_vdbg(hsotg->dev, "%s()\n", __func__);
 808
 809        /*
 810         * In buffer DMA or external DMA mode channel can't be halted
 811         * for non-split periodic channels. At the end of the next
 812         * uframe/frame (in the worst case), the core generates a channel
 813         * halted and disables the channel automatically.
 814         */
 815        if ((hsotg->params.g_dma && !hsotg->params.g_dma_desc) ||
 816            hsotg->hw_params.arch == GHWCFG2_EXT_DMA_ARCH) {
 817                if (!chan->do_split &&
 818                    (chan->ep_type == USB_ENDPOINT_XFER_ISOC ||
 819                     chan->ep_type == USB_ENDPOINT_XFER_INT)) {
 820                        dev_err(hsotg->dev, "%s() Channel can't be halted\n",
 821                                __func__);
 822                        return;
 823                }
 824        }
 825
 826        if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
 827                dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
 828
 829        if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
 830            halt_status == DWC2_HC_XFER_AHB_ERR) {
 831                /*
 832                 * Disable all channel interrupts except Ch Halted. The QTD
 833                 * and QH state associated with this transfer has been cleared
 834                 * (in the case of URB_DEQUEUE), so the channel needs to be
 835                 * shut down carefully to prevent crashes.
 836                 */
 837                u32 hcintmsk = HCINTMSK_CHHLTD;
 838
 839                dev_vdbg(hsotg->dev, "dequeue/error\n");
 840                dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
 841
 842                /*
 843                 * Make sure no other interrupts besides halt are currently
 844                 * pending. Handling another interrupt could cause a crash due
 845                 * to the QTD and QH state.
 846                 */
 847                dwc2_writel(hsotg, ~hcintmsk, HCINT(chan->hc_num));
 848
 849                /*
 850                 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
 851                 * even if the channel was already halted for some other
 852                 * reason
 853                 */
 854                chan->halt_status = halt_status;
 855
 856                hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
 857                if (!(hcchar & HCCHAR_CHENA)) {
 858                        /*
 859                         * The channel is either already halted or it hasn't
 860                         * started yet. In DMA mode, the transfer may halt if
 861                         * it finishes normally or a condition occurs that
 862                         * requires driver intervention. Don't want to halt
 863                         * the channel again. In either Slave or DMA mode,
 864                         * it's possible that the transfer has been assigned
 865                         * to a channel, but not started yet when an URB is
 866                         * dequeued. Don't want to halt a channel that hasn't
 867                         * started yet.
 868                         */
 869                        return;
 870                }
 871        }
 872        if (chan->halt_pending) {
 873                /*
 874                 * A halt has already been issued for this channel. This might
 875                 * happen when a transfer is aborted by a higher level in
 876                 * the stack.
 877                 */
 878                dev_vdbg(hsotg->dev,
 879                         "*** %s: Channel %d, chan->halt_pending already set ***\n",
 880                         __func__, chan->hc_num);
 881                return;
 882        }
 883
 884        hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
 885
 886        /* No need to set the bit in DDMA for disabling the channel */
 887        /* TODO check it everywhere channel is disabled */
 888        if (!hsotg->params.dma_desc_enable) {
 889                if (dbg_hc(chan))
 890                        dev_vdbg(hsotg->dev, "desc DMA disabled\n");
 891                hcchar |= HCCHAR_CHENA;
 892        } else {
 893                if (dbg_hc(chan))
 894                        dev_dbg(hsotg->dev, "desc DMA enabled\n");
 895        }
 896        hcchar |= HCCHAR_CHDIS;
 897
 898        if (!hsotg->params.host_dma) {
 899                if (dbg_hc(chan))
 900                        dev_vdbg(hsotg->dev, "DMA not enabled\n");
 901                hcchar |= HCCHAR_CHENA;
 902
 903                /* Check for space in the request queue to issue the halt */
 904                if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
 905                    chan->ep_type == USB_ENDPOINT_XFER_BULK) {
 906                        dev_vdbg(hsotg->dev, "control/bulk\n");
 907                        nptxsts = dwc2_readl(hsotg, GNPTXSTS);
 908                        if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
 909                                dev_vdbg(hsotg->dev, "Disabling channel\n");
 910                                hcchar &= ~HCCHAR_CHENA;
 911                        }
 912                } else {
 913                        if (dbg_perio())
 914                                dev_vdbg(hsotg->dev, "isoc/intr\n");
 915                        hptxsts = dwc2_readl(hsotg, HPTXSTS);
 916                        if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
 917                            hsotg->queuing_high_bandwidth) {
 918                                if (dbg_perio())
 919                                        dev_vdbg(hsotg->dev, "Disabling channel\n");
 920                                hcchar &= ~HCCHAR_CHENA;
 921                        }
 922                }
 923        } else {
 924                if (dbg_hc(chan))
 925                        dev_vdbg(hsotg->dev, "DMA enabled\n");
 926        }
 927
 928        dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
 929        chan->halt_status = halt_status;
 930
 931        if (hcchar & HCCHAR_CHENA) {
 932                if (dbg_hc(chan))
 933                        dev_vdbg(hsotg->dev, "Channel enabled\n");
 934                chan->halt_pending = 1;
 935                chan->halt_on_queue = 0;
 936        } else {
 937                if (dbg_hc(chan))
 938                        dev_vdbg(hsotg->dev, "Channel disabled\n");
 939                chan->halt_on_queue = 1;
 940        }
 941
 942        if (dbg_hc(chan)) {
 943                dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
 944                         chan->hc_num);
 945                dev_vdbg(hsotg->dev, "   hcchar: 0x%08x\n",
 946                         hcchar);
 947                dev_vdbg(hsotg->dev, "   halt_pending: %d\n",
 948                         chan->halt_pending);
 949                dev_vdbg(hsotg->dev, "   halt_on_queue: %d\n",
 950                         chan->halt_on_queue);
 951                dev_vdbg(hsotg->dev, "   halt_status: %d\n",
 952                         chan->halt_status);
 953        }
 954}
 955
 956/**
 957 * dwc2_hc_cleanup() - Clears the transfer state for a host channel
 958 *
 959 * @hsotg: Programming view of DWC_otg controller
 960 * @chan:  Identifies the host channel to clean up
 961 *
 962 * This function is normally called after a transfer is done and the host
 963 * channel is being released
 964 */
 965void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
 966{
 967        u32 hcintmsk;
 968
 969        chan->xfer_started = 0;
 970
 971        list_del_init(&chan->split_order_list_entry);
 972
 973        /*
 974         * Clear channel interrupt enables and any unhandled channel interrupt
 975         * conditions
 976         */
 977        dwc2_writel(hsotg, 0, HCINTMSK(chan->hc_num));
 978        hcintmsk = 0xffffffff;
 979        hcintmsk &= ~HCINTMSK_RESERVED14_31;
 980        dwc2_writel(hsotg, hcintmsk, HCINT(chan->hc_num));
 981}
 982
 983/**
 984 * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
 985 * which frame a periodic transfer should occur
 986 *
 987 * @hsotg:  Programming view of DWC_otg controller
 988 * @chan:   Identifies the host channel to set up and its properties
 989 * @hcchar: Current value of the HCCHAR register for the specified host channel
 990 *
 991 * This function has no effect on non-periodic transfers
 992 */
 993static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
 994                                       struct dwc2_host_chan *chan, u32 *hcchar)
 995{
 996        if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
 997            chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
 998                int host_speed;
 999                int xfer_ns;
1000                int xfer_us;
1001                int bytes_in_fifo;
1002                u16 fifo_space;
1003                u16 frame_number;
1004                u16 wire_frame;
1005
1006                /*
1007                 * Try to figure out if we're an even or odd frame. If we set
1008                 * even and the current frame number is even the the transfer
1009                 * will happen immediately.  Similar if both are odd. If one is
1010                 * even and the other is odd then the transfer will happen when
1011                 * the frame number ticks.
1012                 *
1013                 * There's a bit of a balancing act to get this right.
1014                 * Sometimes we may want to send data in the current frame (AK
1015                 * right away).  We might want to do this if the frame number
1016                 * _just_ ticked, but we might also want to do this in order
1017                 * to continue a split transaction that happened late in a
1018                 * microframe (so we didn't know to queue the next transfer
1019                 * until the frame number had ticked).  The problem is that we
1020                 * need a lot of knowledge to know if there's actually still
1021                 * time to send things or if it would be better to wait until
1022                 * the next frame.
1023                 *
1024                 * We can look at how much time is left in the current frame
1025                 * and make a guess about whether we'll have time to transfer.
1026                 * We'll do that.
1027                 */
1028
1029                /* Get speed host is running at */
1030                host_speed = (chan->speed != USB_SPEED_HIGH &&
1031                              !chan->do_split) ? chan->speed : USB_SPEED_HIGH;
1032
1033                /* See how many bytes are in the periodic FIFO right now */
1034                fifo_space = (dwc2_readl(hsotg, HPTXSTS) &
1035                              TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT;
1036                bytes_in_fifo = sizeof(u32) *
1037                                (hsotg->params.host_perio_tx_fifo_size -
1038                                 fifo_space);
1039
1040                /*
1041                 * Roughly estimate bus time for everything in the periodic
1042                 * queue + our new transfer.  This is "rough" because we're
1043                 * using a function that makes takes into account IN/OUT
1044                 * and INT/ISO and we're just slamming in one value for all
1045                 * transfers.  This should be an over-estimate and that should
1046                 * be OK, but we can probably tighten it.
1047                 */
1048                xfer_ns = usb_calc_bus_time(host_speed, false, false,
1049                                            chan->xfer_len + bytes_in_fifo);
1050                xfer_us = NS_TO_US(xfer_ns);
1051
1052                /* See what frame number we'll be at by the time we finish */
1053                frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us);
1054
1055                /* This is when we were scheduled to be on the wire */
1056                wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1);
1057
1058                /*
1059                 * If we'd finish _after_ the frame we're scheduled in then
1060                 * it's hopeless.  Just schedule right away and hope for the
1061                 * best.  Note that it _might_ be wise to call back into the
1062                 * scheduler to pick a better frame, but this is better than
1063                 * nothing.
1064                 */
1065                if (dwc2_frame_num_gt(frame_number, wire_frame)) {
1066                        dwc2_sch_vdbg(hsotg,
1067                                      "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1068                                      chan->qh, wire_frame, frame_number,
1069                                      dwc2_frame_num_dec(frame_number,
1070                                                         wire_frame));
1071                        wire_frame = frame_number;
1072
1073                        /*
1074                         * We picked a different frame number; communicate this
1075                         * back to the scheduler so it doesn't try to schedule
1076                         * another in the same frame.
1077                         *
1078                         * Remember that next_active_frame is 1 before the wire
1079                         * frame.
1080                         */
1081                        chan->qh->next_active_frame =
1082                                dwc2_frame_num_dec(frame_number, 1);
1083                }
1084
1085                if (wire_frame & 1)
1086                        *hcchar |= HCCHAR_ODDFRM;
1087                else
1088                        *hcchar &= ~HCCHAR_ODDFRM;
1089        }
1090}
1091
1092static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1093{
1094        /* Set up the initial PID for the transfer */
1095        if (chan->speed == USB_SPEED_HIGH) {
1096                if (chan->ep_is_in) {
1097                        if (chan->multi_count == 1)
1098                                chan->data_pid_start = DWC2_HC_PID_DATA0;
1099                        else if (chan->multi_count == 2)
1100                                chan->data_pid_start = DWC2_HC_PID_DATA1;
1101                        else
1102                                chan->data_pid_start = DWC2_HC_PID_DATA2;
1103                } else {
1104                        if (chan->multi_count == 1)
1105                                chan->data_pid_start = DWC2_HC_PID_DATA0;
1106                        else
1107                                chan->data_pid_start = DWC2_HC_PID_MDATA;
1108                }
1109        } else {
1110                chan->data_pid_start = DWC2_HC_PID_DATA0;
1111        }
1112}
1113
1114/**
1115 * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1116 * the Host Channel
1117 *
1118 * @hsotg: Programming view of DWC_otg controller
1119 * @chan:  Information needed to initialize the host channel
1120 *
1121 * This function should only be called in Slave mode. For a channel associated
1122 * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1123 * associated with a periodic EP, the periodic Tx FIFO is written.
1124 *
1125 * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1126 * the number of bytes written to the Tx FIFO.
1127 */
1128static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1129                                 struct dwc2_host_chan *chan)
1130{
1131        u32 i;
1132        u32 remaining_count;
1133        u32 byte_count;
1134        u32 dword_count;
1135        u32 *data_buf = (u32 *)chan->xfer_buf;
1136
1137        if (dbg_hc(chan))
1138                dev_vdbg(hsotg->dev, "%s()\n", __func__);
1139
1140        remaining_count = chan->xfer_len - chan->xfer_count;
1141        if (remaining_count > chan->max_packet)
1142                byte_count = chan->max_packet;
1143        else
1144                byte_count = remaining_count;
1145
1146        dword_count = (byte_count + 3) / 4;
1147
1148        if (((unsigned long)data_buf & 0x3) == 0) {
1149                /* xfer_buf is DWORD aligned */
1150                for (i = 0; i < dword_count; i++, data_buf++)
1151                        dwc2_writel(hsotg, *data_buf, HCFIFO(chan->hc_num));
1152        } else {
1153                /* xfer_buf is not DWORD aligned */
1154                for (i = 0; i < dword_count; i++, data_buf++) {
1155                        u32 data = data_buf[0] | data_buf[1] << 8 |
1156                                   data_buf[2] << 16 | data_buf[3] << 24;
1157                        dwc2_writel(hsotg, data, HCFIFO(chan->hc_num));
1158                }
1159        }
1160
1161        chan->xfer_count += byte_count;
1162        chan->xfer_buf += byte_count;
1163}
1164
1165/**
1166 * dwc2_hc_do_ping() - Starts a PING transfer
1167 *
1168 * @hsotg: Programming view of DWC_otg controller
1169 * @chan:  Information needed to initialize the host channel
1170 *
1171 * This function should only be called in Slave mode. The Do Ping bit is set in
1172 * the HCTSIZ register, then the channel is enabled.
1173 */
1174static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg,
1175                            struct dwc2_host_chan *chan)
1176{
1177        u32 hcchar;
1178        u32 hctsiz;
1179
1180        if (dbg_hc(chan))
1181                dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1182                         chan->hc_num);
1183
1184        hctsiz = TSIZ_DOPNG;
1185        hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
1186        dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1187
1188        hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1189        hcchar |= HCCHAR_CHENA;
1190        hcchar &= ~HCCHAR_CHDIS;
1191        dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1192}
1193
1194/**
1195 * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1196 * channel and starts the transfer
1197 *
1198 * @hsotg: Programming view of DWC_otg controller
1199 * @chan:  Information needed to initialize the host channel. The xfer_len value
1200 *         may be reduced to accommodate the max widths of the XferSize and
1201 *         PktCnt fields in the HCTSIZn register. The multi_count value may be
1202 *         changed to reflect the final xfer_len value.
1203 *
1204 * This function may be called in either Slave mode or DMA mode. In Slave mode,
1205 * the caller must ensure that there is sufficient space in the request queue
1206 * and Tx Data FIFO.
1207 *
1208 * For an OUT transfer in Slave mode, it loads a data packet into the
1209 * appropriate FIFO. If necessary, additional data packets are loaded in the
1210 * Host ISR.
1211 *
1212 * For an IN transfer in Slave mode, a data packet is requested. The data
1213 * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1214 * additional data packets are requested in the Host ISR.
1215 *
1216 * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1217 * register along with a packet count of 1 and the channel is enabled. This
1218 * causes a single PING transaction to occur. Other fields in HCTSIZ are
1219 * simply set to 0 since no data transfer occurs in this case.
1220 *
1221 * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1222 * all the information required to perform the subsequent data transfer. In
1223 * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1224 * controller performs the entire PING protocol, then starts the data
1225 * transfer.
1226 */
1227static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1228                                   struct dwc2_host_chan *chan)
1229{
1230        u32 max_hc_xfer_size = hsotg->params.max_transfer_size;
1231        u16 max_hc_pkt_count = hsotg->params.max_packet_count;
1232        u32 hcchar;
1233        u32 hctsiz = 0;
1234        u16 num_packets;
1235        u32 ec_mc;
1236
1237        if (dbg_hc(chan))
1238                dev_vdbg(hsotg->dev, "%s()\n", __func__);
1239
1240        if (chan->do_ping) {
1241                if (!hsotg->params.host_dma) {
1242                        if (dbg_hc(chan))
1243                                dev_vdbg(hsotg->dev, "ping, no DMA\n");
1244                        dwc2_hc_do_ping(hsotg, chan);
1245                        chan->xfer_started = 1;
1246                        return;
1247                }
1248
1249                if (dbg_hc(chan))
1250                        dev_vdbg(hsotg->dev, "ping, DMA\n");
1251
1252                hctsiz |= TSIZ_DOPNG;
1253        }
1254
1255        if (chan->do_split) {
1256                if (dbg_hc(chan))
1257                        dev_vdbg(hsotg->dev, "split\n");
1258                num_packets = 1;
1259
1260                if (chan->complete_split && !chan->ep_is_in)
1261                        /*
1262                         * For CSPLIT OUT Transfer, set the size to 0 so the
1263                         * core doesn't expect any data written to the FIFO
1264                         */
1265                        chan->xfer_len = 0;
1266                else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1267                        chan->xfer_len = chan->max_packet;
1268                else if (!chan->ep_is_in && chan->xfer_len > 188)
1269                        chan->xfer_len = 188;
1270
1271                hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1272                          TSIZ_XFERSIZE_MASK;
1273
1274                /* For split set ec_mc for immediate retries */
1275                if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1276                    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1277                        ec_mc = 3;
1278                else
1279                        ec_mc = 1;
1280        } else {
1281                if (dbg_hc(chan))
1282                        dev_vdbg(hsotg->dev, "no split\n");
1283                /*
1284                 * Ensure that the transfer length and packet count will fit
1285                 * in the widths allocated for them in the HCTSIZn register
1286                 */
1287                if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1288                    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1289                        /*
1290                         * Make sure the transfer size is no larger than one
1291                         * (micro)frame's worth of data. (A check was done
1292                         * when the periodic transfer was accepted to ensure
1293                         * that a (micro)frame's worth of data can be
1294                         * programmed into a channel.)
1295                         */
1296                        u32 max_periodic_len =
1297                                chan->multi_count * chan->max_packet;
1298
1299                        if (chan->xfer_len > max_periodic_len)
1300                                chan->xfer_len = max_periodic_len;
1301                } else if (chan->xfer_len > max_hc_xfer_size) {
1302                        /*
1303                         * Make sure that xfer_len is a multiple of max packet
1304                         * size
1305                         */
1306                        chan->xfer_len =
1307                                max_hc_xfer_size - chan->max_packet + 1;
1308                }
1309
1310                if (chan->xfer_len > 0) {
1311                        num_packets = (chan->xfer_len + chan->max_packet - 1) /
1312                                        chan->max_packet;
1313                        if (num_packets > max_hc_pkt_count) {
1314                                num_packets = max_hc_pkt_count;
1315                                chan->xfer_len = num_packets * chan->max_packet;
1316                        }
1317                } else {
1318                        /* Need 1 packet for transfer length of 0 */
1319                        num_packets = 1;
1320                }
1321
1322                if (chan->ep_is_in)
1323                        /*
1324                         * Always program an integral # of max packets for IN
1325                         * transfers
1326                         */
1327                        chan->xfer_len = num_packets * chan->max_packet;
1328
1329                if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1330                    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1331                        /*
1332                         * Make sure that the multi_count field matches the
1333                         * actual transfer length
1334                         */
1335                        chan->multi_count = num_packets;
1336
1337                if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1338                        dwc2_set_pid_isoc(chan);
1339
1340                hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1341                          TSIZ_XFERSIZE_MASK;
1342
1343                /* The ec_mc gets the multi_count for non-split */
1344                ec_mc = chan->multi_count;
1345        }
1346
1347        chan->start_pkt_count = num_packets;
1348        hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1349        hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1350                  TSIZ_SC_MC_PID_MASK;
1351        dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1352        if (dbg_hc(chan)) {
1353                dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1354                         hctsiz, chan->hc_num);
1355
1356                dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1357                         chan->hc_num);
1358                dev_vdbg(hsotg->dev, "   Xfer Size: %d\n",
1359                         (hctsiz & TSIZ_XFERSIZE_MASK) >>
1360                         TSIZ_XFERSIZE_SHIFT);
1361                dev_vdbg(hsotg->dev, "   Num Pkts: %d\n",
1362                         (hctsiz & TSIZ_PKTCNT_MASK) >>
1363                         TSIZ_PKTCNT_SHIFT);
1364                dev_vdbg(hsotg->dev, "   Start PID: %d\n",
1365                         (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1366                         TSIZ_SC_MC_PID_SHIFT);
1367        }
1368
1369        if (hsotg->params.host_dma) {
1370                dma_addr_t dma_addr;
1371
1372                if (chan->align_buf) {
1373                        if (dbg_hc(chan))
1374                                dev_vdbg(hsotg->dev, "align_buf\n");
1375                        dma_addr = chan->align_buf;
1376                } else {
1377                        dma_addr = chan->xfer_dma;
1378                }
1379                dwc2_writel(hsotg, (u32)dma_addr, HCDMA(chan->hc_num));
1380
1381                if (dbg_hc(chan))
1382                        dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1383                                 (unsigned long)dma_addr, chan->hc_num);
1384        }
1385
1386        /* Start the split */
1387        if (chan->do_split) {
1388                u32 hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
1389
1390                hcsplt |= HCSPLT_SPLTENA;
1391                dwc2_writel(hsotg, hcsplt, HCSPLT(chan->hc_num));
1392        }
1393
1394        hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1395        hcchar &= ~HCCHAR_MULTICNT_MASK;
1396        hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1397        dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1398
1399        if (hcchar & HCCHAR_CHDIS)
1400                dev_warn(hsotg->dev,
1401                         "%s: chdis set, channel %d, hcchar 0x%08x\n",
1402                         __func__, chan->hc_num, hcchar);
1403
1404        /* Set host channel enable after all other setup is complete */
1405        hcchar |= HCCHAR_CHENA;
1406        hcchar &= ~HCCHAR_CHDIS;
1407
1408        if (dbg_hc(chan))
1409                dev_vdbg(hsotg->dev, "   Multi Cnt: %d\n",
1410                         (hcchar & HCCHAR_MULTICNT_MASK) >>
1411                         HCCHAR_MULTICNT_SHIFT);
1412
1413        dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1414        if (dbg_hc(chan))
1415                dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1416                         chan->hc_num);
1417
1418        chan->xfer_started = 1;
1419        chan->requests++;
1420
1421        if (!hsotg->params.host_dma &&
1422            !chan->ep_is_in && chan->xfer_len > 0)
1423                /* Load OUT packet into the appropriate Tx FIFO */
1424                dwc2_hc_write_packet(hsotg, chan);
1425}
1426
1427/**
1428 * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1429 * host channel and starts the transfer in Descriptor DMA mode
1430 *
1431 * @hsotg: Programming view of DWC_otg controller
1432 * @chan:  Information needed to initialize the host channel
1433 *
1434 * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1435 * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1436 * with micro-frame bitmap.
1437 *
1438 * Initializes HCDMA register with descriptor list address and CTD value then
1439 * starts the transfer via enabling the channel.
1440 */
1441void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1442                                 struct dwc2_host_chan *chan)
1443{
1444        u32 hcchar;
1445        u32 hctsiz = 0;
1446
1447        if (chan->do_ping)
1448                hctsiz |= TSIZ_DOPNG;
1449
1450        if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1451                dwc2_set_pid_isoc(chan);
1452
1453        /* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1454        hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1455                  TSIZ_SC_MC_PID_MASK;
1456
1457        /* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1458        hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1459
1460        /* Non-zero only for high-speed interrupt endpoints */
1461        hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1462
1463        if (dbg_hc(chan)) {
1464                dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1465                         chan->hc_num);
1466                dev_vdbg(hsotg->dev, "   Start PID: %d\n",
1467                         chan->data_pid_start);
1468                dev_vdbg(hsotg->dev, "   NTD: %d\n", chan->ntd - 1);
1469        }
1470
1471        dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1472
1473        dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
1474                                   chan->desc_list_sz, DMA_TO_DEVICE);
1475
1476        dwc2_writel(hsotg, chan->desc_list_addr, HCDMA(chan->hc_num));
1477
1478        if (dbg_hc(chan))
1479                dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
1480                         &chan->desc_list_addr, chan->hc_num);
1481
1482        hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1483        hcchar &= ~HCCHAR_MULTICNT_MASK;
1484        hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1485                  HCCHAR_MULTICNT_MASK;
1486
1487        if (hcchar & HCCHAR_CHDIS)
1488                dev_warn(hsotg->dev,
1489                         "%s: chdis set, channel %d, hcchar 0x%08x\n",
1490                         __func__, chan->hc_num, hcchar);
1491
1492        /* Set host channel enable after all other setup is complete */
1493        hcchar |= HCCHAR_CHENA;
1494        hcchar &= ~HCCHAR_CHDIS;
1495
1496        if (dbg_hc(chan))
1497                dev_vdbg(hsotg->dev, "   Multi Cnt: %d\n",
1498                         (hcchar & HCCHAR_MULTICNT_MASK) >>
1499                         HCCHAR_MULTICNT_SHIFT);
1500
1501        dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1502        if (dbg_hc(chan))
1503                dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1504                         chan->hc_num);
1505
1506        chan->xfer_started = 1;
1507        chan->requests++;
1508}
1509
1510/**
1511 * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1512 * a previous call to dwc2_hc_start_transfer()
1513 *
1514 * @hsotg: Programming view of DWC_otg controller
1515 * @chan:  Information needed to initialize the host channel
1516 *
1517 * The caller must ensure there is sufficient space in the request queue and Tx
1518 * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1519 * the controller acts autonomously to complete transfers programmed to a host
1520 * channel.
1521 *
1522 * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1523 * if there is any data remaining to be queued. For an IN transfer, another
1524 * data packet is always requested. For the SETUP phase of a control transfer,
1525 * this function does nothing.
1526 *
1527 * Return: 1 if a new request is queued, 0 if no more requests are required
1528 * for this transfer
1529 */
1530static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1531                                     struct dwc2_host_chan *chan)
1532{
1533        if (dbg_hc(chan))
1534                dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1535                         chan->hc_num);
1536
1537        if (chan->do_split)
1538                /* SPLITs always queue just once per channel */
1539                return 0;
1540
1541        if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1542                /* SETUPs are queued only once since they can't be NAK'd */
1543                return 0;
1544
1545        if (chan->ep_is_in) {
1546                /*
1547                 * Always queue another request for other IN transfers. If
1548                 * back-to-back INs are issued and NAKs are received for both,
1549                 * the driver may still be processing the first NAK when the
1550                 * second NAK is received. When the interrupt handler clears
1551                 * the NAK interrupt for the first NAK, the second NAK will
1552                 * not be seen. So we can't depend on the NAK interrupt
1553                 * handler to requeue a NAK'd request. Instead, IN requests
1554                 * are issued each time this function is called. When the
1555                 * transfer completes, the extra requests for the channel will
1556                 * be flushed.
1557                 */
1558                u32 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1559
1560                dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1561                hcchar |= HCCHAR_CHENA;
1562                hcchar &= ~HCCHAR_CHDIS;
1563                if (dbg_hc(chan))
1564                        dev_vdbg(hsotg->dev, "   IN xfer: hcchar = 0x%08x\n",
1565                                 hcchar);
1566                dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1567                chan->requests++;
1568                return 1;
1569        }
1570
1571        /* OUT transfers */
1572
1573        if (chan->xfer_count < chan->xfer_len) {
1574                if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1575                    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1576                        u32 hcchar = dwc2_readl(hsotg,
1577                                                HCCHAR(chan->hc_num));
1578
1579                        dwc2_hc_set_even_odd_frame(hsotg, chan,
1580                                                   &hcchar);
1581                }
1582
1583                /* Load OUT packet into the appropriate Tx FIFO */
1584                dwc2_hc_write_packet(hsotg, chan);
1585                chan->requests++;
1586                return 1;
1587        }
1588
1589        return 0;
1590}
1591
1592/*
1593 * =========================================================================
1594 *  HCD
1595 * =========================================================================
1596 */
1597
1598/*
1599 * Processes all the URBs in a single list of QHs. Completes them with
1600 * -ETIMEDOUT and frees the QTD.
1601 *
1602 * Must be called with interrupt disabled and spinlock held
1603 */
1604static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
1605                                      struct list_head *qh_list)
1606{
1607        struct dwc2_qh *qh, *qh_tmp;
1608        struct dwc2_qtd *qtd, *qtd_tmp;
1609
1610        list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1611                list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1612                                         qtd_list_entry) {
1613                        dwc2_host_complete(hsotg, qtd, -ECONNRESET);
1614                        dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1615                }
1616        }
1617}
1618
1619static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
1620                              struct list_head *qh_list)
1621{
1622        struct dwc2_qtd *qtd, *qtd_tmp;
1623        struct dwc2_qh *qh, *qh_tmp;
1624        unsigned long flags;
1625
1626        if (!qh_list->next)
1627                /* The list hasn't been initialized yet */
1628                return;
1629
1630        spin_lock_irqsave(&hsotg->lock, flags);
1631
1632        /* Ensure there are no QTDs or URBs left */
1633        dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
1634
1635        list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1636                dwc2_hcd_qh_unlink(hsotg, qh);
1637
1638                /* Free each QTD in the QH's QTD list */
1639                list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1640                                         qtd_list_entry)
1641                        dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1642
1643                if (qh->channel && qh->channel->qh == qh)
1644                        qh->channel->qh = NULL;
1645
1646                spin_unlock_irqrestore(&hsotg->lock, flags);
1647                dwc2_hcd_qh_free(hsotg, qh);
1648                spin_lock_irqsave(&hsotg->lock, flags);
1649        }
1650
1651        spin_unlock_irqrestore(&hsotg->lock, flags);
1652}
1653
1654/*
1655 * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1656 * and periodic schedules. The QTD associated with each URB is removed from
1657 * the schedule and freed. This function may be called when a disconnect is
1658 * detected or when the HCD is being stopped.
1659 *
1660 * Must be called with interrupt disabled and spinlock held
1661 */
1662static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
1663{
1664        dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
1665        dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_waiting);
1666        dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
1667        dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
1668        dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
1669        dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
1670        dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
1671}
1672
1673/**
1674 * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1675 *
1676 * @hsotg: Pointer to struct dwc2_hsotg
1677 */
1678void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
1679{
1680        u32 hprt0;
1681
1682        if (hsotg->op_state == OTG_STATE_B_HOST) {
1683                /*
1684                 * Reset the port. During a HNP mode switch the reset
1685                 * needs to occur within 1ms and have a duration of at
1686                 * least 50ms.
1687                 */
1688                hprt0 = dwc2_read_hprt0(hsotg);
1689                hprt0 |= HPRT0_RST;
1690                dwc2_writel(hsotg, hprt0, HPRT0);
1691        }
1692
1693        queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
1694                           msecs_to_jiffies(50));
1695}
1696
1697/* Must be called with interrupt disabled and spinlock held */
1698static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
1699{
1700        int num_channels = hsotg->params.host_channels;
1701        struct dwc2_host_chan *channel;
1702        u32 hcchar;
1703        int i;
1704
1705        if (!hsotg->params.host_dma) {
1706                /* Flush out any channel requests in slave mode */
1707                for (i = 0; i < num_channels; i++) {
1708                        channel = hsotg->hc_ptr_array[i];
1709                        if (!list_empty(&channel->hc_list_entry))
1710                                continue;
1711                        hcchar = dwc2_readl(hsotg, HCCHAR(i));
1712                        if (hcchar & HCCHAR_CHENA) {
1713                                hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
1714                                hcchar |= HCCHAR_CHDIS;
1715                                dwc2_writel(hsotg, hcchar, HCCHAR(i));
1716                        }
1717                }
1718        }
1719
1720        for (i = 0; i < num_channels; i++) {
1721                channel = hsotg->hc_ptr_array[i];
1722                if (!list_empty(&channel->hc_list_entry))
1723                        continue;
1724                hcchar = dwc2_readl(hsotg, HCCHAR(i));
1725                if (hcchar & HCCHAR_CHENA) {
1726                        /* Halt the channel */
1727                        hcchar |= HCCHAR_CHDIS;
1728                        dwc2_writel(hsotg, hcchar, HCCHAR(i));
1729                }
1730
1731                dwc2_hc_cleanup(hsotg, channel);
1732                list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
1733                /*
1734                 * Added for Descriptor DMA to prevent channel double cleanup in
1735                 * release_channel_ddma(), which is called from ep_disable when
1736                 * device disconnects
1737                 */
1738                channel->qh = NULL;
1739        }
1740        /* All channels have been freed, mark them available */
1741        if (hsotg->params.uframe_sched) {
1742                hsotg->available_host_channels =
1743                        hsotg->params.host_channels;
1744        } else {
1745                hsotg->non_periodic_channels = 0;
1746                hsotg->periodic_channels = 0;
1747        }
1748}
1749
1750/**
1751 * dwc2_hcd_connect() - Handles connect of the HCD
1752 *
1753 * @hsotg: Pointer to struct dwc2_hsotg
1754 *
1755 * Must be called with interrupt disabled and spinlock held
1756 */
1757void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
1758{
1759        if (hsotg->lx_state != DWC2_L0)
1760                usb_hcd_resume_root_hub(hsotg->priv);
1761
1762        hsotg->flags.b.port_connect_status_change = 1;
1763        hsotg->flags.b.port_connect_status = 1;
1764}
1765
1766/**
1767 * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1768 *
1769 * @hsotg: Pointer to struct dwc2_hsotg
1770 * @force: If true, we won't try to reconnect even if we see device connected.
1771 *
1772 * Must be called with interrupt disabled and spinlock held
1773 */
1774void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
1775{
1776        u32 intr;
1777        u32 hprt0;
1778
1779        /* Set status flags for the hub driver */
1780        hsotg->flags.b.port_connect_status_change = 1;
1781        hsotg->flags.b.port_connect_status = 0;
1782
1783        /*
1784         * Shutdown any transfers in process by clearing the Tx FIFO Empty
1785         * interrupt mask and status bits and disabling subsequent host
1786         * channel interrupts.
1787         */
1788        intr = dwc2_readl(hsotg, GINTMSK);
1789        intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
1790        dwc2_writel(hsotg, intr, GINTMSK);
1791        intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
1792        dwc2_writel(hsotg, intr, GINTSTS);
1793
1794        /*
1795         * Turn off the vbus power only if the core has transitioned to device
1796         * mode. If still in host mode, need to keep power on to detect a
1797         * reconnection.
1798         */
1799        if (dwc2_is_device_mode(hsotg)) {
1800                if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
1801                        dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
1802                        dwc2_writel(hsotg, 0, HPRT0);
1803                }
1804
1805                dwc2_disable_host_interrupts(hsotg);
1806        }
1807
1808        /* Respond with an error status to all URBs in the schedule */
1809        dwc2_kill_all_urbs(hsotg);
1810
1811        if (dwc2_is_host_mode(hsotg))
1812                /* Clean up any host channels that were in use */
1813                dwc2_hcd_cleanup_channels(hsotg);
1814
1815        dwc2_host_disconnect(hsotg);
1816
1817        /*
1818         * Add an extra check here to see if we're actually connected but
1819         * we don't have a detection interrupt pending.  This can happen if:
1820         *   1. hardware sees connect
1821         *   2. hardware sees disconnect
1822         *   3. hardware sees connect
1823         *   4. dwc2_port_intr() - clears connect interrupt
1824         *   5. dwc2_handle_common_intr() - calls here
1825         *
1826         * Without the extra check here we will end calling disconnect
1827         * and won't get any future interrupts to handle the connect.
1828         */
1829        if (!force) {
1830                hprt0 = dwc2_readl(hsotg, HPRT0);
1831                if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
1832                        dwc2_hcd_connect(hsotg);
1833        }
1834}
1835
1836/**
1837 * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
1838 *
1839 * @hsotg: Pointer to struct dwc2_hsotg
1840 */
1841static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
1842{
1843        if (hsotg->bus_suspended) {
1844                hsotg->flags.b.port_suspend_change = 1;
1845                usb_hcd_resume_root_hub(hsotg->priv);
1846        }
1847
1848        if (hsotg->lx_state == DWC2_L1)
1849                hsotg->flags.b.port_l1_change = 1;
1850}
1851
1852/**
1853 * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
1854 *
1855 * @hsotg: Pointer to struct dwc2_hsotg
1856 *
1857 * Must be called with interrupt disabled and spinlock held
1858 */
1859void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
1860{
1861        dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
1862
1863        /*
1864         * The root hub should be disconnected before this function is called.
1865         * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
1866         * and the QH lists (via ..._hcd_endpoint_disable).
1867         */
1868
1869        /* Turn off all host-specific interrupts */
1870        dwc2_disable_host_interrupts(hsotg);
1871
1872        /* Turn off the vbus power */
1873        dev_dbg(hsotg->dev, "PortPower off\n");
1874        dwc2_writel(hsotg, 0, HPRT0);
1875}
1876
1877/* Caller must hold driver lock */
1878static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
1879                                struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
1880                                struct dwc2_qtd *qtd)
1881{
1882        u32 intr_mask;
1883        int retval;
1884        int dev_speed;
1885
1886        if (!hsotg->flags.b.port_connect_status) {
1887                /* No longer connected */
1888                dev_err(hsotg->dev, "Not connected\n");
1889                return -ENODEV;
1890        }
1891
1892        dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
1893
1894        /* Some configurations cannot support LS traffic on a FS root port */
1895        if ((dev_speed == USB_SPEED_LOW) &&
1896            (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
1897            (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
1898                u32 hprt0 = dwc2_readl(hsotg, HPRT0);
1899                u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
1900
1901                if (prtspd == HPRT0_SPD_FULL_SPEED)
1902                        return -ENODEV;
1903        }
1904
1905        if (!qtd)
1906                return -EINVAL;
1907
1908        dwc2_hcd_qtd_init(qtd, urb);
1909        retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
1910        if (retval) {
1911                dev_err(hsotg->dev,
1912                        "DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
1913                        retval);
1914                return retval;
1915        }
1916
1917        intr_mask = dwc2_readl(hsotg, GINTMSK);
1918        if (!(intr_mask & GINTSTS_SOF)) {
1919                enum dwc2_transaction_type tr_type;
1920
1921                if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
1922                    !(qtd->urb->flags & URB_GIVEBACK_ASAP))
1923                        /*
1924                         * Do not schedule SG transactions until qtd has
1925                         * URB_GIVEBACK_ASAP set
1926                         */
1927                        return 0;
1928
1929                tr_type = dwc2_hcd_select_transactions(hsotg);
1930                if (tr_type != DWC2_TRANSACTION_NONE)
1931                        dwc2_hcd_queue_transactions(hsotg, tr_type);
1932        }
1933
1934        return 0;
1935}
1936
1937/* Must be called with interrupt disabled and spinlock held */
1938static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
1939                                struct dwc2_hcd_urb *urb)
1940{
1941        struct dwc2_qh *qh;
1942        struct dwc2_qtd *urb_qtd;
1943
1944        urb_qtd = urb->qtd;
1945        if (!urb_qtd) {
1946                dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
1947                return -EINVAL;
1948        }
1949
1950        qh = urb_qtd->qh;
1951        if (!qh) {
1952                dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
1953                return -EINVAL;
1954        }
1955
1956        urb->priv = NULL;
1957
1958        if (urb_qtd->in_process && qh->channel) {
1959                dwc2_dump_channel_info(hsotg, qh->channel);
1960
1961                /* The QTD is in process (it has been assigned to a channel) */
1962                if (hsotg->flags.b.port_connect_status)
1963                        /*
1964                         * If still connected (i.e. in host mode), halt the
1965                         * channel so it can be used for other transfers. If
1966                         * no longer connected, the host registers can't be
1967                         * written to halt the channel since the core is in
1968                         * device mode.
1969                         */
1970                        dwc2_hc_halt(hsotg, qh->channel,
1971                                     DWC2_HC_XFER_URB_DEQUEUE);
1972        }
1973
1974        /*
1975         * Free the QTD and clean up the associated QH. Leave the QH in the
1976         * schedule if it has any remaining QTDs.
1977         */
1978        if (!hsotg->params.dma_desc_enable) {
1979                u8 in_process = urb_qtd->in_process;
1980
1981                dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1982                if (in_process) {
1983                        dwc2_hcd_qh_deactivate(hsotg, qh, 0);
1984                        qh->channel = NULL;
1985                } else if (list_empty(&qh->qtd_list)) {
1986                        dwc2_hcd_qh_unlink(hsotg, qh);
1987                }
1988        } else {
1989                dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1990        }
1991
1992        return 0;
1993}
1994
1995/* Must NOT be called with interrupt disabled or spinlock held */
1996static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
1997                                     struct usb_host_endpoint *ep, int retry)
1998{
1999        struct dwc2_qtd *qtd, *qtd_tmp;
2000        struct dwc2_qh *qh;
2001        unsigned long flags;
2002        int rc;
2003
2004        spin_lock_irqsave(&hsotg->lock, flags);
2005
2006        qh = ep->hcpriv;
2007        if (!qh) {
2008                rc = -EINVAL;
2009                goto err;
2010        }
2011
2012        while (!list_empty(&qh->qtd_list) && retry--) {
2013                if (retry == 0) {
2014                        dev_err(hsotg->dev,
2015                                "## timeout in dwc2_hcd_endpoint_disable() ##\n");
2016                        rc = -EBUSY;
2017                        goto err;
2018                }
2019
2020                spin_unlock_irqrestore(&hsotg->lock, flags);
2021                msleep(20);
2022                spin_lock_irqsave(&hsotg->lock, flags);
2023                qh = ep->hcpriv;
2024                if (!qh) {
2025                        rc = -EINVAL;
2026                        goto err;
2027                }
2028        }
2029
2030        dwc2_hcd_qh_unlink(hsotg, qh);
2031
2032        /* Free each QTD in the QH's QTD list */
2033        list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
2034                dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
2035
2036        ep->hcpriv = NULL;
2037
2038        if (qh->channel && qh->channel->qh == qh)
2039                qh->channel->qh = NULL;
2040
2041        spin_unlock_irqrestore(&hsotg->lock, flags);
2042
2043        dwc2_hcd_qh_free(hsotg, qh);
2044
2045        return 0;
2046
2047err:
2048        ep->hcpriv = NULL;
2049        spin_unlock_irqrestore(&hsotg->lock, flags);
2050
2051        return rc;
2052}
2053
2054/* Must be called with interrupt disabled and spinlock held */
2055static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
2056                                   struct usb_host_endpoint *ep)
2057{
2058        struct dwc2_qh *qh = ep->hcpriv;
2059
2060        if (!qh)
2061                return -EINVAL;
2062
2063        qh->data_toggle = DWC2_HC_PID_DATA0;
2064
2065        return 0;
2066}
2067
2068/**
2069 * dwc2_core_init() - Initializes the DWC_otg controller registers and
2070 * prepares the core for device mode or host mode operation
2071 *
2072 * @hsotg:         Programming view of the DWC_otg controller
2073 * @initial_setup: If true then this is the first init for this instance.
2074 */
2075int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
2076{
2077        u32 usbcfg, otgctl;
2078        int retval;
2079
2080        dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2081
2082        usbcfg = dwc2_readl(hsotg, GUSBCFG);
2083
2084        /* Set ULPI External VBUS bit if needed */
2085        usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
2086        if (hsotg->params.phy_ulpi_ext_vbus)
2087                usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
2088
2089        /* Set external TS Dline pulsing bit if needed */
2090        usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
2091        if (hsotg->params.ts_dline)
2092                usbcfg |= GUSBCFG_TERMSELDLPULSE;
2093
2094        dwc2_writel(hsotg, usbcfg, GUSBCFG);
2095
2096        /*
2097         * Reset the Controller
2098         *
2099         * We only need to reset the controller if this is a re-init.
2100         * For the first init we know for sure that earlier code reset us (it
2101         * needed to in order to properly detect various parameters).
2102         */
2103        if (!initial_setup) {
2104                retval = dwc2_core_reset(hsotg, false);
2105                if (retval) {
2106                        dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
2107                                __func__);
2108                        return retval;
2109                }
2110        }
2111
2112        /*
2113         * This needs to happen in FS mode before any other programming occurs
2114         */
2115        retval = dwc2_phy_init(hsotg, initial_setup);
2116        if (retval)
2117                return retval;
2118
2119        /* Program the GAHBCFG Register */
2120        retval = dwc2_gahbcfg_init(hsotg);
2121        if (retval)
2122                return retval;
2123
2124        /* Program the GUSBCFG register */
2125        dwc2_gusbcfg_init(hsotg);
2126
2127        /* Program the GOTGCTL register */
2128        otgctl = dwc2_readl(hsotg, GOTGCTL);
2129        otgctl &= ~GOTGCTL_OTGVER;
2130        dwc2_writel(hsotg, otgctl, GOTGCTL);
2131
2132        /* Clear the SRP success bit for FS-I2c */
2133        hsotg->srp_success = 0;
2134
2135        /* Enable common interrupts */
2136        dwc2_enable_common_interrupts(hsotg);
2137
2138        /*
2139         * Do device or host initialization based on mode during PCD and
2140         * HCD initialization
2141         */
2142        if (dwc2_is_host_mode(hsotg)) {
2143                dev_dbg(hsotg->dev, "Host Mode\n");
2144                hsotg->op_state = OTG_STATE_A_HOST;
2145        } else {
2146                dev_dbg(hsotg->dev, "Device Mode\n");
2147                hsotg->op_state = OTG_STATE_B_PERIPHERAL;
2148        }
2149
2150        return 0;
2151}
2152
2153/**
2154 * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2155 * Host mode
2156 *
2157 * @hsotg: Programming view of DWC_otg controller
2158 *
2159 * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2160 * request queues. Host channels are reset to ensure that they are ready for
2161 * performing transfers.
2162 */
2163static void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
2164{
2165        u32 hcfg, hfir, otgctl, usbcfg;
2166
2167        dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2168
2169        /* Set HS/FS Timeout Calibration to 7 (max available value).
2170         * The number of PHY clocks that the application programs in
2171         * this field is added to the high/full speed interpacket timeout
2172         * duration in the core to account for any additional delays
2173         * introduced by the PHY. This can be required, because the delay
2174         * introduced by the PHY in generating the linestate condition
2175         * can vary from one PHY to another.
2176         */
2177        usbcfg = dwc2_readl(hsotg, GUSBCFG);
2178        usbcfg |= GUSBCFG_TOUTCAL(7);
2179        dwc2_writel(hsotg, usbcfg, GUSBCFG);
2180
2181        /* Restart the Phy Clock */
2182        dwc2_writel(hsotg, 0, PCGCTL);
2183
2184        /* Initialize Host Configuration Register */
2185        dwc2_init_fs_ls_pclk_sel(hsotg);
2186        if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
2187            hsotg->params.speed == DWC2_SPEED_PARAM_LOW) {
2188                hcfg = dwc2_readl(hsotg, HCFG);
2189                hcfg |= HCFG_FSLSSUPP;
2190                dwc2_writel(hsotg, hcfg, HCFG);
2191        }
2192
2193        /*
2194         * This bit allows dynamic reloading of the HFIR register during
2195         * runtime. This bit needs to be programmed during initial configuration
2196         * and its value must not be changed during runtime.
2197         */
2198        if (hsotg->params.reload_ctl) {
2199                hfir = dwc2_readl(hsotg, HFIR);
2200                hfir |= HFIR_RLDCTRL;
2201                dwc2_writel(hsotg, hfir, HFIR);
2202        }
2203
2204        if (hsotg->params.dma_desc_enable) {
2205                u32 op_mode = hsotg->hw_params.op_mode;
2206
2207                if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
2208                    !hsotg->hw_params.dma_desc_enable ||
2209                    op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
2210                    op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
2211                    op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
2212                        dev_err(hsotg->dev,
2213                                "Hardware does not support descriptor DMA mode -\n");
2214                        dev_err(hsotg->dev,
2215                                "falling back to buffer DMA mode.\n");
2216                        hsotg->params.dma_desc_enable = false;
2217                } else {
2218                        hcfg = dwc2_readl(hsotg, HCFG);
2219                        hcfg |= HCFG_DESCDMA;
2220                        dwc2_writel(hsotg, hcfg, HCFG);
2221                }
2222        }
2223
2224        /* Configure data FIFO sizes */
2225        dwc2_config_fifos(hsotg);
2226
2227        /* TODO - check this */
2228        /* Clear Host Set HNP Enable in the OTG Control Register */
2229        otgctl = dwc2_readl(hsotg, GOTGCTL);
2230        otgctl &= ~GOTGCTL_HSTSETHNPEN;
2231        dwc2_writel(hsotg, otgctl, GOTGCTL);
2232
2233        /* Make sure the FIFOs are flushed */
2234        dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
2235        dwc2_flush_rx_fifo(hsotg);
2236
2237        /* Clear Host Set HNP Enable in the OTG Control Register */
2238        otgctl = dwc2_readl(hsotg, GOTGCTL);
2239        otgctl &= ~GOTGCTL_HSTSETHNPEN;
2240        dwc2_writel(hsotg, otgctl, GOTGCTL);
2241
2242        if (!hsotg->params.dma_desc_enable) {
2243                int num_channels, i;
2244                u32 hcchar;
2245
2246                /* Flush out any leftover queued requests */
2247                num_channels = hsotg->params.host_channels;
2248                for (i = 0; i < num_channels; i++) {
2249                        hcchar = dwc2_readl(hsotg, HCCHAR(i));
2250                        if (hcchar & HCCHAR_CHENA) {
2251                                hcchar &= ~HCCHAR_CHENA;
2252                                hcchar |= HCCHAR_CHDIS;
2253                                hcchar &= ~HCCHAR_EPDIR;
2254                                dwc2_writel(hsotg, hcchar, HCCHAR(i));
2255                        }
2256                }
2257
2258                /* Halt all channels to put them into a known state */
2259                for (i = 0; i < num_channels; i++) {
2260                        hcchar = dwc2_readl(hsotg, HCCHAR(i));
2261                        if (hcchar & HCCHAR_CHENA) {
2262                                hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
2263                                hcchar &= ~HCCHAR_EPDIR;
2264                                dwc2_writel(hsotg, hcchar, HCCHAR(i));
2265                                dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
2266                                        __func__, i);
2267
2268                                if (dwc2_hsotg_wait_bit_clear(hsotg, HCCHAR(i),
2269                                                              HCCHAR_CHENA,
2270                                                              1000)) {
2271                                        dev_warn(hsotg->dev,
2272                                                 "Unable to clear enable on channel %d\n",
2273                                                 i);
2274                                }
2275                        }
2276                }
2277        }
2278
2279        /* Enable ACG feature in host mode, if supported */
2280        dwc2_enable_acg(hsotg);
2281
2282        /* Turn on the vbus power */
2283        dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
2284        if (hsotg->op_state == OTG_STATE_A_HOST) {
2285                u32 hprt0 = dwc2_read_hprt0(hsotg);
2286
2287                dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
2288                        !!(hprt0 & HPRT0_PWR));
2289                if (!(hprt0 & HPRT0_PWR)) {
2290                        hprt0 |= HPRT0_PWR;
2291                        dwc2_writel(hsotg, hprt0, HPRT0);
2292                }
2293        }
2294
2295        dwc2_enable_host_interrupts(hsotg);
2296}
2297
2298/*
2299 * Initializes dynamic portions of the DWC_otg HCD state
2300 *
2301 * Must be called with interrupt disabled and spinlock held
2302 */
2303static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
2304{
2305        struct dwc2_host_chan *chan, *chan_tmp;
2306        int num_channels;
2307        int i;
2308
2309        hsotg->flags.d32 = 0;
2310        hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
2311
2312        if (hsotg->params.uframe_sched) {
2313                hsotg->available_host_channels =
2314                        hsotg->params.host_channels;
2315        } else {
2316                hsotg->non_periodic_channels = 0;
2317                hsotg->periodic_channels = 0;
2318        }
2319
2320        /*
2321         * Put all channels in the free channel list and clean up channel
2322         * states
2323         */
2324        list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
2325                                 hc_list_entry)
2326                list_del_init(&chan->hc_list_entry);
2327
2328        num_channels = hsotg->params.host_channels;
2329        for (i = 0; i < num_channels; i++) {
2330                chan = hsotg->hc_ptr_array[i];
2331                list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
2332                dwc2_hc_cleanup(hsotg, chan);
2333        }
2334
2335        /* Initialize the DWC core for host mode operation */
2336        dwc2_core_host_init(hsotg);
2337}
2338
2339static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
2340                               struct dwc2_host_chan *chan,
2341                               struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2342{
2343        int hub_addr, hub_port;
2344
2345        chan->do_split = 1;
2346        chan->xact_pos = qtd->isoc_split_pos;
2347        chan->complete_split = qtd->complete_split;
2348        dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
2349        chan->hub_addr = (u8)hub_addr;
2350        chan->hub_port = (u8)hub_port;
2351}
2352
2353static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
2354                              struct dwc2_host_chan *chan,
2355                              struct dwc2_qtd *qtd)
2356{
2357        struct dwc2_hcd_urb *urb = qtd->urb;
2358        struct dwc2_hcd_iso_packet_desc *frame_desc;
2359
2360        switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
2361        case USB_ENDPOINT_XFER_CONTROL:
2362                chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
2363
2364                switch (qtd->control_phase) {
2365                case DWC2_CONTROL_SETUP:
2366                        dev_vdbg(hsotg->dev, "  Control setup transaction\n");
2367                        chan->do_ping = 0;
2368                        chan->ep_is_in = 0;
2369                        chan->data_pid_start = DWC2_HC_PID_SETUP;
2370                        if (hsotg->params.host_dma)
2371                                chan->xfer_dma = urb->setup_dma;
2372                        else
2373                                chan->xfer_buf = urb->setup_packet;
2374                        chan->xfer_len = 8;
2375                        break;
2376
2377                case DWC2_CONTROL_DATA:
2378                        dev_vdbg(hsotg->dev, "  Control data transaction\n");
2379                        chan->data_pid_start = qtd->data_toggle;
2380                        break;
2381
2382                case DWC2_CONTROL_STATUS:
2383                        /*
2384                         * Direction is opposite of data direction or IN if no
2385                         * data
2386                         */
2387                        dev_vdbg(hsotg->dev, "  Control status transaction\n");
2388                        if (urb->length == 0)
2389                                chan->ep_is_in = 1;
2390                        else
2391                                chan->ep_is_in =
2392                                        dwc2_hcd_is_pipe_out(&urb->pipe_info);
2393                        if (chan->ep_is_in)
2394                                chan->do_ping = 0;
2395                        chan->data_pid_start = DWC2_HC_PID_DATA1;
2396                        chan->xfer_len = 0;
2397                        if (hsotg->params.host_dma)
2398                                chan->xfer_dma = hsotg->status_buf_dma;
2399                        else
2400                                chan->xfer_buf = hsotg->status_buf;
2401                        break;
2402                }
2403                break;
2404
2405        case USB_ENDPOINT_XFER_BULK:
2406                chan->ep_type = USB_ENDPOINT_XFER_BULK;
2407                break;
2408
2409        case USB_ENDPOINT_XFER_INT:
2410                chan->ep_type = USB_ENDPOINT_XFER_INT;
2411                break;
2412
2413        case USB_ENDPOINT_XFER_ISOC:
2414                chan->ep_type = USB_ENDPOINT_XFER_ISOC;
2415                if (hsotg->params.dma_desc_enable)
2416                        break;
2417
2418                frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
2419                frame_desc->status = 0;
2420
2421                if (hsotg->params.host_dma) {
2422                        chan->xfer_dma = urb->dma;
2423                        chan->xfer_dma += frame_desc->offset +
2424                                        qtd->isoc_split_offset;
2425                } else {
2426                        chan->xfer_buf = urb->buf;
2427                        chan->xfer_buf += frame_desc->offset +
2428                                        qtd->isoc_split_offset;
2429                }
2430
2431                chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
2432
2433                if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
2434                        if (chan->xfer_len <= 188)
2435                                chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
2436                        else
2437                                chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
2438                }
2439                break;
2440        }
2441}
2442
2443static int dwc2_alloc_split_dma_aligned_buf(struct dwc2_hsotg *hsotg,
2444                                            struct dwc2_qh *qh,
2445                                            struct dwc2_host_chan *chan)
2446{
2447        if (!hsotg->unaligned_cache ||
2448            chan->max_packet > DWC2_KMEM_UNALIGNED_BUF_SIZE)
2449                return -ENOMEM;
2450
2451        if (!qh->dw_align_buf) {
2452                qh->dw_align_buf = kmem_cache_alloc(hsotg->unaligned_cache,
2453                                                    GFP_ATOMIC | GFP_DMA);
2454                if (!qh->dw_align_buf)
2455                        return -ENOMEM;
2456        }
2457
2458        qh->dw_align_buf_dma = dma_map_single(hsotg->dev, qh->dw_align_buf,
2459                                              DWC2_KMEM_UNALIGNED_BUF_SIZE,
2460                                              DMA_FROM_DEVICE);
2461
2462        if (dma_mapping_error(hsotg->dev, qh->dw_align_buf_dma)) {
2463                dev_err(hsotg->dev, "can't map align_buf\n");
2464                chan->align_buf = 0;
2465                return -EINVAL;
2466        }
2467
2468        chan->align_buf = qh->dw_align_buf_dma;
2469        return 0;
2470}
2471
2472#define DWC2_USB_DMA_ALIGN 4
2473
2474static void dwc2_free_dma_aligned_buffer(struct urb *urb)
2475{
2476        void *stored_xfer_buffer;
2477        size_t length;
2478
2479        if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
2480                return;
2481
2482        /* Restore urb->transfer_buffer from the end of the allocated area */
2483        memcpy(&stored_xfer_buffer,
2484               PTR_ALIGN(urb->transfer_buffer + urb->transfer_buffer_length,
2485                         dma_get_cache_alignment()),
2486               sizeof(urb->transfer_buffer));
2487
2488        if (usb_urb_dir_in(urb)) {
2489                if (usb_pipeisoc(urb->pipe))
2490                        length = urb->transfer_buffer_length;
2491                else
2492                        length = urb->actual_length;
2493
2494                memcpy(stored_xfer_buffer, urb->transfer_buffer, length);
2495        }
2496        kfree(urb->transfer_buffer);
2497        urb->transfer_buffer = stored_xfer_buffer;
2498
2499        urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
2500}
2501
2502static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
2503{
2504        void *kmalloc_ptr;
2505        size_t kmalloc_size;
2506
2507        if (urb->num_sgs || urb->sg ||
2508            urb->transfer_buffer_length == 0 ||
2509            !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
2510                return 0;
2511
2512        /*
2513         * Allocate a buffer with enough padding for original transfer_buffer
2514         * pointer. This allocation is guaranteed to be aligned properly for
2515         * DMA
2516         */
2517        kmalloc_size = urb->transfer_buffer_length +
2518                (dma_get_cache_alignment() - 1) +
2519                sizeof(urb->transfer_buffer);
2520
2521        kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
2522        if (!kmalloc_ptr)
2523                return -ENOMEM;
2524
2525        /*
2526         * Position value of original urb->transfer_buffer pointer to the end
2527         * of allocation for later referencing
2528         */
2529        memcpy(PTR_ALIGN(kmalloc_ptr + urb->transfer_buffer_length,
2530                         dma_get_cache_alignment()),
2531               &urb->transfer_buffer, sizeof(urb->transfer_buffer));
2532
2533        if (usb_urb_dir_out(urb))
2534                memcpy(kmalloc_ptr, urb->transfer_buffer,
2535                       urb->transfer_buffer_length);
2536        urb->transfer_buffer = kmalloc_ptr;
2537
2538        urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
2539
2540        return 0;
2541}
2542
2543static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
2544                                gfp_t mem_flags)
2545{
2546        int ret;
2547
2548        /* We assume setup_dma is always aligned; warn if not */
2549        WARN_ON_ONCE(urb->setup_dma &&
2550                     (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
2551
2552        ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
2553        if (ret)
2554                return ret;
2555
2556        ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
2557        if (ret)
2558                dwc2_free_dma_aligned_buffer(urb);
2559
2560        return ret;
2561}
2562
2563static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
2564{
2565        usb_hcd_unmap_urb_for_dma(hcd, urb);
2566        dwc2_free_dma_aligned_buffer(urb);
2567}
2568
2569/**
2570 * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2571 * channel and initializes the host channel to perform the transactions. The
2572 * host channel is removed from the free list.
2573 *
2574 * @hsotg: The HCD state structure
2575 * @qh:    Transactions from the first QTD for this QH are selected and assigned
2576 *         to a free host channel
2577 */
2578static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
2579{
2580        struct dwc2_host_chan *chan;
2581        struct dwc2_hcd_urb *urb;
2582        struct dwc2_qtd *qtd;
2583
2584        if (dbg_qh(qh))
2585                dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
2586
2587        if (list_empty(&qh->qtd_list)) {
2588                dev_dbg(hsotg->dev, "No QTDs in QH list\n");
2589                return -ENOMEM;
2590        }
2591
2592        if (list_empty(&hsotg->free_hc_list)) {
2593                dev_dbg(hsotg->dev, "No free channel to assign\n");
2594                return -ENOMEM;
2595        }
2596
2597        chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
2598                                hc_list_entry);
2599
2600        /* Remove host channel from free list */
2601        list_del_init(&chan->hc_list_entry);
2602
2603        qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
2604        urb = qtd->urb;
2605        qh->channel = chan;
2606        qtd->in_process = 1;
2607
2608        /*
2609         * Use usb_pipedevice to determine device address. This address is
2610         * 0 before the SET_ADDRESS command and the correct address afterward.
2611         */
2612        chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
2613        chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
2614        chan->speed = qh->dev_speed;
2615        chan->max_packet = qh->maxp;
2616
2617        chan->xfer_started = 0;
2618        chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
2619        chan->error_state = (qtd->error_count > 0);
2620        chan->halt_on_queue = 0;
2621        chan->halt_pending = 0;
2622        chan->requests = 0;
2623
2624        /*
2625         * The following values may be modified in the transfer type section
2626         * below. The xfer_len value may be reduced when the transfer is
2627         * started to accommodate the max widths of the XferSize and PktCnt
2628         * fields in the HCTSIZn register.
2629         */
2630
2631        chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
2632        if (chan->ep_is_in)
2633                chan->do_ping = 0;
2634        else
2635                chan->do_ping = qh->ping_state;
2636
2637        chan->data_pid_start = qh->data_toggle;
2638        chan->multi_count = 1;
2639
2640        if (urb->actual_length > urb->length &&
2641            !dwc2_hcd_is_pipe_in(&urb->pipe_info))
2642                urb->actual_length = urb->length;
2643
2644        if (hsotg->params.host_dma)
2645                chan->xfer_dma = urb->dma + urb->actual_length;
2646        else
2647                chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
2648
2649        chan->xfer_len = urb->length - urb->actual_length;
2650        chan->xfer_count = 0;
2651
2652        /* Set the split attributes if required */
2653        if (qh->do_split)
2654                dwc2_hc_init_split(hsotg, chan, qtd, urb);
2655        else
2656                chan->do_split = 0;
2657
2658        /* Set the transfer attributes */
2659        dwc2_hc_init_xfer(hsotg, chan, qtd);
2660
2661        /* For non-dword aligned buffers */
2662        if (hsotg->params.host_dma && qh->do_split &&
2663            chan->ep_is_in && (chan->xfer_dma & 0x3)) {
2664                dev_vdbg(hsotg->dev, "Non-aligned buffer\n");
2665                if (dwc2_alloc_split_dma_aligned_buf(hsotg, qh, chan)) {
2666                        dev_err(hsotg->dev,
2667                                "Failed to allocate memory to handle non-aligned buffer\n");
2668                        /* Add channel back to free list */
2669                        chan->align_buf = 0;
2670                        chan->multi_count = 0;
2671                        list_add_tail(&chan->hc_list_entry,
2672                                      &hsotg->free_hc_list);
2673                        qtd->in_process = 0;
2674                        qh->channel = NULL;
2675                        return -ENOMEM;
2676                }
2677        } else {
2678                /*
2679                 * We assume that DMA is always aligned in non-split
2680                 * case or split out case. Warn if not.
2681                 */
2682                WARN_ON_ONCE(hsotg->params.host_dma &&
2683                             (chan->xfer_dma & 0x3));
2684                chan->align_buf = 0;
2685        }
2686
2687        if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2688            chan->ep_type == USB_ENDPOINT_XFER_ISOC)
2689                /*
2690                 * This value may be modified when the transfer is started
2691                 * to reflect the actual transfer length
2692                 */
2693                chan->multi_count = qh->maxp_mult;
2694
2695        if (hsotg->params.dma_desc_enable) {
2696                chan->desc_list_addr = qh->desc_list_dma;
2697                chan->desc_list_sz = qh->desc_list_sz;
2698        }
2699
2700        dwc2_hc_init(hsotg, chan);
2701        chan->qh = qh;
2702
2703        return 0;
2704}
2705
2706/**
2707 * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2708 * schedule and assigns them to available host channels. Called from the HCD
2709 * interrupt handler functions.
2710 *
2711 * @hsotg: The HCD state structure
2712 *
2713 * Return: The types of new transactions that were assigned to host channels
2714 */
2715enum dwc2_transaction_type dwc2_hcd_select_transactions(
2716                struct dwc2_hsotg *hsotg)
2717{
2718        enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
2719        struct list_head *qh_ptr;
2720        struct dwc2_qh *qh;
2721        int num_channels;
2722
2723#ifdef DWC2_DEBUG_SOF
2724        dev_vdbg(hsotg->dev, "  Select Transactions\n");
2725#endif
2726
2727        /* Process entries in the periodic ready list */
2728        qh_ptr = hsotg->periodic_sched_ready.next;
2729        while (qh_ptr != &hsotg->periodic_sched_ready) {
2730                if (list_empty(&hsotg->free_hc_list))
2731                        break;
2732                if (hsotg->params.uframe_sched) {
2733                        if (hsotg->available_host_channels <= 1)
2734                                break;
2735                        hsotg->available_host_channels--;
2736                }
2737                qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2738                if (dwc2_assign_and_init_hc(hsotg, qh))
2739                        break;
2740
2741                /*
2742                 * Move the QH from the periodic ready schedule to the
2743                 * periodic assigned schedule
2744                 */
2745                qh_ptr = qh_ptr->next;
2746                list_move_tail(&qh->qh_list_entry,
2747                               &hsotg->periodic_sched_assigned);
2748                ret_val = DWC2_TRANSACTION_PERIODIC;
2749        }
2750
2751        /*
2752         * Process entries in the inactive portion of the non-periodic
2753         * schedule. Some free host channels may not be used if they are
2754         * reserved for periodic transfers.
2755         */
2756        num_channels = hsotg->params.host_channels;
2757        qh_ptr = hsotg->non_periodic_sched_inactive.next;
2758        while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
2759                if (!hsotg->params.uframe_sched &&
2760                    hsotg->non_periodic_channels >= num_channels -
2761                                                hsotg->periodic_channels)
2762                        break;
2763                if (list_empty(&hsotg->free_hc_list))
2764                        break;
2765                qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2766                if (hsotg->params.uframe_sched) {
2767                        if (hsotg->available_host_channels < 1)
2768                                break;
2769                        hsotg->available_host_channels--;
2770                }
2771
2772                if (dwc2_assign_and_init_hc(hsotg, qh))
2773                        break;
2774
2775                /*
2776                 * Move the QH from the non-periodic inactive schedule to the
2777                 * non-periodic active schedule
2778                 */
2779                qh_ptr = qh_ptr->next;
2780                list_move_tail(&qh->qh_list_entry,
2781                               &hsotg->non_periodic_sched_active);
2782
2783                if (ret_val == DWC2_TRANSACTION_NONE)
2784                        ret_val = DWC2_TRANSACTION_NON_PERIODIC;
2785                else
2786                        ret_val = DWC2_TRANSACTION_ALL;
2787
2788                if (!hsotg->params.uframe_sched)
2789                        hsotg->non_periodic_channels++;
2790        }
2791
2792        return ret_val;
2793}
2794
2795/**
2796 * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2797 * a host channel associated with either a periodic or non-periodic transfer
2798 *
2799 * @hsotg: The HCD state structure
2800 * @chan:  Host channel descriptor associated with either a periodic or
2801 *         non-periodic transfer
2802 * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2803 *                     for periodic transfers or the non-periodic Tx FIFO
2804 *                     for non-periodic transfers
2805 *
2806 * Return: 1 if a request is queued and more requests may be needed to
2807 * complete the transfer, 0 if no more requests are required for this
2808 * transfer, -1 if there is insufficient space in the Tx FIFO
2809 *
2810 * This function assumes that there is space available in the appropriate
2811 * request queue. For an OUT transfer or SETUP transaction in Slave mode,
2812 * it checks whether space is available in the appropriate Tx FIFO.
2813 *
2814 * Must be called with interrupt disabled and spinlock held
2815 */
2816static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
2817                                  struct dwc2_host_chan *chan,
2818                                  u16 fifo_dwords_avail)
2819{
2820        int retval = 0;
2821
2822        if (chan->do_split)
2823                /* Put ourselves on the list to keep order straight */
2824                list_move_tail(&chan->split_order_list_entry,
2825                               &hsotg->split_order);
2826
2827        if (hsotg->params.host_dma && chan->qh) {
2828                if (hsotg->params.dma_desc_enable) {
2829                        if (!chan->xfer_started ||
2830                            chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
2831                                dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
2832                                chan->qh->ping_state = 0;
2833                        }
2834                } else if (!chan->xfer_started) {
2835                        dwc2_hc_start_transfer(hsotg, chan);
2836                        chan->qh->ping_state = 0;
2837                }
2838        } else if (chan->halt_pending) {
2839                /* Don't queue a request if the channel has been halted */
2840        } else if (chan->halt_on_queue) {
2841                dwc2_hc_halt(hsotg, chan, chan->halt_status);
2842        } else if (chan->do_ping) {
2843                if (!chan->xfer_started)
2844                        dwc2_hc_start_transfer(hsotg, chan);
2845        } else if (!chan->ep_is_in ||
2846                   chan->data_pid_start == DWC2_HC_PID_SETUP) {
2847                if ((fifo_dwords_avail * 4) >= chan->max_packet) {
2848                        if (!chan->xfer_started) {
2849                                dwc2_hc_start_transfer(hsotg, chan);
2850                                retval = 1;
2851                        } else {
2852                                retval = dwc2_hc_continue_transfer(hsotg, chan);
2853                        }
2854                } else {
2855                        retval = -1;
2856                }
2857        } else {
2858                if (!chan->xfer_started) {
2859                        dwc2_hc_start_transfer(hsotg, chan);
2860                        retval = 1;
2861                } else {
2862                        retval = dwc2_hc_continue_transfer(hsotg, chan);
2863                }
2864        }
2865
2866        return retval;
2867}
2868
2869/*
2870 * Processes periodic channels for the next frame and queues transactions for
2871 * these channels to the DWC_otg controller. After queueing transactions, the
2872 * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
2873 * to queue as Periodic Tx FIFO or request queue space becomes available.
2874 * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
2875 *
2876 * Must be called with interrupt disabled and spinlock held
2877 */
2878static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
2879{
2880        struct list_head *qh_ptr;
2881        struct dwc2_qh *qh;
2882        u32 tx_status;
2883        u32 fspcavail;
2884        u32 gintmsk;
2885        int status;
2886        bool no_queue_space = false;
2887        bool no_fifo_space = false;
2888        u32 qspcavail;
2889
2890        /* If empty list then just adjust interrupt enables */
2891        if (list_empty(&hsotg->periodic_sched_assigned))
2892                goto exit;
2893
2894        if (dbg_perio())
2895                dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
2896
2897        tx_status = dwc2_readl(hsotg, HPTXSTS);
2898        qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2899                    TXSTS_QSPCAVAIL_SHIFT;
2900        fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2901                    TXSTS_FSPCAVAIL_SHIFT;
2902
2903        if (dbg_perio()) {
2904                dev_vdbg(hsotg->dev, "  P Tx Req Queue Space Avail (before queue): %d\n",
2905                         qspcavail);
2906                dev_vdbg(hsotg->dev, "  P Tx FIFO Space Avail (before queue): %d\n",
2907                         fspcavail);
2908        }
2909
2910        qh_ptr = hsotg->periodic_sched_assigned.next;
2911        while (qh_ptr != &hsotg->periodic_sched_assigned) {
2912                tx_status = dwc2_readl(hsotg, HPTXSTS);
2913                qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2914                            TXSTS_QSPCAVAIL_SHIFT;
2915                if (qspcavail == 0) {
2916                        no_queue_space = true;
2917                        break;
2918                }
2919
2920                qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2921                if (!qh->channel) {
2922                        qh_ptr = qh_ptr->next;
2923                        continue;
2924                }
2925
2926                /* Make sure EP's TT buffer is clean before queueing qtds */
2927                if (qh->tt_buffer_dirty) {
2928                        qh_ptr = qh_ptr->next;
2929                        continue;
2930                }
2931
2932                /*
2933                 * Set a flag if we're queuing high-bandwidth in slave mode.
2934                 * The flag prevents any halts to get into the request queue in
2935                 * the middle of multiple high-bandwidth packets getting queued.
2936                 */
2937                if (!hsotg->params.host_dma &&
2938                    qh->channel->multi_count > 1)
2939                        hsotg->queuing_high_bandwidth = 1;
2940
2941                fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2942                            TXSTS_FSPCAVAIL_SHIFT;
2943                status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
2944                if (status < 0) {
2945                        no_fifo_space = true;
2946                        break;
2947                }
2948
2949                /*
2950                 * In Slave mode, stay on the current transfer until there is
2951                 * nothing more to do or the high-bandwidth request count is
2952                 * reached. In DMA mode, only need to queue one request. The
2953                 * controller automatically handles multiple packets for
2954                 * high-bandwidth transfers.
2955                 */
2956                if (hsotg->params.host_dma || status == 0 ||
2957                    qh->channel->requests == qh->channel->multi_count) {
2958                        qh_ptr = qh_ptr->next;
2959                        /*
2960                         * Move the QH from the periodic assigned schedule to
2961                         * the periodic queued schedule
2962                         */
2963                        list_move_tail(&qh->qh_list_entry,
2964                                       &hsotg->periodic_sched_queued);
2965
2966                        /* done queuing high bandwidth */
2967                        hsotg->queuing_high_bandwidth = 0;
2968                }
2969        }
2970
2971exit:
2972        if (no_queue_space || no_fifo_space ||
2973            (!hsotg->params.host_dma &&
2974             !list_empty(&hsotg->periodic_sched_assigned))) {
2975                /*
2976                 * May need to queue more transactions as the request
2977                 * queue or Tx FIFO empties. Enable the periodic Tx
2978                 * FIFO empty interrupt. (Always use the half-empty
2979                 * level to ensure that new requests are loaded as
2980                 * soon as possible.)
2981                 */
2982                gintmsk = dwc2_readl(hsotg, GINTMSK);
2983                if (!(gintmsk & GINTSTS_PTXFEMP)) {
2984                        gintmsk |= GINTSTS_PTXFEMP;
2985                        dwc2_writel(hsotg, gintmsk, GINTMSK);
2986                }
2987        } else {
2988                /*
2989                 * Disable the Tx FIFO empty interrupt since there are
2990                 * no more transactions that need to be queued right
2991                 * now. This function is called from interrupt
2992                 * handlers to queue more transactions as transfer
2993                 * states change.
2994                 */
2995                gintmsk = dwc2_readl(hsotg, GINTMSK);
2996                if (gintmsk & GINTSTS_PTXFEMP) {
2997                        gintmsk &= ~GINTSTS_PTXFEMP;
2998                        dwc2_writel(hsotg, gintmsk, GINTMSK);
2999                }
3000        }
3001}
3002
3003/*
3004 * Processes active non-periodic channels and queues transactions for these
3005 * channels to the DWC_otg controller. After queueing transactions, the NP Tx
3006 * FIFO Empty interrupt is enabled if there are more transactions to queue as
3007 * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
3008 * FIFO Empty interrupt is disabled.
3009 *
3010 * Must be called with interrupt disabled and spinlock held
3011 */
3012static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
3013{
3014        struct list_head *orig_qh_ptr;
3015        struct dwc2_qh *qh;
3016        u32 tx_status;
3017        u32 qspcavail;
3018        u32 fspcavail;
3019        u32 gintmsk;
3020        int status;
3021        int no_queue_space = 0;
3022        int no_fifo_space = 0;
3023        int more_to_do = 0;
3024
3025        dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
3026
3027        tx_status = dwc2_readl(hsotg, GNPTXSTS);
3028        qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3029                    TXSTS_QSPCAVAIL_SHIFT;
3030        fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3031                    TXSTS_FSPCAVAIL_SHIFT;
3032        dev_vdbg(hsotg->dev, "  NP Tx Req Queue Space Avail (before queue): %d\n",
3033                 qspcavail);
3034        dev_vdbg(hsotg->dev, "  NP Tx FIFO Space Avail (before queue): %d\n",
3035                 fspcavail);
3036
3037        /*
3038         * Keep track of the starting point. Skip over the start-of-list
3039         * entry.
3040         */
3041        if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
3042                hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3043        orig_qh_ptr = hsotg->non_periodic_qh_ptr;
3044
3045        /*
3046         * Process once through the active list or until no more space is
3047         * available in the request queue or the Tx FIFO
3048         */
3049        do {
3050                tx_status = dwc2_readl(hsotg, GNPTXSTS);
3051                qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3052                            TXSTS_QSPCAVAIL_SHIFT;
3053                if (!hsotg->params.host_dma && qspcavail == 0) {
3054                        no_queue_space = 1;
3055                        break;
3056                }
3057
3058                qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
3059                                qh_list_entry);
3060                if (!qh->channel)
3061                        goto next;
3062
3063                /* Make sure EP's TT buffer is clean before queueing qtds */
3064                if (qh->tt_buffer_dirty)
3065                        goto next;
3066
3067                fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3068                            TXSTS_FSPCAVAIL_SHIFT;
3069                status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3070
3071                if (status > 0) {
3072                        more_to_do = 1;
3073                } else if (status < 0) {
3074                        no_fifo_space = 1;
3075                        break;
3076                }
3077next:
3078                /* Advance to next QH, skipping start-of-list entry */
3079                hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3080                if (hsotg->non_periodic_qh_ptr ==
3081                                &hsotg->non_periodic_sched_active)
3082                        hsotg->non_periodic_qh_ptr =
3083                                        hsotg->non_periodic_qh_ptr->next;
3084        } while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
3085
3086        if (!hsotg->params.host_dma) {
3087                tx_status = dwc2_readl(hsotg, GNPTXSTS);
3088                qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3089                            TXSTS_QSPCAVAIL_SHIFT;
3090                fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3091                            TXSTS_FSPCAVAIL_SHIFT;
3092                dev_vdbg(hsotg->dev,
3093                         "  NP Tx Req Queue Space Avail (after queue): %d\n",
3094                         qspcavail);
3095                dev_vdbg(hsotg->dev,
3096                         "  NP Tx FIFO Space Avail (after queue): %d\n",
3097                         fspcavail);
3098
3099                if (more_to_do || no_queue_space || no_fifo_space) {
3100                        /*
3101                         * May need to queue more transactions as the request
3102                         * queue or Tx FIFO empties. Enable the non-periodic
3103                         * Tx FIFO empty interrupt. (Always use the half-empty
3104                         * level to ensure that new requests are loaded as
3105                         * soon as possible.)
3106                         */
3107                        gintmsk = dwc2_readl(hsotg, GINTMSK);
3108                        gintmsk |= GINTSTS_NPTXFEMP;
3109                        dwc2_writel(hsotg, gintmsk, GINTMSK);
3110                } else {
3111                        /*
3112                         * Disable the Tx FIFO empty interrupt since there are
3113                         * no more transactions that need to be queued right
3114                         * now. This function is called from interrupt
3115                         * handlers to queue more transactions as transfer
3116                         * states change.
3117                         */
3118                        gintmsk = dwc2_readl(hsotg, GINTMSK);
3119                        gintmsk &= ~GINTSTS_NPTXFEMP;
3120                        dwc2_writel(hsotg, gintmsk, GINTMSK);
3121                }
3122        }
3123}
3124
3125/**
3126 * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3127 * and queues transactions for these channels to the DWC_otg controller. Called
3128 * from the HCD interrupt handler functions.
3129 *
3130 * @hsotg:   The HCD state structure
3131 * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3132 *           or both)
3133 *
3134 * Must be called with interrupt disabled and spinlock held
3135 */
3136void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
3137                                 enum dwc2_transaction_type tr_type)
3138{
3139#ifdef DWC2_DEBUG_SOF
3140        dev_vdbg(hsotg->dev, "Queue Transactions\n");
3141#endif
3142        /* Process host channels associated with periodic transfers */
3143        if (tr_type == DWC2_TRANSACTION_PERIODIC ||
3144            tr_type == DWC2_TRANSACTION_ALL)
3145                dwc2_process_periodic_channels(hsotg);
3146
3147        /* Process host channels associated with non-periodic transfers */
3148        if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
3149            tr_type == DWC2_TRANSACTION_ALL) {
3150                if (!list_empty(&hsotg->non_periodic_sched_active)) {
3151                        dwc2_process_non_periodic_channels(hsotg);
3152                } else {
3153                        /*
3154                         * Ensure NP Tx FIFO empty interrupt is disabled when
3155                         * there are no non-periodic transfers to process
3156                         */
3157                        u32 gintmsk = dwc2_readl(hsotg, GINTMSK);
3158
3159                        gintmsk &= ~GINTSTS_NPTXFEMP;
3160                        dwc2_writel(hsotg, gintmsk, GINTMSK);
3161                }
3162        }
3163}
3164
3165static void dwc2_conn_id_status_change(struct work_struct *work)
3166{
3167        struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
3168                                                wf_otg);
3169        u32 count = 0;
3170        u32 gotgctl;
3171        unsigned long flags;
3172
3173        dev_dbg(hsotg->dev, "%s()\n", __func__);
3174
3175        gotgctl = dwc2_readl(hsotg, GOTGCTL);
3176        dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
3177        dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
3178                !!(gotgctl & GOTGCTL_CONID_B));
3179
3180        /* B-Device connector (Device Mode) */
3181        if (gotgctl & GOTGCTL_CONID_B) {
3182                dwc2_vbus_supply_exit(hsotg);
3183                /* Wait for switch to device mode */
3184                dev_dbg(hsotg->dev, "connId B\n");
3185                if (hsotg->bus_suspended) {
3186                        dev_info(hsotg->dev,
3187                                 "Do port resume before switching to device mode\n");
3188                        dwc2_port_resume(hsotg);
3189                }
3190                while (!dwc2_is_device_mode(hsotg)) {
3191                        dev_info(hsotg->dev,
3192                                 "Waiting for Peripheral Mode, Mode=%s\n",
3193                                 dwc2_is_host_mode(hsotg) ? "Host" :
3194                                 "Peripheral");
3195                        msleep(20);
3196                        /*
3197                         * Sometimes the initial GOTGCTRL read is wrong, so
3198                         * check it again and jump to host mode if that was
3199                         * the case.
3200                         */
3201                        gotgctl = dwc2_readl(hsotg, GOTGCTL);
3202                        if (!(gotgctl & GOTGCTL_CONID_B))
3203                                goto host;
3204                        if (++count > 250)
3205                                break;
3206                }
3207                if (count > 250)
3208                        dev_err(hsotg->dev,
3209                                "Connection id status change timed out\n");
3210                hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3211                dwc2_core_init(hsotg, false);
3212                dwc2_enable_global_interrupts(hsotg);
3213                spin_lock_irqsave(&hsotg->lock, flags);
3214                dwc2_hsotg_core_init_disconnected(hsotg, false);
3215                spin_unlock_irqrestore(&hsotg->lock, flags);
3216                /* Enable ACG feature in device mode,if supported */
3217                dwc2_enable_acg(hsotg);
3218                dwc2_hsotg_core_connect(hsotg);
3219        } else {
3220host:
3221                /* A-Device connector (Host Mode) */
3222                dev_dbg(hsotg->dev, "connId A\n");
3223                while (!dwc2_is_host_mode(hsotg)) {
3224                        dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
3225                                 dwc2_is_host_mode(hsotg) ?
3226                                 "Host" : "Peripheral");
3227                        msleep(20);
3228                        if (++count > 250)
3229                                break;
3230                }
3231                if (count > 250)
3232                        dev_err(hsotg->dev,
3233                                "Connection id status change timed out\n");
3234
3235                spin_lock_irqsave(&hsotg->lock, flags);
3236                dwc2_hsotg_disconnect(hsotg);
3237                spin_unlock_irqrestore(&hsotg->lock, flags);
3238
3239                hsotg->op_state = OTG_STATE_A_HOST;
3240                /* Initialize the Core for Host mode */
3241                dwc2_core_init(hsotg, false);
3242                dwc2_enable_global_interrupts(hsotg);
3243                dwc2_hcd_start(hsotg);
3244        }
3245}
3246
3247static void dwc2_wakeup_detected(struct timer_list *t)
3248{
3249        struct dwc2_hsotg *hsotg = from_timer(hsotg, t, wkp_timer);
3250        u32 hprt0;
3251
3252        dev_dbg(hsotg->dev, "%s()\n", __func__);
3253
3254        /*
3255         * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3256         * so that OPT tests pass with all PHYs.)
3257         */
3258        hprt0 = dwc2_read_hprt0(hsotg);
3259        dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
3260        hprt0 &= ~HPRT0_RES;
3261        dwc2_writel(hsotg, hprt0, HPRT0);
3262        dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
3263                dwc2_readl(hsotg, HPRT0));
3264
3265        dwc2_hcd_rem_wakeup(hsotg);
3266        hsotg->bus_suspended = false;
3267
3268        /* Change to L0 state */
3269        hsotg->lx_state = DWC2_L0;
3270}
3271
3272static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
3273{
3274        struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
3275
3276        return hcd->self.b_hnp_enable;
3277}
3278
3279/* Must NOT be called with interrupt disabled or spinlock held */
3280static void dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
3281{
3282        unsigned long flags;
3283        u32 hprt0;
3284        u32 pcgctl;
3285        u32 gotgctl;
3286
3287        dev_dbg(hsotg->dev, "%s()\n", __func__);
3288
3289        spin_lock_irqsave(&hsotg->lock, flags);
3290
3291        if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
3292                gotgctl = dwc2_readl(hsotg, GOTGCTL);
3293                gotgctl |= GOTGCTL_HSTSETHNPEN;
3294                dwc2_writel(hsotg, gotgctl, GOTGCTL);
3295                hsotg->op_state = OTG_STATE_A_SUSPEND;
3296        }
3297
3298        hprt0 = dwc2_read_hprt0(hsotg);
3299        hprt0 |= HPRT0_SUSP;
3300        dwc2_writel(hsotg, hprt0, HPRT0);
3301
3302        hsotg->bus_suspended = true;
3303
3304        /*
3305         * If power_down is supported, Phy clock will be suspended
3306         * after registers are backuped.
3307         */
3308        if (!hsotg->params.power_down) {
3309                /* Suspend the Phy Clock */
3310                pcgctl = dwc2_readl(hsotg, PCGCTL);
3311                pcgctl |= PCGCTL_STOPPCLK;
3312                dwc2_writel(hsotg, pcgctl, PCGCTL);
3313                udelay(10);
3314        }
3315
3316        /* For HNP the bus must be suspended for at least 200ms */
3317        if (dwc2_host_is_b_hnp_enabled(hsotg)) {
3318                pcgctl = dwc2_readl(hsotg, PCGCTL);
3319                pcgctl &= ~PCGCTL_STOPPCLK;
3320                dwc2_writel(hsotg, pcgctl, PCGCTL);
3321
3322                spin_unlock_irqrestore(&hsotg->lock, flags);
3323
3324                msleep(200);
3325        } else {
3326                spin_unlock_irqrestore(&hsotg->lock, flags);
3327        }
3328}
3329
3330/* Must NOT be called with interrupt disabled or spinlock held */
3331static void dwc2_port_resume(struct dwc2_hsotg *hsotg)
3332{
3333        unsigned long flags;
3334        u32 hprt0;
3335        u32 pcgctl;
3336
3337        spin_lock_irqsave(&hsotg->lock, flags);
3338
3339        /*
3340         * If power_down is supported, Phy clock is already resumed
3341         * after registers restore.
3342         */
3343        if (!hsotg->params.power_down) {
3344                pcgctl = dwc2_readl(hsotg, PCGCTL);
3345                pcgctl &= ~PCGCTL_STOPPCLK;
3346                dwc2_writel(hsotg, pcgctl, PCGCTL);
3347                spin_unlock_irqrestore(&hsotg->lock, flags);
3348                msleep(20);
3349                spin_lock_irqsave(&hsotg->lock, flags);
3350        }
3351
3352        hprt0 = dwc2_read_hprt0(hsotg);
3353        hprt0 |= HPRT0_RES;
3354        hprt0 &= ~HPRT0_SUSP;
3355        dwc2_writel(hsotg, hprt0, HPRT0);
3356        spin_unlock_irqrestore(&hsotg->lock, flags);
3357
3358        msleep(USB_RESUME_TIMEOUT);
3359
3360        spin_lock_irqsave(&hsotg->lock, flags);
3361        hprt0 = dwc2_read_hprt0(hsotg);
3362        hprt0 &= ~(HPRT0_RES | HPRT0_SUSP);
3363        dwc2_writel(hsotg, hprt0, HPRT0);
3364        hsotg->bus_suspended = false;
3365        spin_unlock_irqrestore(&hsotg->lock, flags);
3366}
3367
3368/* Handles hub class-specific requests */
3369static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
3370                                u16 wvalue, u16 windex, char *buf, u16 wlength)
3371{
3372        struct usb_hub_descriptor *hub_desc;
3373        int retval = 0;
3374        u32 hprt0;
3375        u32 port_status;
3376        u32 speed;
3377        u32 pcgctl;
3378        u32 pwr;
3379
3380        switch (typereq) {
3381        case ClearHubFeature:
3382                dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
3383
3384                switch (wvalue) {
3385                case C_HUB_LOCAL_POWER:
3386                case C_HUB_OVER_CURRENT:
3387                        /* Nothing required here */
3388                        break;
3389
3390                default:
3391                        retval = -EINVAL;
3392                        dev_err(hsotg->dev,
3393                                "ClearHubFeature request %1xh unknown\n",
3394                                wvalue);
3395                }
3396                break;
3397
3398        case ClearPortFeature:
3399                if (wvalue != USB_PORT_FEAT_L1)
3400                        if (!windex || windex > 1)
3401                                goto error;
3402                switch (wvalue) {
3403                case USB_PORT_FEAT_ENABLE:
3404                        dev_dbg(hsotg->dev,
3405                                "ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3406                        hprt0 = dwc2_read_hprt0(hsotg);
3407                        hprt0 |= HPRT0_ENA;
3408                        dwc2_writel(hsotg, hprt0, HPRT0);
3409                        break;
3410
3411                case USB_PORT_FEAT_SUSPEND:
3412                        dev_dbg(hsotg->dev,
3413                                "ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3414
3415                        if (hsotg->bus_suspended) {
3416                                if (hsotg->hibernated)
3417                                        dwc2_exit_hibernation(hsotg, 0, 0, 1);
3418                                else
3419                                        dwc2_port_resume(hsotg);
3420                        }
3421                        break;
3422
3423                case USB_PORT_FEAT_POWER:
3424                        dev_dbg(hsotg->dev,
3425                                "ClearPortFeature USB_PORT_FEAT_POWER\n");
3426                        hprt0 = dwc2_read_hprt0(hsotg);
3427                        pwr = hprt0 & HPRT0_PWR;
3428                        hprt0 &= ~HPRT0_PWR;
3429                        dwc2_writel(hsotg, hprt0, HPRT0);
3430                        if (pwr)
3431                                dwc2_vbus_supply_exit(hsotg);
3432                        break;
3433
3434                case USB_PORT_FEAT_INDICATOR:
3435                        dev_dbg(hsotg->dev,
3436                                "ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3437                        /* Port indicator not supported */
3438                        break;
3439
3440                case USB_PORT_FEAT_C_CONNECTION:
3441                        /*
3442                         * Clears driver's internal Connect Status Change flag
3443                         */
3444                        dev_dbg(hsotg->dev,
3445                                "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3446                        hsotg->flags.b.port_connect_status_change = 0;
3447                        break;
3448
3449                case USB_PORT_FEAT_C_RESET:
3450                        /* Clears driver's internal Port Reset Change flag */
3451                        dev_dbg(hsotg->dev,
3452                                "ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3453                        hsotg->flags.b.port_reset_change = 0;
3454                        break;
3455
3456                case USB_PORT_FEAT_C_ENABLE:
3457                        /*
3458                         * Clears the driver's internal Port Enable/Disable
3459                         * Change flag
3460                         */
3461                        dev_dbg(hsotg->dev,
3462                                "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3463                        hsotg->flags.b.port_enable_change = 0;
3464                        break;
3465
3466                case USB_PORT_FEAT_C_SUSPEND:
3467                        /*
3468                         * Clears the driver's internal Port Suspend Change
3469                         * flag, which is set when resume signaling on the host
3470                         * port is complete
3471                         */
3472                        dev_dbg(hsotg->dev,
3473                                "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3474                        hsotg->flags.b.port_suspend_change = 0;
3475                        break;
3476
3477                case USB_PORT_FEAT_C_PORT_L1:
3478                        dev_dbg(hsotg->dev,
3479                                "ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3480                        hsotg->flags.b.port_l1_change = 0;
3481                        break;
3482
3483                case USB_PORT_FEAT_C_OVER_CURRENT:
3484                        dev_dbg(hsotg->dev,
3485                                "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3486                        hsotg->flags.b.port_over_current_change = 0;
3487                        break;
3488
3489                default:
3490                        retval = -EINVAL;
3491                        dev_err(hsotg->dev,
3492                                "ClearPortFeature request %1xh unknown or unsupported\n",
3493                                wvalue);
3494                }
3495                break;
3496
3497        case GetHubDescriptor:
3498                dev_dbg(hsotg->dev, "GetHubDescriptor\n");
3499                hub_desc = (struct usb_hub_descriptor *)buf;
3500                hub_desc->bDescLength = 9;
3501                hub_desc->bDescriptorType = USB_DT_HUB;
3502                hub_desc->bNbrPorts = 1;
3503                hub_desc->wHubCharacteristics =
3504                        cpu_to_le16(HUB_CHAR_COMMON_LPSM |
3505                                    HUB_CHAR_INDV_PORT_OCPM);
3506                hub_desc->bPwrOn2PwrGood = 1;
3507                hub_desc->bHubContrCurrent = 0;
3508                hub_desc->u.hs.DeviceRemovable[0] = 0;
3509                hub_desc->u.hs.DeviceRemovable[1] = 0xff;
3510                break;
3511
3512        case GetHubStatus:
3513                dev_dbg(hsotg->dev, "GetHubStatus\n");
3514                memset(buf, 0, 4);
3515                break;
3516
3517        case GetPortStatus:
3518                dev_vdbg(hsotg->dev,
3519                         "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
3520                         hsotg->flags.d32);
3521                if (!windex || windex > 1)
3522                        goto error;
3523
3524                port_status = 0;
3525                if (hsotg->flags.b.port_connect_status_change)
3526                        port_status |= USB_PORT_STAT_C_CONNECTION << 16;
3527                if (hsotg->flags.b.port_enable_change)
3528                        port_status |= USB_PORT_STAT_C_ENABLE << 16;
3529                if (hsotg->flags.b.port_suspend_change)
3530                        port_status |= USB_PORT_STAT_C_SUSPEND << 16;
3531                if (hsotg->flags.b.port_l1_change)
3532                        port_status |= USB_PORT_STAT_C_L1 << 16;
3533                if (hsotg->flags.b.port_reset_change)
3534                        port_status |= USB_PORT_STAT_C_RESET << 16;
3535                if (hsotg->flags.b.port_over_current_change) {
3536                        dev_warn(hsotg->dev, "Overcurrent change detected\n");
3537                        port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3538                }
3539
3540                if (!hsotg->flags.b.port_connect_status) {
3541                        /*
3542                         * The port is disconnected, which means the core is
3543                         * either in device mode or it soon will be. Just
3544                         * return 0's for the remainder of the port status
3545                         * since the port register can't be read if the core
3546                         * is in device mode.
3547                         */
3548                        *(__le32 *)buf = cpu_to_le32(port_status);
3549                        break;
3550                }
3551
3552                hprt0 = dwc2_readl(hsotg, HPRT0);
3553                dev_vdbg(hsotg->dev, "  HPRT0: 0x%08x\n", hprt0);
3554
3555                if (hprt0 & HPRT0_CONNSTS)
3556                        port_status |= USB_PORT_STAT_CONNECTION;
3557                if (hprt0 & HPRT0_ENA)
3558                        port_status |= USB_PORT_STAT_ENABLE;
3559                if (hprt0 & HPRT0_SUSP)
3560                        port_status |= USB_PORT_STAT_SUSPEND;
3561                if (hprt0 & HPRT0_OVRCURRACT)
3562                        port_status |= USB_PORT_STAT_OVERCURRENT;
3563                if (hprt0 & HPRT0_RST)
3564                        port_status |= USB_PORT_STAT_RESET;
3565                if (hprt0 & HPRT0_PWR)
3566                        port_status |= USB_PORT_STAT_POWER;
3567
3568                speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
3569                if (speed == HPRT0_SPD_HIGH_SPEED)
3570                        port_status |= USB_PORT_STAT_HIGH_SPEED;
3571                else if (speed == HPRT0_SPD_LOW_SPEED)
3572                        port_status |= USB_PORT_STAT_LOW_SPEED;
3573
3574                if (hprt0 & HPRT0_TSTCTL_MASK)
3575                        port_status |= USB_PORT_STAT_TEST;
3576                /* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3577
3578                if (hsotg->params.dma_desc_fs_enable) {
3579                        /*
3580                         * Enable descriptor DMA only if a full speed
3581                         * device is connected.
3582                         */
3583                        if (hsotg->new_connection &&
3584                            ((port_status &
3585                              (USB_PORT_STAT_CONNECTION |
3586                               USB_PORT_STAT_HIGH_SPEED |
3587                               USB_PORT_STAT_LOW_SPEED)) ==
3588                               USB_PORT_STAT_CONNECTION)) {
3589                                u32 hcfg;
3590
3591                                dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
3592                                hsotg->params.dma_desc_enable = true;
3593                                hcfg = dwc2_readl(hsotg, HCFG);
3594                                hcfg |= HCFG_DESCDMA;
3595                                dwc2_writel(hsotg, hcfg, HCFG);
3596                                hsotg->new_connection = false;
3597                        }
3598                }
3599
3600                dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
3601                *(__le32 *)buf = cpu_to_le32(port_status);
3602                break;
3603
3604        case SetHubFeature:
3605                dev_dbg(hsotg->dev, "SetHubFeature\n");
3606                /* No HUB features supported */
3607                break;
3608
3609        case SetPortFeature:
3610                dev_dbg(hsotg->dev, "SetPortFeature\n");
3611                if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
3612                        goto error;
3613
3614                if (!hsotg->flags.b.port_connect_status) {
3615                        /*
3616                         * The port is disconnected, which means the core is
3617                         * either in device mode or it soon will be. Just
3618                         * return without doing anything since the port
3619                         * register can't be written if the core is in device
3620                         * mode.
3621                         */
3622                        break;
3623                }
3624
3625                switch (wvalue) {
3626                case USB_PORT_FEAT_SUSPEND:
3627                        dev_dbg(hsotg->dev,
3628                                "SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3629                        if (windex != hsotg->otg_port)
3630                                goto error;
3631                        if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_HIBERNATION)
3632                                dwc2_enter_hibernation(hsotg, 1);
3633                        else
3634                                dwc2_port_suspend(hsotg, windex);
3635                        break;
3636
3637                case USB_PORT_FEAT_POWER:
3638                        dev_dbg(hsotg->dev,
3639                                "SetPortFeature - USB_PORT_FEAT_POWER\n");
3640                        hprt0 = dwc2_read_hprt0(hsotg);
3641                        pwr = hprt0 & HPRT0_PWR;
3642                        hprt0 |= HPRT0_PWR;
3643                        dwc2_writel(hsotg, hprt0, HPRT0);
3644                        if (!pwr)
3645                                dwc2_vbus_supply_init(hsotg);
3646                        break;
3647
3648                case USB_PORT_FEAT_RESET:
3649                        if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_HIBERNATION &&
3650                            hsotg->hibernated)
3651                                dwc2_exit_hibernation(hsotg, 0, 1, 1);
3652                        hprt0 = dwc2_read_hprt0(hsotg);
3653                        dev_dbg(hsotg->dev,
3654                                "SetPortFeature - USB_PORT_FEAT_RESET\n");
3655                        pcgctl = dwc2_readl(hsotg, PCGCTL);
3656                        pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
3657                        dwc2_writel(hsotg, pcgctl, PCGCTL);
3658                        /* ??? Original driver does this */
3659                        dwc2_writel(hsotg, 0, PCGCTL);
3660
3661                        hprt0 = dwc2_read_hprt0(hsotg);
3662                        pwr = hprt0 & HPRT0_PWR;
3663                        /* Clear suspend bit if resetting from suspend state */
3664                        hprt0 &= ~HPRT0_SUSP;
3665
3666                        /*
3667                         * When B-Host the Port reset bit is set in the Start
3668                         * HCD Callback function, so that the reset is started
3669                         * within 1ms of the HNP success interrupt
3670                         */
3671                        if (!dwc2_hcd_is_b_host(hsotg)) {
3672                                hprt0 |= HPRT0_PWR | HPRT0_RST;
3673                                dev_dbg(hsotg->dev,
3674                                        "In host mode, hprt0=%08x\n", hprt0);
3675                                dwc2_writel(hsotg, hprt0, HPRT0);
3676                                if (!pwr)
3677                                        dwc2_vbus_supply_init(hsotg);
3678                        }
3679
3680                        /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3681                        msleep(50);
3682                        hprt0 &= ~HPRT0_RST;
3683                        dwc2_writel(hsotg, hprt0, HPRT0);
3684                        hsotg->lx_state = DWC2_L0; /* Now back to On state */
3685                        break;
3686
3687                case USB_PORT_FEAT_INDICATOR:
3688                        dev_dbg(hsotg->dev,
3689                                "SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3690                        /* Not supported */
3691                        break;
3692
3693                case USB_PORT_FEAT_TEST:
3694                        hprt0 = dwc2_read_hprt0(hsotg);
3695                        dev_dbg(hsotg->dev,
3696                                "SetPortFeature - USB_PORT_FEAT_TEST\n");
3697                        hprt0 &= ~HPRT0_TSTCTL_MASK;
3698                        hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
3699                        dwc2_writel(hsotg, hprt0, HPRT0);
3700                        break;
3701
3702                default:
3703                        retval = -EINVAL;
3704                        dev_err(hsotg->dev,
3705                                "SetPortFeature %1xh unknown or unsupported\n",
3706                                wvalue);
3707                        break;
3708                }
3709                break;
3710
3711        default:
3712error:
3713                retval = -EINVAL;
3714                dev_dbg(hsotg->dev,
3715                        "Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3716                        typereq, windex, wvalue);
3717                break;
3718        }
3719
3720        return retval;
3721}
3722
3723static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
3724{
3725        int retval;
3726
3727        if (port != 1)
3728                return -EINVAL;
3729
3730        retval = (hsotg->flags.b.port_connect_status_change ||
3731                  hsotg->flags.b.port_reset_change ||
3732                  hsotg->flags.b.port_enable_change ||
3733                  hsotg->flags.b.port_suspend_change ||
3734                  hsotg->flags.b.port_over_current_change);
3735
3736        if (retval) {
3737                dev_dbg(hsotg->dev,
3738                        "DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3739                dev_dbg(hsotg->dev, "  port_connect_status_change: %d\n",
3740                        hsotg->flags.b.port_connect_status_change);
3741                dev_dbg(hsotg->dev, "  port_reset_change: %d\n",
3742                        hsotg->flags.b.port_reset_change);
3743                dev_dbg(hsotg->dev, "  port_enable_change: %d\n",
3744                        hsotg->flags.b.port_enable_change);
3745                dev_dbg(hsotg->dev, "  port_suspend_change: %d\n",
3746                        hsotg->flags.b.port_suspend_change);
3747                dev_dbg(hsotg->dev, "  port_over_current_change: %d\n",
3748                        hsotg->flags.b.port_over_current_change);
3749        }
3750
3751        return retval;
3752}
3753
3754int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
3755{
3756        u32 hfnum = dwc2_readl(hsotg, HFNUM);
3757
3758#ifdef DWC2_DEBUG_SOF
3759        dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
3760                 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
3761#endif
3762        return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3763}
3764
3765int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us)
3766{
3767        u32 hprt = dwc2_readl(hsotg, HPRT0);
3768        u32 hfir = dwc2_readl(hsotg, HFIR);
3769        u32 hfnum = dwc2_readl(hsotg, HFNUM);
3770        unsigned int us_per_frame;
3771        unsigned int frame_number;
3772        unsigned int remaining;
3773        unsigned int interval;
3774        unsigned int phy_clks;
3775
3776        /* High speed has 125 us per (micro) frame; others are 1 ms per */
3777        us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125;
3778
3779        /* Extract fields */
3780        frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3781        remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT;
3782        interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT;
3783
3784        /*
3785         * Number of phy clocks since the last tick of the frame number after
3786         * "us" has passed.
3787         */
3788        phy_clks = (interval - remaining) +
3789                   DIV_ROUND_UP(interval * us, us_per_frame);
3790
3791        return dwc2_frame_num_inc(frame_number, phy_clks / interval);
3792}
3793
3794int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
3795{
3796        return hsotg->op_state == OTG_STATE_B_HOST;
3797}
3798
3799static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
3800                                               int iso_desc_count,
3801                                               gfp_t mem_flags)
3802{
3803        struct dwc2_hcd_urb *urb;
3804
3805        urb = kzalloc(struct_size(urb, iso_descs, iso_desc_count), mem_flags);
3806        if (urb)
3807                urb->packet_count = iso_desc_count;
3808        return urb;
3809}
3810
3811static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
3812                                      struct dwc2_hcd_urb *urb, u8 dev_addr,
3813                                      u8 ep_num, u8 ep_type, u8 ep_dir,
3814                                      u16 maxp, u16 maxp_mult)
3815{
3816        if (dbg_perio() ||
3817            ep_type == USB_ENDPOINT_XFER_BULK ||
3818            ep_type == USB_ENDPOINT_XFER_CONTROL)
3819                dev_vdbg(hsotg->dev,
3820                         "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, maxp=%d (%d mult)\n",
3821                         dev_addr, ep_num, ep_dir, ep_type, maxp, maxp_mult);
3822        urb->pipe_info.dev_addr = dev_addr;
3823        urb->pipe_info.ep_num = ep_num;
3824        urb->pipe_info.pipe_type = ep_type;
3825        urb->pipe_info.pipe_dir = ep_dir;
3826        urb->pipe_info.maxp = maxp;
3827        urb->pipe_info.maxp_mult = maxp_mult;
3828}
3829
3830/*
3831 * NOTE: This function will be removed once the peripheral controller code
3832 * is integrated and the driver is stable
3833 */
3834void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
3835{
3836#ifdef DEBUG
3837        struct dwc2_host_chan *chan;
3838        struct dwc2_hcd_urb *urb;
3839        struct dwc2_qtd *qtd;
3840        int num_channels;
3841        u32 np_tx_status;
3842        u32 p_tx_status;
3843        int i;
3844
3845        num_channels = hsotg->params.host_channels;
3846        dev_dbg(hsotg->dev, "\n");
3847        dev_dbg(hsotg->dev,
3848                "************************************************************\n");
3849        dev_dbg(hsotg->dev, "HCD State:\n");
3850        dev_dbg(hsotg->dev, "  Num channels: %d\n", num_channels);
3851
3852        for (i = 0; i < num_channels; i++) {
3853                chan = hsotg->hc_ptr_array[i];
3854                dev_dbg(hsotg->dev, "  Channel %d:\n", i);
3855                dev_dbg(hsotg->dev,
3856                        "    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
3857                        chan->dev_addr, chan->ep_num, chan->ep_is_in);
3858                dev_dbg(hsotg->dev, "    speed: %d\n", chan->speed);
3859                dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
3860                dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
3861                dev_dbg(hsotg->dev, "    data_pid_start: %d\n",
3862                        chan->data_pid_start);
3863                dev_dbg(hsotg->dev, "    multi_count: %d\n", chan->multi_count);
3864                dev_dbg(hsotg->dev, "    xfer_started: %d\n",
3865                        chan->xfer_started);
3866                dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
3867                dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
3868                        (unsigned long)chan->xfer_dma);
3869                dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
3870                dev_dbg(hsotg->dev, "    xfer_count: %d\n", chan->xfer_count);
3871                dev_dbg(hsotg->dev, "    halt_on_queue: %d\n",
3872                        chan->halt_on_queue);
3873                dev_dbg(hsotg->dev, "    halt_pending: %d\n",
3874                        chan->halt_pending);
3875                dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
3876                dev_dbg(hsotg->dev, "    do_split: %d\n", chan->do_split);
3877                dev_dbg(hsotg->dev, "    complete_split: %d\n",
3878                        chan->complete_split);
3879                dev_dbg(hsotg->dev, "    hub_addr: %d\n", chan->hub_addr);
3880                dev_dbg(hsotg->dev, "    hub_port: %d\n", chan->hub_port);
3881                dev_dbg(hsotg->dev, "    xact_pos: %d\n", chan->xact_pos);
3882                dev_dbg(hsotg->dev, "    requests: %d\n", chan->requests);
3883                dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
3884
3885                if (chan->xfer_started) {
3886                        u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
3887
3888                        hfnum = dwc2_readl(hsotg, HFNUM);
3889                        hcchar = dwc2_readl(hsotg, HCCHAR(i));
3890                        hctsiz = dwc2_readl(hsotg, HCTSIZ(i));
3891                        hcint = dwc2_readl(hsotg, HCINT(i));
3892                        hcintmsk = dwc2_readl(hsotg, HCINTMSK(i));
3893                        dev_dbg(hsotg->dev, "    hfnum: 0x%08x\n", hfnum);
3894                        dev_dbg(hsotg->dev, "    hcchar: 0x%08x\n", hcchar);
3895                        dev_dbg(hsotg->dev, "    hctsiz: 0x%08x\n", hctsiz);
3896                        dev_dbg(hsotg->dev, "    hcint: 0x%08x\n", hcint);
3897                        dev_dbg(hsotg->dev, "    hcintmsk: 0x%08x\n", hcintmsk);
3898                }
3899
3900                if (!(chan->xfer_started && chan->qh))
3901                        continue;
3902
3903                list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
3904                        if (!qtd->in_process)
3905                                break;
3906                        urb = qtd->urb;
3907                        dev_dbg(hsotg->dev, "    URB Info:\n");
3908                        dev_dbg(hsotg->dev, "      qtd: %p, urb: %p\n",
3909                                qtd, urb);
3910                        if (urb) {
3911                                dev_dbg(hsotg->dev,
3912                                        "      Dev: %d, EP: %d %s\n",
3913                                        dwc2_hcd_get_dev_addr(&urb->pipe_info),
3914                                        dwc2_hcd_get_ep_num(&urb->pipe_info),
3915                                        dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
3916                                        "IN" : "OUT");
3917                                dev_dbg(hsotg->dev,
3918                                        "      Max packet size: %d (%d mult)\n",
3919                                        dwc2_hcd_get_maxp(&urb->pipe_info),
3920                                        dwc2_hcd_get_maxp_mult(&urb->pipe_info));
3921                                dev_dbg(hsotg->dev,
3922                                        "      transfer_buffer: %p\n",
3923                                        urb->buf);
3924                                dev_dbg(hsotg->dev,
3925                                        "      transfer_dma: %08lx\n",
3926                                        (unsigned long)urb->dma);
3927                                dev_dbg(hsotg->dev,
3928                                        "      transfer_buffer_length: %d\n",
3929                                        urb->length);
3930                                dev_dbg(hsotg->dev, "      actual_length: %d\n",
3931                                        urb->actual_length);
3932                        }
3933                }
3934        }
3935
3936        dev_dbg(hsotg->dev, "  non_periodic_channels: %d\n",
3937                hsotg->non_periodic_channels);
3938        dev_dbg(hsotg->dev, "  periodic_channels: %d\n",
3939                hsotg->periodic_channels);
3940        dev_dbg(hsotg->dev, "  periodic_usecs: %d\n", hsotg->periodic_usecs);
3941        np_tx_status = dwc2_readl(hsotg, GNPTXSTS);
3942        dev_dbg(hsotg->dev, "  NP Tx Req Queue Space Avail: %d\n",
3943                (np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3944        dev_dbg(hsotg->dev, "  NP Tx FIFO Space Avail: %d\n",
3945                (np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3946        p_tx_status = dwc2_readl(hsotg, HPTXSTS);
3947        dev_dbg(hsotg->dev, "  P Tx Req Queue Space Avail: %d\n",
3948                (p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3949        dev_dbg(hsotg->dev, "  P Tx FIFO Space Avail: %d\n",
3950                (p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3951        dwc2_dump_global_registers(hsotg);
3952        dwc2_dump_host_registers(hsotg);
3953        dev_dbg(hsotg->dev,
3954                "************************************************************\n");
3955        dev_dbg(hsotg->dev, "\n");
3956#endif
3957}
3958
3959struct wrapper_priv_data {
3960        struct dwc2_hsotg *hsotg;
3961};
3962
3963/* Gets the dwc2_hsotg from a usb_hcd */
3964static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
3965{
3966        struct wrapper_priv_data *p;
3967
3968        p = (struct wrapper_priv_data *)&hcd->hcd_priv;
3969        return p->hsotg;
3970}
3971
3972/**
3973 * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
3974 *
3975 * This will get the dwc2_tt structure (and ttport) associated with the given
3976 * context (which is really just a struct urb pointer).
3977 *
3978 * The first time this is called for a given TT we allocate memory for our
3979 * structure.  When everyone is done and has called dwc2_host_put_tt_info()
3980 * then the refcount for the structure will go to 0 and we'll free it.
3981 *
3982 * @hsotg:     The HCD state structure for the DWC OTG controller.
3983 * @context:   The priv pointer from a struct dwc2_hcd_urb.
3984 * @mem_flags: Flags for allocating memory.
3985 * @ttport:    We'll return this device's port number here.  That's used to
3986 *             reference into the bitmap if we're on a multi_tt hub.
3987 *
3988 * Return: a pointer to a struct dwc2_tt.  Don't forget to call
3989 *         dwc2_host_put_tt_info()!  Returns NULL upon memory alloc failure.
3990 */
3991
3992struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context,
3993                                      gfp_t mem_flags, int *ttport)
3994{
3995        struct urb *urb = context;
3996        struct dwc2_tt *dwc_tt = NULL;
3997
3998        if (urb->dev->tt) {
3999                *ttport = urb->dev->ttport;
4000
4001                dwc_tt = urb->dev->tt->hcpriv;
4002                if (!dwc_tt) {
4003                        size_t bitmap_size;
4004
4005                        /*
4006                         * For single_tt we need one schedule.  For multi_tt
4007                         * we need one per port.
4008                         */
4009                        bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP *
4010                                      sizeof(dwc_tt->periodic_bitmaps[0]);
4011                        if (urb->dev->tt->multi)
4012                                bitmap_size *= urb->dev->tt->hub->maxchild;
4013
4014                        dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size,
4015                                         mem_flags);
4016                        if (!dwc_tt)
4017                                return NULL;
4018
4019                        dwc_tt->usb_tt = urb->dev->tt;
4020                        dwc_tt->usb_tt->hcpriv = dwc_tt;
4021                }
4022
4023                dwc_tt->refcount++;
4024        }
4025
4026        return dwc_tt;
4027}
4028
4029/**
4030 * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4031 *
4032 * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4033 * of the structure are done.
4034 *
4035 * It's OK to call this with NULL.
4036 *
4037 * @hsotg:     The HCD state structure for the DWC OTG controller.
4038 * @dwc_tt:    The pointer returned by dwc2_host_get_tt_info.
4039 */
4040void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt)
4041{
4042        /* Model kfree and make put of NULL a no-op */
4043        if (!dwc_tt)
4044                return;
4045
4046        WARN_ON(dwc_tt->refcount < 1);
4047
4048        dwc_tt->refcount--;
4049        if (!dwc_tt->refcount) {
4050                dwc_tt->usb_tt->hcpriv = NULL;
4051                kfree(dwc_tt);
4052        }
4053}
4054
4055int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
4056{
4057        struct urb *urb = context;
4058
4059        return urb->dev->speed;
4060}
4061
4062static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4063                                        struct urb *urb)
4064{
4065        struct usb_bus *bus = hcd_to_bus(hcd);
4066
4067        if (urb->interval)
4068                bus->bandwidth_allocated += bw / urb->interval;
4069        if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4070                bus->bandwidth_isoc_reqs++;
4071        else
4072                bus->bandwidth_int_reqs++;
4073}
4074
4075static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4076                                    struct urb *urb)
4077{
4078        struct usb_bus *bus = hcd_to_bus(hcd);
4079
4080        if (urb->interval)
4081                bus->bandwidth_allocated -= bw / urb->interval;
4082        if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4083                bus->bandwidth_isoc_reqs--;
4084        else
4085                bus->bandwidth_int_reqs--;
4086}
4087
4088/*
4089 * Sets the final status of an URB and returns it to the upper layer. Any
4090 * required cleanup of the URB is performed.
4091 *
4092 * Must be called with interrupt disabled and spinlock held
4093 */
4094void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
4095                        int status)
4096{
4097        struct urb *urb;
4098        int i;
4099
4100        if (!qtd) {
4101                dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
4102                return;
4103        }
4104
4105        if (!qtd->urb) {
4106                dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
4107                return;
4108        }
4109
4110        urb = qtd->urb->priv;
4111        if (!urb) {
4112                dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
4113                return;
4114        }
4115
4116        urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
4117
4118        if (dbg_urb(urb))
4119                dev_vdbg(hsotg->dev,
4120                         "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4121                         __func__, urb, usb_pipedevice(urb->pipe),
4122                         usb_pipeendpoint(urb->pipe),
4123                         usb_pipein(urb->pipe) ? "IN" : "OUT", status,
4124                         urb->actual_length);
4125
4126        if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4127                urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
4128                for (i = 0; i < urb->number_of_packets; ++i) {
4129                        urb->iso_frame_desc[i].actual_length =
4130                                dwc2_hcd_urb_get_iso_desc_actual_length(
4131                                                qtd->urb, i);
4132                        urb->iso_frame_desc[i].status =
4133                                dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
4134                }
4135        }
4136
4137        if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
4138                for (i = 0; i < urb->number_of_packets; i++)
4139                        dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
4140                                 i, urb->iso_frame_desc[i].status);
4141        }
4142
4143        urb->status = status;
4144        if (!status) {
4145                if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
4146                    urb->actual_length < urb->transfer_buffer_length)
4147                        urb->status = -EREMOTEIO;
4148        }
4149
4150        if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4151            usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4152                struct usb_host_endpoint *ep = urb->ep;
4153
4154                if (ep)
4155                        dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
4156                                        dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4157                                        urb);
4158        }
4159
4160        usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
4161        urb->hcpriv = NULL;
4162        kfree(qtd->urb);
4163        qtd->urb = NULL;
4164
4165        usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
4166}
4167
4168/*
4169 * Work queue function for starting the HCD when A-Cable is connected
4170 */
4171static void dwc2_hcd_start_func(struct work_struct *work)
4172{
4173        struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4174                                                start_work.work);
4175
4176        dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
4177        dwc2_host_start(hsotg);
4178}
4179
4180/*
4181 * Reset work queue function
4182 */
4183static void dwc2_hcd_reset_func(struct work_struct *work)
4184{
4185        struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4186                                                reset_work.work);
4187        unsigned long flags;
4188        u32 hprt0;
4189
4190        dev_dbg(hsotg->dev, "USB RESET function called\n");
4191
4192        spin_lock_irqsave(&hsotg->lock, flags);
4193
4194        hprt0 = dwc2_read_hprt0(hsotg);
4195        hprt0 &= ~HPRT0_RST;
4196        dwc2_writel(hsotg, hprt0, HPRT0);
4197        hsotg->flags.b.port_reset_change = 1;
4198
4199        spin_unlock_irqrestore(&hsotg->lock, flags);
4200}
4201
4202static void dwc2_hcd_phy_reset_func(struct work_struct *work)
4203{
4204        struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4205                                                phy_reset_work);
4206        int ret;
4207
4208        ret = phy_reset(hsotg->phy);
4209        if (ret)
4210                dev_warn(hsotg->dev, "PHY reset failed\n");
4211}
4212
4213/*
4214 * =========================================================================
4215 *  Linux HC Driver Functions
4216 * =========================================================================
4217 */
4218
4219/*
4220 * Initializes the DWC_otg controller and its root hub and prepares it for host
4221 * mode operation. Activates the root port. Returns 0 on success and a negative
4222 * error code on failure.
4223 */
4224static int _dwc2_hcd_start(struct usb_hcd *hcd)
4225{
4226        struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4227        struct usb_bus *bus = hcd_to_bus(hcd);
4228        unsigned long flags;
4229        u32 hprt0;
4230        int ret;
4231
4232        dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
4233
4234        spin_lock_irqsave(&hsotg->lock, flags);
4235        hsotg->lx_state = DWC2_L0;
4236        hcd->state = HC_STATE_RUNNING;
4237        set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4238
4239        if (dwc2_is_device_mode(hsotg)) {
4240                spin_unlock_irqrestore(&hsotg->lock, flags);
4241                return 0;       /* why 0 ?? */
4242        }
4243
4244        dwc2_hcd_reinit(hsotg);
4245
4246        hprt0 = dwc2_read_hprt0(hsotg);
4247        /* Has vbus power been turned on in dwc2_core_host_init ? */
4248        if (hprt0 & HPRT0_PWR) {
4249                /* Enable external vbus supply before resuming root hub */
4250                spin_unlock_irqrestore(&hsotg->lock, flags);
4251                ret = dwc2_vbus_supply_init(hsotg);
4252                if (ret)
4253                        return ret;
4254                spin_lock_irqsave(&hsotg->lock, flags);
4255        }
4256
4257        /* Initialize and connect root hub if one is not already attached */
4258        if (bus->root_hub) {
4259                dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
4260                /* Inform the HUB driver to resume */
4261                usb_hcd_resume_root_hub(hcd);
4262        }
4263
4264        spin_unlock_irqrestore(&hsotg->lock, flags);
4265
4266        return 0;
4267}
4268
4269/*
4270 * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4271 * stopped.
4272 */
4273static void _dwc2_hcd_stop(struct usb_hcd *hcd)
4274{
4275        struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4276        unsigned long flags;
4277        u32 hprt0;
4278
4279        /* Turn off all host-specific interrupts */
4280        dwc2_disable_host_interrupts(hsotg);
4281
4282        /* Wait for interrupt processing to finish */
4283        synchronize_irq(hcd->irq);
4284
4285        spin_lock_irqsave(&hsotg->lock, flags);
4286        hprt0 = dwc2_read_hprt0(hsotg);
4287        /* Ensure hcd is disconnected */
4288        dwc2_hcd_disconnect(hsotg, true);
4289        dwc2_hcd_stop(hsotg);
4290        hsotg->lx_state = DWC2_L3;
4291        hcd->state = HC_STATE_HALT;
4292        clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4293        spin_unlock_irqrestore(&hsotg->lock, flags);
4294
4295        /* keep balanced supply init/exit by checking HPRT0_PWR */
4296        if (hprt0 & HPRT0_PWR)
4297                dwc2_vbus_supply_exit(hsotg);
4298
4299        usleep_range(1000, 3000);
4300}
4301
4302static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
4303{
4304        struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4305        unsigned long flags;
4306        int ret = 0;
4307        u32 hprt0;
4308        u32 pcgctl;
4309
4310        spin_lock_irqsave(&hsotg->lock, flags);
4311
4312        if (dwc2_is_device_mode(hsotg))
4313                goto unlock;
4314
4315        if (hsotg->lx_state != DWC2_L0)
4316                goto unlock;
4317
4318        if (!HCD_HW_ACCESSIBLE(hcd))
4319                goto unlock;
4320
4321        if (hsotg->op_state == OTG_STATE_B_PERIPHERAL)
4322                goto unlock;
4323
4324        if (hsotg->params.power_down > DWC2_POWER_DOWN_PARAM_PARTIAL)
4325                goto skip_power_saving;
4326
4327        /*
4328         * Drive USB suspend and disable port Power
4329         * if usb bus is not suspended.
4330         */
4331        if (!hsotg->bus_suspended) {
4332                hprt0 = dwc2_read_hprt0(hsotg);
4333                if (hprt0 & HPRT0_CONNSTS) {
4334                        hprt0 |= HPRT0_SUSP;
4335                        if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL)
4336                                hprt0 &= ~HPRT0_PWR;
4337                        dwc2_writel(hsotg, hprt0, HPRT0);
4338                }
4339                if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL) {
4340                        spin_unlock_irqrestore(&hsotg->lock, flags);
4341                        dwc2_vbus_supply_exit(hsotg);
4342                        spin_lock_irqsave(&hsotg->lock, flags);
4343                } else {
4344                        pcgctl = readl(hsotg->regs + PCGCTL);
4345                        pcgctl |= PCGCTL_STOPPCLK;
4346                        writel(pcgctl, hsotg->regs + PCGCTL);
4347                }
4348        }
4349
4350        if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL) {
4351                /* Enter partial_power_down */
4352                ret = dwc2_enter_partial_power_down(hsotg);
4353                if (ret) {
4354                        if (ret != -ENOTSUPP)
4355                                dev_err(hsotg->dev,
4356                                        "enter partial_power_down failed\n");
4357                        goto skip_power_saving;
4358                }
4359
4360                /* After entering partial_power_down, hardware is no more accessible */
4361                clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4362        }
4363
4364        /* Ask phy to be suspended */
4365        if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4366                spin_unlock_irqrestore(&hsotg->lock, flags);
4367                usb_phy_set_suspend(hsotg->uphy, true);
4368                spin_lock_irqsave(&hsotg->lock, flags);
4369        }
4370
4371skip_power_saving:
4372        hsotg->lx_state = DWC2_L2;
4373unlock:
4374        spin_unlock_irqrestore(&hsotg->lock, flags);
4375
4376        return ret;
4377}
4378
4379static int _dwc2_hcd_resume(struct usb_hcd *hcd)
4380{
4381        struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4382        unsigned long flags;
4383        u32 pcgctl;
4384        int ret = 0;
4385
4386        spin_lock_irqsave(&hsotg->lock, flags);
4387
4388        if (dwc2_is_device_mode(hsotg))
4389                goto unlock;
4390
4391        if (hsotg->lx_state != DWC2_L2)
4392                goto unlock;
4393
4394        if (hsotg->params.power_down > DWC2_POWER_DOWN_PARAM_PARTIAL) {
4395                hsotg->lx_state = DWC2_L0;
4396                goto unlock;
4397        }
4398
4399        /*
4400         * Enable power if not already done.
4401         * This must not be spinlocked since duration
4402         * of this call is unknown.
4403         */
4404        if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4405                spin_unlock_irqrestore(&hsotg->lock, flags);
4406                usb_phy_set_suspend(hsotg->uphy, false);
4407                spin_lock_irqsave(&hsotg->lock, flags);
4408        }
4409
4410        if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL) {
4411                /*
4412                 * Set HW accessible bit before powering on the controller
4413                 * since an interrupt may rise.
4414                 */
4415                set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4416
4417
4418                /* Exit partial_power_down */
4419                ret = dwc2_exit_partial_power_down(hsotg, true);
4420                if (ret && (ret != -ENOTSUPP))
4421                        dev_err(hsotg->dev, "exit partial_power_down failed\n");
4422        } else {
4423                pcgctl = readl(hsotg->regs + PCGCTL);
4424                pcgctl &= ~PCGCTL_STOPPCLK;
4425                writel(pcgctl, hsotg->regs + PCGCTL);
4426        }
4427
4428        hsotg->lx_state = DWC2_L0;
4429
4430        spin_unlock_irqrestore(&hsotg->lock, flags);
4431
4432        if (hsotg->bus_suspended) {
4433                spin_lock_irqsave(&hsotg->lock, flags);
4434                hsotg->flags.b.port_suspend_change = 1;
4435                spin_unlock_irqrestore(&hsotg->lock, flags);
4436                dwc2_port_resume(hsotg);
4437        } else {
4438                if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL) {
4439                        dwc2_vbus_supply_init(hsotg);
4440
4441                        /* Wait for controller to correctly update D+/D- level */
4442                        usleep_range(3000, 5000);
4443                }
4444
4445                /*
4446                 * Clear Port Enable and Port Status changes.
4447                 * Enable Port Power.
4448                 */
4449                dwc2_writel(hsotg, HPRT0_PWR | HPRT0_CONNDET |
4450                                HPRT0_ENACHG, HPRT0);
4451                /* Wait for controller to detect Port Connect */
4452                usleep_range(5000, 7000);
4453        }
4454
4455        return ret;
4456unlock:
4457        spin_unlock_irqrestore(&hsotg->lock, flags);
4458
4459        return ret;
4460}
4461
4462/* Returns the current frame number */
4463static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
4464{
4465        struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4466
4467        return dwc2_hcd_get_frame_number(hsotg);
4468}
4469
4470static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
4471                               char *fn_name)
4472{
4473#ifdef VERBOSE_DEBUG
4474        struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4475        char *pipetype = NULL;
4476        char *speed = NULL;
4477
4478        dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
4479        dev_vdbg(hsotg->dev, "  Device address: %d\n",
4480                 usb_pipedevice(urb->pipe));
4481        dev_vdbg(hsotg->dev, "  Endpoint: %d, %s\n",
4482                 usb_pipeendpoint(urb->pipe),
4483                 usb_pipein(urb->pipe) ? "IN" : "OUT");
4484
4485        switch (usb_pipetype(urb->pipe)) {
4486        case PIPE_CONTROL:
4487                pipetype = "CONTROL";
4488                break;
4489        case PIPE_BULK:
4490                pipetype = "BULK";
4491                break;
4492        case PIPE_INTERRUPT:
4493                pipetype = "INTERRUPT";
4494                break;
4495        case PIPE_ISOCHRONOUS:
4496                pipetype = "ISOCHRONOUS";
4497                break;
4498        }
4499
4500        dev_vdbg(hsotg->dev, "  Endpoint type: %s %s (%s)\n", pipetype,
4501                 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
4502                 "IN" : "OUT");
4503
4504        switch (urb->dev->speed) {
4505        case USB_SPEED_HIGH:
4506                speed = "HIGH";
4507                break;
4508        case USB_SPEED_FULL:
4509                speed = "FULL";
4510                break;
4511        case USB_SPEED_LOW:
4512                speed = "LOW";
4513                break;
4514        default:
4515                speed = "UNKNOWN";
4516                break;
4517        }
4518
4519        dev_vdbg(hsotg->dev, "  Speed: %s\n", speed);
4520        dev_vdbg(hsotg->dev, "  Max packet size: %d (%d mult)\n",
4521                 usb_endpoint_maxp(&urb->ep->desc),
4522                 usb_endpoint_maxp_mult(&urb->ep->desc));
4523
4524        dev_vdbg(hsotg->dev, "  Data buffer length: %d\n",
4525                 urb->transfer_buffer_length);
4526        dev_vdbg(hsotg->dev, "  Transfer buffer: %p, Transfer DMA: %08lx\n",
4527                 urb->transfer_buffer, (unsigned long)urb->transfer_dma);
4528        dev_vdbg(hsotg->dev, "  Setup buffer: %p, Setup DMA: %08lx\n",
4529                 urb->setup_packet, (unsigned long)urb->setup_dma);
4530        dev_vdbg(hsotg->dev, "  Interval: %d\n", urb->interval);
4531
4532        if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4533                int i;
4534
4535                for (i = 0; i < urb->number_of_packets; i++) {
4536                        dev_vdbg(hsotg->dev, "  ISO Desc %d:\n", i);
4537                        dev_vdbg(hsotg->dev, "    offset: %d, length %d\n",
4538                                 urb->iso_frame_desc[i].offset,
4539                                 urb->iso_frame_desc[i].length);
4540                }
4541        }
4542#endif
4543}
4544
4545/*
4546 * Starts processing a USB transfer request specified by a USB Request Block
4547 * (URB). mem_flags indicates the type of memory allocation to use while
4548 * processing this URB.
4549 */
4550static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
4551                                 gfp_t mem_flags)
4552{
4553        struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4554        struct usb_host_endpoint *ep = urb->ep;
4555        struct dwc2_hcd_urb *dwc2_urb;
4556        int i;
4557        int retval;
4558        int alloc_bandwidth = 0;
4559        u8 ep_type = 0;
4560        u32 tflags = 0;
4561        void *buf;
4562        unsigned long flags;
4563        struct dwc2_qh *qh;
4564        bool qh_allocated = false;
4565        struct dwc2_qtd *qtd;
4566
4567        if (dbg_urb(urb)) {
4568                dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
4569                dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
4570        }
4571
4572        if (!ep)
4573                return -EINVAL;
4574
4575        if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4576            usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4577                spin_lock_irqsave(&hsotg->lock, flags);
4578                if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
4579                        alloc_bandwidth = 1;
4580                spin_unlock_irqrestore(&hsotg->lock, flags);
4581        }
4582
4583        switch (usb_pipetype(urb->pipe)) {
4584        case PIPE_CONTROL:
4585                ep_type = USB_ENDPOINT_XFER_CONTROL;
4586                break;
4587        case PIPE_ISOCHRONOUS:
4588                ep_type = USB_ENDPOINT_XFER_ISOC;
4589                break;
4590        case PIPE_BULK:
4591                ep_type = USB_ENDPOINT_XFER_BULK;
4592                break;
4593        case PIPE_INTERRUPT:
4594                ep_type = USB_ENDPOINT_XFER_INT;
4595                break;
4596        }
4597
4598        dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
4599                                      mem_flags);
4600        if (!dwc2_urb)
4601                return -ENOMEM;
4602
4603        dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
4604                                  usb_pipeendpoint(urb->pipe), ep_type,
4605                                  usb_pipein(urb->pipe),
4606                                  usb_endpoint_maxp(&ep->desc),
4607                                  usb_endpoint_maxp_mult(&ep->desc));
4608
4609        buf = urb->transfer_buffer;
4610
4611        if (hcd_uses_dma(hcd)) {
4612                if (!buf && (urb->transfer_dma & 3)) {
4613                        dev_err(hsotg->dev,
4614                                "%s: unaligned transfer with no transfer_buffer",
4615                                __func__);
4616                        retval = -EINVAL;
4617                        goto fail0;
4618                }
4619        }
4620
4621        if (!(urb->transfer_flags & URB_NO_INTERRUPT))
4622                tflags |= URB_GIVEBACK_ASAP;
4623        if (urb->transfer_flags & URB_ZERO_PACKET)
4624                tflags |= URB_SEND_ZERO_PACKET;
4625
4626        dwc2_urb->priv = urb;
4627        dwc2_urb->buf = buf;
4628        dwc2_urb->dma = urb->transfer_dma;
4629        dwc2_urb->length = urb->transfer_buffer_length;
4630        dwc2_urb->setup_packet = urb->setup_packet;
4631        dwc2_urb->setup_dma = urb->setup_dma;
4632        dwc2_urb->flags = tflags;
4633        dwc2_urb->interval = urb->interval;
4634        dwc2_urb->status = -EINPROGRESS;
4635
4636        for (i = 0; i < urb->number_of_packets; ++i)
4637                dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
4638                                                 urb->iso_frame_desc[i].offset,
4639                                                 urb->iso_frame_desc[i].length);
4640
4641        urb->hcpriv = dwc2_urb;
4642        qh = (struct dwc2_qh *)ep->hcpriv;
4643        /* Create QH for the endpoint if it doesn't exist */
4644        if (!qh) {
4645                qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
4646                if (!qh) {
4647                        retval = -ENOMEM;
4648                        goto fail0;
4649                }
4650                ep->hcpriv = qh;
4651                qh_allocated = true;
4652        }
4653
4654        qtd = kzalloc(sizeof(*qtd), mem_flags);
4655        if (!qtd) {
4656                retval = -ENOMEM;
4657                goto fail1;
4658        }
4659
4660        spin_lock_irqsave(&hsotg->lock, flags);
4661        retval = usb_hcd_link_urb_to_ep(hcd, urb);
4662        if (retval)
4663                goto fail2;
4664
4665        retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
4666        if (retval)
4667                goto fail3;
4668
4669        if (alloc_bandwidth) {
4670                dwc2_allocate_bus_bandwidth(hcd,
4671                                dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4672                                urb);
4673        }
4674
4675        spin_unlock_irqrestore(&hsotg->lock, flags);
4676
4677        return 0;
4678
4679fail3:
4680        dwc2_urb->priv = NULL;
4681        usb_hcd_unlink_urb_from_ep(hcd, urb);
4682        if (qh_allocated && qh->channel && qh->channel->qh == qh)
4683                qh->channel->qh = NULL;
4684fail2:
4685        spin_unlock_irqrestore(&hsotg->lock, flags);
4686        urb->hcpriv = NULL;
4687        kfree(qtd);
4688fail1:
4689        if (qh_allocated) {
4690                struct dwc2_qtd *qtd2, *qtd2_tmp;
4691
4692                ep->hcpriv = NULL;
4693                dwc2_hcd_qh_unlink(hsotg, qh);
4694                /* Free each QTD in the QH's QTD list */
4695                list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
4696                                         qtd_list_entry)
4697                        dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
4698                dwc2_hcd_qh_free(hsotg, qh);
4699        }
4700fail0:
4701        kfree(dwc2_urb);
4702
4703        return retval;
4704}
4705
4706/*
4707 * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4708 */
4709static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
4710                                 int status)
4711{
4712        struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4713        int rc;
4714        unsigned long flags;
4715
4716        dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
4717        dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
4718
4719        spin_lock_irqsave(&hsotg->lock, flags);
4720
4721        rc = usb_hcd_check_unlink_urb(hcd, urb, status);
4722        if (rc)
4723                goto out;
4724
4725        if (!urb->hcpriv) {
4726                dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
4727                goto out;
4728        }
4729
4730        rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
4731
4732        usb_hcd_unlink_urb_from_ep(hcd, urb);
4733
4734        kfree(urb->hcpriv);
4735        urb->hcpriv = NULL;
4736
4737        /* Higher layer software sets URB status */
4738        spin_unlock(&hsotg->lock);
4739        usb_hcd_giveback_urb(hcd, urb, status);
4740        spin_lock(&hsotg->lock);
4741
4742        dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
4743        dev_dbg(hsotg->dev, "  urb->status = %d\n", urb->status);
4744out:
4745        spin_unlock_irqrestore(&hsotg->lock, flags);
4746
4747        return rc;
4748}
4749
4750/*
4751 * Frees resources in the DWC_otg controller related to a given endpoint. Also
4752 * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4753 * must already be dequeued.
4754 */
4755static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
4756                                       struct usb_host_endpoint *ep)
4757{
4758        struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4759
4760        dev_dbg(hsotg->dev,
4761                "DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4762                ep->desc.bEndpointAddress, ep->hcpriv);
4763        dwc2_hcd_endpoint_disable(hsotg, ep, 250);
4764}
4765
4766/*
4767 * Resets endpoint specific parameter values, in current version used to reset
4768 * the data toggle (as a WA). This function can be called from usb_clear_halt
4769 * routine.
4770 */
4771static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
4772                                     struct usb_host_endpoint *ep)
4773{
4774        struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4775        unsigned long flags;
4776
4777        dev_dbg(hsotg->dev,
4778                "DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4779                ep->desc.bEndpointAddress);
4780
4781        spin_lock_irqsave(&hsotg->lock, flags);
4782        dwc2_hcd_endpoint_reset(hsotg, ep);
4783        spin_unlock_irqrestore(&hsotg->lock, flags);
4784}
4785
4786/*
4787 * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4788 * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4789 * interrupt.
4790 *
4791 * This function is called by the USB core when an interrupt occurs
4792 */
4793static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
4794{
4795        struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4796
4797        return dwc2_handle_hcd_intr(hsotg);
4798}
4799
4800/*
4801 * Creates Status Change bitmap for the root hub and root port. The bitmap is
4802 * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4803 * is the status change indicator for the single root port. Returns 1 if either
4804 * change indicator is 1, otherwise returns 0.
4805 */
4806static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
4807{
4808        struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4809
4810        buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
4811        return buf[0] != 0;
4812}
4813
4814/* Handles hub class-specific requests */
4815static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
4816                                 u16 windex, char *buf, u16 wlength)
4817{
4818        int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
4819                                          wvalue, windex, buf, wlength);
4820        return retval;
4821}
4822
4823/* Handles hub TT buffer clear completions */
4824static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
4825                                               struct usb_host_endpoint *ep)
4826{
4827        struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4828        struct dwc2_qh *qh;
4829        unsigned long flags;
4830
4831        qh = ep->hcpriv;
4832        if (!qh)
4833                return;
4834
4835        spin_lock_irqsave(&hsotg->lock, flags);
4836        qh->tt_buffer_dirty = 0;
4837
4838        if (hsotg->flags.b.port_connect_status)
4839                dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
4840
4841        spin_unlock_irqrestore(&hsotg->lock, flags);
4842}
4843
4844/*
4845 * HPRT0_SPD_HIGH_SPEED: high speed
4846 * HPRT0_SPD_FULL_SPEED: full speed
4847 */
4848static void dwc2_change_bus_speed(struct usb_hcd *hcd, int speed)
4849{
4850        struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4851
4852        if (hsotg->params.speed == speed)
4853                return;
4854
4855        hsotg->params.speed = speed;
4856        queue_work(hsotg->wq_otg, &hsotg->wf_otg);
4857}
4858
4859static void dwc2_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
4860{
4861        struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4862
4863        if (!hsotg->params.change_speed_quirk)
4864                return;
4865
4866        /*
4867         * On removal, set speed to default high-speed.
4868         */
4869        if (udev->parent && udev->parent->speed > USB_SPEED_UNKNOWN &&
4870            udev->parent->speed < USB_SPEED_HIGH) {
4871                dev_info(hsotg->dev, "Set speed to default high-speed\n");
4872                dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4873        }
4874}
4875
4876static int dwc2_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
4877{
4878        struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4879
4880        if (!hsotg->params.change_speed_quirk)
4881                return 0;
4882
4883        if (udev->speed == USB_SPEED_HIGH) {
4884                dev_info(hsotg->dev, "Set speed to high-speed\n");
4885                dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4886        } else if ((udev->speed == USB_SPEED_FULL ||
4887                                udev->speed == USB_SPEED_LOW)) {
4888                /*
4889                 * Change speed setting to full-speed if there's
4890                 * a full-speed or low-speed device plugged in.
4891                 */
4892                dev_info(hsotg->dev, "Set speed to full-speed\n");
4893                dwc2_change_bus_speed(hcd, HPRT0_SPD_FULL_SPEED);
4894        }
4895
4896        return 0;
4897}
4898
4899static struct hc_driver dwc2_hc_driver = {
4900        .description = "dwc2_hsotg",
4901        .product_desc = "DWC OTG Controller",
4902        .hcd_priv_size = sizeof(struct wrapper_priv_data),
4903
4904        .irq = _dwc2_hcd_irq,
4905        .flags = HCD_MEMORY | HCD_USB2 | HCD_BH,
4906
4907        .start = _dwc2_hcd_start,
4908        .stop = _dwc2_hcd_stop,
4909        .urb_enqueue = _dwc2_hcd_urb_enqueue,
4910        .urb_dequeue = _dwc2_hcd_urb_dequeue,
4911        .endpoint_disable = _dwc2_hcd_endpoint_disable,
4912        .endpoint_reset = _dwc2_hcd_endpoint_reset,
4913        .get_frame_number = _dwc2_hcd_get_frame_number,
4914
4915        .hub_status_data = _dwc2_hcd_hub_status_data,
4916        .hub_control = _dwc2_hcd_hub_control,
4917        .clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
4918
4919        .bus_suspend = _dwc2_hcd_suspend,
4920        .bus_resume = _dwc2_hcd_resume,
4921
4922        .map_urb_for_dma        = dwc2_map_urb_for_dma,
4923        .unmap_urb_for_dma      = dwc2_unmap_urb_for_dma,
4924};
4925
4926/*
4927 * Frees secondary storage associated with the dwc2_hsotg structure contained
4928 * in the struct usb_hcd field
4929 */
4930static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
4931{
4932        u32 ahbcfg;
4933        u32 dctl;
4934        int i;
4935
4936        dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
4937
4938        /* Free memory for QH/QTD lists */
4939        dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
4940        dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_waiting);
4941        dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
4942        dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
4943        dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
4944        dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
4945        dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
4946
4947        /* Free memory for the host channels */
4948        for (i = 0; i < MAX_EPS_CHANNELS; i++) {
4949                struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
4950
4951                if (chan) {
4952                        dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
4953                                i, chan);
4954                        hsotg->hc_ptr_array[i] = NULL;
4955                        kfree(chan);
4956                }
4957        }
4958
4959        if (hsotg->params.host_dma) {
4960                if (hsotg->status_buf) {
4961                        dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
4962                                          hsotg->status_buf,
4963                                          hsotg->status_buf_dma);
4964                        hsotg->status_buf = NULL;
4965                }
4966        } else {
4967                kfree(hsotg->status_buf);
4968                hsotg->status_buf = NULL;
4969        }
4970
4971        ahbcfg = dwc2_readl(hsotg, GAHBCFG);
4972
4973        /* Disable all interrupts */
4974        ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
4975        dwc2_writel(hsotg, ahbcfg, GAHBCFG);
4976        dwc2_writel(hsotg, 0, GINTMSK);
4977
4978        if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
4979                dctl = dwc2_readl(hsotg, DCTL);
4980                dctl |= DCTL_SFTDISCON;
4981                dwc2_writel(hsotg, dctl, DCTL);
4982        }
4983
4984        if (hsotg->wq_otg) {
4985                if (!cancel_work_sync(&hsotg->wf_otg))
4986                        flush_workqueue(hsotg->wq_otg);
4987                destroy_workqueue(hsotg->wq_otg);
4988        }
4989
4990        cancel_work_sync(&hsotg->phy_reset_work);
4991
4992        del_timer(&hsotg->wkp_timer);
4993}
4994
4995static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
4996{
4997        /* Turn off all host-specific interrupts */
4998        dwc2_disable_host_interrupts(hsotg);
4999
5000        dwc2_hcd_free(hsotg);
5001}
5002
5003/*
5004 * Initializes the HCD. This function allocates memory for and initializes the
5005 * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
5006 * USB bus with the core and calls the hc_driver->start() function. It returns
5007 * a negative error on failure.
5008 */
5009int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
5010{
5011        struct platform_device *pdev = to_platform_device(hsotg->dev);
5012        struct resource *res;
5013        struct usb_hcd *hcd;
5014        struct dwc2_host_chan *channel;
5015        u32 hcfg;
5016        int i, num_channels;
5017        int retval;
5018
5019        if (usb_disabled())
5020                return -ENODEV;
5021
5022        dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
5023
5024        retval = -ENOMEM;
5025
5026        hcfg = dwc2_readl(hsotg, HCFG);
5027        dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
5028
5029#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5030        hsotg->frame_num_array = kcalloc(FRAME_NUM_ARRAY_SIZE,
5031                                         sizeof(*hsotg->frame_num_array),
5032                                         GFP_KERNEL);
5033        if (!hsotg->frame_num_array)
5034                goto error1;
5035        hsotg->last_frame_num_array =
5036                kcalloc(FRAME_NUM_ARRAY_SIZE,
5037                        sizeof(*hsotg->last_frame_num_array), GFP_KERNEL);
5038        if (!hsotg->last_frame_num_array)
5039                goto error1;
5040#endif
5041        hsotg->last_frame_num = HFNUM_MAX_FRNUM;
5042
5043        /* Check if the bus driver or platform code has setup a dma_mask */
5044        if (hsotg->params.host_dma &&
5045            !hsotg->dev->dma_mask) {
5046                dev_warn(hsotg->dev,
5047                         "dma_mask not set, disabling DMA\n");
5048                hsotg->params.host_dma = false;
5049                hsotg->params.dma_desc_enable = false;
5050        }
5051
5052        /* Set device flags indicating whether the HCD supports DMA */
5053        if (hsotg->params.host_dma) {
5054                if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5055                        dev_warn(hsotg->dev, "can't set DMA mask\n");
5056                if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5057                        dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
5058        }
5059
5060        if (hsotg->params.change_speed_quirk) {
5061                dwc2_hc_driver.free_dev = dwc2_free_dev;
5062                dwc2_hc_driver.reset_device = dwc2_reset_device;
5063        }
5064
5065        if (hsotg->params.host_dma)
5066                dwc2_hc_driver.flags |= HCD_DMA;
5067
5068        hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
5069        if (!hcd)
5070                goto error1;
5071
5072        hcd->has_tt = 1;
5073
5074        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5075        hcd->rsrc_start = res->start;
5076        hcd->rsrc_len = resource_size(res);
5077
5078        ((struct wrapper_priv_data *)&hcd->hcd_priv)->hsotg = hsotg;
5079        hsotg->priv = hcd;
5080
5081        /*
5082         * Disable the global interrupt until all the interrupt handlers are
5083         * installed
5084         */
5085        dwc2_disable_global_interrupts(hsotg);
5086
5087        /* Initialize the DWC_otg core, and select the Phy type */
5088        retval = dwc2_core_init(hsotg, true);
5089        if (retval)
5090                goto error2;
5091
5092        /* Create new workqueue and init work */
5093        retval = -ENOMEM;
5094        hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0);
5095        if (!hsotg->wq_otg) {
5096                dev_err(hsotg->dev, "Failed to create workqueue\n");
5097                goto error2;
5098        }
5099        INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
5100
5101        timer_setup(&hsotg->wkp_timer, dwc2_wakeup_detected, 0);
5102
5103        /* Initialize the non-periodic schedule */
5104        INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
5105        INIT_LIST_HEAD(&hsotg->non_periodic_sched_waiting);
5106        INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
5107
5108        /* Initialize the periodic schedule */
5109        INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
5110        INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
5111        INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
5112        INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
5113
5114        INIT_LIST_HEAD(&hsotg->split_order);
5115
5116        /*
5117         * Create a host channel descriptor for each host channel implemented
5118         * in the controller. Initialize the channel descriptor array.
5119         */
5120        INIT_LIST_HEAD(&hsotg->free_hc_list);
5121        num_channels = hsotg->params.host_channels;
5122        memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
5123
5124        for (i = 0; i < num_channels; i++) {
5125                channel = kzalloc(sizeof(*channel), GFP_KERNEL);
5126                if (!channel)
5127                        goto error3;
5128                channel->hc_num = i;
5129                INIT_LIST_HEAD(&channel->split_order_list_entry);
5130                hsotg->hc_ptr_array[i] = channel;
5131        }
5132
5133        /* Initialize work */
5134        INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
5135        INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
5136        INIT_WORK(&hsotg->phy_reset_work, dwc2_hcd_phy_reset_func);
5137
5138        /*
5139         * Allocate space for storing data on status transactions. Normally no
5140         * data is sent, but this space acts as a bit bucket. This must be
5141         * done after usb_add_hcd since that function allocates the DMA buffer
5142         * pool.
5143         */
5144        if (hsotg->params.host_dma)
5145                hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
5146                                        DWC2_HCD_STATUS_BUF_SIZE,
5147                                        &hsotg->status_buf_dma, GFP_KERNEL);
5148        else
5149                hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
5150                                          GFP_KERNEL);
5151
5152        if (!hsotg->status_buf)
5153                goto error3;
5154
5155        /*
5156         * Create kmem caches to handle descriptor buffers in descriptor
5157         * DMA mode.
5158         * Alignment must be set to 512 bytes.
5159         */
5160        if (hsotg->params.dma_desc_enable ||
5161            hsotg->params.dma_desc_fs_enable) {
5162                hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
5163                                sizeof(struct dwc2_dma_desc) *
5164                                MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
5165                                NULL);
5166                if (!hsotg->desc_gen_cache) {
5167                        dev_err(hsotg->dev,
5168                                "unable to create dwc2 generic desc cache\n");
5169
5170                        /*
5171                         * Disable descriptor dma mode since it will not be
5172                         * usable.
5173                         */
5174                        hsotg->params.dma_desc_enable = false;
5175                        hsotg->params.dma_desc_fs_enable = false;
5176                }
5177
5178                hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
5179                                sizeof(struct dwc2_dma_desc) *
5180                                MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
5181                if (!hsotg->desc_hsisoc_cache) {
5182                        dev_err(hsotg->dev,
5183                                "unable to create dwc2 hs isoc desc cache\n");
5184
5185                        kmem_cache_destroy(hsotg->desc_gen_cache);
5186
5187                        /*
5188                         * Disable descriptor dma mode since it will not be
5189                         * usable.
5190                         */
5191                        hsotg->params.dma_desc_enable = false;
5192                        hsotg->params.dma_desc_fs_enable = false;
5193                }
5194        }
5195
5196        if (hsotg->params.host_dma) {
5197                /*
5198                 * Create kmem caches to handle non-aligned buffer
5199                 * in Buffer DMA mode.
5200                 */
5201                hsotg->unaligned_cache = kmem_cache_create("dwc2-unaligned-dma",
5202                                                DWC2_KMEM_UNALIGNED_BUF_SIZE, 4,
5203                                                SLAB_CACHE_DMA, NULL);
5204                if (!hsotg->unaligned_cache)
5205                        dev_err(hsotg->dev,
5206                                "unable to create dwc2 unaligned cache\n");
5207        }
5208
5209        hsotg->otg_port = 1;
5210        hsotg->frame_list = NULL;
5211        hsotg->frame_list_dma = 0;
5212        hsotg->periodic_qh_count = 0;
5213
5214        /* Initiate lx_state to L3 disconnected state */
5215        hsotg->lx_state = DWC2_L3;
5216
5217        hcd->self.otg_port = hsotg->otg_port;
5218
5219        /* Don't support SG list at this point */
5220        hcd->self.sg_tablesize = 0;
5221
5222        if (!IS_ERR_OR_NULL(hsotg->uphy))
5223                otg_set_host(hsotg->uphy->otg, &hcd->self);
5224
5225        /*
5226         * Finish generic HCD initialization and start the HCD. This function
5227         * allocates the DMA buffer pool, registers the USB bus, requests the
5228         * IRQ line, and calls hcd_start method.
5229         */
5230        retval = usb_add_hcd(hcd, hsotg->irq, IRQF_SHARED);
5231        if (retval < 0)
5232                goto error4;
5233
5234        device_wakeup_enable(hcd->self.controller);
5235
5236        dwc2_hcd_dump_state(hsotg);
5237
5238        dwc2_enable_global_interrupts(hsotg);
5239
5240        return 0;
5241
5242error4:
5243        kmem_cache_destroy(hsotg->unaligned_cache);
5244        kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5245        kmem_cache_destroy(hsotg->desc_gen_cache);
5246error3:
5247        dwc2_hcd_release(hsotg);
5248error2:
5249        usb_put_hcd(hcd);
5250error1:
5251
5252#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5253        kfree(hsotg->last_frame_num_array);
5254        kfree(hsotg->frame_num_array);
5255#endif
5256
5257        dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
5258        return retval;
5259}
5260
5261/*
5262 * Removes the HCD.
5263 * Frees memory and resources associated with the HCD and deregisters the bus.
5264 */
5265void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
5266{
5267        struct usb_hcd *hcd;
5268
5269        dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
5270
5271        hcd = dwc2_hsotg_to_hcd(hsotg);
5272        dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
5273
5274        if (!hcd) {
5275                dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5276                        __func__);
5277                return;
5278        }
5279
5280        if (!IS_ERR_OR_NULL(hsotg->uphy))
5281                otg_set_host(hsotg->uphy->otg, NULL);
5282
5283        usb_remove_hcd(hcd);
5284        hsotg->priv = NULL;
5285
5286        kmem_cache_destroy(hsotg->unaligned_cache);
5287        kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5288        kmem_cache_destroy(hsotg->desc_gen_cache);
5289
5290        dwc2_hcd_release(hsotg);
5291        usb_put_hcd(hcd);
5292
5293#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5294        kfree(hsotg->last_frame_num_array);
5295        kfree(hsotg->frame_num_array);
5296#endif
5297}
5298
5299/**
5300 * dwc2_backup_host_registers() - Backup controller host registers.
5301 * When suspending usb bus, registers needs to be backuped
5302 * if controller power is disabled once suspended.
5303 *
5304 * @hsotg: Programming view of the DWC_otg controller
5305 */
5306int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
5307{
5308        struct dwc2_hregs_backup *hr;
5309        int i;
5310
5311        dev_dbg(hsotg->dev, "%s\n", __func__);
5312
5313        /* Backup Host regs */
5314        hr = &hsotg->hr_backup;
5315        hr->hcfg = dwc2_readl(hsotg, HCFG);
5316        hr->haintmsk = dwc2_readl(hsotg, HAINTMSK);
5317        for (i = 0; i < hsotg->params.host_channels; ++i)
5318                hr->hcintmsk[i] = dwc2_readl(hsotg, HCINTMSK(i));
5319
5320        hr->hprt0 = dwc2_read_hprt0(hsotg);
5321        hr->hfir = dwc2_readl(hsotg, HFIR);
5322        hr->hptxfsiz = dwc2_readl(hsotg, HPTXFSIZ);
5323        hr->valid = true;
5324
5325        return 0;
5326}
5327
5328/**
5329 * dwc2_restore_host_registers() - Restore controller host registers.
5330 * When resuming usb bus, device registers needs to be restored
5331 * if controller power were disabled.
5332 *
5333 * @hsotg: Programming view of the DWC_otg controller
5334 */
5335int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
5336{
5337        struct dwc2_hregs_backup *hr;
5338        int i;
5339
5340        dev_dbg(hsotg->dev, "%s\n", __func__);
5341
5342        /* Restore host regs */
5343        hr = &hsotg->hr_backup;
5344        if (!hr->valid) {
5345                dev_err(hsotg->dev, "%s: no host registers to restore\n",
5346                        __func__);
5347                return -EINVAL;
5348        }
5349        hr->valid = false;
5350
5351        dwc2_writel(hsotg, hr->hcfg, HCFG);
5352        dwc2_writel(hsotg, hr->haintmsk, HAINTMSK);
5353
5354        for (i = 0; i < hsotg->params.host_channels; ++i)
5355                dwc2_writel(hsotg, hr->hcintmsk[i], HCINTMSK(i));
5356
5357        dwc2_writel(hsotg, hr->hprt0, HPRT0);
5358        dwc2_writel(hsotg, hr->hfir, HFIR);
5359        dwc2_writel(hsotg, hr->hptxfsiz, HPTXFSIZ);
5360        hsotg->frame_number = 0;
5361
5362        return 0;
5363}
5364
5365/**
5366 * dwc2_host_enter_hibernation() - Put controller in Hibernation.
5367 *
5368 * @hsotg: Programming view of the DWC_otg controller
5369 */
5370int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
5371{
5372        unsigned long flags;
5373        int ret = 0;
5374        u32 hprt0;
5375        u32 pcgcctl;
5376        u32 gusbcfg;
5377        u32 gpwrdn;
5378
5379        dev_dbg(hsotg->dev, "Preparing host for hibernation\n");
5380        ret = dwc2_backup_global_registers(hsotg);
5381        if (ret) {
5382                dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5383                        __func__);
5384                return ret;
5385        }
5386        ret = dwc2_backup_host_registers(hsotg);
5387        if (ret) {
5388                dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5389                        __func__);
5390                return ret;
5391        }
5392
5393        /* Enter USB Suspend Mode */
5394        hprt0 = dwc2_readl(hsotg, HPRT0);
5395        hprt0 |= HPRT0_SUSP;
5396        hprt0 &= ~HPRT0_ENA;
5397        dwc2_writel(hsotg, hprt0, HPRT0);
5398
5399        /* Wait for the HPRT0.PrtSusp register field to be set */
5400        if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 3000))
5401                dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5402
5403        /*
5404         * We need to disable interrupts to prevent servicing of any IRQ
5405         * during going to hibernation
5406         */
5407        spin_lock_irqsave(&hsotg->lock, flags);
5408        hsotg->lx_state = DWC2_L2;
5409
5410        gusbcfg = dwc2_readl(hsotg, GUSBCFG);
5411        if (gusbcfg & GUSBCFG_ULPI_UTMI_SEL) {
5412                /* ULPI interface */
5413                /* Suspend the Phy Clock */
5414                pcgcctl = dwc2_readl(hsotg, PCGCTL);
5415                pcgcctl |= PCGCTL_STOPPCLK;
5416                dwc2_writel(hsotg, pcgcctl, PCGCTL);
5417                udelay(10);
5418
5419                gpwrdn = dwc2_readl(hsotg, GPWRDN);
5420                gpwrdn |= GPWRDN_PMUACTV;
5421                dwc2_writel(hsotg, gpwrdn, GPWRDN);
5422                udelay(10);
5423        } else {
5424                /* UTMI+ Interface */
5425                gpwrdn = dwc2_readl(hsotg, GPWRDN);
5426                gpwrdn |= GPWRDN_PMUACTV;
5427                dwc2_writel(hsotg, gpwrdn, GPWRDN);
5428                udelay(10);
5429
5430                pcgcctl = dwc2_readl(hsotg, PCGCTL);
5431                pcgcctl |= PCGCTL_STOPPCLK;
5432                dwc2_writel(hsotg, pcgcctl, PCGCTL);
5433                udelay(10);
5434        }
5435
5436        /* Enable interrupts from wake up logic */
5437        gpwrdn = dwc2_readl(hsotg, GPWRDN);
5438        gpwrdn |= GPWRDN_PMUINTSEL;
5439        dwc2_writel(hsotg, gpwrdn, GPWRDN);
5440        udelay(10);
5441
5442        /* Unmask host mode interrupts in GPWRDN */
5443        gpwrdn = dwc2_readl(hsotg, GPWRDN);
5444        gpwrdn |= GPWRDN_DISCONN_DET_MSK;
5445        gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5446        gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5447        dwc2_writel(hsotg, gpwrdn, GPWRDN);
5448        udelay(10);
5449
5450        /* Enable Power Down Clamp */
5451        gpwrdn = dwc2_readl(hsotg, GPWRDN);
5452        gpwrdn |= GPWRDN_PWRDNCLMP;
5453        dwc2_writel(hsotg, gpwrdn, GPWRDN);
5454        udelay(10);
5455
5456        /* Switch off VDD */
5457        gpwrdn = dwc2_readl(hsotg, GPWRDN);
5458        gpwrdn |= GPWRDN_PWRDNSWTCH;
5459        dwc2_writel(hsotg, gpwrdn, GPWRDN);
5460
5461        hsotg->hibernated = 1;
5462        hsotg->bus_suspended = 1;
5463        dev_dbg(hsotg->dev, "Host hibernation completed\n");
5464        spin_unlock_irqrestore(&hsotg->lock, flags);
5465        return ret;
5466}
5467
5468/*
5469 * dwc2_host_exit_hibernation()
5470 *
5471 * @hsotg: Programming view of the DWC_otg controller
5472 * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5473 * @param reset: indicates whether resume is initiated by Reset.
5474 *
5475 * Return: non-zero if failed to enter to hibernation.
5476 *
5477 * This function is for exiting from Host mode hibernation by
5478 * Host Initiated Resume/Reset and Device Initiated Remote-Wakeup.
5479 */
5480int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
5481                               int reset)
5482{
5483        u32 gpwrdn;
5484        u32 hprt0;
5485        int ret = 0;
5486        struct dwc2_gregs_backup *gr;
5487        struct dwc2_hregs_backup *hr;
5488
5489        gr = &hsotg->gr_backup;
5490        hr = &hsotg->hr_backup;
5491
5492        dev_dbg(hsotg->dev,
5493                "%s: called with rem_wakeup = %d reset = %d\n",
5494                __func__, rem_wakeup, reset);
5495
5496        dwc2_hib_restore_common(hsotg, rem_wakeup, 1);
5497        hsotg->hibernated = 0;
5498
5499        /*
5500         * This step is not described in functional spec but if not wait for
5501         * this delay, mismatch interrupts occurred because just after restore
5502         * core is in Device mode(gintsts.curmode == 0)
5503         */
5504        mdelay(100);
5505
5506        /* Clear all pending interupts */
5507        dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5508
5509        /* De-assert Restore */
5510        gpwrdn = dwc2_readl(hsotg, GPWRDN);
5511        gpwrdn &= ~GPWRDN_RESTORE;
5512        dwc2_writel(hsotg, gpwrdn, GPWRDN);
5513        udelay(10);
5514
5515        /* Restore GUSBCFG, HCFG */
5516        dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5517        dwc2_writel(hsotg, hr->hcfg, HCFG);
5518
5519        /* De-assert Wakeup Logic */
5520        gpwrdn = dwc2_readl(hsotg, GPWRDN);
5521        gpwrdn &= ~GPWRDN_PMUACTV;
5522        dwc2_writel(hsotg, gpwrdn, GPWRDN);
5523        udelay(10);
5524
5525        hprt0 = hr->hprt0;
5526        hprt0 |= HPRT0_PWR;
5527        hprt0 &= ~HPRT0_ENA;
5528        hprt0 &= ~HPRT0_SUSP;
5529        dwc2_writel(hsotg, hprt0, HPRT0);
5530
5531        hprt0 = hr->hprt0;
5532        hprt0 |= HPRT0_PWR;
5533        hprt0 &= ~HPRT0_ENA;
5534        hprt0 &= ~HPRT0_SUSP;
5535
5536        if (reset) {
5537                hprt0 |= HPRT0_RST;
5538                dwc2_writel(hsotg, hprt0, HPRT0);
5539
5540                /* Wait for Resume time and then program HPRT again */
5541                mdelay(60);
5542                hprt0 &= ~HPRT0_RST;
5543                dwc2_writel(hsotg, hprt0, HPRT0);
5544        } else {
5545                hprt0 |= HPRT0_RES;
5546                dwc2_writel(hsotg, hprt0, HPRT0);
5547
5548                /* Wait for Resume time and then program HPRT again */
5549                mdelay(100);
5550                hprt0 &= ~HPRT0_RES;
5551                dwc2_writel(hsotg, hprt0, HPRT0);
5552        }
5553        /* Clear all interrupt status */
5554        hprt0 = dwc2_readl(hsotg, HPRT0);
5555        hprt0 |= HPRT0_CONNDET;
5556        hprt0 |= HPRT0_ENACHG;
5557        hprt0 &= ~HPRT0_ENA;
5558        dwc2_writel(hsotg, hprt0, HPRT0);
5559
5560        hprt0 = dwc2_readl(hsotg, HPRT0);
5561
5562        /* Clear all pending interupts */
5563        dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5564
5565        /* Restore global registers */
5566        ret = dwc2_restore_global_registers(hsotg);
5567        if (ret) {
5568                dev_err(hsotg->dev, "%s: failed to restore registers\n",
5569                        __func__);
5570                return ret;
5571        }
5572
5573        /* Restore host registers */
5574        ret = dwc2_restore_host_registers(hsotg);
5575        if (ret) {
5576                dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5577                        __func__);
5578                return ret;
5579        }
5580
5581        dwc2_hcd_rem_wakeup(hsotg);
5582
5583        hsotg->hibernated = 0;
5584        hsotg->bus_suspended = 0;
5585        hsotg->lx_state = DWC2_L0;
5586        dev_dbg(hsotg->dev, "Host hibernation restore complete\n");
5587        return ret;
5588}
5589
5590bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2)
5591{
5592        struct usb_device *root_hub = dwc2_hsotg_to_hcd(dwc2)->self.root_hub;
5593
5594        /* If the controller isn't allowed to wakeup then we can power off. */
5595        if (!device_may_wakeup(dwc2->dev))
5596                return true;
5597
5598        /*
5599         * We don't want to power off the PHY if something under the
5600         * root hub has wakeup enabled.
5601         */
5602        if (usb_wakeup_enabled_descendants(root_hub))
5603                return false;
5604
5605        /* No reason to keep the PHY powered, so allow poweroff */
5606        return true;
5607}
5608