linux/drivers/usb/gadget/udc/core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * udc.c - Core UDC Framework
   4 *
   5 * Copyright (C) 2010 Texas Instruments
   6 * Author: Felipe Balbi <balbi@ti.com>
   7 */
   8
   9#include <linux/kernel.h>
  10#include <linux/module.h>
  11#include <linux/device.h>
  12#include <linux/list.h>
  13#include <linux/err.h>
  14#include <linux/dma-mapping.h>
  15#include <linux/sched/task_stack.h>
  16#include <linux/workqueue.h>
  17
  18#include <linux/usb/ch9.h>
  19#include <linux/usb/gadget.h>
  20#include <linux/usb.h>
  21
  22#include "trace.h"
  23
  24/**
  25 * struct usb_udc - describes one usb device controller
  26 * @driver: the gadget driver pointer. For use by the class code
  27 * @dev: the child device to the actual controller
  28 * @gadget: the gadget. For use by the class code
  29 * @list: for use by the udc class driver
  30 * @vbus: for udcs who care about vbus status, this value is real vbus status;
  31 * for udcs who do not care about vbus status, this value is always true
  32 *
  33 * This represents the internal data structure which is used by the UDC-class
  34 * to hold information about udc driver and gadget together.
  35 */
  36struct usb_udc {
  37        struct usb_gadget_driver        *driver;
  38        struct usb_gadget               *gadget;
  39        struct device                   dev;
  40        struct list_head                list;
  41        bool                            vbus;
  42};
  43
  44static struct class *udc_class;
  45static LIST_HEAD(udc_list);
  46static LIST_HEAD(gadget_driver_pending_list);
  47static DEFINE_MUTEX(udc_lock);
  48
  49static int udc_bind_to_driver(struct usb_udc *udc,
  50                struct usb_gadget_driver *driver);
  51
  52/* ------------------------------------------------------------------------- */
  53
  54/**
  55 * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint
  56 * @ep:the endpoint being configured
  57 * @maxpacket_limit:value of maximum packet size limit
  58 *
  59 * This function should be used only in UDC drivers to initialize endpoint
  60 * (usually in probe function).
  61 */
  62void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
  63                                              unsigned maxpacket_limit)
  64{
  65        ep->maxpacket_limit = maxpacket_limit;
  66        ep->maxpacket = maxpacket_limit;
  67
  68        trace_usb_ep_set_maxpacket_limit(ep, 0);
  69}
  70EXPORT_SYMBOL_GPL(usb_ep_set_maxpacket_limit);
  71
  72/**
  73 * usb_ep_enable - configure endpoint, making it usable
  74 * @ep:the endpoint being configured.  may not be the endpoint named "ep0".
  75 *      drivers discover endpoints through the ep_list of a usb_gadget.
  76 *
  77 * When configurations are set, or when interface settings change, the driver
  78 * will enable or disable the relevant endpoints.  while it is enabled, an
  79 * endpoint may be used for i/o until the driver receives a disconnect() from
  80 * the host or until the endpoint is disabled.
  81 *
  82 * the ep0 implementation (which calls this routine) must ensure that the
  83 * hardware capabilities of each endpoint match the descriptor provided
  84 * for it.  for example, an endpoint named "ep2in-bulk" would be usable
  85 * for interrupt transfers as well as bulk, but it likely couldn't be used
  86 * for iso transfers or for endpoint 14.  some endpoints are fully
  87 * configurable, with more generic names like "ep-a".  (remember that for
  88 * USB, "in" means "towards the USB host".)
  89 *
  90 * This routine must be called in process context.
  91 *
  92 * returns zero, or a negative error code.
  93 */
  94int usb_ep_enable(struct usb_ep *ep)
  95{
  96        int ret = 0;
  97
  98        if (ep->enabled)
  99                goto out;
 100
 101        /* UDC drivers can't handle endpoints with maxpacket size 0 */
 102        if (usb_endpoint_maxp(ep->desc) == 0) {
 103                /*
 104                 * We should log an error message here, but we can't call
 105                 * dev_err() because there's no way to find the gadget
 106                 * given only ep.
 107                 */
 108                ret = -EINVAL;
 109                goto out;
 110        }
 111
 112        ret = ep->ops->enable(ep, ep->desc);
 113        if (ret)
 114                goto out;
 115
 116        ep->enabled = true;
 117
 118out:
 119        trace_usb_ep_enable(ep, ret);
 120
 121        return ret;
 122}
 123EXPORT_SYMBOL_GPL(usb_ep_enable);
 124
 125/**
 126 * usb_ep_disable - endpoint is no longer usable
 127 * @ep:the endpoint being unconfigured.  may not be the endpoint named "ep0".
 128 *
 129 * no other task may be using this endpoint when this is called.
 130 * any pending and uncompleted requests will complete with status
 131 * indicating disconnect (-ESHUTDOWN) before this call returns.
 132 * gadget drivers must call usb_ep_enable() again before queueing
 133 * requests to the endpoint.
 134 *
 135 * This routine must be called in process context.
 136 *
 137 * returns zero, or a negative error code.
 138 */
 139int usb_ep_disable(struct usb_ep *ep)
 140{
 141        int ret = 0;
 142
 143        if (!ep->enabled)
 144                goto out;
 145
 146        ret = ep->ops->disable(ep);
 147        if (ret)
 148                goto out;
 149
 150        ep->enabled = false;
 151
 152out:
 153        trace_usb_ep_disable(ep, ret);
 154
 155        return ret;
 156}
 157EXPORT_SYMBOL_GPL(usb_ep_disable);
 158
 159/**
 160 * usb_ep_alloc_request - allocate a request object to use with this endpoint
 161 * @ep:the endpoint to be used with with the request
 162 * @gfp_flags:GFP_* flags to use
 163 *
 164 * Request objects must be allocated with this call, since they normally
 165 * need controller-specific setup and may even need endpoint-specific
 166 * resources such as allocation of DMA descriptors.
 167 * Requests may be submitted with usb_ep_queue(), and receive a single
 168 * completion callback.  Free requests with usb_ep_free_request(), when
 169 * they are no longer needed.
 170 *
 171 * Returns the request, or null if one could not be allocated.
 172 */
 173struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
 174                                                       gfp_t gfp_flags)
 175{
 176        struct usb_request *req = NULL;
 177
 178        req = ep->ops->alloc_request(ep, gfp_flags);
 179
 180        trace_usb_ep_alloc_request(ep, req, req ? 0 : -ENOMEM);
 181
 182        return req;
 183}
 184EXPORT_SYMBOL_GPL(usb_ep_alloc_request);
 185
 186/**
 187 * usb_ep_free_request - frees a request object
 188 * @ep:the endpoint associated with the request
 189 * @req:the request being freed
 190 *
 191 * Reverses the effect of usb_ep_alloc_request().
 192 * Caller guarantees the request is not queued, and that it will
 193 * no longer be requeued (or otherwise used).
 194 */
 195void usb_ep_free_request(struct usb_ep *ep,
 196                                       struct usb_request *req)
 197{
 198        trace_usb_ep_free_request(ep, req, 0);
 199        ep->ops->free_request(ep, req);
 200}
 201EXPORT_SYMBOL_GPL(usb_ep_free_request);
 202
 203/**
 204 * usb_ep_queue - queues (submits) an I/O request to an endpoint.
 205 * @ep:the endpoint associated with the request
 206 * @req:the request being submitted
 207 * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
 208 *      pre-allocate all necessary memory with the request.
 209 *
 210 * This tells the device controller to perform the specified request through
 211 * that endpoint (reading or writing a buffer).  When the request completes,
 212 * including being canceled by usb_ep_dequeue(), the request's completion
 213 * routine is called to return the request to the driver.  Any endpoint
 214 * (except control endpoints like ep0) may have more than one transfer
 215 * request queued; they complete in FIFO order.  Once a gadget driver
 216 * submits a request, that request may not be examined or modified until it
 217 * is given back to that driver through the completion callback.
 218 *
 219 * Each request is turned into one or more packets.  The controller driver
 220 * never merges adjacent requests into the same packet.  OUT transfers
 221 * will sometimes use data that's already buffered in the hardware.
 222 * Drivers can rely on the fact that the first byte of the request's buffer
 223 * always corresponds to the first byte of some USB packet, for both
 224 * IN and OUT transfers.
 225 *
 226 * Bulk endpoints can queue any amount of data; the transfer is packetized
 227 * automatically.  The last packet will be short if the request doesn't fill it
 228 * out completely.  Zero length packets (ZLPs) should be avoided in portable
 229 * protocols since not all usb hardware can successfully handle zero length
 230 * packets.  (ZLPs may be explicitly written, and may be implicitly written if
 231 * the request 'zero' flag is set.)  Bulk endpoints may also be used
 232 * for interrupt transfers; but the reverse is not true, and some endpoints
 233 * won't support every interrupt transfer.  (Such as 768 byte packets.)
 234 *
 235 * Interrupt-only endpoints are less functional than bulk endpoints, for
 236 * example by not supporting queueing or not handling buffers that are
 237 * larger than the endpoint's maxpacket size.  They may also treat data
 238 * toggle differently.
 239 *
 240 * Control endpoints ... after getting a setup() callback, the driver queues
 241 * one response (even if it would be zero length).  That enables the
 242 * status ack, after transferring data as specified in the response.  Setup
 243 * functions may return negative error codes to generate protocol stalls.
 244 * (Note that some USB device controllers disallow protocol stall responses
 245 * in some cases.)  When control responses are deferred (the response is
 246 * written after the setup callback returns), then usb_ep_set_halt() may be
 247 * used on ep0 to trigger protocol stalls.  Depending on the controller,
 248 * it may not be possible to trigger a status-stage protocol stall when the
 249 * data stage is over, that is, from within the response's completion
 250 * routine.
 251 *
 252 * For periodic endpoints, like interrupt or isochronous ones, the usb host
 253 * arranges to poll once per interval, and the gadget driver usually will
 254 * have queued some data to transfer at that time.
 255 *
 256 * Note that @req's ->complete() callback must never be called from
 257 * within usb_ep_queue() as that can create deadlock situations.
 258 *
 259 * This routine may be called in interrupt context.
 260 *
 261 * Returns zero, or a negative error code.  Endpoints that are not enabled
 262 * report errors; errors will also be
 263 * reported when the usb peripheral is disconnected.
 264 *
 265 * If and only if @req is successfully queued (the return value is zero),
 266 * @req->complete() will be called exactly once, when the Gadget core and
 267 * UDC are finished with the request.  When the completion function is called,
 268 * control of the request is returned to the device driver which submitted it.
 269 * The completion handler may then immediately free or reuse @req.
 270 */
 271int usb_ep_queue(struct usb_ep *ep,
 272                               struct usb_request *req, gfp_t gfp_flags)
 273{
 274        int ret = 0;
 275
 276        if (WARN_ON_ONCE(!ep->enabled && ep->address)) {
 277                ret = -ESHUTDOWN;
 278                goto out;
 279        }
 280
 281        ret = ep->ops->queue(ep, req, gfp_flags);
 282
 283out:
 284        trace_usb_ep_queue(ep, req, ret);
 285
 286        return ret;
 287}
 288EXPORT_SYMBOL_GPL(usb_ep_queue);
 289
 290/**
 291 * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
 292 * @ep:the endpoint associated with the request
 293 * @req:the request being canceled
 294 *
 295 * If the request is still active on the endpoint, it is dequeued and
 296 * eventually its completion routine is called (with status -ECONNRESET);
 297 * else a negative error code is returned.  This routine is asynchronous,
 298 * that is, it may return before the completion routine runs.
 299 *
 300 * Note that some hardware can't clear out write fifos (to unlink the request
 301 * at the head of the queue) except as part of disconnecting from usb. Such
 302 * restrictions prevent drivers from supporting configuration changes,
 303 * even to configuration zero (a "chapter 9" requirement).
 304 *
 305 * This routine may be called in interrupt context.
 306 */
 307int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
 308{
 309        int ret;
 310
 311        ret = ep->ops->dequeue(ep, req);
 312        trace_usb_ep_dequeue(ep, req, ret);
 313
 314        return ret;
 315}
 316EXPORT_SYMBOL_GPL(usb_ep_dequeue);
 317
 318/**
 319 * usb_ep_set_halt - sets the endpoint halt feature.
 320 * @ep: the non-isochronous endpoint being stalled
 321 *
 322 * Use this to stall an endpoint, perhaps as an error report.
 323 * Except for control endpoints,
 324 * the endpoint stays halted (will not stream any data) until the host
 325 * clears this feature; drivers may need to empty the endpoint's request
 326 * queue first, to make sure no inappropriate transfers happen.
 327 *
 328 * Note that while an endpoint CLEAR_FEATURE will be invisible to the
 329 * gadget driver, a SET_INTERFACE will not be.  To reset endpoints for the
 330 * current altsetting, see usb_ep_clear_halt().  When switching altsettings,
 331 * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
 332 *
 333 * This routine may be called in interrupt context.
 334 *
 335 * Returns zero, or a negative error code.  On success, this call sets
 336 * underlying hardware state that blocks data transfers.
 337 * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
 338 * transfer requests are still queued, or if the controller hardware
 339 * (usually a FIFO) still holds bytes that the host hasn't collected.
 340 */
 341int usb_ep_set_halt(struct usb_ep *ep)
 342{
 343        int ret;
 344
 345        ret = ep->ops->set_halt(ep, 1);
 346        trace_usb_ep_set_halt(ep, ret);
 347
 348        return ret;
 349}
 350EXPORT_SYMBOL_GPL(usb_ep_set_halt);
 351
 352/**
 353 * usb_ep_clear_halt - clears endpoint halt, and resets toggle
 354 * @ep:the bulk or interrupt endpoint being reset
 355 *
 356 * Use this when responding to the standard usb "set interface" request,
 357 * for endpoints that aren't reconfigured, after clearing any other state
 358 * in the endpoint's i/o queue.
 359 *
 360 * This routine may be called in interrupt context.
 361 *
 362 * Returns zero, or a negative error code.  On success, this call clears
 363 * the underlying hardware state reflecting endpoint halt and data toggle.
 364 * Note that some hardware can't support this request (like pxa2xx_udc),
 365 * and accordingly can't correctly implement interface altsettings.
 366 */
 367int usb_ep_clear_halt(struct usb_ep *ep)
 368{
 369        int ret;
 370
 371        ret = ep->ops->set_halt(ep, 0);
 372        trace_usb_ep_clear_halt(ep, ret);
 373
 374        return ret;
 375}
 376EXPORT_SYMBOL_GPL(usb_ep_clear_halt);
 377
 378/**
 379 * usb_ep_set_wedge - sets the halt feature and ignores clear requests
 380 * @ep: the endpoint being wedged
 381 *
 382 * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT)
 383 * requests. If the gadget driver clears the halt status, it will
 384 * automatically unwedge the endpoint.
 385 *
 386 * This routine may be called in interrupt context.
 387 *
 388 * Returns zero on success, else negative errno.
 389 */
 390int usb_ep_set_wedge(struct usb_ep *ep)
 391{
 392        int ret;
 393
 394        if (ep->ops->set_wedge)
 395                ret = ep->ops->set_wedge(ep);
 396        else
 397                ret = ep->ops->set_halt(ep, 1);
 398
 399        trace_usb_ep_set_wedge(ep, ret);
 400
 401        return ret;
 402}
 403EXPORT_SYMBOL_GPL(usb_ep_set_wedge);
 404
 405/**
 406 * usb_ep_fifo_status - returns number of bytes in fifo, or error
 407 * @ep: the endpoint whose fifo status is being checked.
 408 *
 409 * FIFO endpoints may have "unclaimed data" in them in certain cases,
 410 * such as after aborted transfers.  Hosts may not have collected all
 411 * the IN data written by the gadget driver (and reported by a request
 412 * completion).  The gadget driver may not have collected all the data
 413 * written OUT to it by the host.  Drivers that need precise handling for
 414 * fault reporting or recovery may need to use this call.
 415 *
 416 * This routine may be called in interrupt context.
 417 *
 418 * This returns the number of such bytes in the fifo, or a negative
 419 * errno if the endpoint doesn't use a FIFO or doesn't support such
 420 * precise handling.
 421 */
 422int usb_ep_fifo_status(struct usb_ep *ep)
 423{
 424        int ret;
 425
 426        if (ep->ops->fifo_status)
 427                ret = ep->ops->fifo_status(ep);
 428        else
 429                ret = -EOPNOTSUPP;
 430
 431        trace_usb_ep_fifo_status(ep, ret);
 432
 433        return ret;
 434}
 435EXPORT_SYMBOL_GPL(usb_ep_fifo_status);
 436
 437/**
 438 * usb_ep_fifo_flush - flushes contents of a fifo
 439 * @ep: the endpoint whose fifo is being flushed.
 440 *
 441 * This call may be used to flush the "unclaimed data" that may exist in
 442 * an endpoint fifo after abnormal transaction terminations.  The call
 443 * must never be used except when endpoint is not being used for any
 444 * protocol translation.
 445 *
 446 * This routine may be called in interrupt context.
 447 */
 448void usb_ep_fifo_flush(struct usb_ep *ep)
 449{
 450        if (ep->ops->fifo_flush)
 451                ep->ops->fifo_flush(ep);
 452
 453        trace_usb_ep_fifo_flush(ep, 0);
 454}
 455EXPORT_SYMBOL_GPL(usb_ep_fifo_flush);
 456
 457/* ------------------------------------------------------------------------- */
 458
 459/**
 460 * usb_gadget_frame_number - returns the current frame number
 461 * @gadget: controller that reports the frame number
 462 *
 463 * Returns the usb frame number, normally eleven bits from a SOF packet,
 464 * or negative errno if this device doesn't support this capability.
 465 */
 466int usb_gadget_frame_number(struct usb_gadget *gadget)
 467{
 468        int ret;
 469
 470        ret = gadget->ops->get_frame(gadget);
 471
 472        trace_usb_gadget_frame_number(gadget, ret);
 473
 474        return ret;
 475}
 476EXPORT_SYMBOL_GPL(usb_gadget_frame_number);
 477
 478/**
 479 * usb_gadget_wakeup - tries to wake up the host connected to this gadget
 480 * @gadget: controller used to wake up the host
 481 *
 482 * Returns zero on success, else negative error code if the hardware
 483 * doesn't support such attempts, or its support has not been enabled
 484 * by the usb host.  Drivers must return device descriptors that report
 485 * their ability to support this, or hosts won't enable it.
 486 *
 487 * This may also try to use SRP to wake the host and start enumeration,
 488 * even if OTG isn't otherwise in use.  OTG devices may also start
 489 * remote wakeup even when hosts don't explicitly enable it.
 490 */
 491int usb_gadget_wakeup(struct usb_gadget *gadget)
 492{
 493        int ret = 0;
 494
 495        if (!gadget->ops->wakeup) {
 496                ret = -EOPNOTSUPP;
 497                goto out;
 498        }
 499
 500        ret = gadget->ops->wakeup(gadget);
 501
 502out:
 503        trace_usb_gadget_wakeup(gadget, ret);
 504
 505        return ret;
 506}
 507EXPORT_SYMBOL_GPL(usb_gadget_wakeup);
 508
 509/**
 510 * usb_gadget_set_selfpowered - sets the device selfpowered feature.
 511 * @gadget:the device being declared as self-powered
 512 *
 513 * this affects the device status reported by the hardware driver
 514 * to reflect that it now has a local power supply.
 515 *
 516 * returns zero on success, else negative errno.
 517 */
 518int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
 519{
 520        int ret = 0;
 521
 522        if (!gadget->ops->set_selfpowered) {
 523                ret = -EOPNOTSUPP;
 524                goto out;
 525        }
 526
 527        ret = gadget->ops->set_selfpowered(gadget, 1);
 528
 529out:
 530        trace_usb_gadget_set_selfpowered(gadget, ret);
 531
 532        return ret;
 533}
 534EXPORT_SYMBOL_GPL(usb_gadget_set_selfpowered);
 535
 536/**
 537 * usb_gadget_clear_selfpowered - clear the device selfpowered feature.
 538 * @gadget:the device being declared as bus-powered
 539 *
 540 * this affects the device status reported by the hardware driver.
 541 * some hardware may not support bus-powered operation, in which
 542 * case this feature's value can never change.
 543 *
 544 * returns zero on success, else negative errno.
 545 */
 546int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
 547{
 548        int ret = 0;
 549
 550        if (!gadget->ops->set_selfpowered) {
 551                ret = -EOPNOTSUPP;
 552                goto out;
 553        }
 554
 555        ret = gadget->ops->set_selfpowered(gadget, 0);
 556
 557out:
 558        trace_usb_gadget_clear_selfpowered(gadget, ret);
 559
 560        return ret;
 561}
 562EXPORT_SYMBOL_GPL(usb_gadget_clear_selfpowered);
 563
 564/**
 565 * usb_gadget_vbus_connect - Notify controller that VBUS is powered
 566 * @gadget:The device which now has VBUS power.
 567 * Context: can sleep
 568 *
 569 * This call is used by a driver for an external transceiver (or GPIO)
 570 * that detects a VBUS power session starting.  Common responses include
 571 * resuming the controller, activating the D+ (or D-) pullup to let the
 572 * host detect that a USB device is attached, and starting to draw power
 573 * (8mA or possibly more, especially after SET_CONFIGURATION).
 574 *
 575 * Returns zero on success, else negative errno.
 576 */
 577int usb_gadget_vbus_connect(struct usb_gadget *gadget)
 578{
 579        int ret = 0;
 580
 581        if (!gadget->ops->vbus_session) {
 582                ret = -EOPNOTSUPP;
 583                goto out;
 584        }
 585
 586        ret = gadget->ops->vbus_session(gadget, 1);
 587
 588out:
 589        trace_usb_gadget_vbus_connect(gadget, ret);
 590
 591        return ret;
 592}
 593EXPORT_SYMBOL_GPL(usb_gadget_vbus_connect);
 594
 595/**
 596 * usb_gadget_vbus_draw - constrain controller's VBUS power usage
 597 * @gadget:The device whose VBUS usage is being described
 598 * @mA:How much current to draw, in milliAmperes.  This should be twice
 599 *      the value listed in the configuration descriptor bMaxPower field.
 600 *
 601 * This call is used by gadget drivers during SET_CONFIGURATION calls,
 602 * reporting how much power the device may consume.  For example, this
 603 * could affect how quickly batteries are recharged.
 604 *
 605 * Returns zero on success, else negative errno.
 606 */
 607int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
 608{
 609        int ret = 0;
 610
 611        if (!gadget->ops->vbus_draw) {
 612                ret = -EOPNOTSUPP;
 613                goto out;
 614        }
 615
 616        ret = gadget->ops->vbus_draw(gadget, mA);
 617        if (!ret)
 618                gadget->mA = mA;
 619
 620out:
 621        trace_usb_gadget_vbus_draw(gadget, ret);
 622
 623        return ret;
 624}
 625EXPORT_SYMBOL_GPL(usb_gadget_vbus_draw);
 626
 627/**
 628 * usb_gadget_vbus_disconnect - notify controller about VBUS session end
 629 * @gadget:the device whose VBUS supply is being described
 630 * Context: can sleep
 631 *
 632 * This call is used by a driver for an external transceiver (or GPIO)
 633 * that detects a VBUS power session ending.  Common responses include
 634 * reversing everything done in usb_gadget_vbus_connect().
 635 *
 636 * Returns zero on success, else negative errno.
 637 */
 638int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
 639{
 640        int ret = 0;
 641
 642        if (!gadget->ops->vbus_session) {
 643                ret = -EOPNOTSUPP;
 644                goto out;
 645        }
 646
 647        ret = gadget->ops->vbus_session(gadget, 0);
 648
 649out:
 650        trace_usb_gadget_vbus_disconnect(gadget, ret);
 651
 652        return ret;
 653}
 654EXPORT_SYMBOL_GPL(usb_gadget_vbus_disconnect);
 655
 656/**
 657 * usb_gadget_connect - software-controlled connect to USB host
 658 * @gadget:the peripheral being connected
 659 *
 660 * Enables the D+ (or potentially D-) pullup.  The host will start
 661 * enumerating this gadget when the pullup is active and a VBUS session
 662 * is active (the link is powered).  This pullup is always enabled unless
 663 * usb_gadget_disconnect() has been used to disable it.
 664 *
 665 * Returns zero on success, else negative errno.
 666 */
 667int usb_gadget_connect(struct usb_gadget *gadget)
 668{
 669        int ret = 0;
 670
 671        if (!gadget->ops->pullup) {
 672                ret = -EOPNOTSUPP;
 673                goto out;
 674        }
 675
 676        if (gadget->deactivated) {
 677                /*
 678                 * If gadget is deactivated we only save new state.
 679                 * Gadget will be connected automatically after activation.
 680                 */
 681                gadget->connected = true;
 682                goto out;
 683        }
 684
 685        ret = gadget->ops->pullup(gadget, 1);
 686        if (!ret)
 687                gadget->connected = 1;
 688
 689out:
 690        trace_usb_gadget_connect(gadget, ret);
 691
 692        return ret;
 693}
 694EXPORT_SYMBOL_GPL(usb_gadget_connect);
 695
 696/**
 697 * usb_gadget_disconnect - software-controlled disconnect from USB host
 698 * @gadget:the peripheral being disconnected
 699 *
 700 * Disables the D+ (or potentially D-) pullup, which the host may see
 701 * as a disconnect (when a VBUS session is active).  Not all systems
 702 * support software pullup controls.
 703 *
 704 * Following a successful disconnect, invoke the ->disconnect() callback
 705 * for the current gadget driver so that UDC drivers don't need to.
 706 *
 707 * Returns zero on success, else negative errno.
 708 */
 709int usb_gadget_disconnect(struct usb_gadget *gadget)
 710{
 711        int ret = 0;
 712
 713        if (!gadget->ops->pullup) {
 714                ret = -EOPNOTSUPP;
 715                goto out;
 716        }
 717
 718        if (gadget->deactivated) {
 719                /*
 720                 * If gadget is deactivated we only save new state.
 721                 * Gadget will stay disconnected after activation.
 722                 */
 723                gadget->connected = false;
 724                goto out;
 725        }
 726
 727        ret = gadget->ops->pullup(gadget, 0);
 728        if (!ret) {
 729                gadget->connected = 0;
 730                gadget->udc->driver->disconnect(gadget);
 731        }
 732
 733out:
 734        trace_usb_gadget_disconnect(gadget, ret);
 735
 736        return ret;
 737}
 738EXPORT_SYMBOL_GPL(usb_gadget_disconnect);
 739
 740/**
 741 * usb_gadget_deactivate - deactivate function which is not ready to work
 742 * @gadget: the peripheral being deactivated
 743 *
 744 * This routine may be used during the gadget driver bind() call to prevent
 745 * the peripheral from ever being visible to the USB host, unless later
 746 * usb_gadget_activate() is called.  For example, user mode components may
 747 * need to be activated before the system can talk to hosts.
 748 *
 749 * Returns zero on success, else negative errno.
 750 */
 751int usb_gadget_deactivate(struct usb_gadget *gadget)
 752{
 753        int ret = 0;
 754
 755        if (gadget->deactivated)
 756                goto out;
 757
 758        if (gadget->connected) {
 759                ret = usb_gadget_disconnect(gadget);
 760                if (ret)
 761                        goto out;
 762
 763                /*
 764                 * If gadget was being connected before deactivation, we want
 765                 * to reconnect it in usb_gadget_activate().
 766                 */
 767                gadget->connected = true;
 768        }
 769        gadget->deactivated = true;
 770
 771out:
 772        trace_usb_gadget_deactivate(gadget, ret);
 773
 774        return ret;
 775}
 776EXPORT_SYMBOL_GPL(usb_gadget_deactivate);
 777
 778/**
 779 * usb_gadget_activate - activate function which is not ready to work
 780 * @gadget: the peripheral being activated
 781 *
 782 * This routine activates gadget which was previously deactivated with
 783 * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed.
 784 *
 785 * Returns zero on success, else negative errno.
 786 */
 787int usb_gadget_activate(struct usb_gadget *gadget)
 788{
 789        int ret = 0;
 790
 791        if (!gadget->deactivated)
 792                goto out;
 793
 794        gadget->deactivated = false;
 795
 796        /*
 797         * If gadget has been connected before deactivation, or became connected
 798         * while it was being deactivated, we call usb_gadget_connect().
 799         */
 800        if (gadget->connected)
 801                ret = usb_gadget_connect(gadget);
 802
 803out:
 804        trace_usb_gadget_activate(gadget, ret);
 805
 806        return ret;
 807}
 808EXPORT_SYMBOL_GPL(usb_gadget_activate);
 809
 810/* ------------------------------------------------------------------------- */
 811
 812#ifdef  CONFIG_HAS_DMA
 813
 814int usb_gadget_map_request_by_dev(struct device *dev,
 815                struct usb_request *req, int is_in)
 816{
 817        if (req->length == 0)
 818                return 0;
 819
 820        if (req->num_sgs) {
 821                int     mapped;
 822
 823                mapped = dma_map_sg(dev, req->sg, req->num_sgs,
 824                                is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
 825                if (mapped == 0) {
 826                        dev_err(dev, "failed to map SGs\n");
 827                        return -EFAULT;
 828                }
 829
 830                req->num_mapped_sgs = mapped;
 831        } else {
 832                if (is_vmalloc_addr(req->buf)) {
 833                        dev_err(dev, "buffer is not dma capable\n");
 834                        return -EFAULT;
 835                } else if (object_is_on_stack(req->buf)) {
 836                        dev_err(dev, "buffer is on stack\n");
 837                        return -EFAULT;
 838                }
 839
 840                req->dma = dma_map_single(dev, req->buf, req->length,
 841                                is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
 842
 843                if (dma_mapping_error(dev, req->dma)) {
 844                        dev_err(dev, "failed to map buffer\n");
 845                        return -EFAULT;
 846                }
 847
 848                req->dma_mapped = 1;
 849        }
 850
 851        return 0;
 852}
 853EXPORT_SYMBOL_GPL(usb_gadget_map_request_by_dev);
 854
 855int usb_gadget_map_request(struct usb_gadget *gadget,
 856                struct usb_request *req, int is_in)
 857{
 858        return usb_gadget_map_request_by_dev(gadget->dev.parent, req, is_in);
 859}
 860EXPORT_SYMBOL_GPL(usb_gadget_map_request);
 861
 862void usb_gadget_unmap_request_by_dev(struct device *dev,
 863                struct usb_request *req, int is_in)
 864{
 865        if (req->length == 0)
 866                return;
 867
 868        if (req->num_mapped_sgs) {
 869                dma_unmap_sg(dev, req->sg, req->num_sgs,
 870                                is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
 871
 872                req->num_mapped_sgs = 0;
 873        } else if (req->dma_mapped) {
 874                dma_unmap_single(dev, req->dma, req->length,
 875                                is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
 876                req->dma_mapped = 0;
 877        }
 878}
 879EXPORT_SYMBOL_GPL(usb_gadget_unmap_request_by_dev);
 880
 881void usb_gadget_unmap_request(struct usb_gadget *gadget,
 882                struct usb_request *req, int is_in)
 883{
 884        usb_gadget_unmap_request_by_dev(gadget->dev.parent, req, is_in);
 885}
 886EXPORT_SYMBOL_GPL(usb_gadget_unmap_request);
 887
 888#endif  /* CONFIG_HAS_DMA */
 889
 890/* ------------------------------------------------------------------------- */
 891
 892/**
 893 * usb_gadget_giveback_request - give the request back to the gadget layer
 894 * @ep: the endpoint to be used with with the request
 895 * @req: the request being given back
 896 *
 897 * Context: in_interrupt()
 898 *
 899 * This is called by device controller drivers in order to return the
 900 * completed request back to the gadget layer.
 901 */
 902void usb_gadget_giveback_request(struct usb_ep *ep,
 903                struct usb_request *req)
 904{
 905        if (likely(req->status == 0))
 906                usb_led_activity(USB_LED_EVENT_GADGET);
 907
 908        trace_usb_gadget_giveback_request(ep, req, 0);
 909
 910        req->complete(ep, req);
 911}
 912EXPORT_SYMBOL_GPL(usb_gadget_giveback_request);
 913
 914/* ------------------------------------------------------------------------- */
 915
 916/**
 917 * gadget_find_ep_by_name - returns ep whose name is the same as sting passed
 918 *      in second parameter or NULL if searched endpoint not found
 919 * @g: controller to check for quirk
 920 * @name: name of searched endpoint
 921 */
 922struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g, const char *name)
 923{
 924        struct usb_ep *ep;
 925
 926        gadget_for_each_ep(ep, g) {
 927                if (!strcmp(ep->name, name))
 928                        return ep;
 929        }
 930
 931        return NULL;
 932}
 933EXPORT_SYMBOL_GPL(gadget_find_ep_by_name);
 934
 935/* ------------------------------------------------------------------------- */
 936
 937int usb_gadget_ep_match_desc(struct usb_gadget *gadget,
 938                struct usb_ep *ep, struct usb_endpoint_descriptor *desc,
 939                struct usb_ss_ep_comp_descriptor *ep_comp)
 940{
 941        u8              type;
 942        u16             max;
 943        int             num_req_streams = 0;
 944
 945        /* endpoint already claimed? */
 946        if (ep->claimed)
 947                return 0;
 948
 949        type = usb_endpoint_type(desc);
 950        max = usb_endpoint_maxp(desc);
 951
 952        if (usb_endpoint_dir_in(desc) && !ep->caps.dir_in)
 953                return 0;
 954        if (usb_endpoint_dir_out(desc) && !ep->caps.dir_out)
 955                return 0;
 956
 957        if (max > ep->maxpacket_limit)
 958                return 0;
 959
 960        /* "high bandwidth" works only at high speed */
 961        if (!gadget_is_dualspeed(gadget) && usb_endpoint_maxp_mult(desc) > 1)
 962                return 0;
 963
 964        switch (type) {
 965        case USB_ENDPOINT_XFER_CONTROL:
 966                /* only support ep0 for portable CONTROL traffic */
 967                return 0;
 968        case USB_ENDPOINT_XFER_ISOC:
 969                if (!ep->caps.type_iso)
 970                        return 0;
 971                /* ISO:  limit 1023 bytes full speed, 1024 high/super speed */
 972                if (!gadget_is_dualspeed(gadget) && max > 1023)
 973                        return 0;
 974                break;
 975        case USB_ENDPOINT_XFER_BULK:
 976                if (!ep->caps.type_bulk)
 977                        return 0;
 978                if (ep_comp && gadget_is_superspeed(gadget)) {
 979                        /* Get the number of required streams from the
 980                         * EP companion descriptor and see if the EP
 981                         * matches it
 982                         */
 983                        num_req_streams = ep_comp->bmAttributes & 0x1f;
 984                        if (num_req_streams > ep->max_streams)
 985                                return 0;
 986                }
 987                break;
 988        case USB_ENDPOINT_XFER_INT:
 989                /* Bulk endpoints handle interrupt transfers,
 990                 * except the toggle-quirky iso-synch kind
 991                 */
 992                if (!ep->caps.type_int && !ep->caps.type_bulk)
 993                        return 0;
 994                /* INT:  limit 64 bytes full speed, 1024 high/super speed */
 995                if (!gadget_is_dualspeed(gadget) && max > 64)
 996                        return 0;
 997                break;
 998        }
 999
1000        return 1;
1001}
1002EXPORT_SYMBOL_GPL(usb_gadget_ep_match_desc);
1003
1004/* ------------------------------------------------------------------------- */
1005
1006static void usb_gadget_state_work(struct work_struct *work)
1007{
1008        struct usb_gadget *gadget = work_to_gadget(work);
1009        struct usb_udc *udc = gadget->udc;
1010
1011        if (udc)
1012                sysfs_notify(&udc->dev.kobj, NULL, "state");
1013}
1014
1015void usb_gadget_set_state(struct usb_gadget *gadget,
1016                enum usb_device_state state)
1017{
1018        gadget->state = state;
1019        schedule_work(&gadget->work);
1020}
1021EXPORT_SYMBOL_GPL(usb_gadget_set_state);
1022
1023/* ------------------------------------------------------------------------- */
1024
1025static void usb_udc_connect_control(struct usb_udc *udc)
1026{
1027        if (udc->vbus)
1028                usb_gadget_connect(udc->gadget);
1029        else
1030                usb_gadget_disconnect(udc->gadget);
1031}
1032
1033/**
1034 * usb_udc_vbus_handler - updates the udc core vbus status, and try to
1035 * connect or disconnect gadget
1036 * @gadget: The gadget which vbus change occurs
1037 * @status: The vbus status
1038 *
1039 * The udc driver calls it when it wants to connect or disconnect gadget
1040 * according to vbus status.
1041 */
1042void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status)
1043{
1044        struct usb_udc *udc = gadget->udc;
1045
1046        if (udc) {
1047                udc->vbus = status;
1048                usb_udc_connect_control(udc);
1049        }
1050}
1051EXPORT_SYMBOL_GPL(usb_udc_vbus_handler);
1052
1053/**
1054 * usb_gadget_udc_reset - notifies the udc core that bus reset occurs
1055 * @gadget: The gadget which bus reset occurs
1056 * @driver: The gadget driver we want to notify
1057 *
1058 * If the udc driver has bus reset handler, it needs to call this when the bus
1059 * reset occurs, it notifies the gadget driver that the bus reset occurs as
1060 * well as updates gadget state.
1061 */
1062void usb_gadget_udc_reset(struct usb_gadget *gadget,
1063                struct usb_gadget_driver *driver)
1064{
1065        driver->reset(gadget);
1066        usb_gadget_set_state(gadget, USB_STATE_DEFAULT);
1067}
1068EXPORT_SYMBOL_GPL(usb_gadget_udc_reset);
1069
1070/**
1071 * usb_gadget_udc_start - tells usb device controller to start up
1072 * @udc: The UDC to be started
1073 *
1074 * This call is issued by the UDC Class driver when it's about
1075 * to register a gadget driver to the device controller, before
1076 * calling gadget driver's bind() method.
1077 *
1078 * It allows the controller to be powered off until strictly
1079 * necessary to have it powered on.
1080 *
1081 * Returns zero on success, else negative errno.
1082 */
1083static inline int usb_gadget_udc_start(struct usb_udc *udc)
1084{
1085        return udc->gadget->ops->udc_start(udc->gadget, udc->driver);
1086}
1087
1088/**
1089 * usb_gadget_udc_stop - tells usb device controller we don't need it anymore
1090 * @udc: The UDC to be stopped
1091 *
1092 * This call is issued by the UDC Class driver after calling
1093 * gadget driver's unbind() method.
1094 *
1095 * The details are implementation specific, but it can go as
1096 * far as powering off UDC completely and disable its data
1097 * line pullups.
1098 */
1099static inline void usb_gadget_udc_stop(struct usb_udc *udc)
1100{
1101        udc->gadget->ops->udc_stop(udc->gadget);
1102}
1103
1104/**
1105 * usb_gadget_udc_set_speed - tells usb device controller speed supported by
1106 *    current driver
1107 * @udc: The device we want to set maximum speed
1108 * @speed: The maximum speed to allowed to run
1109 *
1110 * This call is issued by the UDC Class driver before calling
1111 * usb_gadget_udc_start() in order to make sure that we don't try to
1112 * connect on speeds the gadget driver doesn't support.
1113 */
1114static inline void usb_gadget_udc_set_speed(struct usb_udc *udc,
1115                                            enum usb_device_speed speed)
1116{
1117        if (udc->gadget->ops->udc_set_speed) {
1118                enum usb_device_speed s;
1119
1120                s = min(speed, udc->gadget->max_speed);
1121                udc->gadget->ops->udc_set_speed(udc->gadget, s);
1122        }
1123}
1124
1125/**
1126 * usb_udc_release - release the usb_udc struct
1127 * @dev: the dev member within usb_udc
1128 *
1129 * This is called by driver's core in order to free memory once the last
1130 * reference is released.
1131 */
1132static void usb_udc_release(struct device *dev)
1133{
1134        struct usb_udc *udc;
1135
1136        udc = container_of(dev, struct usb_udc, dev);
1137        dev_dbg(dev, "releasing '%s'\n", dev_name(dev));
1138        kfree(udc);
1139}
1140
1141static const struct attribute_group *usb_udc_attr_groups[];
1142
1143static void usb_udc_nop_release(struct device *dev)
1144{
1145        dev_vdbg(dev, "%s\n", __func__);
1146}
1147
1148/* should be called with udc_lock held */
1149static int check_pending_gadget_drivers(struct usb_udc *udc)
1150{
1151        struct usb_gadget_driver *driver;
1152        int ret = 0;
1153
1154        list_for_each_entry(driver, &gadget_driver_pending_list, pending)
1155                if (!driver->udc_name || strcmp(driver->udc_name,
1156                                                dev_name(&udc->dev)) == 0) {
1157                        ret = udc_bind_to_driver(udc, driver);
1158                        if (ret != -EPROBE_DEFER)
1159                                list_del_init(&driver->pending);
1160                        break;
1161                }
1162
1163        return ret;
1164}
1165
1166/**
1167 * usb_add_gadget_udc_release - adds a new gadget to the udc class driver list
1168 * @parent: the parent device to this udc. Usually the controller driver's
1169 * device.
1170 * @gadget: the gadget to be added to the list.
1171 * @release: a gadget release function.
1172 *
1173 * Returns zero on success, negative errno otherwise.
1174 * Calls the gadget release function in the latter case.
1175 */
1176int usb_add_gadget_udc_release(struct device *parent, struct usb_gadget *gadget,
1177                void (*release)(struct device *dev))
1178{
1179        struct usb_udc          *udc;
1180        int                     ret = -ENOMEM;
1181
1182        dev_set_name(&gadget->dev, "gadget");
1183        INIT_WORK(&gadget->work, usb_gadget_state_work);
1184        gadget->dev.parent = parent;
1185
1186        if (release)
1187                gadget->dev.release = release;
1188        else
1189                gadget->dev.release = usb_udc_nop_release;
1190
1191        device_initialize(&gadget->dev);
1192
1193        udc = kzalloc(sizeof(*udc), GFP_KERNEL);
1194        if (!udc)
1195                goto err_put_gadget;
1196
1197        device_initialize(&udc->dev);
1198        udc->dev.release = usb_udc_release;
1199        udc->dev.class = udc_class;
1200        udc->dev.groups = usb_udc_attr_groups;
1201        udc->dev.parent = parent;
1202        ret = dev_set_name(&udc->dev, "%s", kobject_name(&parent->kobj));
1203        if (ret)
1204                goto err_put_udc;
1205
1206        ret = device_add(&gadget->dev);
1207        if (ret)
1208                goto err_put_udc;
1209
1210        udc->gadget = gadget;
1211        gadget->udc = udc;
1212
1213        mutex_lock(&udc_lock);
1214        list_add_tail(&udc->list, &udc_list);
1215
1216        ret = device_add(&udc->dev);
1217        if (ret)
1218                goto err_unlist_udc;
1219
1220        usb_gadget_set_state(gadget, USB_STATE_NOTATTACHED);
1221        udc->vbus = true;
1222
1223        /* pick up one of pending gadget drivers */
1224        ret = check_pending_gadget_drivers(udc);
1225        if (ret)
1226                goto err_del_udc;
1227
1228        mutex_unlock(&udc_lock);
1229
1230        return 0;
1231
1232 err_del_udc:
1233        flush_work(&gadget->work);
1234        device_del(&udc->dev);
1235
1236 err_unlist_udc:
1237        list_del(&udc->list);
1238        mutex_unlock(&udc_lock);
1239
1240        device_del(&gadget->dev);
1241
1242 err_put_udc:
1243        put_device(&udc->dev);
1244
1245 err_put_gadget:
1246        put_device(&gadget->dev);
1247        return ret;
1248}
1249EXPORT_SYMBOL_GPL(usb_add_gadget_udc_release);
1250
1251/**
1252 * usb_get_gadget_udc_name - get the name of the first UDC controller
1253 * This functions returns the name of the first UDC controller in the system.
1254 * Please note that this interface is usefull only for legacy drivers which
1255 * assume that there is only one UDC controller in the system and they need to
1256 * get its name before initialization. There is no guarantee that the UDC
1257 * of the returned name will be still available, when gadget driver registers
1258 * itself.
1259 *
1260 * Returns pointer to string with UDC controller name on success, NULL
1261 * otherwise. Caller should kfree() returned string.
1262 */
1263char *usb_get_gadget_udc_name(void)
1264{
1265        struct usb_udc *udc;
1266        char *name = NULL;
1267
1268        /* For now we take the first available UDC */
1269        mutex_lock(&udc_lock);
1270        list_for_each_entry(udc, &udc_list, list) {
1271                if (!udc->driver) {
1272                        name = kstrdup(udc->gadget->name, GFP_KERNEL);
1273                        break;
1274                }
1275        }
1276        mutex_unlock(&udc_lock);
1277        return name;
1278}
1279EXPORT_SYMBOL_GPL(usb_get_gadget_udc_name);
1280
1281/**
1282 * usb_add_gadget_udc - adds a new gadget to the udc class driver list
1283 * @parent: the parent device to this udc. Usually the controller
1284 * driver's device.
1285 * @gadget: the gadget to be added to the list
1286 *
1287 * Returns zero on success, negative errno otherwise.
1288 */
1289int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget)
1290{
1291        return usb_add_gadget_udc_release(parent, gadget, NULL);
1292}
1293EXPORT_SYMBOL_GPL(usb_add_gadget_udc);
1294
1295static void usb_gadget_remove_driver(struct usb_udc *udc)
1296{
1297        dev_dbg(&udc->dev, "unregistering UDC driver [%s]\n",
1298                        udc->driver->function);
1299
1300        kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1301
1302        usb_gadget_disconnect(udc->gadget);
1303        if (udc->gadget->irq)
1304                synchronize_irq(udc->gadget->irq);
1305        udc->driver->unbind(udc->gadget);
1306        usb_gadget_udc_stop(udc);
1307
1308        udc->driver = NULL;
1309        udc->dev.driver = NULL;
1310        udc->gadget->dev.driver = NULL;
1311}
1312
1313/**
1314 * usb_del_gadget_udc - deletes @udc from udc_list
1315 * @gadget: the gadget to be removed.
1316 *
1317 * This, will call usb_gadget_unregister_driver() if
1318 * the @udc is still busy.
1319 */
1320void usb_del_gadget_udc(struct usb_gadget *gadget)
1321{
1322        struct usb_udc *udc = gadget->udc;
1323
1324        if (!udc)
1325                return;
1326
1327        dev_vdbg(gadget->dev.parent, "unregistering gadget\n");
1328
1329        mutex_lock(&udc_lock);
1330        list_del(&udc->list);
1331
1332        if (udc->driver) {
1333                struct usb_gadget_driver *driver = udc->driver;
1334
1335                usb_gadget_remove_driver(udc);
1336                list_add(&driver->pending, &gadget_driver_pending_list);
1337        }
1338        mutex_unlock(&udc_lock);
1339
1340        kobject_uevent(&udc->dev.kobj, KOBJ_REMOVE);
1341        flush_work(&gadget->work);
1342        device_unregister(&udc->dev);
1343        device_unregister(&gadget->dev);
1344        memset(&gadget->dev, 0x00, sizeof(gadget->dev));
1345}
1346EXPORT_SYMBOL_GPL(usb_del_gadget_udc);
1347
1348/* ------------------------------------------------------------------------- */
1349
1350static int udc_bind_to_driver(struct usb_udc *udc, struct usb_gadget_driver *driver)
1351{
1352        int ret;
1353
1354        dev_dbg(&udc->dev, "registering UDC driver [%s]\n",
1355                        driver->function);
1356
1357        udc->driver = driver;
1358        udc->dev.driver = &driver->driver;
1359        udc->gadget->dev.driver = &driver->driver;
1360
1361        usb_gadget_udc_set_speed(udc, driver->max_speed);
1362
1363        ret = driver->bind(udc->gadget, driver);
1364        if (ret)
1365                goto err1;
1366        ret = usb_gadget_udc_start(udc);
1367        if (ret) {
1368                driver->unbind(udc->gadget);
1369                goto err1;
1370        }
1371        usb_udc_connect_control(udc);
1372
1373        kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1374        return 0;
1375err1:
1376        if (ret != -EISNAM)
1377                dev_err(&udc->dev, "failed to start %s: %d\n",
1378                        udc->driver->function, ret);
1379        udc->driver = NULL;
1380        udc->dev.driver = NULL;
1381        udc->gadget->dev.driver = NULL;
1382        return ret;
1383}
1384
1385int usb_gadget_probe_driver(struct usb_gadget_driver *driver)
1386{
1387        struct usb_udc          *udc = NULL;
1388        int                     ret = -ENODEV;
1389
1390        if (!driver || !driver->bind || !driver->setup)
1391                return -EINVAL;
1392
1393        mutex_lock(&udc_lock);
1394        if (driver->udc_name) {
1395                list_for_each_entry(udc, &udc_list, list) {
1396                        ret = strcmp(driver->udc_name, dev_name(&udc->dev));
1397                        if (!ret)
1398                                break;
1399                }
1400                if (ret)
1401                        ret = -ENODEV;
1402                else if (udc->driver)
1403                        ret = -EBUSY;
1404                else
1405                        goto found;
1406        } else {
1407                list_for_each_entry(udc, &udc_list, list) {
1408                        /* For now we take the first one */
1409                        if (!udc->driver)
1410                                goto found;
1411                }
1412        }
1413
1414        if (!driver->match_existing_only) {
1415                list_add_tail(&driver->pending, &gadget_driver_pending_list);
1416                pr_info("udc-core: couldn't find an available UDC - added [%s] to list of pending drivers\n",
1417                        driver->function);
1418                ret = 0;
1419        }
1420
1421        mutex_unlock(&udc_lock);
1422        if (ret)
1423                pr_warn("udc-core: couldn't find an available UDC or it's busy\n");
1424        return ret;
1425found:
1426        ret = udc_bind_to_driver(udc, driver);
1427        mutex_unlock(&udc_lock);
1428        return ret;
1429}
1430EXPORT_SYMBOL_GPL(usb_gadget_probe_driver);
1431
1432int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
1433{
1434        struct usb_udc          *udc = NULL;
1435        int                     ret = -ENODEV;
1436
1437        if (!driver || !driver->unbind)
1438                return -EINVAL;
1439
1440        mutex_lock(&udc_lock);
1441        list_for_each_entry(udc, &udc_list, list) {
1442                if (udc->driver == driver) {
1443                        usb_gadget_remove_driver(udc);
1444                        usb_gadget_set_state(udc->gadget,
1445                                             USB_STATE_NOTATTACHED);
1446
1447                        /* Maybe there is someone waiting for this UDC? */
1448                        check_pending_gadget_drivers(udc);
1449                        /*
1450                         * For now we ignore bind errors as probably it's
1451                         * not a valid reason to fail other's gadget unbind
1452                         */
1453                        ret = 0;
1454                        break;
1455                }
1456        }
1457
1458        if (ret) {
1459                list_del(&driver->pending);
1460                ret = 0;
1461        }
1462        mutex_unlock(&udc_lock);
1463        return ret;
1464}
1465EXPORT_SYMBOL_GPL(usb_gadget_unregister_driver);
1466
1467/* ------------------------------------------------------------------------- */
1468
1469static ssize_t srp_store(struct device *dev,
1470                struct device_attribute *attr, const char *buf, size_t n)
1471{
1472        struct usb_udc          *udc = container_of(dev, struct usb_udc, dev);
1473
1474        if (sysfs_streq(buf, "1"))
1475                usb_gadget_wakeup(udc->gadget);
1476
1477        return n;
1478}
1479static DEVICE_ATTR_WO(srp);
1480
1481static ssize_t soft_connect_store(struct device *dev,
1482                struct device_attribute *attr, const char *buf, size_t n)
1483{
1484        struct usb_udc          *udc = container_of(dev, struct usb_udc, dev);
1485
1486        if (!udc->driver) {
1487                dev_err(dev, "soft-connect without a gadget driver\n");
1488                return -EOPNOTSUPP;
1489        }
1490
1491        if (sysfs_streq(buf, "connect")) {
1492                usb_gadget_udc_start(udc);
1493                usb_gadget_connect(udc->gadget);
1494        } else if (sysfs_streq(buf, "disconnect")) {
1495                usb_gadget_disconnect(udc->gadget);
1496                usb_gadget_udc_stop(udc);
1497        } else {
1498                dev_err(dev, "unsupported command '%s'\n", buf);
1499                return -EINVAL;
1500        }
1501
1502        return n;
1503}
1504static DEVICE_ATTR_WO(soft_connect);
1505
1506static ssize_t state_show(struct device *dev, struct device_attribute *attr,
1507                          char *buf)
1508{
1509        struct usb_udc          *udc = container_of(dev, struct usb_udc, dev);
1510        struct usb_gadget       *gadget = udc->gadget;
1511
1512        return sprintf(buf, "%s\n", usb_state_string(gadget->state));
1513}
1514static DEVICE_ATTR_RO(state);
1515
1516static ssize_t function_show(struct device *dev, struct device_attribute *attr,
1517                             char *buf)
1518{
1519        struct usb_udc          *udc = container_of(dev, struct usb_udc, dev);
1520        struct usb_gadget_driver *drv = udc->driver;
1521
1522        if (!drv || !drv->function)
1523                return 0;
1524        return scnprintf(buf, PAGE_SIZE, "%s\n", drv->function);
1525}
1526static DEVICE_ATTR_RO(function);
1527
1528#define USB_UDC_SPEED_ATTR(name, param)                                 \
1529ssize_t name##_show(struct device *dev,                                 \
1530                struct device_attribute *attr, char *buf)               \
1531{                                                                       \
1532        struct usb_udc *udc = container_of(dev, struct usb_udc, dev);   \
1533        return scnprintf(buf, PAGE_SIZE, "%s\n",                        \
1534                        usb_speed_string(udc->gadget->param));          \
1535}                                                                       \
1536static DEVICE_ATTR_RO(name)
1537
1538static USB_UDC_SPEED_ATTR(current_speed, speed);
1539static USB_UDC_SPEED_ATTR(maximum_speed, max_speed);
1540
1541#define USB_UDC_ATTR(name)                                      \
1542ssize_t name##_show(struct device *dev,                         \
1543                struct device_attribute *attr, char *buf)       \
1544{                                                               \
1545        struct usb_udc          *udc = container_of(dev, struct usb_udc, dev); \
1546        struct usb_gadget       *gadget = udc->gadget;          \
1547                                                                \
1548        return scnprintf(buf, PAGE_SIZE, "%d\n", gadget->name); \
1549}                                                               \
1550static DEVICE_ATTR_RO(name)
1551
1552static USB_UDC_ATTR(is_otg);
1553static USB_UDC_ATTR(is_a_peripheral);
1554static USB_UDC_ATTR(b_hnp_enable);
1555static USB_UDC_ATTR(a_hnp_support);
1556static USB_UDC_ATTR(a_alt_hnp_support);
1557static USB_UDC_ATTR(is_selfpowered);
1558
1559static struct attribute *usb_udc_attrs[] = {
1560        &dev_attr_srp.attr,
1561        &dev_attr_soft_connect.attr,
1562        &dev_attr_state.attr,
1563        &dev_attr_function.attr,
1564        &dev_attr_current_speed.attr,
1565        &dev_attr_maximum_speed.attr,
1566
1567        &dev_attr_is_otg.attr,
1568        &dev_attr_is_a_peripheral.attr,
1569        &dev_attr_b_hnp_enable.attr,
1570        &dev_attr_a_hnp_support.attr,
1571        &dev_attr_a_alt_hnp_support.attr,
1572        &dev_attr_is_selfpowered.attr,
1573        NULL,
1574};
1575
1576static const struct attribute_group usb_udc_attr_group = {
1577        .attrs = usb_udc_attrs,
1578};
1579
1580static const struct attribute_group *usb_udc_attr_groups[] = {
1581        &usb_udc_attr_group,
1582        NULL,
1583};
1584
1585static int usb_udc_uevent(struct device *dev, struct kobj_uevent_env *env)
1586{
1587        struct usb_udc          *udc = container_of(dev, struct usb_udc, dev);
1588        int                     ret;
1589
1590        ret = add_uevent_var(env, "USB_UDC_NAME=%s", udc->gadget->name);
1591        if (ret) {
1592                dev_err(dev, "failed to add uevent USB_UDC_NAME\n");
1593                return ret;
1594        }
1595
1596        if (udc->driver) {
1597                ret = add_uevent_var(env, "USB_UDC_DRIVER=%s",
1598                                udc->driver->function);
1599                if (ret) {
1600                        dev_err(dev, "failed to add uevent USB_UDC_DRIVER\n");
1601                        return ret;
1602                }
1603        }
1604
1605        return 0;
1606}
1607
1608static int __init usb_udc_init(void)
1609{
1610        udc_class = class_create(THIS_MODULE, "udc");
1611        if (IS_ERR(udc_class)) {
1612                pr_err("failed to create udc class --> %ld\n",
1613                                PTR_ERR(udc_class));
1614                return PTR_ERR(udc_class);
1615        }
1616
1617        udc_class->dev_uevent = usb_udc_uevent;
1618        return 0;
1619}
1620subsys_initcall(usb_udc_init);
1621
1622static void __exit usb_udc_exit(void)
1623{
1624        class_destroy(udc_class);
1625}
1626module_exit(usb_udc_exit);
1627
1628MODULE_DESCRIPTION("UDC Framework");
1629MODULE_AUTHOR("Felipe Balbi <balbi@ti.com>");
1630MODULE_LICENSE("GPL v2");
1631